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Preface

The notion that affective processes, like emotions and moods, dynamically unfold 
across time has been around since the beginning of research on affect and emotion. 
However, it is only in the recent decade or so that advances in affect theory and 
measurement has allowed researchers to discover the nature of these dynamics as 
well as the role of these dynamics in development, relationships, personality, and 
psychopathology. This book features cutting edge research on the theory and mea-
surement of affect dynamics from the leading experts in this blooming field.

This book will differentiate itself from other books on affect dynamics by focus-
ing not only on the fact that they occur, but also on understanding how and why they 
occur. To understand how they occur, authors will explore affect dynamics at differ-
ent time-scales. The first time-scale is Within-episode Affect Dynamics, in which 
authors discuss how single emotional episodes may unfold including the duration of 
affective responses, the dynamics of regulating those affective responses, and how 
these are instantiated in the brain. The second time-scale explored is Between-
episode Affect Dynamics, in which authors will discuss how emotions and moods at 
one point in time may influence subsequent emotions and moods, and the impor-
tance of the time-scales on which we assess these dynamics.

Understanding how affect dynamics occur across these different time-scales will 
lay the foundation for authors to explore why they occur, which will ensure that this 
book truly advances the field of affect and affect dynamics. This book will open 
with a call by the editors for researchers to stop treating time like the cause of affect 
dynamics, but rather to theorize on the dynamic psychological and situational pro-
cesses that are causing these changes in affect across time. By exploring the causal 
antecedents of affect dynamics in their chapters, authors will provide novel ideas for 
generating new theories, models, and measurement of affect and affect dynamics. 
This call for understanding causal antecedents is particularly apparent in the section 
on Between-person Dynamics in which authors propose that interactions and rela-
tionships with others form much of the basis of our affect dynamics.

Integral to understanding affect dynamics is to understand how they are assessed 
and this book will feature an array of assessment and analytical techniques. Across 
all the sections, authors discuss how affect dynamics are instantiated across neural, 
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psychological, and behavioral levels of processing and in the Computational Models 
of Affect section, authors provide state-of-the-art analytical techniques for assessing 
and modeling temporal changes in affective experiences.

It is becoming increasingly clear that to fully understand affective processes, we 
must understand that affect changes across time, how these affect dynamics occur, 
and the causal antecedents of these dynamics. This volume will serve as a reference 
for both seasoned and beginning affective science researchers to explore these 
important affect dynamics topics.

Winston Salem, NC, USA� Christian E. Waugh  
Leuven, Belgium � Peter Kuppens   
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Introduction

Abstract Among the many faculties of the mind, affect and emotions are perhaps 
the most quintessentially dynamical in nature. Meant to alert us of relevant threats 
and opportunities, our emotions and affective experiences dynamically fluctuate 
across time and situations. The field of affect dynamics research sets out to under-
stand this temporal nature of affect and how it plays a role in other domains of 
functioning. With this volume, we are very happy to bring together a collection of 
contributions that review past research on affect dynamics and on the basis of that 
discuss how affect dynamics research can move forward into the future. In this first 
chapter, we first briefly introduce the field of affect dynamics research, discuss the 
role of time in affect, and introduce the major sections of this book and the chapter 
featuring in each.

Keywords Affect dynamics · Emotion · Mood · Time · Computational models · 
Interpersonal

As we and others have used up all the time-themed expressions to start a piece on 
affect dynamics (It’s about time!, Time to get personal, Timing matters, A matter of 
time, The time is now…), we decided to start this introductory chapter without a 
playful reference to the concept of time. Oh, who are we kidding—there is no better 
time than now to conceive a book on the topic of affect dynamics. Affect dynamics 
research is at a turning point. It can bow on a now rich and diverse research tradition 
that has pursued crucial questions related to the very nature of emotion and their 
role in many different domains of life. It has helped to create important theoretical 
contributions and methodological innovations, and time is taken way more seri-
ously when addressing issues related to emotion than ever before. At the same time, 
as a field grows, initial enthusiasm matures into reflections about the fundamental 
theoretical underpinnings and methodological complexities involved in capturing 
the time dimension of affect. In a way, this book is a reflection of this maturation.

On the one hand, the interested reader will find in this volume an up-to-date 
overview of much of the research that has taken place over the past couple of 
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decades on various time-dynamic affective phenomena and processes. On the other 
hand, many if not all chapters also highlight a number of issues the field has been 
grappling with and provide guidance on how the future of our field can deal with 
these issues. We will walk you through the individual chapters later in this introduc-
tion, but first let us define the field of affect dynamics, and say a few words on the 
role of time in affect dynamics.

�The Field of Affective Dynamics

Among the many faculties of the mind, affect and emotions are perhaps the most 
quintessentially dynamical in nature. Looking at the history of psychology, many 
psychological constructs like personality, intelligence, values, preferences, etc. have 
mostly been conceptualized and/or studied as relatively stable characteristics. Not 
so for affect and emotion. From the start (be that the start of scientific psychology, 
or treaties of emotion from early philosophers), it was clear that emotions and our 
affective experiences are inherently changing, fluctuating phenomena. Emotions are 
thought to inform us about the way events in the world (or in our mind) relate to 
what we deem important. This interaction lends emotions a fundamentally dynamic 
nature, with changes occurring if events change and/or what we consider important 
changes. In addition, the ability of our mind to foresee, construct, or remember 
these events means that emotions can be anticipatory or can linger on after events 
have dissipated. Understanding the resulting dynamical properties and what they 
tell us about emotions is the focus of the field of affect dynamics research.

As mentioned, emotions have been considered dynamic from the start, and early 
theories and empirical efforts have taken this into account (although it should also 
be mentioned that a lot of research has not). Pioneering work is from way before our 
time, such as the work on intensity profiles and duration of emotional episodes by 
Frijda and colleagues (e.g., Frijda et al., 1991; Sonnemans & Frijda, 1994) or work 
on affective chronometry by Davidson (1998).

Building on this work, in previous writing, we have demarcated the study of 
affective dynamics as “the study of … the trajectories, patterns, and regularities 
with which emotions, or one or more of their subcomponents (such as experiential, 
physiological, or behavioral components) fluctuate across time, their underlying 
processes, and downstream consequences” (p. 71, Kuppens & Verduyn, 2015).

This description is relatively broad, with the intention to both involve short-term 
fluctuations as one can observe within a single emotional episode and to incorporate 
longer term patterns that occur between episodes (a distinction we revisit in the 
structuring of this volume). Also, while not explicitly emphasized in this descrip-
tion, it should also be kept in mind that affect dynamics are not considered to reside 
in the mind of an individual alone. As emotions typically originate not within but 
between people (Parkinson, 2019), the field of affect dynamics is concerned both 
with intra-individual and interindividual processes and phenomena (again some-
thing that is reflected in the structuring of this volume).

Introduction
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Although in many ways the study of affect dynamics involves and overlaps with 
many other areas and questions being pursued in affective science, its common 
denominator is the explicit recognition that a thorough understanding of the nature, 
causes, and consequences of emotions entails explicitly taking into account their 
dynamical nature. The individual contributions of this volume deliver testimony of 
this viewpoint.

�Time Is Not the Cause of Affective Dynamics

When assessing affective dynamics, we typically assess the change of emotional/
affective states across time, so it is tempting to think about time as the causal agent 
of those changes. This thinking is reflected in lay phrases like “time heals all 
wounds” as well as in articles on affective dynamics that feature causal language 
like “time increased the arousal of…” and “time-induced stress…” From our per-
spective, however, time is never a causal agent of affective dynamics. Time does not 
cause anything by itself. Rather, other causal agents of affective dynamics occur 
across time and it is only our perception that time is the cause of these changes.

We start not with emotion or even psychology but with the myriad of other dis-
ciplines that feature time as a central component of their theories and equations. In 
physics, Einstein’s theory of relativity was one of the first theoretical suggestions 
that time is not a constant but rather exists relative to one’s perspective (Vaccaro, 
2018). In modern quantum theories, theorists have suggested that most quantum 
equations can be written without even referencing time (Rovelli, 2018) and that 
time is a set of quantum states that co-exist with equal status such that the future is 
as fixed as the past (Minkowski, 1908). In geology, erosion is the rate at which some 
part of the surface of the earth is worn down over time; however, it is not caused by 
time but by physical agents like water and air. In biology, the evolution of a species 
is reflected in the change in genetic makeup of a species over time, but is not caused 
by time but by the insertions and deletions of genetic mutations from one generation 
to the next. Indeed, the theory of punctuated equilibrium suggests that some evolu-
tionary changes occur rapidly between long time periods of little to no change 
(Gould, 2007). And in anatomy, aging occurs because our body experiences oxida-
tive stress, telomere shortening, mutations, and other damage to body structures 
over time (Liochev, 2015), and not because of time itself. We perceive erosion, 
evolution, and aging as being caused by time in part because the quantum states of 
time can be ordered (due mainly to entropy), and it is this order that leads people to 
subjectively feel like time and time-linked processes flow in one direction 
(Vaccaro, 2018).

Returning now to psychology, there are several instances of psychological pro-
cesses that seem to be caused by time but evidence suggests that they are also caused 
by other mechanisms that change over time. For example, for working memory, 
there is a robust finding that people’s ability to remember information tends to get 
worse, or decay, over time (Barouillet & Camos, 2012). However, there is research 
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and theory to suggest that time is not the cause of this working memory decay but 
rather that it is caused by other processes (attention, memory, perceptual, etc.) that 
interfere with working memory over time (Lewandowsky & Oberauer, 2009). In 
affective dynamics, the idea that “time heals all wounds” suggests that time itself is 
the causal agent in emotional/physiological recovery from a stressful event. Indeed, 
recovery is typically measured as the change in response to some stressor over time 
and frequently returns to baseline. However, recovery rates are impacted by mecha-
nisms such as active (Schraub et al., 2013) and passive emotion regulation (Foa & 
Kozak, 1986), and rumination (Glynn et al., 2002). Indeed, extinction of a condi-
tioned fear stimulus can lead to decreased emotional and physiological reactivity 
over time; however, it has been shown that this is a form of learning and not just the 
gradual time-locked decay of fear as evidenced by spontaneous recovery of the 
initial fear response later (Myers & Davis, 2007). In addition, sometimes affective 
recovery does not actually return to baseline at all after a perturbation (Lucas, 2005), 
suggesting that something permanent has changed and that time itself cannot 
reverse it.

Therefore, when constructing this volume we insisted that the authors not rely on 
the crutch that time is the causal agent of affective dynamics, but to rather explore 
the actual causal mechanisms of their affective changes of interest. We strongly 
believe this resulted in a series of chapters that are quite novel in their exploration 
of the causal agents of affective dynamics and will most assuredly lead to significant 
advances in this field for years to come.

�This Volume

The structure we have adopted for this volume can be compared to a camera that 
slowly zooms out from its object of focus to take in more and more of the broader 
picture and context in which the object is situated. Specifically, we start with a num-
ber of chapters that mostly focus on within-episode dynamics. While our emotional 
life is arguably characterized by a remarkable continuity, nevertheless specific 
events can trigger what has been termed emotional episodes, which typically have 
an identified onset and offset. The first couple of chapters address the dynamics that 
take place within the context of such an episode.

In short, starting with a micro focus on how to demarcate such emotional epi-
sodes, Verduyn addresses the duration of emotional episodes. This requires deter-
mining what can be considered as the start and ending of an emotional episode, and 
this chapter discusses research that tackles this important first question.

Next, Everaert et al. propose a predictive mind model to capture how appraisals 
originate are updated and revised and as such shape the trajectory of the emotional 
episode between its beginning and ending. In the last chapter of this section, Heller 
reviews research on the neural basis of the dynamics within emotional episodes, 
encompassing rise-time, intensity and duration of emotional episodes, and paying 
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explicit attention to the different time-scales on which different emotion compo-
nents operate.

Whereas the previous section was mostly concerned with what happens within 
an emotional episode, the next section zooms out a little bit and brings together a 
number of contributions that mostly focus on between-episode dynamics. The 
issues discussed in this section are situated on a longer time-scale and consider how 
emotions and affective experiences vary over longer periods of time.

First, Koval et al. hones in on one of the most basic but intriguing temporal char-
acteristics of affect, namely its autocorrelated, self-predictive, or inert nature. 
Indeed, due to processes laid out in the chapter, emotions and affect last longer than 
the presence of the eliciting stimulus and can linger more or less after the initial 
event is over. This means that affect is autocorrelated, meaning that how one feels 
can be predicted by how one feels at a previous moment in time, with interesting 
implications for understanding the nature of emotion and also its role in disorders of 
emotion and affect. Next, Lazarus et al. take on this perspective of between-episode 
dynamics and suggest a number of key issues and concerns that have to be taken 
into account when studying the dynamics of affect on longer time-scales. Hollenstein 
joins this discussion by warning affect dynamics researchers to not overstate their 
claims based on data that do not reflect the processes they target on the correct time-
scale and context. Finally, Dejonkcheere et  al. summarize many of the previous 
issues under the banner of signal-to-noise ratio in affect dynamics data and offer a 
number of concrete suggestions on how to increase this, effectively dealing with 
many of the issues that have been raised in this section.

Where the previous two sections were mostly concerned with the intrapersonal 
dimension of affect dynamics, the two chapters in the next section take an even 
broader perspective and zoom out to the interpersonal level. First, Sels et al. provide 
an overview of interpersonal affect dynamics research and put forward two ele-
ments that are key to understanding the temporal patterns with which people emote 
together, interdependence and perceived partner responsiveness. Against this back-
ground, they provide excellent suggestions to move the field of interpersonal affect 
dynamics research forward. Next, Mobbs et al. approach the topic of affect dynam-
ics from an interpersonal drives perspective, arguing how three fundamental social 
drives shape and are shaped by affect dynamics and as such are able to pinpoint 
what constitutes healthy and unhealthy functioning.

One could argue that the final section discusses attempts to bring all elements 
into unified frameworks in the form of computational models for affect dynamics. 
Computational models do not just help researchers analyze the complex and large 
amount of time series data typically encountered in affect dynamics research, but 
they provide for formalized theories of the mechanisms and processes involved in 
affect dynamics, make them directly amenable to empirical testing, and allow 
researchers to pit theories against each other and directly evaluate how they perform 
in explaining empirical data. As such they are an extremely valuable tool for theory 
construction, theory evaluation, and for making sense of the often complex data col-
lected in affect dynamics research. First, Loossens, et al. provide a non-exhaustive 
but broad overview of families of computational models presented in the literature, 
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distinguishing between discrete- and continuous time models, and highlighting the 
strengths and weaknesses of particular approaches or proposals. This overview is 
excellent for readers who want to become acquainted with different computational 
modeling approaches out there, addressing the basics but also not shunning impor-
tant technical elements. Next, the final two chapters present particular computa-
tional modeling approaches developed to grasp dynamics in affect regulation and 
subjective experience of affect, respectively. Nimat et al. propose a family of com-
putational network models to capture the flexibility and adaptation in context-
dependent emotion regulation processes. Next, Kishida et al. propose the Dynamics 
Affective Core hypothesis in which they draw on dopaminergic reinforcement 
learning to model how the brain generates moment-to-moment changes in affective 
consciousness.

�Conclusion

The field of affect dynamics is in its adolescence—mature enough to have formal 
models and theory-driven hypotheses, but young enough that many of these models 
have either not been fully tested, or struggle with explaining affective phenomena 
over and above simpler metrics (e.g., Dejonckheere et al., 2019). This volume does 
not hide that adolescence, but showcases it with a renewed emphasis on the model-
ing of affect dynamics, the role of time-scales, and the neural underpinnings of 
affect dynamics, as well as a relatively novel emphasis on understanding that affect 
dynamics are caused by psychological and environmental mechanisms and not by 
time itself.
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Chapter 1
Emotion Duration

Philippe Verduyn 

Abstract  Emotions are processes that unfold over time. This implies that research on 
dynamic features of emotions is needed to understand how emotions operate. One key 
dynamic feature is emotion duration. For a long time, no research on emotion duration 
was conducted. However, during the last three decades, our understanding of emotion 
duration increased significantly. In the present chapter, I provide an overview of 
research on emotion duration. First, I define emotion duration and discuss the concep-
tual complexities surrounding the start and end of an emotional episode. Next, I 
describe studies that examined how long emotional episodes last. These studies con-
verged on the conclusion that emotion duration is highly variable with episodes lasting 
for seconds, minutes, hours or even longer. Subsequently, I review research examining 
the mechanisms underlying emotion duration. These mechanisms include psychologi-
cal processes that occur at the start of an emotional episode, as the initial appraisal of 
an emotion-eliciting event and intensity of the emotional response are major determi-
nants of emotion duration. Moreover, emotion duration also depends on psychological 
processes that unfold during the emotional episode as dynamics in attention, appraisals 
and regulation strategies prolong or shorten emotional episodes. The chapter ends with 
directions for future research.

Keywords  Emotion duration · Definition · Determinants · Mechanisms · Attention 
· Appraisals

1.1 � Introduction

Emotions are not stable states but are constantly in flux. This implies that research 
on the dynamic properties of emotions is necessary to understand how they operate. 
However, for a long time research on emotion dynamics was scarce (Frijda, 2007). 
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Researchers studied the processes underlying the onset of an emotional response 
but paid little attention to how emotions subsequently unfold over time.

This situation changed from the nineties onwards when researchers started to 
examine emotion dynamics, inspired by the pioneering work of Davidson (Davidson, 
1998), Frijda (Frijda et al., 1991) and Scherer (Scherer & Wallbott, 1994), amongst 
others. This increase in research efforts resulted in a better understanding of the 
dynamic properties of emotions due to which the research field of emotion dynam-
ics is one of the most enticing research fields within affective science today.

Research on emotion dynamics pertains to the study of the trajectories, patterns, 
and regularities with which emotions or their components (i.e., the experiential, 
physiological, and behavioural components) fluctuate across time. Researchers 
operating in this field do not only describe these temporal changes but also examine 
underlying processes and downstream consequences of these changes (Kuppens & 
Verduyn, 2015). To measure emotion trajectories, a wide range of tools are avail-
able. Each tool has its own advantages and disadvantages as illustrated by two com-
mon methods to measure trajectories of emotional experience: the experience 
sampling approach and the intensity profile approach.

Experience sampling entails asking participants multiple times per day to report 
on how they feel (e.g., how sad do you feel right now?) during the period following 
a particular emotional event (e.g., Villano et al., 2020) or during a random segment 
of a participant’s life (e.g., Brans et al., 2013). A key advantage of this approach is 
that memory bias is minimal but the resulting data is discrete and short-term changes 
in emotional experience may go by unnoticed.

The intensity profile approach entails asking participants to draw intensity pro-
files of their emotional experiences (Sonnemans & Frijda, 1994). The resulting data 
are continuous but memory bias may influence the collected data when reporting on 
past emotional experiences (e.g., Verduyn et al., 2009b). To avoid this, one may ask 
people to draw profiles while experiencing an emotion (e.g., Hutcherson et  al., 
2005) but this approach cannot be adopted outside the lab.

To describe variability in emotion trajectories, a wide range of features have been 
proposed and studied (for an overview, see Kuppens & Verduyn, 2015). Among 
these, one key feature is the duration of emotions. The importance of this particular 
feature is reflected by the observation that people sharing their emotions do not only 
often spontaneously describe the nature (e.g., I was angry at him) and intensity 
(e.g., I was very angry at him) but also the duration of their emotions (I was very 
angry at him all day long). Moreover, the duration of emotional episodes has major 
consequences for physical and mental health (Lapate & Heller, 2020).

The aim of this chapter is to provide an overview of research on emotion duration 
building on previous reviews of literature on this dynamic feature (Van Mechelen 
et al., 2013; Verduyn et al., 2015). Specifically, I will first define emotion duration. 
Next, I will review empirical evidence on how long emotions tend to last. 
Subsequently, I will illustrate that the duration of emotions is not only determined 
by events that take place at the start of an emotional episode but also by processes 
that unfold during an emotional episode. Finally, I will end this chapter by provid-
ing some suggestions for future research followed by a concluding statement.

P. Verduyn
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1.2 � What Is the Definition of Emotion Duration?

Emotion trajectories reflect the continuous level of a particular emotion or emotion 
component over time. Typically, these trajectories show fluctuations. For example, 
when people are asked to report their level of anger repeatedly throughout the day, 
the resulting trajectory is unlikely to be a flat line. A wide range of factors causes 
these fluctuations to take place including biological rhythms, sleeping patterns or 
(insufficient) food intake. However, major shifts in emotion trajectories are often 
due to the occurrence of particular events, which initiate the start of so-called emo-
tional episodes (Kuppens & Verduyn, 2015).

Emotion duration refers to the duration of emotional episodes. Specifically, the 
duration of an emotional episode refers to the amount of time between the start and 
end of an emotional episode (Verduyn et al., 2015). The start of an emotional epi-
sode corresponds with the occurrence of a particular event which is relevant for 
one’s goals or concerns (Frijda, 2007). This differentiates emotional episodes from 
moods, which do not have a clear cause or object (Beedie et al., 2005). It should be 
noted that the emotion eliciting event can be an external event (e.g., seeing a spider) 
but also an internal event as when imagining, recalling or anticipating events (e.g., 
thinking of a spider). Moreover, when thinking about external future events, an 
emotional episode can start before the external event takes place. For example, an 
emotional episode of anxiety typically does not start when giving a speech but 
rather when starting to anticipate having to give a speech.

The end of an emotional episode is more difficult to delineate than the onset. 
Overall, two different conceptualizations can be distinguished. First, the end of an 
emotional episode can be equated with the first point in time at which emotion 
intensity reaches zero or, similarly, returns to a baseline level (Verduyn et al., 2009a, 
2011, 2012b). An advantage of this conceptualization is that it is relatively straight-
forward to determine when an emotional episode ends, which allows studying emo-
tion duration empirically in a relatively straightforward manner. A disadvantage, 
however, is that this conceptualization does not take into account that emotions may 
be re-elicited after having returned to their baseline level. For example, following an 
insult an episode of anger may be initiated. This feeling may persist until running 
into a friend with whom one has a pleasant conversation during which anger is no 
longer felt. The start of this conversation therefore constitutes the end of the emo-
tional episode of anger. However, once the conversation is over, one may immedi-
ately recall the insult and feel angry again. When equating the end of an emotional 
episode with a first return to baseline, the moment of recalling the insult following 
the conversation would be conceptualized as the start of a totally new emotional 
episode, while, in fact, it is directly related to the preceding anger episode.

Second, the end of an emotional episode can be equated with the moment in time 
at which the episode is “closed” in the sense that the emotion intensity associated 
with an emotion-eliciting event reaches zero (or baseline) in a permanent manner 
(Frijda et  al., 1991; Frijda, 2007). Closure is reflected by a lack of spontaneous 
recollections of the emotional event and a lack of emotional reactivity in those rare 
cases the emotional event would be recollected. This may be accompanied by 
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decreased emotional detail in the autobiographical memory representation of the 
emotion-eliciting event (Beike & Wirth-Beaumont, 2005). For example, following 
an insult one may experience anger for several days. This experience of anger may 
be temporarily interrupted by several periods during which one feels calm but only 
when an apology is received, the emotional episode may be fully closed.

An advantage of this conceptualization is that it distinguishes temporary relief 
(i.e., a temporary non-stable return of emotion intensity to zero) from stable emo-
tional recovery (i.e., a stable return of emotion intensity to zero) (Frijda, 2007). 
However, it is often hard to say when an emotional episode is fully closed and some 
emotional episodes may never end according to this conceptualization, making it 
especially hard to study emotion duration at an empirical level.

1.3 � How Long Do Emotions Last?

For a long time, it was believed that emotional episodes only last for seconds up to 
a few minutes at most (Ekman, 1984). This belief was largely based on animal mod-
els of emotion (Darwin, 1965) and observations of the duration of emotional expres-
sions in the lab (Ekman & Friesen, 1982). However, animal models and lab data on 
emotion expression do not represent particularly well how long an emotion can last 
(Frijda, 2007; Rimé, 2009). Several lines of research indicate that typically emo-
tions last longer than a few seconds or minutes.

First of all, while activation in the behavioral or expressive component of emo-
tional responses may be shorter than activation in the other components of an emo-
tional response, some data is available suggesting that even activation in emotional 
expression may last longer than just a few minutes (Bylsma et al., 2011). Moreover, 
while data on physiological recovery observed in the lab is generally consistent with 
the notion of emotions lasting for a few minutes only (e.g., Fredrickson & Levenson, 
1998), data on cardiovascular recovery following stressful events in daily life, reveal 
significantly longer recovery periods (Pieper & Brosschot, 2005). Furthermore, data 
on the duration of the conscious emotional experience component of an emotional 
response show convincingly that these experiences typically do not end within a few 
minutes only.

Most studies on emotion duration have focused on the duration of emotional 
experience as obtained through self-report questionnaires. In these studies the end 
of an emotional episode was either not explicitly defined to the participants (e.g., 
Scherer & Wallbott, 1994) or defined to occur when emotion intensity returned to 
zero or a baseline level for the first time (e.g., Verduyn et al., 2009a), which corre-
sponds to the first conceptualization mentioned above. Research explicitly using the 
second conceptualization (permanent return to baseline) is rare, but non-surprisingly, 
participants reported longer emotions when the end of an emotional episode was 
defined to them to correspond to a permanent return to baseline, rather than a first 
return (Verduyn & Lavrijsen, 2015).

P. Verduyn
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Critically, regardless of the duration definition employed, it was found that emo-
tional experiences can last for seconds but usually these experiences last longer. 
Specifically, the duration of emotional experiences was found to be highly variable 
with durations ranging from a few seconds to several hours, or even longer. 
Moreover, in each study on the duration of emotional experiences in daily life, dura-
tion averages clearly exceeded a few minutes (Frijda et al., 1991; Gilboa & Revelle, 
1994; Scherer & Wallbott, 1994; Verduyn et al., 2009a, 2011, 2012a, b, 2013).

While most people tend to experience emotions that often last longer than only a 
few minutes, certain people tend to experience longer emotions than others do. At 
the level of socio-demographic factors, evidence is available that older adults expe-
rience longer positive emotions and shorter negative emotions than younger adults 
(Charles et  al., 2016). Moreover, negative emotions were found to last longer in 
collectivistic and poorer countries than in individualistic and rich countries, respec-
tively (Verduyn et al., 2013). At the level of personality dimensions, extraverts were 
found to tend to experience longer positive emotions than their introvert counter-
parts (Verduyn & Brans, 2012), while neurotics experience longer negative emo-
tions than their emotionally stable counterparts (Schuyler et al., 2012; Verduyn & 
Brans, 2012). At the level of indicators of mental health, resilient people were found 
to show accelerated recovery from stressful encounters (Tugade & Fredrickson, 
2004). This should not come as a surprise as resilience refers to the ability to cope 
effectively and adapt in the face of loss, hardship, or adversity (Block & Kremen, 
1996). Moreover, consistent with diagnostic criteria, depressed individuals were 
found to be unable to sustain activity in neural circuits underlying positive affect 
(Heller et al., 2009) while showing longer activation in neural regions associated 
with negative emotions (Siegle et al., 2001, 2002).

It is not only the case that some people tend to experience longer emotions than 
others do but also some types of emotions tend to last longer than other types of 
emotions. Several studies have been conducted to compare the duration of different 
emotions and the results of these studies largely overlap (Gilboa & Revelle, 1994; 
Scherer & Wallbott, 1994; Verduyn et al., 2009a, 2011, 2012a, b). The largest set of 
emotions was studied by Verduyn and Lavrijsen (2015). They found that out of 27 
emotions, sadness lasted the longest, whereas shame, surprise, fear, disgust, bore-
dom, being touched, irritation, and relief were the shortest emotions. In some cases, 
the size of differences was quite remarkable with sadness lasting on average 240 
times longer than the shortest emotions under study but in most cases duration dif-
ferences were much smaller.

In sum, emotions can last for only a few seconds but usually last for minutes, 
hours or even longer. However, why do some people tend to experience longer 
emotions than others do? Why do certain types of emotions tend to last longer 
than other types of emotions? Moreover, what causes differences in duration 
between two episodes of the same type of emotion, experienced by the same per-
son? These questions bring us to the next section where I discuss determinants of 
emotion duration.

1  Emotion Duration
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1.4 � What Determines the Duration of an Emotion?

1.4.1 � What Happens at the Start Impacts How Long It Takes 
to Get to the End

By definition, an emotional episode is initiated by the occurrence of an internal or 
external event. The perceived nature of this event has a major impact on the duration 
of the ensuing emotional response. In several studies, it was found that the per-
ceived importance of the emotion-eliciting event partially explains duration vari-
ability within emotions. Specifically, events of higher perceived importance are 
associated with longer emotional episodes (Verduyn et al., 2009b, 2011). Moreover, 
compared to short types of emotions such as disgust, relatively long lasting emo-
tions such as sadness are caused by events that are higher in importance. As such, 
perceived event importance also partially explains duration differences between 
emotions (Verduyn & Lavrijsen, 2015).

Events may be perceived as important because they are especially congruent (in 
case of positive emotions) or incongruent (in case of negative emotions) with one’s 
goals, norms, values or self-ideals (Frijda, 2007). In the context of negative emo-
tions, it has been shown that the number of perceived mismatches between an event 
and one’s desires predicts the duration of negative emotional experiences and this 
mismatch-duration mechanism was found to largely hold universally (Verduyn 
et al., 2013). More recently, it has been shown that the degree to which an event 
matches one’s expectations also impacts the ensuing emotional trajectory (Villano 
et al., 2020).

However, the duration of an emotional response is not only a function of the (ini-
tial) appraisal of an emotional event but also of the initial intensity of an emotional 
episode. This is the case even when controlling for the perceived importance of an 
emotional event, which suggests that the role of intensity in predicting duration cannot 
be fully explained by event importance (Verduyn et al., 2009a, 2011, 2013). When 
intensity is high at the start of an emotional episode, it takes longer for emotional 
experience to return to its baseline level. Critically, however, this does not imply that 
emotional episodes are always, or even typically, characterized by a high intensity 
peak at the start followed by a gradual return to baseline (Heylen et al., 2015, 2016).

In research using an intensity profile approach to measure trajectories of emo-
tional experience, it was found that such trajectories can take a wide variety of 
shapes (Sonnemans & Frijda, 1994). Moreover, these intensity trajectories were 
found to differ primarily in explosiveness, accumulation, and reactivation (Verduyn 
et al., 2009b, 2012a). Intensity profiles can have (a) a low or high level of initial 
intensity, reflecting differences in explosiveness, (b) a peak intensity level situated 
at the start or end of the episode, reflecting differences in accumulation, and (c) a 
single or multiple intensity peaks, reflecting differences in reactivation. The distinct 
nature of these dynamic features is corroborated by fMRI studies on the neural cor-
relates of explosiveness and accumulation showing distinctive neural correlates for 
both features (Résibois et al., 2017, 2018b).

P. Verduyn
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In sum, the degree of mismatch between the event and one’s desires as well as 
the initial intensity of an emotional response impact the duration of an emotional 
episode. Moreover, the recovery process is not always a linear process characterized 
by a gradual, uninterrupted return to baseline. Regardless, the emotion-eliciting 
event sets the stage for the subsequent processes that will unfold over time and that 
impact the duration of the emotional response, which I turn to in the next section.

1.4.2 � Time Itself Does Not Heal All Wounds; What Happens 
Over Time Matters

A common expression is that time heals all wounds. While this expression may 
seem correct at the surface level, it raises several questions. For example, is it true 
that eventually all emotions end? Do feelings of sadness following a major emo-
tional event such as the loss of a child ever return to their baseline level in a stable 
manner (see second conceptualization of the end of an emotional episode above). 
Perhaps even more critically, what does it mean to say that time heals all wounds. 
Does the passage of time automatically result in an emotion running out of steam, 
like a car having no fuel left to keep driving? While metaphors like this might be 
intuitively appealing, the construct of time in and off itself does not explain changes 
in emotions over time. Instead, emotion dynamics are a function of temporal 
changes in mechanisms that drive emotional responding. In the next paragraph, I 
discuss two processes that can change with the passage of time and impact the dura-
tion of emotional episodes. This is not to say that there are no other dynamic pro-
cesses that may impact the duration of emotional episodes but these two processes 
have received substantial empirical evidence.

1.4.2.1 � The Role of Attention

An emotion-eliciting event continues to affect the unfolding of an emotional epi-
sode during the period following emotion elicitation. In a diary study, Verduyn and 
colleagues (Verduyn et al., 2009a) asked participants to recall the duration of their 
emotional episodes experienced earlier that day. For each 15-min interval of the 
emotional episode, they also asked participants to indicate whether the emotion-
eliciting stimulus was physically present or absent. For example, when having an 
argument, the emotion-eliciting stimulus (i.e., another person) may be present dur-
ing the first 15 min, leave the room for the next 15 min (possibly slamming the door 
on the way out), and return back (or not) in the next 15 min. It was found that the 
physical presence or reappearances of an emotion-eliciting event make it less likely 
that an emotional episode ends.

In a second, similar study (Verduyn et al., 2009a), the authors examined whether 
the mental presence of the eliciting stimulus (thinking about the emotion-eliciting 
event) similarly impacts the duration of an emotional episode. They found this to be 
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the case with the mental presence or mental reappearances of the emotion-eliciting 
event prolonging emotional episodes. Interestingly, follow-up research revealed that 
physical and mental reappearances may prolong emotional experiences by causing 
reactivations (new peaks) within an emotional episode (Verduyn et al., 2012a).

Combined, these results suggest that one key mechanism, which varies over time 
and influences the duration of emotional responses, is attention. The physical pres-
ence of an emotion-eliciting stimulus likely prevents one from diverting attention 
elsewhere. Similarly, when the eliciting stimulus is mentally present, attention is by 
definition focused on that particular stimulus. Attention may also explain the con-
nection between (initial) emotion intensity and emotion duration with fMRI research 
revealing a relationship between intensity and longer duration of activation in 
regions along the cortical midline associated with self-referent processing (Waugh 
et al., 2010). Similarly, from a functional perspective on emotions (Keltner & Gross, 
1999) one may argue that important events that are especially congruent or incon-
gruent with one’s desires require one’s attention for a longer time, identifying a 
possible mechanism explaining the relationship between perceived event impor-
tance and emotion duration.

The claim that attention is a major determinant of the duration of emotional 
responses is consistent with research on emotion regulation. Specifically, it has been 
shown that distraction (i.e., directing attention away from an emotion-eliciting 
event) generally reduces the intensity of negative emotions (Fennell et al., 1987; 
Joormann & Siemer, 2004) while rumination (i.e., excessively focusing attention on 
the causes and consequences of an emotion-eliciting event) has the opposite effect 
(Nolen-Hoeksema & Morrow, 1993). Attention has also been shown to explain why 
long lasting emotions such as sadness tend to last longer than other types of emo-
tions, as long lasting emotions tend to be associated with relatively high levels of 
rumination (Verduyn & Lavrijsen, 2015). Similarly, neurotics may tend to experi-
ence long negative emotions, due to their tendency to ruminate over negative experi-
ences (Nolan et al., 1998).

In some recent work, the relationship between attention and emotion duration 
was examined even more directly. Freund and Keil (2013) proposed the attention-
focus hypothesis according to which the duration of an emotional response to events 
is crucially determined by the amount of attention they receive. In a first study, they 
instructed participants to focus attention on an event that recently caused them to 
experience a positive emotion (having won a chess game) or to focus their attention 
elsewhere. In a second study, they used a similar experimental design but this time 
in the context of negative emotions. In both studies, they found that distracting 
attention away from the emotion-eliciting event leads to a shorter duration of an 
emotional experience. Consistently, Kaneko et  al. (2018) conducted a cross-
sectional study and found a positive relationship between attention and the duration 
of both negative and positive emotions.

A wide variety of factors may influence people’s attention during an emotional 
episode. These include the occurrence of novel events that automatically redirect 
people’s focus elsewhere as well as people’s own conscious attempts to direct their 
focus. One particular interesting emotion regulation strategy that may cause people 
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to sustain their attention on the emotional event is social sharing. Research on social 
sharing showed that people share their emotions with others in the large majority of 
cases (Rimé et al., 1998). In case of positive emotions, it has been shown that shar-
ing is associated with longer episodes of positive emotion and more time spent 
thinking about the positive event (Hovasapian & Levine, 2018). However, in case of 
negative emotions results on the impact of social sharing on episode duration are 
less clear-cut (Brans et al., 2014; Pe et al., 2013; Rimé, 2009).

In sum, previous research indicates that focusing attention on an emotion-eliciting 
event is generally positively associated with the duration of emotional experience 
while distraction shortens emotional episodes. However, three critical remarks are 
needed to nuance this conclusion. First, not all types of distraction shorten emotional 
episodes. In contrast to positive distracting thoughts, negative distracting thoughts do 
not shorten the duration of negative emotions. Similarly, in contrast to negative dis-
tracting thoughts, positive distracting thoughts do not shorten the duration of positive 
emotions (Verduyn et  al., 2011). Second, the effects of distraction may be short-
lived. Distraction may shut down an emotional episode temporarily as reflected by a 
first return of emotion intensity to a baseline level (first conceptualization of the end 
of an emotional episode mentioned above). However, this return might reflect a state 
of temporary relief rather than stable emotional recovery (second conceptualization 
of the end of an emotional episode mentioned above) (Kross & Ayduk, 2008). Third, 
while focusing attention on an emotional episode may generally prolong emotional 
episodes, it may also shorten emotional episodes as explained in the next section.

1.4.2.2 � The Role of Appraisal Dynamics

To examine whether all types of mental reappearances prolong the duration of emo-
tional experiences, Verduyn and colleagues conducted a follow-up study (Verduyn 
et al., 2011). Similarly to their original study (Verduyn et al., 2009a), they used a 
diary design asking participants to recollect the emotions they experienced earlier 
that day. However, rather than asking participants to indicate for several time-
segments of the emotional episode whether the emotion-eliciting stimulus was men-
tally present or not, they asked participants to specify the valence of their thoughts 
about the emotion-eliciting stimulus. They found that during negative emotional 
episodes, participants reported most often negative thoughts about the emotion-
eliciting event and these thoughts (e.g., “he really enjoys hurting me”) prolonged 
negative emotional episodes. Critically, however, when people had positive thoughts 
about the negative emotion-eliciting event (e.g., “he probably did not mean it that 
way”), this increased the probability that a negative emotional episode would end at 
that moment in time. In case of positive emotions a similar pattern was found with 
positive (negative) thoughts about the emotion-eliciting event prolonging (shorten-
ing) the emotional episode.

The finding that during negative (positive) emotional episodes people tend to 
have negative (positive) thoughts about the emotion-eliciting event may explain 
why mental reappearances of this event (or focusing attention on this event) were 
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overall found to have a prolonging effect on the duration of emotional experience 
(Verduyn et  al., 2009a). Moreover, the finding that thoughts about the emotion-
eliciting event prolong emotional experiences when they share valence, is consistent 
with research on social sharing of positive emotions showing that the association 
between sharing and emotion duration was greatest when sharing partners were 
perceived as highlighting the importance and remarkability of the event, “keeping 
the magic alive” (Hovasapian & Levine, 2018).

The finding that positive thoughts shorten the duration of negative emotions is 
consistent with research on positive reappraisal (i.e., reappraising a negative event 
in a more positive manner). In a wide range of studies, this emotion regulation strat-
egy has been shown to be highly effective at downregulating negative emotional 
responses (Gross, 1998a, b; Ray et al., 2008), and stimulating emotional recovery 
over time (Mehta et al., 2020). However, research on contextualized emotion regu-
lation revealed important boundary conditions of the generally adaptive effects of 
reappraisal (Aldao, 2013).

For example, when people experience intense negative emotions, they are unlikely 
to engage in reappraisal (Sheppes & Gross, 2011; Sheppes et al., 2011) and reap-
praisal is ineffective in downregulating intense negative emotions (Raio et al., 2013; 
Shafir et al., 2015). Similarly, it has been found that people are unlikely to reappraise 
their emotional experiences at the start of an emotional episode (Kalokerinos et al., 
2017), and may respond negatively to sharing partners stimulating cognitive reap-
praisal at the start of a sharing episode (Rimé, 2009). It should be noted, however, that 
this is not always dysfunctional as preliminary termination of an emotional episode 
may interfere with the functional nature of emotions stimulating responsiveness to 
important changes in one’s environment (Keltner & Gross, 1999).

Positive reappraisal may not always come naturally, as when a person experienc-
ing a negative emotion does not manage to see any positive aspect to a negative 
experience. One strategy that may help in this regard is self-distancing. When peo-
ple think about an emotional experience, they may do so from a self-immersed 
perspective in which self-relevant events and emotions are (re-)experienced in a 
first-person perspective through their own eyes (Nigro & Neisser, 1983). 
Alternatively, one may adopt a self-distanced perspective in which individuals focus 
on their experiences from the perspective of an observer or “fly on the wall” (Libby 
& Eibach, 2002; McIsaac & Eich, 2004).

Verduyn and colleagues examined whether these two perspectives have differen-
tial effects on the duration of emotional experience (Verduyn et  al., 2012b). 
Participants were asked to recollect positive and negative emotions experienced ear-
lier during the day, and repeatedly indicated which perspectives they adopted when 
thinking about the emotion-eliciting event during the emotional episode. People 
most often adopted a self-immersed perspective but when they managed to think 
about the emotional event using a self-distanced perspective, the emotional episode 
was more likely to end. Follow-up research revealed that self-distancing prevents 
negative emotions to accumulate (Résibois et al., 2018b), and this is especially so in 
people suffering from high levels of depressive symptoms (Résibois et al., 2018a). 

P. Verduyn
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One mechanism through which self-distancing may accelerate emotional recovery 
is by stimulating positive reappraisal (Kross & Ayduk, 2008).

In sum, while the initial appraisal of an emotional event determines the initial 
intensity of an emotional response, the appraisal process continues throughout the 
emotional episode. When the appraisal configuration remains largely stable, the 
emotion is unlikely to end, unless alternative events capture one’s attention leading 
to a (temporary) termination of the emotional episode. Reappraisal may not always 
be easy, especially when emotion intensity is high. However, trying to adopt a self-
distanced perspective or sharing one’s emotional experience with a partner who 
stimulates reappraisal at the right moment in time, may result in a more positive take 
on a negative event. These reappraisal processes may shut down the negative emo-
tional episode. Interestingly, the same holds for positive emotions as reappraising a 
positive event in a negative manner shortens the duration of positive emotional 
experiences as well.

1.5 � Directions for Future Research

Empirical research on emotion duration has demonstrated that emotional episodes can 
last for seconds, minutes, hours or even longer. Moreover, first insights on the deter-
minants and processes underlying emotion duration have been obtained. However, 
more work is needed to increase our understanding of the duration of emotions.

First, most research on emotion duration conceptualized the end of an emotional 
episode as the first return to baseline. While this choice makes emotion duration 
especially amendable to empirical research, it does not allow concluding whether a 
particular determinant of emotion duration stimulates only temporary relief or 
results in stable emotional recovery. For example, distraction and reappraisal pro-
cesses have both been found to shorten the duration of emotional episodes but while 
the former may only lead to a state of temporary relief, the latter may be more effec-
tive at fully closing an emotional episode (Kross & Ayduk, 2008). Future research 
is necessary to better disentangle temporary relief from stable emotional recovery.

Second, most research on emotion duration is correlational. As such, it is often 
not clear whether processes such as attention, perspective taking or reappraisal shut 
down an emotional episode, or whether the approaching end of an emotional epi-
sode (stimulated by other processes) allows one to refocus attention, adopt a self-
distanced perspective or reappraise an emotional event. Emotion generation and 
regulation mutually influence each other over time (Gross, 2015) and more research 
is necessary to chart and disentangle these effects.

Third, in research on emotion duration, regulation strategies are typically exam-
ined in isolation. However, it is increasingly becoming clear that people often use a 
variety of strategies to regulate their emotions (Brans et al., 2013; Brans & Verduyn, 
2014). Some strategies may only impact emotion duration when the strategy is used 
at the right time (Kalokerinos et al., 2017) or when preceded or followed by other 
regulation strategies (Peuters et al., 2019).

1  Emotion Duration
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Fourth, in this chapter I described processes underlying emotion duration at a 
psychological level. However, ultimately, these processes are mediated at the neural 
level. First insights into the neural mechanisms underlying emotion duration have 
been obtained (Heller & Casey, 2016; Verduyn et al., 2015; Waugh et al., 2015). 
Interestingly, research on the neural basis of emotion dynamics increasingly com-
bines neuroimaging tools with experience sampling methods to overcome the limi-
tations associated with measuring emotion duration in the lab (Heller et al., 2015; 
Provenzano et al., 2018). Studies like these are highly valuable and will deepen our 
understanding of the duration of emotions.

Finally, more research is necessary on the duration of the behavioral and physi-
ological component of emotional responses, as well as how these components inter-
act with emotional experience. Due to practical limitations, it was for a long time 
not possible to properly measure dynamics in all emotion components simultane-
ously as they unfold in daily life but breakthroughs in affective sensing and comput-
ing may spur new exciting insights on emotion duration in the near future.

1.6 � Concluding Statement

Kuppens and Verduyn (Kuppens & Verduyn, 2017) formulated four fundamental 
principles underlying emotion dynamics: the principles of contingency, inertia, reg-
ulation, and interaction. These principles also relate to the processes underlying the 
specific dynamic feature discussed in the present chapter: emotion duration.

According to the principle of contingency, emotions consist of responses to 
things extrinsic to them. In this chapter, I illustrated how emotional episode arise in 
response to external and internal events, and how these events, as well as possible 
other (distracting) events, continue to impact the emotion as it unfolds over time, 
ultimately influencing the duration of the emotional episode.

According to the principle of inertia, emotions display an intrinsic resistance to 
change causing them to carry over from one moment to the next. In this chapter, I 
illustrated that emotional episodes tend to be characterized by valence-congruent 
thoughts that prolong emotional episodes, consistent with research on emotion-
congruent processing (Lerner & Keltner, 2001) showing that the way we feel influ-
ences the way we perceive the world, which in turn, feeds back into the way we feel.

According to the principle of regulation, emotions are continuously regulated to 
maximize fit with a desired state, which may change as the emotion unfolds. In this 
chapter, I illustrated how emotion regulation strategies as distraction, positive reap-
praisal, self-distancing and social sharing can be harnessed to shorten the duration 
of negative emotional episodes by providing counterweight to the forces of emo-
tional inertia.

Finally, according to the principle of interaction, emotions and emotion compo-
nents continuously interact over time. In this chapter, I discussed research on the 
interaction between cognitions and the duration of emotional experience but more 
research applying the principle of interaction to research on emotion duration is 
necessary.

P. Verduyn
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Chapter 2
Appraisal Dynamics: A Predictive Mind 
Process Model Perspective

Jonas Everaert , James J. Gross, and Andero Uusberg 

Abstract  The dynamic updating and revising of appraisals affords a crucial mea-
sure of flexibility to emotion processing from emotion generation through emotion 
regulation. However, much remains to be understood about the specific computa-
tions underlying appraisal shifts in iterative cycles of emotion generation and emo-
tion regulation. In this chapter, we argue that a predictive mind process model 
perspective, constituted by predictive coding and active inference accounts, can 
help to clarify when and how appraisals are updated and revised. We start with a 
brief overview of basic concepts underlying the extended process model of emotion 
regulation and the predictive mind perspective. Next, we recast the extended pro-
cess model in predictive terms, yielding a novel framework for understanding 
appraisal as well as reappraisal. We finish by outlining implications of this frame-
work for understanding temporal dynamics of emotion and emotion regulation as 
well as individual differences and clinical phenomena.
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2.1 � Introduction

The way people cognitively appraise the motivational meaning of a situation shapes 
the type as well as intensity of their emotional responses (Ellsworth & Scherer, 
2003; Lazarus, 1991). It also provides a pathway for regulating these responses 
(Uusberg et al., 2019; Yih et al., 2019). This latter point is important because as 
emotions come and go, the individual experiencing these emotions often evaluates 
them as being either helpful or unhelpful, pleasant or unpleasant. People may wish 
that an emotion such as joy would linger on, or that an emotion such as sadness 
would pass more quickly. As a result, people regularly try their hand at—and often 
succeed in—altering their emotions.

The process of appraisal involves weighing different aspects of a situation against 
idiographic goals on a relatively small set of appraisal dimensions to optimize one’s 
response to situational demands (Kuppens, 2013; Mehu & Scherer, 2015). 
Commonly proposed appraisal dimensions (Moors et  al., 2013; Scherer, 2001) 
include relevance (the importance of a situation to the individual’s goals), congru-
ence (the helpfulness of a situation with respect to these goals), likelihood (the cer-
tainty about the current status and future prospects of the situation), agency (the 
attribution of accountability for the situation), as well as problem- and emotion-
focused coping potential (the control or power to change the situation). The appraisal 
process produces a pattern of evaluations along such dimensions that shapes the 
nature of the emotional episode (Gross, 1999; Koole, 2009).

Because situations and goals evolve over time, people need to update their 
appraisals to reflect such changes. For instance, a charging dog in a park can ini-
tially be appraised as threating and then as benign once it becomes clear that it is on 
a leash. People also revise their appraisals in order to meet emotion regulatory goals. 
The dog on a leash can be re-appraised as threatening in order to justify one’s out-
burst of anger at the owner. The dynamic updating and revising of appraisals afford 
flexibility to emotion as a process from generation to regulation. While recent con-
tributions have started to consider appraisal dynamics (Mehu & Scherer, 2015; 
Uusberg et al., 2019; Yih et al., 2019), much remains to be understood about the 
specific computations underlying appraisal shifts in iterative cycles of emotion gen-
eration and regulation that both shape and are shaped by environmental and goal-
related changes.

In this chapter, we argue that ‘predictive coding’ and ‘active inference’ accounts, 
collectively constituting a predictive mind process model perspective, can help to 
clarify when and how appraisals are updated and revised. We start with a brief over-
view of basic concepts underlying the extended process model of emotion regula-
tion and the predictive mind perspective. Next, we recast the extended process 
model in predictive terms yielding a novel framework for understanding appraisal 
as well as reappraisal. We finish by outlining implications of this framework for 
understanding temporal dynamics of emotion and emotion regulation as well as 
individual differences and clinical phenomena.

J. Everaert et al.
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2.2 � The Extended Process Model (EPM) 
of Emotion Regulation

The EPM views emotion generation and regulation as arising from interacting valu-
ation systems that output actions for achieving desired states based on perceptual 
input (Gross, 2015; Sheppes et al., 2015). As depicted in Fig. 1, the EPM envisions 
valuation systems as a cascade of processes with four key steps. These are: the cur-
rent state of the internal or external World (W), perception of that world (P), 
appraisal or valuation of these perceptions in relation to goals (V), and actions 
selected to reduce any discrepancy between the goal states and perceived state of the 
world (A). The World-Perception-Valuation-Action (WPVA) cycles operate itera-
tively enabling an individual to adaptively respond to changing goals and 
environments.

Within the EPM, emotion generation is viewed as a first-level WPVA cycle. 
During this cycle, a person monitors the current situation (W1), perceives the situa-
tion while attending to potentially significant aspects of it (P1), and appraises these 
aspects in light of goals (V1). The resulting appraisals produce a coordinated set of 
experiential, physiological, and behavioral responses that constitute an emotional 
response (A1). For example, the emotion of dissatisfaction may arise when a person 
delivers a presentation at a conference (W1), allocates attention to members of the 
audience who are frowning or looking on their smartphones (P1), appraises the situ-
ation as a missed opportunity to make a good impression (V1), and feels as well as 
expresses sadness (A1).

Fig. 1  The iterative process of appraising changing situations
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Emotion regulation is viewed in the EPM as a second-level WPVA2 cycle that 
modulates the first-level emotion-generating WPVA1 cycle. The emotion-regulation 
WPVA2 cycle takes the state of the emotion-generation WPVA1 cycle as its input 
(W2). Within the second-level cycle, a person perceives and attends to the current 
emotional state (P2) and compares it to a desired emotional state (V2). When there is 
a sufficiently large discrepancy between perceived and desired emotion, a person 
may initiate regulation strategies to modulate the state of the first-level system (A2). 
These regulation strategies may change subsequent iterations of the first-level 
emotion-generative WPVA1 cycle by intervening at one or more of its steps. Emotion 
regulation may influence emotion by changing which situations are encountered or 
how they unfold (W1), changing which aspects of the situation are attended by real-
locating attention resources between emotionally relevant and irrelevant aspects of 
a situation (P1), changing how a situation is appraised by altering how it is con-
strued or which goals it is compared to (V1), or changing the emotional response by 
influencing its experiential, physiological, or behavioral components (A1). This 
second-level WPVA2 cycle is repeated until the discrepancy between perceived and 
desired emotion is sufficiently reduced or the goal to reduce it is abandoned. The 
cycle may involve processes that operate automatically to influence which emotions 
are experienced and only require few iterations. Alternatively, the cycle may involve 
deliberate attempts to find and successfully deploy a strategy, resulting in slower 
emotion regulation (Webb et al., 2015).

2.3 � The Predictive Mind (PM) Perspective

A number of models and theories are beginning to coalesce into an overarching 
perspective that highlights the role of predictive processes in understanding not only 
perception and action but also cognition and emotion (Barrett & Simmons, 2015; 
Clark, 2013; Friston, 2010; Seth, 2013). At the heart of the predictive mind (PM) 
perspective is the idea that the mind builds mental models of the external and inter-
nal world and uses these models to recognize what it senses, how to think about it, 
and how to act upon it. Relating different functions of the mind to a common com-
putational theme allows the PM perspective to characterize perception and action 
using a single set of concepts such as mental models, sensory data, precision, pre-
diction errors, and error minimization (Seth, 2013; Uusberg et al., 2020).

The PM account of perception (i.e., predictive coding or predictive processing) 
assumes that the mind implements empirical Bayesian hypothesis testing and updat-
ing cycles to produce increasingly accurate models of the world (Clark, 2013; 
Friston, 2010). Prior experience has equipped the mind with mental models of the 
world (priors in Bayesian statistical terms, beliefs in cognitive psychology terms) 
that can be used within a context to generate predictions about sensory data and, in 
effect, to explain these data in terms of their causes (Friston et al., 2006). Predictions 
derived from mental models are tested against sensory data yielding a discrepancy 
measure: a prediction error. Large prediction errors provide corrective feedback that 
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can be used to update mental models until one is found that minimizes the predic-
tion errors (Barrett & Simmons, 2015). Small or non-existent prediction errors thus 
function as evidence that a mental model is an accurate representation of the world. 
Mental models that yield the smallest prediction errors in relation to current sensory 
input populate our perceptual reality.

According to the predictive mind perspective, the mind continuously strives to 
minimize prediction errors. The degree to which mental models are updated in this 
process depends on the precision of the model relative to the data. Precision refers 
to certainty, or the probability with which the mind takes the mental model or the 
sensory data to be reliable representations of reality. Prediction error minimization 
is governed by precision weighting whereby more credit is given to more reliable 
information sources and noisy sources are down-weighted. If a mental model is 
represented as highly precise, then it will be adjusted only slightly even in the pres-
ence of conflicting sensory data yielding a prediction error. Conversely, if the model 
thought to have low precision, then it will be updated in the direction of the sen-
sory data.

The PM account of action (i.e., active inference) suggests that the same con-
structs of mental models, prediction errors, and error minimization are instrumental 
for controlling goal-directed behavior (including behavioral components of percep-
tion). According to this view, actions produce changes to the world that minimize 
another version of prediction errors: discrepancies between how the world is and 
how it is requested to be by the action control system (Friston, 2010; Friston et al., 
2016; Seth, 2013). Actions are taken to be represented in the mind not merely as 
collections of motor commands, but as collections of predicted sensory conse-
quences of motor commands, or action outcomes. This allows action control sys-
tems to compute errors between predicted action outcomes and desired states of the 
world. For instance, a driver wishing to turn left can use her prior experience to 
predict the outcomes of turning the steering wheel to the right and to the left, observe 
the discrepancies between each action and the desired state of the car moving left-
wards, and proceed with turning the steering wheel to left given its smaller action 
outcome prediction error. Different actions can thus be evaluated based on their 
capacity to minimize action outcome prediction errors until an action is found that 
gets closest to realizing the desired state in the world (Adams et al., 2013). Predictive 
action control enables the mind to flexibly initiate successive actions across the 
motor hierarchy that are tuned to overcome discrepancies between the current state 
and the desired state of the world.

2.4 � A Predictive Mind Process Model Perspective

We propose that the PM framework helps to characterize key computations that are 
involved in the updating and revising of appraisals during Valuation after receiving 
new information within both first-level and second-level WPVA cycles. As the inter-
nal and external environment continuously changes (W1.1→W1.2), people must 
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update their mental models of the World by selecting relevant features of the envi-
ronment for further processing (P1.1) and then appraising the perceived input (V1.1). 
New information (W1.2) that enters the perceptual system (P1.2) may be consistent or 
inconsistent with the initial appraisal (V1.1) and either rejected or integrated into an 
updated appraisal (V1.2). This has the potential to generate dynamics within emo-
tional responses (A1.1→A1.2) that shape the way people behave, leading in turn to 
changes to the internal and external environment. At times, the unfolding emotion-
generative process may instigate parallel second-level multi-stage emotion regula-
tion WPVA cycles that serve to modulate the first-level cycles. Within both cycles, 
mental models are continuously compared against new information that becomes 
available when situations and emotions dynamically unfold over time.

Novel insights into the iterative unfolding of emotion generation and regulation 
can be gained from realizing that the processes that connect different steps of WPVA 
cycles are well characterized by the predictive mind perspective. Specifically, we 
argue that each link in the W to P to V to A to W cycle can be thought of as a predic-
tion error reduction process, either of the perceptual or action kind. Perceptual pre-
diction error reduction enables valuation systems to generate a stable representation 
(P) of their input (W). Likewise, action prediction error reduction enables valuation 
systems to control behavior so that a requested action (A) has an impact on the 
world (W). As the W to P and A to W links within valuation systems correspond, 
respectively, to perception and action control, our proposal thus far simply re-states 
the core premises of the predictive mind perspective. Our proposal goes beyond 
existing accounts by offering a predictive mind perspective of appraisal processes. 
Specifically, we suggest that appraisal involves both perceptual and action aspects 
that can be thought of as the P to V and V to A links within WPVA cycles of emotion 
generation and regulation, served respectively by perceptual and action predictive 
error reductions. Figure  1 shows the perception and action PM components of 
appraisal within the WPVA cycle.

Perceptual error minimization links P to V in the WPVA cycle by representing the 
motivational meaning of the perceptual construal (P) of the world using a relatively 
abstract appraisal (V). A pattern of evaluations on appraisal dimensions can be 
viewed as a relatively abstract mental model that represents the core relational 
themes within the situation. Core relational themes refer to broad kinds of person-
environment relationships in terms of their motivational meaning, such as harm, 
benefit, threat, loss or helplessness (Lazarus, 1991; Nezlek et al., 2008; Smith & 
Lazarus, 1993). As such, these appraisals represent functional dimensionality reduc-
tion processes, distilling the motivational essence of a situation.

We suggest that core relational themes become activated as the P to V step within 
a WPVA cycle compares predictions derived from candidate themes with perceptual 
construals of the situation (rather than raw sensory input). For instance, a situation 
construed as “a dog charging at me” aligns with predictions from an abstract 
appraisal of “a threatening situation”. Prediction error between appraisal patterns 
and construals are then used to either settle on an appraisal pattern or alter it, 
depending on the precision afforded to the construal and the appraisal pattern based 
on prior experience. More precise perceptual information will shift the appraisal 
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outcome toward the construal. For instance, clearly seeing that the dog is on a leash 
reduces the threat appraisal. By contrast, more precise appraisal patterns will shift 
the appraisal outcome toward the activated core relational theme. For instance, prior 
experience with dogs escaping their leash maintains the threat appraisal. This 
appraisal-feedback process stabilizes once probable core themes have been inferred 
from perceived input.

Moreover, action error minimization links V to A in the WPVA cycle by translat-
ing the motivational properties of appraisals (V) into action tendencies (A) that can 
go on to affect the World (W). Appraisal patterns are higher-order semantic models 
that help explain the world that also function as relatively abstract goals. For 
instance, appraising a situation as threatening also functions as a goal to somehow 
neutralize the threat. Each appraisal dimension may encompass a different higher-
order goal: motive relevance may encompass a desire for immediate rather than 
delayed action, and self-accountability may lead to a desire to change oneself rather 
than others (Roseman, 2013). Appraisal (V) thus provides desired end states that are 
translated by lower-order action prediction error reduction processes into more 
situation-specific action tendencies (V to A) (Eder & Rothermund, 2013). Given a 
desired end state, different action options are evaluated with respect to their pre-
dicted capacity to minimize the mismatch between the current and the desired state. 
This comparison produces a prediction error that affects the value of an action 
option (Ridderinkhof, 2017). This valuation of action optimizes the selection of the 
action (A) that is adequate to accomplish the changes in the world (W) and reach the 
desired end state prescribed by appraisal (V).

Casting the P-V and V-A steps of the WPVA cycle, and the appraisal processes 
within it, in PM terms has implications for the dynamic aspects of both emotion 
generation and regulation. At the first-level WPVA cycles, the initial valuation step 
forms an initial appraisal (V1.1) by weighing perceptions (P1.1) of salient features 
(e.g., a robber with a gun) of a particular situation (W1.1, e.g., a bank robbery) and 
activated core relational themes (e.g., facing an uncertain, existential threat). When 
situations are new to people, their initial appraisal may be particularly driven by the 
activated core relational theme because the precision of construal has not yet had 
time to accumulate. The initial appraisal V1.1 in turn shapes emotional responses 
(A1.1) such as feelings (e.g. anxiety), action tendencies (e.g. to flee), and attention 
allocation to anticipated features (e.g., look at and attend to the robber to determine 
whether he/she is carrying a gun).

Attention allocation, as an epistemic action, is particularly instrumental in guid-
ing appraisal and emotion dynamics. As appraisals of relevance as well as uncer-
tainty function as a goal to gain more information (e.g., assess the current exposure 
to threat), information sources that are anticipated to provide more precise informa-
tion (e.g., the hands of the robber) are preferentially sampled, while those that are 
expected to provide imprecise information (e.g., the feet of the robber) are ignored 
(Maratos & Pessoa, 2019; Parr & Friston, 2018). The resulting new perceptions 
(P1.2, e.g., the robber is unarmed) of the world becomes data that is compared with 
the initial appraisal (V1.1). Prediction errors between the initial appraisal V1.1 and 
new construal (P1.2) are resolved through precision weighing to determine the extent 
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to which the initial appraisal is updated. The resulting appraisal (V1.2) will again 
modulate the elicited emotional response (e.g., relief) and guide attention allocation 
to relevant stimuli (A1.2), which in turn influences what is sensed from the World 
(W1.3), etc.

At the second-level WPVA cycles, the emotion generated by the first-level 
WPVA cycle is first represented using perceptual prediction error minimization. 
Specifically, an emotion concept (P2.1, e.g., anxiety) is activated that can predict 
with minimal errors the interoceptive and meta-cognitive information available 
about the current emotion (W2.1, e.g., sympathetic arousal coupled with unpleasant 
feeling). Next, perceptual prediction error minimization is also used to relate the 
represented emotion to more abstract mental models of the motivational meaning of 
emotional states, or “emotion relational themes” (V2.1; e.g., anxiety can impair 
judgement and should be lowered; Tamir & Millgram, 2017). This suggests that the 
adaptive dynamics of emotion regulation depend on the availability of sufficiently 
granular mental models to represent the ongoing emotional states and their motiva-
tional meaning (Kashdan et al., 2015). The second-level WPVA cycle proceeds by 
using action prediction error minimization to select and implement a regulatory 
action. In the V to A step, the predicted outcomes of regulatory action options are 
compared to the desired change in emotion inherent in its motivational meaning 
(V2.1; e.g., reduce anxiety to a more manageable level). The regulatory action prom-
ising the largest extent of error minimization (A2.1; e.g., do a deep breathing exer-
cise) is selected and then implemented in the A to W step with the aim of producing 
changes to the first-level emotion-generative system (W2.2; e.g., attenuated sympa-
thetic arousal coupled with less unpleasant feeling).

Within the PM perspective on WPVA cycles, perceptual and action PM pro-
cesses are intimately related as they continuously interact over time (see Fig. 1). 
Perception PM processes provide input for action PM processes, which in turn, 
through producing changes to the world and to the emotion, shape the input for 
perception PM processes. Appraisal processes serve as a hub between perception 
and action PM. They do this by enabling the engagement of relatively abstract mod-
els of key features of the situation and of the emotion and preferentially linking 
these to relatively abstract models of actions that will bring the state of the world 
and the state of the mind into alignment with desired state. In this way, appraisal 
processes involved in emotion and emotion regulation play a critical role in integrat-
ing and coordinating perception and action to guide inference and learning.

2.5 � Implications for Understanding Temporal Dynamics 
of Emotion and Emotion Regulation

The PM perspectives on perception and action during WPVA cycles of emotion 
generation and regulation help to explain how appraisal relates to temporal dynam-
ics of emotion and emotion regulation. At the level of emotion, perceptual and 
action PM mechanisms may account for specific patterns of moment-to-moment 
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emotion dynamics, including emotional inertia and instability. At the level of emo-
tion regulation, perceptual and action PM mechanisms may account for specific 
patterns of moment-to-moment emotion regulation dynamics, including emotion 
regulation inertia and instability (which, in turn, shape emotion dynamics). In what 
follows, we consider each of these ideas in turn.

At the level of emotion, emotional inertia refers to increased moment-to-moment 
predictability of emotional states across time and situations (Kuppens et al., 2010). 
Inertia of emotions may occur when greater precision is afforded to prior models 
compared to the perceptual input (i.e., strong prior model hypothesis). Highly pre-
cise predictions derived from core relational themes (e.g., low coping potential in 
situations of danger or threat) may shift the appraisal process toward the model. An 
overreliance on prior models will result in a high level of stability in appraisal pat-
terns over time at the cost of integrating perceptual evidence sampled from the 
world. Consequently, appraisals lose their adaptive sensitivity and may consistently 
elicit similar emotions regardless of important nuances in the context (Mehu & 
Scherer, 2015).

Action PM processes may further reinforce this pattern of rigidity in emotional 
responding over time in two ways. First, the stable appraisal outcome may set the 
stage for active perceptual inferences that increases the likelihood of generating 
perceptual input that is consistent with the model (e.g., by guiding attention to par-
ticular cues). Highly precise models may thus guide perceptual behavior to the det-
riment of new observations and prediction errors that would correct the model’s 
predictions during perceptual PM, as such fueling emotional inertia. Second, the 
stable appraisal outcome may also generate stable action tendencies across slightly 
different situations that nudge these situations to unfold in a converging manner 
(e.g., an aggressive action tendency escalates interpersonal conflict). Highly precise 
appraisal models may thus also contribute to emotional inertia by shaping initially 
diverse situations to become more similar.

At the level of emotion, perceptual and action PM processes may also account 
for emotional instability, which refers to the magnitude of moment-to-moment 
emotional changes (Kuppens et al., 2010). Emotional instability may occur when 
there is an overreliance on sensory evidence (i.e., weak prior model hypothesis). 
The persistent prediction errors force internal models to change constantly based on 
situation-specific features of the current context. The internal model of situational 
appraisals lacks stability and does not progress toward a model that is able to predict 
and thereby explain the world. This instability in the internal model may produce 
emotional responses that differ in magnitude each time the internal model is updated 
during WPVA cycles, resulting in emotional instability. The unstable nature of the 
models may render them less potent in informing model-guided perception toward 
relevant cues in the world during action PM.  As a result, only limited model-
congruent information enters perception to update the model during perceptual PM, 
instigating a vicious cycle.

At the level of emotion regulation, action PM determines which regulation strat-
egy is selected by weighing the desired emotional state and the anticipated changes 
in emotion associated with a particular emotion regulation strategy. Beliefs about 
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the malleability of (components of) emotions (Tamir et  al., 2007) as well as by 
beliefs about the effectiveness of emotion regulation strategies may determine 
whether emotion regulation is attempted, and if so, may guide the selection of the 
optimal strategy to achieve the desired emotional state within a given context 
(Sheppes et al., 2014). For example, when someone believes that feelings of shame 
and anxiety are difficult to control once elicited, one may engage in efforts to avoid 
or escape the emotion-eliciting stimulus (e.g., avoiding particular places). The per-
ceived effects of the regulatory attempt (i.e., the experienced (lack of) changes in 
emotion) will be compared to the model’s predictions of the expected change in 
emotions. This discrepancy (prediction error) informs the system whether to keep 
using the selected strategy or change it to achieve the desired emotional state.

Highly precise expectations regarding emotion malleability and the effectiveness 
of the selected emotion regulation strategy (strong prior model hypothesis) may 
lead to emotion regulation inertia by discarding the actual data about the (lack of) 
change(s) in the targeted emotional state. Because the expectations are not brought 
into congruence with the perceived evidence, more rigid or inflexible patterns of 
emotion regulation strategy use could emerge. For example, when someone is con-
vinced that thinking frequently about his/her feelings of sadness increases the 
understanding of one’s problems, then this person will likely maintain repetitive 
negative thinking even though this strategy maintains negative affect. By contrast, 
when more precision is afforded to the perceived (lack of) change(s) in the targeted 
emotion (weak prior model hypothesis), it is more likely that such an integration of 
evidence and model’s predictions encourages greater flexibility in selecting an emo-
tion regulation strategy from the repertoire (Bonanno & Burton, 2013). This is 
because valuations will shift more toward the experienced emotional state and the 
model including predictions of the effectiveness associated with the implemented 
emotion regulation strategy will be adjusted. The updated model may inform 
switches in the selection of the emotion regulation strategy in subsequent 
WPVA cycles.

2.6 � Implications for Understanding Individual Differences 
and Clinical Phenomena

This predictive mind view on appraisal dynamics has interesting implications for 
understanding sources of individual differences in temporal characteristics of 
appraisal, emotion, and emotion regulation. Personality traits and psychopathology 
are often associated with individual differences in tendencies to appraise situations, 
as such setting the stage for altered patterns of emotion and emotion regulation 
dynamics (Everaert et  al., 2020; Gross et  al., 2019; Kuppens & Van Mechelen, 
2007; Mehu & Scherer, 2015; Scherer, 2020).

Research on the relation between personality and appraisal tendencies suggests 
that neuroticism is related to a tendency to appraise situations as being negative and 
low in coping potential (Tong, 2010, p. 20), whereas traits such as conscientiousness 
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and agreeableness are related to tendencies to appraise situations as being negative 
and relevant to the individual’s current goals (Scherer, 2020). Furthermore, studies 
have shown that personality traits are meaningfully related to individual differences 
in decisions made during the identification, selection, and implementation stages of 
emotion regulation (Hughes et al., 2020). The proposed predictive mind perspective 
may shed light on how personality traits are linked to biased appraisal patterns and 
associated emotion and emotion regulation dynamics.

We propose that configurations of personality traits (e.g., high on neuroticism and 
low on extraversion) may be associated with lower activation thresholds of particular 
core relational themes (e.g., themes related to harm, danger, uncertainty, or threat). 
When activated, these core relational themes may receive higher precision compared 
to perceptual information, so that prediction errors are resolved by discarding 
(inconsistent) perceptual information. Over time, the overreliance on the model may 
set the stage for distorted emotion dynamics (e.g., inertia of negative emotions such 
as anxiety). In addition, personality variables may be associated with a particular set 
of beliefs about the malleability of emotional responses and efficacy of particular 
strategies (e.g., neuroticism may be linked to avoidance of potentially threatening 
situations), thereby skewing action PM processes serving the selection of emotion 
regulation strategy to alter the elicited emotional response. To explore these possi-
bilities, future research could examine how personality traits are related to central 
concepts of the action and perception PM perspective on appraisal dynamics.

Research on psychopathology has frequently documented that common disor-
ders such as depression are associated with disturbances in emotion dynamics and 
emotion regulation strategy use. Depression has been linked to emotional inertia 
(Kuppens et al., 2010) and rigidity in the use of emotion regulation strategies such 
as rumination and dampening of positive emotions (Bean et al., 2020; Vanderlind 
et al., 2021). The action and perception PM perspective on appraisal dynamics pro-
vides a potential explanation for factors underlying this rigidity in emotion dynam-
ics and emotion regulation. In particular, depression may be associated with highly 
precise prior models during perception PM (e.g., a core relational theme related to 
irrevocable loss) and action PM (e.g., beliefs that certain emotion regulation strate-
gies are appropriate or effective to achieve a goal) so that inconsistent input is con-
sistently ignored, instigating rigidity at the level of emotion and emotion regulation 
over time. We think that this PM perspective provides a valuable framework to 
investigate psychopathology-related individual differences in imbalances of weigh-
ing precisions of predictions and data to understand individual differences in mal-
adaptive temporal dynamics of emotion and emotion regulation.

2.7 � Concluding Comment

This chapter proposes that appraisal dynamics that at the heart of emotion and emo-
tion regulation dynamics can be understood by linking the extended process model 
of emotion regulation with the predictive mind perspective. We illustrated how 
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predictive coding and active inference explain the dynamic changes in appraisals 
based on prediction error, precision weighing, and error minimization through 
either updating predictions or performing actions that produce changes in line with 
predictions. Moreover, we argued that imbalances in precisions afforded to predic-
tions versus data might explain how appraisal dynamics shape temporal dynamics 
of emotion generation and regulation. Finally, we elaborated on how the proposed 
predictive mind view could be leveraged to better understand personality and psy-
chopathology as sources of individual differences in appraisal patterns, emotions, 
and emotion regulation. Future research should explore the utility of predicting cod-
ing and active inference accounts to model the (sources of) temporal dynamics of 
appraisal patterns, emotions, and emotion regulation.
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Chapter 3
The Neuroscience of Affective Dynamics

Nikki A. Puccetti , William J. Villano , and Aaron S. Heller 

Abstract  Emotions are time-varying internal states that emerge, persist, and decay 
to promote survival in the face of dynamic environments and shifting homeostatic 
needs. Research in non-human organisms has recently afforded specific insights 
into the neural mechanisms that support the emergence, persistence, and decay of 
affective states. Concurrently, a separate affective neuroscience literature has begun 
to dissect the neural bases of affective dynamics in humans. However, the circuit-
level mechanisms identified in animals lack a clear mapping to the human neurosci-
ence literature. As a result, critical questions pertaining to the neural bases of 
affective dynamics in humans remain unanswered. To address these shortcomings, 
the present review integrates findings from humans and non-human organisms to 
highlight the neural mechanisms that govern the temporal features of emotional 
states. Using the theory of affective chronometry as an organizing framework, we 
describe the specific neural mechanisms and modulatory factors that ultimately 
arbitrate the rise-time, intensity, and duration of emotional experiences.

3.1 � Introduction

Although there are multiple definitions of emotion, we and others define an emotion 
as a phasic response to a stimulus. Adolphs and Anderson further define an emotion 
as an internal (central nervous system) state following a specific event from which 
subjective, behavioral, and physiological outputs emerge (Anderson & Adolphs, 
2014; Frijda, 1988; Scherer, 2005). This definition distinguishes emotions from 
moods or attitudes, for example, which are more enduring and may not have specific 
precipitants. Moreover, an emotion can be caused by stimuli either extrinsic or 
intrinsic to the organism. Evolutionarily, emotions are thought to be adaptive as they 
prime approach or avoidance behaviors to aversive or appetitive events, respectively.
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As noted throughout this volume, emotions are inherently dynamic responses 
that vary around one’s baseline state. As the rewards and threats in an organism’s 
environment change, its behavioral responses must change as well. Thus, emotional 
states persist or decay relative to changes in an organism’s external or intrinsic 
homeostatic environment (Heller, 2018). These emotional states naturally decay 
over time and return to the organism’s “baseline” state, or homeostatic set point. 
However, emotional responses to personally relevant salient stimuli may also per-
sist, even long after the emotion-evoking stimulus dissipates.

Such emotional dynamics emerge from patterns of neuronal activity (Anderson 
& Adolphs, 2014; LeDoux, 2000; Panksepp, 2011). Therefore, researchers inter-
ested in understanding the nature and dynamics of emotions must also characterize 
their underlying neural mechanisms. Across species, the emergence of emotional 
dynamics depends on several evolutionarily conserved neural mechanisms.

First, emotional states emerge and endure through persistent neural activity 
(Major & Tank, 2004). Persistent neural activity fundamentally underlies central 
internal states that yield physiological, behavioral, and cognitive changes associated 
with emotion. Depending on the response, an emotional state may be instantiated 
via persistent neural activity within a single region of the brain (e.g., the amygdala), 
or via persistent activity within an interconnected network of brain regions.

Second, emotions are not specific to single regions or circuits. Distinct brain 
regions or subnuclei within the same region can support opposing emotional 
responses (Berridge, 2019). Thus, specific brain activity patterns between regions 
can also explain the dynamics of internal emotional states. These patterns include 
synchronous activity and phasic entrainment between regions. As discussed below, 
these patterns of coordinated activity support the transmission of information 
throughout the brain, and the emergence of internal emotional states.

Third, the dynamics of emotional states are modulated by the release of neu-
rotransmitters. Neurotransmitters fundamentally alter the properties, firing patterns, 
and behavioral outputs of neural circuits (Marder, 2012). Thus, a single population 
of neurons might contribute to two entirely different emotional responses depending 
on neurotransmitter concentration. Broadly, neurotransmitter activity enables coor-
dinated, global shifts from baseline states to states associated with emotional 
responding.

3.1.1 � Affective Chronometry

The model of affective chronometry provides a guiding theoretical framework to 
characterize the temporal features of emotional responses (Davidson, 1998; 
Solomon & Corbit, 1974; Tomkins, 1978). The three primary parameters on which 
the emotional time course varies are: (1) rise-time, or the latency between stimulus 
onset and the peak of an emotional response, (2) amplitude, or the peak of an emo-
tional response, and (3) duration, or the length of time before an emotional response 
returns to baseline. As has been suggested, emotional time-courses are not simple 
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and may have multiple peaks (Verduyn et  al., 2009). Such circumstances would 
certainly impact the duration and may simultaneously impact the rise-time or inten-
sity parameters. The time course of any emotional response can be described by the 
convolution of these three parameters.

3.1.2 � Neural, Peripheral, Subjective, and Behavioral 
Indicators of Emotion

In order to describe neural mechanisms that underlie the three temporal features 
defined by affective chronometry, it is first necessary to introduce the dynamic sig-
nals that comprise an emotional response. These signals include neural activity, 
peripheral physiology, subjective ‘feelings’, and objective behavior. We briefly 
describe each of these below.

Neural signals. A variety of neural mechanisms support emotional responses in 
animals and humans. We briefly review the methods used to measure neural signals 
described here.

In animals, neural measures can quantify electrophysiological activity through 
extra- and intra-cellular recordings. Extracellular recordings can be acquired from 
either single or multi-site electrodes using high spatiotemporal sampling. These 
measure the local field potential (LFP), or the summed electrical changes occurring 
near the electrodes (Buzsáki et al., 2012; Csicsvari et al., 2003). As these electrodes 
measure activity across many neurons, high frequency ‘spikes’ in the local field 
primarily reflect synchronous neuronal firing. In contrast, intracellular electrodes 
record electrical activity within a single cell providing richer information about the 
mechanisms of activity spikes, including cellular inputs, intrinsic cellular proper-
ties, and subthreshold activity (Henze et al., 2000). These measurements capture 
rich temporal information on a timescale of milliseconds.

Experimental manipulations of neural circuits can further establish causal links 
between brain and behavior. One method in animals involves the direct manipula-
tion of neuronal activity via optogenetics. Optogenetics involves the engineering of 
cells to be excited or inhibited by specific frequencies of light (for a review see 
Fenno et al., 2011). This method allows for manipulation of neural activation or 
silencing across timescales (Guru et al., 2015). These manipulations allow scientists 
to causally connect neural dynamics across milliseconds and seconds directly to 
behavior.

Compared with animal research, measures of neural activity in humans are often 
more indirect and less precise, in part because they tend to be less invasive. 
Electrophysiological activity can be measured by placing electrodes on the scalp, 
using electroencephalography (EEG) or magnetoencephalography (MEG).These 
methods record cortical electrical brain activity with high temporal resolution. 
However, the source of the electrical changes are challenging to identify, particu-
larly if the source comes from deeper brain regions, such as the amygdala (Buzsáki 
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et al., 2012; Darvas et al., 2004; Hansen et al., 2010). Moreover, EEG signals repre-
sent the electrical potential across large neuronal populations of co-active, similarly 
oriented pyramidal cells in the cortex (Kirschstein & Köhling, 2009). Thus, the 
spatial resolution of EEG is limited relative to single-unit and LFP recordings.

Relative to EEG and MEG, functional magnetic resonance imaging (fMRI) pro-
vides superior spatial resolution by imaging the whole brain. Using magnetic field 
gradients, fMRI locates changes in oxygenated blood flow throughout the brain. 
Blood flow is thought to reflect metabolic responses to increased neuronal activity 
(Poldrack et al., 2011), but the temporal resolution is less precise than EEG or MEG.

Peripheral physiological signals. There are several peripheral physiological 
responses that occur in response to affective events. Triggered by the central ner-
vous system, these peripheral indicators reflect sympathetic responses to affective 
stimuli (Bradley & Lang, 2000). For example, pupillary dilation and constriction 
are modulated following affective stimuli (Maffei & Angrilli, 2019). Changes in 
heart rate and heart rate variability are also linked to emotional responses (Mauss & 
Robinson, 2009). Similarly, the Galvanic Skin Response (GSR) measures sweat 
excretion in response to arousing stimuli (Lang et al., 1993; Mauss & Robinson, 
2009) as does respiration rate (Homma & Masaoka, 2008). Emotional responses 
can also be measured via facial electromyography (EMG), an objective measure of 
facial muscle activity. Emotional expressions, such as frowning and smiling, evoke 
EMG activity which track the valence and intensity of affective reactions (Cacioppo 
et al., 1986).

Subjective emotional signals. Perhaps the most obvious indicators of an emo-
tional episode arise from an individual’s description of the feelings comprising the 
experience. Subjective descriptions of emotion can be obtained retrospectively or 
during the emotional episode. This is typically accomplished with laboratory-based 
self-report surveys or via experience sampling methods (Shiffman et  al., 2008). 
Subjective reports of emotional episodes are often structured with questions that 
assess unique emotions, such as “fear,” “happiness,” or “frustration.” Alternatively, 
self-report instruments may ask an individual to average across core dimensions of 
their emotional experience such as valence (i.e., positive vs negative) and arousal 
(i.e., high vs. low) of an emotion (Russell, 1980).

Behavioral signals. Behavioral responses to stimuli can yield insight into an 
organism’s central emotional state. Using observable behavior as a proxy for emo-
tional state enables researchers to infer the neural mechanisms driving affective 
behaviors across species.

Across species, objective behavioral states such as feeding, grooming, and freez-
ing can be viewed as expressions of “emotion primitives” (Panksepp, 2004). The 
neural mechanisms that subserve these affective behaviors in lower organisms are 
conserved through evolution and can be construed as the “building blocks” for 
human emotional responding (Anderson & Adolphs, 2014). For example, similar 
neural mechanisms that drive rodent freezing responses to aversive stimuli support 
the emergence of fearful “feeling states” in humans. Some theorize that affective 
behaviors emerge from such central emotional states (Anderson & Adolphs, 2014). 
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Such a viewpoint allows researchers to infer the valence and dynamics of the under-
lying emotional state from the type and timing of behavioral responses.

Aversive emotional states can be inferred from a variety of animal behaviors 
across phyla. Behaviors that involve avoidance of a threatening stimulus or situa-
tion, such as freezing, hiding, or fleeing a threat, are generally thought to indicate 
aversive emotional states. For instance, in organisms as simple as the roundworm 
C. elegans, an aversive state can be inferred from stereotyped escape behaviors 
(Cermak et al., 2020; Leung et al., 2016). In rodents, compulsive self-grooming in 
response to an aversive stimulus may indicate an anxious emotional response, akin 
to human self-soothing responses to stress (Spruijt et al., 1992).

Aversive emotional states may also be inferred from the timing of behaviors. In 
humans, faster reaction times to aversive stimuli may indicate that an individual’s 
response was primed by a latent aversive emotional state (Neta & Tong, 2016). 
Similarly, in non-human species, the affective structure of an organism’s environ-
ment can be inferred from the amount of time that the organism spends pausing in 
place before making a behavioral choice (Redish, 2016). Additionally, some objec-
tive behaviors can also be used as proxies for appetitive states. For example, active 
mating and feeding behavior indicate that an animal has appraised their environ-
ment as sufficiently safe to exploit potentially rewarding opportunities (McNaughton 
& Corr, 2018).

3.1.3 � Interim Summary

In the remaining sections we describe how neural circuits supporting emotion give 
rise to the rise-time, amplitude, and duration of emotion. As mentioned above, these 
emotional dynamic parameters are interrelated as are the neurobiological process 
that underlie them As such, established neural circuits involved in emotional 
responses, including the midbrain (periaqueductal grey [PAG]), sensory regions, 
thalamus, amygdala, bed nucleus of the stria terminalis (BNST), nucleus accum-
bens (NAcc) and the striatum, hippocampus, the orbitofrontal cortex (OFC), and the 
medial prefrontal cortex (mPFC) among others, contribute to the temporal features 
of affect. Below, we draw from both animal and human research to highlight the 
circuits relevant to each parameter of emotional dynamics and describe stimulus 
and contextual properties that modulate these parameters.

3.2 � Parameter 1: Rise-Time

Conceptually, rise-time refers to the time that it takes an affective response to reach 
its peak following stimulus onset (Davidson, 1998). Here, an affective signal is 
some measured output of a response system, for example a subjective feeling, a 
psychophysiological process, or measured neural activity. The rise-time of an 
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emotional response relies on multiple information processing components, includ-
ing stimulus detection, reorienting, attentional allocation, and stimulus valuation. 
The neural systems involved in these processes, and how they may contribute to the 
affective rise-time described below.

3.2.1 � Critical Circuits

The proposed neural systems subserving affective rise-time necessarily involve cor-
tical sensory regions, which detect salient, goal-relevant stimuli. Faster detection of, 
and orienting to, a stimulus can hasten the rise-time of an affective response to that 
stimulus. This sensory information originates from the specialized cortical regions 
(i.e. occipital, auditory cortices) and then flows through modality-specific cascades 
toward higher association regions (McDonald, 1998; Mesulam, 1998) including the 
frontal, insular, parietal, and temporal cortices. These association regions not only 
receive information via this cortical cascade, but they also have bidirectional con-
nections with the thalamus and amygdala (McDonald, 1998).

While the amygdala is not only relevant for affective rise-time, the basolateral 
amygdala (BLA) is well-positioned to influence rise time as it receives sensory 
cues, imbues them with value, and propagates this information to downstream 
regions. Neurons in the BLA, which includes the lateral and basal nuclei (Sah et al., 
2003), drive emotional learning, demonstrated through threat and reward condition-
ing paradigms (Quirk et al., 1995; Johansen et al., 2010; Namburi et al., 2015), and 
from studies lesioning the lateral amygdala (LeDoux et al., 1990; Klumpers et al., 
2015).BLA neurons differentially encode fear and reward associations (Beyeler 
et al., 2018; Paton et al., 2006), which engage separate downstream pathways. BLA 
neurons encoding reward associations propagate signals to the NAcc, which drives 
reward-seeking behavior (Stuber et al., 2011). In contrast, neurons encoding aver-
sive associations propagate signals to the central nucleus of the amygdala (CeA; 
Namburi et al., 2015) and the neighboring BNST (Fox & Shackman, 2019; Kim 
et al., 2013). When BLA neurons signal an aversive conditioned auditory stimulus 
to the CeA, a subset of lateral CeA neurons become excited while a separate subset 
becomes inhibited (Ciocchi et al., 2010). These inhibited neurons in turn disinhibit 
medial CeA neurons, which signal threat-conditioned action (Fadok et al., 2018). 
Relatedly, BLA projections to the BNST also promote emotional behaviors (Davis 
et al., 2010; Fox & Shackman, 2019). These findings highlight the importance of 
BLA connections with other regions to translate information regarding stimulus 
value into motivated behavioral responses.

The speed of signaling in these circuits could impact the time it takes an affective 
signal to peak. For example, Tye et  al. (2008) conducted a reward conditioning 
experiment in rodents and found that greater task efficiency, defined as the number 
of rewards earned divided by the number of cues, was linked to a higher proportion 
of cue-responsive amygdala neurons and stronger amygdala-thalamus connections. 
Other work has shown that stimulus valence alters glutamatergic synaptic strength 
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of BLA efferents, such that BLA-CeA synapses are weakened during reward condi-
tioning and BLA-NAcc synapses are weakened during fear conditioning (Namburi 
et al., 2015). More research is needed to pinpoint exactly how these neural metrics 
of efficiency relate to the rise-time or onset of affective behavior.

Affective rise-time may also be determined, in part, by the mPFC, where infor-
mation from the BLA, the hippocampus, and other subcortical and cortical regions 
converge. Using contextual information, the mPFC can modify the expectedness 
and value of a stimulus based on the appropriateness of the stimulus and context for 
the organism’s current state and environment (Grace & Rosenkranz, 2002; Calhoon 
& Tye, 2015). This may also impact affective rise-time. For example, Mattavelli 
et al. (2011) measured response time when classifying happy and angry faces fol-
lowing a congruent or incongruent priming cue (i.e. the word happy or angry). They 
found that during congruent trials, when subjects were contextually primed, 
response times were longer when a transcranial magnetic stimulation pulse dis-
rupted the mPFC (Mattavelli et al., 2011). This suggests that the mPFC can stream-
line affective responses based on the environmental cues and context.

Beyond any singular region, the coordination and synchrony of neural activity 
between the mPFC, amygdala, and hippocampus during affective processing facili-
tates information transfer and thus the affective rise-time (Buzsáki et al., 2012; Pape 
et al., 2005; Paz et al., 2008; Seidenbecher et al., 2003). With regards to affective 
responding, synchrony between the hippocampus and the BLA is increased in 
response to the conditioned stimulus after threat conditioning (Seidenbecher et al., 
2003). Moreover, mPFC-originating theta rhythms can also promote safety behav-
iors after extinction (Lesting et al., 2013). Specific to affective rise-time, Karalis 
et al. (2016) demonstrated that prefrontal-amygdala synchrony predicted the speed 
of freezing behavior of rodents during threat conditioning. These studies demon-
strate that dynamic shifts in oscillatory synchrony among regions shape the unfold-
ing of emotion states.

3.2.2 � Modulators: What Influences Rise-Time?

There are a number of stimulus and contextual properties that can influence neural 
circuits involved in emotion and also the affective rise-time. We posit that rise-time 
is likely to be faster for stimuli that are emotionally congruent, salient, and unam-
biguous. Importantly, these features may correlate differently with one another 
across contexts. For example, stimuli that are salient may be unexpected or incon-
gruent. Therefore, while we discuss the literature that supports these modulators of 
rise-time, we acknowledge that more work is needed to determine when, how, and 
for whom these modulators are prioritized.

Congruence. Emotional rise-time is faster for emotionally highly congruent 
material (John et al., 2016; Dzafic et al., 2019). As a predictive organ, the brain is 
constantly forming expectations about what is likely to occur (Clark, 2013). As 
such, it is often functionally adaptive and efficient to bias the appraisal of stimuli as 
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threatening in aversive contexts, or conversely, to prioritize the appraisal of stimuli 
as rewarding in appetitive contexts. Prioritizing congruent information, which 
streamlines affective rise-time, can be achieved through the biasing of sensory sys-
tems (Pourtois et al., 2013). This biasing is supported, in part, by amygdala influ-
ence on gating mechanisms in the thalamus (John et al., 2016).

The amygdala can bias attention toward emotionally relevant information in the 
environment through its connection with the thalamus. While the amygdala receives 
projections from the thalamus, it also exerts excitatory projections back to the tha-
lamic reticular nucleus (TRN), which inhibits the other thalamic nuclei (Pinault, 
2004). Specifically, the TRN exerts inhibitory control over the sensory thalamus, 
which promotes competitive gating of thalamo-cortical signals. The TRN is consid-
ered a hub of the attentional system (McAlonan et al., 2006) and this amygdala-
TRN connection suggests that emotionally-relevant information can influence 
ongoing attentional and sensory processing (John et al., 2016). Excitatory amygdala 
projections to the TRN can directly influence this attentional controller, biasing 
attention toward emotionally relevant information and suppressing competing sen-
sory signals (John et al., 2016). Tuning attention to emotionally relevant and con-
gruent sensory information can speed the rise-time of emotional responses.

One demonstration of the modulation of rise-time by congruence in humans 
comes from a structural and functional MRI study employing a dynamic emotion 
perception task (Dzafic et al., 2019). Similar to any Stroop effect, participants clas-
sified video clips as happy or angry, each of which was preceded with a “happy” or 
“angry” cue containing a still-image and the corresponding emotion word. These 
cues were either congruent or incongruent with the subsequent video (Dzafic et al., 
2019). During congruent trials, a faster behavioral response time to angry stimuli 
was associated with greater recruitment and connectivity within an amygdala-limbic 
functional network. This network consisted of the right amygdala, hippocampus, 
mammillary bodies, caudate, and subgenual anterior cingulate cortex (Dzafic et al., 
2019). This finding supports the amygdala as a key for affective rise-time and 
emotional-congruence as a modulator that can hasten rise-time, including the speed 
of behavioral responses.

Salience Rise-time is likely faster for perceptually salient information. Salient 
stimuli are often prioritized, therefore shortening the rise-time for affective 
responses. In the visual system, salient stimuli are those that “appear to an observer 
to stand out relative to their neighboring parts” (p. 185, Borji & Itti, 2010). These 
“stand-out” stimuli or features can be conceptualized as spatial or temporal predic-
tion errors—deviations from what is anticipated. This definition of salience stands 
in contrast to the argument that stimulus “congruency” facilitates rise-time. 
However, it may be that either congruency or incongruency (salience) promotes 
affective rise-time, but that the direction of the modulation depends on context and 
the extent of the congruency or incongruency.

Many visual salience models account for the rapidity of attention and orienting 
by analyzing populations of neurons in the visual cortex. According to some mod-
els, these “stand-out” stimuli are encoded in various maps specific to perceptual 
features, such as luminance contrast, edges, color, and motion (Borji & Itti, 2010; 
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Itti et al., 1998). Other models of saliency maps suggest that multiple feature maps 
are not required, but rather, firing rates across V1 neurons, regardless of feature tun-
ing, yield a single saliency map (Li, 2002). Still other models focus on subcortical 
structures that may encode salience, such as the superior colliculus (White et al., 
2017). According to most of these computational models, bottom-up visual saliency 
maps interact with top-down priority maps, perhaps emanating from medial pre-
frontal cortical regions, to encode the behavioral relevance of stimuli, to guide 
attention and behavior (Fecteau & Munoz, 2006; Tanner & Itti, 2019).

Emotional faces are one example of salient stimuli that modulate the neural pro-
cesses underlying affective rise-time in humans. In support of this, humans exhibit 
faster detection of emotional faces, particularly angry faces, compared with neutral 
faces (Öhman et  al., 2010). For decades, affective neuroscientists have proposed 
that fast threat detection is possible through a “fast path” or “low road” route to the 
amygdala that bypasses cortical regions (Garrido et  al., 2012; LeDoux, 1996). 
Through the fast path, the amygdala receives sensory information subcortically 
through the pulvinar nucleus of the thalamus, prior to reaching the sensory cortex 
(LeDoux, 1996; Méndez-Bértolo et al., 2016; Morris et al., 1999). From an evolu-
tionary perspective, this fast path exists to prioritize responding to salient survival-
related stimuli.

Recent evidence in humans further indicates that emotional faces may be suffi-
ciently salient to reach the amygdala through this fast path (McFadyen, 2019; 
McFadyen et al., 2017; Méndez-Bértolo et al., 2016). Specifically, an intracranial 
electrophysiological study demonstrated that low spatial frequency fearful faces, 
which appear as blurred versions of the normal faces that maintain the original 
brightness and contrast, elicited amygdala activity approximately ~100 ms faster 
than in ventral visual cortex (Méndez-Bértolo et  al., 2016). However, additional 
MEG work has demonstrated that the fast path amygdala responses may extended 
to faces regardless of spatial frequency or emotional expression (McFadyen et al., 
2017). Additional work exploring which types of stimuli and information are priori-
tized in this fast path will help inform salient features that may modulate affective 
rise-time.

Ambiguity Rise-time is faster for non-ambiguous stimuli (Neta et  al., 2009). 
Features of emotionally ambiguous stimuli, (i.e., a surprised facial expression or a 
woman crying in a wedding dress) convey subtle, inconclusive, or even conflicting 
information regarding valence. Such stimuli may be open to multiple interpretations 
and may require additional contextual information to be appraised. In contrast to 
controlled experiments that employ clearly-valenced and unequivocal stimuli, real-
world affective events can be ambiguous. More elaborated and prolonged process-
ing is required to resolve ambiguity and determine stimulus value.

Resolving ambiguity requires PFC and other cortical input to integrate additional 
contextual information (Bublatzky et al., 2020; Stujenske et al., 2020). Using MEG 
In humans, Bublatzky et  al. presented morphed, difficult-to-recognize emotional 
faces during both contextual threat and safety. When subjects classified ambiguous 
fearful expressions under contextual threat or when subjects classified ambiguous 
happy faces under contextual safety, there was an amplification of early activity in 
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centro-parietal (between 63–127 ms) and prefrontal regions (between 103–157 ms; 
Bublatzky et  al., 2020). This double dissociation highlights the role of cortical 
regions in contextualizing and evaluating nuanced, ambiguous stimuli. This exam-
ple also reiterates the influence of context on stimulus appraisal, as ambiguous 
stimuli are more likely to be appraised in congruence with the context.

Another way that the cortical regions in general, and the mPFC in particular, help 
resolve ambiguity is through fear generalization. Fear generalization requires that 
organisms determine whether unconditioned stimuli that are similar to, yet distinct 
from, conditioned fear stimuli nonetheless represent threat (Asok et al., 2019). In 
mice, stimulating prelimbic cortical (analogous to mPFC in humans) inputs to the 
BLA enhances discrimination between stimuli, meaning that the mice did not gen-
eralize fearful responses to non-threatening stimuli (Stujenske et al., 2020). Overall, 
cortex-dependent processing and contextualizing that resolves ambiguity could, in 
turn, modulate affective rise-time in response to emotionally ambiguous stimuli.

3.3 � Parameter 2: Intensity

Conceptually, the intensity of an emotional response refers to the absolute value of 
magnitude of that response (Davidson, 1998). Terms such as the “amplitude” 
(Russell, 1980) or “scalability” (Anderson & Adolphs, 2014) of an emotion share 
conceptual overlap with our use of the term intensity. Importantly, while an emo-
tion’s intensity is often considered to vary continuously (e.g., from low to high 
intensity), the behavioral outputs associated with increasing intensity need not 
increase monotonically. For instance, under increasingly proximal threats, rodent 
behavior shifts from passive observation, to freezing, to attack (“circa-strike;” 
Blanchard et al., 1990). These qualitative shifts in behavior depend on quantitative 
shifts in stimulus proximity, and in all likelihood, increases in affective intensity. 
Moreover, such increases in an emotion’s intensity are impacted by its rise-time and 
can subsequently influence its duration.

3.3.1 � Critical Circuits

The neural circuits involved in an emotion’s intensity are deeply intertwined with 
those influencing its rise-time and duration. The intensity of an emotional response 
can be modulated via activity in brain-stem, subcortical/limbic, as well as cortical 
regions. Panksepp and others have argued that low-levels of stimulation of the most 
evolutionarily old and conserved brain regions, including the periaqueductal gray 
(PAG) of the midbrain, causes robust, reliable, and specific emotional responses 
(Panksepp, 2004). One reason for this assertion is that the level of electrical stimula-
tion needed to cause affective reactions is far lower and far more specific in the 
evolutionarily old midbrain than in regions that emerged more recently in 
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phylogeny (even compared to the amygdala and nucleus accumbens, let alone the 
cerebral cortex). Furthermore, stimulation of the midbrain subnuclei appears to 
cause affective reactions regardless of context. Critically, the magnitude of stimula-
tion scales with the intensity of affective reaction.

However, evolutionarily old brain regions, such as the PAG, do not alone drive an 
emotion’s intensity. More recently evolved associative learning structures, includ-
ing the amygdala, hippocampus, NAcc, ventral pallidum, in addition to the associa-
tion cortex (Mesulam, 1998) share structural connectivity. These regions encode 
and represent the life-history of the organism and provide the essential context 
about what to expect and how to make sense of incoming information. The interac-
tion between these regions determines the intensity of the emotional response and 
appropriate behavioral output. For instance, recent fMRI work using machine learn-
ing indicates that increasing subjective ratings of negative emotion in response to 
affective images are predicted by a specific pattern of cortical and subcortical brain 
responses (Chang et al., 2015). These regions included amygdala, insula, PAG, and 
posterior cingulate cortex, among others. Critically, there is no single region or cir-
cuit necessary or sufficient for predicting the intensity of emotional experience, 
indicating that intensity is encoded in this circuit. In work that simultaneously 
acquires fMRI and objective facial EMG from the corrugator (‘frowning’ muscle) 
during a similar picture viewing task, both lower vmPFC activity and higher amyg-
dala activity predicted higher intensity of corrugator activity (Heller et al., 2014). As 
further evidence that no single region produces aversive emotions, a recent intracra-
nial stimulation study of the human amygdala finds limited specificity for driving 
emotional responses (Inman et al., 2020).

Intensity of hedonic processing also depends on a distributed circuit including 
cortical and subcortical regions. Human neuroimaging studies report that the OFC 
and insula encode the pleasantness of foods (Kringelbach et al., 2012; Small et al., 
2001). For example, cortical activity robustly tracks the pleasantness of food and the 
intensity of this pleasure and the concomitant cortical activity decline as individuals 
become satiated (Kringelbach & Rolls, 2004). This evidence is supported by com-
plementary neuroeconomic decision-making work indicating that the value of a 
stimulus is encoded in a variety of cortical (mPFC/OFC) and subcortical (NAcc) 
regions (Knutson & Cooper, 2005).

3.3.2 � Modulators: What Influences intensity?

Stimulus Proximity As noted above, the proximity of an affective stimulus strongly 
modulates the intensity of the emotional reaction and the accompanying behavior. 
Fanselow and Lester advanced the “Threat Imminence Continuum” model 
(Fanselow & Lester, 1988) of shifts in behavior based primarily on studies in 
rodents. This model posits that threat-states change depending on the proximity of 
the threat (undetected, detected but far away, or close enough to immediately attack). 
Mobbs and others have applied this framework to create an fMRI paradigm where 
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the subject actively evades an artificial predator that can chase, capture and shock 
the subject. Mobbs and colleagues showed that as an artificial predator came closer 
to the subject, activity shifted from primarily cortical (e.g., vmPFC) to midbrain 
(PAG) regions (Mobbs et al., 2007). Mobbs has replicated and extended this work 
using more realistic stimuli (Mobbs et al., 2010). For instance, when a tarantula was 
placed progressively closer to the subject’s foot, they found that closeness was asso-
ciated with greater activity in the PAG, amygdala, and BNST. Conversely, distance 
was associated with greater OFC activity. Pessoa and colleagues have used a similar 
paradigm of increasing threat proximity and found that threat proximity is similarly 
related to amygdala and salience network activity (Meyer et al., 2019). Together, 
these studies suggest that higher forebrain areas are involved in slower, deliberate 
responses to distant or potential threats, whereas the midbrain and perhaps the 
amygdala mediate fast, “hard-wired,” defensive reactions to imminent danger 
(Mobbs & Kim, 2015).

Stimulus Repetition The repeated presentation of identical or similar stimuli 
(i.e., sharing several perceptual or categorical properties) leads to habituation 
(Thompson, 2009). This is a process by which the amplitude of an emotional 
response becomes attenuated. Neuronal habituation to repeated presentation of sim-
ilar stimuli occurs throughout the brain, from the brainstem up to the cortex. The 
rate of habituation is typically a negative exponential function of the number of 
stimulus presentations. Habituation occurs in almost all readouts of emotion, includ-
ing physiology (Davis, 1934), facial reactivity (e.g., startle: Prosser & Hunter, 
1936), and exploration of novel contexts (Welker, 1961)). Habituation is a type of 
short-term memory and indicates that more novel stimuli (i.e., stimuli of uncertain 
value) can often evoke stronger affective reactions than recently encountered stim-
uli of known value. Moreover, the capacity for stimulus adaptation (i.e., habitua-
tion) is present throughout the brain—brainstem regions drive core emotional 
responses (not necessarily subjective human ‘feelings’), as well as evolutionarily 
newer regions (Sokolov, 1963). Such a conceptual orientation is central to more 
modern theories of “the predictive brain” (e.g., Friston et al., 2009).

Neurochemical modulators of hedonic processing Rodent models of hedonic 
processing provide insights into the circuits and neurochemical systems influencing 
emotional intensity. Berridge and his colleagues have mapped the neural circuits 
involved in hedonic processing (Berridge & Kringelbach, 2015). In particular they 
have identified distinguishable neural processes underlying the incentive salience 
(‘wanting’) and hedonic (‘liking’) processing of rewards. Moreover, their work has 
linked neuronal mechanisms of hedonic processing with objective affective behav-
iors during ingestion of pleasant stimuli. These objective reward-related behaviors, 
including lip licking and tongue protrusions, are readily observable in rodents, non-
human primates, and human infants alike.

Neurochemical signals in subcortical regions modulate the intensity of these 
objective affective behaviors in rodents (Berridge, 2019). Stimulation of opioid, 
orexin, and endocannabinoid systems within either the NAcc shell or the ventral 
pallidum increase the frequency of objective liking behaviors. This suggests that 
enhanced signaling in these systems may increase the intensity of the subjective 
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emotional hedonic experience (Berridge, 2019; Smith et al., 2011). Additionally, 
these effects appear to be specific to opioid, orexin and endocannabinoid systems, 
as dopamine agonist microinjections into the same regions did not similarly modu-
late hedonic responses (Castro & Berridge, 2014).

Moreover, the NAcc and ventral pallidum receive input from cortical sites, nota-
bly the prefrontal cortex and insula, which can also amplify hedonic reactions. To 
that end, Castro and Berridge extended earlier findings by injecting the mu-opioid 
agonist DAMGO and neuropeptide orexin into orbitofrontal and insular regions to 
map their effects on the intensity of hedonic responses. In small (6–8 mm3) hedonic 
hotspots in the anterior OFC and posterior insula, they found that mu-opioid or 
orexin microinjections amplified the hedonic impact of sweetness, expressed as a 
nearly 300% increase in behavioral “liking” reactions to the sucrose taste. Further 
supporting the role of these cortical regions in amplifying hedonic processing, stim-
ulation of both the anterior OFC and posterior insula increased activity throughout 
the broader hedonic circuit, including in the NAcc and ventral pallidum (Castro & 
Berridge, 2017). These data suggest that there exist specific neurochemical modula-
tors of the intensity of emotional responding within specific neuronal circuits sup-
porting affective processing.

3.4 � Parameter 3: Duration

Conceptually, the duration of an emotional response refers to the time that elapses 
between the start and end of the response. Here, the end of an emotional response is 
defined by an individual’s return to a baseline state, or to the internal state that pre-
ceded the onset of the emotion. An enduring emotion may similarly be construed as 
a lasting perturbation. Enduring emotional responses are marked by lasting shifts in 
physiology, behavior, and cognition. Thus, the duration of an emotional response 
can be inferred via the duration of objective physiological and behavioral states in 
addition to subjective self-report.

3.4.1 � Critical Circuits

After an emotional response begins, its duration depends on the persistence of activ-
ity in the underlying neural circuitry. This applies to all domains of emotional 
responses, including physiological, behavioral, and cognitive states (Major & Tank, 
2004). In the sections that follow, we describe (1) how neuromodulators drive 
enduring emotional responses by sustaining neural activity in emotion-encoding 
circuits, (2) how persistent patterns of emotion-related network activity contribute 
to the duration of emotional responses, and (3) how evolutionarily conserved sub-
cortical circuits that support the selection and maintenance of behavioral states also 
influence the duration of emotional states.
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Role of neuromodulation in maintenance of persistent states Emotional states 
emerge and persist through the action of a subfamily of neurotransmitters known as 
neuromodulators (dopamine, serotonin, acetylcholine, and norepinephrine; Fellous, 
1999). Neuromodulators originate in small brainstem nuclei that project broadly to 
cortical and subcortical regions. Via these diverse projections, neuromodulators 
enable global shifts in neural activity. In contrast to the fast and transient action of 
the excitatory and inhibitory neurotransmitters (glutamate and GABA), neuromod-
ulators induce persistent brain and behavioral states (Flavell et  al., 2013; Lee & 
Dan, 2012). Neuromodulatory activity enables organisms to adjust their behavior in 
response to dynamic environments and changing homeostatic needs (Pool & 
Scott, 2014).

The persistence of neuromodulatory activity appears to play a phylogenetically 
conserved role in the dynamics of internal emotional states. As threats and rewards 
manifest or an organism’s needs change, neuromodulators fundamentally reconfig-
ure neural circuits and their outputs (Marder, 2012). Through these context-
dependent actions, neuromodulators enable flexible shifts in organisms’ behavioral 
state. Critically, the duration of these states is determined in part by the rate at which 
neuromodulators are cleared from neuronal synapses (Gibson et  al., 2015). In 
humans, drugs that regulate the concentration and efficacy of neuromodulators at 
the synapse are widely prescribed to treat psychiatric disorders such as depression, 
OCD, anxiety, ADHD, and psychotic disorders. Interestingly, the pathology of each 
of these disorders involves persistence of some internal state; be it an affective state 
in depression, a behavioral state in ADHD, or a cognitive state in psychosis.

Studies employing simple organisms with well-characterized neuronal connec-
tomes clearly demonstrate that neuromodulators control the duration of persistent 
states that may be considered ‘affective’ (Lee & Dan, 2012). For example, in C. ele-
gans, two neurochemicals (serotonin and pigment-dispersing factor) recruit neurons 
into opposing, bi-stable networks. These opposing networks drive opposing behav-
iors, such as roaming and dwelling (Ji et al., 2020). Similarly in C. elegans, dopa-
mine exhibits dissociable, state-dependent effects on the duration of egg-laying 
behavior (Cermak et al., 2020). In larval zebrafish, dopaminergic activity reduces 
the susceptibility of persistent neural states to potential distractors by increasing the 
gain (i.e., relative strength) of relevant neural signals (Randlett et al., 2019). These 
examples demonstrate that neuromodulatory signaling enables an internal state (i.e., 
a response) to persist for as long as the stimulus that evoked it remains salient 
(Likhtik & Johansen, 2019).

One particular neuromodulator, dopamine, influences the duration of internal 
emotional states by, (1) reducing a state’s susceptibility to distractors (Jacob et al., 
2016), and (2) increasing the signal-to-noise ratio of stimulus representations in 
neural activity (Vander Weele et al., 2018). Dopamine influences behavioral impul-
sivity and the persistence of internal states through its effects on dopamine receptor-
expressing neurons in the striatum—a region involved in the selection and 
maintenance of behavioral states (Graybiel, 1998). Specifically, dopaminergic 
activity modulates the stability of neuronal UP and DOWN states (Gruber et al., 
2006), which refer to shifts in the thresholds at which neuronal hyperpolarization 
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and depolarization occur (Major & Tank, 2004). Through these shifts in conduc-
tance thresholds, neuromodulators confer striatal UP and DOWN states with 
reduced susceptibility to distractors (Gruber et al., 2006). Thus, in motivationally 
relevant contexts, dopamine-mediated activity in striatal medium spiny neurons 
enables representations of salient information to persist in downstream cortical tar-
gets (this corticostriatal gating mechanism is described in greater detail below). In 
line with dopamine-mediated neural persistence, a paucity of D2 and D3 dopamine 
receptors in the ventral striatum is associated with increased impulsive behavior in 
rodents (Barlow et al., 2018). Moreover, in humans, reduced structural coherence of 
dopaminergic projections from the ventral tegmental area to the ventral striatum 
predict greater impulsivity, and thus impaired behavioral persistence (MacNiven 
et al., 2020). Impulsive behavior may indicate impaired persistence in neural activ-
ity perhaps due to increased susceptibility to distractors (Barlow et al., 2018).

In addition to dopamine, serotonin also modulates the duration of emotional 
states. This is accomplished via the effects of serotonin on circuits involved in 
action selection. To illustrate, in zebrafish, inescapable aversive behavioral chal-
lenges elicit enduring states of neural activity in the ventral habenula. Inhibitory 
projections from the ventral habenula then suppress downstream serotonergic neu-
rons in the dorsal raphe nucleus. The resulting reduction in global serotonergic sig-
naling prompts a shift in the organism’s behavioral state, from an active to a 
sustained passive coping strategy. This is consistent with learned helplessness 
behavior in animal models of depression. Here, the shift to a passive behavioral 
state is supported by the phylogenetically conserved, inhibitory effect of serotonin 
on excitatory projections from the basal ganglia to the habenula (Shabel et  al., 
2012). Via these projections, reduced serotonergic activity and resultant habenula 
hyperactivity increase the signal-to-noise ratio of the aversive stimulus representa-
tion, which ultimately generates an enduring, passive behavioral state (Andalman 
et al., 2019).

Role of persistent activity in Amygdala—HPC—mPFC network in emotion 
duration Across species, the duration of an emotional or behavioral state is also 
linked to the persistence of neural activity in emotion-encoding subcortical regions 
such as the amygdala (Kennedy et al., 2020). For instance, enduring emotions, such 
as anxiety, are thought to be supported by enduring neural signals in emotion-
encoding regions such as the amygdala and BNST (Lee et al., 2017; Waugh et al., 
2015). Conversely, transient emotional states of the same valence, such as fear, are 
generated by short-lived signals in the same regions (Lee et al., 2017). Human fMRI 
studies have revealed a similar relationship between the duration of subjective emo-
tion and the duration of neural signals in emotion-encoding regions such as the 
amygdala, thalamus, and midbrain (Waugh et al., 2016). However, the duration of 
emotional responses is not only determined by these subcortical structures, but also 
by synchrony within a frontolimbic network comprised of the amygdala, hippocam-
pus, and mPFC.

Oscillatory synchronization between the amygdala and connected regions con-
tributes to the duration of emotional states. One particularly important region in this 
network is the mPFC, which maintains neural representations of affective stimuli 
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even after they dissipate (Bliss-Moreau & Rudebeck, 2021; Powell & Ginsberg, 
2005). Moreover, persistent oscillatory entrainment between the mPFC, amygdala, 
and hippocampus support enduring freezing responses to conditioned fear stimuli in 
rodents (Seidenbecher et al., 2003). In particular, the duration and power of 4 Hz 
oscillatory synchronization between the mPFC and BLA predicts the duration of 
freezing behavior in rodents when exposed to aversive conditioned stimuli (Karalis 
et al., 2016). Even after stimuli are no longer present, enduring stimulus representa-
tions in the mPFC are transmitted to the BLA to produce these behavioral responses. 
In related rodent threat-conditioning paradigms, fear memory retrieval and behav-
ioral responses are supported by phase-correlated interactions between mPFC neu-
rons and the BLA (Bocchio et al., 2017). However, the functional role of oscillatory 
entrainment extends beyond fear conditioning. For example, entrainment within 
this circuit further transmits state-dependent contextual information to the striatum 
during behavioral decision-making. As detailed below, this information biases the 
duration of emotional states (Sharpe et al., 2019).

Role of Cortico-striatal-thalamo-cortical circuitry in neural states and state 
transitions An emerging literature posits that corticostriatal circuitry involved in 
motor planning and action selection (Gurney et al., 2015; Redgrave et al., 2011) 
maintain persistent behavioral, cognitive, and emotional states (Awh & Vogel, 2008; 
McNab & Klingberg, 2008; O’Reilly & Frank, 2006). This cortico-striatal-thalamo-
cortical (CSTC) circuit receives multiple sources of information from the cortex and 
gates relevant neural signals into behavior. This is accomplished via the CSTC cir-
cuit’s recurrent, closed loop architecture. In this circuit, multiple sources of infor-
mation are routed from distinct cortical regions to the basal ganglia, through the 
thalamus, and back to the cortex (Alexander et al., 1986). The CSTC circuit’s pri-
mary mechanism of action is inhibitory, serving to gate simultaneously competing 
cortical inputs (e.g., competing motor programs) into stable behavioral outputs 
(e.g., motor actions). Specifically, when a behavioral state is no longer adaptive for 
an organism, the basal ganglia shift the behavioral state by inhibiting its current 
output while simultaneously releasing a more optimal behavior from inhibition. 
Similarly, the basal ganglia may also hierarchically control the input, output, and 
maintenance of information in frontal cortical regions involved in higher-level cog-
nition and planning (Chatham & Badre, 2015). Thus, the basal ganglia ultimately 
arbitrate the duration of an organism’s behavioral or cognitive state depending on a 
state’s current value to the organism’s survival.

CSTC circuit loops and the values encoded in their inputs ultimately govern 
whether internal states persist or are interrupted by competing signals. Indeed, the 
duration of behavioral states depends on an organism’s current goals (Hubbard 
et  al., 2020) and the relative values of its behavioral options in the current state 
(Daw et al., 2006). These values, which dictate the duration of behavioral, cogni-
tive, and emotional responses, are encoded in cortico-striatal projections from the 
OFC, the ventromedial prefrontal cortex (vmPFC), and the dorsolateral prefrontal 
cortex (dlPFC) to the striatum (Sharpe et al., 2019). Within these cortical regions, 
distinct neural mechanisms convey value signals to the striatum. These value signals 
in turn govern the duration of behavioral states. For example, the OFC transmits 
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value judgments through its projections to cholinergic interneurons in the striatum 
(Wilson et al., 2014). Additionally, context and salience-encoding limbic inputs to 
prefrontal and striatal regions influence behavioral state durations (Barlow et al., 
2018; see “Subcortical regions…” in Sect. 3.4.2). In summary, functionally diverse 
inputs to the striatum encode the salience of sensory information and the relative 
value of simultaneously competing cognitive and behavioral states. Ultimately, 
these values govern the duration of emotional states through inputs to CSTC loops.

3.4.2 � Modulators: What Influences Duration?

Intensity of the stimulus or emotional response The duration of an emotional 
response depends in part on the amplitude of the emotional response (Waugh et al., 
2010). First, the intensity of an initial emotional reaction predicts its duration in 
subjective reports of emotional experience (Frijda et al., 1991). Objective assays of 
animal behavior replicate this effect. For example, in Drosophila, the intensity of a 
threatening stimulus predicts a more persistent behavioral response (Gibson et al., 
2015). In this case, one or more neurons in the model organism cumulatively inte-
grate signals from sensory neurons that encode the threatening stimulus. As time 
passes, accumulating sensory information in these so-called “leaky integrator” neu-
rons decays at a constant rate. Thus, in circumstances where an organism faces 
repeated or high-amplitude sensory inputs, the accumulation of sensory information 
can outpace the decay rate. Within leaky integrator neurons, asymmetry in the rates 
of signal accumulation versus signal decay yields persistent activity, which can 
allow a behavioral response to persist even after stimuli dissipate. Convergent evi-
dence suggests that persistent integrator neuron activity is necessary and sufficient 
to drive enduring behavioral responses in Drosophila (Jung et al., 2020). In sum, the 
response characteristics of integrator neurons (i.e., accumulation and slow decay of 
sensory signals) translate intense and persistent stimuli into more potent and lasting 
behavioral outputs.

Subcortical regions influence emotion duration Neural activity in subcortical 
(i.e., limbic) regions influences the duration of emotional states via interactions with 
CSTC circuitry. Through their projections to CSTC circuits, limbic regions may 
initiate cortical state transitions or bias the probabilities of subsequent state shifts. 
As a result, limbic inputs to the CSTC circuitry may influence the persistence of 
neural and behavioral states that underlie emotional responding. This is accom-
plished in part through limbic influence over the striatal-substantia nigra-thalamo-
cortical path (Aoki et al., 2019). Through this interaction, neuronal activity in limbic 
regions can unilaterally suppress thalamo-cortical output from the CSTC loop. This 
enables salient sensory inputs to perturb persistent states in CSTC-mediated neural 
activity. Functionally, this circuit may reduce the duration of an internal emotional 
state by terminating it altogether.

Bottom-up, neuromodulatory influence in the striatum can also bias the duration 
of behavioral states. In particular, aberrant dopaminergic signaling in CSTC circuits 

3  The Neuroscience of Affective Dynamics



50

reduces the duration of behavioral states via impulsive behavioral responding. In 
both animal and human models, reduced density of D2 and D3 dopamine receptor 
subtypes seems to underlie natural variability behavioral impulsivity (Buckholtz 
et al., 2010). Here, as in earlier examples, dopaminergic activity affords behavioral 
states greater resistance to potential distractors. This influence of dopamine on 
behavior may be explained by either the intrinsic effects of dopamine on the action 
selection machinery in the basal ganglia, or by dopaminergic effects on the signal-
to-noise ratio of projections to CSTC circuits originating in the amygdala and 
the OFC.

Top-down influences from limbic and frontal regions may also influence the 
duration of emotional states by biasing the probability of state transitions. Indeed, 
lesions in limbic and orbitofrontal regions of the brain yield changes in CSTC sig-
naling and increases in impulsive behavior (Barlow et  al., 2018; Mobini et  al., 
2002). Additionally, increased functional connectivity within limbic networks, and 
reduced connectivity between frontal networks both contribute to impulsive behav-
ior (Barlow et  al., 2018). However, it remains unclear whether these top-down 
effects are independent of the bottom-up neuromodulatory influences of dopamine 
in the striatum (Dalley & Robbins, 2017). Emerging evidence from rodents suggests 
that the amygdala may indeed play an explicit role in coding real-time changes in 
behavioral states. Indeed, distinct neuronal subpopulations in the BLA encode 
behavioral state transitions (e.g., exploring vs. freezing) through slow-oscillating, 
attractor-like dynamics (Gründemann et al., 2019). State encoding in the amygdala 
may serve to integrate affective information into thalamocortical state representa-
tions via its vast cortical and subcortical connections. While this mechanism requires 
further investigation, it represents one additional process through which subcortical 
regions might influence state duration.

Frontoamygdalar circuits support the regulation of emotional states The 
duration of an emotional response also depends on whether affectively salient stim-
uli are gated into conscious awareness (see Sect. 3.2). In conjunction with the mech-
anisms described by Mitchell and Greening (2012), persistent activity in frontal 
regions modulates amygdala activity (Inagaki et  al., 2019), which gates sensory 
information in and out of conscious awareness. This is related to the well-established 
notion that frontoamygdalar connectivity supports the regulation, maintenance, and 
suppression of internal emotional states (Davidson, 2002). In another example of 
this phenomena, successful fear suppression is mediated via functional connectivity 
between the perigenual PFC and the amygdala, while unsuccessful suppression is 
marked by increased functional connectivity between the amygdala and regions in 
the ventral visual stream (Amting et al., 2010). This suggests that successful emo-
tion regulation, which can shorten an emotional episode, is characterized in part by 
frontal influence over amygdala activity, and gating of information flow between the 
amygdala and sensory centers.

Conversely, inhibition of the lateral PFC (implicated in top-down control over 
emotional states) via transcranial magnetic stimulation increases the influence of 
affective information from previous experiences on future decision-making 
(Lapate et  al., 2017). Here, a paucity of frontal control over emotion-encoding 
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regions in the brain generates an emotional “spillover” effect that serves to lengthen 
the duration of aversive emotional states in the brain. Relatedly, the aforemen-
tioned study by Waugh et al. (2016) demonstrates that human emotions endure via 
persistent neural activity in key medial frontal, limbic, and midbrain regions; and 
effortful emotion regulation serves to shorten the persistence of activity within 
these regions. Finally, additional evidence from human fMRI studies suggests that 
dissociable projections from the ventrolateral PFC to the striatum and the amyg-
dala mediate successes and failures in emotion regulation, respectively (Wager 
et al., 2008). Taken together, these findings suggest that the persistence of activity 
between prefrontal regions and emotion-encoding regions mediates the duration of 
emotional states.

3.5 � Conclusion

Here, we have highlighted several neural mechanisms supporting the rise-time, 
intensity, and duration of emotional experiences. Critically, the different neural, 
peripheral, subjective, and behavioral measures of emotional responding unfold 
along unique timescales. For example, emotional responses captured by EEG occur 
more quickly than responses captured by skin conductance. Further, not only do the 
different indicators of emotional responses occur on different timescales, but their 
respective time courses can be relatively independent from each other. For example, 
the chronometry of biological measures may not always reflect the time course of 
subjective emotional experience or behavior (Mauss et  al., 2005). Resolving the 
disparate time scales of emotional responding and connecting neural, physiological, 
behavioral, and subjective emotion signals remain a central challenge of emotion 
research (Davidson, 2015) and remains critical to determine how neural firing, 
unfolding over milliseconds is linked to subjective feeling states which, from one’s 
introspection, last substantially longer.
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Chapter 4
Emotional Inertia: On the Conservation 
of Emotional Momentum

Peter Koval, Patrick T. Burnett, and Yixia Zheng

Abstract  Emotional inertia refers to the tendency for emotions/affective states to 
be resistant to change over time. In this chapter, we review a burgeoning literature 
documenting how emotional inertia differs between individuals and correlates with 
individual differences in personality, well-being and psychopathology; how inertia 
is (causally) related to other psychological and biological processes; and how emo-
tional inertia can itself change over time within individuals. We begin with a brief 
overview of the historical origins of emotional inertia, before outlining how inertia 
is operationalized statistically, and how it relates to other indices of affect dynamics. 
Next, we provide a selective review of empirical research on emotional inertia, 
focusing especially on studies published in the past several years. In light of the 
empirical evidence, we discuss the plausibility of several distal and proximal 
explanatory mechanisms underlying emotional inertia at biological/neural and psy-
chological levels. Finally, we conclude with a discussion of open questions and 
future directions for research on emotional inertia.

Keywords  Emotional inertia · Affective inertia · (In)flexibility · Persistence · 
Resistance to change · Autocorrelation · Autoregressive · AR(1)

4.1 � Introduction

What will the weather be like tomorrow? Your best guess, in the absence of other 
information, is to look at today’s weather (Krzysztofowicz & Evans, 2008). This 
tendency for the past to predict the future, known as temporal autocorrelation, is a 
feature of many natural phenomena (Gottman, 1981), including human affect, 
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where it is often labelled emotional or affective1 “inertia”. Put otherwise, emotional 
inertia refers to the tendency for the subjective, behavioural and/or physiological 
components of affective processes to be resistant to change, self-predictable, or per-
sistent across time.

In this chapter, we review a burgeoning literature documenting how emotional 
inertia differs between individuals and correlates with individual differences in per-
sonality, well-being and psychopathology; how inertia is (causally) related to other 
psychological and biological processes; and how emotional inertia can itself change 
over time within individuals. We begin with a brief overview of historical origins 
before outlining how emotional inertia is statistically operationalized and how it 
relates to other indices of affect dynamics. Next, we provide a selective review of 
empirical research on emotional inertia, focusing on studies published in the past 
several years. In light of the empirical evidence, we discuss the plausibility of sev-
eral distal and proximal explanatory mechanisms underlying emotional inertia at 
biological/neural and psychological levels. Finally, we conclude with a discussion 
of open questions and future directions for research on emotional inertia.

4.1.1 � Historical Origins of Emotional Inertia

The term emotional inertia appears to have been first used by John Gottman and 
colleagues in their pioneering research on emotions in marital interactions (Cook 
et al., 1995). However, the application of time-series methods to study the dynamics 
of psychological processes (Gottman et al., 1969) and the use of autocorrelations to 
quantify mood dynamics (Huba et al., 1976) were proposed even earlier. In their 
application of these methods to the dynamics of marital interactions, Gottman and 
colleagues found that couples whose second-by-second emotional expressions were 
more autocorrelated, or “inert”, tended to have lower relationship quality and a 
greater likelihood of divorce (Gottman et al., 2002). These authors argued that indi-
viduals with higher emotional inertia have a weaker homeostatic force that pulls 
emotions back towards baseline following perturbations, causing their emotions to 
persist over time (Cook et al., 1995). Thus, spouses with higher inertia are slower to 
recover from emotional upsets and “less open to being influenced by their partner” 
(Gottman et al., 2002 p. 332). However, Gottman and colleagues stopped short of 
proposing which factors might cause some individuals (or couples) to have higher 
emotional inertia than others.

Around the same time, Jerry Suls and colleagues proposed that the personal-
ity dimension of neuroticism may underlie individual differences in emotional 
inertia. In a series of diary and experience sampling studies, Suls and colleagues 

1 Although some scholars distinguish between “affect” and “emotion” (e.g., Gross, 2015), we use 
the terms interchangeably in line with common practice in studies on “emotional inertia” and the 
“affect/emotion dynamics” literature more broadly (e.g., Houben et  al., 2015; Kuppens, 2015; 
Kuppens & Verduyn, 2017).
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found that neuroticism was associated with heightened inertia of negative affect 
in daily life. Suls et al. described  negative-affect inertia as a feature of the “neu-
rotic cascade” (Suls et al., 1998; Suls & Martin, 2005), a constellation of mutu-
ally reinforcing mechanisms that underlie the daily emotional distress 
experienced by highly neurotic individuals. Among these, Suls and colleagues 
argued, is a greater tendency for negative feelings to “spillover” across contexts, 
driven in part by ineffective coping skills and an inability to adapt to recurrent 
stressors (Suls & Martin, 2005).

Gottman and Suls’s work confirmed the “Law of Conservation of Emotional 
Momentum”, proposed by Nico Frijda (1988, 2007), which holds that emotions 
are resistant to change over time unless acted upon by a force. Frijda was among 
the first to emphasize the inherently dynamical nature of emotions, which he 
argued change in proportion to fluctuating appraisals of internal/external events 
and (self-)regulatory forces. At the same time, however, Frijda argued that in the 
absence of such forces, emotions are inherently inert. Put otherwise, in opposition 
to the cliché that “time heals all wounds”, Frijda (1988, 2007) argued that time, in 
itself, does not cause emotions to change. Rather, the default is emotional inertia 
or persistence.

4.2 � Quantifying Emotional Inertia

The concept of emotional inertia is fundamentally about resistance to change over 
time. To study how emotions change or persist over time requires repeated mea-
surement of emotions/affect sampled at a relatively high frequency, resulting in 
what is referred to as intensive longitudinal data (Bolger & Laurenceau, 2013; 
Walls & Schafer, 2006). In principle, emotional inertia could be quantified at any 
timescale, but it is typically operationalized as the (lag 1) autocorrelation of suc-
cessive emotion measurements over seconds (e.g. Fairbairn & Sayette, 2013), 
minutes (e.g., Gilbert et al., 2019), hours (e.g., Nelson et al., 2020) or days (e.g., 
Brose et al., 2015).

Using intensive longitudinal emotion data, an individual’s level of emotional 
inertia can be operationalized by estimating how their emotional intensity at occa-
sion t, correlates with their emotion level at the previous occasion t – 1 (e.g. Huba 
et al., 1976; Koval et al., 2013b; Sperry et al., 2020). Autocorrelations can range 
from −1 to +1, with values closer to +1 indicating greater persistence in affect/emo-
tion across successive measurement occasions and therefore higher emotional 
inertia.2

2 Although relatively rare in the context of emotion, it is possible to obtain negative autocorrela-
tions (cf. Rovine & Walls, 2006), which indicate an oscillatory process wherein high levels of the 
outcome are preceded by low levels and vice versa. This tends to produce positive autocorrelations 
at lag 2 (i.e., the correlation among scores at t and t − 2; Box et al., 2008).
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A more common approach, however, is to model emotional inertia using a first-
order autoregressive [AR(1)] model, in which a person’s emotion at each occasion t 
is regressed onto their emotion at the previous occasion, t − 1, as shown in Eq. (4.1):

	
emotion emotiont t t= + ( ) +−α φ 1 

	
(4.1)

Here, the AR slope ϕ captures the degree to which emotions are self-predictable 
or persist across time (i.e., emotional inertia) and, like an autocorrelation, more 
positive AR slopes indicate greater occasion-to-occasion persistence, or inertia, of 
emotion.3 Note that the AR(1) model contains two other parameters, which repre-
sent other important features of a person’s affective trajectory over time.

The intercept α represents the current level of emotion when the previous level 
of emotion equals zero. When the lagged predictor emotiont − 1 is centered around its 
mean level—as is common practice (see Eq. 4.2, below)—the intercept α is equiva-
lent to a person’s mean level of emotion across all occasions (Hamaker & Grasman, 
2015). This is convenient because the mean level of a stationary AR(1) process 
represents its “equilibrium” or “steady-state”, which can be thought of as a person’s 
emotional baseline, towards which their affective state tends to return following 
perturbations (de Haan-Rietdijk et al., 2016).

Finally, the residual term ϵt represents deviations in a person’s current emotion 
(emotiont) that are independent from their emotion at the previous occasion (emo-
tiont − 1). These residuals are sometimes labeled “perturbations”, “shocks” or “inno-
vations” because they represent the influence of occasion-specific events that cause 
random changes in emotion (Hamaker, 2012; Jongerling et al., 2015). The variance 
of these residuals–denoted σ2 and referred to as the innovation variance–captures the 
degree to which emotions vary as a function of all unobserved factors, including the 
types of emotional events people are exposed to and their reactivity to such events, 
as well as measurement error (Hamaker et al., 2018; Jongerling et al., 2015). Thus, 
collectively the three parameters of the AR(1) model represent three important fea-
tures of affect dynamics: the emotional baseline (α), emotional inertia (ϕ), and resid-
ual emotional variation due to (random) events and other unobserved influences (σ2).

4.2.1 � The Multilevel AR(1) Model: Individual Differences 
in Emotional Inertia

In most research on emotional inertia, a multilevel extension of the AR(1) model 
described above has been applied, which allows researchers to simultaneously 
model data from multiple individuals (Rovine & Walls, 2006). In this approach, the 
intercept αi and AR slope ϕi are allowed to vary randomly across individuals i (see 

3 AR slopes can fall outside the −1 to +1 range, indicating a non-stationary process wherein short-
term fluctuations do not revert to a stable equilibrium but accumulate over time producing trends 
(Box et al., 2008). This highlights the need to detect and potentially control for trends when model-
ing inertia.
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Eqs. 4.2–4.4)4 and can be predicted by person-level characteristics (e.g., psychopa-
thology, well-being, personality), represented by the generic person-level predictor 
Zi in Eqs. (4.3)–(4.4), below:

	 emotion emotion emotionti i i t i i ti= + −( ) +−α φ 1  	 (4.2)

	
α β β µi i i= + ( ) +00 01 0Z

	 (4.3)

	
φ β β µi i i= + ( ) +10 11 1Z

	 (4.4)

Note that the multilevel AR(1) model described above, which has been applied in 
the vast majority of studies on emotional inertia, assumes that the innovation vari-
ance σ2 (i.e., the variance of the within-person residuals ϵti) is the same for all indi-
viduals i. Put otherwise, individual differences in emotional variability due to 
exposure and/or reactivity to random and unobserved factors, such as emotional 
events, are not modelled. This has two consequences. First, it leads to bias in esti-
mates of emotional inertia because all individual differences in how emotions vary 
over time must be captured by the AR slope ϕi, which is used to quantify inertia 
(Jongerling et al., 2015; Wang et al., 2012). Second, and more importantly, the stan-
dard multilevel AR(1) model likely represents an incomplete account of affect 
dynamics (cf. Kuppens et al., 2010b): although it can quantify how people differ in 
the extent to which their emotions carry over from moment-to-moment (i.e., iner-
tia), it does not contain a parameter representing the degree to which people’s emo-
tions fluctuate in response to random occasion-specific influences, such as stressors, 
up-lifts etc.

4.2.1.1 � Extensions to the Multilevel AR(1) Model

Several important developments in the statistical models used to quantify inertia 
have occurred in recent years. First, Jongerling et al. (2015) describe a multilevel 
AR(1) model that also allows for individual-specific innovation variances σ2

i (see 
also Wang et  al., 2012), which provides a more complete representation of how 
people’s emotions vary over time, as a function of both predictable (inertia) and 
unpredictable (innovations) influences (see Fig. 4.1). Second, Hamaker et al. (2018) 
describe a multivariate extension of Jongerling et al.’s (2015) model, in which iner-
tia and innovation variances of two or more dimensions of affect (e.g., positive and 
negative affect; valence and arousal) can be modelled simultaneously. This 

4 The within-person part of the multilevel AR(1) model is shown in Eq. (4.2) and the between-
person part in Eqs. (4.3)–(4.4). The lagged predictor emotiont − 1i is centered around each person i 
‘s mean emotion ( emotioni ). Although this is standard and ensures that all between-person vari-
ance is removed from the lagged predictor, this downwardly biases estimates of the AR slope 
(Hamaker & Grasman, 2015).
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Fig. 4.1  Simulated AR(1) time-series with small (panels A and B) or large (panels C and D) AR 
slopes, ϕ, combined with small (panels A and C) and large (panels B and D) innovation variances, 
σ2. All time-series have the same equilibrium or mean, μ. Varying the AR slope (ϕ) and innovation 
variance (σ2) results in different levels of total variability (SD) and instability (MSSD)
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multilevel vector autoregressive (VAR) model also includes cross-lagged effects 
representing how different dimensions of affect mutually influence each other over 
time, sometimes labelled  augmentation and blunting effects (Kuppens & 
Verduyn, 2017; see also Krone et al., 2018). Third, Schuurman and Hamaker (2019) 
recently extended the multilevel VAR model to include measurement error, which 
allows researchers to differentiate systematic occasion-specific variability (i.e., 
innovation variance) from variance due to unsystematic measurement errors, which 
are otherwise confounded.

We discuss several other developments in the statistical modeling of emotional 
inertia later when reviewing research on within-person changes in inertia. However, 
one final issue to note is that the models discussed to this point are all discrete-time 
models, in which intervals between successive measurement occasions are assumed 
to be equal. This is often not the case in research on affect dynamics, in which emo-
tions are commonly measured at random moments throughout the day using experi-
ence sampling methods. Several approaches have been proposed to deal with this 
(see De Haan-Rietdijk et al., 2017), including models that explicitly treat time as 
continuous (e.g., Kuppens et al., 2010b; Loossens et al., 2020) and models that use 
a discrete-time approximation to allow for unequally spaced measurement occa-
sions (Hamaker et al., 2018).

4.2.1.2 � Relations Between Emotional Inertia and Other Indices 
of Affect Dynamics

So far, we have discussed how emotional inertia is quantified. Yet, besides emo-
tional inertia, researchers over the years have proposed a dizzying array of indices 
to characterize different dynamical properties of affect. For instance, Dejonckheere 
et al. (2019) identified 16 different indicators of affect dynamics (see also Houben 
et al., 2015). This diversity not only makes it difficult to navigate the literature, but 
also raises the question of how different measures of affect dynamics relate to each 
other. Two of the most common indices of affect dynamics, which have often been 
contrasted with inertia, are the standard deviation (SD) and the mean squared suc-
cessive difference (MSSD; e.g., Gruber et  al., 2013; Houben et  al., 2015; Koval 
et al., 2013a, b). The SD captures the overall amplitude or range of a person’s affec-
tive fluctuations around their mean and is therefore considered a measure of emo-
tional “variability”–we refer to this as net variability to differentiate it from 
innovation variance discussed earlier.

Put otherwise, net variability (SD) reflects how much a person’s emotions devi-
ate from their affective baseline or equilibrium over a given period of time, regard-
less of the temporal order of emotional fluctuations. In contrast, the MSSD indexes 
the average magnitude of moment-to-moment affective fluctuations and is therefore 
considered a measure of emotional “instability”. High levels of instability (MSSD) 
result from a combination of high net variability (SD) and low inertia (Jahng et al., 
2008). Yet, the relations among inertia, net variability and instability are complex 
and somewhat counterintuitive (Houben et al., 2015).
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To illustrate how these different indices of affect dynamics are related, Fig. 4.1 
shows four simulated time-series based on an AR(1) model with small (ϕ = .3) or 
large (ϕ = .9) AR slopes, and small (σ2 = 1) or large (σ2 = 3) innovation variances. 
The hypothetical profiles of affect dynamics in Fig. 4.1 show that net variability 
(SD) is a function of the AR slope ϕ, representing inertia, and the innovation vari-
ance σ2, representing exposure/reactivity to emotional events. Thus, for two people 
with the same innovation variance (e.g., compare Fig. 4.1 panels B vs. D, both of 
which have σ2 = 3), a person with higher inertia will also have greater net variability 
(Fig. 4.1 panel D: ϕ = .9 and SD = 5.44) than a person with lower inertia (Fig. 4.1 
panel B: ϕ = .3 and SD = 2.96). Similarly, given the same degree of emotional iner-
tia (e.g., compare Fig. 4.1 panels A vs. B, both of which have ϕ = .3), a person with 
a larger innovation variance will also be more emotionally variable (Fig. 4.1 panel 
B: σ2 = 3 and SD = 2.96) than someone with a smaller innovation variance (Fig. 4.1 
panel A: σ2 = 1 and SD = 1). As illustrated in panel D of Fig. 4.1, this implies that 
high net emotional variability (SD) can co-exist with high inertia (AR slope), reflect-
ing a tendency for large but slow changes in affect over time (e.g., Bos et al., 2018; 
Koval et al., 2013a, b; Nelson et al., 2020). Furthermore, panel D of Fig. 4.1 also 
illustrates that, although affective instability (MSSD) increases with higher net vari-
ability (SD) and lower inertia (AR slope), it is also possible for a person’s affect to 
be both highly unstable and highly inert (see Koval et al., 2013a, b; Houben et al., 
2015; Wang et al., 2012). This is because the MSSD is more strongly related to net 
variability than to inertia (see also, Dejonckheere et al., 2019).

These different measures of affect dynamics are often studied in isolation, leading 
to inconsistent conclusions about what constitutes “healthy” emotional functioning. 
Specifically, two main opposing theoretical perspectives exist within the literature, 
each supported by research using different indices of affect dynamics. On one hand, 
emotional stability is often considered essential for healthy functioning (e.g., Gruber 
et al., 2013), supported by evidence that higher net variability (SD) and instability 
(MSSD) are associated with worse well-being (Houben et al., 2015). On the other 
hand, the notion that psychological adjustment relies on emotional flexibility (Kashdan 
& Rottenberg, 2010) is also supported by robust evidence linking higher emotional 
inertia (AR slope) with poor well-being and psychopathology (Houben et al., 2015). 
These views can be reconciled by considering the relations among indices of affect 
dynamics, illustrated above. Specifically, healthy emotional functioning may involve 
affective changes that are neither highly variable, unstable, or inert. Put otherwise, in 
line with Suls and Martin’s (2005) description of the “daily life of the garden variety 
neurotic”, emotional maladjustment may involve a combination of heightened expo-
sure/reactivity to stressful events (i.e., high innovation variance) and the tendency for 
emotions to be persistent across time (i.e., high AR slope or inertia). These two pro-
cesses combine to produce a pattern of affect dynamics involving high inertia, yet also 
high net variability and instability (see Fig. 4.1, panel D).
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4.3 � Empirical Findings

Having reviewed how emotional inertia is quantified and how it relates to other indi-
ces of affect dynamics, we now turn our attention to the rapidly growing body of 
empirical research on emotional inertia. The publication that undoubtedly reignited 
this empirical literature was Kuppens et al. (2010a), which reported that individuals 
with low self-esteem and clinical depression showed heightened inertia of both their 
negative and positive emotions. Since Kuppens et al. (2010a) seminal paper, under-
standing how presumably stable individual differences in emotional inertia relate to 
depression has remained a major focus within the literature. However, emotional iner-
tia has also been studied in relation to (symptoms of) other psychiatric disorders, as 
well as measures of well-being and personality. Finally, a smaller volume of research 
has investigated within-person changes in emotional inertia and explored potential 
causal mechanisms underlying inertia. In what follows, we provide a broad (yet not 
exhaustive) review of research on emotional inertia, focusing especially on research 
published since Houben et al.’s (2015) meta-analysis on the association between affect 
dynamics and psychological well-being.

In their synthesis of 120 effects from dozens of independent studies, Houben 
et al. (2015) found that emotional inertia is reliably negatively correlated with well-
being (r = −.15). Although Houben et al. (2015) reported that associations between 
inertia and well-being differed substantially across studies, most of the potential 
moderators (e.g., age, timescale, use of clinical sample) they examined did not sig-
nificantly explain this variability. One notable exception, however, was emotional 
valence. Specifically, Houben et al. (2015) reported that the inertia of negative affect 
(NA) was almost twice as strongly negatively correlated with well-being as the 
inertia of positive affect (PA). In light of Houben et  al.’s (2015) findings, recent 
research has continued to focus predominantly on NA inertia.

4.3.1 � Depression

Heightened inertia, especially of NA, assessed at a range of timescales has been 
linked with current and future symptoms and/or diagnosis of depression. Specifically, 
greater day-to-day inertia in NA has been associated with depression (Brose et al., 
2015; Hamaker et al., 2018; Jenkins et al., 2020), as has NA inertia assessed at tim-
escales of hours (Gilbert et al., 2019; Mneimne et al., 2018; Nelson et al., 2020; 
Wenze et al., 2009), minutes (Koval et al., 2013a, b, 2016) and seconds (Koval et al., 
2012; Kuppens et al., 2010a, b, 2012). Moreover, in these studies emotions have 
been assessed using self-report methods (e.g., Jenkins et  al., 2020; Koval et  al., 
2016) and observer coding of behavior (e.g., Kuppens et  al., 2012; Koval et  al., 
2012). Thus, several studies measuring affect at different timescales and using vari-
ous assessment methods have produced consistent evidence for an association 
between emotional inertia and depression (Houben et al., 2015). However, as we 
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discuss below, less support for an association between depression and PA inertia 
exists and recent studies have even called into question the robustness of the rela-
tionship between NA inertia and depression.

4.3.1.1 � Inertia of Non-Emotional Processes and Depression

Extending this line of research, two recent studies examined how depression relates 
to inertia of other cognitive/behavioral processes. Bean et al. (2020) examined the 
autoregressive slope of state rumination in daily life and found that individuals with 
higher depressive symptoms showed a higher degree of “ruminative inertia”. 
Similarly, Emler et  al. (2020) showed that severity of depressive symptoms was 
associated with an increased autoregressive slope of spending time alone, termed 
“solitude inertia”. Furthermore, individuals with higher solitude inertia at baseline 
showed increases in depressive symptoms over 8 weeks (cf. Kuppens et al., 2012).

4.3.1.2 � Inconsistent Findings Regarding 
the Depression-Inertia Association

A number of studies have yielded inconsistent findings in relation to the association 
between emotional inertia and depression. For example, Heller et al. (2018), Lamers 
et  al. (2018), and Sperry et  al. (2020) found no differences between clinically 
depressed and healthy individuals in terms of emotional inertia in daily life, repli-
cating Thompson et al.’s (2012) findings. Likewise, Bosley et al. (2019) found no 
reliable association between emotional inertia and depressive symptom severity in 
a heterogenous clinical sample. In contrast to Kuppens et  al., 2010a, b, 2012), 
Ogbaselase et al. (2020) reported no association between depressive symptoms and 
inertia of second-by-second emotional expressions in a sample of community ado-
lescents. Finally, two recent studies showed that although depressive symptoms 
were associated with higher inertia, these associations were substantially dimin-
ished (in some cases no longer meaningfully different from zero) when controlling 
for overlap among inertia with mean and variability (SD) of affect (Bos et al., 2019; 
Houben & Kuppens, 2020). Similarly, in their analyses of 15 daily diary and ESM 
data sets, Dejonckheere et al. (2019) concluded that emotional inertia is not a unique 
predictor of depressive symptoms or diagnosis after controlling for mean levels and 
net variability in PA and NA.

4.3.1.3 � Inertia of PA in Relation to Anhedonia

Although much of the research has focused on the association between NA inertia 
and depression, a few recent studies have investigated how anhedonia (a core symp-
tom of depression involving alterations in PA functioning) is related to PA inertia. 
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Heininga et al. (2019) reported no differences in PA inertia between healthy con-
trols and clinically depressed individuals with anhedonia. This replicated two previ-
ous studies reporting no observable differences in several parameters of PA 
dynamics, including inertia, among depressed individuals with anhedonia (Heininga 
et al., 2017; Van Roekel et al., 2016). Thus, even individuals who purportedly suffer 
from dysregulated positive emotionality do not necessarily show consistent differ-
ences in PA inertia. Finally, some evidence suggests that depression may actually be 
associated with lower PA inertia in daily life (Höhn et al., 2013; see also Jenkins 
et al., 2020, supplemental materials B).

4.3.1.4 � Moderators of the Depression-Inertia Association

Taken together, the above studies suggest that emotional inertia may not be reli-
ably associated with depression, either due to potentially unforeseen moderators 
or because inertia may not uniquely predict depression after accounting for its 
overlap with mean levels and net affective variability (Dejonckheere et al., 2019). 
Since the latter issue was discussed by Dejonckheere et al. (2019), we focus on 
the issue of potential moderators. We speculate that inconsistent findings across 
studies may be driven by differences in the degree to which depression is recur-
rent/persistent versus emerging. Specifically, emotional inertia may be more char-
acteristic of increased vulnerability to future depressive episodes than a feature of 
affect dynamics among the currently depressed. This could explain why height-
ened inertia has been observed in (particularly young) people with elevated sub-
clinical depressive symptoms (e.g., Koval et al., 2013a, b; Hamaker et al., 2018) 
and among adolescents with clinical depression (e.g., Kuppens et al., 2010a, b, 
2012) more so than among currently depressed older adults (e.g., Thompson et al., 
2012; Lamers et al., 2018; see also Hamaker et al., 2018). Arguably, people with 
elevated depressive symptoms who have not (yet) transitioned into clinical depres-
sion and/or young people diagnosed with (possibly their first) episode of depres-
sion are less likely to be persistently depressed than older adults with clinical 
depression. Supporting this view, Bean et al. (2020) found that although rumina-
tive inertia was higher among people with higher depressive symptoms, individu-
als with a higher number of lifetime depressive episodes actually showed lower 
ruminative inertia. This is consistent with the proposal that emotional inertia rep-
resents an “early warning signal” of an imminent transition from a healthy to a 
depressed state, or vice versa (Van de Leemput et al., 2014). This proposal, which 
we discuss in more detail in Sect. 4.6.1 below, derives from a dynamical systems 
perspective on affective functioning. Specifically, conceiving of affect as a 
dynamical system implies that there may be multiple stable states (e.g., “healthy” 
and “depressed”) and that the dynamical properties of affect (e.g., inertia) serve as 
an indicator of the overall stability/fragility of the system; i.e., how likely the 
system is to tip from one stable state into another (Scheffer et al., 2018).

4  Emotional Inertia: On the Conservation of Emotional Momentum



74

4.3.1.5 � Inertia as a Marker of Depression Vulnerability

In line with the above reasoning, and replicating earlier research (Kuppens 
et al., 2010a, b; Suls et al., 1998), several recent studies have linked higher NA 
inertia with well-known depression vulnerability factors, including habitual 
rumination, neuroticism, stress, and low or mood-reactive self-esteem. For 
instance, Brose et  al. (2015) reported a positive association between habitual 
rumination and NA inertia and showed that both uniquely predict depressive 
symptoms, replicating Koval et al.’s (2012) findings. Two other recent studies 
(Koval et al., 2016; Waugh et al., 2017) reported that both PA and NA inertia 
were positively associated with trait rumination and neuroticism. Regarding 
stress, Wang et  al. (2020) showed that individuals reporting higher levels of 
perceived stress had heightened NA inertia in daily life; and De Longis et al. 
(2021) reported that emotional exhaustion in response to daily hassles (a com-
ponent of “burnout”) was positively related to emotional inertia. Across two 
studies, Koval et al. (2016) reported that trait self-esteem was inversely related 
to PA and NA inertia assessed in the lab, conceptually replicating Kuppens et al. 
(2010a) findings. Finally, Clasen et al. (2015) found that inertia of sadness in 
daily life was higher among individuals with more mood-reactive self-esteem, a 
known cognitive risk factor for depression. Thus, taken together, the above stud-
ies provide substantial evidence that a range of vulnerability factors for depres-
sion are associated with heightened emotional inertia.

4.3.2 � Other Forms of Psychopathology

The empirical evidence reviewed above raises the question of whether emotional 
inertia is uniquely associated with increased vulnerability to depression or, rather, is 
a marker of various forms of psychological maladjustment. Supporting the latter 
view, Houben et al. (2015) found that emotional inertia showed similarly strong asso-
ciations with a variety of psychological functioning indicators, including measures of 
negative emotionality, distress and psychopathology, as well as measures of positive 
emotionality, satisfaction with life and eudaimonic well-being. Houben et al.’s (2015) 
findings have been corroborated by other recent studies (e.g., Santagelo et al., 2014, 
2016), suggesting that emotional inertia is probably not uniquely characteristic of any 
specific form of psychopathology or dysfunction, but may instead be an indicator of 
general maladjustment or a transdiagnostic vulnerability factor. However, more recent 
research suggests that emotional inertia may be differentially associated with higher-
order dimensions of psychopathology, such as externalizing and internalizing disor-
ders (Scott et al., 2020). Similarly, heightened inertia of some discrete emotions may 
be characteristic of more specific psychological disorders. For instance, in a study 
comparing participants from three clinical groups with healthy controls, Mneimne 
et al. (2018) reported that greater inertia of shame was specific to borderline personal-
ity disorder, whereas inertia of irritability was higher among all clinical groups 
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relative to controls. Such differences would not be detected in studies examining iner-
tia of broader affective dimensions, such as NA and PA.

4.3.2.1 � Psychosis

Other recent studies have examined emotional inertia in relation to specific symp-
tom clusters within a clinical diagnostic category. For instance, Westermann et al. 
(2017) examined how inertia (operationalized using a so-called attractor strength 
parameter, the  inverse of inertia) correlates with positive and negative psychosis 
symptoms. These authors found that while severity of positive symptoms (e.g., hal-
lucinations, delusions) was associated with higher emotional inertia, the opposite 
was true for negative symptoms (e.g., withdrawal, blunted affect), which showed a 
negative correlation with inertia. Westermann et al. (2017) interpreted these findings 
as suggesting that negative symptoms could stem from over-regulation of emotions, 
which may undermine the adaptive function of emotions and lead to the amotivation 
observed in negative psychotic symptoms.

4.3.2.2 � Borderline Personality Disorder

In relation to BPD, typically characterized by increased instability across multiple 
psychological domains, Ebner-Priemer et al. (2015) examined differences in inertia 
between BPD patients and healthy controls across three studies and found evidence 
that BPD patients show higher inertia, but these results were not consistent across 
data sets or analytic methods (see also Houben & Kuppens, 2020). Relatedly, Bresin 
(2014) compared levels of day-to-day PA and NA inertia in daily life among college 
undergraduates with and without a history of non-suicidal self-injury (NSSI)—a 
relatively prevalent behavior among individuals with BPD— and found no group 
difference in NA inertia but significantly lower PA inertia among the NSSI group.

4.3.2.3 � Post-traumatic Stress Disorder

Emotional inertia has also recently been investigated in relation to symptoms of 
post-traumatic stress disorder (PTSD) and distress tolerance. In a sample of US war 
veterans, Simons et al. (2020) found that individuals with higher distress tolerance 
(a factor associated with enhanced PTSD recovery) showed lower NA inertia in 
daily life.

4.3.2.4 � Eating Disorders

Finally, two recent studies extended emotional inertia into the field of eating disor-
ders. Williams-Kerver et al. (2020) examined PA and NA inertia among participants 
with anorexia nervosa, bulimia nervosa and binge-eating disorder, and found that 
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NA inertia was higher among individuals with bulimia than among those with 
binge-eating, although no healthy control group was included limiting the infer-
ences that can be drawn from this study. Relatedly, Fuller-Tyszmiewicz et al. (2018) 
examined how eating disorder symptoms were related to the inertia of body dissat-
isfaction in daily life, but found no reliable association between either eating disor-
der symptoms or trait body dissatisfaction and body dissatisfaction inertia.

4.3.3 � Personality, Demographics and Other 
Individual Differences

In addition to research describing relations among emotional inertia and indicators 
of psychological functioning and well-being, several recent studies have investi-
gated how other dimensions of individual differences, including personality and 
demographic factors, correlate with emotional inertia.

4.3.3.1 � Big Five Personality Traits

As mentioned earlier, Koval et al. (2016) and Waugh et al. (2017) reported positive 
correlations between neuroticism and emotional inertia, consistent with Suls et al. 
(1998). These findings were corroborated in a study by Pavani et al. (2017) who also 
reported that extraversion correlated with lower NA and PA inertia in daily life, 
consistent with Houben et al.’s (2015) meta-analysis. However, these associations 
have not been consistently observed, particularly in studies where some attempt is 
made to correct for overlap of inertia with mean levels and/or other dynamic indi-
ces. For instance, when controlling for mean and SD of PA and NA, Koval et al. 
(2016) found no reliable associations between extraversion and inertia, and Wendt 
et al. (2020) reported no systematic correlations among any of the Big Five person-
ality dimensions and emotional inertia.

4.3.3.2 � Age

Despite a rich and varied literature on age-related differences in emotional function-
ing (e.g., Charles & Carstensen, 2010), surprisingly few studies have specifically 
examined age differences in emotional inertia. Consistent with research demon-
strating age-related improvements in emotional well-being, Hamaker et al. (2018) 
found that older adults had lower NA inertia but higher PA inertia than younger 
adults in a study assessing day-to-day persistence of self-reported feelings. However, 
these age differences in emotional inertia were not replicated in two recent studies 
by Wang et al. (2020) and Le Vigouroux et al. (2020), both of whom reported no 
age-related differences in emotional inertia.
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4.3.3.3 � Gender

Similar to age differences, there is a dearth of research examining gender differ-
ences in emotional inertia. However, some evidence suggests that gender differ-
ences in inertia may exist or that gender may moderate associations between inertia 
and other outcomes. For instance, gender was found to moderate the association 
between depression and PA inertia, such that PA inertia was higher among depressed 
versus healthy women, but this was not the case for men (Nelson et  al., 2020). 
Simons et al. (2017) found that drinking alcohol led to decreases in NA inertia only 
among women but not men, suggesting that women with heightened inertia may be 
at greater risk of developing alcohol use disorder as their drinking may be rein-
forced by decreasing the persistence of NA.

4.3.3.4 � Relationship Factors

Somers et al. (2020) investigated the association between individual differences in 
attachment style and inertia of daily PA and feelings of emotional closeness among 
mothers of young children. They found that avoidant attachment was associated 
with higher inertia of PA, but with lower inertia of emotional closeness, implying 
that more avoidantly attached mothers showed more persistence in their PA and less 
persistence in their feelings of emotional closeness with their children. These find-
ings are consistent with the characterization of avoidant attachment as reflecting a 
preference for emotional distance and a tendency to minimize negative emotions 
and distress. Relatedly, Dworkin et al. (2019) examined the inertia of expressive 
suppression during interactions among romantic couples and observed that women 
who used suppression more rigidly (i.e., showed greater inertia of suppression) 
showed a stronger negative association between suppression of negative emotion 
and relationship satisfaction.

4.3.3.5 � Emotional Intelligence

Finally, a recent study investigated links between emotional intelligence and inertia. 
Given that emotional intelligence captures individual differences in the ability to 
perceive, understand and manage one’s own and others’ emotions, MacCann et al. 
(2020) argued that it may relate to daily emotion dynamics. Although emotional 
intelligence was related to variability and instability of PA and NA, it showed no 
reliable associations with emotional inertia in daily life, suggesting that emotional 
intelligence is primarily associated with differences in exposure and/or reactivity to 
emotional events rather than differences in the degree to which emotions persist 
over time.
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4.4 � Mechanisms Underlying Emotional Inertia

The studies reviewed above catalogue a variety of links between individual differ-
ences in emotional inertia and various indicators of intrapersonal (e.g., psychopa-
thology, well-being, personality) and interpersonal (e.g., attachment style, 
relationship satisfaction) functioning. However, while they describe the nomologi-
cal network of emotional inertia as a construct, they can only hint at the potential 
causal mechanisms underlying inertia. Next, we turn our attention to the relatively 
small volume of research that has attempted to understand what causes inertia, how 
inertia can change within individuals, and how it can be modified using various 
interventions.

4.4.1 � Genetic Influences

In light of the link between emotional inertia and vulnerability to depression, Van 
Roekel et al. (2018) investigated whether a possible genetic risk factor for depres-
sion may underlie individual differences in inertia. Specifically, these authors exam-
ined the 5-HTTLPR genetic polymorphism in relation to NA inertia and found that 
carriers of the short-allele, which has been associated with impaired functioning of 
neural networks involved in down-regulation of negative emotions (Pezawas et al., 
2005), showed higher NA inertia in daily life. In contrast, a recent twin study 
reported that individual differences in NA inertia contained 0% variation due to 
heritable factors and were instead driven by non-shared (91%) and shared (9%) 
environmental factors (Zheng & Asbury, 2019). Similarly, this study reported that 
only 9% of between-person variation in PA inertia was due to heritable (i.e., genetic) 
factors (Zheng & Asbury, 2019). It is difficult to draw solid conclusions regarding 
the genetic determinants of inertia based on only two studies, which produced 
inconsistent findings. However, it seems unlikely that emotional inertia would have 
no genetic determinants, given that most psychological traits tend to be at least 
moderately heritable (Plomin et al., 2016). Nevertheless, even if genetic factors do 
not substantially explain differences in emotional inertia, other more proximal bio-
logical factors may play a role.

4.4.2 � Physiological Processes

Two recent studies have investigated a more proximal biological mechanism under-
lying emotional inertia, namely peripheral physiological processes. De Longis et al. 
(2020) found that heart rate variability, an indicator of self-regulatory capacity, was 
inversely related with NA inertia  in an organizational setting. However, their analy-
ses were based on just six measurement occasions, which may be insufficient to 
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provide reliable estimates of inertia (Wang et al., 2012). De Longis et al.’s (2020) 
findings contrast with Koval et al. (2013a), who reported no association between 
HRV and either PA or NA inertia in daily life in an undergraduate student sample. 
However, whereas De Longis et al. (2020) obtained ambulatory measures of heart 
rate in daily life over 24 h, Koval et al. (2013a) measured heart rate under resting 
conditions in the lab. This methodological difference may explain the divergent 
findings, as previous research has distinguished heart rate variability at rest from 
changes in heart rate variability following/during emotional events (e.g., Butler 
et  al., 2006; Yaroslavsky et  al., 2013). Nevertheless, with only two studies that 
investigated the link between heart rate variability and inertia of affective experi-
ence, it seems too early to conclude how they are related, especially in the absence 
of a clear mechanism explaining their association.

4.4.3 � Neural Processes

Neural processes represent an even more proximal biological mechanism underly-
ing emotional inertia, which have been investigated in two recent fMRI  studies. 
Waugh et al. (2017) investigated how changes in cerebral blood flow in brain regions 
implicated in the regulation of emotion are associated with emotional inertia in 
daily life. They found that individuals who had greater activation of the lateral pre-
frontal cortex during an emotional task in the scanner (suggesting greater recruit-
ment of emotion-regulatory neural networks) showed lower inertia in daily life. 
Provenzano et al. (2018) conducted a similar study examining how changes in neu-
ral activation during a social feedback task in the scanner correlated with emotional 
inertia in daily life. However, Provenzano et  al. (2018)  identified  different 
brain regions than Waugh et al. (2017) as correlates of NA inertia in daily life. Thus, 
while these two studies do not provide consistent evidence regarding which specific 
brain regions are involved, they support the general rationale of looking for neural 
correlates of emotional inertia, using a combination of functional neuroimaging and 
experience sampling methods.

4.4.4 � Psychological Processes

Finally, at the most proximal level, a number of studies have sought to understand 
the psychological processes underlying emotional inertia. Although it is difficult to 
distinguish emotion generation from emotion regulation (Gross, 2015; Gross & 
Barrett, 2011), a number of studies have sought to determine the extent to which 
each is responsible for driving emotional inertia. For instance, Koval et al. (2015a) 
examined how NA inertia, assessed in response to a standardized sequence of films 
in the lab and naturalistically in daily life, is related to exposure and reactivity to 
emotional events (processes involved in emotion generation), versus emotional 
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recovery following events (presumably driven by emotion regulation processes). 
Across methods and analytic approaches, impaired recovery from negative events 
was the most consistent correlate of NA inertia. In contrast, exposure and reactivity 
to events were not consistently associated with inertia (see also Thompson et al., 
2012). These findings suggest that inertia is driven primarily by emotion-regulating 
rather than emotion-generating processes and can be thought of as a measure of 
regulatory weakness rather than of blunted emotional reactivity (cf. Kuppens 
et al., 2010a).

Consistent with the above reasoning, Iijima et al. (2018) examined how atten-
tional bias (measured using the dot-probe task) correlated with the dynamics of 
anxiety in daily life and found that while attentional bias towards negative stimuli 
was associated with greater anxiety reactivity to daily stressors and greater affective 
instability, it was not related to emotional recovery from stressors or to emotional 
inertia levels. Given that rapid attentional allocation is primarily involved in emo-
tion generation, Iijima et al.’s (2018) findings are consistent with the view that iner-
tia is not primarily about altered (i.e., blunted) reactivity to environmental changes 
or events. Rather, it appears to reflect slower emotional recovery, presumably driven 
by impaired emotion regulation.

More direct evidence for the role of emotion regulation in NA inertia comes 
from Koval et al. (2015b), who reported that habitual and experimentally induced 
expressive suppression was associated with increased inertia of negative emotional 
behaviors, across two studies. Considered together with studies linking emotional 
inertia with habitual rumination (Brose et al., 2015; Koval et al., 2012, 2016), this 
suggests that using normatively ineffective emotion regulation strategies (see e.g., 
Brans et  al., 2013; Webb et  al., 2012) is associated with a tendency for nega-
tive emotions to persist across time. Finally, these findings dovetail with the evi-
dence, reviewed above, that emotional inertia may be related to genetic (van Roekel 
et al., 2018), physiological (De Longis et al., 2020) and neural (Waugh et al., 2017) 
markers of emotion-regulatory capacity. Although the individual findings linking 
heightened NA inertia with various markers of ineffective emotion regulation await 
replication, taken together these diverse findings suggest that emotional inertia may 
be driven by difficulties in  down-regulating or disengaging from negative emo-
tional states.

4.5 � Interventions to Modify Emotional Inertia

If emotional inertia is driven by impaired emotion regulation processes, as we have 
proposed, interventions that improve the efficacy of emotion regulation or facilitate 
emotional disengagement may reduce inertia. Below, we discuss a number of stud-
ies that support this view.
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4.5.1 � Mindfulness

Mindfulness is thought to improve emotion regulation by decreasing cognitive over-
engagement in response to unpleasant emotional experiences (i.e. worry, rumina-
tion) and increasing acceptance of unpleasant experiences (Guendelman et  al., 
2017). As such, a number of recent studies have explored how mindfulness relates 
to emotional inertia and other indices of affect dynamics. In line with the proposal 
that mindfulness is associated with more efficient emotion regulation, Keng and 
Tong (2016) found that individuals with higher dispositional mindfulness scores 
had lower NA inertia in daily life. Rowland et  al. (2020) replicated this finding, 
reporting a negative correlation between dispositional mindfulness and inertia of 
low-arousal NA. Rowland et  al. (2020)  extended upon Keng and Tong’s (2016) 
study by examining whether a 6-week mindfulness intervention could reduce iner-
tia. They reported a decrease in low-arousal NA (sadness/depression) inertia among 
participants randomized to the mindfulness intervention, compared with controls. 
Xu et al. (2015) reported a similar effect of mindfulness training on NA inertia, but 
only among individuals low in trait mindfulness.

However, some evidence suggests that while mindfulness may be associated 
with reduced NA inertia, it may actually predict higher inertia of positive emotions, 
particularly feelings associated with meditative practice such as calmness and com-
passion. For instance, Rowland et al. (2020) reported that state mindfulness was 
associated with greater moment-to-moment persistence in low-arousal PA (i.e., 
feelings of relaxation and satisfaction). Similarly, Tong (2017) found that individu-
als higher on a measure of daily spirituality had higher inertia of transcendental 
positive emotions (e.g., compassion, gratitude), although this was only evident 
when examining day-to-day inertia and  not at a shorter (within-day)  timescale. 
Given that PA inertia is less strongly associated with poor functioning than NA 
inertia (Houben et al., 2015) and a handful of studies have linked higher PA inertia 
with beneficial outcomes (Hohn et al., 2013; Poerio et al., 2016; Scott et al., 2020), 
it may be too early to conclude that emotional inertia, per se, is universally 
maladaptive.

Overall, research on the effects of mindfulness on emotional inertia provides 
preliminary evidence that it may be a promising intervention for reducing NA iner-
tia, but may also increase PA inertia, particularly for low-arousal positive states.

4.5.2 � Exercise and Alcohol

Two other interventions that have been examined in relation to inertia are physical 
exercise and alcohol consumption. Despite their differences, doing  exercise and 
drinking alcohol may both impact emotional inertia by interrupting perseverative 
cognition, such as rumination (Fairbairn & Sayette, 2013; Simons et  al., 2017). 
Regarding exercise, Bernstein et  al. (2019) found that individuals who reported 
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engaging in more physical exercise over seven days had lower levels of anxiety 
inertia in daily life. Similarly, another recent study found that individuals who were 
more physically active (measured using a wrist-worn activity monitor) showed 
lower NA inertia (Wen et al., 2020). While these results are compelling, experimen-
tal evidence of the causal impact of exercise on emotional inertia is still lacking.

In relation to alcohol, Fairbairn and Sayette (2013) used an experimental para-
digm to demonstrate that alcohol consumption decreases PA inertia in a naturalistic 
lab setting. This finding has been replicated recently using an experience sampling 
design and for NA inertia (Simons et  al., 2017), although in the latter study the 
effect of alcohol on inertia was moderated by gender and by habitual rumination. 
Thus, despite its potential to reduce the persistence of emotions, alcohol may be 
more effective in reducing inertia for some individuals than others.

4.6 � Within-Person Changes in Emotional Inertia

Research on emotional inertia, and on affect dynamics more broadly, involves identify-
ing “the trajectories, patterns, and regularities with which emotions... fluctuate across 
time” (Kuppens & Verduyn, 2015, p.  72). Given this explicit concern with tempo-
ral dynamics, it is perhaps ironic that most empirical studies to date have (implicitly) 
assumed that emotional inertia is itself a stable, trait-like characteristic of individuals. 
Put otherwise, researchers have thus far primarily investigated between-person differ-
ences in emotional inertia without considering that inertia may vary within individuals. 
As we have reviewed above, research examining such (presumably) stable individual 
differences in emotional inertia has yielded important insights into how inertia relates to 
psychological functioning and well-being, as well as pointing to potential mechanisms 
underlying between-person differences in inertia. However, the possibility of intraindi-
vidual variation in emotional inertia may moderate such between-person effects has so 
far received far less attention (cf. Koval & Kuppens, 2012; Bringmann et al., 2017).

4.6.1 � Application of Dynamical Systems Theory

Applying the principles of dynamical systems theory, researchers are increasingly 
recognising that both normal and pathological emotional functioning can be charac-
terized as emerging from interactions among affective states and contextual vari-
ables, which constitute elements in a complex system (Lewis, 2005; Loossens et al., 
2020; B. Nelson et al., 2017; Van de Leemput et al., 2014; Wichers et al., 2015; 
Witherington & Crichton, 2007). This perspective assumes that how an individual’s 
affect fluctuates over time, including their level of emotional inertia, can change 
either abruptly (e.g., Cabrieto et al., 2018; Hamaker et al., 2016) or gradually (e.g., 
Bringmann et  al., 2017) across time and/or in different contexts (e.g., Koval & 
Kuppens, 2012).
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4.6.1.1 � Inertia as a Marker of Critical Slowing Down

Indeed, research on critical transitions in complex systems has shown that 
increases in autocorrelation (i.e., inertia) within a dynamical system are an indica-
tor of “critical slowing down”, a phenomenon shown to precede transitions 
between alternate stable states of the system (Scheffer et al., 2009, 2018). A sys-
tem characterized by high levels of autocorrelation, or inertia, can be described as 
low in resilience. In a low-resilience system, recovery from even small perturba-
tions is slow and such perturbations are more likely to knock the system into an 
alternate state, indicating that the system is close to a “tipping point” (Scheffer 
et  al., 2018). Applying this reasoning to the affective system, researchers have 
proposed that increases in emotional inertia may precede transitions between nor-
mal and pathological (e.g., depressed) states, and may therefore represent an early 
warning signal of imminent changes in emotional health (Van de Leemput et al., 
2014). In an influential study, van de Leemput et al. (2014) reported that higher 
emotional inertia predicted an increased likelihood of a future transition into clin-
ical depression  among healthy adults (see also  Kuppens et  al., 2012), but 
that  higher inertia conversely  predicted a greater chance of recov-
ery among depressed individuals (see also Höhn et al., 2013).

However, this study was criticized for not demonstrating within-person changes 
in emotional inertia preceding transitions between healthy and depressed states 
(Bos & de Jonge, 2014). In fact, perhaps the earliest study of emotional inertia, by 
Huba et al. (1976), reported evidence of within-person decreases in emotional iner-
tia among 10 psychiatric inpatients during periods of more severe depression, sug-
gesting that higher inertia may be a signal of imminent recovery among depressed 
individuals. More recent studies have also provided evidence of within-
person  changes in emotional inertia preceding transitions in mental health (e.g., 
Schreuder et  al., 2020; Wichers et  al., 2016, 2020). However, other studies have 
failed to find that inertia represents an early warning signal of transitions in emo-
tional functioning (Slofstra et al., 2018). Moreover, a recent paper calls into ques-
tion whether the phenomenon of critical slowing down (including increases in 
emotional inertia) is reliably associated with critical transitions between alternate 
states within dynamic systems (Dablander et al., 2020).

Thus, although it may be too early to conclude that changes in emotional inertia 
within individuals precede qualitative shifts in their emotional functioning and men-
tal health, this is clearly an important area of growth for the field. To facilitate fur-
ther research on this issue, a number of recent statistical developments enable the 
modelling of within-person changes in emotional inertia across contexts and time 
(e.g., Albers & Bringmann, 2020; Asparouhov et al., 2018; Cabrieto et al., 2018; de 
Haan-Rietdijk et al., 2016), allowing researchers to move beyond the assumption 
that inertia represents a stable dispositional characteristic. Applying these newly 
developed models will be increasingly important to understand not only how emo-
tional inertia changes as a function of various contextual factors, but also how such 
intraindividual shifts in emotional inertia alter its associations with well-being and 
functioning (cf. Koval & Kuppens, 2012).
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4.7 � Open Questions and Future Directions

A great deal has been learned about emotional inertia over the past two decades. Yet, 
many issues remain unresolved, providing fertile ground for further research. We 
conclude our review by briefly discussing what we consider to be the most urgent 
lingering questions regarding emotional inertia and outlining some promising direc-
tions for future research. Many basic questions regarding emotional inertia have not 
yet been conclusively answered. For instance, do physiological, behavioural and 
experiential components of emotion exhibit similar degrees of inertia within and 
between individuals? Are some specific emotions or affective dimensions character-
ized by greater inertia than others? Is inertia of different components or dimensions 
of affect,  measured at different timescales, driven by the same  or different pro-
cesses? How does emotional inertia change over the lifespan and how is it related to 
other developmental processes? Are there cultural and/or gender differences in 
emotional inertia? And so forth. Here, we focus on two substantive questions and 
one methodological question, which we believe are important to advance research 
on emotional inertia.

4.7.1 � Is Emotional Inertia Merely a Surface Phenomenon?

Despite all we have learned about emotional inertia, it remains unclear what it 
actually is, beyond a statistical model parameter (i.e., an AR slope). As reviewed 
above, a number of studies have explored potential causal factors underlying emo-
tional inertia, ranging from genetic factors through peripheral physiology to neural 
activation and other, more basic, psychological processes. Yet, a definitive explana-
tion of what causes or underlies the differences in emotional inertia we observe 
remains elusive. This brings to mind the distinction between descriptive and 
explanatory aspects of personality traits proposed in two prominent theoretical 
accounts of the Big Five (DeYoung, 2015; Fleeson & Jayawickreme, 2015). At a 
descriptive level, emotional inertia represents a propensity for emotions to linger 
or persist across time, reflecting slower recovery from emotional perturbations 
(Cook et al., 1995; Hamaker, 2012; Jongerling et al., 2015; Koval et al., 2015a). 
However, why emotions appear to be self-predictable for some individuals and/or 
in some contexts remains unknown.

We and others have suggested that impairments or dysfunction in emotion regu-
lation processes are at play (e.g., Koval et al., 2015a, b; Suls & Martin, 2005). But 
conclusive evidence supporting this proposal is still lacking. At this stage, we under-
stand emotional inertia predominantly as a descriptive feature of affect dynamics, 
whereas the explanatory component of inertia remains underspecified. Put other-
wise, the basic building blocks underlying emotional inertia are yet to be deter-
mined. Emotional inertia is not unique in this regard: the explanatory mechanisms 
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driving many psychological constructs remain understudied (e.g., Borghi & Fini, 
2019). As such, seeking to understand the processes that cause emotional inertia is 
surely an important direction for future research.

4.7.2 � (When) Is Emotional Inertia Maladaptive?

From the outset, emotional inertia has been conceptualised as an indicator of mal-
adjustment (e.g., Cook et al., 1995; Kuppens et al., 2010a; Suls et al., 1998). Yet, 
evidence that emotional inertia is not necessarily stable, but can vary within indi-
viduals, suggests that the question “is inertia maladaptive?” should be replaced with 
“when is emotional inertia maladaptive?”. And one interesting suggestion, which is 
yet to receive sufficient empirical attention, is that the extent to which emotional 
inertia is maladaptive may depend on emotional  intensity. For instance, Jenkins 
et al. (2020) found that the positive association between NA inertia and depressive 
symptoms decreased at higher mean levels of NA, aligning with Koval and Kuppens’ 
(2012) finding that the relationship between depression and NA inertia reverses 
under stressful conditions. This may be because, among healthy individuals, emo-
tional inertia tends to decrease during more intense episodes of affect/stress, indi-
cating an adaptive increase in regulatory strength or pull-back towards affective 
equilibrium under stress (de Haan-Rietdijk et al., 2016).

We speculate that this tendency for inertia to decrease as a function of emotional 
intensity may be exaggerated in psychologically maladjusted individuals, leading to 
over-regulation during periods of intense affect. This proposal coincides with recent 
evidence of a curvilinear association between emotional inertia and relationship 
quality, such that a moderate level of inertia was associated with optimal relation-
ship functioning (Luginbuehl & Schoebi, 2020). Yet, although the suggestion that 
there may be an optimal level of emotional inertia has intuitive and theoretical 
appeal (cf. Hollenstein et al., 2013), definitive evidence for this proposition has not 
yet been found. Thus, we argue that understanding the circumstances under which 
differing levels of emotional inertia may be more/less (mal)adaptive is crucial to 
developing a comprehensive understanding of affect dynamics.

4.7.3 � Towards a Standard Modelling Approach

Finally, given recent challenges to the reliability of emotional inertia as an index of 
affect dynamics (Wendt et  al., 2020) and its unique predictive validity for well-
being (Dejonckheere et al., 2019), it seems increasingly important to develop con-
sensus on a standard modelling approach for operationalizing the construct of 
emotional inertia. However, several questions regarding how to model emotional 
inertia–which we have discussed in the current review–remain unresolved. For 
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example, which other parameters should be included in AR(1) models used to quan-
tify inertia? Should such models necessarily partition within-person dynamic varia-
tion in affect into predictable (autoregressive) and unpredictable (innovation 
variance) components? Equally, should longer-term trends and/or measurement 
error always be accounted for when modelling inertia? Should continuous or dis-
crete time models be used, and when can they be considered practically equivalent? 
Should researchers always control for covariance between inertia and other affect 
dynamic parameters when examining associations with outcomes of interest? Given 
that PA and NA are, for most individuals, non-independent at the within-person 
level (Dejonckheere et al., 2019), should PA and NA dynamics be modelled simul-
taneously, accounting for their mutual influences? And last, but certainly not least, 
how confident can we be that our statistical models accurately represent the true 
processes driving affect dynamics?

To paraphrase George Box, while all models may be fundamentally wrong, some 
models are more useful than others (Wasserstein, 2010). How do we identify which 
models are most useful for quantifying affect dynamics? A crucial step, often 
skipped by researchers (including, admittedly, ourselves) who rush to investigate 
how affect dynamics correlate with other outcomes, is to determine how well our 
statistical models fit observed emotional time-series data (Butler & Barnard, 2019). 
Thus, we argue that more attention should be given to model fitting, cross-validation 
and comparison.

4.8 � Concluding Remarks

The study of affect dynamics has bloomed over the past couple of decades, as evi-
denced by the diverse contributions to this edited volume. During this time, research 
interest in emotional inertia has continued to gain momentum (pun intended). We 
now know that individuals differ meaningfully in the degree to which their emotions 
persist over time, and such differences correlate reliably with indicators of psycho-
logical functioning and well-being. And yet, the reliability of emotional inertia as an 
individual difference measure and its incremental validity (over-and-above simpler 
features of affect, such as mean levels) for predicting well-being have recently been 
questioned. Evidence that emotional inertia is not exclusively stable/trait-like, but 
can also vary over time within individuals, suggests that identifying when inertia 
reflects emotional dysregulation/dysfunction will require novel approaches to mea-
suring and modeling emotional fluctuations across a variety of contexts. How emo-
tional inertia is statistically operationalized also has important substantive 
implications and therefore selecting the right analytic approach and statistical model 
is crucial. Finally, we believe that the next phase of research on emotional inertia 
should place greater emphasis on identifying the underlying causal mechanisms that 
drive both between- and within-person variation in emotional inertia. We call for 
researchers to move beyond descriptive accounts and strive towards developing an 
explanatory model of emotion dynamics, which seeks to understand the processes 
that cause different patterns of emotional fluctuation over time.
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Chapter 5
A Close Look at the Role of Time in Affect 
Dynamics Research

Gal Lazarus, Jiyoung Song, Christopher M. Crawford, and Aaron J. Fisher

Abstract  Affective experiences and related cognitive and motivational processes 
unfold within individuals over time. Vital information is inherently embedded in the 
time scale, shape, and context of affective processes’ temporal dynamics. Thus, time 
itself may serve as a useful proxy for various underlying causal processes that 
researchers can identify and model. Considering the role(s) of time in theoretical 
conceptualizations and including time-derived variables in statistical models is likely 
to significantly improve the understanding of affect dynamics and their place among 
other dynamic processes. In this chapter, we delineate three sets of factors to be 
addressed in the study of affect-related temporal dynamics: The first set concerns the 
time scale in which the target system’s core processes unfold. The second set con-
cerns the shape of temporal (co)variation within the target system—that is, the trends, 
cycles, and discrete phenomena involved. The third set concerns the sources of 
within-individual variation in the target system across time and context. Although 
many of these themes have already been spelled out in the affect dynamics literature, 
their incorporation into research remains limited. Facing recent concerns regarding 
the robustness of affect dynamics findings and renewed interest in psychological 
theory development, thorough consideration of temporal dynamics becomes crucial.

Keywords  Affect dynamics · Time scales · Cycles · Idiographic methods

5.1 � Introduction

Psycho-behavioral phenomena unfold within individuals over time (e.g., Fisher 
et al., 2018; Hamaker & Wichers, 2017). Accordingly, a basic (implicit or explicit) 
tenet in the theoretical definitions of many psychological constructs and processes 
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is their presence and development within individuals and along time (e.g., Fisher, 
2015; Wright & Zimmermann, 2019). Only in recent years, various strands of 
research have adapted their designs to correspond to this fundamental truth by col-
lecting intensive longitudinal data and modeling them while considering (to various 
degrees) the role of time (for a recent review, see Trull & Ebner-Priemer, 2020). 
Such approaches offer the opportunity to examine psychological processes as they 
unfold in individuals’ daily lives and assess their dynamics.

Dynamic indices quantify the time-dependent (co)variation present within 
repeated measurements of one or more variables. Ideally, specific indices would 
function as operationalizations of well-defined affect-related processes. In the pres-
ent chapter, we first point out that the time-dependency of affect dynamics indices 
creates ambiguity in their interpretation that is often unrecognized. Then, we argue 
that to address this ambiguity, researchers should attend to the distinct time-related 
effects present in their data by considering and modeling the rich information the 
passage of time represents. Subsequently, we specify three sets of time-related fac-
tors that can guide such consideration—the time scale in which the core processes 
of the target system unfold, the shape of temporal (co)variation within the target 
system (e.g., trends, cycles), and the sources of within-individual variation in the 
target system across time or context. We conclude by offering an integrated perspec-
tive of the different sets and emphasizing some practical recommendations vis-à-vis 
the field’s current state.

5.2 � The Role(s) of Time in Affect Dynamics

One field that has benefited significantly from the recent methodological advances 
in data collection and modeling is affective science, in which the study of affect 
dynamics has flourished (e.g., Kuppens, 2015; Kuppens et al., 2010a, b). Various 
indices quantifying the patterns with which emotions or moods (co)vary across time 
have been suggested (e.g., mean square successive differences [MSSD], autoregres-
sion) and found to be associated with indices of psychological well-being (e.g., 
Houben et al., 2015), personality (Erbas et al., 2014), and psychopathology (e.g., 
Trull et al., 2015). Despite the growing interest in affect dynamics and the accumu-
lating findings regarding their correlates, recent work utilizing large and diverse 
samples has shown that specific affect dynamics indices may have little incremental 
validity beyond affect mean and variability in predicting indices of psychological 
well-being (e.g., Dejonckheere et al., 2019), psychopathology (Bos et al., 2019), 
and personality (Wendt et al., 2020).

How can findings demonstrating poor incremental validity of affect dynamics 
indices be reconciled with the strong intuition and sound reasoning that the patterns 
with which individuals’ affect change over time hold unique and important informa-
tion regarding their psychological characteristics? In this chapter, we contend that 
some of the observed limitations in current affect dynamics research stem from 
theoretical ambiguity regarding the underlying data generating processes that give 
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rise to specific affect dynamics. It is often the case that the processes involved in the 
dynamics themselves, including the identity of their components, the relations 
between them, their putative effects, and the ways all these unfold in time, are only 
vaguely defined. Theoretical statements with greater specificity (e.g., regarding the 
emotions involved), quantifiable features, (e.g., the size and the shape of expected 
associations, e.g., Haslbeck et  al., 2019), delineation of circumstances in which 
effects are expected (Fried, 2020; Yarkoni, 2020), and an emphasis on causal infer-
ence may each contribute to the generation of stronger affect dynamics theory. 
Importantly, as we endeavor to uncover causal explanations for individual behavior, 
delineating underlying—likely neurobiologically-derived—sources of variation 
from more reflexive, cognitive-affective responses to external stimuli will help to 
refine and sharpen our theoretical argumentation.

The MSSD, for example, summarizes the average within-person (squared) dif-
ferences between consecutive observations. As applied to the dynamic unfolding of 
negative affect (NA) in daily life, higher levels of these differences are thought to be 
generated by emotion regulation difficulties. Indeed, MSSD in NA has been found 
to be associated with indices of psychological maladjustment (for a meta-analysis, 
see Houben et al., 2015) and is often referred to as emotional or affective instability 
(Trull et al., 2015). However, at least some of these within-person NA successive 
differences are likely generated by flexible adjustments to environmental demands 
and adaptive internal processes.

Identifying the actual data generating processes underlying specific affect 
dynamics indices is likely to require both theoretical deliberation and methodologi-
cal innovation. In the above example, theory-driven contextual factors (e.g., some 
situational features) that may be relevant to the specific population may be intro-
duced to the measurement scheme. Whereas the temptation to measure many con-
textual factors is understandable, researchers are limited in their ability to expand 
the breadth of data collected in each survey to avoid overburdening participants. 
This constraint is especially pressing in the high-measurement-frequency designs 
that are often employed in affect dynamic studies. Hence, thoughtful consideration 
of the most informative and temporally pressing contextual features is essential for 
maximizing the predictive validity of ambulatory data sources.

The temporal unfolding of the data contains rich and essential information, wait-
ing to be examined (e.g., Jebb et al., 2015; van de Maat et al., 2020)—and poten-
tially mined for causal explanations. For instance, although some affective 
fluctuations cannot be predicted by any measured variable and may only be catego-
rized as unexplained instability, other fluctuations may follow a fixed time-related 
pattern (e.g., diurnal), allowing researchers to generate specific time-dependent 
hypotheses about underlying causal processes (such as diurnal variation in cortisol). 
Thus, rather than reflecting volatility in underlying processes, some sources of vari-
ability may represent stable fluctuations that follow consistent daily (approximately 
24-h), ultradian (less than 24-h), or infradian (more than 24-h) patterns. One study, 
which examined fluctuations in daily anxiety, proposed that diurnal variation in 
distress was likely the result of unresponsiveness to environmental contingencies, a 
pattern which improved during successful cognitive-behavioral therapy (e.g., Fisher 
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& Newman, 2016). Though largely semantic, one takeaway from these findings is 
that the variability in these data seemed to reflect emotional rigidity, rather than 
instability.

In general, greater consideration of the role(s) played by time might clarify the 
underlying mechanisms that affect dynamic indices attempt to capture. In analyses 
of human emotion and behavior, time is likely to be an ever-present hidden third 
variable. Because all processes—whether causal, reflexive, or epiphenomenal—
unfold over time, vital information will be inherently embedded in the scale and 
structure of the temporal dynamics of those processes. Thus, time itself may be a 
useful proxy for uncovering and understanding underlying causal processes that are 
yet to be identified or otherwise unmeasured. It follows that including time in our 
theoretical conceptualizations may shed light on the understanding of dynamic pro-
cesses and including it in our statistical models is likely to significantly alter the 
findings and their interpretation. For instance, failure to account for linear trends in 
longitudinal data can artificially inflate correlations between two longitudinally 
measured variables (e.g., Falkenström et al., 2017).

Thorough consideration of the role(s) of time necessitates careful estimation of 
the particular affect-related processes that comprise the target phenomena for a par-
ticular population under particular conditions. Specifically, relying on relevant 
existing theories and prior findings, researchers should consider three sets of deter-
minants. The first set concerns the time scale. How quickly does a given process 
occur? How should measurement paradigms and analyses be calibrated to accom-
modate and accurately reflect the temporal scaling? These decisions are paramount 
for determining the magnitude of (co)variation at varying intervals between con-
secutive measurements within a target system (e.g., Adolf et al., 2021; Dormann & 
Griffin, 2015), informing interpretations of vital phenomena such as autocorrela-
tions and cross-lagged predictions. The second set relates to the shape of temporal 
(co)variation within the target system—that is, the trends, cycles, and discrete phe-
nomena (i.e., dichotomous, present or absent events) that make up the patterns of 
variation in the data. These features can be thought of as the system’s temporal 
structure, the building blocks of (co)variation at various time scales and measure-
ment intervals. Finally, the third set concerns sources of within-individual variation 
in affect dynamics (e.g., Bringmann et al., 2018; Koval & Kuppens, 2012) across 
time or context that may be relevant for the target system. Moreover, these within-
individual processes are likely to result in between-individual variation (i.e., indi-
vidual differences) in affect dynamics. Thus, care should be taken to assess and 
possibly categorize within-individual heterogeneity in affect dynamics.

Importantly, such theoretical clarity, in our view, may benefit both measurement 
and modeling practices in the study of affect dynamics. Measurement practices, for 
example, can be improved by considering the appropriate time scales and frequency 
(e.g., lag length, signal/event trigger), questionnaire instructions (e.g., adjusting the 
frame of reference of the affect item), and/or contextual variables that most accu-
rately represent underlying data generating process. Modeling practices can be 
improved by selecting appropriate statistical frameworks (e.g., regression, network, 
non-linear models), including relevant temporal variables representing trends (e.g., 
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linear) or cycles (e.g., diurnal), and/or estimating time-varying effects. In the fol-
lowing sections, we expand the discussion of the three sets of determinants as 
applied to theory, measurement, and modeling.

5.3 � Time-Related Considerations in Affect 
Dynamics Research

5.3.1 � Choosing the Appropriate Time Scale

Numerous leading affect dynamics researchers have recognized the importance of 
the time scale at which affect is being measured and modeled (e.g., Butler, 2015; 
Hollenstein, 2015; Kuppens, 2015), and similar recognitions have been made for 
other psychological processes studied using intensive longitudinal methods (e.g., 
Boker et  al., 2009; Hamaker & Wichers, 2017; Neubauer & Schmiedek, 2020). 
Indeed, assessing affect hourly, as opposed to daily, for example, would not only 
produce different profiles of change, but also most likely reflect different affective 
processes altogether (Koval et al., 2013).

Surprisingly, extensive meta-analytic work conducted thus far indicates that the 
time scale at which affect dynamics are assessed does not appear to significantly 
moderate observed relationships with psychological well-being indices (Houben 
et al., 2015). As the authors noted, however, the reviewed literature has mostly con-
sisted of studies measuring changes in affect across hours or days, as opposed to 
minutes or seconds. We also must ask ourselves whether the same affect dynamic, 
measured at different time scales, represents the same underlying construct or data 
generating process. For instance, much is made of the contrast between emotion and 
mood, where the former is thought to operate on a faster, contextualized time scale, 
and the latter is thought to be a slower-moving, possibly characterological phenom-
enon. Thus, while similarity in correlations between affect dynamics and other vari-
ables of interest across multiple time scales may indicate some degree of consistency, 
such correlations cannot comment on the nature of the relationship between the 
affect dynamic and the other variable. Assessing the magnitude of the similarity 
between specific affect dynamic indices derived from different time scales may con-
stitute a preliminary step before assessing causal relationships with other constructs.

Clarifying the role of different time scales in the study of affect dynamics (not 
only in relation to other constructs but also within the affective dynamic indices 
themselves) requires empirical investigation and careful theoretical reasoning. In an 
important contribution, Ebner-Priemer and Sawitzki (2007) measured subjective 
distress every 15 min for 24 h and then compared the observed time series to those 
randomly shuffled within each person (i.e., without the sequentially-dependent 
structure) across different time scales. They found that only time series based on 
time scales equal to or shorter than one hour could be distinguished from randomly 
shuffled ones. This pattern was present both for individuals with borderline 
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personality disorder (BPD) and healthy controls. The authors concluded that dis-
tress dynamics derived from time series with intervals longer than one hour are 
likely to altogether ignore the target system’s temporal structure.

The common use of longer than one-hour time scales in affect dynamics research 
may shed light on some recent findings. First, the lack of incremental predictive 
validity of the time-dependent instability indices (Bos et al., 2019; Dejonckheere 
et al., 2019; Wendt et al., 2020) over the time-independent variability indices may 
be explained if the time scale used cannot reflect true temporal unfolding of affect. 
Second, the presence of specificity of affective variability in individuals with BPD, 
but not of affective instability (e.g., Houben et  al., 2020; Mneimne et  al., 2018; 
Santangelo et al., 2016), may similarly reflect the limited ability of the design to 
capture valid time-dependency.

By and large, assessing target processes at time scales larger than those at which 
processes unfold may result in misleading or inaccurate inferences. In the example 
study below, we demonstrate the impact of varying time scales on commonly used 
operationalizations of affective instability and inertia (i.e., autoregression).

5.3.1.1 � Example Study 1

Data for this example study come from Fisher et al. (2017). Participants (N = 80) 
were a mixture of individuals with primary diagnoses of generalized anxiety disor-
der (n = 23), major depressive disorder (n = 11), or both (n = 11), and healthy con-
trols (n = 35). Those with diagnoses were enrolled in an open trial of a personalized 
cognitive-behavioral intervention for mood and anxiety disorders. Before engaging 
in any intervention, all 80 individuals completed 30  days of self-reported EMA 
surveys four times per day. In each survey, participants rated their experience of 
each item over the preceding hours using a 0-100 visual analog slider with the 
anchors “not at all” and “as much as possible” for the 0 and 100 positions, respec-
tively. In the present study, positive affect (PA) was assessed with a single-item 
measure (Song et al., 2021), and NA was calculated by averaging the angry, irrita-
ble, guilty, afraid, down, worried, and hopeless items at each time point.

In the present investigation, we examined seven different time scales: all four 
surveys (4-h intervals), first and third surveys of each day (8-h interval), second and 
fourth surveys of each day (8-h interval), and once a day for each of the four surveys 
(e.g., first survey of each day, second survey of each day, etc.; 24-h interval). We 
calculated affect dynamics intra-daily for the 4-h and 8-h time scales and inter-daily 
for the 24-h time scales. Of the affect dynamics, we chose to examine instability 
(the magnitude of moment-to-moment emotional changes) and inertia (the magni-
tude of moment-to-moment emotional carry-over) because they are time dependent 
and thus most likely to vary across time scales.

Table 5.1 presents the correlations between the instability indices, and Table 5.2 
presents the correlations between the inertia indices.	 Across the seven time scales, 
instability (mean r: 0.77; range: 0.64–0.91) was generally more well correlated than 
inertia (mean r: 0.31; range: −0.03–0.65) for both PA and NA. Still, instability was 
nevertheless dependent on the time scale in which it was measured, with 
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Table 5.1  Correlations of affect instability indices across seven time scales

Time scale 1 2 3 4 5 6 7

1. Four times a day .83 .86 .77 .68 .76 .76
2. First and third surveys each day .91 .78 .76 .73 .68 .80
3. Second and fourth surveys each day .90 .80 .76 .77 .72 .79
4. First survey each day .80 .83 .74 .68 .64 .77
5. Second survey each day .81 .79 .82 .74 .72 .70
6. Third survey each day .83 .87 .78 .69 .75 .71
7. Fourth survey each day .82 .70 .83 .76 .73 .69

Note. Positive affect correlations are below the diagonal, and negative affect correlations are 
above the diagonal

Table 5.2  Correlations of affect inertia indices across seven time scales

Time scale 1 2 3 4 5 6 7

1. Four times a day .53 .54 .34 .43 .36 .34
2. First and third surveys each day .57 .36 .32 .31 .17 .22
3. Second and fourth surveys each day .65 .32 .23 .42 .31 .35
4. First survey each day .17 .35 .20 .37 .39 .31
5. Second survey each day .26 .21 .20 −.03 .26 .18
6. Third survey each day .38 .34 .34 .07 .33 .36
7. Fourth survey each day .37 .24 .29 .17 .15 .30

Note. Positive affect correlations are below the diagonal, and negative affect correlations are above 
the diagonal

overlapping variance ranging from 41 to 83%, leaving anywhere from 17 to 59% of 
the variance unexplained. Thus, changes in emotional experience that unfold over a 
span of an hour versus 4, or 24 h are not likely to reflect the same psychological 
phenomena, and future studies should look to uncover the sources of unexplained 
variance in different constructs across differing time scales.

The inconsistency in inertia values across time scales was salient—on average, 
there was less than 10% of shared variance between two inertia values derived from 
two different time scales. This finding may indicate that the autocorrelation metric 
may reflect different psychological processes as a function of the time scale from 
which it derived (or that it fails to capture any single process reliably). The sensitiv-
ity of the inertia index to the lag-length may explain some of the mixed findings 
regarding inertia’s associations with psychopathology indices, and specifically with 
depression.

Indeed, using second-by-second time-series data collected in the lab, Kuppens 
et al. (2010a, b) found that depressed participants exhibited a higher level of nega-
tive affect inertia than nondepressed participants. Conversely, Thompson et  al. 
(2012) and Bos et  al. (2019) used EMA consisting of 8 and 3 surveys per day, 
respectively, and found no significant association between inertia and depression 
indices. Contrasting these findings further, Brose et al. (2015) did find a significant 
association between inertia derived from daily affect reports and depression symp-
toms, yet their sample eschewed clinical participants. Supporting the notion that 
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time scale matters, Koval et al. (2013) showed in a single sample that higher inertia 
of NA in the lab (based on less than a minute intervals), but not in daily life (based 
on hours intervals), is predictive of depressive symptoms.

There might exist a threshold at which substantive similarity in psychological 
process is preserved across time scales (e.g., Houben et al., 2015). Identifying such 
a threshold is an important scientific endeavor, and until it is established researchers 
may be wise to either oversample—as Ebner-Priemer and Sawitzki (2007) did to 
identify the time scale at which the target psychological process operates—or 
choose a time scale based on a sound, concrete theory or empirical findings that 
offer temporal information about the phenomenon of interest. An important source 
of such information are studies assessing emotion duration (e.g., Kalokerinos et al., 
2017). One such study has shown that 80% of reported emotions return to baseline 
in less than an hour (Verduyn et al., 2009).

5.3.1.2 � Special Consideration for Lag Lengths

The lag lengths used in the analyses of (and indices calculated from) time-series 
data can differ, that is, be longer, than the measurement interval used for data col-
lection. Indeed, different processes measured in an EMA study may unfold in dif-
ferent time scales and require adjusting the lag length accordingly (see Jacobson 
et al. [2019], who recently developed a tool to automate the process of detecting 
optimal lag lengths). Different lag lengths are likely to influence the magnitude (and 
shape) of lagged associations and time-dependent affect dynamics (e.g., Adolf et al., 
2021; Dormann & Griffin, 2015).

Only a few affect dynamics studies to date, however, have empirically examined 
the role of lag length, and most researchers default to a lag-1 structure. Such prac-
tices may be problematic not only because a lag-1 structure may represent different 
time intervals across different studies but also because it disregards individual dif-
ferences in psychological and affective trajectories (Boker et al., 2009). To demon-
strate the presence of such individual differences, in our second example study, we 
examined which lag length produced the maximal inertia values for each individual 
in our PA and NA data.

5.3.1.3 � Example Study 2

The data employed for Example Study 2 were again the 80 participants from Fisher 
et al. (2017). Here we examined seven different lag lengths: 4 h, 8 h, 12 h, and 24 h. 
For the daily (i.e., 24-h interval) lag length, we once again separated the four daily 
surveys to create four separate lag conditions. For each of the 80 participants, we 
computed PA and NA inertia values derived from the seven different lag lengths and 
determined which of them resulted in the maximum autocorrelation. Figures 5.1 
and 5.2 present the distribution of the optimal lag lengths (i.e., the lag with the high-
est autocorrelation) for PA and NA, respectively.
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Fig. 5.1  Optimal Lag Structure for Positive Affect

Fig. 5.2  Optimal Lag Structure for Negative Affect
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As can be seen in Figs. 5.1 and 5.2, for both PA and NA, about 40% of the par-
ticipants’ highest autocorrelation resided within the shortest lag length available in 
our study (i.e., 4 h). This was expected, as the shortest time interval offers the least 
number of opportunities for participants to have experiences that may shift their 
affective states. However, the optimal lag length for the remaining 60% of the par-
ticipants ranged from 8 to 24 h. The observed heterogeneity in optimal lag length 
also included time of day. That is, for the participants whose optimal time lag was 
24 h, there was heterogeneity in which of the four daily surveys produced the largest 
inertia value (morning, midday, evening or nighttime).

For affect dynamics to adequately capture a psychological process of interest, we 
suggest careful, theoretically grounded consideration of the time intervals at which 
such processes operate. Conversely, identifying optimal lag lengths for each indi-
vidual might require more data-driven approaches to adequately describe the tem-
poral pattern unique to each person. Thus, effective utilization of affect dynamics as 
tools to understand psychological processes and mechanisms requires both sound 
theory and data analytic strategies.

5.3.2 � Considering Linear and/or Cyclical Time Effects

The dynamic change of repeatedly measured variables is subject to the influence of 
various factors associated with the passage of time. They often render the time series 
of these variables non-stationary, that is, one with distributional characteristics (e.g., 
mean, variance, autocorrelations) that change across time and/or context (e.g., 
Molenaar & Campbell, 2009). The manifestations of these factors can be divided into 
two general groups: trends and cycles. Trends reflect relatively macroscopic shifts in 
a variable’s mean over the measurement period. Conversely, cycles reflect more gran-
ular temporal processes that rise and fall in likelihood at 12-h, 24-h, weekly, monthly, 
and/or seasonal frequencies. Researchers can model these patterns and assess their 
impact by creating variables that reflect the wide range of temporal dynamics, includ-
ing trends, cycles, and regular intervals (e.g., time of day). In this section, we discuss 
the relevance of different types of trends and cycles for affect dynamics research. 
Specifically, we posit that ignoring such patterns may result in misinterpreting the 
meaning (i.e., the underlying data generating processes) of affect dynamics indices.

Trends are familiar among researchers employing intensive longitudinal methods. 
The most commonly examined trend is linear, capturing stable directional changes in 
a time series. There are occasions when a time series exhibits higher-degree polyno-
mial trends indicating that its values tend to rise or fall at a rate that is not constant. 
For example, a quadratic trend suggests that the rate of change decreases or increases 
over the measured time period and may also account for changes in the slope’s direc-
tion (e.g., initial increase followed by a decrease). Higher-level polynomials (e.g., 
cubic) allow for more complex patterns of change (Jebb et al., 2015).

EMA-based affect dynamics studies typically involve a week to month-long time 
series, which are likely to contain time trends. Such trends may be caused by exter-
nal events that are emotionally significant to participants. For example, an 
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impending exam—a common event among undergraduate samples used in affect 
dynamics research—will likely induce an increase in anxiety levels until the test, 
which may then gradually dissipate following the test. Depending on the specific 
place the exam takes along the time series, different trends may emerge. Notably, 
also lab-based affect time series may contain trends which are often caused by situ-
ational demands (e.g., high arousal at the beginning of a videotaped interaction that 
wears off with the passage of time).

The presence of time trends may increase correlation-based intrapersonal affect 
dynamics indices such as inertia, possibly confounding two data generating pro-
cesses: the extent to which an emotion is resistant to a change (i.e., “true” inertia), 
and the increasing or decreasing effect of an external event. Similarly, in the case of 
interpersonal affect dynamics, synchrony measures will be strongly affected when 
both persons’ data series share a similar time trend (e.g., due to shared event or 
context). Here, too, an association between the two time series will not be solely the 
product of affective processes often considered to underlie such associations (e.g., 
transmission or similar affective reactions to immediate contextual factors).

Whereas linear time trends are often considered in affect dynamics studies (e.g., 
Butler, 2011; Trull et al., 2015), cyclical effects are typically ignored (despite high 
quality work stressing their importance, c.f. Larsen, 1987; Hamaker & Wichers, 2017; 
Ram et al., 2005; van de Maat et al., 2020). These effects may stem from various 
sources and manifest across a wide range of time scales. Diurnal patterns have received 
the most attention, and research examining the temporal patterning of affect in daily 
life has observed robust daily periodicities. PA, for example, has been found to follow 
a diurnal pattern, increasing from morning to early afternoon and falling in the eve-
ning (Golder & Macy, 2011; Clark et al., 1989). Conversely, NA was found to decrease 
during the morning hours and increase throughout the remainder of the day (Golder & 
Macy, 2011). Furthermore, work assessing relations between affect dynamics and cir-
cadian rhythms has demonstrated that a significant amount of within-day variance in 
PA can be explained by a 24-h sinusoid, with greater effect sizes observed in condi-
tions characterized by constant and controlled sleep cycles (Murray et  al., 2009). 
These diurnal patterns may be driven by both exogenous contextual factors (e.g., Beal 
& Ghandour, 2011) and endogenous psychophysiological ones (e.g., Adam et  al., 
2017). Notably, the ability to identify cycles depends on the duration of the data col-
lection period and should be a part of the factors considered in the study design.

Importantly, cyclic affective patterns are not limited to the daily time scale. 
Indeed, there is evidence for weekly affective cycles (e.g., Beal & Ghandour, 2011; 
Liu & West, 2016), which may stem from factors such as the structure of the work 
week (e.g., with greater stress during the weekdays). Additionally, monthly affec-
tive patterns have been observed and were found to be associated with menstrual 
cycles (Farage et al., 2008; though see Hengartner et al., 2017) and lunar tidal cycles 
(Wehr, 2018). This corpus of work suggests that despite the conceptualization of 
affect as being constantly modulated by relatively stochastic internal and external 
events, stable patterns of variation are common.

Figure 5.3 provides a visual illustration of simulated time-related effects on a 
single participant’s time series data. As can be seen in the figure, despite their 
strength (vs. the random deviations from the mean), these effects are not easily 
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Fig. 5.3  A visual illustration of time-related effects on a single participant’s time series data. The 
original time series (black) was derived from random normally distributed data [Mean  =  50, 
Standard deviation (SD) = 5] and is time-independent. Each of the panels shows the original time 
series, an additional time series modified by time-related effects (cycle, event, and trend), and a 
representation of the modifiers (red, brown, and green). The upper panel’s time series was modified 
by a 12 h cycle with an effect size equal to one SD. The central panel’s time series was modified 
by the same cyclic effect and a single daily event effect (at 16:00 each day) with an effect size equal 
to two SDs. The lower panel’s time series was modified by the same cyclic and event-related 
effects, as well as by a linear trend with an effect size equal to approximately two SDs
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Fig. 5.4  Demonstration of negative affect levels fluctuating along the first part of two consecutive 
days and the corresponding absolute differences in negative affect at lags of 1 observation (lower 
∆’s) and 5 observations (uppermost ∆)

recognizable by the naked eye. This visualization demonstrates the importance of 
making the modeling of time-related effects an integral part of any affect dynamics 
exploration.

Cyclical patterns may play a similar confounding role to the trends described 
above when examining correlation-based indices. Importantly, they may have an 
additional substantive impact on understanding differences-based indices (e.g., 
MSSD) that are used as operationalizations for affective instability. These indices 
ignore the broader temporal structure of the construct that they purport to describe. 
Specifically, the MSSD—representing the average magnitude in observation-to-
observation fluctuations over time—does not assess the degree to which variations 
in affect represent stable, repeating patterns.

Consider the following example: a high school student experiences an increase 
in NA while waiting in the cold for the bus. This NA quickly subsides, however, as 
the student reunites with their friends before class. Their NA levels continue to rise 
and fall over the course of the day as they engage with unpleasant (e.g., speaking in 
front of the class) and pleasant (e.g., eating lunch with friends) stimuli, and these 
fluctuations persist from day-to-day and week-to-week. A visual representation of 
these fluctuations in NA can be seen in Fig. 5.4. As operationalized by the MSSD, 
this time series would be characterized as unstable, but this quantification obscures 
the fact that these fluctuations are stable at the between-day level.

Research by Fisher and Newman (2016) has demonstrated the importance of 
considering such cyclical patterning in the context of a therapeutic intervention for 
individuals diagnosed with generalized anxiety disorder (GAD). The authors 
hypothesized that since for individuals with GAD, the feared outcomes in worry 
episodes may be invoked regardless of external context, they may become entrained 
to fixed patterns of anxiety on a day-to-day basis. Indeed, using spectral analysis 
(Scargle, 1982) and spectral power to determine the degree to which variation in 
daily anxiety symptoms was related to the presence of sinusoids in the data, Fisher 
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and Newman found that the observed diurnal rigidity—the degree to which anxious 
distress was dictated by 24-h periodic patterns—decreased throughout the therapeu-
tic intervention, and the degree to which rigidity was reduced was associated with 
reliable change post-treatment. Moreover, this reduction in periodicity predicted 
reliable change post-treatment even when controlling for change in MSSD (which 
did not significantly predict the treatment outcome). The implication of these find-
ings is straightforward: when variability in a construct of interest over time is best 
characterized by stable, cyclical patterns (e.g., a sinusoid), the use of the MSSD as 
an operationalization of instability may provide misleading results.

This example illustrates a crucial point—the reason for modeling the effects of 
time is not necessarily only to statistically adjust for them (using methods such as 
detrending). In cases where the dynamics of interest do not form stationary fluctua-
tions but a trend or a cycle, detrending will result in throwing out the baby with the 
bathwater (e.g., Wang & Maxwell, 2015). For instance, Butler and Randall (2013) 
describe interpersonal morphogenic processes (e.g., mutual arousal modulation 
towards optimal bounds), which are trend-driven interpersonal affect dynamics. 
Hence, researchers should consider the meaning of trends and cycles on a case-by-
case basis.

5.3.3 � Modeling Within-Individual Variability 
in Affect Dynamics

As noted above, affect and affect-related processes are often non-stationary. Hence, 
affect dynamics themselves can, and often do, vary not only between but also within 
individuals (e.g., Albers & Bringmann, 2020; Bringmann et al., 2017). For example, 
both affect polarity (Dejonckheere et  al., 2021) and affect differentiation (Erbas 
et  al., 2018) were found to change as a function of stress. Importantly, on some 
occasions, such changes may be a central outcome variable. For example, Van der 
Gucht et  al. (2019) showed that affect differentiation increased following a 
mindfulness-based intervention.

Exploring changes in affect dynamics is possible with or without pre-existing 
expectation or knowledge regarding the nature of change and/or its timing. In cases 
where the timing of changes is expected, such as following an intervention (Van der 
Gucht et al., 2019), separate affect dynamics indices can be calculated for different 
sections of the individual’s data. Additionally, contextual variability in an individu-
als’ time-series (e.g., daily stress) can be tested as a predictor of local affect dynam-
ics indices (e.g., Dejonckheere et al., 2021; Erbas et al., 2018). In cases where the 
timing of changes or their predictors are unknown, data-driven statistical methods 
can be used to detect both gradual (e.g., Bringmann et al., 2017, 2018) and abrupt 
(e.g., Albers & Bringmann, 2020; Cabrieto et al., 2018) changes in the time series.

The presence of within-individual variation in affect dynamics brings about 
interesting research directions. First, modeling affect dynamics indices as within-
individual predictors or outcomes corresponds more closely to the psychological 
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theories that conceptualize psychological processes as unfolding within individuals 
over time (c.f. Molenaar & Campbell, 2009). This approach can add an explanatory 
process-focus layer to a field that has been largely focused on descriptive individual 
differences. For example, lower differentiation between negative emotions is 
thought to lead to greater psychological distress (Pascual-Leone & Greenberg, 
2007). Considering emotion differentiation (ED) as a trait or stable ability and mea-
suring its association with distress indices is informative and useful but tells us very 
little about the way ED works in the within-individual level (Fisher et al., 2018). 
Examining the effects of within-individual ED (Erbas et al., 2021) allows for a bet-
ter assessment of the dynamic processes involved and hence for a more direct theory 
testing and development (e.g., Haslbeck et al., 2019).

Relatedly, the recognition that affect dynamics themselves change across time as 
a function of contextual factors invites examining them under different conditions. 
In light of recent findings regarding the limited incremental predictive validity of 
affect dynamics, the field may likely benefit from identifying the exact conditions 
under which they may exert more robust effects (Dejonckheere et al., 2020; Lapate 
& Heller, 2020). Notably, when the focus is on specific conditions, researchers may 
want to trade the goal of obtaining a representative yet sparse assessment of the 
entire day for a focused and more frequent assessment in the time of interest. 
Furthermore, researchers can estimate dynamics that are derived from affect data 
collected in specific contexts in which affect plays a particularly central role (e.g., 
psychotherapy sessions—Galili-Weinstock et  al., 2020; Lazarus et  al., 2019). 
Altogether, a contextualized, systems-related perspective on affect dynamics places 
these metrics within their intended domain of dynamic, time-dependent emotional 
functions.

Lastly, the presence of within-individual variation in affect dynamics calls for 
employing an idiographic approach (e.g., Fisher et al., 2017; Molenaar & Campbell, 
2009; Wright & Zimmermann, 2019) and invokes the question regarding the extent 
to which the associations between these dynamic indices and other constructs gen-
eralize from the between-individual level to the within-individuals level (i.e., the 
extent to which the associations are ergodic; Fisher et al., 2018; Molenaar, 2004). 
Importantly, the inferences drawn at one level may differ from an inference drawn 
at another level. For example, at the between-individual level, individuals who dem-
onstrate greater fluctuations in affect are thought to have poorer regulation skills and 
lower psychological well-being (e.g., Houben et al., 2015). However, at the within-
individual level, are greater periodic emotional fluctuations indicative of lower or 
less effective regulation? It is entirely possible that momentary increases in emotion 
fluctuation could represent spikes in negative affect followed by subsequent suc-
cessful down-regulation—a sequence which could look like instability without 
appropriate contextualization. The answers to such questions are likely to be quite 
complex. We may expect a considerable variation in the magnitude (e.g., Fisher 
et al., 2018) and the shape of the intraindividual associations which may warrant 
within-person data analysis and render generalizations hard to attain.

Despite the major challenges posed by idiographic modeling of affect dynamics, 
it likely holds great promise. Clinicians have expressed interest in the potential of 
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employing an idiographic approach in assessment and intervention planning (Fisher, 
2015; Piccirillo & Rodebaugh, 2019; Wright & Woods, 2020). Affect and affect-
related constructs play a central role in such clinical efforts, though these efforts 
often employ novel modeling techniques at the expense of the traditional affect 
dynamics indices (Fisher et al., 2019; Fisher & Bosley, 2020). Indeed, the shift from 
assessing between-individual differences in a set of fixed indices to identifying 
person-specific clinically significant affective patterns calls for the creation of per-
sonalized indices that comprise personalized arrangements of items.

5.4 � Concluding Thoughts

Time is the medium through which affective experiences and related processes 
unfold. It encapsulates the effects of myriad unmeasured variables. In this chapter, 
we illustrated how a thoughtful consideration of time-related patterns could enrich 
the conceptualization, measurement, and modeling of affect dynamics. To do so, we 
delineated three sets of determinants to be addressed: the first pertains to the tempo-
ral scaling of the studied phenomena, that is, the time scales suitable to capture and 
model the phenomena; the second pertains to the structure, the shapes of the (co)
variation in the data source. These relate to the trends, cycles, autoregression, and 
cross-predictions embedded in the data. The third pertains to the within-individual 
variation across time in the studied phenomena. We simply expect people to differ 
in any and all ways, including those pertaining to the temporal scale and structure 
of their affective experience.

Notably, these different sets should be considered in tandem. For example, dif-
ferent trends and cycles may be more prominent at different time scales. Furthermore, 
there is likely to be not only between-individual variability in the optimal time lag 
(as we show in Example Study 2) but also within-individual variability. Similarly, 
the strength of specific trends or cycles is also likely to vary within individuals. For 
example, affective diurnal cycles were shown to change as a function of psychologi-
cal interventions (Fisher & Newman, 2016).

Including a thorough evaluation of the role of time in our array of considerations 
when studying dynamic processes may seem to bring with it an unwieldy range of 
measurement and modeling options. Ideally, decisions in these matters would be 
guided by fine-grained theories relevant to the phenomena of interest. Unfortunately, 
current psychological theories are often not specific or accurate enough to provide 
such guidance. Typically, such theories remain silent about the magnitude, shape, 
and direction of associations, or the time scales and contextual conditions under 
which they are likely to appear (Fried, 2020).

In a series of recently published papers, leading theorists and methodologists 
have identified a “theory crisis” in psychological science (e.g., Borsboom et  al., 
2021; Eronen & Bringmann, 2021; Fried, 2020). These authors contend that the 
field suffers from a lack of proper theory construction and testing procedures and 
that most psychological theories are weak in their accuracy and testability. We 
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believe that a rigorous exploration of time-related processes of the sort we describe 
here can contribute to constructing stronger and more cumulative theories in psy-
chological science.

Notably, an essential part of constructing a stronger affect dynamics theory is 
contextualizing them in a manner that allows drawing causal inferences. We must 
ask whether affect dynamics are themselves derived from underlying causal sys-
tems, or whether they are reflective of adaptive or maladaptive responses to environ-
mental demands. For instance, current theory regarding the MSSD statistic posits 
that the absolute value of changes in affect from moment to moment represents the 
stability versus volatility in the selected affect measure. What remains to be under-
stood is whether this volatility is reflective of lability in neurobiological emotion-
generating processes, whether it reflects anxiogenic, depressogenic, or generally 
dysphoric schemata that amplify innocuous or ambiguous stimuli, or whether it 
reflects relatively adaptive responses to shifting environmental demands. Delineating 
these influences moves the MSSD beyond descriptive or statistical utility into a 
potentially causal role.

To increase our chances of constructing strong affect dynamics theories that 
involve causal explanations and accurate prediction, we may need to revise some of 
our methods. Though this chapter did not focus on describing specific methods, it 
does have some broad methodological implications. First and foremost, modeling 
trends and cycles in affect dynamics research is crucial for accurate interpretation of 
their meaning. Importantly, adjusting for such trends or cycles (for example, by 
using detrending) should not be done automatically since in some cases their pres-
ence is at the core of the phenomena of interest (e.g., Butler & Randall, 2013; Fisher 
& Newman, 2016). Additionally, the value in considering cycles is not limited to 
covariance-based dynamic indices (e.g., inertia, synchrony) but extends to 
difference-based indices (e.g., MSSD).

Second, adjusting the measurement frequency to the putative data generating 
processes of the target system may improve researchers’ ability to accurately model 
them (e.g., Ebner-Priemer et al., 2007; Haslbeck et al., 2019). In the case of affect 
dynamics, that would usually mean using relatively high-frequency measurements 
(e.g., Verduyn et al., 2009). Recent findings support the feasibility of such designs 
as they indicate that increased sampling frequency is not tied with greater partici-
pant burden (but surveys’ length does—Eisele et al., 2020). Third, measuring con-
textual variables is essential to improve our understanding of how and why affect 
changes across time, and particularly to make possible the examination of within-
individual variation in affect dynamics.

Many of the themes described in this chapter have been pointed out before. The 
importance of time scale (e.g., Dormann & Griffin, 2015; Ebner-Priemer et  al., 
2007), linear or cyclical effects (Hamaker & Wichers, 2017; van de Maat et  al., 
2020), and within-individual variation (Dejonckheere et  al., 2021; Erbas et  al., 
2018) has been acknowledged. To date, however, their incorporation into actual 
research efforts, whether in theory or study design, has remained rather limited. The 
current timing provides a unique opportunity for change—recent indications regard-
ing the limited incremental predictive validity of affect dynamics indices (Bos et al., 
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2019; Dejonckheere et al., 2019; Wendt et al., 2020) and the growing attention to 
psychological theory development (e.g., Borsboom et  al., 2021; Eronen & 
Bringmann, 2021; Fried, 2020), may be seen as an invitation to finally taking tem-
poral dynamics seriously.
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Chapter 6
Affect Dynamics and Time Scales: Pictures 
of Movies

Tom Hollenstein 

Abstract  The study of affect dynamics is very much like trying to infer the movies 
of people’s emotional lives from random photographs or brief clips. In this chapter, 
I consider the domain of variability of affect in terms of the dynamics of change 
inferred from sequences of observations. Specifically, through consideration of time 
scales, I offer a challenge to some of the interpretive lenses that have been applied 
to affective variability data as attempts to describe movies from clips and/or photo-
graphs. I first consider the limitations of real-time dynamics and then grapple with 
the longer timescale of affect dynamics examined through experience sampling 
methods, as these have come under the most scrutiny in the past few years. The 
conclusion includes recommendations as to how to proceed with research in this 
domain with these inferential limitations in mind.

6.1  Introduction

Imagine that instead of seeing the full movie of Star Wars for the first time that you 
saw only a 2-min scene or a random handful of pictures. Perhaps the clip was only 
of C3PO and R2D2 lost in the desert; from that you might infer that Star Wars was 
an android buddy movie. Alternatively, your handful of still pictures might only 
consist of scenes of Luke and Leia alone and with each other, from which you may 
conclude that this was a sci-fi romance movie. Of course, you might only get pic-
tures of spaceships firing lasers at each other and conclude this was an adaptation of 
a video game. Even with a smattering of androids, young romance, and sci-fi action 
clips or photos, it would be difficult to infer the plot and quality of the movie with-
out the continuous flow, narrative arc, and most importantly the variability across 
the sequence of scenes. When we are trying to understand the movies that are the 
continuous stream of peoples’ emotional lives, their moment-to-moment existence, 
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we can run into the same problems: limited sampling over time and a lack of tem-
poral adjacency that limit interpretations.

In this chapter, I consider the domain of variability of affect in terms of the 
dynamics of change inferred from sequences of observations. Specifically, through 
consideration of time scales, I offer a challenge to some of the interpretive lenses 
that have been applied to affective variability data as attempts to describe movies 
from clips and/or photographs. I will begin by considering the limitations of real-
time dynamics. Then, I will grapple with the longer timescale of affect dynamics 
examined through experience sampling methods, as these have come under the most 
scrutiny in the past few years. I will ultimately conclude with recommendations as 
to how to proceed with research in this domain.

6.2 � Real Time

The advent of accessible video technology in the 1970s and 1980s led to a flurry of 
observational studies of emotions in naturalistic contexts. Developmental scientists in 
particular have relied heavily on observational coding from video, although this has 
also been a mainstay for most dyadic interaction research (e.g., Gottman et al., 1995). 
From this, many emotional processes across the lifespan have been catalogued to 
become the basis of developmental and social theories such as Attachment Theory 
(Ainsworth, 1978) and Coercion Theory (Patterson, 2016), as well as non-developmental 
approaches including mathematical theories of marriage (Gottman et al., 2005) and 
Temporal Interpersonal Emotion Systems (Butler, 2011; Lougheed, 2020). In all, the 
theorized mechanisms underlying the formation of behavioral tendencies or relation-
ship patterns are moment-to-moment processes. Deemed real-time dynamics, these 
mechanisms shape biological and behavioral adaptations, increasing the probability 
that some patterns will recur in the future and others will dissipate (Granic et al., 2016; 
Hollenstein, 2015; Lavelli & Fogel, 2013; Lewis, 2011; Lougheed, 2020; Witherington 
& Boom, 2019). However, mapping these theoretical claims to observed behavior, par-
ticularly affective processes, has been a daunting empirical challenge of the past sev-
eral decades (Granic & Hollenstein, 2003; Lougheed & Hollenstein, 2018).

To bridge this theory-method gulf, one dominant approach has been to record 
real-time emotional expressions via observational coding systems such as the Facial 
Affect Coding System (FACS; Ekman & Friesen, 1978), the Specific Affect Coding 
System and variants (Gottman et  al., 1995; Granic et  al., 2007; Lougheed & 
Hollenstein, 2014), or Living in Family Environments coding system (LIFE; Hops 
et al., 1995). While these approaches were originally developed to capture the con-
tent of observable affect (e.g., frequencies of anger expressions), they have also 
afforded examinations of the structure (i.e., dynamic patterns) within these time 
series (Granic & Hollenstein, 2003). To briefly summarize, two of these approaches 
have converged on similar dynamic characteristics that reflect the ability to move in 
and out of affective states. Consistent with the persistence of negative emotions seen 
in certain clinical disorders (e.g., Kashdan & Rottenberg, 2010), individual’s rela-
tive inertia (e.g., autocorrelation) of affective states has been associated with 
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depression (Kuppens et al., 2010, 2012). Using a dynamic systems conceptualiza-
tion, a second approach has shown that dyadic rigidity (e.g., fewer transitions among 
states, restricted range of states) is associated with anxiety, depression, and exter-
nalizing problems (e.g., Granic et al., 2007; Lougheed & Hollenstein, 2016; van der 
Giessen et al., 2015; van der Giessen & Bögels, 2018). Thus, changing in and out of 
affective states moment-to-moment during quasi-natural emotional situations 
appears to be a hallmark of adaptive functioning (Hollenstein, 2015).

Nonetheless, real-time approaches rely on several assumptions and methodolog-
ical pragmatics that limit the interpretations that may be warranted. First, often for 
very important ethical reasons, these methods elicit emotions in a somewhat con-
trived fashion. With real-time designs, participants are instructed to think about or 
discuss problems or emotions. For example, dyads in close relationships are often 
asked to identify the topics they are most likely to fight about, which then becomes 
the topic that experimenters ask them discuss later in front of the cameras. While 
this increases the probability that participants will become emotionally engaged, 
these interactions may lack sufficient intensity and/or the spontaneous rise and fall 
of emotion that we wish to infer. Moreover, this may be most problematic in norma-
tive or convenience samples with participants who are not particularly prone to 
particularly intense emotions or expression. Thus, some of the variance detected by 
restricted range, few transitions, and high autocorrelations may not be due to the 
putative processes of dysfunction but the ethical constraints of the methodology.

Second, for pragmatic reasons, these snapshots of naturalistic occurrences of 
affect dynamics are brief, lasting no more than 10–20 min at most. Between-subject 
differences are interpreted as evidence of what the other 23+ h of the day might be 
like. Despite some of the categorization accuracy proclaimed by a “thin slice” 
approach (i.e., identification of diagnostic status via brief clips or phots; see Slepian 
et al., 2014), the deeper inference about affective dynamics that we wish to make is 
that these captured moments are consistent with participants’ real world experi-
ences, that they reflect the ongoing processes which explain individual differences. 
Thus, framed within this chapter’s movie metaphor, these real-time observations are 
akin to seeing a brief clip of a 2-h movie. Did we capture the cantina scene, death of 
Obi Wan, or Luke home with his Aunt and Uncle? Was that 5-min discussion indica-
tive of how these individuals typical express their emotions?

The first two issues are related to the third issue. Most often affect dynamics are 
compared between typical and atypical groups, rarely across a full spectrum. As a 
result, affective variation in typical samples may be quite compressed compared to 
atypical samples with extreme emotional dysregulation. It is difficult to disentangle 
whether these differences are due to a relative ease in which emotions are elicited in 
the lab, rather than the dynamic patterns themselves. Thus, if we only take a snap-
shot, we are more likely to capture emotional intensity in extreme groups.

Fourth, one-time observations may reflect variability due to the novelty of the 
contrived emotion-eliciting situation. Indeed, it is rare for research studies to be able 
to afford a warm up or practice session. When they do, as with longitudinal studies, 
there can be differences across sessions. However, it is unclear whether longitudinal 
change is always due to time, development, etiology, etc. or occasion-specific error. 
It is rare to have identical real-time observations occur within a short time span 
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(e.g., two 1 h observation sessions within a week or two), but when they do, the 
results indicate a need to consider the reliability of our inferences. For example, 
there is a phenomenon noted in parent-child interaction research called the “first 
session effect” (Snyder & Stoolmiller, 2002). When trying to capture dynamics 
related to parenting across a wide range of dyads, high functioning dyads tend to be 
more emotionally restrained during the first lab visit than on subsequent occasions 
(Snyder et al., 2003). Further, test-retest reliabilities of affect dynamics tend to be 
good but relatively modest (e.g., around r = .5; Hollenstein et al., 2004). Thus, one-
time snapshots may underestimate affective dynamics that occur in real life.

Finally, the reliance on the dyad can be an inference problem for several reasons. 
While reasonably justified by systems-oriented theory and/or the fact that emotions 
typically arise in a social or relational context (Butler, 2011), what we observe in a 
specific dyad may be specific to that dyad. This is especially concerning when, in vir-
tually every study, the associations, predictions, or explanations are about an individ-
ual dyad member’s functioning or well-being. One approach has been to depict the 
dynamics of an individual, ignoring the dynamic contribution by other interaction part-
ners, to predict or to differentiate by outcomes (e.g., Kuppens et al., 2010). In my own 
line of research, we have framed the dynamics we observe as characteristic of the 
dyadic system (Granic & Hollenstein, 2003, 2006; Hollenstein, 2012). Yet, with rare 
exceptions (e.g., predicting relationship quality; Lougheed & Hollenstein, 2016), we 
have analyzed dyadic flexibility in relation to each individual’s mental health symp-
toms (e.g., Hollenstein et al., 2004; Lougheed & Hollenstein, 2016; van der Giessen 
et al., 2015). To complicate matters further, when we have examined individual versus 
dyadic dynamics, the dyadic indices have been stronger predictors of subsequent men-
tal health of each dyad member than their individual flexibility indices (van der Giessen 
et al., 2015). Thus, we are caught in a vicious circle of methodology. In order to cap-
ture real-time dynamics, interactions with others are the best source for tapping into 
the temporal flow; yet the patterns that emerge depend a great deal on which interac-
tion partner (e.g., their history, power dynamic, etc.) and the nature and timing of the 
task (e.g., is this a new conflict or an old one). To whom and to what can we generalize?

Taken together, the problems and limitations identified here are the result of care-
fully considered research decisions, constrained by ethics, resources, and pragmat-
ics. Nonetheless, they present a critical ceiling on the scope of our inferences and 
generalizability of findings. On the one hand, these real-time approaches allow for 
true dynamic analysis of moment-to-moment transitions. The range of analytical 
techniques applied to these data grows every year (e.g., Lougheed et al., 2019, 2020; 
Yang et al., 2019). However, until we go beyond the limits of brief movie clips, we 
will not be able to infer the movie as well as we need to.

Amid this backdrop of the video-based observational approach to real-time 
dynamics, the emergence of mobile technologies has produced an alternative. Perhaps 
by taking the intensive longitudinal approach at longer time scales we would have a 
better vantage point to understand the vicissitudes of affect as they occur in people’s 
real lives. This potential to capture a more accurate portrayal of real-world affect 
dynamics has driven an exponential rise in ambulatory methods. Starting slowly with 
pagers (e.g., Larson & Csikszentmihalyi, 1983) and palm pilots (Gruber et al., 2013), 
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the arrival of the ubiquitous smart phone opened up this option on a grand scale (see 
chapters in this volume). As a result, there is now a large body of work on affect 
dynamics based on daily experiences over hours, days, and weeks.

6.3 � Daily Experiences

Over the past decade or more, the affordances of digital and mobile technology has 
led to an explosion of intensive longitudinal data. Affective scientists in particular 
have found the ability to tap into the momentary experiences of individuals a useful 
lens to understand emotional functioning in novel ways. There was the hope that it 
would transcend the problems of retrospective and trait-like self-report as well as 
the limitations of lab-based observations. Study designs range from one sample a 
day to up to a dozen or more per day, and extend to several days to several weeks of 
repeated daily measurement. Thus, these experience studies are not capturing varia-
tion in real time but at longer, diurnal time scales. Across studies, lower variability 
in affect has been associated with greater well-being, whereas greater variability has 
been associated with a range of problems and pathologies such as neuroticism, bor-
derline personality disorder, bipolar disorder, posttraumatic stress disorder, anxiety, 
and depression (Eldesouky et al., 2018; Houben et al., 2015; Kashdan et al., 2006; 
Miller & Pilkonis, 2006; Pfaltz et al., 2010). Thus, the general conclusion has been 
that “emotional lability,” operationalized as diurnal affect dynamics, may be a trans-
diagnostic factor linking emotions to various manifestations of pathology.

Over the past few years, however, this proliferation of empirical findings on 
affect dynamics has been met with some more robust re-evaluation (e.g., Brose 
et al., 2020; Dejonckheere et al., 2019; Kalokerinos et al., 2020). Before expanding 
upon the explanations offered in these critiques, let me first applaud these and other 
authors for the due diligence and self-correction that engenders robust scientific 
practice. For example, Dejonckheere et al. (2019) analyzed data from 15 studies, 
comparing 16 different measures of affect dynamics. None of these predicted well-
being or psychopathology after controlling for mean levels of negative or positive 
affect. They conclude “[o]ur findings indicate that conventional emotion research is 
currently unable to demonstrate independent relations between affect dynamics and 
psychological well-being.” (Dejonckheere et al., 2019; p. 478). That is a bold state-
ment, especially coming from researchers who have built their careers at the fore-
front of the affect dynamics field.

Several kinds of explanations for these recent findings have been offered. To a 
one, these meta- and re-analyses portray the problem as a failure to control for the 
more basic central tendency measures, which, once included, wipe out the variabil-
ity or dynamic effects. Thus, the concerns are mostly methodological: measurement 
reliability, floor effects (especially in community samples), the frequency within 
days and total number of days of sampling, the need for greater precision, confusion 
about within- and between-person variability, and even doubts about the nature and 
measurement of the symptom and well-being outcomes themselves (Brose et al., 
2020; Dejonckheere et al., 2019; Kalokerinos et al., 2020). I will not reiterate these 
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here and will just point the reader to those original papers. However, a problem only 
mentioned briefly in these accounts (if at all) is the disconnect between the real-
world phenomena trying to be captured and the means used to do so. In short, using 
pictures to infer a movie. As I did with real-time dynamics above, here I will 
expound upon these time scale issues in an attempt to highlight further consider-
ations of diurnal affect “dynamics”. Specifically, these issues will be summarized 
under two general categories of affect and transitions.

6.3.1 � Affect

Affect is an umbrella term covering mood, stress, and emotions (Gross, 2015). As a 
result, there is quite a bit of variety in how affect dynamics have been conceptual-
ized and measured. Ambiguous distinctions between mood, stress, and emotions 
further fuels an expansive interpretative lens. For example, emotions are more rapid 
responses to the immediate situation but moods, by definition, transpire at longer 
time scales (Lewis, 2000). Thus, changes over time in mood may have different 
parameters and meaning than changes in emotions over the same time intervals.

Most often, however, affect is measured through valence, either on a positive to 
negative continuum or as separate positive and negative scales. While this has the 
advantage of convenience (e.g., easy for participants to report), this approach comes 
with several problems. First, there is the inherent judgment about emotions in such 
reports that feeling anger or sadness or being in a low energy mood are “bad” or nega-
tive. Thus, negativity is either a researcher-driven label (e.g., latent factor) or respon-
dents using a valence scale may be reporting as much about their own judgments of 
negativity as the intensity of the feelings. Second, it may not be clear to the respon-
dent (or researcher) whether valence is capturing mood or emotion. Third, the dynam-
ics being captured are variations in reports on an interval scale (e.g., 1–10 or 1–100), 
not shifts between distinctive states. Indeed, these valence measures neglect specific 
emotional states, each of which has different characteristics and, most relevant to 
dynamics, different time courses (e.g., sadness unfolds more slowly than flashes of 
anger). Like other psychological measures, this compromises interpretations of units 
of affect—is the difference between 1 and 2 the same as between 9 and 10? Is this 
difference the same for all individuals? Thus, taken together, it is difficult for this 
measurement approach to clearly match theorized phenomena (e.g., emotion/mood/
affect lability). However, regardless of the measurement format, there is also the issue 
of temporal non-adjacency or a lack of actual transitions that is considered next.

6.3.2 � Transitions

The basis of connecting affect dynamics with psychopathology is through affect—
emotion, mood, or stress—lability. Affect lability (sometimes termed instability) is 
defined in a variety of ways, such as “abnormally frequent, intense, and wide 
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ranging changes in affective states” (Contardi et al., 2018) or “frequent and intense 
fluctuations in emotion” Thompson et al., 2011). Thus, qualitative clinical observa-
tions and the diagnostic characteristics that have arisen from them are fundamen-
tally characterized by temporally adjacent shifts or transitions from one moment to 
the next in affective states (e.g., sadness, anger, fear).

Given these characterizations, real-time observations are better able to capture 
the theorized dynamics, the previously noted limitations notwithstanding, than 
experience sampling. Mobile sampling necessarily transpires with time intervals of 
various durations, typically an hour or more, between samples. Even with up to 20 
samples per day in some studies, none have the capacity to actually tap into transi-
tions of affect. Yet this is how the variability of ESM studies is generally interpreted, 
especially when contrasting diagnostic groups.

Finally, the consideration of transitions in affect dynamics may also speak to the 
recent findings that affect dynamic effects are negated by mean levels (Brose et al., 
2020; Dejonckheere et al., 2019; Kalokerinos et al., 2020). It is possible that this 
mean-to-variability relation is a simple artifact of the selective sampling of a con-
tinuous time series (i.e., pictures of movies). Schiepek and colleagues (Schiepek 
et al., 2016) have illustrated this elegantly in their work in which they obtain daily 
measurement from inpatient groups. As shown in Fig.  6.1, the actual changes 
throughout a day if measured continuously (i.e., the movie) are shown in Panel 
A. Each subsequent Panel B-F reflects successively fewer samples. The dynamics 
appear to get more and more stable as the number of measurement points decreases. 

Fig. 6.1  Illustration of the smoothing of sample-to-sample changes in time series as the number 
of samples decreases. The original time series (e.g., affect fluctuations moment-to-moment for an 
individual) is in Panel A. As the number of measurement samples decreases across Panels B 
through F, the variability decreases and the plot of successive measurement samples becomes 
more flat. Used by Permission from Schiepek et al. (2016)
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Importantly, this visual representation reveals why the mean may be a more predic-
tive parameter than variability indices. More specifically, it shows that with less 
than full sampling the mean can easily wipe out any variability effects. Furthermore, 
this suggests that the degree to which the mean is a better predictor than variability 
indices may be a function of the size of the interval between samples—shorter inter-
vals or more frequent samples should provide more unique variability information 
than longer intervals or less frequent sampling.

6.4 � Conclusions

I have identified a few of the issues surrounding the field of affect dynamics, par-
ticularly those limitations that impede our theoretical interpretations, at the two 
primary time scales at which this research is done. To conclude I will consider 
broader implications and suggest a few possibilities for future research.

6.4.1 � Dynamic or Variable?

In the social sciences, we often borrow concepts and use metaphors from other dis-
ciplines. The concept of dynamics is a great example. Formally, the term dynamic 
refers to change over time, which presumes the ability to detect change as it hap-
pens. If we are not measuring continuously in order to capture transitions when they 
happen, does it make sense to call variability across non-adjacent samples dynamic? 
At best it is aspirational, as it is certainly the temporal structure of real-world phe-
nomena we are trying to comprehend, yet we often sample at intervals such that 
transitional change cannot be detected directly. In these cases, we certainly have 
variability, but perhaps not dynamics. Moreover, while this is mostly a concern for 
experience sampling studies, even many observational studies that have the oppor-
tunity for continuous real-time measurement rely on either event-occurrence coding 
or arbitrary time bins of 10 s or more. Thus, I propose stricter construal of affect 
“dynamics”, situated as a subset of affect variability that requires temporal adja-
cency of measurement sequences. This would leave only real-time and continuous 
measurement as affording possible dynamic interpretations.

6.4.2 � Dynamics and Intensity

Although the problems of mean levels of affect with respect to dynamics has been 
shown at longer time scales, real-time dynamics are likely no less immune. First, 
theoretically intensity should drive dynamics. For example, a recent study found 
that infants’ physiological arousal inertia was critically elevated at extreme 
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intensities but not at average levels of arousal (Wass et al., 2020). Physiologically, 
this is also seen in heart rate variability indices that decrease precipitously in the 
face of emotional intensity (Beauchaine, 2001). Given the strong connection 
between intensity of feelings and autonomic arousal, this may be the case for behav-
ioral expressions of emotion as well. Thus, it is plausible that observations of real-
time dynamics of affective states may reflect individual differences in emotional 
intensity.

Second, similar to the problems encountered in theoretical tests of emotional 
concordance (Hollenstein & Lanteigne, 2014), emotional intensity in our standard 
laboratory designs is unlikely to be high. Thus, we may only be able to generalize 
these findings to low intensity situations. This may also be the reason that we have 
found that individual differences in real-time dynamics (i.e., the micro level of the 
Flex3 model; Hollenstein et  al., 2013) correspond to well-being but context-to-
context flexibility (i.e., the meso level of the Flex3 model) does not (Lougheed & 
Hollenstein, 2016). This problem could be resolved with comparisons of groups 
who tend to have low and high intensity emotions. For example, lower flexibility is 
associated with anxiety (van der Giessen & Bögels, 2018), depression (van der 
Giessen et al., 2015), and externalizing problems (Granic et al., 2007). However, 
expression but not intensity was measured in these studies, so it remains an open 
question as to whether flexibility was distinct from intensity.

For those of us who focus on real-time dynamics in particular, it is time to grap-
ple with intensity with the same self-correcting rigor as has been done with experi-
ence sampling (Brose et al., 2020; Dejonckheere et al., 2019; Kalokerinos et al., 
2020). Accounting for mean levels of intensity in models of flexibility and other 
dynamics is a necessary next step. Given the temporal adjacency of real-time mea-
surement, it is possible that these approaches are less sensitive, as Schiepek et al. 
(2016) observed. Nevertheless, this is untested yet necessary for the field to rely on.

6.4.3 � Multiple Time Scales

Although much of the affect dynamics literature assumes a correspondence across 
time scales, this has not been tested directly. Theoretically, adaptations day-to-day 
should relate to the adaptations that occur hour-to-hour, minute-to-minute, and 
second-to-second. For example, I have argued that real-time flexibility—direct, 
temporally adjacent shifts from one emotional state to another—reflects emotion 
regulation skills (Hollenstein, 2015). By implication then, mechanisms at shorter 
time scales, such as inhibitory and attentional control (e.g., Twivy et  al., 2020), 
should support these regulatory capacities. Further, greater real-time flexibility 
should correspond to flexible day-to-day adaptations at longer time scales. Thus, we 
need studies designed with vertical integration across time scales and develop the 
methods to analyze them (e.g., Multiple time-scale multiphase latent basis growth 
modeling; Helm et al., 2016).
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In conclusion, as we strive to improve our understanding of affect dynamics, it is 
easy to forget about the challenging limitations that plague our research. I know that 
in my own research, I often feel like the protagonist in the story of the professor 
looking for his keys:

A graduate student emerges from the university building where she works to find her profes-
sor looking around the parking lot underneath one of the street lamps. She asks the profes-
sor, “What are you looking for?”

“My keys,” he says.
“Where did you lose them?”
The professor points into the dark corner of the parking lot nearer to his car, 

“Over there.”
Puzzled, the graduate student suggested, “Well, then why don’t you look over there 

where you dropped them?”
“Because the light is better over here!”

Barring some technological breakthrough, we may only ever get still photos and 
short clips of the movies of people’s lives we wish to understand. That’s ok. We 
have learned a great deal and will continue to do so. At the same time, it is important 
to acknowledge our limitations and concede that we may not ever know the full plot.
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Chapter 7
On the Signal-to-Noise Ratio in Real-Life 
Emotional Time Series

Egon Dejonckheere and Merijn Mestdagh

Abstract  How emotions unfold in everyday life, naturally interact with each other 
over time, change in function of different real-life situations or contexts, and how these 
dynamic patterns relate to person-level characteristics are areas of investigation that are 
gaining increased interest among emotion researchers. At the same time, however, 
there is also growing awareness that adequately assessing affect dynamics ‘in the wild’ 
may be harder than previously anticipated. A central predicament is that the data qual-
ity of current daily life studies is often insufficient to pick up on meaningful regularities 
in real-life emotion time series, concealing the true dynamical features of people’s 
affective life. In this chapter, we introduce the signal-to-noise ratio (SNR) as a measure 
of data quality, designed to disentangle the power of people’s latent emotional signal 
from inevitable background noise. Breaking down the SNR into its different constitu-
ents, we lay out an overarching framework with various methodological strategies to 
improve the SNR of real-life affective time series, with the ultimate goal to reliably 
evaluate the internal and external validity of ecological dynamics of affect. Providing 
preliminary empirical evidence, we hope that future daily life studies will implement 
our suggestions, to truly behold the dynamical nature of everyday emotion.

Keywords  Affect dynamics · Signal-to-noise ratio · Measurement error · 
Innovation · Context · Auto-correlation · Measurement burst · Inertia

7.1 � Introduction

Investigating how affective states wax and wane in the realm of everyday life is an 
essential complement to studying emotional responding in standardized, yet often 
artificial, lab settings. Unparalleled in their ecological validity, daily life methods 
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such as experience sampling (ESM) provide researchers with a unique first-seat 
insight into the authentic structure and natural dynamical regularities of people’s 
emotional life. Within individuals, for example, ESM researchers may show interest 
in the circadian rhythms of emotion (e.g., Murray et al., 2009), the ability of an 
emotional state to predict its future trajectory (e.g., emotional inertia, Cole & 
Hollenstein, 2018), the concurrent and temporal interplay between various emo-
tions (e.g., the relation between positive [PA] and negative affect [NA], Dejonckheere 
et al., 2018; emotional augmentation and blunting, Pe & Kuppens, 2012), and natu-
ral emotional change as a function of different internal and external processes or 
stimuli (e.g., emotion regulation, Kalokerinos et al., 2017; encountering negative 
events, Koval et al., 2015). In turn, between individuals, ESM studies may investi-
gate how these dynamical patterns of emotion are informative for various person-
level features or characteristics, such as psychological well-being or maladjustment 
(e.g., Houben et al., 2015), personality traits (e.g., Bringmann et al., 2016) or emo-
tional intelligence (e.g., Robinson et al., 2020).

Although each of these studies typically require a unique and tailored ESM pro-
tocol to validly answer their research questions, a common prerequisite for all their 
designs is that they accurately describe the real-life patterns of people’s emotional 
life. If ESM time series do not reliably represent the natural ebbs and flows of par-
ticipants’ affective experiences, emotion researchers run the risk of drawing errone-
ous conclusions about emotions’ true dynamic properties, their causes and 
consequences (i.e., together referred to as the internal validity of affect dynamics), 
but also how differences in these temporal trajectories of emotion may explain indi-
vidual variation in important person-level variables (i.e., the external validity of 
affect dynamics).

Today, there is growing consensus that an accurate evaluation of the internal and 
external validity of real-life affect dynamics may be harder than previously thought. 
Regarding the internal validity, for example, recent research shows that trying to 
determine a person’s current emotional state is less effective when relying on rather 
complex dynamical models of affect compared to the simplified version of these 
models (Bulteel et al., 2018). This is remarkable, because more complex models 
allow ESM researchers to incorporate multiple streams of information (e.g., per-
sonal or contextual data), and are therefore thought to be a closer approximation of 
reality. In contrast, the very basic models merely rely on a person’s previous emo-
tions to determine his or her current emotional state, disregarding other potentially 
useful sources of information relevant for the conception of an emotional response 
(e.g., Frijda, 1988). Nevertheless, these simple affect dynamic models outperform 
the complex ones in terms of predictive accuracy (Bulteel et al., 2018), raising the 
question whether there may be methodological issues associated with ESM that cur-
rently conceal the complex (yet true) dynamical features of people’s affective life.

Second, also the external validity of affect dynamics was recently questioned in 
various psychological domains. From common symptom types in mental health 
research (Dejonckheere et al., 2019a), to the big five traits in the study of personal-
ity (Hisler et al., 2020; Kalokerinos et al., 2020; Wendt et al., 2020), to multiple 
facets of emotional intelligence (MacCann et al., 2020), recent research shows that 
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more complex metrics of affect dynamics no longer explain individual differences 
in these person-level outcomes once the predictive power of simple mean levels of 
PA and NA is taken into account. Again, the observation that the dynamical regu-
larities of people’s emotional life play a negligible role in our understanding of their 
well-being, personality or emotional intelligence seems to be counter-intuitive and 
contests both the existing theories and intuitive beliefs we hold about emotion: 
Could there be issues with the reliability of ESM emotion time series that obscure a 
meaningful relation?

Because these issues with the internal and external validity of affect dynamics 
will be an important concern for next-generation ESM research to address (e.g., 
Wendt et al., 2020), this chapter provides an overview of different methodological 
strategies to increase the data quality of emotion time series. Essentially, each strat-
egy fits in an overarching framework that has the ultimate goal to increase the 
signal-to-noise ratio (SNR) of the emotional time series ESM researchers investi-
gate, and combining multiple strategies in your future ESM protocol will likely be 
most effective to reliably evaluate the internal and external validity of real-life affect 
dynamics (Dejonckheere et al., 2020).1

7.2 � What Is the Signal-to-Noise Ratio of a Time Series?

While the SNR is an established metric in many other time series disciplines (e.g., 
audiology, Shojaei et al., 2016; biochemistry, Beal, 2015; econometrics, Saothayanun 
& Thangjai, 2018), it is a relatively unknown concept in the study of psychology. 
Although the operationalization and substantive interpretation may slightly vary 
across disciplines, the SNR can be easily applied to psychological time series data 
as well.

At its core, the SNR can be understood as a measure of data quality (Yu et al., 
2018). As the name gives away, the SNR compares the power of desired signal to 
the power of background noise generated by a system (e.g., fMRI scanners, ecosys-
tems, stock markets, etc.; Welvaert & Rosseel, 2013):

	
SNR

power signal

power noise
=

	 (7.1)

Broadly defined, the signal concerns the stream of meaningful information the 
system produces, while background noise refers to random (i.e., unpredictable) 
environmental interferences that distort that signal. As Eq. (7.1) illustrates, higher 
SNR values indicate higher data quality. Specifically, ratios higher than 1 imply that 

1 In this book chapter, we elaborate on some of the ideas formulated in our response Reply to: 
Context matters for affective chronometry (Dejonckheere et  al., 2020) to Lapate and Heller’s 
(2020) commentary on our original article (Dejonckheere et al., 2019a). Because this chapter con-
stitutes a conceptual extension of our reply, some theoretical overlap is inevitable.
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the power of a system’s signal effectively outweighs the power of background noise, 
and that meaningful information can be detected. In contrast, SNRs smaller than 1 
indicate that the power of a system’s signal is exceedingly overruled by the power 
of random environmental influences, making it very hard to recover meaningful 
system information.

In the psychology of affect, researchers consider emotional systems (e.g., human 
beings responding to their natural environment; Loossens et al., 2020). Here too, the 
observed affective time series of ESM participants can be decomposed into a signal 
and noise term (Dejonckheere et al., 2020). A common and popular way to statisti-
cally operationalize the power of people’s true emotional signal is to define it as the 
variance of a latent auto-regressive (AR) model of order 1 [i.e., an AR(1) model] 
(Schuurman et al., 2015; Schuurman & Hamaker, 2019):

	
power signal NA a NAt t t= = +






−Var

˜ ˜

1 ε
	 (7.2)

As can be seen from Eq. (7.2), an individual’s true or latent (negative) affective 
signal NA  is defined by two terms. First, it is determined by a person-specific AR 
parameter (a) that captures the degree with which an individual’s current latent 
affective state (e.g., a participant’s true level of momentary NA

˜
 assessed at time 

point t) can be predicted from his or her previous latent affective state (e.g., a par-
ticipant’s true level of momentary NA

˜
 assessed at time point t − 1). In dynamical 

system terms, this part of the equation refers to a person’s attractor strength 
(Kuppens et al., 2010b), and reflects the speed with which an individual generally 
returns to his or her emotional baseline or homebase after responding to a stimulus 
that is of personal relevance (with higher a indicating slower return; Chow et al., 
2005). Indeed, people’s emotional reactions do not unfold in a vacuum, but are 
embedded in a larger context of personally relevant stimuli and events they respond 
to (Frijda, 1988). The collection of these contextual stimuli is situation-specific (i.e., 
different for each t), and cannot be captured by the person-specific AR parameter. 
They are therefore represented by a second term εt, generally referred to as innova-
tion or dynamic noise (Schuurman et al., 2015). This dynamic noise term roughly 
corresponds to the intensity of the emotional stimulus a person reacts to at time 
point t, and carries over to next time points via the person-specific AR relation 
(hence the name dynamic noise; Schuurman & Hamaker, 2019).

Unfortunately, we are unable to directly observe people’s true emotional signal. 
There is a degree of measurement error (ω) associated with each emotional assess-
ment t that conceals participants’ true momentary affective response. These random 
and unpredictable distortions are caused by moment-specific biases such as, for 
example, inattention, reactivity and fatigue (e.g., Fuller-Tyszkiewicz et al., 2013). 
Compared to innovation or dynamic noise, these interferences are restricted to each 
particular emotional assessment, and therefore do not resonate to subsequent assess-
ments (Schuurman et  al., 2015; Schuurman & Hamaker, 2019). The variance in 
measurement error across all momentary assessments represents the power of mea-
surement noise:
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power noise t= ( )Var ω

	 (7.3)

In sum, the combination of Eqs. (7.2) and (7.3) illustrates that participants’ 
observed level of momentary (e.g., negative) affect can be understood as:

	 NA a NAt t t t= + +−

˜

1 ε ω 	 (7.4)

Accordingly, we can define the SNR of an affective time series as:

	

SNR
NA a NAt t t

t

=
= +








( )

−Var

Var

˜ ˜

1 ε

ω
	 (7.5)

7.3 � Determinants of the Signal-to-Noise Ratio

Equation (7.5) explains us how we can impact, and ultimately maximize the SNR of 
the affective time series we investigate. After all, attempts to advance the SNR lead 
to better data quality in ESM (Yu et al., 2018), promoting a more reliable evaluation 
of the internal and external validity of real-life affect dynamics.

But how troublesome is the SNR situation in contemporary ESM research really? 
To get an indication, we reanalyzed 15 prototypical ESM studies reported in 
Dejonckheere et al. (2019a), and computed the SNR for participants’ PA and NA 
time series following Eq. (7.5) (see also Dejonckheere et al., 2020). As shown in 
Fig. 7.1, many of the datasets had median SNRs that barely exceeded the critical 
threshold of 1, which would indicate that 50% of the participants in that particular 
ESM study presented affective time series in which the level of estimated measure-
ment noise overruled the power of their latent emotional signal. For the total sample 
in our meta-analysis (n = 1777), 30% of the subjects had an emotional SNR smaller 
than 1 for PA, and 42% for NA. Although each individual ESM study was carried 
out to answer a different research question, and their protocols, affect items and 
sample characteristics are therefore unique in design, these numbers suggest that the 
quality of current ESM time series is below par. This could explain why real-life 
affect dynamics have poor internal and external validity (e.g., Bulteel et al., 2018; 
Dejonckheere et al., 2020; Wendt et al., 2020): Current practices in ESM research 
prohibit the detection of meaningful dynamical regularities in emotion time series.

Then how may we boost the SNR of ESM time series? To guide the reader 
through the next sections, Fig. 7.2 presents a graphical overview of the different 
determinants that make up this metric (a, ε and ω), which researchers can impact to 
improve the SNR. For each determinant, we visualize two simulated affective time 
series that result in a low and high SNR (while the value of other determinants is 
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Fig. 7.1  Evaluating the SNR in conventional ESM research. The median SNR for PA (blue bars) 
and NA (red bars) for each of the 15 datasets reported in Dejonckheere et al. (2019a) (n = 1777), 
with the error bars indicating the 95% confidence interval (derived from 2000 bootstraps)

held constant). Metaphorically, you can think of the time series depicted in Fig. 7.2 
as a pearl necklace: The string reflects a person’s latent continuous emotional 
response ( NA

˜
), while the beads represent a series of discrete affect ratings (NAt). To 

increase the SNR of an emotional time series, researchers should pursue substan-
tially pronounced emotional strings (ε), and place the individual beads in such a 
way that they closely mirror the participant’s original emotional response (both in 
time [a] and in deviation [ω]). In the next paragraphs, we will discuss how this anal-
ogy translates into concrete guidelines for each determinant.
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a.

b.

c.

Fig. 7.2  Graphical representation of the various constituents (a, ε and ω) that make up the 
SNR. Hypothetical emotional trajectory of an individual who reacts to a negative contextual stimu-
lus at time point 3. The continuous blue line represents that person’s actual (latent) emotional 
response, while the discrete red dots depict his (observed) affective intensity ratings. The left and 
right columns refer to scenarios that exhibit a high and low SNR, respectively. (a) Manipulation of 
the temporal measurement resolution (short versus long time intervals). (b) Manipulation of the 
stimulus’ emotional intensity (strong versus low emotional intensity). (c) Manipulation of the mea-
surement noise associated with the affect ratings (assessments that are noise-free versus over-
whelmed by measurement noise)
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7.3.1 � Recovering the Latent AR Parameter: Temporal 
Measurement Resolution

As mentioned earlier, the AR parameter a captures the degree with which a person’s 
latent emotional reaction generally lingers after an affective stimulus was intro-
duced (Kuppens et  al., 2010a), and indicates how well we can predict its future 
(linear) trajectory (Headey & Wearing, 1989). When a is high, we describe a per-
son’s emotional recovery function as highly inert and resistant to the influence of 
internal regulatory processes (i.e., low attractor strength; see Fig.  7.3 panel A; 
Kuppens et al., 2010b). In contrast, when a is low, that person’s emotional respond-
ing is highly susceptible to the system’s regulatory forces, which will impact its 
original trajectory (i.e., high attractor strength; see Fig. 7.3 panel B).

Following this interpretation, a can be understood as a person-level indicator of 
the (linear) self-predictability of an affective state over time, and people’s (observed) 
affective time series are known to vary in the amount of auto-regression they exhibit 
(Bos et al., 2019; Bulteel et al., 2018). Although a is considered person-specific, and 
we therefore cannot directly boost its magnitude to maximize the SNR, the upper 
limit of its estimation is determined by measurement practices (Dejonckheere et al., 
2020). Specifically, because a refers to the temporal (un)predictability of a latent 
affective state (i.e., How well can I predict a person’s true emotion level at the next 
time point?), the relative size of this parameter will naturally depend on the tempo-
ral assessment resolution that was used during the study protocol (see Fig. 7.2 panel 
A): Larger time intervals between consecutive measurement occasions t–1 and t 
will diminish the predictive accuracy of future affective states, and typically result 
in lower AR parameters (Bulteel et  al., 2018). For example, making the average 
time interval between two consecutive measurement twice as long will reduce the 
estimated AR parameter by a power of 2 (e.g., from .40 to .16).

Intuitively, this makes sense, as the lingering effect of an emotional response 
generally diminishes as time after the instigating stimulus elapses (Anderson & 
Adolphs, 2014; Hemenover, 2003). As such, a measurement protocol in which suc-
cessive measurements are simply too far apart will not be able to adequately capture 
the meaningful recovery of a person’s emotional system, because full recovery 
likely took place in between measurement occasions (e.g., Schiepek et al., 2016). In 
other words, as a guiding principle, it is crucial that the temporal spacing between 
consecutive measurements is smaller than the rate of change of the emotions under 
study (Boker et al., 2009). When researchers assess emotional change with a higher 
temporal resolution, the serial dependency between consecutive emotional assess-
ments increases (Ram et al., 2017), which allows for more fine-grained distinctions 
between individuals in terms of their personal AR parameter.

To illustrate the impact of a study’s adopted assessment resolution on the recov-
ery of participants’ individual AR parameter, Fig.  7.4 visualizes three empirical 
ESM protocols from previous research that significantly differ in the average time 
interval between their emotional assessments (i.e., 1  day versus 104  min versus 
13 min, respectively). For each protocol, we present the distribution of personal AR 
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Fig. 7.3  Comparing the AR estimation in an equidistant measurement protocol versus micro-level 
measurement burst design. Simulated emotion time series for different hypothetical participants 
who react to a negative contextual stimulus at time point 3. The continuous blue lines represent 
their actual (latent) emotional response, while the discrete red dots depict their (observed) affective 
intensity ratings. (a) Participant who exhibits low attractor strength in an equidistant measurement 
protocol, which is adequately captured by the AR estimation. (b) Participant who exhibits high 
attractor strength in an equidistant measurement protocol, which is poorly captured by the AR 
estimation. (c) Participant who exhibits low attractor strength in a micro-level measurement burst 
design, which is adequately captured by the AR estimation. (d) Participant who exhibits high 
attractor strength in a micro-level measurement burst design, which is adequately captured by the 
AR estimation

parameters for PA, alongside the corresponding boxplot. Although a direct compari-
son between protocols is difficult due to other study-specific characteristics (e.g., 
total study duration, number of items per assessment, unique participant features, 
etc.), the boxplots suggest that longer time windows result in lower emotional AR 
estimations. Moreover, when longer time intervals between assessments exist, the 
proportion of participants that shows an AR parameter that does not significantly 
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Dejonckheere et al. (2017; 1 day)

Koval & Kuppens (2012; 13 min)

Dejonckheere et al. (2019; 104 min)

AR parameter (a)

Fig. 7.4  Evaluating the role of temporal assessment resolution on the estimation of people’s AR 
parameter. For each dataset, the raincloud plot visualizes the distribution of participants’ personal 
auto-regressive effects in PA (i.e., the mean of emotion items relaxed and happy). The average time 
interval between two measurement occasions is presented between brackets. To maximize a fair 
comparison between studies, we only selected the first 30 affect ratings for each participant to 
estimate a. The red dashed line indicates the corresponding significance threshold

differ from zero increases (for an estimation based on 30 time points; i.e., 90, 82, 
and 62%, respectively). Conceptually, a non-significant AR parameter seems 
counter-intuitive, as it suggests that the momentary affect ratings of such an indi-
vidual are completely instantaneously determined, and no carry-over effect in the 
form of emotional recovery between assessments takes place (i.e., there is no emo-
tional inertia). Because such a motion is highly unlikely in real life, we assume that 
the temporal resolution of the assessment protocol was simply too low to adequately 
capture these individuals’ emotional recovery.

But how do we determine the appropriate time scale with which emotions should 
be assessed? Ideally, a scenario in which we continuously monitor changes in an 
affective state (i.e., where the interval between t–1 and t is virtually zero) would 
enable the most accurate AR estimation. Following our necklace metaphor, this 
would imply that ESM researchers drastically increase the number of individual 
beads, in order to adequately reconstruct participants’ underlying emotional 
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recovery function. However, to date, we can only access changes in experiential 
phenomena via repeated discrete self-reports, which is inherently intrusive and bur-
densome for participants (Schimmack, 2003; Stone et  al., 2003). As such, these 
constraints preclude an endless expansion of the assessment frequency adopted in 
an ESM protocol.

Alternatively, instead of focusing on the appropriate number of assessments, 
ESM researchers should be equally concerned with the timing of these assessments 
(i.e., the exact temporal location of the different discrete beads to recover people’s 
latent emotional signal; Kuiper & Ryan, 2018). That is, although inflating the num-
ber of discrete measurement occasions will result in shorter time intervals between 
occasions (when the study duration is held constant), chances still exist these assess-
ments largely fail to accurately describe people’s emotional recovery function when 
they are prompted at wrong moments (e.g., Fig. 7.3 panel B). Instead of holding on 
to measurement intervals that are more or less equidistant in time (which is common 
practice in contemporary ESM research), a more tailored ESM protocol that tempo-
rarily amplifies the rate of affective assessments when participants significantly 
deviate from their affective homebase, may enable a more accurate evaluation of 
their personal AR parameter (e.g., Schiepek et al., 2016). The flexible interval width 
of this micro-level measurement burst design (e.g., Stawski et al., 2015) softens the 
natural trade-off between increasing sample frequency and participant burden: 
Researchers may adequately assess participants’ emotional recovery function while 
the total number of to be completed assessments should not be drastically increased 
(e.g., compare upper versus lower panels in Fig. 7.3). Although this approach may 
enable a better AR estimation, possible impediments to this type of measurement 
design include the implementation of online computational models in ESM soft-
ware to determine whether participants are out of their personal affective equilib-
rium, the acquaintance with statistical models that do not require equally spaced 
time points (e.g., continuous-time Ornstein-Uhlenbeck models; Oravecz et  al., 
2009), and variable study durations across participants (when total number of 
assessments is held constant) that could lead to differences in the ecological validity 
of people’s affective time series.

7.3.2 � Maximizing the Event-Specific Noise Term: Strong 
Contextual Stimuli

Innovation or dynamical noise ε refers to the variance in a person’s affective 
responding that cannot be explained by the latent AR model (Schuurman et  al., 
2015). Consequently, this error term is thought to capture change in people’s emo-
tional trajectory that does not stem from endogenous feedback processes (i.e., the 
person-specific AR parameter), but from the various contextual stimuli people 
encounter and react to in their environment. Although this noise term ε is serially 
uncorrelated and specific for each t, it may shape the value of subsequent latent 
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emotional states via the AR relation (Dejonckheere et  al., 2020). As such, this 
situation-specific error term ε more or less refers to the (subjective) emotional inten-
sity of the stimuli that people process.2 For example, the sudden suffering of a goal 
of one’s favorite soccer team will trigger an emotional reaction that cannot be accu-
rately predicted from a person’s previous emotional state (because it is unexpected), 
but it will have its effect on subsequent emotional assessments (in the form of emo-
tional recovery).

In line with our necklace analogy, ε reflects the shape of people’s underlying 
emotional string (i.e., explosive versus flat). Strong affect-laden stimuli, situations 
or events evoke strong emotional reactions, and increase the likelihood that people 
are temporarily thrusted out of their affective homebase (Chow et al., 2005). In turn, 
the emotional recovery process will be sizeable, which evidently produces a more 
pronounced emotional signal (see Fig.  7.2 panel B). The more pronounced this 
emotional signal, the easier it is to detect, as it effectively overrides the inevitable 
background noise associated with measurement practices. As such, exposing par-
ticipants to events or situations that elicit strong emotional reactions may offer new 
opportunities to increase the SNR of the respective emotional ESM time series 
(Dejonckheere et al., 2020; Lapate & Heller, 2020).

At first sight, it may feel counter-intuitive that ESM researchers would want to 
control the contextual input their participants receive. After all, this data collection 
method is recognized for its ecological validity (Myin-Germeys et al., 2018; Trull 
& Ebner-Priemer, 2009), and is used to understand how emotions naturally come 
and go in the realm of ordinary life without any top-down interventions. This is in 
stark contrast with traditional lab research, where researchers experimentally induce 
isolated emotional states under controlled and standardized circumstances, and 
therefore have perfect insight in the causes and consequences of an emotional 
response. Because of the intrinsic tension between ecological validity and standard-
ization, a downside to ESM (compared to experimental studies) is that real-life 
affect ratings are often equivocal, determined by a complex synergy of multiple 
ill-defined stimuli (Dejonckheere et al., 2019a). Not only are ESM researchers rela-
tively clueless about the exact emotion-eliciting stimuli that shape participants’ 
affective responses, the situations and events people experience on a daily basis are 
often emotionally unprovocative and short-lived (Dejonckheere et  al., 2020). 
Bypassing these inherent limitations of ESM to get a closer indication of the con-
textual input participants receive, without carelessly undermining the ecological 
validity of this method, may boost the emotional signal value found in ESM 
time series.

To counter the fact that emotion ratings in daily life are often multi-determined, 
and that it is therefore challenging to isolate their direct cause, anchoring affective 

2 Some frameworks in the affect dynamics literature (e.g., Loossens et al., 2020) additionally break 
down εt into an innovation part (that captures deterministic contextual input) and a stochastic part 
(that captures built-in system noise). A more detailed discussion of this subdivision is beyond the 
scope of this chapter, but it explains the fractional translation of ε into the (perceived) emotional 
intensity of a stimulus.
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assessments to specific events or stimuli could be worthwhile. In anchored ESM 
protocols, researchers track emotional change in daily life in relation to particular 
incidents or affairs. Instead of global momentary emotional assessments (e.g., How 
sad do you feel right now?), participants are instructed to rate their momentary emo-
tion levels with regard to a specific and well-defined stimulus (e.g., How sad do you 
feel right now, regarding your [partner, back pain, pregnancy, exams, job, etc.]?). 
The selection of relevant stimuli may be fixed and determined a priori when 
researchers have a specific research question in mind (e.g., How do different emo-
tions in the context of recent parenthood unfold?: How [stressed, happy, etc.] are 
you about your new-born right now?) or could be introduced bottom-up in the 
moment by the participants themselves. Here, participants first report on the event 
or stimulus that is currently most emotionally relevant via an open-ended question 
(e.g., Describe the event or affair that triggers your current emotions.). Next, via 
follow-up assessments, the natural emotional recovery with respect to the articu-
lated event is evaluated, and new momentary relevant stimuli are disclosed that will 
serve as an input for subsequent affective assessments. Although this design would 
allow ESM researchers to delineate ecological emotional responses in relation to 
isolated stimuli, the possibility to assign conditional dependencies across measure-
ments (where participants’ responses at time t serve as input for their evaluations at 
time t + 1, t + 2, etc.) is currently lacking in many contemporary ESM applications. 
Furthermore, it remains to be investigated to what extent people are truly able to 
detach their emotional evaluation related to a single stimulus from their global 
affective state (e.g., carry-over effects between stimuli, Schmidt & Schmidt, 2016), 
and if these type of assessments do not induce stronger emotional reactivity (e.g., 
Schwarz, 1999).

Anchoring emotional assessments in ESM does not tackle the problem that the 
events and situations people encounter on a regular basis may not be very emotion-
ally moving (i.e., their emotional string is not very pronounced). Moreover, because 
individuals act in their own personal ecology, the contextual input they receive may 
differ in numerous ways (Kahneman et al., 2004), which hampers a direct compari-
son of their affective time series. Here, quasi-experimental ESM studies, in which 
researchers track natural emotional change around a standardized and impactful 
stressor could be promising (Dejonckheere et al., 2020). Researchers may introduce 
that stressor into the daily lives of their participants top-down (e.g., a Trier Social 
Stress Task; Koval & Kuppens, 2012), or they may anticipate the occurrence of a 
real-life event to design a study around (e.g., the release of exam results, 
Dejonckheere et  al., 2019b; Kalokerinos et  al., 2019; Metalsky et  al., 1993; the 
implementation of COVID-19 lockdown measures, Dejonckheere et  al., 2021; 
Taquet et al., 2020; the onset of a depressive episode, Wichers et al., 2016; the death 
of a beloved one, Folkman, 1997). In both cases, all subjects are exposed to the 
same compelling stimulus, which allows a more controlled comparison of their 
emotional trajectory, but real-life stressors have the strength that they are unparal-
leled in their ecological quality. However, a possible downside to these naturalistic 
stimuli is that they are sometimes relatively difficult to predict prospectively, which 
may result in longer study durations (e.g., Folkman, 1997) or smaller sample sizes 
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(e.g., Dejonckheere et  al., 2021;  Wichers et  al., 2016). Nevertheless, this quasi-
experimental approach can reconcile both the naturalistic qualities of ESM and the 
more standardized setting of lab experiments (Dejonckheere et al., 2019b).

7.3.3 � Reducing Momentary Measurement Noise: Assessing 
Measurement Error

Finally, ESM researchers can also improve the SNR of an affective time series by 
diminishing the measurement error ω that is associated with their assessment proce-
dures (see Fig. 7.2 panel C). Attempts to reduce the incidental distortions inherent 
to people’s momentary affect ratings may produce a closer approximation of their 
true emotional response, and therefore minimize the bias present in their AR param-
eter estimation (e.g., Staudenmayer & Buonaccorsi, 2005). Thus, in line with our 
necklace metaphor, ω indicates the extent with which the individual beads properly 
link up with the underlying string, indicating how much the discrete affect ratings 
deviate from a person’s latent emotional signal.

Although the ubiquity of measurement noise in affective time series is com-
monly accepted among ESM researchers, this issue is largely ignored in the affect 
dynamics literature (e.g., Schuurman et al., 2015; Schuurman & Hamaker, 2019). 
Not only do emotion researchers often calculate affect dynamic measures from 
observed affect intensity scores (Dejonckheere et al., 2019a; Wendt et al., 2020), in 
an attempt to minimize participant burden or annoyance, they are generally reluc-
tant to include exact repetitions of an item within the same momentary question-
naire (Schimmack, 2003). Singular items, however, prohibit an explicit momentary 
reliability assessment, leaving researchers in the dark about the exact amount of 
measurement error present in people’s affect ratings. Instead of indirectly evaluat-
ing measurement noise via estimation procedures, future ESM designs could there-
fore benefit from randomly repeating (at least) one item at each measurement 
occasion, in order to get a direct indication of the measurement error associated 
with their protocol.

In a derivative effort to somehow mitigate the bias of measurement noise in 
affective time series, it is common practice in ESM research to average an ad hoc 
selection of specific same-valenced emotion items to construct a global positive or 
negative affective composite (Dejonckheere et  al., 2019a). Combining individual 
emotion items into a single construct is thought to compensate for some of the mea-
surement error associated with each individual rating (e.g., Nunnally, 1994), which 
may produce a higher SNR for the aggregated time series. To evaluate how this 
averaging procedure impacts the SNR, we compared the SNRs of each individual 
emotion item versus the two global PA and NA composites for a traditional ESM 
dataset (Sels et al., 2017). As shown in Fig. 7.5, the SNR for the two affective aggre-
gates PA and NA is remarkably higher than for those of the same-valenced indi-
vidual emotion items (except for stressed).
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Fig. 7.5  Investigating the SNR of individual emotion items versus global PA and NA constructs 
in Sels et al. (2017). The median SNR for positive (blue bars) and negative (red bars) affect items 
or constructs, with the error bars indicating the 95% confidence interval (derived from 2000 
bootstraps)

Nevertheless, when an emotional time series carries little signal, attempts to 
reduce measurement error will have little effect on the overall SNR. As such, proce-
dures to reduce measurement noise are best used in combination with signal 
improvement strategies, because it is an illusion to believe researchers can entirely 
eliminate the measurement error associated with psychological self-report. 
Furthermore, it should be noted that the within-person internal consistencies of 
multi-item PA and NA constructs remain generally low (Dejonckheere et al., 2019a). 
This leaves the question to what extent the adopted discrete emotion items are truly 
interchangeable indicators of a global PA or NA composite, and what these aver-
aged constructs really capture if their momentary reliabilities are so remarkably 
low. A more considerate and theory-driven selection of specific emotion-items 
could result in global PA and NA constructs that are both internally reliable and less 
sensitive to measurement error.
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7.4 � Combining Different Strategies to Improve 
the Signal-to-Noise Ratio

In this chapter, we introduced an overarching framework to promote the SNR of 
emotional time series in ESM research. Drawing from Eq. 7.5, this framework was 
structured around three key determinants that make up an emotional SNR. On the 
one hand, we discussed how researchers could seek to increase the power of partici-
pants’ true emotional signal by fine-tuning AR estimations (a) or investigating more 
pronounced emotional reactions (ε). On the other hand, we advised researchers to 
evaluate and to reduce the measurement noise (ω) associated with their ESM proto-
col by creating reliable same-valenced affective composites instead of relying on 
singular emotion items. In the previous paragraphs, we explained how these general 
propositions translated into concrete design choices for each determinant individu-
ally (see Table 7.1 for an overview), but ideally ESM researchers may wish to apply 
these strategies to their protocol simultaneously, in order to optimize the quality of 
their time series data in the best possible way.

As a proof-of-concept that the combination of outlined strategies adds to an 
improved SNR, Panel A of Fig. 7.6 visualises how the median SNR of a real ESM 
study sample changes under different (artificial) strategy scenarios. In this ESM 
study (Dejonckheere et al., 2019b; Kalokerinos et al., 2019), we tracked the emo-
tional trajectories of 101 first-year students around an impactful and personally rel-
evant event, the release of their exam results. Students were instructed to rate both 
their unanchored momentary PA and NA (Please indicate how positive/negative you 
are feeling right now?), as well as multiple discrete emotion items anchored to their 
grades (When you think about your grades right now, how [content, happy, proud, 
relieved, angry, anxious, ashamed, disappointed, stressed] are you feeling?). Same-
valenced emotion items were averaged at each measurement occasion to create an 
anchored PA and NA time series, and we computed an additional global anchored 
affective construct in which combined all items together (PA-NA). Finally, to simu-
late scenarios with different temporal resolutions, we relied both on participants’ 
original time series, as well as a trimmed version in which we only considered every 
fifth emotional assessment.

Table 7.1  Summary of the proposed design strategies for each SNR determinant

SNR goal Design strategy

Improve AR estimation (a) –  Increase temporal assessment resolution
–  Micro-level measurement burst design

Boost situational input (ε) –  Anchor emotional assessments to specific stimuli
–  Introduce/anticipate strong contextual events

Reduce measurement noise (ω) – � Explicitly assess measurement error via exact item 
repetitions

–  Reliably combine same-construct items

SNR Signal-to-noise ratio, AR Auto-regression
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a.

b.

Fig. 7.6  Combining multiple strategies to improve the SNR in ESM time series. The results in 
both panels rely on data reported in Dejonckheere et al. (2019b) and Kalokerinos et al. (2019), in 
which we followed the emotional trajectories of 101 first-year students around the time they 
received their exam results. (a) The median SNR for different strategy scenarios, with the error 
bars indicating the 95% confidence interval (derived from 2000 bootstraps). (b) Real affective time 
series for an example participant with a high SNR (22.43). Time point zero indicates the first emo-
tional assessment after the student consulted his or her exam results

As Panel A of Fig. 7.6 suggests, implementing multiple strategies in an ESM 
protocol at once markedly improves the SNR of emotion time series. First, for each 
scenario, the median SNR is almost around twice as high than those of most of the 
traditional ESM studies in Fig. 7.1, hinting at a positive impact of studying strong 
contextual stimuli on participants’ emotional signal. Second, a comparison of the 
unanchored PA and NA items versus the anchored assessment of different discrete 
emotions shows that some (but not all) anchored emotion items bring about slight 
increases in the SNR (e.g., stressed but not angry). This suggests that assessing 
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(some) emotional states in relation to a specific stimulus could potentially benefit 
the SNR. Third, averaging single anchored emotion items into an anchored global 
PA and NA composite drastically boosts the SNR, and its value increases even more 
when a global affective composite is considered (PA-NA). This indicates that the 
practice of averaging affect items reduces the measurement error associated with 
each individual emotion rating. Finally, when comparing the anchored PA and time 
series of the trimmed versus complete dataset, the SNR is considerably higher when 
a more fine-grained temporal assessment resolution is adopted. This suggests that 
an AR estimation is more accurate when the time interval between consecutive mea-
surements is compressed.

But how does a high SNR visually manifest in an empirical ESM time series? 
Panel B of Fig. 7.6 depicts the PA time series for a participant with one of the high-
est SNRs in the study sample (SNR 22.43). First, the unexpected and sudden jump 
around the release of that participant’s exam results indicates the introduction of a 
strong emotional stimulus, kicking that person out of emotional equilibrium and 
allowing emotional recovery to take place. Second, the aggregation of discrete emo-
tion items into a global affective composite score clearly smooths the affective sig-
nal, eliminating some of the incidental and irregular drops and spikes that shape 
individual emotion ratings (which may be attributed to measurement error).

7.4.1 � Interdependencies Among Design Strategies

Although the results in Fig. 7.6 suggest that implementing multiple design strate-
gies positively amplifies the SNR, it is important to acknowledge that their effect is 
not necessarily additive. Similarly, the separate review for each individual SNR 
determinant does not imply that each design strategy independently impacts the 
SNR. As such, mutually comparing the effect of different design strategies is prob-
ably meaningless. There may be positive structural dependencies between the dif-
ferent strategies we discussed, making it difficult to disentangle their unique 
contribution in improving the SNR.

In contrast, it is equally possible that negative associations between particular 
design strategies exist, carrying an opposite impact on the SNR. That is, a proposed 
strategy to improve one SNR determinant may unintentionally compromise another 
one. For example, repeatedly exposing participants to micro-level measurement 
burst cycles has the goal to improve AR estimations, but could also induce increased 
annoyance with the protocol, resulting in more measurement error. Similarly, inves-
tigating real-life emotions in relation to a personally relevant and impactful event 
may boost the innovation parameter, but could equally introduce more missing data 
due to the study’s increased interference with people’s lives, impeding accurate AR 
estimations. As a final example, multiple items per construct may reduce the mea-
surement error associated with each individual question, but result in longer momen-
tary assessments, which is known to predict poor compliance (Eisele et al., 2020). 
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Depending on how all of these design choices relatively impact each determinant, 
SNR values may increase, decrease or remain unaltered. In either case, this uncer-
tainty calls for future ESM studies that explicitly test how the SNR changes in func-
tion of various design alternatives.

7.4.2 � Design Strategy Implementation Constraints

Finally, we realize that many of the outlined propositions may currently be difficult 
to implement, and that the resulting ESM protocols drastically differ from conven-
tional ESM research practices today. For one, there are practical constraints. For 
example, regarding the implementation of micro-level measurement burst cycles, 
the possibility to model people’s emotional trajectory online (needed to instanta-
neously detect abrupt changes in affect), is currently lacking in standard ESM appli-
cations. Similarly, in the context of anchoring idiosyncratic emotional assessments, 
installing input-output dependencies between consecutive measurements is not 
straightforward with modern ESM software. Technical advances are needed to 
remove these barriers.

Second, some of the design strategies presented challenge the way ESM research-
ers traditionally model affect dynamics. For example, tracking people’s emotional 
reaction in response to an impactful stressor likely yields time series that are not 
stationary, violating a statistical assumption that underlies some of the commonly 
investigated affect dynamics (e.g., emotional inertia or network density; Bringmann 
et al., 2013; Pe et al., 2015). Relatedly, the repeated use of measurement burst cycles 
violates the assumption of equally spaced time points, preventing for instance a 
standard assessment of people’s global level of emotional instability (Jahng et al., 
2008). In sum, potential adjustments to traditional ESM designs will close the door 
for some commonly studied affect dynamic metrics. At the same time, however, 
novel design strategies allow researchers to model dynamical patterns in affect in a 
more nuanced and fine-grained manner.

7.5 � Conclusion

When interested in the real-life dynamics of emotion, this book chapter invites ESM 
researchers to raise the bar when it comes to the data quality of their studies. The 
SNR in traditional ESM research is typically substandard, which demands future 
daily life studies to experiment with more exotic design approaches to effectively 
disentangle people’s true emotional reactions form inevitable background noise. 
Only then will we be able to reliably assess the internal and external validity of real-
life affect dynamics.
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Chapter 8
Emotion Dynamics in Intimate 
Relationships: The Roles 
of Interdependence and Perceived Partner 
Responsiveness

Laura Sels , Harry T. Reis , Ashley K. Randall , 
and Lesley Verhofstadt 

Abstract  Emotions are not only fundamentally dynamic in nature in the sense of 
varying across time, but they are also fundamentally social, originating in and shap-
ing our interpersonal processes. Interpersonal emotion dynamics refer to the ways 
in which emotions and emotional self-regulation are dynamically influenced by 
interactional partners, given the interdependence that exists between them. We 
begin this chapter by describing the premise for interpersonal emotion dynamics in 
intimate relationships, what interpersonal emotion dynamics constitute, and the 
state of the art in the fields of emotion science, relationship science, and interper-
sonal emotion dynamics. Next, we discuss two key themes that we believe promote 
theoretical integration among seemingly disparate strands of research (in emotion 
and relationship research), emphasizing the importance of interdependence and per-
ceived partner responsiveness in the interpersonal emotion dynamics that character-
ize intimate relationships. The chapter concludes with recommendations for future 
research in this promising area.
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8.1  Introduction

Scholars and practitioners working with individuals and couples both recognize that 
emotions are inherently social and should not be viewed as purely intrapsychic 
experiences, as they are elicited, managed, altered, and maintained in interactions 
and relationships with others (e.g., Clark et  al., 2001; Frijda & Mesquita, 1994; 
Keltner & Haidt, 1999; Parkinson, 1996; Van Kleef, 2009). Emotions in intimate 
relationships1 are especially of interest, because people experience, share, and regu-
late emotions most often and most intensely in the relationship with their intimate 
partner (Berscheid & Ammazzalorso, 2001; Knobloch & Metts, 2013; Mikulincer 
& Shaver, 2005; Schoebi & Randall, 2015). The emotional experiences between 
intimate partners (hereafter, partners) are continually emerging, fluctuating, and 
interacting across time, which contribute to the development and maintenance of 
these relationships (e.g., Clark et al., 2017a, b; Reis, 2014). As such, partners’ inter-
personal emotional experiences, conceptualized as interpersonal emotion dynamics, 
are dynamic in the sense of being context-dependent and thus continuously chang-
ing, and are thought to be crucial for both the individuals’ and the relationship’s 
well-being (Butler, 2011; Sbarra & Hazan, 2008). Moreover, interpersonal emotion 
dynamics are proposed to mediate the robust link between intimate relationship 
functioning and mental and physical health (e.g., Farrell et  al., 2018; Sbarra & 
Coan, 2018). Therefore, advancing our understanding of how partners impact each 
other’s emotions dynamically—automatically and deliberately, as described 
below—and advancing perspectives on how interpersonal emotion dynamics arise 
and are associated to well-being is critical for future progress in the study of 
emotion.

8.2 � Why and How Do Partners Impact Each Other’s 
Emotions?

A central premise in relationship science is that partners are interdependent (Rusbult 
& Van Lange, 2003), which indicates that each partner’s experiences, as well as the 
emotions tied to those experiences, are linked. Said differently, partners influence 
each other in myriad and often profound ways. Consider the example of a cohabit-
ing couple who have a baby. Because they must care for the baby, partners have to 
coordinate childcare, including changing diapers, staying up in the middle of the 

1 Intimate relationships are particularly close interpersonal relationships that are defined by deep 
knowledge, interdependence, shared commitment, and feelings of caring, trust, and responsiveness 
(Miller, 2014). In this chapter, we mainly focus on adult intimate relationships in the form of 
romantic relationships, and often give examples of heterosexual romantic relationships. However, 
this does not in any sense imply that the proposed concepts do not apply to more diverse romantic 
relationships or other types of close relationships (e.g., adult-caregivers and close friends).
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night when the baby cries, arranging logistics such as daycare, and so on. 
Furthermore, given that the partners share a household, they may be likely to divide 
household labors and have pooled economical resources. Finally, they spend much 
of their time together, not only in joint activities such as visiting family and friends, 
but also in recreation and simply living everyday life in each other’s presence. Thus, 
both partners are dependent on each other, and because they have an enormous abil-
ity to influence each other’s functioning and well-being, they must balance their 
own and their partner’s needs and goals. As such, intimate relationships are best 
conceptualized not in terms of two independent persons who occasionally influence 
each other but instead as interdependent subparts of a single system, in which the 
members of the system are strongly linked. This notion is reflected in many theories 
and frameworks on intimate relationships, such as the transactive goal dynamics 
theory (Fitzsimons et al., 2015), which defines partners as interdependent subparts 
of a single self-regulating system, and family systems theories, which consider the 
family as a unitary interacting system (Bateson, 1972; Von Bertalanffy, 1950).

Because of their interdependence, partners’ emotions and subsequent well-being 
depend on each other’s behavior to a large extent. For instance, over time, partners 
come to expect certain behaviors of each other and when these expectations are not 
fulfilled, emotional reactions are likely to occur (Berscheid & Ammazzalorso, 2001; 
Fehr & Harasymchuk, 2005). As an example, partners may elicit negative emotions 
in each other not only because of unmet needs, such as in the case of one partner not 
doing their household tasks (although this is of course culturally-dependent), but 
they can also elicit positive emotions in each other by exceeding expectations (e.g., 
by doing more than their share of the housework). Relatedly, partners can facilitate 
each other’s goals (e.g., providing the partner with spare time by doing some of their 
tasks) or, in contrast, hampering their goal progress (e.g., demanding that the part-
ner do time-consuming tasks when a difficult work assignment must be completed), 
which can result in the experience of positive or negative emotions, respectively 
(Fitzsimons et al., 2015; Verhofstadt et al., 2020).

In turn, the experience of emotions in relationships accounts for substantial vari-
ability in the quality of these relationships (Bradbury et al., 2000). For instance, 
positive emotions can enhance closeness and relationship quality by prompting 
behavior that encourages bonding (Sels et al., 2021; Shiota et al., 2004; Wei-Fang 
et al., 2019), whereas negative emotions can initiate destructive interaction cycles 
(Verhofstadt et al., 2020). Experiencing negative emotions is often detrimental for 
relationship quality and stability, although some studies suggest that under certain 
circumstances negative emotions can promote healthy change in intimate relation-
ships and thereby improve relationship quality (for an overview, see Fincham & 
Beach, 1999). It bears mention that different types of negative emotion may serve 
different functions in intimate relationships. In this regard, the distinction between 
soft (e.g., feeling sad or hurt) and hard (e.g., feeling angry or aggravated) negative 
emotions seems particularly relevant (Sanford, 2007; Randall & Schoebi, 2015). 
For instance, the expression of sadness is more likely to be beneficial to a relation-
ship than anger or disgust (Sanford & Rowatt, 2004), presumably because sadness 
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is likely to foster a compassionate response, whereas anger is more likely to trigger 
defensiveness and distance.

Apart from partners’ behaviors and subsequent emotional responses within the 
relationship, situations that occur outside the relationship, and the emotions these 
events engender, undoubtedly impact both partners because of their interdepen-
dence. For example, stress that one partner experiences outside of the relationship 
(i.e., external stress; Randall & Bodenmann, 2009) can spill over into the relation-
ship, distressing both partners (stress crossover) (Bodenmann, 2005; Neff & Karney, 
2007; Randall & Bodenmann, 2017). Similarly, happy occurrences in one partner’s 
life can lead to shared positive emotions for both (Gable & Reis, 2010). Various 
mechanisms have been proposed to explain how emotions are carried over from one 
partner to the other. Of particular relevance to emotions dynamics, partners can use 
each other’s emotional expression, communicated verbally or nonverbally, as infor-
mation to help guide their appraisal of the event (Parkinson & Simons, 2009; 
Verhofstadt et al., 2016) or they can mirror their partner’s emotions, which may lead 
them to experience similar feelings without having any idea why (Hatfield et al., 
2014). Importantly, these processes typically happen almost immediately, so that 
they are best reflected in second-to-second-basis measurements. A good example of 
this is positivity resonance, which describes how one person’s positive emotion 
inspires and amplifies the other person’s positive emotion (Brown et  al., 2021), 
which in turn further inspires and amplifies the first person’s positive emotions, 
resulting in a cycle of biobehavioral synchrony (peoples’ nonverbal behaviors, auto-
nomic physiology, and neural firings sharing the same tempo) and mutual care 
(Fredrickson, 2013).

Beyond automatically influencing each other’s emotions, partners can also turn 
to and rely on each other explicitly to regulate their emotions or try to deliberately 
impact the other partner’s emotion (Luginbuehl & Schoebi, 2020), a process some-
times referred to as interpersonal emotion regulation (Zaki & Williams, 2013). 
Interpersonal emotion regulation refers to a goal-directed process in one partner 
(the regulator) that is driven by some kind of motive (Niven, 2017) to try to change 
the other partner’s emotion. When a personally relevant event occurs, either nega-
tive or positive, people commonly turn to others to share their experiences, and for 
those in a romantic relationship, this is most often their partner (Rimé et al., 2020). 
For instance, when one feels overwhelmed by work responsibilities, people tend to 
turn to their partner for support (e.g., Collins et al., 2010; Sullivan & Davila, 2010). 
Another example occurs when people seek out their partner to share the news when 
good things happen, a process referred to as capitalization (Gable & Reis, 2010; 
Peters et al., 2018). For instance, when sharing the news of a job promotion, both 
the act of relating this information and the response of the partner—whether it is 
encouraging, disinterested, or disparaging—has important personal and interper-
sonal consequences (e.g., for the experience of positive emotions, self-esteem, inti-
macy, and relationship stability; for a review, see Gable & Reis, 2010). However, it 
must be noted that there is a lack of research on understanding whether or not part-
ners are deliberately trying to alter each other’s emotions (for a notable exception, 
see Ruan, 2021). Indeed, partners often influence one another’s emotions even when 
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they are not consciously trying to do so or when their partner is not aware of this 
influence (e.g., Fitzsimons & Finkel, 2011; Howland & Simpson, 2010).

In this chapter, we do not distinguish between automatic and deliberate processes 
of emotion dynamics (cf., Zaki & Williams, 2013); rather, in its broadest sense, our 
model of interpersonal emotion dynamics refers to the ways in which emotions and 
emotional self-regulation are dynamically—that is, in a continuous and context-
dependent manner—influenced by partners (Reis, 2014). This definition captures 
the myriad forms of interconnection between partners’ behavior and emotional 
experience. We note that this definition is consistent with several basic axioms of 
many family system theories, such as communication theory (Hargie, 2010; 
Watzlawick et al., 2011), which posits that every behavior in an interaction is a form 
of communication, such that non-communication is impossible, even through 
silence or avoiding conversation altogether (Watzlawick et al., 2007). Consequently, 
during interactions, even behavior intended to be non-communicative provides a 
message and therefore has (presumably unintended) effects or influence on the 
other person. This definition construes causality as bidirectional and reciprocal, 
with both partners continually influencing and responding to each other, resulting in 
cycles of mutual influence or reciprocal determination (e.g., Gottlieb & Halpern, 
2002; Witherington, 2011).

8.3 � Interpersonal Emotion Dynamics: State of the Art

To date, the study of interpersonal emotion dynamics has largely been represented 
in two fields: relationship science and emotion science.

8.3.1 � Interpersonal Emotion Dynamics 
in Relationship Science

An abundance of research grounded in relationship science has shown that when 
partners become interdependent, they influence each other’s emotions in numerous 
ways (see Reis, 2001, 2014). Indeed, the important link between emotions and inti-
mate relationships has been well-recognized by relationship researchers, who 
widely acknowledge that intimate partners shape each other’s emotional experi-
ence, and that in turn their emotional experiences shape their relationship (for over-
views, see Berscheid & Ammazzalorso, 2001; Randall & Schoebi, 2018). Despite 
this, most relationship research on emotions has measured partners’ emotional 
experiences and phenomena as one-time, momentary, or static between person dif-
ferences, instead of investigating these processes from a dynamic perspective. For 
instance, partners’ empathic responses have traditionally been examined as instan-
taneous phenomena (induced by a situation) or as a static personality trait 
(e.g., assessed by questionnaires; for an overview of experimental studies and 
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assessments of individual differences in empathy, see Davis, 2018), instead of as a 
dynamic process that unfolds, fluctuates, and is shaped by social interaction (Main 
et al., 2017; Preston & Hofelich, 2012; Zaki et al., 2008). However, as demonstrated 
elsewhere in this volume, the fundamental nature of emotion is misconstrued when 
its dynamic nature is not taken into account (Kuppens, 2015).

Interpersonal emotional processes are dynamic processes of continuous attun-
ement and are constinually being shaped by each partners’ response (i.e., feedback 
loops; Butler & Randall, 2013). For example, the experience of ‘chemistry’ in rela-
tionships has been shown to reflect emotional synchrony between interacting par-
ties, more so than either persons’ individual emotional experience (Major et  al., 
2018; Reis et  al., in press). To capture these temporal and interactive processes, 
repeated measurements of emotional experiences are needed, such as by using 
experience sampling methods or continuous physiological recording in natural set-
tings or dyadic laboratory interactions (Mehl & Conner, 2012). Such methods allow 
researchers to measure emotions as they emerge, occur, and vary across time.

8.3.2 � Interpersonal Emotion Dynamics in Emotion Science

The field of emotion science has traditionally emphasized individual or intraper-
sonal processes while ignoring emotion’s fundamentally interpersonal nature (for 
comments on this issue, see, for example, Butler & Gross, 2009; Campos et al., 
2011). However, in the context of relationships, emotion dynamics depend upon the 
interaction of individuals in the relationship (e.g., Butler, 2011). For instance, when 
one partner expresses their concerns about household tasks, the feedback provided 
by the partner, whether explicit (e.g., by verbally assuring) or implicit (e.g., by a 
subtle sigh) will have immediate consequences for the emotion experienced.

Nevertheless, most emotion research focuses on individuals, investigating how 
emotions impact, and are impacted by, processes operating within, but not between, 
persons (Parkinson & Manstead, 2015). Even in research that examines emotions in 
putatively social contexts, the most typical research designs examine the behavior 
of participants who are passive recipients of information about social events rather 
than active agents interacting with other persons in real-world or ecologically valid 
contexts (Fischer & Van Kleef, 2010).

In sum, a longstanding singular focus on understanding interpersonal emotion 
dynamics within relationship and emotion science has yielded an incomplete pic-
ture of what emotion is and how it unfolds in real life, restricting a full understand-
ing of this important concept. Fortunately, with new theories and research methods 
coming to light, this situation has begun to change, as we describe in the sections 
that follow.
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8.4 � The Rise of Research on Interpersonal 
Emotion Dynamics

Research on interpersonal emotion dynamics has seen a significant increase in the 
past 10–15 years because of a growing awareness of the importance of this perspec-
tive and the availability of appropriate research technologies, methods, and statisti-
cal techniques (see Butler, 2018). Hand in hand with technology that has been 
created for collecting intensive longitudinal dyadic data that is capable of capturing 
real-time behaviors and emotions, methods to analyze and model interpersonal 
emotion dynamics are increasingly being developed and made accessible to a wide 
audience (Hamaker et al., 2015; Lougheed & Hollenstein, 2018). For instance, rties 
is an open-source R-package that provides tools for modeling interpersonal dynam-
ics (Butler & Barnard, 2019) and Gridware is a free software program for graphi-
cally depicting real-time emotional dynamics (Hollenstein, 2013). Relatedly, 
flexible statistical and graphical methods such as dynamic systems models are pro-
posed (Butner et al., 2018). As a result, researchers are increasingly able to study 
interpersonal emotion processes as dynamic interpersonal patterns that emerge 
between people, thus providing a richer and more nuanced understanding than prior 
work adopting static, instantaneous, or intrapersonal perspectives.

Most existing research on interpersonal emotion dynamics focuses on partners’ 
interdependent emotional changes or how partners’ emotions are linked across time 
(Butler, 2011; Randall & Schoebi, 2018). This work involves a broad range of time-
scales assessing emotional experiences, ranging from short-term, second-to-second 
assessments (e.g., Randall et  al., 2013), to more long-term, weekly assessments 
(e.g., Cooper et al., 2020). For instance, using data collected four times a day for 
three consecutive days, Saxbe and Repetti (2010) examined the extent to which one 
person’s cortisol levels and negative mood were associated with their partner’s 
mood/cortisol levels. As another example, Schoebi (2008) examined people’s sensi-
tivity to their partner’s emotions throughout daily life: how well does one person’s 
change in emotions predict the partner’s subsequent change in emotions? Such 
research on dynamic, direct emotional linkages revealed conflicting and ambiguous 
results about the occurrence, importance, and underlying mechanisms related to this 
question (for overviews, see Butler, 2017; Sels et al., 2018).2

On the one hand, results from these and other similar studies suggest that emo-
tional linkage can emerge, especially for negative emotions (notwithstanding the 
limitation that most of this work has been conducted with different-gender couples 
residing in Western cultures). On the other hand, recent evidence suggests that many 
couples do not exhibit meaningful emotional linkages, at least in terms of the con-
nections (e.g., linear correlations between partners’ emotions) or contexts (e.g., 
dyadic lab interactions or daily life) that researchers have most often examined 
(Sels et al., 2020). Further, sometimes emotional interdependence reveals no asso-
ciation with relationship and individual well-being (e.g., relationship satisfaction 

2 For a review with similar conclusions for physiological linkages, see Timmons et al. (2015).
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and depression; Sels et  al., 2016), whereas at other times emotional interdepen-
dence appears to be indicative of both positive (e.g., cooperation, Randall et  al., 
2013, or interpersonal sensitivity, Schoebi, 2008) and negative relational and indi-
vidual functioning (e.g., insecure attachment, Butner et al., 2007, and stress, Neff & 
Karney, 2007). These seemingly contradictory findings present challenges to the 
study of interpersonal emotion dynamics and have forced researchers to step away 
from a primarily descriptive approach to a more theoretically defined account 
(Butler, 2017), to which we hope to contribute in this chapter.

8.5 � Challenges in Studying Interpersonal Emotion Dynamics

Among the multiple challenges faced by researchers interested in the study of inter-
personal emotion is the need to identify underlying situational, contextual, and per-
sonal factors that give rise to the various patterns of interpersonal emotion dynamics 
that have been documented (Randall & Schoebi, 2018) For instance, emotional link-
ages between partners can appear not only because of actual influence but also 
because of emotional similarity, which might reflect assortative mating (Feng & 
Baker, 1994; Gonzaga et al., 2010; Luo & Klohnen, 2005; Noel & Nyhan, 2011; 
Segrin, 2004). Furthermore, because intimate partners tend to live in close physical 
proximity, sharing environments and experiences that they may interpret in similar 
fashions, they may display similar emotional rhythms (Anderson et  al., 2003; 
Gonzaga et al., 2007). In other examples, similar patterns of interpersonal emotion 
dynamics can arise because of automatic and unconscious emotional influences or 
because of deliberate influences, and because of emotions attributable to factors 
outside or within the relationship (Butler, 2015). Therefore, finding the appropriate 
match between theoretical interpretation and descriptive patterns of interpersonal 
emotion dynamics can be challenging, just as is deciding on the right level of speci-
ficity (Butler, 2018). For example, should a researcher focus on specific patterns 
restricted to discrete emotions, to the broader categories of negative versus positive 
emotions, to specific temporal linkages, or to specific contexts?

Another relevant challenge is intrinsic to the literature itself. In its earliest stages, 
research on interpersonal emotion dynamics suffered from a lack of shared lan-
guage and an absence of overarching theories and research on mechanisms (Butler, 
2011, 2018; Butler & Randall, 2013). As a result, knowledge accumulation was 
hampered. Fortunately, scholars are beginning to develop frameworks that provide 
broadly useful models for describing, understanding, and testing interpersonal emo-
tion dynamics. For example, the Situation-Context-Person Framework of 
Interpersonal Emotion Dynamics (SCOPE) framework aims to disentangle situa-
tional (e.g., support vs. conflict interactions), contextual (e.g., degree of interdepen-
dence), and personal (e.g., attachment style) factors that may contribute to patterns 
of interpersonal emotion dynamics within close relationships over time (Randall & 
Schoebi, 2018). Importantly, this model explicitly acknowledges that these factors 
interact to initiate, shape, and modulate partners’ emotional experiences, both 
within an interaction and relationship over time. Also, it has been proposed that 
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long-standing theoretical models from relationship and emotion science can be 
integrated in emotion dynamics research to help researchers understand how part-
ners continuously impact each other’s emotions, such as the social baseline theory 
(Beckes & Coan, 2011), attachment theory (Bowlby, 2005), relational regulation 
theory (Lakey & Orehek, 2011), and socio-functional accounts (Keltner & Haidt, 
1999; for overviews, see Luginbuehl & Schoebi, 2018; Randall & Schoebi, 2018).

Aiming to further advance research on interpersonal emotion dynamics and the 
association with well-being, we next discuss two key themes or assumptions that 
often seem to underlie theories and empirical work on dynamic emotional processes 
in intimate relationships.

8.6 � Underlying Assumptions About Interpersonal Emotion 
Dynamics and Well-Being

Two discernible although often implicit assumptions pertain to existing theory and 
research on the nature of interpersonal emotion dynamics and its association with 
individual and relational well-being. First, partners’ emotions are continuously 
influenced by one another, which can both enhance or reduce individual and rela-
tional well-being. Second, the outcomes associated with interpersonal emotion 
dynamics may depend on the responsiveness of the partners.

Starting with the first assumption, we have described above (under “Why and 
How Do Partners’ Emotions Impact One Another?”) how partners’ interdependence 
leads to a continuous process of influencing each other’s emotions. In that section, 
we reviewed literature showing that these influences can result in both improved 
and worsened moods, depending on what exactly is transpiring between the part-
ners. Importantly, this indicates that interpersonal emotion dynamics are neither 
inherently good nor bad.

Partners can differ in the strength with which their emotions and emotional well-
being are generally dependent on each other, and this can both hamper and facilitate 
their well-being over time. In formal terms, couples can be conceptualized as 
higher-order dynamic emotional systems that differ in the strength of their emo-
tional interdependence (i.e., the degree to which the partners tend to impact each 
other’s emotions) (e.g., Butler, 2011; Sels et al., 2016, 2018). The strength of this 
interdependence is a characteristic of the dyad and may be associated with the qual-
ity of their individual and relationship functioning, both good and bad. For example, 
strong connections can help partners to down-regulate each other’s emotions in 
periods of stress, but can also cause them to become stuck in destructive patterns 
such as co-rumination or reciprocal negative affect. Timmons et al. (2015) reviewed 
evidence showing that the strength of physiological linkage (focusing on covaria-
tion between partners’ physiological state for different types of physiological char-
acteristics such as cortisol, heart rate, and testosterone) between intimate partners 
was both negatively (e.g., linkage in cortisol was negatively associated with 
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relationship satisfaction) and positively (e.g., linkage in multiple systems was posi-
tively associated with the ability to identify the emotions of one’s partner) associ-
ated with relationship processes, suggesting that indeed such linkage may confer 
benefits, but also may put couples at risk if they become entrenched in patterns of 
conflict or distress.

This conceptualization of couples as higher-order dynamic emotional systems is 
similar to the conceptualization of goals in the transactive goal dynamics theory 
(Fitzsimons et al., 2015). According to this theory, the extent to which partners have 
strong links among their goals is referred to as goal interdependence (or transactive 
density). Goal interdependence is expected to result in “good” outcomes when part-
ners coordinate well, efficiently drawing on the collective resources afforded by 
interdependence to better accomplish their goals (e.g., when partners distribute 
household tasks in line with each partner’s strengths or preferences). In these cases, 
partners experience transactive gain, or achieve better outcomes than they would 
individually. However, when partners have high goal interdependence but their 
coordination is inefficient, they may experience transactive loss and achieve worse 
outcomes than they would individually—for example, when the household division 
of labor primarily falls on one person against that person’s will. Effective coordina-
tion in an interdependent dyad is defined by having shared goal representations 
(agreeing on what goals to pursue; e.g., do they both want a child) and mutual rela-
tionship orientation (e.g., both partners being committed to the relationship). 
Importantly, when partners offer each other goal-relevant support (e.g., minding the 
children while the partner works on her dissertation), this support is experienced as 
responsive to current goals and promotes perceived efficacy, availability of 
resources, and desired interdependence (Fitzsimons & Finkel, 2018).

This principle brings us to the second assumption. The outcomes associated with 
interpersonal emotion dynamics are expected to depend on partners’ responsiveness 
to each other. Recognizing their interdependence, partners can act responsively, tak-
ing each other’s needs, goals, preferences, and emotions into account, or they can 
act as independent individuals, which is likely to result in conflict and suboptimal 
outcomes (Rusbult et al., 2001). For example, in the context of a partner experienc-
ing work-related stress, the non-stressed partner can be responsive to their partner’s 
emotional experience, aiming to understand, validate, and care for their needs, or 
they can act unresponsively, such as by misunderstanding the partner or by being 
dismissive or critical (Bodenmann et al., 2019). Imagine a couple, Luca and Emma, 
who are highly emotionally interdependent but low in responsiveness. If Luca expe-
riences a distressing event, her expressions of negative affect are likely to elicit 
negative feelings in Emma. Instead of aiming to understand and support her dis-
tressed partner, Emma is likely to respond by feeling distressed herself, and perhaps 
even personally attacked, leading to unresponsive behavior that fosters an escalating 
negativity cycle between both partners. On the other hand, in the same case but now 
characterized by high levels of responsiveness, Luca’s communication of distress 
may arouse negative emotions in Emma, but it is also likely to elicit empathic con-
cern and supportive behaviors that helps downregulate Luca’s negative emotions. 
Crucially, the effectiveness of Emma’s support depends on whether Luca 
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experiences her support as responsive to her needs—after all, if what Emma offers 
is not what Luca feels she needs, it is unlikely that her distress would abate. In this 
way, the important moderating role of perceived partner responsiveness may help 
explain some of the conflicting results, described above, that have been found on 
emotional interdependence and relationship processes in intimate partners, with 
high emotional interdependence showing associations with both beneficial and neg-
ative relationship processes. As such, we posit that the explicit inclusion of a clear 
conceptualization of responsiveness is key to advancing knowledge about interper-
sonal emotion dynamics, and their implications for well-being.

8.7 � Introducing Perceived Partner Responsiveness 
to Interpersonal Emotion Dynamics

Perceived partner responsiveness, a core integrative construct that encompasses 
many processes in relationship science, describes a process in which individuals 
come to believe that their relational partner attends to and supports core aspects of 
their selves: their needs, goals, preferences, and personal welfare (Laurenceau et al., 
1998; Reis et al., 2004; Reis & Shaver, 1988). Perceived partner responsiveness is 
intrinsically tied to emotional processes, as it becomes relevant whenever interac-
tions have implications for the partners’ concerns and well-being, and thus, when 
these interactions elicit emotions, the partner’s response engenders further emotions 
(e.g., feeling loved or unloved, supported or unsupported, feeling gratitude; Algoe 
et al., 2013; Reis et al., 2004).

To be more specific, in every interaction in which a person discloses personally 
relevant information to one’s partner, such as important feelings, thoughts, needs, or 
concerns, the partner’s response is important to the associated outcomes. By 
expressing important aspects of the self, disclosers give listeners an opportunity to 
enact responsiveness by showing understanding, validation, and care, or, alterna-
tively, to withhold such responsiveness (Reis & Shaver, 1988). Understanding 
means that the partner “gets things right” and shows accurate insight into the mat-
ters that the discloser is sharing. Validation indicates that the partner values and 
respects the discloser’s perspective, and caring refers to affection and concern for 
the discloser’s well-being. It is important to recognize that the emotional impact of 
enacted responsiveness depends on whether that responsiveness is, or is not, per-
ceived as such. That is, although extensive evidence indicates that perceived partner 
responsiveness is grounded in reality (see Reis et al., 2004, for a review), it is also 
substantially influenced by characteristics of the perceiver, such as their personality 
and situationally activated motives (Lemay & Clark, 2015; Reis & Clark, 2013).

Perceived partner responsiveness has been shown to predict numerous beneficial 
outcomes, such as intimacy (Laurenceau et  al., 2004), emotional well-being and 
happiness (Selcuk & Karagobek, 2018), emotional openness (Ruan et al., 2020), 
personal growth and sleep efficiency (Selcuk et al., 2017), self-esteem (Cortes & 
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Wood, 2018; Murray et al., 2000), and even lower mortality risk (Selcuk & Ong, 
2013). In this vein, and supporting our proposal about the relevance of responsive-
ness to interpersonal emotion dynamics, research shows that perceived partner 
responsiveness to emotional self-disclosures are more strongly tied to important 
relational outcomes such as intimacy than to factual self-disclosures (Laurenceau 
et al., 1998).

We are not the first to emphasize the necessity of attending to partners’ respon-
siveness in understanding people’s emotional lives. Clark et al. (2001) have argued 
that perceiving that another person will be responsive to one’s needs influences the 
expression and experience of emotions, presumably because the target’s expected 
responsiveness lessens concerns about potential vulnerability. In turn, feeling 
responsible for another person’s needs also influences the experience and expression 
of certain emotions. For instance, people are more willing to express emotions that 
reveal weaknesses when they perceive those partners to be more responsive to them 
(Von Culin et al., 2018) and experience more gratitude towards these persons (Algoe 
et al., 2008). At the same time, people also experience certain relational emotions, 
such as happiness (Boothby & Clark, 2018), guilt (Baumeister et  al., 1994; 
Baumeister & Leary, 1995), more often in relationships in which they feel respon-
sible for their partner’s needs than in other relationships, and apparently construe 
their emotional experiences and expressions as signals of caring about the other 
person (Clark et al., 2001). Further, perceived partner responsiveness is expected to 
affect emotion regulation, with responsive partners more often attempting to regu-
late their partner’s emotions beneficially (Clark et al., 2017a, b; Reis, 2014).

Accumulating research identifies explicit links between interpersonal emotion 
dynamics, perceived partner responsiveness, and well-being. For example, in one 
recent study, individual differences in intrapersonal emotion dynamics—emotional 
inertia or the extent to which emotions are resistant to change—were associated 
with less perceived partner responsiveness and relationship satisfaction (Luginbuehl 
& Schoebi, 2020). This research suggests that when appropriate emotional respond-
ing to one’s environment is hampered, the quality of one’s interpersonal relation-
ships is impaired. Specifically, this research showed that a lack of emotional 
responses to situations that one considers important for the relationship, such as 
conflicts, may lead to perceiving the partner as unresponsive.

Other studies reveal dynamic associations between emotion regulation and per-
ceived partner responsiveness. For example, higher responsiveness predicts greater 
emotional expression (Ruan et al., 2020), while perceiving lower regard by partners 
predicts more expressive suppression and lower conflict resolution (Thomson et al., 
2018). In addition, perceived partner responsiveness seems to impact the effects of 
emotion regulation, as perceived partner responsiveness recently has been shown to 
moderate associations between emotional coping strategies and negative emotional 
responses to stress (Kane et al., 2019). In the reverse causal direction, in dyadic 
interactions, positive emotions predict higher intentions to be responsive whereas 
negative emotions predict lower intentions (Lin et al., 2019).
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8.8 � Implications and Future Directions

As the field of interpersonal emotion dynamics evolves, additional research is 
needed on developing theories and testing frameworks (e.g., SCOPE; Randall & 
Schoebi, 2018) that can help elucidate important mechanisms that link relationships 
to various health outcomes. In reviewing recent work on interpersonal emotion 
dynamics, we identified several key themes. In particular, we argued that because 
partners are interdependent, their emotions are continuously influenced by each 
other, and these dynamic influences can result in enhanced or reduced well-being, 
depending in part on perceived partner responsiveness. By identifying these themes, 
we hope to inspire additional targeted research in this area. Given that interpersonal 
emotion dynamics can only be properly understood within their relational context it 
is crucial to integrate existing work in systematic, coherent accounts, supplemented 
by theory-driven studies that investigate the operation and impact of interpersonal 
emotion dynamics. Here, we describe several questions that we think are important 
to address as the field moves toward a comprehensive understanding of interper-
sonal emotion dynamics.

8.8.1 � Widening the Scope of Interpersonal Emotion Dynamics

Empirical research to date has mainly focused on interpersonal emotion dynamics 
in the sense of direct emotion-to-emotion linkages or emotional interdependence. 
To some extent, this focus has distracted researchers from other ways in which part-
ners may impact each other’s emotions over time. For instance, a partner’s respon-
sive touch has been shown to predict enhanced positive emotions in daily life, and 
this association is mediated by psychological intimacy, which is closely related to 
perceived partner responsiveness (Debrot et  al., 2013). Another example is sug-
gested by research on non-conscious activation of interpersonal goals, which has 
shown that priming individuals with representations of significant others can acti-
vate goals, and hence emotions, related to that individual (Fitzsimons & Bargh, 2003).

Important in this regard is accounting for the role of perceived partner responsive-
ness in investigations of interpersonal emotion dynamics. We see three components 
of emotion that seem particularly relevant to perceived partner responsiveness and 
that warrant attention in future research: (1) emotional expressions, (2) empathic 
accuracy or actual empathic understanding, and (3) perceived empathic understand-
ing. First, with regard to emotional expressions, opportunities for responsiveness 
arise when important, vulnerable aspects of a person, such as emotions or needs, are 
expressed towards the partner (i.e., personal self-disclosure). For example, social 
support attempts are typically initiated when partners communicate personal difficul-
ties to each other (Sullivan & Davila, 2010). Relatedly, when something positive 
occurs, such as a personal success or triumph, partners have an opportunity to respond 
responsively (Gable et al., 2006). In fact, socio-functional accounts of emotions posit 
that emotions serve primarily a communicative function and are meant to improve 
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interpersonal relationships (e.g., Fischer & Manstead, 2008; Keltner & Haidt, 1999; 
Niedenthal & Brauer, 2012). If so, how the partner responds to the communication 
plays a crucial role in determining whether or not the relationship benefits.

Second, empathic accuracy reflects partners’ ablity to accurately assess the spe-
cific content of the feelings that are experienced by the discloser during interactions, 
as these emotions occur. Empathic accuracy (Ickes, 1993) is a form of cognitive 
empathy and determines how responsive a listener can be and how well understood 
the discloser is likely to feel (e.g., Gregory et al., 2019; Zaki et al., 2008). However, 
although an accurate empathic understanding seems necessary to be able to respond 
responsively, recent research suggests that it is not sufficient, but that it must be 
combined with the right motivation in order to result in responsive behavior; that is, 
an intent to be supportive is also imperative (Winczewski et al., 2016).

Lastly, empathic accuracy may or may not be perceived as such by the discloser, 
depending on the circumstances, motives, and skills of the interacting persons. 
Evidence strongly indicates that felt (or perceived) empathic understanding matters 
most for people’s well-being (Hinnekens et  al., 2019; Pollmann & Finkenauer, 
2009; Reis et  al., 2017; Simpson et  al., 2003). The distinction between actual 
empathic accuracy and felt empathic understanding is important because people can 
feel understood in the absence of actual understanding, and because people can feel 
misunderstood even when their partner accurately understands their emotional state. 
Thus, it is not surprising that actual and perceived understanding are only modestly 
correlated (Hinnekens et al., 2019; Pollmann & Finkenauer, 2009).

8.8.2 � The Importance of Perceptions

An additional consideration for future research is based on the importance of per-
ceptions, and, more generally, the role of perceptions in interpersonal emotion 
dynamics. Extensive research has shown that people in satisfied relationships tend 
to see their partner more positively than warranted, and these perceptual biases in 
turn help keep the relationship happy and committed (Lemay & Clark, 2015; Murray 
& Holmes, 2017). With regard to emotions specifically, intimate partners may proj-
ect their own emotions onto one another (e.g., Clark et al., 2017b), a tendency that 
is exacerbated by certain individual differences. For example, avoidantly attached 
individuals tend to perceive more negative emotions in their partners (Overall et al., 
2015). In the first evidence for the importance of perceived interpersonal emotion 
dynamics, we showed in a recent study that both accurately perceiving and overes-
timating emotional similarity positively predicted experienced closeness towards a 
partner, while actual emotional similarity only predicted closeness through its effect 
on perception (Sels et al., 2020). A similar effect has been found for similarity in 
other domains, such as sexual similarity (de Jong & Reis, 2014). Further, interper-
sonal emotion dynamics may also help us better understand how people’s emotions 
are influenced by their expectations about how their behavior will affect their part-
ner’s emotions. For instance, recent work on partner buffering suggests that some 
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people find ways to emotionally and behaviorally regulate their insecurely attached 
partners, which helps such partners to feel better and behave more responsively 
(Arriaga et al., 2018; Simpson & Overall, 2014).

8.8.3 � The Need for More Diverse and Clinical Samples

Investigations of interpersonal emotion dynamics have been mainly limited to 
homogenous, so-called WEIRD (Western, educated, industrialized, rich, and demo-
cratic) samples, which largely neglect cultural-contextual influences that seem 
likely to impact interpersonal emotion dynamics, perhaps profoundly so (Henrich 
et al., 2010). If researchers wish to construct a truly generalizable science, empirical 
studies on diverse populations are needed (Arnett, 2016; Roberts et al., 2020). For 
instance, same-gender couples experience unique external stressors stemming from 
their sexual minority status, which might affect the way in which stress spills over 
from one partner to the other (Cooper et al., 2020). By the same token, interpersonal 
emotion dynamics are inherently influenced by culture, broadly defined. Different 
cultural values, goals, norms, and practices in intimate relationships result in impor-
tant cultural differences in emotional experiences (Mesquita et  al., 2016). As a 
result, interpersonal emotion dynamics are best understood through the cultural lens 
in which they occur (Boiger & Mesquita, 2012; Mesquita & Boiger, 2014). By 
studying interpersonal emotion dynamics with more diverse samples, we can 
advance understanding of how specific experiences and cultural influences, broadly 
defined, may give rise to and affect interpersonal emotion dynamics and resulting 
associations.

Relatedly, a majority of research on interpersonal emotion dynamics has focused 
on healthy couples, largely overlooking clinical (i.e., more emotionally distressed) 
couples. However, determining how interpersonal emotion dynamics operate for 
individuals with diagnosed mental illness may be critical before implementing 
interventions and trainings. Moreover, it seems likely that information gleaned from 
couples facing relationship distress or in which one of the partners has serious men-
tal health issues can provide key insights about how emotions ebb and flow across 
partners in all relationships. As such, it is important to consider how the social 
aspects of health interact with the biological and psychological, as described by the 
biopsychosocial model (Bodenmann & Randall, 2013; Lehman et al., 2017).

8.8.4 � A Focus on Mechanisms

Finally, we suggest that a crucial next step will involve investigating interpersonal 
emotion dynamics as underlying mechanisms and explicit mechanisms of change in 
relationship development, maintenance, and longevity. Most interpersonal emotion 
dynamics research consists of correlational studies, but there is a need for 
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experimental and long-term longitudinal studies, so that causal relationships can be 
uncovered (for notable exceptions, see e.g., Randall & Schoebi, 2015; Rohrbaugh 
et al., 2009). Such knowledge would be valuable for informing clinical practice and 
the design of couple therapies and preventive interventions. In this light, we note 
that many couple therapies emphasize emotional processes such as emotional dis-
closure and understanding, and responsiveness (Benson et al., 2012; Christensen, 
2010; Sprenkle & Blow, 2004). In their work on extracting common principles that 
underlie specific couple therapies, Benson et al. (2012) state that “while the exact 
rationale and technique may differ by therapy, most couple therapies do seek to 
elicit private thoughts and emotions and encourage appropriate partner responsive-
ness to those expressions” (p. 29) Dynamic emotional processes are indeed central 
elements in couple therapies such as Emotionally Focused Couple Therapy (Johnson 
& Greenman, 2006), Insight Oriented Couple Therapy (Snyder et  al., 1991), 
Integrative Behavioral Couples Therapy (Roddy et al., 2016), and Acceptance and 
Commitment Therapy (Hayes et al., 2009). This commonality suggests that a better 
understanding of interpersonal emotion dynamics in intimate relationships will be 
fruitful in advancing these treatment methods.

Initial evidence on interpersonal emotion dynamics also suggest the potential of 
targetting interpersonal emotion dynamics in intimate relationships. For instance, 
the Couple Coping Enhancement Training (CCET) program explicitly focuses on 
enhancing the disclosure of stress-related emotions and an accurate partner under-
standing of these disclosures, and has been shown to reduce marital distress and 
increased marital satisfaction (Bodenmann & Shantinath, 2004). Likewise, a 
partner-assisted emotional disclosure intervention in people with cancer has shown 
significant improvements in relationship quality and intimacy, especially when the 
patient initially reported holding back from discussing cancer-related concerns 
(Porter et al., 2009, 2012). Similarly, feeling well understood, a central component 
of perceived partner responsiveness, is associated with better marital quality in 
patients having end-of-live discussions with their spouses (Moorman, 2011). 
Finally, there is some process research showing that changes in specific emotional 
processes during emotion-focused and integrative behavioral couple therapies pre-
dict therapy outcomes (e.g., Cordova et al., 1998; McKinnon & Greenberg, 2017). 
These studies illustrate the potential for improving psychological interventions by 
focusing on interpersonal emotion dynamics.

8.9 � Conclusion

This chapter presented a comprehensive account of the importance of considering 
emotion dynamics in relational contexts. Our review indicates that the intrinsic 
dynamic link between emotional experiences and intimate relationships should not 
be overlooked. As the promising field of interpersonal emotion dynamics is on the 
rise and is becoming integrated across disciplines and fields, we hope to have 

L. Sels et al.



171

contributed to its advancement by identifying underlying key themes (interdepen-
dence and perceived partner responsiveness), and suggesting new directions for 
future research.
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Chapter 9
A Mutualism, Affiliation and Status 
Seeking (MASS) Framework 
of Fundamental Affective Dynamics 
and Their Survival Benefits

Dean Mobbs , Sarah M. Tashjian , and Brian Silston

Abstract  Primates have developed a unique set of complex drives for successful 
group living, yet theorists rarely contemplate their taxonomy and how such drives 
relate to affective dynamics fundamental for group success. Affective dynamics and 
drive fulfilment exert mutual influence on one another, ultimately collectively pro-
moting or undermining survival. We first identify six core benefits of group living 
common among both humans and other animals, and from this foundation we pro-
pose three broad social drives that have evolved to preserve or enhance group living 
benefits: (1) Mutualism comprises cooperation, reciprocity, trust, and fairness; (2) 
Affiliation comprises assimilation and belonging, whereby one aims to fit into the 
group through adherence to group norms and ideologies; (3) Status-Seeking is rep-
resented by a drive to build one’s value in the group and acquire differential access 
to mates and other resources. We identify affective dynamics that facilitate each 
social drive: (1) Reactive flexibility involves qualitative shifts in affect in response to 
shifting goals, which facilitates mutualism; (2) Affective synchrony is the reproduc-
tion of another individual’s emotions in oneself and facilitates social affiliation; (3) 
Regulatory flexibility facilitates status-seeking through a broad repertoire of regula-
tory approaches during strategic behavioral pursuits. Finally, we posit that fulfilling 
Mutualism, Affiliation, and Status-Seeking (MASS) drives enhances the benefits of 
social living and supports development of fundamental affective dynamics.
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9.1  Introduction

A preparedness for sociality is ubiquitous across organisms. At its most basic level, 
social behavior is observed in microbes and invertebrates (Anstey et  al., 2009; 
Carlisle & Ellis, 1963; Henke & Bassler, 2004), yet becomes increasingly complex 
in rodents and non-human primates. Sociality is preeminent in humans and occurs 
early in development. Fetal twins, for example, show social interaction in the womb 
(Castiello et al., 2010), newborns show an instant preference for the human face 
(Valenza et  al., 1996), infants quickly understand that others have inner minds 
(Onishi & Baillargeon, 2005) and exhibit complex social rules including egalitari-
anism and aversion to inequity (Fehr et al., 2008; Svetlova et al., 2010; Tomasello 
et al., 2005). While most other species have evolved to survive by winning power 
struggles and attraction contests over competitors, humans have evolved a prodi-
gious social intelligence unmatched by other species. Social living necessarily 
involves affective dynamics—emotions are inherently social. Social others elicit 
emotions, emotions facilitate communication between individuals and groups, and 
emotion regulation influences behavior of others and social approval (van Kleef 
et  al., 2016). Emotions that emphasize survival through development of social 
bonds and in response to social problems allow humans to transcend individual 
weaknesses and achieve unparalleled collective progress.

It has long been thought that survival needs drive the motivation system which in 
turn drives a set of rules for behavior (Maslow, 1943; Tolman, 1932). Here, we first 
establish the adaptive function of sociality by delineating a set of survival benefits 
conferred by the evolution of social groups, extending from the micro (i.e. individ-
ual) to the macro benefits of group living. Second, we propose three core social 
drives serving as the engines that motivate the successful acquisition of group living 
benefits. These drives include: Mutualism, Affiliation, and Status-Seeking (MASS 
drives). Third, we identify affective dynamics critical to and influenced by each 
social drive. Identifying and discerning the socio-affective features that facilitate the 
acquisition of group living benefits is a starting point from which to understand the 
evolution and organization of the human social brain.

9.2 � Six Benefits of Group Living

Paleontologists have shown that the primate species have been living in groups for 
approximately 52 million years (Shultz et al., 2011). While the disadvantages to group 
living are apparent (e.g. competition, resource depletion and spread of disease), clear 
benefits do exist. We propose that the benefits of social living can be categorized into 
six core themes. Several of these benefits are universal, observed across multiple group 
living species and are basic social ingredients in promoting the survival of the species. 
These include anti-predation, increased mating opportunities, group aggression, social 
foraging, and decreased infant mortality (Alexander, 1974; Terborgh & Janson, 1986). 
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Fig. 9.1  The six benefits of group living and their interactions. Groupings are delineating by 
color—for example Collective Intelligence is represented by blue, and features Group Wisdom, 
Division of Labor and Skill Sharing. Thickness of the lines connecting different areas indicated the 
assumed strength of the interaction

In many other social animals, the benefits are much richer and extend to higher-order 
benefits including social learning, information sharing, social support and collective 
intelligence. Group benefits also include the ultimate evolutionary benefit of passing 
on one’s genes, thereby defining sociality as an extremely useful engine to enhance the 
fitness of the individual, its kin and the species (Fig. 9.1). These six benefits include:

9.2.1 � Reproduction and Offspring Survival

Mating Opportunities. The adaptive advantages of being in a larger group are more 
variety and greater access to mates, obvious benefits for both sexes.

Genetic Diversity. Shuffling of different genetic material leads to greater diver-
sity, and can be described by Mixability Theory, which proposes that the break-
down of gene combinations results in maximization of fitness by finding the best 
combination of genes (Livnat et  al., 2008); also see “Social Heterosis Theory” 
(Nonacs & Kapheim, 2007)).

Alloparenting. Cooperative breeding has traditionally been linked to kin-
selection theory, in which animals exclusively help genetically related individuals. 
However, converging evidence shows that some species assist in the rearing of non-
kin (Clutton-Brock, 2002).
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9.2.2 � Anti-predation and Protection

Risk dilution and joint vigilance. The theory of risk dilution (i.e. safety in numbers) 
suggests that the larger the group of prey the smaller the chance a particular indi-
vidual will fall victim to lethal attack by predators (Foster & Treherne, 1981). Social 
animals also frequently develop a system to alert others of danger.

Group aggression. Group aggression is in effective way to acquire resources, 
increase protection, and reduce threat from enemies.

Stress reduction. Stress reduces with predation risk and increased availability of 
resources. Predation protection allows for free time to play, develop pedagogy, and 
engage in social learning.

9.2.3 � Sustenance

Social foraging. Solitary foraging results in a clear disadvantage, placing the animal 
at increased risk of predation, starvation and reduced breadth of diet (Giraldeau, 
1984; Krebs, 1972). Social foraging provides benefits to both the individual and the 
group, where others may have information about patches rich in food and patches 
with low risk of predation.

Food and resource sharing. Sharing of food and resources benefits individuals in 
times of need (e.g. food scarcity). Sharing is observed in hunter-gather populations 
(Gurven, 2004) and recent research shows that Chimpanzees will share food with 
non-kin (Pruetz & Lindshield, 2012) under certain circumstances.

9.2.4 � Social Learning and Information Sharing

Vicarious learning. Social learning is defined as the organism’s ability to receive, 
retain, learn from others, and the ability to reproduce the observed behaviour 
(Bandura, 1962). Social learning is also apparent in other animals, and especially 
useful in unpredictable environments.

Information Sharing. Social psychological research has shown the benefits of 
taking advice from others. For example, surrogate advice by others provides more 
accurate information than self-predictions in for novel event (Gilbert et al., 2009). 
These studies support the idea that information sharing is critical to how we inter-
act with others and provides rich information that can enhance socially adaptive 
behaviours.

D. Mobbs et al.



185

9.2.5 � Wellbeing and Belonging

Wellbeing. Extensive research shows that quality of life increases with high quality 
social bonds and support. Comparative studies demonstrate how living in groups can 
promote physiological health (Seeman & McEwen, 1996) and reproductive success 
is significantly increased by the quality of relationships (Silk, 2007). In humans, poor 
social bonds can lead to poor health, social adjustment, and quality of life (Baumeister 
& Leary, 1995b). Indeed, recent studies have shown that social isolation and loneli-
ness correlate with increased mortality (Steptoe et al., 2013), cardiovascular disease, 
higher blood pressure, heightened inflammatory responses to stress, and infection 
(Barth et al., 2010; Cohen et al., 1997; Eisenberger & Cole, 2012; Loucks et al., 2006).

Belonging. The need to belong is a fundamental human drive that leads to the 
formation of resilient relational bonds (Baumeister & Leary, 1995b). Belonging not 
only improves motivation, affect, and physical health, but connection to social oth-
ers influences emotional experiences. For example, emotional and behavioral pat-
terns flexibly adapt to group composition (Cottrell & Neuberg, 2005).

9.2.6 � Collective Intelligence

Group Wisdom and Skill Sharing. Group wisdom was creatively demonstrated by 
Galton’s simple, yet ingenious, “ox” guesstimation study, which showed that when 
a crowd were asked to guess the weight of an ox, the average group response was 
within one pound of its actual weight (Galton, 1907). More recently, Wegner and 
colleagues showed that when people are paired in couples, those in a relationship 
perform better on a joint memory task than two strangers, (Wegner et al., 1991) and 
Surowiecki (Surowiecki, 2004) showed that this group intelligence extends to such 
domains as stock markets and quiz shows. The ability and capacity to frequently 
select optimal choices for the group derives from variance afforded by numbers and 
comparative abilities.

Division of labour. Complex biological systems are characterized by self-
organizing processes that include specialized and domain general subcomponents 
that confer efficiencies and advantages to the organism. These organizational pro-
cesses include a division of labour observed in eusocial insect species and higher 
animals including birds and primates (Arnold et al., 2005; Torres et al., 2012).

9.3 � Why a New Theory of Social Motives?

To realize the benefits of sociality described herein, a set of social drives must exist 
at the level of the individual to motivate successful integration and function within 
a social group. Several critical questions in psychology and neuroscience regarding 
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the social nature of humans must be addressed to advance our understanding of 
human social motivation. These include: what motivates social behavior; why are 
some individuals good at social interaction while others are inept; and more gener-
ally, why are we social creatures? To probe these fundamental questions, we must 
consider the range and frequencies of human behaviors in social settings. Existing 
theories of social motivation have all contributed to understand these questions, 
however, meaningful differences between theories support the need for integration. 
Further, no obvious explanatory framework arises as to the requirements for the 
success of social groups, or the particular needs that evolved to contribute to success 
that provide reciprocal benefits to the individual and group. While Fiske’s drives 
(Belonging, Understanding, Controlling, Enhancing Self and Trusting; BUCET; 
Fiske, 2002) are loosely linked to survival value of self, kin, and group, other theo-
ries have not made connections to group survival (e.g., Self-Determination Theory; 
Deci & Ryan, 2008) The ability of an individual to acquire the benefits outlined 
above depends on its success as a group living animal. In the next section, we argue 
that the benefits of social living can be mapped on to several core social drives.

9.4 � Three Core Social drives: Mutualism, Affiliation 
and Status-Seeking (MASS)

We propose previous theories of social motivation can be consolidated into three 
core drives that coordinate the formation of individuals into social groups and 
thereby facilitate affective development and yield survival benefits. We use the 
broader term of ‘Mutualism’ to capture compliance and trusting drives (Deci & 
Ryan, 2008; Fiske, 2002). Relatedness, belonging, and understanding all point to a 
drive to form social ties (Deci & Ryan, 2008; McClelland, 1965). We adopt the term 
‘Affiliation’ to encompass these drives. Existing theories also proposes a drive for 
power or control (Fiske, 2002; McClelland, 1965). We consolidate these into ‘Status 
Seeking’. In contrast to previous theories, the MASS model encompasses individual 
and group interactions. The social dimension of group interactions necessitates 
addressing affective dynamics. Emotional feedback drives motivation in individuals 
within a group context to calibrate individual needs to optimize the dynamics for 
group success. Under this interactional feedback framework, we can explain why 
those of higher perceived status have greater influence, why we affiliate, why we act 
in mutually beneficial ways and how these together continually refine both indi-
vidual and group level affective characteristics that result in social success. We point 
to reactive flexibility, affective synchrony, and regulatory flexibility as necessary for 
full realization of group-oriented survival benefits. Linking motivational drives to 
affective competencies accounts for substantial overlap between social and affective 
processes in the human brain. From this, we detail the three core social drives:

	1.	 Mutualism: the drive toward mutually beneficial behaviours, such as reciprocal 
altruism, cooperation and collaboration. While upfront and sharing costs are 
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Fig. 9.2  Survival from social and basic drives. The individual’s survival is supported by a set of 
basic drives including hunger, thirst, reproduction, thermoregulation, anti-predation (e.g. freezing, 
flight). The evocation of these basic drives is determined by several factors including the ecological 
context and the internal state of the organism (Mobbs, 2018). These are in turn supported by a set 
of behavioral, cognitive systems instantiated in survival circuits (see (LeDoux, 2012)). Social 
drives (e.g. MASS drives) are evoked in group living animals and have a distinct set of neural cir-
cuits. These social brain circuits are flexible and interact with basic drives (dotted lines). For exam-
ple, both basic and social drives can up or down-regulate each other resulting in an interaction 
between survival circuits and higher level constructive circuits that underlie the social brain

incurred at the individual level, these factors benefit both the group and indi-
vidual as a result of establishing trust and ability to accomplish more than any 
individual can alone. Social signals of benevolence increase the likelihood of 
accruing social support from other group members. Since most groups are small 
enough such that all individuals are acquainted, reputation can be generated and 
tracked by others, forming a basis for consistency and reliability among members.

	2.	 Affiliation: the drive towards social bonds, as well as their maintenance via alle-
giance behaviours and adherence to group norms and ideologies. On a micro 
level, affiliation motivates selective bonding among a close-knit number of indi-
viduals (e.g. friends, romantic partners). On a macro-level this includes alle-
giance behaviors such as group pride and nationalism, and the basis for concepts 
such as ideology.

	3.	 Status-Seeking: the drive to optimize the individual’s relative standing within 
the group through competition, reputation-enhancement, and the signalling of 
prestige. Individuals high in social status possess greater ability to influence 
other group members, e.g. coalesce group motivations to pursue important 
causes, facilitate adherence to rules, the result of which can further increase 
affiliative behaviours and the effectiveness of collaboration (Fig. 9.2).
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Mutualism
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Group
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Fig. 9.3  Affective dynamics facilitate achievement of individual and group goals for each core 
social drive. Affective dynamics exert influence on one another such that individuals with high 
competency in one dynamic (e.g., reactive flexibility) likely have high competence in another (e.g., 
affective synchrony), thereby compounding the likelihood that they achieve their individual social 
goals and provide survival benefit to other group members

9.5 � MASS Linked Affective Dynamics

As a basic proposition, affect serves a feedback function providing reinforcement or 
punishment for behavior. Affect encompasses both emotions, the labels given to 
experienced affect typically with specific origins, and moods, less intense and 
longer-lasting than emotions but with less obvious causes. Beyond simply tracking 
progress toward a goal (e.g., negative affect indicates a discrepancy between one’s 
goal and current state), affect energizes behavior (Reeve, 2014). In social contexts, 
observing other’s emotions serves as information about what behavior is acceptable 
(Heerdink et al., 2019). The ability to fulfil MASS drives relies, in part, on affective 
dynamics (Fig.  9.3). We propose three such dynamics corresponding with each 
MASS drive:

	1.	 Reactive flexibility: the ability to change affective content (i.e., anger, happi-
ness) and patterns in response to environmental demands. We propose a role for 
reactive flexibility in facilitating mutualism. An example of reactive flexibility 
during mutualism can be seen in shifting from negative to positive affective pat-
terns after the resolution of conflict. Conversely, shifting from positive to nega-
tive affect patterns can facilitate mutualism by signalling to the counterpart that 
their uncooperative behaviour is unacceptable to the social group (Granic 
et al., 2007).

	2.	 Affective synchrony: the reproduction of another individual’s emotions in one-
self. Individuals mimic emotions of social counterparts by partially activating 
the emotional state in themselves (Wood et al., 2016). This synchrony not only 
enables emotional inference, but also results in greater affiliation effects of col-
lective social engagement (Páez et  al., 2015). Synchrony may also promote 
maintenance of social bonds. For example, neural concordance is higher among 
closer friends (Hyon et al., 2020) and neural concordance in parent-child dyads 
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enhances development of emotional competence (Lee et  al., 2017). Thus, 
socially proximate individuals may experience synchronous psychological states 
when exposed to common stimuli resulting in greater perception of affective 
synchrony thereby strengthening social bonds.

	3.	 Regulatory flexibility: the ability to use a wide range of regulatory strategies 
depending on contextual demands, and to monitor and use affective feedback to 
promote goal pursuit (Bonanno & Burton, 2013). Across development, regula-
tory abilities predict future social skills and social outcomes (Blair et al., 2015), 
providing opportunity for status attainment and greater future influence. Different 
emotion regulation strategies confer different benefits. As such, access to distinct 
strategies facilitates context-dependent selection of emotional responses. 
Establishment of effortful strategies facilitates increasingly sophisticated and 
flexible pursuit of temporally distant and difficult goals, like status acquisition 
(Todd et al., 2012).

Although we propose a role for each affective dynamic within the MASS frame-
work, these dynamics are not mutually exclusive. For example, cooperation gener-
ates shared emotional experiences as well as autonomic coupling (Vanutelli et al., 
2017), identifying a role for affective synchrony in mutualism. Reactive flexibility 
is likely linked to social status via trustworthiness: perceived trustworthiness is 
higher for higher status individuals (Blue et al., 2020) and trustworthiness is associ-
ated with affective flexibility (Slepian & Carr, 2019). Regulatory flexibility is linked 
to a myriad of critical facets of successful social functioning including adaptive 
coping, cognitive control, and physiological regulation (Gross, 2015). Ultimately, 
the shared role of each affective dynamic across the MASS drives demonstrates the 
interconnected framework supporting these drives despite the separable benefits 
associated with each.

Although we propose that affective dynamics facilitate core MASS drives, social 
motives likely also support the evolution of affective dynamics. For each affective 
dynamic detailed above, bi-directional associations exist with MASS drives such 
that the survival value of social drives may have helped humans and other 
emotionally-rich species evolve complex affective systems. All organisms must 
have the ability to detect and respond to meaningful stimuli in order to survive. 
Neural systems associated with emotional experiences in humans underpin survival 
behaviors in humans and non-human animals (LeDoux, 2012). Van Kleef proposed 
in the Emotions As Social Information (EASI) Model that human emotional expres-
sions affect social behavior by triggering affective reactions in others. Thus, MASS 
drives likely trigger engagement of certain affective systems to promote similar 
drive states in group affiliates. Emotions serve an individual function to aid in 
salience detection, motivation, and attentional allocation (Schwarz & Clore, 1983) 
and also a group function as implicit communication (Oatley & Johnson-laird, 
1987). The drive for successful social living increase the utility of affective dynam-
ics for survival.
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9.6 � Mutualism

Wilson and Wilson (Wilson & Wilson, 2007) propose that “…for a social group to 
function as an adaptive unit, its members must do things for each other”. Mutualism 
is defined here as a situation in which individuals gain a net survival benefit from 
working together (Krebs & Davies, 1997) and propagates the group’s success by 
minimizing self-serving behaviors. We therefore use the term mutualism to capture 
several related phenomena including cooperation, reciprocal altruism, symbiosis, 
and collaboration and synonymous with the term “mutual benefit” associated with 
+/+ behaviors; see (West et al., 2007). Mutualism is a critical aspect of social evolu-
tion as it reduces the likelihood of a “Tragedy of the Commons,” whereby individu-
als act selfishly, in turn leading to resource reduction and collapse of society. 
Mutualism thus relies on reactive flexibility whereby individuals are able to adap-
tively shift affective states, as well as attention and behavior, in response to shifting 
group goals (Hollenstein, 2015). Mutualism may be distinguished from affiliation 
through tailoring of affective reactions. Reactive flexibility focuses on the modifica-
tion of an individual’s affective experience to further a common group goal whereas 
affective synchrony (prioritized for affiliation) is focused on mirroring another’s 
emotions in oneself. Thus, understanding underlying affective dynamics can illumi-
nate where social motives diverge depending on the affective function being priori-
tized. Not surprisingly, theorists have placed mutualism at the forefront of social 
brain evolution, which supports identification of and responding to the goals of 
others. Like other social animals, humans act mutually towards others through 
resource sharing, helping, cooperative breeding, and offspring protection. Mutualism 
also begins early in development. For example, human infants will help others at 
around the age of 14–18 months (Hepach et al., 2012). At around 15 months, infants 
have expectations concerning what is fair (Schmidt & Sommerville, 2011) and chil-
dren between the ages of 3 and 8 years demonstrate an aversion to inequality (Fehr 
et al., 2008). We propose that mutualism takes several broad forms:

9.6.1 � Collaboration, Cooperation and Trust

Haldane (Haldane, 1932) proposed that cooperation occurs when a behavior is 
“socially valuable, but individually disadvantageous”. More recent theorists have 
proposed the “Interdependence Hypothesis”, which posits that collaboration is criti-
cal to primate survival and procreation (Tomasello et  al., 2012). Relatedly, the 
“Vygotskian Intelligence Theory” suggests that collaboration, communication and 
social learning are the reasons why primates evolved large brains and complex cog-
nition (Moll & Tomasello, 2007). Tomasello and colleagues have suggested that 
human cooperation may have evolved in two key steps. First, during group foraging 
when hunting individuals were interdependent on each other and therefore cared 
about each other’s welfare. Second, these new collaborative skills were “scaled up” 
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for living in large groups and to face the challenge of competition from other groups 
(Tomasello et al., 2012). Such dependence on others would presumably increase 
prosocial behaviors, such as helping others achieve their goals and information 
sharing (Warneken & Tomasello, 2009). Mechanistically, the ability to identify and 
respond flexibility to the goals and affective sharing of others facilitates prosociality 
through development of empathy and perspective taking (Decety et al., 2016). At a 
meso level, unique cultural demands may also play a role in shaping the pressures 
for mutualistic behaviors. For example, Talheim and colleagues showed that the rice 
growing culture of Southern China, in contrast to the wheat-growing culture of 
Northern China, is built around interdependence, collaboration and holistic thinking 
(Talhelm et al., 2014).

Mutualistic behaviors depend on the ability of individuals to determine the 
likelihood and reliability that others will engage in reciprocal cooperative behav-
iors. According to Lawler’s Affect Theory of Social Exchange, emotional experi-
ences are key for cooperative relationships and act as reinforcements or 
punishments furthering mutualism (Lawler, 2001). Emotions are also subtle exter-
nal signals about one’s intentions. Reactive flexibility enhances the possibility for 
successful cooperation through the actor’s adaptation to the intentions and goals 
of the social counterpart. High-variability in emotional expression leads to more 
positive perceptions of authenticity and greater trustworthiness perceptions 
(Slepian & Carr, 2019). Observing others’ to determine trustworthiness comes 
with a time cost, but individuals that develop what McNamara and colleagues call 
a “social awareness” benefit a group by expediently observing and identifying 
trustworthy individuals (McNamara et al., 2009). It is worth noting that percep-
tions of trustworthiness may not accurately reflect a counterpart’s willingness to 
cooperate, but rather index subjective impressions that garner high consensus 
(Rule et al., 2013), potentially detection of subtle emotional expressions (Oosterhof 
& Todorov, 2009).

9.6.2 � Altruistic and Third Party Punishment

In order for group living to be successful, cooperation must be enforced by the pun-
ishment of defectors and free-riders. Recent evidence suggests that people cooper-
ate at the start of N-Player Prisoner’s Dilemma interactions, yet if players defect, 
collaborators will impose spiteful punishment (Fehr & Fischbacher, 2003). 
Likewise, when unfair players receive painful shocks, males, but not females, greet 
this with feelings of reward (Singer et al., 2006). In some cases, people will punish 
at a cost to themselves. Known as altruistic punishment, Fehr and Gacthter (Fehr & 
Gachter, 2002) have defined this as the situation whereby “individual punish, 
although the punishment is costly for them and yields no material gain” (p. 137). 
This is exemplified in the Ultimatum game, in which people will reject unfair offers 
and even punish at a financial cost to themselves (Guth et al., 1982; Yu et al., 2014). 
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Unfair offers induce anger and rejecting unfair relates to reactive aggression in the 
real world (Gilam et al., 2019). These studies support the notion that a set of punish-
ment norms need to be in place to protect fairness and cooperation and that negative 
affective experiences can diminish mutualistic behavior after norms are violated. 
Third-party punishment, or punishment meted out by individuals that observe but 
are not a party to selfish behaviors results in greater cooperation, but also signals to 
others by virtue of the cost incurred that one is not selfish (Jordan et al., 2016a). This 
signal is also translated into the perception of trustworthiness, thus justifying the 
upfront cost given the high moral reputational value assigned by other group 
members.

9.6.3 � Morality and Shared Values

Humans and nonhuman primates share a set of moral tendencies including a sense 
of fairness, empathy, forgiveness, and other social emotions that make living in 
groups a productive enterprise (de Waal, 2011). Moral beliefs are powerful filters 
that bias information processing and derive as a result of group or cultural norms 
that develop in relation to collective goals and evolve through time. Once these 
goals are defined, morality captures the value of actions taken to achieve them. 
Historically, human cultures made use of institutions of authority such as religions 
to dictate cultural norms and how these norms were established. These institutions 
have the advantage of solidifying social bonds among constituents that share in a 
belief system. Morality is present across human endeavors, where culture plays at 
times a strong role in tuning the values of individuals that belong to particular 
groups. Investigation of the neural correlates of moral decision-making reveals a 
complex, diverse and context specific process that is susceptible to external influ-
ences. Crockett has suggested that heuristic, automatic processes, deliberate conse-
quentialist reasoning, and reflexive reasoning coexist in the moral thinking space 
(Crockett, 2013) while others offer a dynamic rather than a dual-process account 
(Van Bavel et al., 2015; Cushman, 2013). Experimental work suggests that indi-
viduals that bear a similar neural signature when participating in moral decision-
making are remarkably consistent in moral tendencies, indicating that differences in 
moral preferences can be traced to differences in neural substrate and processing 
(Kappes et al., 2016). Thus shared values likely reflect shared or similar neurobiol-
ogy and the associated affective profiles that motivate reasoning and decision-
making processes (Feldman Hall & Mobbs, 2015). Although disagreement exists as 
to the role of emotion in mediating morality, lesion and patient studies from cogni-
tive neuroscience link blunted emotion and moral transgression to overlapping defi-
cits in prefrontal systems. This work identifies role of emotion in motivation 
morally-relevant action (Huebner et al., 2009).
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9.7 � Affiliation

Theorists have proposed that when coalitions are formed, a new “group minded-
ness” emerges, creating culture, institutions and social norms (Tomasello et  al., 
2012). A core feature that arises from group mindedness is the capacity for affilia-
tion. Affiliation can be described as belonging to a social group that shares one’s 
values, beliefs, or goals. The need to affiliate depends on trait level and situational 
factors. For example, in a classic study, Stanley Schachter showed that when a 
group of subjects are promised a large shock, compared to a group promised a low 
shock, they show a strong desire to be with others suggesting that emotional experi-
ences of anxiety or fear promote the need to affiliate (Schachter, 1959). Further 
work by Sarnoff and Zimbardo suggested that fear increases affiliative behaviors 
while a reduction is observed in contexts that induce anxiety (Sarnoff & Zimbardo, 
1961). Rofe argued that affiliation behavior depends critically on a predicted cost-
benefit calculation, taking into account situational factors, individual traits, and the 
identity of others with which one may affiliate (Rofe, 1984). Together, these theo-
ries suggest that affiliation is closely tied with a psychological need for social sup-
port in certain contexts from certain people. More generally, affiliative tendencies 
may direct decision-making process to favor ingroup members, or particular char-
acteristics valued by the individual’s culture. For example, different cultural groups 
assign different value to specific attributes or characteristics, and these differences 
drive decision-making and behavior (Dolinsky & Stinerock, 1998). Culture also 
plays a role in emotional expression. For example, individualist cultures tend to 
value high arousal emotions (e.g., angry, excited) compared to valuing of low 
arousal emotions (e.g., relaxed, calm) in collectivist cultures (Lim, 2016). These 
cultural differences are reflected in the frequency with which individuals in different 
cultures report experiencing certain emotions, which has obvious implications for 
the way affective synchrony results in a feedback loop that sustains these cultural 
norms. Even when members are removed geographically from the region of origin, 
tightly bound cultures assign great importance to social traditions and tend to retain 
collectivist preferences. In such circumstances, evidence is accumulating that indi-
viduals originating from collectivist cultures that continue to adhere to the values 
espoused by that culture obtain better mental health outcomes (Bhugra et al., 2010).

9.7.1 � Assimilation

According to Social Identity Theory, individuals have knowledge that they belong 
to a certain category of group and that self-concept is in part determined by the 
social group in which they belong (Hogg & Abrams, 1988; Tajfel & Turner, 1986). 
These extend from dialect, accent, and attire, where groups “police” their boundar-
ies against out-group members by using “badges” for in-group membership. 
Individuals also engage in automatic mimicry which gives rise to emotional 
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contagion, a form of affective assimilation (Prochazkova & Kret, 2017). A natural 
tendency towards imitation of in-group members is evident from an early age 
(Buttelmann et  al., 2013) and most obvious in adolescence during which highly 
differentiated style and behavior are propagated by the group members attempting 
to find acceptance in the group. Fitting into the group is a complex process observed 
across cultures and socioeconomic status in adolescents trying to find their place in 
the world. Such ephemeral fashion changes also occur in language, including the 
appearance of new words and expressions to reflect the youth culture or sub-culture. 
These fashions are facilitated by skin color, geography, territory, and dialect with 
the common goal of showing that “I belong to this group”.

9.7.2 � Belonging

Social belonging developed based on the importance of group membership as a 
critical force in survival during human evolutionary history, and is a powerful moti-
vational factor in social behaviors, thoughts, and perception (Baumeister & Leary, 
1995a). The need to belong is agnostic to culture, though individualist and collec-
tive cultures differ in terms of number and closeness of relationships (Verkuyten & 
Masson, 1996). Cultural differences in group goals have evolved significantly to 
encompass non-survival ends in modern contexts, however the basic social motiva-
tion of belonging continues to drive conformation of belief and behavior, and the 
consideration of others’ reactions in contemplating our own choices. The need to 
belong motivates the formation of attachment and interpersonal relationships that 
provide a sense of acceptance, and a reciprocal value relationship between the indi-
vidual and group. Belonging provides and affirms a sense of identity, security, and 
self-worth, all of which contribute to the maintenance of positive affective equilib-
rium. Positive affect in turn has beneficial health consequences due to associations 
with protective psychosocial factors like social connectedness (Steptoe et al., 2009). 
Lambert et al. showed in a series of studies that belonging, more so than social sup-
port or social value, provides a greater sense of perceived meaningfulness of life 
(Lambert et al., 2013). An individual is willing to invest emotional and social capital 
into the group in the form of assistance and cooperation so long as the goals of oth-
ers align with those of the individual, thus enhancing the meaning associated with 
participating in these activities. Ostracism from the group can result in seemingly 
counterintuitive self-preservation attempts to reduce the emotional distress that 
results from a potential loss of belonging (Woodyatt & Wenzel, 2013). The need to 
belong is so strong that in some cases individuals will signal group loyalty even 
when such signaling ignores certain acquisition of higher value for departing from 
the status quo. While superficially irrational, such behavior is socially motivated, 
consistent with a group identity, and hence perfectly rational under the social value 
construct. In order for social groups to function effectively, e.g. facilitate coopera-
tion, trust must be established. Belonging and resulting social identity, together with 
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a system of rewards and punishments, are the binding agents that hold group trust 
together. Emotions are one way the individual and the group determine who intends 
to abide by the social contract.

9.7.3 � Allegiance and In-Group Favoritism

Allegiances work to bind the group, give it purpose, pride, solidarity, identity, and 
prestige. Allegiances can lead to greater commitment to the group and decreased 
desire to depart from the group even when it is disadvantageous to remain (Ellemers 
et al., 1997). Likewise, in-group favoritism can be seen as a primary means of rein-
forcing group solidarity and indeed represents one of the most well-demonstrated 
phenomena in social psychology. The ease and rapidity with which this group bias 
emerges is attested by a variety of research employing Tajfel’s minimal group para-
digm, in which subjects exhibit in-group favoritism despite knowledge that the rel-
evant groups have been arbitrarily or randomly devised (M. Brewer, 1979; Diehl, 
1990). Utilizing evidence from the minimal group paradigm, Tajfel and Turner 
(Tajfel & Turner, 1986) proposed that the individual’s self-concept is shaped by the 
social group to which the individual believes they belong. In order to maintain a 
positive self-concept via their social identities, group members are thus motivated 
to arrive at favorable comparisons between their in-groups and salient out-groups. 
In-group members may arrive at conclusions motivated by directionality as opposed 
to accuracy and at the expense of being correct to signal loyalty. While seemingly 
maladaptive, this common behavior is rational from the context of reputational ben-
efits that may be received within one’s group. Some theorists, however, suggest that 
distinctly positive in-group evaluations are rooted not in socially-derived self-
enhancement motives, but rather in the security and trust associated with in-group 
encounters, thus stressing a tie to mutualism (Brewer, 2007).

9.7.4 � Selective Bonding

The maintenance and seeking of social bonds is one of the most powerful humans 
drives. We propose that bonding can be separated into several categories including 
attachment between the parent and the child, romantic love, or tight allegiances 
among a small group of friends. Bonding can be distinguished from belonging in 
that a need to belonging motivates bonding, but bonding as we define it is more 
selective and reciprocal.

	1.	 Attachment. Selective bonding is most evident when examining the relationship 
between a mother and infant. Bowlby (Bowlby, 1988) maintained that attach-
ment between the mother and infant is critical to healthy socialization. This is 
supported by the profound negative effects of maternal deprivation on non-
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human primates (Harlow, 1958) and studies conducted on human children raised 
in orphanages (Bowlby, 1988; Telzer et  al., 2013). Affective synchrony is an 
important feature of mother-child interactions, encompassing both the mother’s 
and the child’s responsivity and emotional capacity to flexibly respond to the 
other (Leclère et al., 2014). Synchrony in these bonded relationships differs from 
mirroring or the chameleon effect in part because it involves matching of emo-
tional states. The ability to effectively respond in this crucial dyad has a myriad 
of implications for later development, including regulatory abilities, which can 
influence a child’s later ability to engage in social groups outside of the family 
unit (Harrist & Waugh, 2002). Mother-infant bonds may be facilitated at the 
hormonal level by oxytocin, which has been found to increase during mother-
infant bonding (Ross & Young, 2009). Further, the administration of an oxytocin 
agonist promotes maternal behaviour in virgin sheep (Kendrick, 2004), while an 
oxytocin antagonist inhibits such behaviour (van Leengoed et al., 1987). Along 
with candidate genes such as Grb10 (Garfield et  al., 2011), OXTR (Pedersen 
et  al., 2006), vasopressin, and the mu-opioid receptor gene OPRM1 (Moles 
et  al., 2004), mother-infant bonding is presumably innate and critical to the 
healthy development and survival of offspring. Abnormal social development, 
including autism, has been proposed to be linked with atypical levels of oxytocin 
and vasopressin, the latter being linked with sensory processing (Carson et al., 
2015). The capacity for normal social behaviors may develop and manifest due 
to a coordinated timing of signals in specific pathways, and begin with attach-
ment to parents or caretakers.

	2.	 Friendship and Social Networks. Enduring friendships are observed across a 
number of species including elephants, dolphins and chimpanzees (Seyfarth & 
Cheney, 2012). In humans, the formation of friendships is a common and highly 
adaptive social behavior. Baumeister and Leary (Baumeister & Leary, 1995a) pro-
pose that people seek out relationships at least to the point that satisfies an indi-
vidual minimum threshold level of social contact and relationships, even in the 
absence of identifiable extrinsic incentives. Goals, achievements, and experiences 
are imbued with meaning when they can be witnessed and shared with others in 
one’s social circle. Until the age of 12, friendships may be fleeting, yet individuals 
above this age tend to form long-term friendships and become emotionally close, 
even if they are physically distant (Selman, 1980; Selman & Schultz, 1990). 
Dunbar (Dunbar, 1993, 2010) has proposed a cognitive limit to the number of 
people with whom one can maintain stable relationships, which likely evolved 
when social groups were much smaller. Dunbar’s number is placed at approxi-
mately 150 friends, around 15 of who are very close. Social structure features of 
modern societies are similar to those observed in Hunter-Gather societies (Apicella 
et al., 2012), suggesting that these structures may have evolved early in human 
history, perhaps during shared hunts and cooked meals (E. Wilson, 2012).

	3.	 Romantic Love. Love is arguably the strongest human bond between non-kin. 
When reciprocated, love floods the individual with ecstasy, while unrequited 
love may result in feelings of extreme sadness and despair (Hatfield & Rapson, 
1993). Love elicits different emotions depending on the situation. Recognizing 
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and matching a romantic counterpart’s emotional expression is, in part, what 
separates reciprocated and unrequited love. Brain imaging studies show that 
viewing images of a loved one results in increased activity in the brain reward 
and opioid systems (Aron et al., 2005), yet rejection by loved ones activates the 
brain pain systems (Kross et  al., 2011). Individuals in romantic relationships 
demonstrate greater regulatory control during negative emotions (Song et  al., 
2016), which may be one mechanism underlying successful bonding. Romantic 
love begins in adolescence: approximately 25% of females begin dating by age 
13, increasing to 75% by age 15 (Zimmer-Gembeck, 2002). In adults, love may 
result in longer-term commitment such as marriage, which sets rules on morally 
appropriate behaviour and is often tied to cultural and religious dogma.

9.8 � Status Seeking

While status can be defined as an individual’s group standing founded on honor, 
prestige and deference (Berger et al., 1972) others have defined it simply as respect 
and admiration (Leary et al., 2014) or superiority (Adler, 1930). No matter how we 
define it, there seems to be a human drive for high status (Anderson et al., 2015). 
One reason is that status has been perceived as a valuable resource, which yields 
direct utility to the individual (Huberman et al., 2004). In the Paleolithic period, 
status was given to tribe members with the best hunting skills as this was critical to 
the survival of the group (Ellis, 1993). Status objects such as jewelry soon evolved 
and go back 50,000 years acting as static markers of authority (Diamond, 1997). In 
modern contexts luxurious goods such as wristwatches and cars indicate high social 
status (Frank, 1999), and these are indicative of higher SES including financial 
wealth, education, and occupational prestige, yet may have no value other than to 
signal status. Affectively, pride is a major motivator for status-seeking (Cheng et al., 
2010) and can signal status achievement through pride displays (e.g., posture, strut-
ting). External displays of pride are likely innate given evidence that congenitally 
blind humans physically respond to success similar to sighted individuals (Tracy & 
Matsumoto, 2008). Notable differences exist in displays of failure among sighted 
and congenitally blind individuals suggesting sighted individuals may suppress 
low-status displays. Nonverbal expressions of pride are identified by young children 
(Tracy et al., 2005) across a range of cultures (Tracy & Robins, 2008), again sup-
porting the assertion that status serves an important function in social groups.

9.8.1 � Status as Social “Currency”

Social status has been proposed as a valuable resource yielding direct utility to the 
individual (Huberman et al., 2004). Some have noted that the drive to maintain a 
favorable image amongst peers, even strangers, may result in seemingly irrational 
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and self-harmful choices, such as the sacrifice of tangible rewards. This phenomenon 
is referred to as “face-work” (Brown, 1968) and may extend to third-party instances 
in which people are even willing to incur a debt to acquire information about high-
ranking individuals (e.g. celebrity gossip magazines). Interestingly, similar behaviors 
have been observed in rhesus macaques, who will sacrifice access to a palatable fluid 
in order to view images of high-status monkeys, yet require fluid overpayment in 
return for viewing low-status monkeys (Deaner et al., 2005). Evidence for the valua-
tion of social status as a distinct “currency” in humans is further provided by investi-
gations of the “winner’s curse”, or the tendency of individuals to bid more during 
auctions than prescribed by normative economic principles (van den Bos et al., 2008). 
For example, Delgado et al. (Delgado et al., 2008) have suggested that the social 
nature of auctions—specifically, the fear of losing in a social context—is a significant 
origin of overbidding practices. Rather than mere valuation anomalies, these findings 
may be understood in terms of a “common currency” that conveys social standing 
benefits as it does material ends. Indeed social standing may yield material benefits, 
and attract resources and loyalty if maintained and effectively signaled over time, 
discussed further below. Beyond tangible rewards, high-status may be intrinsically 
rewarding and is associated with increased dopamine receptor binding in humans 
(Martinez et al., 2010) and non-human primates (Morgan et al., 2002).

9.8.2 � Status Signaling and Conspicuous Consumption

The drive to signal superiority is not a feature unique to humans but manifests 
across species, ranging from the display of the peacock’s tail and flashing of fireflies 
to the decorated recesses of the bowerbird and boisterous song of cicadas (Zehavi & 
Zahavi, 1997). According to sexual selection accounts, these elaborate displays con-
fer a reproductive advantage by making apparent to the opposite sex favorable qual-
ities (e.g. wealth, physical superiority) that boost the organism’s odds of being 
selected as a mate (Collins et al., 2015; De Fraja, 2009). Humans are no different. It 
has been suggested that charities commonly announce donors’ names in order to 
accommodate the reputation building strategies that are presumed to motivate con-
tributions—termed “conspicuous compassion” (Engelmann & Fischbacher, 2009; 
West, 2004). Like otherwise costly reputation-building strategies which rely upon 
public consumption for their reward and evolution (Nowak, 2006; Tennie et  al., 
2010), high rank and prestige must be signaled to the group in order to derive the 
full benefits of their attainment. Highlighting this, the sociologist and economist 
Thorstein Veblen (Veblen, 1899) coined the term “conspicuous consumption” to 
refer to purchase behaviors driven principally by their ability to convey the owner’s 
status and prestige. Veblen’s notion was thus among the first to emphasize the social, 
rather than purely utilitarian, origins of consumer decision-making processes 
(Memushi, 2014). As Mason (Mason, 1984): “To the purely conspicuous consumer, 
the satisfaction derived from any particular purchase comes not from its value in use 
but from audience reaction to the wealth displayed by the purchaser in being able to 
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secure the product for ‘consumption’” (p. 26). Beyond vast economic purchases and 
ostensible goods, social prestige may also be represented in the form of other 
culturally-attuned behaviors.

9.8.3 � Value Seeking and Reputation Management

It has long been known by economists that consumption behaviors are driven by the 
social recognition or need to please one’s peers. Fiske also argues that the transfer of 
material “things” between people results in the highest-ranking individuals having 
more of better “things”. Indeed, Campbell-Meiklejohn and colleagues (Campbell-
Meiklejohn et al., 2010) showed that the value of an object is determined by how 
others valued it. Humans are status maximizers and status is often acquired in com-
plex ways. For example, people prefer to relay positive information (Rosen & Tesser, 
1970) and weigh their advice more carefully when it reflects on them directly rather 
than through the medium of a third-party (Jonas et al., 2005). One interpretation is 
that people like to yield information to others, particularly if it shines them in a posi-
tive light. Fitting with this idea, Anderson and Kildiff (Anderson & Kilduff, 2009) 
propose that status-seekers seek high status in an attempt to make themselves appear 
more important to the group, and this pursuit of values may be universal. Finally, 
behavioral and brain imaging work demonstrate that individuals report feeling more 
rewarded and show increased activity in the brain’s reward circuitry when observing 
others win money when winning is based on their advice compared to winning based 
on another’s advice (Mobbs et  al., 2015). This supports a large body of research 
showing that reflected glory is a powerful form of social value seeking.

Studies across psychology and behavioral economics have long demonstrated 
that the individual’s actions are critically shaped by the mere presence of others. 
Often, such “audience effects” reflect the individual’s attempt to optimize their rep-
resentation to fellow group members—a behavior referred to as reputation or 
impression management, and which has been delineated further in terms of separate 
motivation and construction components (Leary & Kowalski, 1990; Tennie et al., 
2010). As Leary and Kowalski (1990) note, impression motivation and construction 
processes often operate outside the actor’s conscious awareness, thus stressing the 
deep-seated and automatic nature of the drive to project a favorable self-image to 
the group. Reputation-enhancing behaviors, such as charitable donations, have 
widely been shown to increase under conditions of social observation (Izuma et al., 
2010) or even cues of observation (e.g. eyespots; (Haley & Fessler, 2005). Banerjee 
(Banerjee, 2002) has shown that self-representation behavior begins in children 
around the age of 8 years, while others suggest that this occurs much earlier. For 
example, 5- to 6-year-olds act more prosocially when they are observed or think 
they are being observed (J. M. Engelmann et al., 2012; Piazza et al., 2011). Similar 
findings have been observed in non-human animals—most notably the cleaner fish, 
which displays increased cooperative behavior with client fish when other watchful, 
or “image-scoring”, clients are present (Bshary & Grutter, 2006).
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9.9 � Competition

A key arena for status seeking is competition. Humphrey (Humphrey, 1976) pro-
poses that primate cognition is due to social competition, which by definition 
includes a drive to perform better than others in the group. Likewise, Deutsch 
(Deutsch, 1949) suggested that in situations in which two or more people are 
attempting to attain a common goal in a zero sum environment, one agent will win 
as a result of the failure of others. Competition is a dominant ecological force in 
natural selection (Diamond, 1978) and evolutionary biologists typical explain com-
petition through the lens of sexual selection and dominance hierarchies where 
organisms fight for leadership of the group. Social comparison is an important 
source of competitive behavior that influences self-perceptions via emotional reac-
tions (Garcia et al., 2013).

9.10 � Linking Drives to Group Living Success and Survival

The MASS drives proposed here are believed to facilitate group formation, stability, 
individual, and group success and map directly onto survival benefits (Fig. 9.1). 
While the MASS motives provide a general framework from which to explain 
behaviors that facilitate group living, we proposed that (1) mutualism increases 
shared goals, collaboration, and increases collective intelligence; (2) affiliation 
results in stronger group ties and identity and will facilitate in/out group competi-
tion. Furthermore, the stronger the affiliation, the more likely affiliates will protect 
you, share food, collaborate, share information, and provide social support; (3) sta-
tus seeking enhances the likelihood that one would acquire the best mates, better 
protection from threat, provide first and access to information, and increased life 
quality and social support. It is also important to note that MASS motives do not 
work in isolation. For example, status seeking can be associated with increasing 
one’s reputation as a good collaborator. A positive reputation and the benefits that 
obtain from maintaining such status may contribute to and increase mutualistic 
behaviors. The material and immaterial benefits (e.g. social support) that derive 
from cooperation reinforce such group behaviors resulting in greater probability of 
both individual and group survival. Affiliation through social bonds may also be the 
first step to allegiance and relate to both increases in status and mutualism.

Affective dynamics of reactive flexibility, affective synchrony, and emotional 
intelligence are proposed to facilitate attainment of MASS drives. These skills sig-
nal that one can provide benefit to the social group if included. The ability to respond 
to shifting social demands increases mutualism because of increased perceived 
trustworthiness (Slepian & Carr, 2019). Demonstrating emotional correspondence 
with social counterparts increases affiliation through intensification of group expe-
riences (Páez et al., 2015). Competently regulating emotional experiences lays the 
foundation for status attainment through effective external displays (Shariff & 

D. Mobbs et al.



201

Tracy, 2009). Understanding how each MASS drive contributes to survival motiva-
tion can reveal distinct features of corresponding affective dynamics. For example, 
affective synchrony may facilitate affiliation but may undermine status-seeking.

The MASS model posits that a specific set of social behaviors facilitates a sym-
biotic arrangement at the local (interpersonal) and global (group) level and that 
shapes motivational processes to remain in the relationship given the psychological, 
material, survival, and other benefits that accrue due to the circular model. At the 
local level the costs incurred, typically time and effort to forge and maintain inter-
personal relationships and perform functions in service of a group interest, will 
often yield a return that is both rewarding and meaningful to the individual. In some 
circumstances the rewards are not obvious or apparent, however when viewed at the 
global level, efforts may contribute to a pool of resources that serves as an emergent 
good for both the individual and group, e.g. collective intelligence, greater opportu-
nities, optimization of skill application. Each of these increases the efficiency and 
flexibility of the species, thus imbuing a survival value to prosocial behavior.

9.11 � Concluding Remarks

The human brain is wired for sociality, yet when investigating the social brain, 
researchers have focused on the cognitive operations rather than what drives social-
ity. Our theory proposes that the dynamics between MASS drives are founded on 
three chief premises: (1) living in groups provides fitness benefits; (2) these benefits 
have resulted in a set drives that need to be satisfied for successful group living; and 
(3) these drives are optimized by a set of evolved social behaviors, affective dynam-
ics, and neurocognitive systems that facilitate group formation and enhance value 
and status in the group. With this theory, we can begin to unify social neuroscience 
with the related fields of anthropology, social psychology, affective science, sociol-
ogy, and evolutionary biology. For example, MASS drives provide a universal 
account for why it is painful to be ostracized, why it is rewarding to be praised, why 
status is a driving force across many activities, why we feel the need to belong, why 
we conform, why we feel group pride, and why we experience out-group bias. Like 
any model, empirical predictions and falsifiability are required to adjudicate its use-
fulness. Our theory predicts that garnering other’s respect should be rewarding, 
people should attempt to hide their weaknesses and promote their strengths, that 
people should act differently when interacting with higher or lower status individu-
als, and that the inability to optimize MASS drives will result in lower status, rejec-
tion, isolation, and, in turn, these hardships will lead to a significant reduction in 
access to all the benefits of group living. Cooperation and collaboration should yield 
group benefits that, when made available to all group members, improve individual 
wellbeing, and increase survivability. Many of these questions have already been 
tested, yet the burgeoning field of social psychology and social neuroscience will 
further clarify the value of social behavior.
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Chapter 10
Computational Models for Affect 
Dynamics

Niels Vanhasbroeck , Sigert Ariens , Francis Tuerlinckx, and Tim Loossens 

Abstract  Computational models of affect dynamics are ubiquitous. These models 
are appropriate for either exploring intensive longitudinal data or testing theories 
about affect dynamics. In this chapter, we give a brief overview of some of the com-
putational models that have been applied in the field of affect dynamics, focusing on 
both discrete-time and continuous-time models. The emphasis of this chapter lies on 
describing the core ideas of the models and how they can be interpreted. At the end, 
we provide references to other important topics for the interested reader.

10.1 � Introduction

Studying emotion dynamics, or how emotions change over time, implies that one 
has to collect intensive longitudinal data (ILD; i.e., longitudinal data with many 
measurements over time; Y. Chen & Zhang, 2020). Advances in technology have 
greatly facilitated the collection of such data (Hamaker et al., 2015), both in daily 
life (Bolger et al., 2003; Larson & Csikszentmihalyi, 1983; Myin-Germeys et al., 
2018) and the laboratory (Seeley et al., 2015). When ILD have been collected, the 
challenge remains to analyze them and interpret the results. For this, we make use 
of computational models, that is, statistical or mathematical models that formalize 
how we believe a system works. In the case of emotion dynamics, these models 
formalize properties of ever-evolving emotions, so that they may change in their 
presence, intensity, and frequency over time.

However, formalizing the operation of the affective system is easier said than 
done. Luckily, the increased use of ILD has led to an increased interest in models 
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that quantify time-dependent changes in a whole range of psychological processes. 
Knowing what models exist and when it is appropriate to use them is thus tanta-
mount for any researcher who wants to understand how emotions change over time.

In this chapter, some of the available computational models for temporal pro-
cesses will be considered, with a focus on those models that have been used to study 
affect dynamics. The chapter will focus on computational models for the flow of 
emotional experiences, rather than models that zoom in on one specific emotional 
experience and how it unfolds over time (Kuppens & Verduyn, 2015; Verduyn 
et al., 2009).

10.1.1 � Why Computational Models?

Why should we bother with these often complicated models of affect dynamics? To 
appreciate the role models may play in advancing research, we discern two general 
goals of their application and refer the interested reader to Breiman (2001) and 
Koopmans (2011) for a more elaborate discussion.

First, computational models can be used as data analysis tools. In this sense, they 
enable the researcher to study complex patterns of change in empirical data and 
validate hypotheses concerning these patterns (Hamaker et al., 2015). The way such 
computational models are being used is no different than ANOVA: It is a generic 
model that can be applied to a wide range of data without presuming that the model 
provides a complete account of the data generating process. The usefulness of such 
models is determined by whether they can account for some of the features observed 
in empirical data. For example, it is widely believed that the intensity of an emo-
tional or mood state is in some way related to its past intensity (i.e., when one feels 
bad now, this will likely continue for some time; Kuppens & Verduyn, 2017). 
Models that do not take such relation into account, may be less appropriate for ana-
lyzing affective time series.

Secondly, computational models can be formulated as theories of affect dynam-
ics (Farrell & Lewandowsky, 2010; Hamaker et al., 2015; Luce, 1995). Like verbal 
theories, they may describe how emotions behave over time and what underlies their 
fluctuations. Each model has its own focus or emphasis, as well as its own set of 
assumptions. Furthermore, it is possible to derive hypotheses and test them to pro-
vide either evidence for or against the model (Jekel, 2019).

There are some advantages to using these theoretical computational models 
compared to verbal theories (see Farrell & Lewandowsky, 2010 and Smaldino, 2017 
for a more elaborate discussion). Firstly, defining a computational model forces us 
to specify all aspects of a theory in an explicit and detailed manner. Secondly, when 
multiple computational models describe the same process, comparison of model 
performance (i.e., how well a model describes empirical data) may guide us towards 
better theories of affect dynamics. Lastly, discussion about the theory does not rest 
upon the interpretation of others, but rather on the set of mathematical properties of 
the model. This limits misinterpretation of the theory and moves the literature away 
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from communication of theories to the testing of them. However, here also lies a 
disadvantage of these models: They may be too technical to understand straight-
away, which may still lead to misunderstanding of what these models can, and per-
haps more importantly, cannot explain.

The boundary between a computational model that is used as an analysis tool and 
a computational model that is considered a theory is often fuzzy—the same model 
may be used as a data analysis tool by some and as a theoretical model by others. 
Therefore, we will use the term “computational model” in a general sense, referring 
to both instances.

10.1.2 � Characteristics of Affective Time Series

As mentioned before, a minimal requirement for computational models of affect 
dynamics is that they take into account at least some features of emotional change. 
Here, we shortly discuss the most general characteristics of an affective time series 
that are accounted for by most computational models of affect, namely the baseline, 
variability, and regulation of the process.

Figure 10.1 provides an illustration of an affective time series in which the hap-
piness of a single individual has been measured at 25 different time points. A first 
thing one may notice is that measured happiness fluctuates around the dotted line in 
the figure. This dotted line is called the baseline and represents the affective state 
that comes naturally to the individual, or the affective state in which the individual 
is most likely to find him-/herself. If happiness increases or decreases relative to this 
baseline, one would feel more or less happy than usual (Brickman & Campbell, 
1971; Kuppens et al., 2010). The fact that happiness does not stick to the baseline, 
but shows some variability over time, is a second characteristic of the time series. 
This variability indicates that happiness is not a stable construct, but that it changes 
over time. Finally, when a grave change in happiness has occurred, it tends to move 

Fig. 10.1  Illustration of an affective time series
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back towards the baseline (e.g., timepoint 21–25 in Fig. 10.1). In other words, affect 
is regulated back to the baseline: a third characteristic of affective time series (Gross, 
2015; Kuppens & Verduyn, 2017).

In the subsequent parts of this chapter, we will introduce the reader to some com-
putational models of affect dynamics. We make a distinction between discrete-time 
and continuous-time models—two classes of models that differ in how they treat 
time, which we will discuss later. In our discussion, we will not shy away from 
showing the mathematical equations of these models, as we deem it important to 
expose the interested reader to them before they might delve into the, often techni-
cal, literature around them. We follow some conventions for mathematical notation. 
Lowercase letters are used for scalars or single values. When they are in bold, how-
ever, they represent a collection of such scalars called vectors. Uppercase letters are 
used for matrices. Greek letters are used for parameters that should be estimated, 
while Roman letters describe observed values.

10.2 � Discrete-Time Models

The class of discrete-time models enjoys a wide popularity in psychological 
research. These models relate measurements at a given time point to measurements 
at previous time points, usually by means of difference equations or maps (Strogatz, 
2018). As such, discrete-time models describe changes in the affective time series in 
discrete steps, from one measurement to another.

First, we will introduce the autoregressive models, which are among the most 
prominent in the affect dynamics literature (Hamaker et al., 2015) and often serve 
as a building block for more complicated models. Afterwards, we will focus on 
reinforcement learning models as a more recently proposed class of models for 
affect dynamics.

10.2.1 � Autoregressive Models

10.2.1.1 � The Autoregressive Model

Imagine that we track someone’s happiness across time, using a continuous slider 
ranging from 0 (not happy) to 100 (extremely happy). Let yj (with j ∈ {0,1,…,N}) 
denote the ratings obtained at time points t0 < ⋯ < tj < ⋯ < tN. The lag-1 autoregres-
sive or AR(1) model relates the rating yj at time tj to the rating yj − 1 at time tj − 1 (i.e., 
the immediate predecessor) by means of a linear regression:

	
y yj j j= + +−δ ϕ ε1 	
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Fig. 10.2  Emotional fluctuations as captured by a standard AR model (without random noise). In 
the left plot, the autoregressive coefficient φ is positive, lying in the interval ]0, 1[. This leads to an 
exponential decay, which becomes more gradual as  φ approaches 1. In the right plot, φ is negative, 
lying in the interval ]−1, 0[. This leads to emotional switching, in which the emotional state crosses 
the baseline at each future time point. The strength of this overshoot dies out over time, and is 
related to the size of φ, so that values of φ closer to −1 lead to longer dying-out time. In the plots, 
the solid line is always generated by a small autoregressive effect (φ = −0.2 or φ = 0.2), while the 
dashed line is generated by a large autoregressive effect (φ = −0.8 or φ = 0.8)

The parameter δ is a constant referred to as the intercept. This intercept can take 
any value and is related (but not equal) to the baseline (see Appendix 1).

The parameter φ (∈ [−1,1]) is called the autoregressive coefficient; it describes 
the temporal dependence of the variable y with itself at lag 1. In other words, it sum-
marizes how strongly happiness scores depend on previous happiness scores. Values 
closer to −1 or 1 imply a strong temporal dependence, whereas values closer to zero 
imply that there is little to no carry-over effect. When this effect is positive, an initial 
happiness score is expected to be regulated towards the baseline exponentially fast. 
When it is negative, however, we expect happiness to overshoot the baseline with 
each additional measurement. This overshoot is damped, so that it dies out over 
time. These autoregressive effects are visualized in Fig. 10.2.

The stochastic variables εj are often referred to as the innovations. These are used 
to describe unpredictable effects due to internal and external processes, capturing 
the variability in the dependent variable. They are typically assumed to be uncorre-
lated over time, independent of past values of the variable y, and normally distrib-
uted with mean 0 and variance σε

2
:

	
ε σεj N∼ ( )0 2,

	

Order The AR(1) model is a model of order 1 or lag 1. This means that the rat-
ings yj at times tj are regressed on the ratings yj − 1 at times tj − 1. However, the AR(1) 
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model is generalizable to higher orders, so that emotional states further in the past 
may also contribute to an emotional state at present.

The AR(p) model of order p is defined as:

	
y yj

p

k

k j k j= + ∑ +
=

−δ ϕ ε
1

,
	

where an autoregressive effect is assigned to each lagged variable yj − k. In this chap-
ter, we will confine ourselves to the discussion of models of order 1, although results 
may be generalized to models of order p. Because of this restriction, we will also 
simplify our notation from AR(1) to AR.

10.2.1.2 � The Vector Autoregressive Model

In the context of affect dynamics researchers are usually interested in the change 
and interactions of multiple emotions or affective components over time. To accom-
modate this need, the AR model can be extended to take multiple variables into 
account—an extension also known as the vector autoregressive (VAR) model.

A VAR model with d variables is defined as:
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j N
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The values of the variables at time tj are contained in the d × 1 vector yj. The 
intercepts and innovations of each variable are contained in the d × 1 vectors δ and 
εj. The autoregressive effects reside in the d × d transition matrix Φ—more specifi-
cally on its diagonal (i.e., φii represents the autoregressive effect of variable yi). The 
off-diagonal elements are called crossregressive effects and represent the temporal 
relations between the different variables. This means that a variable at time tj − 1 may 
be related to another variable at time tj. As an example, fatigue early in the day may 
be associated to irritability later in the day. Or being relaxed in the morning may be 
associated to feeling happier in the afternoon (if you did not miss any deadlines 
because you were a bit too relaxed, that is).

The (co)variances of the innovations are captured in the d × d innovation covari-
ance matrix Σε. The diagonal contains the variances of the variables and the off-
diagonal elements coincide with the covariances between the variables. Allowing 
innovations to covary means that, on average, random perturbations to the first pro-
cess at time tj are not independent from perturbations to a different process at time 
tj. Innovation covariance is therefore usually assumed to reflect common responses 
to external stimuli. Note that such innovation covariances are different from the 
direct lagged effects in that they do not make specific which of the two processes 
drives the other.

The VAR model has several interesting properties, such as regulation to a base-
line, growing uncertainty of predictions further away in the future, and the possibil-
ity to derive the autocorrelation from the transition matrix (see Appendices A and 
B). Furthermore, it allows researchers to study complex patterns of affect dynamics 
without the requirement to make a priori decisions on parameter structure (see 
Fig. 10.3), so it can be applied to a wide range of problems. Because of its simplic-
ity, its versatility, and its usefulness in describing basic properties of affect dynam-
ics, it is no surprise that VAR models have received much attention in the field, both 
in the empirical (e.g., Congard et al., 2011; Kuppens et al., 2012a; Kuranova et al., 
2020; Wichers et  al., 2020) and statistical literature (e.g., Adolf et  al., 2017; 
Bringmann et al., 2018; Bulteel et al., 2016). However, these advantages come at a 
price, as the large number of parameters requires a large amount of data to be esti-
mated adequately (Loossens, Dejonckheere, Tuerlinckx, & Verdonck, 2021).

Fig. 10.3  Simulated trajectories for five variables of a VAR model. The VAR can capture many 
complicated, and often realistic patterns of emotional fluctuation that can be found in data
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Fig. 10.4  Example of a 
directed network with three 
nodes and six 
unidirectional edges. The 
nodes of the network 
consist of three variables 
y1, y2, and y3. The strength 
of the lagged associations 
between these variables is 
estimated by using the 
auto- and cross-regressive 
effects that reside in the 
transition matrix Φ of a 
VAR model

10.2.1.3 � Network Models

A network model is a representation of how different observed variables are related 
to each other. In Fig. 10.4, an example of such as network is given, where different 
variables or nodes are associated to each other through their edges. These edges 
may be weighted and unweighted, such that in the former case, you estimate the 
strength of the association, while in the latter case you remain agnostic of the asso-
ciation strength. Edges can furthermore be directed or undirected, such that directed 
edges describe the unidirectional influence of node i on node i′, while undirected 
edges describe the bidirectional influence between these two nodes (i.e., both nodes 
exert an equal influence on each other; Smith et al., 2018).

There are many ways to build network models, depending on the association 
measures used as the edges and the values of the variables. In affect dynamics, a 
VAR model is often used as a basis of network,1 presenting results in a more 
approachable way, easing interpretation (Borsboom & Cramer, 2013; Bringmann 
et al., 2013; Bulteel et al., 2016; Epskamp, 2020a). Building a network model from 
an individual’s affective time series can then be accomplished with a few basic 
steps. First, you define the nodes to be equal to the variables y. Then, you estimate 
the parameters of the VAR model and equate the (directed) edges to the auto- and 
crossregressive effect in the transition matrix Φ (see Fig. 10.4). Finally, the network 
is visualized and interpreted. These steps can be accomplished by using several R 
packages, such as graphicalVAR (Epskamp, 2020b; see also Epskamp et al., 2018) 
and qgraph (Epskamp et al., 2012). A network built on the transition matrix of a 
VAR model is temporal in nature, as the lagged association between the variables is 

1 Because of this, we present network models in the section on autoregressive models. This was a 
practical choice, and we do not mean to imply that network models are always autoregressive in 
nature. In fact, most networks are not (e.g., Ising models; Kruis & Maris, 2016).
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used as an association measure. Such a network therefore shows how variables are 
expected to change over time.

The network approach has several advantages. First, it allows researchers to 
make graphs of the estimated network, which may aid interpretation of the results. 
Furthermore, network models allow the use of several measures that define charac-
teristics of the network, such as centrality of nodes (i.e., how interconnected a spe-
cific node is) and clustering between different nodes (Borsboom & Cramer, 2013; 
Watts & Strogatz, 1998). Such measures have been used to define several character-
istics of emotional networks. For example, it has been found that in patients, several 
symptoms cluster together and that these clusters are only connected to each other 
through bridge symptoms (e.g., Borsboom et al., 2011; Fried et al., 2017; Greene 
et al., 2020; but see Groen et al., 2020). Similarly, it has been found that positive and 
negative emotions cluster together (Bringmann et al., 2013).

Despite these advantages, there are also several interpretational issues with net-
work models. First, network models are often conceptualized as complex systems 
consisting of causal agents (Epskamp, 2020a). In other words, the relation of one 
node to another is usually interpreted as a causal one, meaning that changes in one 
node cause changes in another node. However, research in affect dynamics is gener-
ally correlational in nature and therefore not amenable to causal analysis in the first 
place. As succinctly put by Box (1966), “To find out what happens to a system when 
you interfere with it you have to interfere with it (not just passively observe it)” 
(p. 629).

Another hazard is specific to networks built on VAR models. The use of a net-
work approach may obscure some known sources of bias in the parameters of VAR 
models. Two sources of bias have been identified by Bulteel et al. (2016). Firstly, 
differences in the variability of the variables may lead to inflated or deflated associa-
tion estimates. Secondly, auto- and crossregressive coefficients reflect unique direct 
effects, which means that when the variables are interrelated, a portion of the tem-
poral relations between variables is ignored. This can be seen by calculating the 
autocorrelation ρt   t − 1 for variable y1 in VAR model with two variables and with δ = 
[0,0]’, which is equal to (see Appendix 2):
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The autocorrelation calculated here represents the temporal relation of the vari-
able to itself, and does not only depend on the autoregressive effect, but also on the 
crossregressive effect of y2 on y1, scaled (in part) by how much the two variables 
relate contemporaneously (captured by σ12). Using only φ11 as a measure of autore-
lation in a network model may thus not capture the full relation, which can lead to 
erroneous conclusions. Only in a few situations can the autoregressive effect 
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capture the full relation, namely when there is no covariance between the process 
variables (Bulteel et al., 2016).

10.2.1.4 � Extensions

Many extensions to the AR and VAR models exist, and they are often introduced for 
one of two reasons. Firstly, they can be introduced to deal with some of the limita-
tions of classical autoregressive models, such as the issue of nonstationarity. 
Secondly, extensions have been introduced to take the influence of contextual fac-
tors into account. Both reasons and their related extensions are discussed in 
detail below.

Nonstationarity. Stationary processes are processes that display constant statis-
tical properties over time (Scargle, 1981). In other words, while emotions change 
over time, their means and (co)variances remain the same over time (see Appendix 
1). For example, one’s happiness will regulate back to the same baseline over and 
over again (e.g., Brickman & Campbell, 1971).

The AR-based models discussed in this section assume that the processes they 
model are stationary. However, that assumption may be overly restrictive. There 
may be situations in which we expect meaningful changes in the dynamical proper-
ties of a time series, for instance due to interventions, experimental manipulations, 
or major life events. Indeed, nonstationary time series have been observed in affect 
dynamics in clinical populations (Bonsall et al., 2012; Nelson et al., 2017; van de 
Leemput et al., 2014) and in situations where the environment has a meaningful 
(and possibly enduring) influence on an individuals’ affect dynamics (Dunn et al., 
2018). Studying nonstationarity and its origins may therefore be relevant, since it 
could, for instance, signal an individual’s transition from a healthy state to mood 
disorders (van de Leemput et al., 2014).

Nonstationarity is a broad concept: Changes in mean, covariance, and higher 
order statistical moments can occur suddenly or gradually, or even display recurring 
patterns over time (e.g., Chow et al., 2005; Larsen et al., 2009). Sometimes research-
ers may have explicit hypotheses about likely sources of nonstationarity. Other 
times researchers may instead wish to treat nonstationarity as a nuisance that should 
be taken care of prior to the actual analysis. Each of these distinctions has implica-
tions for how one should deal with nonstationarity (see also Hamaker & Wichers, 
2017). The topic is thus vast, and many approaches to modeling nonstationary series 
have been suggested. Here, we will only consider model-based solutions. For data-
driven ways of handling nonstationarity prior to analysis (such as differencing and 
detrending), we refer the reader to Box and Jenkins (1970), Dickey and Fuller 
(1979), Hamilton (1994b), Lütkepohl and Xu (2012), and Velicer and 
Molenaar (2012).

Time-Varying VAR  An intuitive extension of the typical VAR model is to allow 
some of its parameters to change over time, which is exactly what the time-varying 
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VAR (tvVAR) does (Bringmann et  al., 2018). The general model for order 1 
would be:
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where the index j in δj and Φj indicates that these components change over time. The 
functions f(tj) and g(tj) are smooth functions of time and are estimated using regres-
sion splines (for more details and an empirical application, see Bringmann 
et al., 2018).

Despite its intuitive appeal and applicability for exploratory analyses, this model 
typically needs a lot of data in order to be estimated accurately. Furthermore, the 
multivariate version of this model fixes the innovation covariances to zero, indicat-
ing that it cannot—at present—capture contemporaneous relations between 
variables.

Regime-Switching Models  An alternative method is applicable to situations in 
which dynamical features change abruptly. One type of models that incorporates 
these abrupt changes are the regime-switching models (Cabrieto et  al., 2018; 
Hamilton, 2010). These regimes consist of separately estimated VAR models, thus 
allowing regimes to be different on all kinds of dynamical features. The way in 
which one switches regimes depends on assumptions made by the researcher. For 
example, Markov regime-switching models determine these shifts by a hidden 
Markov model (Hamilton, 2010). Another possibility is to formalize an hypothe-
sized relationship between the probability of switching and an observed covariate. 
These models are typically called threshold autoregressive models (Tong, 2011).

In general, regime-switching models can be formalized as:
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where the model coefficients depend on the value of rj, denoting the regime r at time 
tj. The matrix Ψ allows for regime-dependent innovations without explicitly chang-
ing the innovation matrix in a specific regime. To determine switching, a latent 
estimate of the probability pkl of switching from regime k to regime l is made:

	
p P r l r kkl j j= = =( )−| 1 	
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While these models have been successfully used in the context of affect dynam-
ics (e.g., switching between depressive and manic states in bipolar disorder; Bonsall 
et al., 2012; transitioning from healthy to depressive state; Albers & Bringmann, 
2020), they suffer from the limitation that they require more than one model to cap-
ture the complete time series (Hamilton, 2010). As a consequence, the number of 
parameters to be estimated substantially increases with each additional regime. To 
be able to estimate such a model reliably, sufficiently long time series are required.

Context. Until now, the models have assumed that the emotional system evolves 
in a contextual vacuum. We have often referred to the dependent variables as reflect-
ing affect, without including any external contextual information in the model. 
Nonetheless, the inclusion of contextual information in computational models may 
greatly enhance our understanding of how events may elicit emotions, which aspects 
of the emotional process are influenced, what the emotional system does when it 
anticipates them, and how long these emotions last (Daros et  al., 2019; Voelkle 
et al., 2013).

Fixed Moderated VAR  One way in which such information can be included is fixed 
moderated VAR (fmVAR, Adolf et al., 2017), an extension of the VAR framework 
which allows parameters to change depending on the value of a lagged external 
variable, by including it as a moderator variable. The general model can be formu-
lated as:
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where x is a vector of values of the moderator at each time point.
The functions f, g, and h are link functions which define the functional form of 

how the moderator influences the process. For example, a linear link function for 
δ j

∗
 would assume a linear relationship between the moderator and the intercept of 

the process δ. This is a relatively straightforward way of accommodating changes in 
the level of the series, for instance by tying a dummy-coded moderator signaling a 
major life event to the process intercept.

Note that the moderator is assumed to be observed and measured without error. 
As such, fmVAR models are in particular applicable to situations in which contex-
tual factors are controlled by the researcher like, most notably, in lab studies. 
Missing moderator values cannot be handled within the model, which need to be 
imputed a priori (Adolf et al., 2017).
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10.2.2 � Reinforcement Learning

Where autoregressive models (and most other models in this chapter) mainly 
describe relations between variables, reinforcement learning models go a step fur-
ther and link environment with emotions in a more explicit way.2 Reinforcement 
learning is a computational framework that describes how an agent or individual 
uses its experience to update its behavior, often with the goal of maximizing future 
rewards (Bennett et al., 2020; Sutton & Barto, 2018). Central to this framework is 
the notion that we get feedback on our actions, which is then used to change our 
behavior. To make this more concrete: imagine a child that gets caught taking candy 
from the cupboard without asking first. The parents may be very angry with the 
child, an outcome he/she probably does not like. In light of this feedback, the child 
may then change his/her future behavior and ask the parents for candy first (or per-
haps steal the candy more stealthily). Reinforcement learning thus provides a way 
to integrate emotional states with environmental cues, goals, and behavior, bringing 
action tendencies to computational modeling (Frijda, 2007).

We discuss two reinforcement learning-based models, one that is only concerned 
with explaining emotional states (Rutledge et al., 2014; Villano et al., 2020) and 
another that links these emotional states to behavior and learning biases (Bennett 
et al., 2020). These are, however, not the only models in this rich field (see e.g., Doll 
et al., 2012; Eldar & Niv, 2015; Eldar et al., 2015; Sutton & Barto, 2018).

10.2.2.1 � Computational Model of Happiness

This unnamed model was originally proposed by Rutledge et  al. (2014) and has 
been used by several other authors (e.g., Villano et al., 2020; Vinckier et al., 2018). 
It was proposed within the context of a study on the influence of gambling outcomes 
on fluctuations in happiness. For this, Rutledge et al. (2014) used a gambling experi-
ment in which participants had to choose between a certain reward (value c) or a 
gamble. When participants choose a gamble, they had a 50/50 probability of receiv-
ing a higher (denoted as h) or lower outcome (denoted as l) than the certain reward. 
The reward given at the end of the trial can be denoted as o. Based on this experi-
ment, the model was formulated as3:

2 Note that we specifically talk about reinforcement learning in the context of emotion dynamics: 
This class of model is applicable to many more subjects, like decision-making, conditioning, and 
learned behavior (see Sutton & Barto, 2018).
3 To remain in line with the mathematical notations of this chapter, we changed the notation of this 
model (see Rutledge et al., 2014).
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where δ is the intercept, and the variables c, v ( =
+( )h l

2
), and p (= o − v) represent 

the value of the certain reward, the expected value of the gamble, and the reward 
prediction error (i.e., the difference between the obtained reward and the expected 
value). Note that for trials in which the gamble is chosen, c is zero, and for trials in 
which the certain reward is chosen, v and p are zero. Importantly, past outcomes also 
play a role, although their influence decays over time. This decay is captured by the 
value of γ (∈ [0,1[), which is called the forgetting factor (see Rutledge et al., 2014). 
The greater the value of γ, the longer the rewards linger and the greater their influ-
ence on current happiness. The influence of all rewards (both at the current time 
point as well as the previous ones) is scaled by the ω’s. With this model, Rutledge 
et al. (2014) found that prediction errors are an important driver of fluctuations in 
happiness, a result that has subsequently been confirmed by Rutledge et al. (2017) 
and Vanhasbroeck et al. (2021).

A limitation of the model is that it can only be applied to situations in which 
there is a certain and uncertain outcome. However, in reality, rewards may always 
be uncertain. To accommodate this limitation, Villano et al. (2020) made a small 
adjustment to the model:
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where p represents the prediction error and o the uncertain outcome. With this 
adjusted model, Villano et al. (2020) also found that prediction error is an important 
driver of fluctuations in affect in daily life.

10.2.2.2 � Integrated Advantage Model of Mood

While the previous models were able to establish the role of prediction error in 
affect dynamics, they do not specify how happiness or affect may guide behaviors. 
The Integrated Advantage Model of Mood (IAMM) goes a step further and explic-
itly links behavior to mood, and mood biases to behavior (see Bennett et al., 2020). 
In this chapter, we limit our discussion to the basics of the IAMM, leaving out some 
of the details of the model. We refer the interested reader to the preprint of Bennett 
et al. (2020) for a more thorough discussion of the model.

Central to the IAMM is the notion of advantage, which can be defined as the 
difference between the outcome of a chosen action and the value of the state within 
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which this action has been taken (Bennett et al., 2020). More concretely, advantage 
tells you something about how well you are doing now compared to before. Let’s 
return to the example of the child: the child craved some candy (a low-valued state), 
so he/she decided to look in the cupboard and take some candy (an action), after 
which the craving is satiated (a high-valued state). The advantage of the child’s 
action is thus positive, as he/she moves from a low- to a high-valued state. This 
advantage may lead to a strengthening of this behavior, i.e., the child may choose to 
act this way again in the future. If, however, at some point the parents catch him/her, 
the child suddenly find him/herself in a low-valued state again, decreasing the 
advantage of this same action. As such, the overall advantage of the action “taking 
candy” may depend on how many times the child was able to take candy without 
being caught, and on how the child values angering the parents (e.g., if a child does 
not really care that the parents are angry, then he/she will probably continue acting 
the same way).

Based on this notion of advantage, the IAMM defines mood that results from an 
action as:

	
y y s a yj j j j j= + ( ) −( )− − − −1 1 1 1η απˆ ,

	
(10.2)

where η plays a similar role as the parameter γ in the model of Rutledge et al. (2014), 
and where α̂ π s a,( )  is the estimated advantage of doing action a (taking candy) in 
situation s (craving candy) under a certain behavioral policy π. The behavioral pol-
icy can be seen as a rulebook that links actions to situations. For example, in the 
situation “craving candy”, the action “taking candy” may be more likely taken than 
the action “asking parents first”. However, based on the new experience of the child, 
and the associated negative advantage of performing this action, its probability may 
decrease. As such, α̂ π s a,( )  plays a crucial role in updating the policy π. The IAMM 
thus goes further than just describing mood states: It also describes how advantage 
can change behavioral tendencies over time (Bennett et al., 2020).

This is, however, only part of the story. Bennett et al. (2020) suggest that behav-
ioral updating—based on advantage of an action—may be influenced by mood in 
the form of momentum. Momentum is a term from machine learning that describes 
an optimization algorithm for estimating parameters in which information of past 
updates is integrated with information on newly proposed ones (Rojas, 1996).

In terms of behavior, this comes down to the following: Suppose we act in a way 
that leads to positive advantage, then this advantage will lead to elevated mood and 
behavioral updating. Because of our elevated mood, we will also be more likely to 
update our behavior in the future (in combination with advantage, that is). In math-
ematical terms, this comes down to the updating of the parameters θ of the behav-
ioral policy π, the details of which can be found in the preprint of Bennett et 
al. (2020).

10  Computational Models for Affect Dynamics



228

	

ε λε π

ζε α
η

η

θ θ

θ

π

j j j j

j j j j j

a s

u s a y

u

= +∇ ( )( )

= ( ) + −









← +

−1

1

log |



,

jj

	

where υ represents the update in the parameters θ of the behavioral policy, thus 
updating behavioral tendencies. Without going into detail, we will note that ε is the 
eligibility trace of the model, which determines the sensitivity with which certain 
action tendencies will update, depending on whether they were important in gener-
ating the taken action.

The question remains how one estimates the advantage of an action. Bennett 
et al. (2020) propose several estimators that may be used, one of which is the predic-
tion error. A full description of these estimators is, however, beyond the scope of 
this chapter. If one is interested in knowing more about the model, we encourage the 
reader to read the preprint of Bennett et al. (2020).

10.2.2.3 � Limitations

Reinforcement learning models have the clear advantage that they combine indi-
vidual and environment in a more explicit way than is typically done by using 
autoregressive models. They can take into account the learning history of an indi-
vidual (e.g., learned regulation strategies; Gross, 2015; learned action tendencies; 
Frijda, 2007) and biased reward perception (Mason et al., 2017). As such, it is no 
surprise that reinforcement learning-based models have been suggested as theoreti-
cal models of mood disorders (Bennett & Niv, 2018, June 7; Eldar et al., 2015).

A disadvantage of these models, however, is their reliance on known rewards: In 
order for the models to be estimated accurately, you should have reliable informa-
tion about rewards received after performing given actions and the value that is 
attached to them by the individual. This information may not always be available 
(e.g., rewards may be intrinsic), which may influence the estimation of the param-
eters of the models. This makes reinforcement learning models ideal to analyze 
experimental data, but more difficult to apply to data from more naturalistic studies 
(e.g., daily life studies).

10.3 � Continuous-Time Models

Why do we refer to discrete-time models as discrete-time models? A discrete-time 
model relates (or maps) observations at the discrete time points tj − 1 to observations 
at the discrete time points tj. In other words, discrete-time models are only 
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concerned with how the process changes from one measurement to the next. With 
such mapping comes the assumption that all observations are separated by precisely 
the same time interval. A failure to meet this assumption has been found to bias 
parameter estimates (de Haan-Rietdijk et al., 2017; Hamaker & Wichers, 2017). The 
problem is that this requirement is nigh impossible to achieve in practice, so we may 
assume that most (if not all) applications of these models will lead to biased esti-
mates. While some methods have been proposed to limit this bias, no perfect solu-
tions exist within the discrete-time approach (de Haan-Rietdijk et  al., 2017; 
Rindskopf, 1984).

Continuous-time models constitute another solution to this problem. These mod-
els attempt to estimate the function of the continuously-evolving variables with the 
use of differential equations, which have the advantage of incorporating change at 
any time interval by explicitly accounting for time (Deboeck, 2013; Strogatz, 2018). 
This mindset makes for an arguably more natural way of thinking about affective 
processes, which do not stop and wait for a next observation to express themselves, 
but evolve continuously over time (Cunningham et al., 2013; Ekman, 1992; Feldman 
Barrett, 2009; Frijda, 2007; Moors & Fischer, 2019; Scherer, 2005). Because of this 
continuity-assumption, emotions may inherently be better off being studied in con-
tinuous time (Boker, 2002). Furthermore, continuous-time models can deal with 
unequal time intervals between measurements, which may be better for ecological 
validity (Hektner et  al., 2006) and for capturing relevant information about the 
underlying process (Voelkle & Oud, 2013).

10.3.1 � Differential Equations

Continuous-time models are often differential equations, which relate the current 
value of a variable to the speed with which this same variable is regulated towards 
its baseline. In the context of affect dynamics, this implies that the strength with 
which a certain affective state is regulated, depends on the severity of the disruption 
of affect.

Because we provide mathematical formula for the models in this section, it is 
important to have a notion of what differential equations look like and how they can 
be interpreted. Our introduction is not exhaustive. We refer the interested reader to 
Deboeck (2013) for a low-level treatment of differential equations, and to Strogatz 
(2018) for a more thorough introduction to differential equations.

Differential equations can be written in a few, analogous ways, namely:
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where f is a function of the variable, which may be linear or nonlinear (see later), 
and deterministic or stochastic (i.e., with or without a random component). In these 
equations, we can think of dy(t) as being a change in value of the variable y(t), and 
dt as a change in time. Hence, in the first notation, the left side represents the speed 
with which the variable y(t) changes (change in the variable divided by a change in 
time), which is then related to the current value of the variable on the right side. In 
the second notation, the change in time dt is moved to the right side of the equation, 
so that you now relate the change in the variable y(t) directly to the current state of 
the variable and the amount of time that has passed. The third notation is equivalent 
to the first one, so that y t

dy t
dt( ) = ( ) .  Personally, we prefer the second notation, 

and will try to use it where possible. In case the differential equations would become 
too complicated, however, we will use the first, standard notation.

10.3.1.1 � Interpretation

The interpretation of differential equations may seem more alien than that of 
discrete-time models. However, there are several methods that make interpretation 
of continuous-time models easier. Besides directly interpreting the parameters 
(when they have clear-cut meanings), we will focus on one other method, namely 
considering the vector fields. For additional methods, we refer the reader to Ryan 
et al. (2018) and Strogatz (2018).

Plotting the vector field of a differential equation probably constitutes the most 
straightforward way for their interpretation (Strogatz, 2018). Vector fields represent 
the expected trajectories of emotional change, given specific initial conditions.4 
Plotting them thus provides us with some interesting characteristics of emotional 
change, such as the location of the baseline, the expected evolution of emotions, and 
the strength of regulation. Consider Fig. 10.5 in which different one- (top) and two-
dimensional (bottom) vector fields are plotted. In panels (A) and (B), the derivative 
y t( )  is plotted against the value of y(t). In panel (A), it can be seen that when y(t) 

is greater than 0, the derivative is lower than 0 (and vice-versa when y(t) is lower 
than 0). This means that if y(t) is greater than 0, it will move towards lower values 
of y(t) with a speed that is determined by y t( ) . This movement stops when y t( )  is 
equal to 0. The value of y(t) in which this occurs is called a fixed point, and in this 
case the attractor, as values of y(t) are regulated towards it (see the arrows). In panel 
(B), we see an opposite pattern, such y(t) moves away from the fixed point, making 
it a repellor (note that if y(t) = 0, it stays put and does not move away from this fixed 
point). In panels (C) and (D), two equivalent vector fields for two-dimensional sys-
tems are shown with either arrows (size of the arrow indicates velocity of regula-
tion) or trajectories.

4 Importantly, this implies that vector fields are deterministic—they show what the model would 
expect if there were no perturbations to the system.
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Fig. 10.5  Examples of vector fields for one- and two-dimensional systems. In plot (A), the deriva-
tive y t( )  is plotted against the variable y(t), resulting in a one-dimensional vector field. This vec-
tor field is specific to the simple system y t( )  = −y(t), in which speed of regulation is linearly 
related to the emotional state. Arrows indicate the value to which the emotional state is regulated 
(here, the origin). This value is known as an attractor. In plot (B), another one-dimensional vector 
field is shown, this time for the system y t( )  = y(t). Now, there is no regulation, but rather explo-
sion of the emotional system, as indicated by the arrows. The origin takes on the role of repellor, 
which repels, rather than attracts values of y(t). Plots (C) and (D) show two-dimensional vector 
fields with an attractor. In plot (C), direction and strength of regulation is shown through the use of 
arrows that differ in size. In plot (D), the deterministic trajectories towards the attractor are shown 
as solid lines

Constructing one- to two-dimensional vector fields can be achieved by following 
the following steps: (a) specify the parameters of the model to plot, (b) specify the 
initial condition of y(t), (c) compute a trajectory from this initial condition for a 
specific amount of time, and (d) compute other trajectories and plotting them 
together. To approximate a trajectory, one can make use of the Euler method 
(Strogatz, 2018):
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where ∆yt represents the discretized change in the variable y(t), and ∆t represents 
the discretized change in time. In practice, you should choose ∆t to be small enough 
so that the system does not fully return to baseline from the first go, but also not too 
small so that you can barely see any regulation. Other approximation methods exist 
as well, but will not be reviewed here (see Strogatz, 2018). Some software allows 
you to create such vector fields through the use of a function (e.g., dynr; Ou 
et al., 2019).

We will begin our discussion with linear continuous-time models of affect 
dynamics. These models are of the form (Strogatz, 2018):

	 d t A t dt cy y( ) ( )= + 	 (10.3)

where c denotes a collection of terms that does not depend on the state vector y(t) 
and A is a d × d matrix.

10.3.2 � Linear models

10.3.2.1 � Continuous-Time VAR

In the psychological literature, the term continuous-time VAR model is sometimes 
used as a synonym for the Ornstein-Uhlenbeck (OU) model, named after Ornstein 
and Uhlenbeck who formalized the properties of this continuous-time model 
(Uhlenbeck & Ornstein, 1930). This is because the OU model and the discrete-time 
VAR(1) model are closely related: if y(t) is a continuous-time OU process (e.g., 
happiness) and you take equally-spaced measurements of it, then the resulting 
observations behave according to a discrete-time VAR(1) model (for more details 
on the relation between the OU and discrete-time VAR(1), we refer the interested 
reader to Bergstrom, 1984; Oud, 2007; Oud & Jansen, 2000; see also Fig. 10.6). 
Because of this simple relationship, the OU model has been proposed as an alterna-
tive analysis tool for emotion data (Driver & Voelkle, 2018a; Voelkle & Oud, 2013), 
and is slowly being used by researchers (e.g., Booij et al., 2020; Guthier et al., 2020; 
Kuppens et  al., 2010; Steele et  al., 2018). For brevity, we will use the term OU 
model to denote the continuous-time VAR model and we will keep on using the 
term VAR model to denote the discrete-time VAR model.

The OU model is defined as (following Oravecz et al., 2011; related formulations 
by Deboeck & Preacher, 2016; Driver & Voelkle, 2018b; Oud & Jansen, 2000; 
Voelkle & Oud, 2013):

	
d t t dt d ty y w( ) ( ) ( )= −( ) +Θ Γµµ

	 (10.4)
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Fig. 10.6  Simulated data 
of an OU model (top) and 
associated equidistant 
measurements (bottom). 
These measurements can 
be described by a VAR 
model

with
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The vector μ is a constant vector that represents the baseline or attractor. 
Regulation of y(t) towards μ is determined by the d × d matrix Θ, also known as the 
drift matrix. It fulfills a similar role as the matrix Φ for the VAR model (see Eq. 
(10.1)), but they are not the same: Θ is a nonlinear transformation of Φ that describes 
regulation on an infinitesimal time scale (see e.g., Oud, 2007).

Equation (10.4) is a stochastic differential equation. It does not only include a 
deterministic part (also known as drift term), but also a stochastic part (also known 
as diffusion term). This stochasticity comes about through the time-dependent fluc-
tuations generated by d independent Wiener processes contained within the vector 
w(t). These fluctuations are scaled by the d  ×  d lower-triangular matrix Γ. This 
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matrix is not the continuous-time extension of the innovation matrix of the VAR 
model, but the latter can be computed from the former as Σ = ΓΓT.

The OU model, like the VAR model, is very general, which means that it can be 
a good exploratory tool, but in itself it says little about what the emotional system 
looks like. Nevertheless, we know of two theoretical applications of the OU model, 
one of which we turn to next.5

DynAffect. DynAffect is a theoretical OU model that assumes that fluctuations 
in affect occur within a two-dimensional valence-arousal affective structure 
(Kuppens et  al., 2010; Oravecz et  al., 2011). As a theoretical model for affect 
dynamics, it assumes that (a) there is a baseline to which individuals regulate their 
emotions, (b) the strength of regulation depends on the distance from the current 
affective state to this baseline, and (c) there are individual differences to be found in 
the baseline and regulation strength.

Evidence from a number of studies supports each of these assumptions (Kuppens 
et al., 2010; Oravecz et al., 2018; Oravecz & Brick, 2019; Wood et al., 2018). But, 
these assumptions are also very general. As such, their a priori probability of being 
true may be great, and the lack of falsification is thus less informative than one may 
have initially anticipated (Popper, 1959). Even so, DynAffect is a useful model of 
affect dynamics, as it provides a structural framework that can be used by other 
researchers (e.g., Pellert et al., 2020; Schweitzer & Garcia, 2010) and allows the 
investigation of individual differences in affect dynamics (e.g., Santangelo et al., 
2016; Wood et al., 2018).

10.3.2.2 � Damped Linear Oscillator

The damped linear oscillator is a linear model that has been specifically proposed 
to capture regulatory processes (Boker & Nesselroade, 2002; Chow et al., 2005; Hu 
et al., 2014; Steele & Ferrer, 2011). In physics, the damped linear oscillator is a 
well-known model for a pendulum that slows down due to friction (and of the move-
ments of a spring in a viscous fluid, but we believe the pendulum speaks more to the 
imagination). When we instigate the movement of a pendulum, we can see its mass 
swing down to a central position, and then back up to the other side, only to swing 
down on a following turn. Each oscillation, i.e. each time the pendulum swings 
back, the amplitude of the swing will decrease, until at some point, the mass reaches 
a resting state (Boker & Graham, 1998). Another analogy is that of a thermostat: If 
we increase the temperature of the room, the room will heat up and slightly over-
shoot the specified temperature. It will then cool down until it overshoots the same 
temperature, after which it will heat up again (and vice-versa for decreasing the 
temperature of the room; Boker & Nesselroade, 2002; Chow et al., 2005). These 
movements are visualized in Fig. 10.7.

5 In the application that we do not discuss, the OU model was only part of a series of equations (see 
Pellert et al., 2020; Schweitzer & Garcia, 2010).
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Fig. 10.7  Examples of regulation patterns to be expected by the damped linear oscillator (for one-
dimensional systems). The trajectories were generated for a same initial condition and a same 
amount of time. When we decrease the value of η, we create a greater frequency of oscillations, 
visible in the number of times y(t) overshoots the baseline (compare this for values η = −10 and 
η = −25). When we decrease the value of ζ, we increase damping, meaning that the overshoot will 
die out sooner (compare this for values ζ = −0.6 and ζ = −1.5). Note that these expected trajecto-
ries resemble the ones for negative autoregressive effects in the AR model (see Fig. 10.2)

Based on these examples, one may start to see why this model has been proposed 
as a model of regulation: When an event happens, we tend to regulate our ensuing 
emotions to return to our baseline (although upregulation may also occur; Gross, 
2015). However, we may initially overregulate our emotions, such that we over-
shoot the baseline. After some time, this overshoot dies out and we eventually reach 
our resting state.

The (multivariate) damped linear oscillator is defined as follows6:

6 The damped linear oscillator is an example of a second-order differential equation, where speed 
and location of a variable y at time t are both related to changes in speed over time (i.e., accelera-
tion; speeding up or slowing down over time).
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In these equations, the matrix E determines the frequency of the oscillations, i.e. 
how fast one regulates their emotions. Importantly, its diagonal elements capture the 
self-regulation of the variables (i.e., how fast the variables y(t) are regulated on their 
own), while the off-diagonal elements capture co-regulation of variables (i.e., how 
does the regulation of one variable relate to regulation of another). The matrix Z 
determines the amount of damping on the process, thus controlling how much one 
overshoots the baseline. In Fig.  10.7, one can see the impact of E and Z on the 
expected process for a one-dimensional system.

This model has been applied in a number of studies, often in the context of emo-
tion dynamics in couples (e.g., Boker & Laurenceau, 2006; Reed et al., 2015; Steele 
& Ferrer, 2011), but also in the context of the relation between affective states and 
psychopathological symptoms (e.g., Hu et al., 2014). It can account for some inter-
esting patterns in the data (although these are not unique, see Strogatz, 2018; Voelkle 
& Oud, 2013) and allows the estimation of theoretically meaningful parameters. 
Nevertheless, the model also has its downside. In its current form, it assumes that 
emotions die out over time. While this is no problematic assumption when examin-
ing specific emotional experiences, it may be more difficult to maintain when exam-
ining affect dynamics in real life, where a succession of affect-eliciting events may 
obscure such an (idealized) pattern. In practice, this issue is accounted for by includ-
ing a measurement model that accounts for different types of noise (see e.g., Boker 
& Nesselroade, 2002) or by including terms that model perturbations to the system 
(e.g., Boker & Laurenceau, 2006; Butner et al., 2005).

10.3.2.3 � Reservoir Model

Based on the damped linear oscillator, Deboeck and Bergeman (2013) defined the 
Reservoir Model. It captures the same fluctuations as the damped linear oscillator, 
but, unlike the latter, takes ceiling and floor effects of measurements into account. 
The model is based on fluctuations of the water level in a reservoir that is constantly 
being filled with water (subsequently called the input) while some of the water 
escapes (subsequently called the output). Depending on the input and output, the 
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water level in the reservoir may change from being high (when input is greater than 
output) to low (when output is greater than input) to maintaining a stable value in 
between (when input and output are relatively equal for a certain amount of time). 
Based on this physical example, the Reservoir Model is defined as (Deboeck & 
Bergeman, 2013):

	
dy t y t dt t dt( ) = ( ) + ( )β ε

	

where β < 0 and ε(t) ≥ 0. The constraints put on the parameters follow from the 
derivation of the model, such that β represents the pressure-dependent outflow and 
ε(t) represents the inflow. The bigger the outflow, the more easily a buildup of inflow 
is regulated. To give an example: imagine that during a specific day, stress builds up 
due to a number of events (i.e., ε(t) is large). The parameter β then marks the differ-
ence between being able to regulate this stress (β is sufficiently large) or having a 
stress overload (β is too small). Importantly, ε(t) is itself a function of time, so that 
the input may change over time: sometimes there is more input (more stressful 
days) or less input (more relaxing days).

While the model seems promising, it has not yet been applied frequently.

10.3.3 � Nonlinear Models

Linear models are a useful tool for investigating affect dynamics. However, evi-
dence suggests that they may fail to capture some fundamental characteristics of 
affective data, such as V-shaped relationships between variables (e.g., PA-NA; 
Diener & Iran-Nejad, 1986; Schimmack, 2001; valence-arousal; Kuppens et  al., 
2012b) and abrupt changes in the temporal dynamics of affect (i.e., phase transi-
tions; Bonsall et al., 2012; Scherer, 2000; Thagard & Nerb, 2002; van de Leemput 
et al., 2014).

There are several ways to accommodate phenomena that deviate from linear 
dynamics. First, one may choose to tweak the linear model so that it may be used in 
specific applications. For example, one may choose to incorporate abrupt changes 
in the dynamical system by making one or several parameters time- or context-
dependent (Boker et al., 2016; Driver & Voelkle, 2018b). These tweaks may seem 
familiar, as they have also been discussed in the context of nonstationarity (see 
Extensions of Autoregressive Models).

Another option is to use nonlinear models of affect dynamics. Nonlinear models 
are models that cannot be rewritten to the form specified in Eq. (10.3). What the 
nonlinearity looks like, is left to the researcher to decide, and may go from the non-
linear transformation of variables to the inclusion of an interaction term between 
them. Examples of nonlinear models are
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and, to pick the concrete example of a damped nonlinear oscillator (Boker & 
Graham, 1998):
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The difficulty thus lies not in recognizing what nonlinear models are, but in how 
these models can be used and interpreted, as they often produce very complex 
behavior with very few parameters. Despite their great appeal, we caution the inter-
ested reader in applying nonlinear models to data without considering (a) what 
behavior the model produces, (b) whether this behavior is interesting with regards 
to affect dynamics, and (c) whether other, simpler models can be used instead. This 
is not to say that nonlinear models cannot be applied to affect dynamics; On the 
contrary, given that nonlinear tendencies are observed in the affective time series of 
individuals, this calls to the use of these models. However, researchers should also 
consider the difficulty in identifying a model that produces much of the behavior we 
see in the literature, a point to which we will return later (Brown et  al., 2013; 
Sussmann & Zahler, 1978).

10.3.3.1 � Catastrophe Theory

Originally conceived of by Thom (1975) and then popularized by Zeeman (e.g., 
Zeeman, 1976), catastrophe theory quickly gained traction in psychology due to the 
perceived range of problems that it can deal with (e.g., Flay, 1978; Hartelman et al., 
1998). In the domain of emotions, it has been explicitly used by Allen and Carifio 
(1995), included in theory by Scherer (2000) (albeit speculatively, but see also 
Sacharin et al., 2012; Sander et al., 2005), and alluded to by Frijda (2007).

In its most basic form, catastrophe theory defines a potential function that binds 
together the variables in which one is interested. Then, the model defines the move-
ment in this potential as (Chow et al., 2015):

	
d t

V t
dty

y

y
( )

( );
=

( )∂
∂

θθ

	

where V(y(t);θ) is the potential function of y(t), given the parameters inside the 
parameter vector θ. The symbol ∂ denotes the partial derivative. In this context, this 
means that for the potential function, the derivative is taken with respect to the vari-
ables y(t), so that the parameters θ are considered to be constant. Because of this, the 
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y(t) are often taken as the dependent variables (or behavioral variables). The values 
to which the y(t) are regulated then depend on the values of the control parameters 
in θ. In practice, these control parameters can themselves be functions of some 
independent variables, so that

	 θ = Ωx 	

where Ω is a diagonal matrix consisting of the different weights of the predic-
tors in x.

The challenge of catastrophe theory then lies in the construction of the potential 
function. Luckily, many such models already exist, the most popular one being the 
cusp catastrophe model (Chow et al., 2015; Hartelman et al., 1998; Scherer, 2000; 
Zeeman, 1976). Its potential function and partial derivative are:
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It includes one behavioral variable y(t) and two control parameters α and β. To 
understand how the control parameters work, we refer the reader to Fig. 10.8—for 
a visualization on what it implies for the potential function, we refer to Fig. 10.9. 
The black lines represent lines of attractors, meaning that values of y(t) below or 
above this line are regulated towards it. Once on the line, the system reaches equi-
librium and stops moving. Given that there are no sources of stochasticity, the only 
way to elicit movements in the behavioral variable y(t) is through changes in the 

Fig. 10.8  The cusp catastrophe model for different values of α and β. Values of y(t) are regulated 
towards the solid lines, as indicated by the arrows. Keeping β constant, increasing the value of α 
goes together with increased values of y(t). When we keep β ≤ 0, increasing the value of α leads to 
continuous increases in the value to which y(t) is regulated (i.e., the attractor value). When β is 
greater than 0, a discrete jump in the attractor value can be seen when a certain threshold value of 
α is exceeded. The emotional state remains on this plane until one decreases the value of α beyond 
another, separate threshold, a characteristic of the cusp catastrophe model called hysteresis. The 
dotted part in this plot is a line of repellors that can never be reached by the emotional state
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Fig. 10.9  The potential function of the cusp catastrophe model for different values of β, keeping 
α constant. The affective state y(t) moves towards the local minima of this potential function (i.e., 
towards the bottom of the wells, which are the attractors), as captured by the differential equation. 
When β increases, the system goes from having one well or attractor to having two, corresponding 
to the bifurcation seen in Fig. 10.8

control parameters, which amounts to changes in the predictor variables x. Looking 
back at the left plot of Fig. 10.8, we can see that increasing the value of α leads to 
increased values of y(t). But what happens when we increase the value of β? As you 
can see in the middle and right plot, the potential function creates a fold (a process 
also known as bifurcation; Strogatz, 2018), with a lower region (lower values of 
y(t)), an upper region (higher values of y(t), and a middle region that connects the 
former two (the dotted line). Note that the middle region consists of repellors, so 
that y(t) can never be regulated towards it. This implies that y(t) can only be regu-
lated towards the lower and upper region, which produces some interesting behavior.

Imagine that we manipulate α for the higher values of β. Starting out at the lower 
region and slowly increasing the value of α, we see that y(t) only gradually increases, 
until suddenly, y(t) shows a discrete jump from the edge of the lower region to the 
upper region. This behavior is at the heart of why catastrophe theory is popular: 
Continuous increases in the predictor variables may elicit sudden phase transitions 
in the dependent variable. Interestingly, decreasing the value of α does not imply a 
jump back to the lower region at the same threshold as the upwards jump, a charac-
teristic known as hysteresis.

To make this a bit more concrete, consider the following example. Take the 
behavioral variable y(t) to be perceived stress during the day, take the value of α to 
be dependent on physiological and/or emotional arousal, and the value of β to be 
dependent on suppression. When an individual does not suppress feelings of arousal, 
then the cusp catastrophe model would predict that with increases of arousal come 
continuous increases of perceived stress. With this comes the assumption that when 
arousal decreases, perceived stress will also decrease in a continuous fashion (as 
shown in the left plot of Fig. 10.8). Now consider the case when an individual sup-
presses much of the arousal he/she feels (right plot of Fig. 10.8), then one may ini-
tially perceive less stress, up until a critical value at which arousal becomes too high 
and perceived stress abruptly increases (i.e., suddenly the stress becomes over-
whelming). Importantly, due to hysteresis, it will not be easy for the individual to 
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recover from this sudden burst of stress: falling back into the “normal” pattern of 
stress requires arousal to decrease beyond the previous transition point.

Given our explanation, we hope that the potential of this model is clear. It makes 
explicit what factors contribute to the creation of the fold (β) and the abrupt change 
in affect dynamics (α), and how we may attempt to alleviate this state. The model is, 
however, deterministic in nature, leaving no place to stochastic noise in the system, 
be it due to internal and external perturbations or due to measurement error. To alle-
viate this limitation, stochastic versions of catastrophe models have been proposed 
(see Cobb & Watson, 1980; Wagenmakers et al., 2005).

Despite the frequent use of catastrophe-related terminology in theories of emo-
tion and emotion dynamics, the models themselves have not, to the knowledge of 
the authors, been directly applied to affect dynamics. It is, however, related to a 
recently proposed nonlinear model of affect dynamics, to which we turn next.

10.3.3.2 � Affective Ising Model

The Affective Ising Model (AIM) is capable of modeling phase transitions, which 
may occur either due to contextual stimuli or due to random fluctuations (Fig. 
10.10). The AIM is a theoretical nonlinear diffusion model that assumes that the 
emotional life of individuals consists of two pools of binary neurons (i.e., neurons 
which only have an on- or off-state; Loossens et al., 2020). The state of these two 
pools determines the amount of PA and NA a person experiences at a given point 
in time.

Activation in the pools is subject to several forces. More specifically, (a) each 
neuron has a pool-specific threshold of activation (θi) that may be lowered or 
increased by environmental factors (βi), and (b) neurons of a given pool that are 
activated will excite the other neurons of the same pool and inhibit the ones in the 
other pool (λi and λ12 respectively).

Instead of describing the time evolution of the binary neurons themselves, the 
AIM describes the dynamics of the overall activation in the pools. Let y1 and y2 
denote the average activation of pool 1 (PA) and pool 2 (NA) respectively, then the 
dynamical equations are given by:
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where F(y1,y2) is defined as:
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Fig. 10.10  Simulated data of an AIM with two modes. In this figure, it is shown that the AIM can 
account for discrete shifts in affect dynamics. In this case, the AIM transitions from a high PA-low 
NA state to a low PA-high NA state
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where νi relates to the number of neurons in a specific pool and δ determines the 
speed with which the system diffuses towards an equilibrium state (see Loossens 
et al., 2020 for more on this). The function F(y1,y2) is called the free energy function 
and it plays a similar role to the potential function in catastrophe theory models. It 
can be interpreted as an individual’s emotional landscape, through which a the 
affective state moves. This state will tend towards minima in the landscape (the 
attractors), but may move upwards due to stochastic fluctuations, so that affect is 
always evolving.

The AIM induces nonlinearity in two ways. First, it includes logarithmic terms in 
Eq. (5), making the drift of the AIM nonlinear. Furthermore, the states y1 and y2 of 
the AIM are constrained to fall between 0 (all neurons are inactive) and 1 (all neu-
rons are active), which introduces some boundary effects that are absent in most of 
the discussed models. As a consequence, the AIM can reproduce some complex 
phenomena often found in affect dynamics (for some results, see Loossens 
et al., 2020).

While certainly promising, one clear disadvantage of the model is its limitation 
to two dimensions (PA and NA), without current alternative to incorporate more 
than these two dimensions.
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10.3.3.3 � Chaos

Our discussion of nonlinear models would not be complete without at least braising 
the topic of chaos. Yet, this discussion will stay limited, as chaos has not found its 
way in affect dynamics despite being used in emotion-related research (e.g., Chow 
et al., 2016; Fredrickson & Losada, 2005; Losada, 1999).

Chaos refers to deterministic nonlinear systems that are extremely sensitive to 
initial conditions. With this, we mean that very small differences in a beginning 
state may lead to large differences in the long run. With this comes another defining 
feature of chaos, its unpredictable character: Even if there is only small measure-
ment error, your predictions will deviate strongly from the actual behavior of the 
system. This implies that we can only begin to predict emotional behavior when we 
are able to measure emotions with no error at all.7 Consequently, if one decides to 
use chaotic systems to model affect dynamics, one should also assume that predict-
ing future affect is impossible.

The use of chaotic models in emotion research is limited, and when it has been 
used, was severely criticized (e.g., Brown et al., 2013; Guastello, 2014 on the stud-
ies by Fredrickson & Losada, 2005; Losada, 1999; see also Kellert, 2001). This 
criticism is primarily directed at the blind use of fancy models on data that do not 
really call for it. For example, Brown et al. (2013) and Guastello (2014) criticized 
the use of the chaotic Lorenz equations in the studies of Losada (1999) and 
Fredrickson and Losada (2005), mostly because the latter had no theoretical reasons 
to use this model in the first place. A same case has also been made for catastrophe 
theory models, where Sussmann and Zahler (1978) stressed that these models can-
not be used on all data that show discrete jumps.

The blind use of such models not only pertains to their predictions, but also to the 
assumptions that one makes about the underlying process. Chaotic models are 
deterministic in nature, meaning that no stochasticity is involved at all—neither 
from inherent randomness of the process nor from unknown internal or external 
influences on the process. This means that if one is ready to assume such a model is 
a trustworthy reflection of the emotional system, one also assumes that a select 
number of variables can be used to describe this system. It seems unlikely that a 
complex system such as emotions can be described by such a select set of variables, 
and even if we are ready to assume this, then the question remains whether emotion 
theorists are comfortable with the notion that emotions evolve in a completely 
deterministic fashion. We believe few researchers would like to go that far.

7 If this is the case, we are able to predict the emotional behavior of an individual for eternity, as the 
system is deterministic.
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10.3.4 � Limitations

Although continuous-time models may provide some solutions to the problems of 
discrete-time models, they still suffer from a number of limitations. First, many 
continuous-time models have no closed-form parametric solutions, meaning that 
they rely on approximate, numerical methods for their estimation. Unfortunately, 
these methods are very susceptible to local minima in the parameter space, so that 
the optimal parameter set is not necessarily identified (Myung, 2003). Matters 
become even worse for nonlinear models, as they often do not even have an analytic 
solution to their differential equations (e.g., the AIM; Loossens et al., 2020). This 
means that the solution of the differential equation has to be approximated with 
numerical integration methods, which may be difficult to implement and very time-
consuming (Strogatz, 2018). Given this limitation, it may become clear why their 
application to psychological research remains limited (Ryan et al., 2018). Often, 
continuous-time models require the researcher to use specialized software, or con-
struct it themselves, although attempts have been made to make such software more 
widely available through e.g. R packages that aid in parameter estimation (ctsem; 
Driver et al., 2017; dynr; Ou et al., 2019; OpenMx; Boker et al., 2020; Hunter, 2018).

Another limitation pertains to the fact that many of the models that were dis-
cussed in this section have originally been created to model the behavior of physical 
systems (Kellert, 2001). Metaphors like “emotions as a thermostat” or “as a reser-
voir filling with water” may seem to convey some characteristics of emotions, but 
this may not necessarily be the case. One should realize that these equations have 
been designed to model a specific, often simple physical system, and may not 
always be applicable to the complex systems we try to model with them. This is not 
to say that these models cannot be used for affect dynamics: Instead, it is a reminder 
that each model may capture a specific aspect of the emotional system, and that at 
some point, an integration of such models may be needed.

10.4 � Conclusion

In this chapter, we provided the reader with a general overview of some of the com-
putational models that try to capture (and explain) affective fluctuations in individu-
als. Within the scope of this chapter, we discussed discrete-time and continuous-time 
models, each with their own strengths and limitations. More than providing a gen-
eral overview of some computational models, we tried to provide the reader with the 
means to evaluate the use of these models and interpret their results in a more 
clear-cut way.

As the focus of our chapter was on describing different models of affect dynam-
ics, some of the topics central to computational modeling have been left undis-
cussed. We will mention some of these topics and refer the reader to the literature to 
learn more.
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10.4.1 � Undiscussed Topics

A first undiscussed topic is the one of parameter estimation. While on some occa-
sions we have commented on the reliability or the difficulty of estimation, we have 
not touched upon the topic of estimation itself. It is, however, an important topic that 
has led to a rich literature that evaluates different estimation techniques and their 
reliability. For the discrete-time topics, some interesting references are Lütkepohl 
(2005), Rojas (1996), and Sutton and Barto (2018), and for continuous-time mod-
els, some examples of how they can be estimated come from Driver and Voelkle 
(2018a), M. Chen et al. (2018), Chow et al. (2015), Chow et al. (2016), Hu et al. 
(2014), Oravecz et al. (2011), and Oud and Jansen (2000).

Related to this is the topic of state space models (SSM; Hamilton, 1994a; Harvey, 
1989). SSM are models that make a distinction between measurements and process, 
similar to what structural equation models do. However, the former are more appro-
priate for use in design with ILD, and we therefore leave the latter undiscussed (see 
Chow et al., 2010 for a comparison between the two). This way, a set of two equa-
tions jointly provide a model for the evolution of a dynamical system over time: A 
measurement equation to model the observations of the variables and a transition 
equation to model the latent processes. In the context of the models discussed here, 
the general SSM for a discrete-time model may be formulated as:

	

yt t t

t t tB

= + +
= + +−

ττ ηη εε
ηη αα ηη ζζ

Λ

1 	

where the observations and latent process are contained within yt and ηt resp. 
Importantly, the factor loading matrix Λ relates the observed variables to the under-
lying latent processes. τ and α represent the intercepts of measurement and process, 
and ε and ζ are the measurement error and process noise.

Many of the models that have been discussed in this chapter have originally been 
formulated within the SSM framework (e.g., fmVAR; Adolf et al., 2017), and SSM 
techniques are often used to aid in parameter estimation (e.g., Kalman filters; 
M. Chen et al., 2018; Driver & Voelkle, 2018a). We refer the interested reader to 
Hamilton (1994a) and Harvey (1989) for a more detailed discussion of this 
framework.

Another important undiscussed topic is that of model selection. In the introduc-
tion, we briefly mentioned that computational models could be compared to each 
other regarding model performance, providing evidence for a given model com-
pared to other models. This is an important analytic step, and often says more than 
just a simple application of one such models to the data. For example, if we use a 
VAR model to analyze data, we might get small estimates for the crossregressive 
effects. If we leave it at this, we cannot infer whether these effects contribute much 
to the model’s fit (i.e., whether they are important enough to interpret). To be able 
to make such an inference, we can analyze the data using a modified VAR model in 
which all cross-regressive effects are set to zero. If we then find that this second 
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model performs better than the first, we have evidence that no temporal relations 
between the variables exist (at least not for these data).

Many model selection tools exist, of which we mention only a few. A first popu-
lar tool of model selection is cross-validation. In cross-validation you use your data 
to assess the predictive performance of your models (Arlot & Celisse, 2010; 
Bergmeir et al., 2018; Roberts et al., 2017). In time series research, some related 
techniques are referred to as forecasting methods, in which only past data is used to 
predict future data, which is not the case for cross-validation (Hyndman et al., 2011; 
Hyndman & Koehler, 2006; Tashman, 2000). A second, a computationally less 
expensive model comparison tool is the relative measure of fit, which assesses how 
well a model fits the data while accounting for the complexity of the model (e.g., 
AIC and BIC; Bengtsson & Cavanaugh, 2006; Masson, 2011; Schwarz, 1978; 
Vandekerckhove et al., 2015; Wagenmakers & Farrell, 2004). Third, the parametric 
bootstrap can be used to simulate data and compare these to the real data with the 
use of some data-driven statistics (Wehrens et al., 2000). Another interesting way to 
use the parametric bootstrap is to simulate data starting from different models and 
check whether the data-generating model is also the model that fits these data best. 
Using this method, the distinguishability and mimicry of different models can be 
assessed (Navarro et al., 2004; Wagenmakers et al., 2004).

A final undiscussed topic is the one of individual differences in affect dynamics. 
All models in this chapter have been formulated to be only applicable to one sub-
ject. However, computational models need not be limited to this one case, but may 
be transformed into a multilevel structure to take into account individual differences 
(Gelman, 2006; Gelman & Hill, 2006). Some models have already been extended to 
such a multilevel structure, such as the VAR model (Ariens et al., 2020), the OU 
model (Driver & Voelkle, 2018a; Oravecz et al., 2011), and the damped linear oscil-
lator (Hu et  al., 2014). While very useful, multilevel extensions are not always 
straightforward and require some additional thought on the modeler’s side, often 
making them difficult to implement.

10.4.2 � Final Note

We would like to end this chapter on a final note. While computational models may 
certainly help progress the affect dynamics field, it is clear that each model suffers 
from its own limitations. Moreover, computational models are often simplifications 
of the processes in which we are interested. In light of these limitations, one may 
become skeptic about their use. To battle this skepticism, we want to remind the 
reader of another quote of the late Box (1979) (see also Box, 1976, p. 202): “All 
models are wrong but some are useful.”
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�Appendix 1: Properties of the VAR

�Properties of the AR Model

Given the AR model (repeated here):

	
y yj j j= + +−δ ϕ ε1 .

	

we can define some properties of the process. These properties are defined and 
mathematically derived below.

Predictions. Given a first observation y0 collected at time t0, we are able to pre-
dict the next measurement y1, as:

	

y y y

y
1 0 0 1

0

= + +
= +
δ ϕ ε
δ ϕ 	

where  denotes the time-dependent expected value (i.e., E[.]). Note that the inno-
vations do not play a role in the expectation of y1, given that their expected value is 
equal to 0.

Using the same principle, we can also make predictions about observations fur-
ther in the future. For instance, the expectation of y2 conditional on the observation 
y0 is given by:

	

y y y

y

y

2 0 1

0
2

01

= +
= + +( )
= +( ) +

δ ϕ
δ ϕ δ ϕ

ϕ δ ϕ
	

In general, the prediction of a future observation yj conditional on y0 is:

	

y y yj
k

j
k j

0
0

1

0=








 +

=

−

∑ϕ δ ϕ
	

(10.7)

Baseline. Since the magnitude of φj shrinks as j increases, in the long-time limit, 
it holds that:

	
limj

j

k
k

→∞
−

=

∑





 = −1

0 1

1
ϕ

ϕ 	

As a result, the predictions ⟨yj| y0⟩ converge towards a fixed point:
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lim y y lim yj j
k

j
k j

→ →
=

−

=








 +











=
−

+

=

∑∞ ∞ ϕ δ ϕ

ϕ
δ

δ

( )1 0
0

1

0

1

1
0

11−
=

ϕ
µ 	

(10.8)

This fixed point μ can be considered the emotional baseline (i.e., the dotted line 
in Fig.  10.1) and represents the emotional state to which the emotional state is 
expected to evolve to. As such coincides with the end state of a regulation process 
(provided nothing happens to disrupt the regulation process).

It also represents the state that will be visited the most by the individual over 
longer periods of time. For that reason, it coincides with the mean of the distribution 
of observations {yj | j,…,N} for sufficiently large N. Because of this, the baseline is 
also referred to as the stationary mean. The term stationary is used to stress that the 
baseline is independent of time.

When an AR(1) process is only observed during a short period of time during 
which the emotional state is still relaxing (i.e., converging) towards the baseline, 
then the mean of the observations will differ from the stationary mean. Only when 
measurements have been collected for a sufficiently long period of time will the 
mean of the data distribution coincide with the stationary mean.

Uncertainty. Until now, we were only concerned with point-predictions of 
future observations. However, we can also compute the uncertainty that is associ-
ated with these predictions. For this, we realize that the observation y1 is normally 
distributed with mean δ + φy0 (the prediction) and variance σε2:

	
y y N y1 0 0

2| ,∼ +( )δ ϕ σε 	

Because of stochasticity, uncertainty about predictions typically grows the fur-
ther in the future you go. It can be shown that the future observation yj, given obser-
vation y0, is normally distributed with the mean being the point-prediction in Eq. 
(10.7) and variance given by:

	
σ ϕ σεj

j

k
k2

1

0
2 2= ∑

−

=

	
(10.9)

where in the long-time limit:

	
limj

j

k
k

→∞
−

=

∑





 = −1

0
2

2

1

1
ϕ

ϕ 	

N. Vanhasbroeck et al.



249

so that the variance of the uncertainty distribution in the long-time limit converges to

	
σ

σ
ϕ
ε2
2

21
=

− 	
(10.10)

Like the stationary mean, this variance is time-independent and thus called the 
stationary variance.

Autocovariance. An AR model relies on the assumption that measurements yj at 
time tj are related to measurements yj −  1 at time tj −  1, i.e. that there is a time-
dependence between measurements. The extent to which this relationship holds is 
expressed by the autocovariance. The autocovariance at lag-p σp is defined as:

	
σ µ µp j p jy y= −( ) −( )+ 	

To compute the autocovariance of the AR process, we first reformulate the model 
in terms of the baseline μ. To do so, we substitute δ for (1 − φ)μ (see Eq. (10.8)) 
to obtain:

	

y y

y

j j j

j j

= −( ) + +

= − + +
−

−

1 1

1

ϕ µ ϕ ε

µ ϕµ ϕ ε
	

Then, by rearranging the terms, we can write

	
y yj j j− = −( ) +−µ ϕ µ ε1 .

	

Setting the innovations to zero (they do not correlate with anything), we find (see 
Eq. (10.7))

	

σ µ µ

ϕ µ µ

p j p j

p
j j

y y

y y

= −( ) −( ) ( )
= −( ) −( )

+ Def autocovariance

Genera

.

llization previousproperty( )

= −( )
=

ϕ µ

ϕ σ

p
j

p

y
2

2

	

(10.11)

Here we have used the fact that the centered variable yj − μ have the same station-
ary variance (Eq. (10.10)) as the variable yj themselves. If we standardize the mea-
surements so that σ2 = 1, we obtain the autocorrelation:

	
ρ ϕp p( ) = 	
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From this expression, it can be seen that the autoregressive coefficient φ of the 
AR model corresponds to the autocorrelation between measurements at lag 1.

�Properties of the VAR Model

We can generalize the properties of the AR model to fit the d-dimensional VAR 
model (repeated here):

	

y yj j j

j N

= + +

∼ ( )
−δδ εε

εε

Φ

Σ
1

0, ε 	

Predictions. Just like for the AR model, the prediction of a future observation 
conditional on the observation y0 is given by (see Eq. (10.7))

	

yj
k

j
k jy0

0

1

0=








 +

=

−

∑Φ Φδδ y
	

(10.12)

Importantly, this equation results in a vector that contains all expectation values 
for all d variables of the model.

Baseline. Using a similar reasoning as for the AR model (see Eq. (10.8)), but this 
time using matrices instead of scalars, it can be shown that the predictions of the 
VAR model Eq. (10.12) converge to the baseline:

	
µµ δδ= −( )−Id Φ

1

	

where Id is the d-dimensional identity matrix.
Uncertainty. An expression similar to Eq. (10.9) can be obtained for the growing 

uncertainty of the VAR model:

	
Σ Φ Σ Φj

j

k
k k T

= ∑ ( )
−

=

1

0

ε
	

For stable transition matrices Φ, this covariance matrix becomes constant in the 
long-time limit. This stationary covariance is given by

	
Σ Φ Σ Φ= ∑ ( )

∞

=k
k k T0

ε
	

and is a solution of the discrete-time Lyapunov equation

	 Σ ΦΣΦ Σ− =T
ε 	
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Given the transition matrix Φ and the covariance Σε of the innovations, this 
Lyapunov equation enables us to compute the stationary covariance without having 
to compute an infinite sum.

Autocovariance. The autocovariance of the VAR model is similar to the autoco-
variance of the AR (see Eq. (10.11), namely

	

Σ

Φ Σ

p j p j

T

p

y y= −( ) −( )
=

+ µ µ

	

�Appendix 2: Autocorrelation of Bivariate VAR

If we take a bivariate VAR model with the intercepts δ = 0, then we can compute the 
autocovariance as:

	

σ
δ ϕ ϕ ε

δ ϕ
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t t t t
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y y y
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We can compute the autocorrelation as:
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More generally, it holds that for a variable yi:
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and:
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Chapter 11
Flexibility and Adaptivity of Emotion 
Regulation: From Contextual Dynamics 
to Adaptation and Control

Nimat Ullah, Jan Treur, and Sander L. Koole

Abstract  To effectively regulate their emotions, people have to continually adjust their 
emotion regulation strategies to changes in internal and external demands. Flexibility 
and adaptivity are thus vital to emotion regulation. Flexibility refers to the context-
sensitive deployment of emotion regulation strategies while regulating one’s own emo-
tions. By contrast, adaptivity refers to the changes in such context-sensitive deployment 
of strategies that take place while regulating one’s own emotions over time, and the 
control of such change processes. Flexibility is increased by having larger repertoire of 
strategies as this increases the odds that an appropriate strategy is available. On the 
other hand, having more emotion regulation strategies to choose from creates the need 
for decision. Because this decision-making process occurs in real time, it requires emo-
tional stability and cognitive analysis. Over time, different experiences in choosing 
emotion regulation strategies give rise to learning which is one form of adaptivity. 
Flexibility in emotion regulation is provoked by the fluctuating contexts, whereas adap-
tations are induced by the frequency and intensity of emotion-regulatory activities. 
These adaptations are grounded in changes at a cellular and molecular level. The latter 
adaptations are often referred to by the term plasticity, or first-order adaptation. Often 
some form of control is applied to such adaptation processes, determining when and 
under which circumstances the adaptations should take place; this is often referred to 
by the term meta-plasticity or second-order adaptation. The above concepts are illus-
trated by simulated example scenarios based on different computational network mod-
els. In the first simulated scenario, a varying context shows the flexibility in the choice 
of emotion regulation strategies. In the second and third scenario, plasticity and meta-
plasticity are illustrated based on first- and second-order adaptive network models.
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11.1 � Introduction

People use a wide variety of strategies in regulating their emotions (Koole, 2009; 
Gross, 1998; Parkinson & Totterdell, 1999). The efficacy of these emotion-regulation 
strategies employed by a person depends on the (person-specific and external) cir-
cumstances in which the strategies are employed. As such, the question arises how 
people are able to flexibly adapt their use of emotion regulation strategies to shifting 
situational demands; see also (Aldao et al., 2015). Consider, for instance, the follow-
ing scenario: You are an office worker who feels hurt every time his colleagues criti-
cize him. To regulate your emotions, you have various options: Walking away, 
distracting yourself, hiding your reaction, or mentally distancing yourself from your 
colleagues. Which of these options is optimal depends on the situation. For instance, 
if the critical colleague is your manager, then walking away is probably not advis-
able. Alternatively, if the critical colleague is your best friend, then mental distancing 
may hurt your friendship. Each emotion regulation strategy employed by a person 
can thus have different results and implications in different (person-specific and 
external) situations (Aldao, 2013). This is why it is fortunate that people have the 
capability to flexibility choose between various emotion regulation strategies as per 
demands of the (both person-specific and external) situation. This capacity is referred 
to as emotion regulation flexibility (Aldao et al., 2015; Bonanno & Burton, 2013a).

Aside from the flexibility in choice of emotion regulation strategies as per 
demand of the context, another type of change in the choice of emotion regulation 
strategies has now been quite extensively discussed in the cognitive, neuro and 
social sciences (Carstensen et al., 1999). Emotion regulation is a specific form of 
mental process, like any mental process grounded in the underlying neural mecha-
nisms. In a wider context, according to the neurocognitive science literature, synap-
tic plasticity forms the biological basis for many forms of adaptation (Hebb, 1949); 
this actually is a form of first-order adaptation. Furthermore, many studies have 
reported systematic changes in synaptic plasticity that imply a form of control over 
the plasticity; this has been called metaplasticity (Abraham, 2008; Abraham & 
Bear, 1996) and represents a form of second-order adaptation.

Plasticity and metaplasticity in addition to the base dynamics lead to rather com-
plex and usually circular processes, which makes it a challenge to model them com-
putationally. To address such a challenge, recently in the field of Network Science 
and Artificial Intelligence a suitable Network-Oriented Modeling method based on 
self-modeling networks has been introduced (Treur, 2019, 2020a). Using this model-
ing approach a base network is can be extended into a multi-level adaptive network 
model by adding self-models to it for some of its network characteristics. A first-
order self-model can be used to represents first-order adaptation or plasticity and a 
second-order self-model to represent second-order adaptation or metaplasticity. This 
has been applied in particular to emotion regulation in (Ullah et al., 2020a). These 
levels or orders of adaptation can still go higher if the phenomenon itself needs it, for 
instance (Ullah & Treur, 2020a) presents a fourth-order adaptive network model.

In the remainder of this chapter, we develop computational models of flexibility 
and adaptivity in emotion regulation. In Sect. 11.2, we start by analyzing the 
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dynamics for contextual flexibility in emotion regulation, In Sect. 11.3, we take a 
closer look at first-order adaptation in emotion regulation, In Sect. 11.4, we turn to 
higher-order adaptation and metaplasticity in emotion regulation. Finally, we sum-
marize our main conclusion in Sect. 11.5, and provide references and appendices 
respectively.

11.2 � Dynamics for Contextual Flexibility 
in Emotion Regulation

11.2.1 � Contextual Flexibility in Emotion Regulation

Emotion regulation theorists have distinguished between five families (or broad cat-
egories) of emotion regulation strategy (Gross, 1998, 2015; Richards & Gross, 2000). 
The first family of emotion regulation strategies is to change the kind of situation one 
is in. For instance, the office worker from Sect. 11.1 can choose to walk outside the 
office. The second family of emotion regulation strategies focuses on modifying 
aspects of the situation. For instance, our office worker could hang a ‘do not disturb’ 
sign by his door to keep the critical colleague at bay. The third family of emotion 
regulation strategies focuses on changing where one attends. For instance, our office 
worker could distract himself by mentally planning dinner. The fourth family of emo-
tion regulation strategies consists of changing the interpretation of the situation. For 
instance, our office worker could tell himself that the critical colleague really means 
well. Finally, the fifth family of emotion regulation strategies consists of modulating 
one’s outward emotional responses. For instance, our office worker could actively try 
to smile to the critical colleague, even while stewing with anger inside.

Initially, emotion regulation researchers assumed that some families of emotion 
regulation strategies are generally more effective than others. For instance, cognitive 
change strategies were believed to be more effective than response modulation strat-
egies (Gross, 2001). However, subsequent research revealed that general differences 
in effectiveness between emotion regulation strategies are small (Aldao & Nolen-
Hoeksema, 2012). Moreover, even cognitive change strategies like reappraisal, that 
are generally effective, may have disadvantages in certain situations (Ford & Troy, 
2019). Conversely, there are situations where the use of a response modulation strat-
egy like expressive suppression can prove quite adaptive (Dworkin et  al., 2019). 
Effective emotion regulation thus appears to be not so much a matter of using some 
strategies and avoiding others. Instead, effective emotion regulation is a matter of 
finding the right strategy for the situation. This means that flexibly adapting emotion 
regulation to situational demands plays a vital role in emotion regulation (Aldao, 
2013; Gross, 2015; Bonanno & Burton, 2013b; Sheppes, 2014; Webb et al., 2012a).

Empirical research on emotion regulation flexibility has so far been limited. This 
is one of the reasons why previous work (Sheppes et al., 2011) and our own previ-
ous computational model of emotion regulation flexibility (Ullah et al., 2018) that 
was mainly based on that, only focused on the choice between attention deployment 

11  Flexibility and Adaptivity of Emotion Regulation: From Contextual Dynamics…



264

and reappraisal. Going beyond this work, however, this section of the chapter illus-
trates flexibility by a simulated scenario that involves flexibility among four emo-
tion regulation strategies as per demand of the context.

11.2.2 � Simulated Scenarios for Contextual Flexibility 
in Emotion Regulation

The simulated scenarios presented in this section illustrate the ability to respond to 
four different situations with different regulation strategies. First, in Sect. 11.2.2.1 
the computational network used is briefly explained, next, in Sect. 11.2.2.2 the four 
simulated scenarios are shown.

11.2.2.1 � The Computational Network Model for Contextual Flexibility

Figure 11.1 presents the connectivity of the network model used, with its nomencla-
ture in Table 11.1.

Fig. 11.1  Connectivity of the computational network model used for flexibility; here the red con-
nections are suppressing connections: they have a negative weight (see also Table  11.7 in 
Appendix 1)
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Table 11.1  Nomenclature of the states of the network model used

States Informal name Description

wss World state for stimulus s The situation in the real world that triggers emotion
wsc.p World state for context pressure A real-world situation which decides expression of 

emotion
sss Sensor state for stimulus s Sensor state for the stimulus s in the real world
ssc.p Sensor state for context pressure Senses state for context pressure
ssb Sensor state for body Sensor state for body state b relating to a negative 

emotion
srss Sensory representation state for 

stimulus s
Internal representation of the emotion triggering 
situation

srsc.p Sensory rep: state for context 
pressure

Internal representation of the context pressure in the 
real world

srsb Sensory representation state for 
body

Internal body representation state for b relating to a 
negative emotion

bs− Negative believe state The negative believe that the person has about 
something/someone

bs+ Positive believe state The positive believe that the person has about 
something/someone

ms1 Monitoring state for low emotion 
level

Monitors for low emotions

ms2 Monitoring state for high 
emotion level

Monitors for high emotions

bs(+)c.p Belief state for context pressure Believing that expression of emotion will matter in 
the environment

bs(−)c.p Belief state for context pressure Believing that expression of emotion won’t matter 
in the environment

csreapp Control state for reappraisal Controlling negative beliefs about something/
someone

css,a.d Control state for attention 
deployment

Control state for Attention Deployment

css,s.m Control state for situation 
modification

Control state for situation modification as a result of 
context

cssup Control state for suppression Control state for Suppression of Expression
fsb Feeling state for body state b Feeling associated to body state b; this is a negative 

feeling
psa Preparation state for action a Preparing for action a
psb Preparation for body state b Preparation state for body state b relating to a 

negative emotion
psad Preparation state for attention 

deployment
Preparation for the Attention deployment action

esa Execution state for action a Execution station for action a
esb Execution state for body state b Execution state for body state b, bodily expressing a 

negative emotion
esad Execution state for attention 

deployment
Execution state for the Attentional Deployment 
action
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Table 11.2  Choice of strategies under high/low intensity of emotions and +/− belief about context 
pressure

Flexibility parameters Repertoire of strategies

Emotion 
strength

Context 
pressure 
(CP)

Situation 
modification

Attention 
deployment

Cognitive 
reappraisal

Expressive 
suppression

+ + ✓
+ − ✓
− + ✓
− − ✓

The computational network model used here inherits flexibility in emotion regu-
lation strategies from (Ullah et  al., 2018) and decision-making from (Manzoor 
et al., 2017). In this model, the phenomenon of emotional arousal and its regulation 
has been modeled. The emotion eliciting stimulus is taking place as the world state 
wss which activates sensor state sss and sensor representation state srss. Based on the 
internal valuation and prior beliefs about the stimulus, the person’s feelings gets 
activated and keeps increasing as a result of internal as-if-body-loop as explained by 
Damasio (Bechara et al., 2003). On the basis of the intensity of emotions monitored 
by the monitoring state ms1 and ms2, i.e., low and high intensity of emotions, respec-
tively, are activated which then activates the respective control state cs for strategy 
(csreapp, css. a. d, css. s. m, and cssup) as represented in Table 11.2 below. Empirically, 
these models can be verified against the literature as described above, representing 
how specific areas in the brain are casually activated and involved in the generation 
and regulation of emotions. For instance, the amygdala and prefrontal cortex are the 
main brain regions involved in this process of emotion generation, valuation of 
stimulus and regulation of emotions. However, without extensively going into all 
technical details of the model, the connectivity picture in Fig. 11.1 can be under-
stood as a causal diagram where it is indicated which state is causally affected by 
which other states. The considered model presented in Fig. 11.1, has the capability 
to switch between four different strategies (with control states csreapp, css. a. d, css. s. m, 
and cssup), depending on the situational aspect combinations as shown in Table 11.2. 
An extensive overview of the modeling approach from (Treur, 2020a, 2016), used 
for the network model can be found in Appendix 1.

The first column, in Table 11.2, represents the intensity of the emotions: high (+) 
or low (−). The second column represents the belief about the context pressure dur-
ing the emotion eliciting situation. This is a kind of prediction for the environment 
where the (+) means presence of a context factor due to which the expression of 
emotions can have negative consequences and (−) refers to a context where expres-
sion of emotions doesn’t matter.
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11.2.2.2 � Four Simulated Example Scenarios Addressed 
for Contextual Flexibility

For the four simulated scenarios, the following basic setup is considered

“An employee A feels angry every time a particular obnoxious coworker B starts talking. 
Next week the organization has a monthly meeting where presence of all employees is 
mandatory unless emergency, and where the boss may or may not show up. Employee A 
doesn’t want anyone, especially his boss to come to know about his attitude towards 
employee B. Employee A has four options to handle the situation, all depending upon the 
combination of his intensity of emotions and the chances of presences or absence of their 
boss at the working place as shown in Table 11.2.”

All values for the network characteristics used for the model are given in Table 11.6 
and 11.7 in Appendix 2; they qualitatively validate the model used against the find-
ings from empirically founded literature that serve as qualitative evaluation indica-
tors. These values are essential for the reproduction of the model; they provide the 
simulation results as shown in Figs. 11.2, 11.3, 11.4, and 11.5. All simulation graphs 
only display the most essential states for the explanation of the scenario.

Figure 11.2 depicts a scenario for low (−) intensity of emotions and positive (+) 
belief about CP; this combination triggers the negative belief state bs− and (poten-
tially) in turn the negative emotional response preparation psb and by the as-if body 
loop also the negative feeling state fsb  and due to that the control state for reap-
praisal csreapp. The figure also demonstrates the way reappraisal works. As reap-
praisal alters the interpretation of the stimuli, this can be seen in the figure where 
initially the negative belief bs− gets quite high but it starts decreasing as soon as the 
control state for reappraisal csreapp gets activated. This control state csreapp takes care 
of altering the interpretation of the stimuli: by suppressing the negative belief bs−, 
in turn the positive belief bs+ increases which (cyclically) again additionally 
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Fig. 11.2  Reappraisal: low intensity negative emotions with context pressure
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Fig. 11.3  Situation modification: high intensity negative emotions with context pressure
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Fig. 11.4  Expressive suppression: low intensity negative emotions with no context pressure

suppresses the negative belief bs−, as a result of which the preparation for the nega-
tive emotional response psb and in turn (by the as-if body loop) the negative feeling 
state fsb also decrease.

In Fig. 11.3, a context with high (+) intensity of emotions and positive (+) belief 
about CP is shown which activates situation modification css. m as an emotion regula-
tion strategy. Here the context pressure motivates the person to hide his emotions. 
In case of a development of a high intensity of negative emotions, the emotion level 
starts from 0 after which it gradually goes to low and to high. Therefore, in Fig. 11.3 
initially the regulation starts for a combination with low emotion as demonstrated in 
Fig. 11.2. Later on, as the negative emotions get higher than the low emotions range, 
the control state for situation modification css. m gets activated. Situation 
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Fig. 11.5  Attention deployment: high intensity negative emotions with no context pressure

modification as a strategy means modifying/leaving the emotional situation, i.e., the 
world state wss for the stimulus. Therefore, it can be observed in the figure that the 
world state wss starts decreasing as soon as the preparation psa for the appropriate 
physical action a (e.g., changing position or walking away) and execution esa of this 
physical action takes place. This means the person has somehow left the emotional 
situation and, therefore, his negative emotions also decrease. While emotions of the 
person are decreasing, this gets into the low emotional zone once again. Therefore, 
in the figure it can be seen that in that situation reappraisal gets activated accord-
ingly, like in the scenario of Fig. 11.2.

As highlighted in Table 11.2, the combination of low (−) intensity of emotion 
and negative (−) belief about CP which means no context pressure, activates expres-
sive suppression cssup. In Fig. 11.4 it can be observed that initially negative feeling 
state fsb increases as the negative belief bs− increases. The increase stops as soon as 
the control state for suppression cssup gets activated which suppresses the negative 
emotional response preparation psb and execution esb which in turn (by the as-if 
body loop) induces less negative feelings.

As suppression only suppresses the preparation and expression of the emotions 
and does not affect the causes of the emotional response, the sensor representation 
state srss and negative belief state bs− for the negative interpretation still remain 
high, which by many is considered an unhealthy and stressful internal state.

Figure 11.5 represents a context with high (+) intensity of emotions and negative 
(−) belief about CP, which means that the person can afford it if his emotions are 
seen by others. This activates attention deployment csa. d as a main strategy for emo-
tion regulation. This context also has two strategies to deal with just as described in 
Fig. 11.3. Initially, when the emotions are yet to get high, the person tries to sup-
press his emoting by using expressive suppression cssup. Later on, as the emotions 
get high enough, the person tries to downregulate his emotions by using attention 
deployment csa. d where he distracts his attention.
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11.3 � Plasticity in Emotion Regulation

11.3.1 � Adapting how to regulate emotions over time

By flexibly regulating their emotions, people adapt their emotion regulation to dif-
ferent situations. Given that recurring situations are likely to give rise to similar 
emotion regulation strategies, the person is likely to display certain predictable pat-
terns in emotion regulation patterns. These patterns, in turn, may give rise to long-
term adaptations in emotion regulation. These long-term adaptations are captured 
by the notion of synaptic plasticity.

Synaptic plasticity provides a main neurochemical foundation to learning and 
memory formation. It refers to the ability of the connections between neurons to get 
stronger or weaker over time. A synapse refers to the structure that enables an elec-
trical or chemical signal to pass from one neuron to another neuron or a target effec-
tor cell. This increase or decrease in the strength of synapse depends upon the 
neurons’ current or recent activation. This has been formulated by Donald Hebb 
(Hebb, 1949), p. 62, as:

‘When an axon of cell A is near enough to excite a cell B and repeatedly or persistently 
takes part in firing it, some growth process or metabolic change takes place in one or both 
cells such that A’s efficiency, as one of the cells firing B, is increased’.

This process, which has become widely known as Hebbian learning. But note that 
in the above quote Hebb does not call it learning; it only describes changes in ‘one 
or both cells’ over time. Sometimes it is summarized in a simplified form as ‘neu-
rons that fire together, wire together’. Hebbian learning entails that simultaneous 
activation of the neurons/cells strengthens the synapses between those two neurons/
cells. This is a biological basis for learning. In terms of emotions and specifically 
emotion regulation, (Giuliani et  al., 2011) has studied excessive employment of 
expressive suppression and brain structures such as in the anterior insula and has 
come up with positive relation between them. It has been found, for example, that 
the volume of anterior insula increases as a result of more use of expressive suppres-
sion for emotion regulation. Similarly, (Ostroumov & Dani, 2018) provides an 
extensive review on neuronal plasticity and metaplasticity as a result of stress, nico-
tine and alcohol. Moreover, reward-driven and prediction-driven synaptic plasticity 
and hence learning has been explained in (Schultz et al., 1997). In terms of compu-
tational modeling, various examples of adaptive computational models can also be 
found, for instance in (Ullah & Treur, 2019) reward based learning has been dem-
onstrated based on a Hebbian learning process. Similarly, (Zegerius & Treur, 2020) 
models the working of Eye Movement Desensitization and Reprocessing (EMDR) 
therapy for persons affected by a Post-Traumatic Stress Disorder (PTSD) by a 
therapy-induced Hebbian learning process.

Particularly relevant to plasticity of emotion regulation are (Zimmermann & 
Iwanski, 2014) differences in emotion regulation strategies between young and 
older adults. The ‘Strength and vulnerability integration theory’ (Charles, 2010) 
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provides a reason for this shift by stating that it becomes more difficult for an older 
person to apply response-focused strategies due to less physiological flexibility for 
higher age. Some other studies agree to these finding and come up with strategies 
focused findings, for instance, (John & Gross, 2004; Charles & Carstensen, 2007) 
associate more use of reappraisal at an older age. Moreover, studies like (Lawton 
et al., 1992; Phillips et al., 2006), also consider older people to be better in control-
ling emotional situations and quicker in regaining positive mood as compared to the 
younger adults (Carstensen et al., 2000; Larcom & Isaacowitz, 2009). Furthermore, 
(Yeung et  al., 2011) attributes this retention of positive mood in older people to 
reappraisal being used as an adaptive emotion regulation strategy. In contrast to sup-
pression, some studies also consider reappraisal more helpful in decreasing psycho-
logical distress (Haga et  al., 2009; John & Gross, 2004). In case of expressive 
suppression, even successful suppression doesn’t ensure decrease in distress (Gross 
et al., 1997) but younger adults still would use suppression, maybe because they 
prefer confrontational coping (Folkman et al., 1987). Similarly, there are various 
studies which support the notion of increased use of reappraisal by older people and 
more use of suppression by younger people subject to various possible reasons like 
the availability of physiological resources, motivational goals, priority given to the 
emotional wellbeing (Nakagawa et al., 2017; Scheibe & Blanchard-Fields, 2009; 
Scheibe & Carstensen, 2010; Cutuli, 2014).

Although individual differences do matter for all these changes (Rothbart et al., 
2000), there appear to be developmental changes in regulatory capabilities in the 
later half of adult life. In line with these concepts, according to plasticity (Labouvie-
Vief et al., 1989), improvement in cognitive reappraisal as a strategy is essential for 
maturity in cognition and, therefore, as compared to younger people, older people 
display more cognitive maturity (Labouvie-Vief & Blanchard-Fields, 1982). 
Similarly, goal adjustment flexibility is stronger in older persons (Heckhausen & 
Schulz, 1995; Brandtstädter & Renner, 1990).

Note that all these phenomena that seem to have correlations to age, do not have 
any causal relation to a notion of age, as age by itself does not cause anything. Such 
correlations are an emerging result of adaptive processes based on underlying 
mechanisms where the actual causal relations and pathways can be found. These 
mechanisms will be discussed in some detail in the current and next section.

11.3.2 � Simulated Scenarios for Plasticity 
in Emotion Regulation

The simulated scenarios presented in this section illustrate the ability to adapt the 
choice of emotion regulation strategies over time. The differences in emotion regu-
lation strategies for different ages as discussed above will be used for this. First, in 
Sect. 11.3.2.1 the first-order adaptive computational network used is briefly 
explained, next, in Sect. 11.3.2.2 a simulated scenario is shown.
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11.3.2.1 � A First-Order Adaptive Network Model for Plasticity 
in Emotion Regulation

This section introduces the first-order adaptive network model used for the simu-
lated scenario. The connectivity of the adaptive network model is shown in Fig. 11.6 
with an overview of its states in Table 11.3. This first-order adaptive network model, 
models plasticity of the choice of emotion regulation strategies. Here, the base net-
work models the basic functioning of two well-known emotion regulation strate-
gies: cognitive reappraisal and expressive suppression.

In the base model, as in the model in the previous section, the world state wss 
represent the stimulus in the world that triggers some kind of emotions after the 
basic processing of the stimulus, i.e., through sensor sss, sensor representation state 
srss, and valuation of the stimulus that is the belief of the person about the stimulus. 
On the basis of beliefs, i.e., bs− or bs+ about the stimulus the internal as-if-body-loop 
of the person gets activated which slowly and gradually increases the feelings of the 
person that can be positive as well as negative, but here the focus is on negative feel-
ings represented by fsb. The control state for reappraisal csreapp represents cognitive 
reappraisal which regulates emotions by changing one’s belief or interpretation for 
the stimulus. Control state cssup represents expressive suppression which suppres-
sion expression of emotions.

State msdstrss represents the monitoring state for distress, which according to the 
literature should remain high if a person is suppressing his/her emotions and should 
remain low if a person is reappraising his/her emotions.

The self-model modeled in the upper (blue) plane addressing the first-order 
adaptation, represents the Hebbian learning principle described in Sect. 11.3.1. This 
adaptation process takes place over the entire life span of an individual. The person 
uses suppression during the first phase of his life and then switches to reappraisal in 
the later phase of his life, based on his activations of strategies. This is an emergent 
effect of the mechanism of Hebbian learning: simultaneous activations of the 

Fig. 11.6  First-order adaptive network model for emotion regulation strategy choice adapting 
over a longer time
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Table 11.3  Overview of the states of the first-order adaptive network model

State Explanation Level

X1 wss World state for stimulus s Base states
X2 sss Sensor state for stimulus s
X3 srss Sensory representation state for stimulus s
X4 psa Preparation state for action a
X5 esa Execution state for action a
X6 ssb Sensor state for body state b
X7 srsb Sensory representation state for body sate b
X8 fsb Feeling state for body state b
X9 psb Preparation state for body state b
X10 esb Expression execution state for body state b
X11 bs− Belief state for negative belief −
X12 bs+ Belief state for positive belief +
X13 csreapp Control state for reappraisal
X14 cssup Control state for suppression
X15 msdstrss Monitoring state for distress
X16 Wfsb

,csreapp
First-order self-model state for connection weight 
ωfsb

,csreapp

First-order self-model 
states

X17 Wfsb
,cssup

First-order self-model state for connection weight 
ωfsb

,cssup

connected nodes automatically lead to strengthening of the connection. This form of 
mental plasticity or adaptation is represented by the self-model states WX,Y repre-
senting the relevant connection weights used at the base level. The Hebbian learn-
ing, in this model, is taking place for the (monitoring) connections from fsb to csreapp 
and fsb to cssup in the base model, as these are the connections that activate the con-
trol states for the regulation strategies, which are assumed to relate to the PFC, and 
poor emotion regulation is often reported as relating to low activation levels within 
the PFC.  The weights of these connections are represented by self-model states 
Wfs csb reapp

,  and Wfs csb sup
,  respectively.

Note that, in this section, the adaptation itself is not adaptive; e.g., the speed fac-
tor of the adaptation (the adaptation rate) is constant. The type of adaptive learning 
which is based on metaplasticity is addressed in the next section through a second-
order adaptive network model.

11.3.2.2 � A Simulated Example Scenario Addressing Plasticity 
in Emotion Regulation

A simulated scenario obtained from the above first-order self-modeling network 
model is presented in this section. Figure 11.7 displays a number of most relevant 
base states for the simulated scenario and Fig.  11.8 displays the first-order self-
model states, i.e., the W-states used for the adaptation.
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Fig. 11.7  Demonstration of the effective states of the base model over time

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wfsb,csreapp

Wfsb,cssup

Fig. 11.8  First-order reified representation states over time

In Fig.  11.7 it can be seen that initially the negative belief bs− gets activated 
which suppresses the positive belief bs+. In the meanwhile, the negative feeling 
states fsb also gets higher. The first half of the time scale represents the younger age 
of a person; therefore, he/she uses suppression. In case of activation of suppression, 
it can be observed that although the person suppresses the negative feelings, the 
negative belief bs− still remains high. This reflects how suppression works: nothing 
changes for the belief. The fluctuation in the simulation results indicate the phenom-
enon that the regulation only takes place when there is a high level of emotion and 
as soon the emotion level is getting low, the regulation will stop so that the emotion 
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may get higher again, and so on; this leads to emerging fluctuations. Another issue 
to be noted here is the monitoring state for distress msdstrss, which remains high, 
exactly as found in the literature in case of suppression. But this should decrease in 
case of reappraisal as per literature.

From the very beginning, it can be observed that the control state for reappraisal 
csreapp starts getting higher which represents a gradual shift in the choice of emotion 
regulation strategies based on underlying mechaisms that generate an emerging pat-
tern over long time periods, so that from a correlational (but not causal) perspective 
it looks like an increase with age. Control state csreapp changes the beliefs which 
means increase in positive belief bs+ and decrease of negative belief bs−. This grad-
ual increase finally enables the person to completely switch to reappraisal for the 
regulation of his emotions. An interesting thing here is the monitoring state for 
distress msdstrss, which remains very low exactly as relevant literature suggests in 
case of reappraisal.

Figure 11.8 gives insight into the states in the first-order self-model: Wfs csb sup
,  

and Wfs csb reapp
, . In Fig. 11.8, initially Wfs csb sup

,  is high which represents the use of 

expressive suppression in the younger age. Over time, Wfs csb reapp
,  increases slowly 

and gradually until it reaches 1. It can be seen that as Wfs csb reapp
,  increases, Wfs csb sup

,  

decreases until it reaches 0. This represents the shift taking place in choice of emo-
tion regulation strategies that emerges over time while age is increasing.

11.4 � Higher-Order Adaptation in Emotion Regulation

11.4.1 � Metaplasticity in Emotion Regulation

Whether and to what extent plasticity as described above actually takes place is 
controlled by a form of metaplasticity; e.g., (Abraham & Bear, 1996; Garcia, 2002; 
Magerl et  al., 2018; Robinson et  al., 2016; Sehgal et  al., 2013; Sjöström et  al., 
2008). For example, according to Robinson and his collogues ((Robinson et  al., 
2016), p. 2) the following compact quote indicates that due to stimulus exposure, 
the adaptation speed will increase:

‘Adaptation accelerates with increasing stimulus exposure’

Similarly, a principle for modulation of persistence of learnt effects can be obtained:

‘Stimulus exposure modulates persistence of adaptation’

Depending on further context factors, this can be applied in different ways. Reduced 
persistence can be used in order to be able to get rid of earlier learnt connections that 
are not effective anymore. However, enhanced persistence can be used to keep what 
has been learnt. In a similar direction ((Sjöström et al., 2008), p. 773) it is more 
generally discussed how it depends on the circumstances when the extent of plastic-
ity is or should be high and when it is or should be low in favour of stability:

‘The Plasticity Versus Stability Conundrum’
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All the above are examples of principles describing metaplasticity, which can be 
considered adaptation of adaptation or second-order adaptation.

Within the cognitive neuroscience literature, Long-Term Potentiation (LTP) is a 
term used for activity-dependent persistent strengthening of a synapse which plays 
very important role in long term memory formation and cognitive processing. These 
patterns produce long lasting increase in signal transmission between two neurons. 
Opposite of LTP is LTD i.e. long-term depression which causes long lasting decrease 
in the synaptic strength (Vose & Stanton, 2017). According to (Vose & Stanton, 2017):

‘Metaplasticity can be thought of as dynamic shifts in the set point for the amount of syn-
aptic activation needed to produce the neurochemical events that induce either LTP or LTD, 
much like a climate set point determines the mean temperature fluctuations day-to-day.’

This can be seen as a higher-order form of synaptic plasticity. As also illustrated 
above, it can take place in various forms involving different mechanisms (Abraham 
& Bear, 1996).

Various examples of metaplasticity in terms of emotions can be found, for instance 
(Garcia, 2002; Vose & Stanton, 2017). Understanding of this plasticity regulation, 
has not only provided opportunities for better understanding of some of the mental 
processes and problems but also opened new vistas for treating those mental prob-
lems. According to Garcia (Garcia, 2002), due to high stress levels, a person’s cogni-
tive functioning gets poor, and as a result of that the person is no more able to adapt 
the emotion regulation in order to downregulate his stress: high stress levels slow 
down or block plasticity. He calls that the negative impact of metaplasticity or nega-
tive metaplasticity. Similarly, (Cibrian-Llanderal et al., 2018) also acknowledges the 
negative role of prolonged stress in cognitive functioning through high level of cor-
tisol in the prefrontal cortex. In contrast, low levels of stress up-regulate this con-
nectivity in the hippocampus which is called positive metaplasticity.

11.4.2 � Simulated Scenarios for Metaplasticity 
in Emotion Regulation

The computational model and simulated scenario presented in this section illustrate 
the role of metaplasticity in emotion regulation. Again, the above case study will be 
used for this. First, in Sect. 11.4.2.1 the second-order adaptive computational net-
work used is briefly explained, next, in Sect. 11.4.2.2 a simulated scenario is shown.

11.4.2.1 � A Second-Order Adaptive Network Model for Metaplasticity 
in Emotion Regulation

The second-order adaptive network model used here is an extension of the first-
order adaptive network model described in Sect. 11.3.2.1. The current section 
explains how this model can be extended by adding second-order self-model for the 
adaptation speed and for the persistence of the adaptation. In the first-order adaptive 
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model, the learning speed and persistence both were constant. In the second-order 
adaptive network model, the characteristics of the learning are also adaptive, i.e., the 
speed and persistence characteristic of the learning can change. To achieve this, a 
second-order self-model is added covering states for these speed and persistence 
characteristics. The states in the second-order then represent these characteristics of 
the dynamics of the states in the first-order self-model. For instance, in our case, the 
newly added second-order self-model states will be responsible for the characteris-
tics of the dynamics of Wfs csb sup

,  and Wfs csb reapp
, . This is achieved by adding a third 

plane on top of the model displayed in Fig. 11.6 with second-order self-model states 
such as HWfs csb reapp

,  and MWfs csb reapp
, , as shown in the upper plane in Fig. 11.9. Within 

the obtained second-order adaptive model Fig. 11.9, this upper plane represents the 
concept of metaplasticity where plasticity i.e. learning in our case (as modeled by 
the middle plane), itself is plastic to changes over time. The nomenclature of the 
states in the second-order self-model is given in Table 11.4.

Fig. 11.9  Second-order adaptive network model for emotion regulation strategies over time

Table 11.4  Overview of the states of the second-order self-model

State Explanation Level

X18 MWfs csb reapp
,

Second-order self-model state for persistence factor μ 

for Wfs csb reapp
,

Second-order 
self-model

X19 HWfs csb reapp
,

Second-order self-model state for speed factor η for 

Wfs csb reapp
,

X20 HWfs csb sup
,

Second-order self-model state for speed factor η for 

Wfs csb sup
,

X21 MWfs csb sup
,

Second-order self-model state for persistence factor μ 

for Wfs csb sup
,
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Now, as this learning itself can change over time, for instance, increase or 
decrease, or maybe some of the learned experiences are retained for longer time and 
some are retained for shorter time. This indeed realizes forms of metaplasticity and 
is represented in the second-order self-model taking care of second-order adapta-
tion. The speed factor is represented by the H-states and the persistence factor is 
represented by the M-states. For instance, the speed and persistence factor adapta-
tion for Wfs csb reapp

,  are represented by HWfs csb reapp
,  and MWfs csb reapp

, , and HWfs csb sup
,  and 

MWfs csb sup
, , respectively.

An overview of this second-order adaptive network and a full specification is 
given in Appendixes 2 and 3. This specification is essential for reproducibility of the 
results shown in this section. For a more detailed study, the concepts can be accessed 
at (Treur, 2020a, b).

11.4.2.2 � A Simulated Example Scenario for Metaplasticity 
in Emotion Regulation

Inspiration for what is presented in the current section mainly comes from (Gao 
et al., 2019; Ullah et al., 2020a). The model presented here focuses on shifts for the 
choice in emotion regulation strategies that emerge over time. Table  11.8 in 
Appendix 2 provides the initial values of the states of the model.

Figure 11.10 depicts the entire simulated scenario showing all base states 
involved in the process. This shows a scenario where a person initially uses expres-
sive suppression for his emotion regulation in young age andcognitive reappraisal 
when older. As mentioned above, the regularity of oscillation in the graphs indicates 
the fact that the emotion regulation strategies only get activated when the person 
experiences some negative emotions. Once the emotion levels have been regulated, 
the strategy gets deactivated. This arousal and regulation of negative emotions and 
the activation and deactivation of the strategies generate this emerging fluctuation in 
the graphs. For better analysis of this phenomenon, Fig. 11.11 presents only the key 
base states involved in this process.

Figures 11.7 and 11.11 display a similar scenario where in the latter there is no 
metaplasticity: the only difference is that the speed and persistence factors are con-
stant in the latter case while it’s adaptive in the former case. When compared to each 
other, it is clearly visible that in case of adaptive speed factor we have an extra 
handle to control the speed of the learning/first-order adaptation. This is also closer 
to the real-world examples.

As above, Figs. 11.8 and 11.12 also display the same states i.e. the W-states for 
the first-order adaptation. The difference here again is that in case of adaptive speed 
and persistence factors, we can change the characteristics of the first-order adapta-
tion easily and therefore the simulation outcomes are more in our control and 
realistic.

Figure 11.13 is the representation of the second-order self-model states. These 
states are HWfs csb reapp

,
, MWfs csb reapp

,
and HWfs csb sup

,
, MWfs csb sup

,
 which represent the speed 
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Fig. 11.10  Base states showing switching from Suppression to Reappraisal over time using 
metaplasticity
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Fig. 11.11  The effective base states over time using metaplasticity

and the persistence factors of Wfs csb reapp
,  and Wfs csb sup

, , respectively. It can be 

observed that initially the speed and persistence factors of Wfs csb sup
,  are quite high 

but this starts decreasing and hits zero once the speed and persistence factor of 

Wfs csb reapp
,  reaches 1. This happens because of the shift that’s taking place from sup-

pression to reappraisal as a person grows. This phenomenon represents metaplastic-
ity as defined in the relevant literature.
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Fig. 11.12  First-order self-model states over time using metaplasticity
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Fig. 11.13  Second-order self-model states for adaptation speed and persistence factors

11.5 � Summary

In this chapter, the focus was on the computational analysis of emotion regulation 
specifically concerning flexibility and adaptivity. The concept of flexibility in emo-
tion regulation strategies has recently gained momentum, with various studies 
yielding findings that support this notion. It is clear that specific strategies are not 
inherently adaptive or maladaptive, given that research has found that each strategy 
has the capacity to outclass other strategies in various situations. An important ques-
tion is which strategy is used for which situation.
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The answer to this question may lie in a broader repertoire with capabilities of 
decision making and analysis. A person with a broader repertoire of strategies has 
edge over a person using just a few strategies irrespective of the situation. For this 
purpose, the right decisions need to be taken for which strategy to use. This continu-
ous adaptation of regulation and decision making also enables the person to know 
which strategy to use in which situation over longer period of time. This process of 
plasticity is taking place from very early life. In addition, plasticity of plasticity, also 
called metaplasticity, occurs, which adds control to the adaptation process.

These highly dynamic concepts have been modeled using a network-oriented 
modeling approach based on self-modeling temporal-causal networks (Treur, 
2020a). This approach can easily be used for modeling any temporal phenomenon, 
such as the dynamics of emotions, desires and any other mental states. Moreover, 
the concepts of plasticity and metaplasticity can very easily and efficiently be mod-
eled by using this approach. Apart from giving deep insight into complex phenom-
enon through the simulation results, this approach can model a very wide variety of 
complex problems.

The models presented in this chapter focus on the choice for using a certain emo-
tion regulation strategy depending on specific circumstances, in line with studies 
like (Sheppes, 2014; Sheppes et al., 2011) where flexibility in emotion regulation 
strategies is the main concern. However, besides the question which strategy to use 
in which situation, in many cases, simply choosing an emotion regulation strategy 
is not enough to ensure its implementation. A chosen strategy can run into difficul-
ties. Therefore, as a next challenge for future research, we aim to consider recent 
findings on maintaining a strategy, for instance, as addressed in (Gallo et al., 2009; 
Webb et  al., 2012b). This has further been explored in (Pruessner et  al., 2020) 
wherein selection and maintenance of a strategy has been differentiated. This means 
that a strategy, once chosen, has to be shielded against interference from other strat-
egies and difficulties.

11.6 � Further Reading

A preliminary version of part of this work was published in (Ullah & Treur, 
2020b; Ullah et al., 2020b). Moreover, for more study about computational mod-
eling of emotion regulation see, (Ullah & Treur, 2020c, d). For further literature 
on flexibility in emotion regulation, see, for example, (Cheng, 2001; Cheng et al., 
2014; Troy et al., 2013). Also literature such as this can provide inspiration for 
further development of computational models for emotion regulation by address-
ing other factors that for the sake of simplicity have been left out of consideration 
in this chapter.
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�Appendix 1: Network-Oriented Modeling

�Network-Oriented Modeling Based 
on Temporal-Causal Networks

All the modeling concepts used in this chapter are based on Network-Oriented 
Modeling by self-modeling temporal-causal networks (Treur, 2020a), see also 
(Treur, 2016). An overview of the basis for this modeling approach are the net-
work characteristics for connectivity, aggregation and timing presented in 
Table 11.1. A phenomenon is represented in a network form which consists of 
nodes with activation levels that vary over time. Each node Y, also called state, has 
incoming connections from some other states X through connections with weights, 
which defines the causal impact of such a state X on state Y over time. A temporal-
network model can be represented as a labelled graph for its network characteris-
tics in which:

•	 Connectivity characteristics
•	 Each connection carries some connection weight from one state to another called 

impact represent by ωX,Y.

•	 Aggregation characteristics
•	 There’s some way to aggregate multiple impacts ωX,YX(t) from some states X on 

a state Y by a combination function cY(..).

•	 Timing characteristics
•	 There’s a notion of speed of change of each state to define how faster a state 

changes because of the incoming impact (speed factor ηY).

A temporal-causal network is fully defined by these three types of characteris-
tics, which in a canonical manner define the numerical representation of the model; 
see Table 11.1 for more explanation of the terms and for these numerical representa-
tions. A dedicated software environment takes as input the above network character-
istics and automatically (and hidden for the modeler) generates a numerical 
representation as described in the lower part of Table 11.5.

This approach provides a library of currently 40 combination functions for the 
aggregation of multiple (incoming) causal impacts. Apart from the available com-
bination functions, an option is provided to easily create any function composi-
tions of any of the available functions, and if that is still not enough, any 
own-defined functions can also be added to the library. This makes the technique 
even more flexible and user friendly. All software components, including the 
library, can be freely downloaded from URL https://www.researchgate.net/proj-
ect/Network-Oriented-Modeling-Software.
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Table 11.5  Basics of a temporal-causal network model

Concept Conceptual representation Explanation

States and 
connections

X, Y, X→Y Describes the nodes and links of a 
network structure (e.g., in graphical or 
matrix form)

Connection weight ωX,Y The connection weight ωX,Y usually in 
[−1, 1] represents the strength of the 
causal impact of state X on state Y 
through connection X→Y

Aggregating 
multiple impacts 
on a state

cY(..) For each state Y a combination function 
cY(..) is chosen to combine the causal 
impacts of other states on state Y

Timing of the 
effect of causal 
impact

ηY For each state Y a speed factor ηY ≥ 0 is 
used to represent how fast a state is 
changing upon causal impact

Concept Numerical representation Explanation
State values over 
time t

Y(t) At each time point t each state Y in the 
model has a real number value, usually 
in [0, 1]

Single causal 
impact

impactX,Y(t) = ωX,Y X(t) At t state X with a connection to state Y 
has impact on Y, using connection 
weight ωX,Y

Aggregating 
multiple causal 
impacts

aggimpactY(t)
= cY(impactX1,Y(t),…, 
impactXk,Y(t))
= cY(ωX1,YX1

(t), …, ωXk,YXk(t))

The aggregated causal impact of 
multiple states Xi on Y at t, is determind 
using combination function cY(..)

Timing of the 
causal effect

Y(t + Δt) = Y(t) +  
ηY [aggimpactY(t) − Y(t)] Δt
= Y(t) +  
ηY [cY(ωX1,YX1(t), …, 
ωXk,YXk(t)) − Y(t)] Δt

The causal impact on Y is exerted over 
time gradually, using speed factor ηY; 
here the Xi are all states with outgoing 
connections to state Y

Note that the numerical representation in the lower part of Table  11.1 fully 
describes the dynamics of the temporal-causal network in terms of the network 
structure characteristics. This formal numerical representation associates detailed 
mathematically defined semantics to any temporal-causal network and also allows 
to mathematically analyze how emergent network behaviour depends on network 
structure, as has been done in (Treur, 2020a), Chaps. 11–14.

�Self-Models Representing Network Characteristics by 
Network States

As indicated above, ‘network characteristics’ and ‘network states’ are two distinct 
concepts for a network. Self-modeling or reification as described in detail in (Treur, 
2020a) is a way to relate these distinct concepts to each other in an interesting and 
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useful way. A self-model is making the implicit network characteristics (such as 
connection weights) explicit in the form of adding states for these characteristics 
and connections for these states; thus, the network gets an internal self-model of 
part of the network structure itself. In this way, by iteration different self-modeling 
levels can be created where network characteristics from one level relate to explicit 
states at a next level. Thus, an arbitrary number of self-modeling levels can be mod-
eled, covering second-order or higher-order effects. More specifically, adding a 
self-model for a temporal-causal base network is done in the way that for some of 
the states Y of the base network and some of the network structure characteristics for 
connectivity, aggregation and timing (i.e., some from ωX,Y, γj,Y, πi,j,Y, ηY), additional 
network states WX,Y, Cj,Y, Pi,j,Y, HY (called self-model states or reification states) are 
introduced and connected to other states:

	(a)	 Connectivity self-model

•	 Self-model states WX,Y are added representing connectivity characteristics, 
in particular connection weights ωX,Y

	(b)	 Aggregation self-model

•	 Self-model states Cj,Y are added representing aggregation characteristics, in 
particular combination function weights γj,Y

•	 Self-model states Pi,j,Y are added representing aggregation characteristics, in 
particular combination function parameters πi,j,Y

	(c)	 Timing self-model

•	 Self-model states HY are added representing timing characteristics, in par-
ticular speed factors ηY

The notations WX,Y, Cj,Y, Pi,j,Y, HY for the self-model states indicate the referencing 
relation with respect to the characteristics ωX,Y, γj,Y, πi,j,Y, ηY: here W refers to ω, C 
refers to γ, P refers to π, and H refers to η, respectively. For the processing, these 
self-model states define the dynamics of any state Y in a canonical manner accord-
ing to the equations in the bottom row of Table 11.5 whereby the values of ωX,Y, γj,Y, 
πi,j,Y, ηY are replaced by the state values of WX,Y, Cj,Y, Pi,j,Y, HY at time t, respectively. 
To model certain adaptation principles by a self-modeling network, the dynamics of 
each self-model state itself and it effect on another state are specified for one of the 
three general types of network structure characteristics connectivity (a), aggregation 
(b), and timing (c), also mentioned above:

	(a)	 Connectivity for the self-model states in a self-modeling network
For the self-model states their connectivity in terms of their incoming and 

outgoing connections has two different functions:

•	 Effectuating its special effect from its specific role

•	 The outgoing downward causal connections from the self-model states WX,Y, 
Cj,Y, Pi,j,Y, HY to state Y represent the specific causal impact (its special effect 
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from its specific role) each of these self-model states has on Y. These downward 
causal impacts are standard per role, and make that the adaptive values WX,Y(t), 
Cj,Y(t), Pi,j,Y(t), HY(t) are used for the adaptive characteristics of the base net-
work in (9).
•	 Indicating the input for the adaptation principle as specified in (b)

•	 The incoming upward or leveled connections to a self-model state are used to 
specify the input needed for the particular adaptation principle that is 
addressed.

	(b)	 Aggregation for the self-model states in a self-modeling network
For the self-model states their aggregation characteristics have one main aim:

•	 Expressing the aggregation adaptation principle by a mathematical 
function

•	 For the aggregation of the incoming causal impacts for a self-model state, pro-
vided as indicated in (a), a specific combination function is chosen to express the 
adaptation principle in a declarative mathematical manner.

	(c)	 Timing for the self-model states in a self-modeling network
For the self-model states their timing characteristics have one main aim:

•	 Expressing the timing adaptation principle by a number

•	 Finally, like any other state self-model states have their own timing in terms of 
speed factors. These speed factors are used as the means to express the adapta-
tion speed.

An example of an aggregation self-model state Pi,j,Y for a combination function 
parameter πi,j,Y is for the excitability threshold τY of state Y, which is the second 
parameter of a logistic sum combination function; then Pi,j,Y is usually indicated by 
TY, where T refers to τ. The network constructed by the addition of a self-model to 
a base network is called a self-modeling network or a reified network for this base 
network. This constructed network is also a temporal-causal network model itself, 
as has been shown in (Treur, 2020a), Ch 10; for this reason, this construction can 
easily be applied iteratively to obtain multiple levels or orders of self-models, in 
which case the resulting network is called a multi-level or multi-order or higher-
order self-modeling network or reified network.

�Appendix 2: Tables

In Table 11.6 a state can either have value of scaling factor (λ) for which scale sum 
function has been used or it can have values for steepness (σ) and threshold (τ) for 
which alogistic combination function has been used.
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Table 11.6  Values used for alogistic, scaled-sum combination functions and speed factor

state λ τ σ η state τ σ η
wss 0.94 0 0 0.1 ms2 0.5 50 0.5
sss 0 0 0 0.5 bs(−)c.p 0.1 50 0.5
ssb 0 0 0 0.5 bs(+)c.p 0.5 17 0.5
srss 1 0 0 0.5 csreapp 0.5 8 0.15
srsb 1.4 0 0 0.5 csa.d 0.85 12 0.2

bs− 0.91 0 0 0.5 css.m 0.85 12 0.3
bs+ 0 0.1 10 0.5 cssup 0.5 6 0.15
psb 1.8 0 0 0.5 psa 0.6 5 0.5
esb 0.98 0 0 0.5 psa.d 0 0 0.3
fsb 1 0 0 0.5 esa 0.5 3 0.5
ms1 0 0.1 5 0.5 esa.d 0 0 0.3
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Table 11.7  Values used for connection weights

Connection Weight Connection Weight Connection Weight Connection Weight

ωwss, wss 0.95 ωbs+, bs- −0.4 ωcsreapp, css.m −1 ωfsb, ms1 0.5
ωwss, sss 1 ωms1, csreapp 0.2 ωcsreapp, cssup −1 ωfsb, ms2 0.8
ωsss, srss 1 ωms1, cssup 0.4 ωcsa.d, psa.d 1 ωfsb, bs(−)c.p 0.5
ωssb, srsb 0.7 ωms2, ms1 −1 ωcsa.d, css.m −1 ωfsb, bs(+)c.p 0.5
ωsrss, bsc- 0.9 ωms2, csa.d 0.35 ωcsa.d, cssup −1 ωfsb, psb 0.9
ωsrss, bsc+ 0.4 ωms2, css.m 0.5 ωcss.m, psa 0.8 ωpsa, esa 0.5
ωsrss, psa 0.3 ωbs(−)c.p, bs(+)c.p −1 ωcss.m, esa 0.8 ωpsb, srsb 0.75
ωsrsc.p, bs(−)c.p −1 ωbs(−)c.p, cssup 0.3 ωcss.m, csreapp −1 ωpsb, esb 1
ωsrsc.p, bs(+)c.p 1 ωbs(−)c.p, csa.d 0.6 ωcss.m, csa.d −1 ωpsa.d, esa.d 1
ωsrsb, fsb 1 ωbs(+)c.p, bs(−)c.p −1 ωcssup, psb −1 ωesa, wss −0.5
ωbs-, bs+ −0.4 ωbs(+)c.p, css.m 0.5 ωcssup, esb −0.2 ωesb, ssb 1
ωbs-, csreapp 0.05 ωbs(+)c.p, csreapp 0.33 ωcssup, csreapp −1 ωesa.d, srss 0.63
ωbs-, psb 1 ωcsreapp, bs- −0.35 ωcssup, csa.d −1

Table 11.8  Initial values of the states

State wss

All other 
base states

W
fs csb reapp

, W
fs csb sup

,
HW

fs csb reapp
,

HW
fs csb sup

, MW
fs csb reapp

,
MW

fs csb sup
,

Initial 
value

1 0 0.3 0.9 0.5 0.5 0.9 0.9
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Box 1   Role matrices for connectivity

11.7 � Appendix 3: Role Matrices

The red cells with Xi in them represent the adaptive dynamics of that connections 
in matrices mcw,mcfp and ms. For instance, X16 in the red cell in mcw refers to 
Wfs csb reapp

,  and this state represent the adaptivity taking place at connection from fsb 

to csreapp. Similarly, the X18 and X19 in mcfp and ms represents the persistence and 
speed factor of Wfs csb reapp

, , respectively (Figs. 11.14 and 11.15).
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Box 2  Role matrices for aggregation and timing
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Chapter 12
A Dynamic Affective Core to Bind 
the Contents, Context, and Value 
of Conscious Experience

Kenneth T. Kishida and L. Paul Sands

Abstract  The private and dynamic nature of conscious subjective experience poses 
an empirical challenge that has led neuroscience-based theories about conscious-
ness to note the importance of ‘the hard problem’ of explaining how subjective 
phenomenal experience can arise from neural activity but set it aside and focus on 
the ‘easier’ problems associated with information representation and behavior. This 
approach leaves a major gap in our understanding of the neural mechanisms under-
lying conscious subjective experience and its dynamic nature. However, computa-
tional methods integrated with a variety of tools for measuring human brain activity 
are beginning to link dynamic changes in subjective affect with reproducible neu-
robehavioral signals in humans. In particular, research applying computational rein-
forcement learning theory has shown tremendous utility in investigating human 
choice behavior and the role the dopaminergic system plays in dynamic behavioral 
control. This research is beginning to reveal an explicit connection between the 
dynamics of dopaminergic signals and dynamic changes in subjective affect. 
However, it should be obvious that the dopaminergic system alone is not sufficient 
to explain all of the complexities of affective dynamics. We review foundational 
work, highlight current problems and open questions, and propose a Dynamic 
Affective Core Hypothesis that integrates advances in our understanding of the rep-
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resentation of the content and context of conscious experiences with our nascent 
understanding about how these representations acquire and retain affective subjec-
tive value.

Keywords  Consciousness · Reinforcement learning · Dopamine · Serotonin · 
Norepinephrine · Reward prediction error · Subjective experience · Qualia

12.1 � Introduction

In “What is it like to be bat?” (Nagel, 1974), Nagel highlights the gap in our ability 
to provide a mechanistic account of subjective phenomenal experience from our 
current knowledge about nervous systems. In a related vein, Chalmers (1996) 
coined the distinction between ‘easy’ problems and ‘the hard problem’ facing inves-
tigations about how physical processes generate subjective phenomenal experience 
(i.e., qualia). The ‘easy problems’ are those for which it is conceivable that we will 
find solutions given the currently known mechanistic working of neural processes; 
the ‘hard problem’ concerns an explanation of how the physical processes could 
possibly give rise to subjective phenomenal experiences a priori. Leading neurosci-
entific theories about consciousness note the importance of subjective phenomenal 
experience but set this ‘hard problem’ aside to instead focus on the ‘easy problems’ 
regarding how nervous systems represent information and control behavior 
(Edelman & Tononi, 2000; Crick & Koch, 2003). In line with others’ ‘faith’ in a 
scientific approach (Churchland & Churchland, 2002; Churchland, 2005), we reject 
this distinction. The ‘hard problem’ is hard, but not in any special way that prevents 
scientific investigation. Instead, it represents the most exciting frontier in human 
neuroscience research. Before we had an empirically based theory of electromagne-
tism, electricity and magnetism must have seemed magical and fundamentally 
unexplainable (through known physical mechanism) to philosophers of the time. 
But, through rigorous empirical investigation and the development of supporting 
mathematical theory, major breakthroughs came in our understanding of a funda-
mental physical phenomenon (Forbes & Mahon, 2014). We believe that (broadly) 
neuroscience research had simply not focused its attention, until recently, to the 
problem of conscious subjective experience in humans. These tides are changing, 
and advances in seemingly disparate areas of research are poised to come together 
through applications of mathematical theory to begin to shed light on how a nervous 
system could give rise to subjective phenomenal feeling.

‘Affective dynamics’—and particularly computational approaches thereof 
(Cunningham et al., 2013)—represent an investigative construct well-suited to push 
past the current boundaries of neuroscience research about dynamic changes in 
emotion-related behavior and move towards a neuroscience of consciousness 
squarely focused on mechanisms giving rise to subjective phenomenal experience. 
Presently, much of the work can be framed into two (admittedly overbroad) domains 
of research: (1) investigations into the role of reinforcement learning in driving 
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dynamic changes in behavior and associated reports about subjective emotional 
reactions, and (2) investigations into the roles of functional networks involving cor-
tical and sub-cortical brain regions in dynamically representing emotion. While 
both domains of research are in and of themselves rich and highly productive, little 
has been done to bridge the divide between them and provide a mechanistic account 
of the dynamics underlying how changes in the environment or behavioral state of 
an individual induce changes in the functional networks representing the vast range 
of observable, dynamic emotional reactions and associated subjective experiences.

Here, we discuss a framework for investigating affective dynamics that is founded 
on computational reinforcement learning theory (Sutton & Barto, 1998) and its tight 
connection to the neurobiology of adaptive behavior. We review the dominant the-
ory for dopamine neuron function (as a generator of a “temporal difference reward 
prediction error” signal) and its role in behavioral control and value updating 
(Montague et al., 1996; Schultz et al., 1997; Montague et al., 2004; Glimcher, 2011; 
Watabe-Uchida et al., 2017). We review how this framework has, to date, been used 
to investigate affective dynamics, but also this approach’s dopamine-centric limita-
tions. We follow this discussion with (1) an extension of temporal difference rein-
forcement learning theory to include a parallel system hypothesized to support 
temporal difference aversive learning; (2) the interaction of these parallel appetitive-
learning and aversive-learning systems to generate valuation and salience signals; 
and (3) evidence that these valuation and salience signals are fundamental to 
dynamic affective experience. We briefly discuss a candidate set of key neural struc-
tures that we hypothesize are necessary components of a dynamic network for rep-
resenting emotion, and we describe how ascending valuation systems (e.g., 
dopamine- and serotonin-releasing neurons) are integral to this network. We discuss 
how this network relates to the dynamic core hypothesis that was proposed by 
Edelman and Tononi (2000) to explain consciousness—in particular, we note that 
their notion of a dynamic core did not necessitate key elements, and the conse-
quences of these omissions. Crucially, we believe that Edelman and Tononi’s 
‘dynamic core’ appears sufficient for an integrated representation of the contents 
and context of dynamically evolving conscious experiences, but it omits systems 
required to provide those representations affect and value. Thus, we introduce the 
Dynamic Affective Core hypothesis, which updates the original dynamic core 
hypothesis to now necessarily include originally omitted affect and valuation sys-
tems. We discuss the implications of the Dynamic Affective Core hypothesis and 
future directions for this line of research.

12.2 � Affective Dynamics as a Phenomenon Resulting 
from Systems Seeking ‘Optimal Control’

Moment-to-moment changes in one’s emotional state can be driven by external and 
internal signals. The environment naturally evolves, and an organism’s nervous sys-
tem ought to track this evolution with its own evolving representations of the envi-
ronment in parallel with representations of its own evolving internal states (e.g., 
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proprioceptive body position, body temperature, energy levels, etc.). Associated 
with these objective quantities are affective, subjective feelings (e.g., hunger, thirst, 
pain, and pleasure). These representations are in turn used to guide adaptive physi-
ological responses and behavior. How nervous systems accomplish this can be 
investigated through a computational framework (Minsky, 1967) where the actual 
“state of an agent” and the actual “state of the environment” can be represented 
explicitly, as can their interactions. Further, representations of the state of an agent 
and the environment can be explicitly represented as hypothetical physical states 
that nervous systems may instantiate. Within such a framework, one can consider 
that as the state of the agent and external environment continuously evolve, the 
affective state of the agent is expected to also continuously evolve. We hypothesize 
that the representation of exteroceptive and interoceptive state-transitions is associ-
ated with representations of the affective emotional valence (i.e., subjective value) 
of these experienced states and actions. This dynamic evolution of emotional sub-
jective experience is the target of our investigation. To be rigorous in our approach, 
we employ a computational framework to aid in making explicit our assumptions 
and hypotheses about the dynamic mechanisms at play.

Artificial intelligence research has developed theory around how the behavioral 
problem (e.g. how to choose how to act and adapt behavior) may be solved with an 
eye towards optimal solutions. One particularly successful line of reasoning has led 
to the development of computational reinforcement learning theory (Sutton & 
Barto, 1998, 2018). Within artificial intelligence research, computational reinforce-
ment learning theory has been used as a core theoretical construct to explore how 
emotions may be integrated into the decision-making processes of computational 
(artificially intelligent) agents (surveyed in Moerland et al., 2018). More specific to 
our line of inquiry is recent empirical work bridging computational reinforcement 
learning theory and human neuroscience that is beginning to connect dopamine 
neuron activity with how the human brain dynamically adapts not only representa-
tions of states and actions, but also representations of associated subjective experi-
ences (Xiang et al., 2013; Rutledge et al., 2014; Eldar & Niv, 2015).

12.2.1 � Computational Reinforcement Learning Theory 
and Dopamine

Computational Reinforcement Learning (RL) theory (Sutton & Barto, 1998, 2018) 
provides an explicit framework to investigate processes involved when a theoretical 
agent makes decisions under uncertainty, experiences the consequences of those 
decisions, and makes changes in its approach (i.e., learns) to make ‘better’ decisions 
in the future. This theoretical framework assumes that the agent seeks to maximize 
the ‘reward’ it attains and builds from this fundamental assumption a mathematical 
rendering that incorporates theory about Finite Markov Decision Processes, 
Dynamic Programming, and Monte Carlo Methods (see Sutton & Barto, 1998 and 
a revised edition in 2018 for an authoritative textbook on how these ideas are 
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brought together). Importantly, the agent in question is an abstract computational 
agent—not necessarily a biological one, let alone human. This approach simply 
seeks to find computable optimal solutions to behavioral control and, when such 
computations are intractable, to determine best estimates for these solutions (Bach 
& Dayan, 2017). Moerland and colleagues (Moerland et al., 2018) have recently 
provided an extensive survey of how these ideas have been explored to incorporate 
models of ‘emotions’ into various learning algorithms in AI research. Moerland’s 
survey provides a wide range of hypotheses about how emotions may be repre-
sented in adaptive reinforcement learning algorithms, but empirical support that 
these proposals are actually implemented biologically remains lacking. On the other 
hand, Montague and colleagues’ publication in 1996 (Montague et al., 1996) dem-
onstrated that dopamine neurons in non-human primates encode a key signal in 
reinforcement learning theory—a temporal difference reward prediction error. This 
finding has since been a foundation for research into the basis of adaptive decision-
making in humans (and non-human animals) and more recently in investigations 
about the neural basis of dynamic changes in subjective experience in humans.

Temporal Difference Reinforcement Learning is a foundational idea that grew 
out of computational reinforcement learning theory research. The basic idea is as 
follows—it is assumed that an agent always seeks to maximize the attainment of 
‘reward’. To do so, it must learn the value of various states and actions that it finds 
itself in and that it has available to it at any given time, respectively. The ‘Value’ (Vt) 
of a particular state at a given time (t), in this context, is simply the sum of the 
reward currently acquired (rt) plus the rewards the agent may attain in the future 
given that it finds itself in that state (rt + 1 + rt + 2 + rt + 3 + …), so:

	 V r r r r rt t t t t t T= + + + +…++ + + +1 2 3 	 (12.1)

We can modify this estimate by incorporating a discounting of future (not yet 
acquired) rewards:

	 V r r r r rt t t t t
T

t T= + + + +…++ + + +γ γ γ γ γ0 1
1

2
2

3
3 	 (12.2)

Here γ is a parameter that is greater than zero, less than one, and therefore shrinks 
exponentially small when raised to increased powers towards T. This causes proxi-
mate rewards to be weighted more heavily than distant future rewards. The chal-
lenge for the agent (with incomplete knowledge of the future) is to estimate this 
value function for any given state it may find itself in. Learning (better estimates of 
Vt) proceeds through experience (real or simulated) where prediction errors (δ) 
about the estimated expected value are used to update (i.e., make corrections to) the 
estimated expected value:

	 V Vt t t
′ ← +αδ 	 (12.3)

In Eq. (12.3), Vt on the right-hand side is changed to Vt
′  by an amount δt (i. e. ,the 

reward prediction error) modulated by the learning rate α. Small fractional changes 
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Fig. 12.1  Dopamine neurons encode temporal difference reward prediction errors. Dopamine 
neurons change their rate of firing in a manner consistent with ‘temporal difference reward predic-
tion errors’. Left: Recordings of dopamine neuron spike rates during the presentation of rewards 
(squirts of juice) and a conditioning stimulus (e.g. flash of light); figure panel adapted from 
Schultz, Dayan, and Montague (1997). Right: Cartoon depiction of dopamine neuron behavior in 
the different phases of learning depicted in left panel. Top row: Prior to learning, dopamine neu-
rons increase their firing rate in response to unexpected delivery of reward. Middle row: After 
conditioning, with consistent pairing of a predictive stimulus and a reward, dopamine neurons 
increase their firing rate to the predictive stimulus and do not change their firing rate when the 
reward is delivered as expected. Bottom row: After conditioning, dopamine neurons increase their 
firing rate to the predictive stimulus and go silent (firing rate goes to zero) when the expected 
reward is not delivered

in α lead to slower learning, whereas larger α causes δt to have a bigger influence. In 
temporal difference reinforcement learning, the errors—called temporal difference 
reward prediction errors (δt)—are calculated as follows:

	
δ γ= +( ) −+r V Vt t t1 	

(12.4)

Note that these errors are determined by incorporating not only the experienced 
reward in the current state (at time “t”: rt), but also a discounted estimate of future 
rewards (γVt + 1); combined, these two terms ((rt + γVt + 1)) are compared to the cur-
rent estimate of value (Vt) and the difference is the “temporal reward prediction 
error”. This reward prediction error term has been hypothesized and demonstrated 
to be encoded by dopamine neuron activity in non-human primates (Fig.  12.1: 
Montague et al., 1996; Schultz et al., 1997; Bayer & Glimcher, 2005; reviewed in 
Glimcher, 2011; for a historical account: Colombo, 2014; Watabe-Uchida et  al., 
2017) and to be consistent with temporal dynamics of blood oxygen level dependent 
responses (measured with functional magnetic resonance imaging) in regions of the 
human brain that are highly innervated by dopamine releasing terminals (Pagnoni 
et al., 2002; Montague et al., 2006).
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The first association between the temporal difference reward prediction error and 
non-human primate dopamine neuron activity was shown in Montague et al. (1996) 
and reviewed in the context of prior work in Schultz et al. (1997). Subsequently, the 
role of reward prediction errors and dopaminergic signaling in mammalian decision 
making grew into a highly impactful field of research (reviews: Montague et al., 
2004; Glimcher, 2011; Colombo, 2014; Watabe-Uchida et al., 2017), with elabora-
tions on this basic framework revealing a consistent role for reward prediction error 
signals guiding human and animal behavior during a wide variety of experimental 
paradigms that require these agents to make incentivized decisions under uncertain 
conditions.

A number of predictions from this basic formulation have been tested and the 
overarching hypothesis upheld, though recent work has challenged the complete-
ness of this idea in humans (Kishida et al., 2011, 2016; Moran et al., 2018; Bang 
et al., 2020). The “temporal difference reward prediction error” (Eq. 12.4) hypoth-
esis for dopamine neuron activity, expressed in words, predicts: (1) increases in DA 
neuron spike activity (from background rates) when “things are better than 
expected”, (2) decreases when “things are worse than expected”, and (3) no change 
when “things are just as expected”. In this interpretation, dopamine neurons are 
always emitting information to downstream neural structures since even no change 
in firing rate carries meaning. This computational hypothesis is strongly supported 
by the timing and amplitude of burst and pause responses in the spike trains of dopa-
mine neurons (Montague et  al., 1996; Schultz et  al., 1997; Fiorillo et  al., 2003; 
Montague et al., 2004; Bayer & Glimcher, 2005; Dayan and Niv, 2008; Watabe-
Uchida et al., 2017). Further, this hypothesis appears to be supported (at least in 
part) by dopamine release measurements in rodents (Hart et al., 2014; Clark et al., 
2010), single unit recordings of dopamine neurons in humans (Zaghloul et  al., 
2009), and direct measurements of dopamine release in humans (Kishida et  al., 
2016; Moran et al., 2018).

Note, however, that in Kishida et al., 2016 and Moran et al., 2018 it was demon-
strated that sub-second changes in dopamine levels in human striatum are not fully 
explained by the simple reward prediction error hypothesis. In these experiments, 
extracellular dopamine release was measured in humans with sub-second temporal 
resolution during a sequential monetarily incentivized decision-making task 
(Kishida et  al., 2011, 2016). While these measurements were made, participants 
performed a stock market gambling task that elicited reward prediction errors about 
the participants’ investment decisions and market fluctuations. Importantly, partici-
pants’ investments were lodged as percentages of their continuously updated port-
folio. Thus, counterfactual information—what “could have been” had they chosen 
to invest more or less than they actually did—was present on every trial. Kishida 
et  al., 2016 demonstrated that sub-second dopamine fluctuations in the striatum 
integrated the reward prediction error term with a counterfactual prediction error 
term (Fig. 12.2). In other words, dopamine fluctuations in response to better- or 
worse-than-expected outcomes (i.e., reward prediction errors) were depressed or 
even inverted according to the magnitude of missed gains or avoided losses had the 
participants invested one-hundred percent of their portfolio. In this sense, measured 
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Fig. 12.2  Dopamine release in human striatum encodes superposed reward prediction errors and 
counterfactual prediction errors. Direct recordings of dopamine release during a sequential 
decision-making task (a) demonstrates that dopamine release encodes reward reward prediction 
errors (left columns of b and c), but that counterfactual information diminishes or inverts dopami-
nergic encoding of reward prediction errors about actual experience (middle and right columns of 
b and c). Figure panels adapted from Kishida et  al. (2016). (a) Sequential investment game: 
Participants ‘invest’ into a stock market by lodging bets as a percentage of their portfolio. Market 
returns increase or decrease the participant’s portfolio as a function of the percent invested and the 
percent change in the stock price. For market increases and decreases, the amount not invested 
represent missed gains or avoided losses, respectively. These counterfactual outcomes are observed 
to modulate dopamine (panel c) and serotonin (Moran et al., 2018) responses to reward prediction 
errors over actual gains and losses in the game. (b and c) Model predictions (b) and actual dopa-
mine responses (c) for a model that integrates ‘reward prediction errors’ and ‘counterfactual pre-
diction errors’. Green: dopamine responses (predicted (b) or observed (c)) to positive reward 
prediction errors. Red: dopamine responses (predicted (b) or observed (c)) to negative reward 
prediction errors. Left column: Counterfactual outcomes are minimized (investments near 100%) 
and the dopamine response is positive for positive reward prediction errors and negative for nega-
tive reward prediction errors (as predicted by the traditional reward prediction error hypothesis). 
Middle and Right columns: As the bet sizes decrease, the counterfactual terms increase and dimin-
ish (middle column) or invert (right column) the dopamine response to positive and negative 
reward prediction errors. Figure panel (c) adapted from Kishida et al. (2016)

fluctuations in dopamine levels within ~700 ms following an outcome corresponded 
with how participants ought to have felt: positive feelings about better-than-expected 
outcomes would be muted or even inverted to negative feelings when regret (over 
not investing more) increases, and negative feelings about worse-than-expected out-
comes would be muted or inverted to positive feelings when relief is high (Fig. 12.2, 
‘regret’ and ‘relief’ would increase with decreasing bet size). In a follow up study, 
Moran and colleagues extended the work and demonstrated that serotonin fluctua-
tions in human striatum encoded an opponent response to the dopamine signal, 
suggesting that dopamine and serotonin are, together, critical in the processing of 
actual and counterfactual reward prediction errors in sequential decision-making 
processes. Unfortunately, however, subjective assessments were not performed in 
these experiments, so the connection between sub-second dopamine and serotonin 
release and subjective experience remains hypothetical.
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The hypothesis that dopamine fluctuations encode fluctuations in positive affect 
may seem obvious, given that dopamine neurons and extracellular dopamine levels 
dynamically encode “reward” prediction errors. This is consistent with pleasure and 
subjective well-being focused emotion literature connecting these emotions and 
related processes to dopamine’s function (Kringelbach & Berridge, 2017). However, 
it is important to note that the term “reward” in the naming of this error term does 
not explicitly mean the “subjective experience of reward”. Rather, this term refers to 
a quantity that a computed objective function aims to maximize, and its connection 
to subjective reward is only implied or useful as an analogy when thinking about 
related computer algorithms from an anthropomorphic perspective. The explicit 
relationship between reward prediction errors, dopamine, and dynamic changes in 
human subjective experience has only recently begun to be explored.

12.2.2 � Reinforcement Learning and Affective Dynamics

The formal framework of computational reinforcement learning provides a rich 
landscape for investigating how the brain may generate dynamic changes in emo-
tional behavior and subjective experience (Doya, 2000; Xiang et al., 2013; Eldar 
et al., 2016; Bach & Dayan, 2017; Huys & Renz, 2017; Moerland et al., 2018). For 
example, the development and implementation of computer agents that use modi-
fied reinforcement learning algorithms to incorporate intuited features of emotion 
can generate a wide spectrum of hypotheses about how the human brain may ‘com-
pute’ and generate emotional behaviors with the goal of augmenting artificial intel-
ligence behavior (Moerland et al., 2018). While this approach notes the connection 
between reinforcement learning and hypothesized neural processes, their primary 
focus on machine learning applications is less constrained by or interested in solv-
ing the biological question and more concerned with the augmentation of machine 
learning algorithms. Implementation of ‘emotion algorithms’ in artificial intelli-
gence solutions may in some cases be feasible only in silico and for certain prob-
lems. In this vein, computer and decision scientists discover solutions to optimize 
learning and decision making that may not be possible for biological agents that are 
strictly constrained by limited time and energy, high uncertainty environments, and 
constant threats to existence (Montague, 2006; Bach & Dayan, 2017; Huys & Renz, 
2017). Here, it must be assumed that evolution has shaped the mechanisms underly-
ing emotion-related modifications to behaviors and associated subjective experi-
ence. Thus, empirical work (in conjunction with theory) is necessary to discover 
how the human brain solves the decision-making problem and generates associated 
subjective experiences. Computational neuroscientists trying to discover how emo-
tions are generated are beginning to investigate how neuromodulatory systems (e.g., 
dopaminergic, serotonergic, and noradrenergic neurons) drive not only learning and 
arousal states, but also affective dynamics, mood, and emotion regulation (Doya, 
2002; Etkin et al., 2015; Eldar et al., 2016; Huys & Renz, 2017; Bach & Dayan, 2017).
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One of the first demonstrations that reward prediction errors modulate self-
reports about subjective feelings came from work investigating social exchange 
(Xiang et al., 2013). In this work, Xiang and colleagues had participants play the 
ultimatum game repeatedly, but with different partners. In the ultimatum game, a 
proposer is given a set amount of money and proposes a split of the money between 
themselves and a partner. The partner then has the choice of accepting the split or 
rejecting the offer, knowing that a rejection means that both players will receive 
nothing (Fehr & Gächter, 2002; Camerer, 2003). In Xiang et al., the participants 
were the partners receiving the offered splits and the proposers were computer 
agents programmed to give similar distributions of offers and to shift their proposals 
(as a group) halfway through the task. In this manner, participants received offers 
that at first may be low or high, but common to the group, and a ‘social norm’ 
learned. Deviations about this norm generated prediction errors about the expected 
offer value, which were exaggerated when ‘the group’ shifted its behavior mid-way 
through the task. Participants playing this task were instructed that they would be 
playing with partners that were all different and independent. Occasionally, partici-
pants were probed about ‘how they felt’ about the most recent offer. Xiang et al., 
report that subjective feelings correlated with the norm prediction error and that the 
norm prediction error correlated with fMRI measured BOLD responses in the 
orbital frontal cortex (Xiang et  al., 2013). Additionally, BOLD responses to the 
norm prediction error were observed in the dorsal and ventral striatum, and bilateral 
anterior insula.

Eldar and colleagues (Eldar et al., 2016) review recent applications of a rein-
forcement learning framework and gambling tasks to investigate affective dynamics 
and mood and hypothesize how the proposed computational models may be used to 
better understand mood disorders. Two key studies form the basis of their argument 
(Rutledge et al., 2014; Eldar & Niv, 2015). Rutledge et al. (2014) investigated emo-
tional reactivity in response to a probabilistic reward task that did not require par-
ticipants to estimate the expected values of choices presented through learning. 
Expected values could be calculated on the spot (per trial) with complete informa-
tion about the risks associated with either a gamble or an alternative ‘sure bet’. They 
demonstrated that dynamic changes in “momentary happiness” were explained by a 
non-linear combination of expected values and associated reward prediction errors 
over a short history of recent trials. Further, they used fMRI to show that BOLD 
responses in the striatum tracked the same task variables that predicted subjective 
happiness ratings. Together, these findings strongly implicate a role for parameters 
estimated using computational reinforcement learning theory (e.g. expected value 
and reward prediction errors) and the dopaminergic system (i.e., dorsal and ventral 
striatal activation to reward prediction errors). in modulating subjective human feel-
ings. Importantly, striatal BOLD imaging signals that track computed reward pre-
diction errors are only circumstantial evidence that these signals are in fact delivered 
by dopamine neuron activity—BOLD imaging tracks physiological activity that 
consumes oxygen in the blood and cannot alone distinguish activity specifically 
driven by dopamine release.
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Eldar and Niv (2015) used a computational reinforcement learning framework to 
investigate a hypothesized bidirectional interaction between the ‘evaluation of out-
comes’ and ‘changes in emotional state’, and how the latter impacts the evaluation 
of future outcomes. Participants played a series of probabilistic slot machine games 
before and after a “wheel-of-fortune” draw that resulted in a surprising large mag-
nitude outcome. The impact of the wheel-of-fortune draw went as one might 
expect—improved mood for a big win and decreased mood for big losses, but the 
impact of mood was also measured on the outcomes of the subsequent smaller out-
come slot machine games. They showed that large magnitude outcomes on the 
wheel-of-fortune game colored the outcomes of the subsequent slot machine games. 
Again, a role for dopamine was implicated by the demonstration of striatal BOLD 
responses to reward prediction errors following wins in the slot machine games. 
Interestingly, the impact of the wheel-of-fortune outcome on striatal responses to 
the slot machine game outcomes differentiated those participants who had an 
increased hypomanic personality. The authors then demonstrate within a reinforce-
ment learning framework that they could account for and predict the behavioral 
observation that mood instability was associated with a positive feedback loop 
where big changes in mood altered the perception of outcomes in subsequent slot 
machine games. Together, the results of their study implicate dopaminergic learning 
signals in modulating dynamic changes in affect, a process that may become desta-
bilized in people with increased mood instability.

Another study that has embraced the reinforcement learning framework to inves-
tigate the impact of emotional outcomes on future decisions was performed by 
Katahira and colleagues (2015). Many studies have used monetary incentives to 
demonstrate the interaction of estimates of expected value, reward prediction errors, 
and human decision-making. The advantage of monetary incentives is the inherent 
quantitative nature of the reinforcer, so incorporating money as the reward in the 
reinforcement learning framework is relatively straightforward. Katahira and col-
leagues tackled an important problem in a creative way. They asked whether 
decision-making under uncertainty where emotional outcomes (that are inherently 
subjective) could be modeled and understood in the quantitative reinforcement 
learning framework. Here they employed a probabilistic “reward and punishment” 
task where, instead of money, participants received feedback in the form of subjec-
tively pleasant or unpleasant pictures, respectively. Images were drawn from the 
international affective picture system data base (Lang et al., 2007). While the cate-
gories of pleasant, neutral, or unpleasant images could be estimated a priori from 
the IAPS database, it is unclear what the motivational value of each image would be 
per participant. Typically, in reinforcement learning modeling, the learning rate (α) 
and future discount rate (γ) are estimated as free parameters while fitting the models 
to participant behavior. Katahira and colleagues allowed the ‘motivational value’ of 
each image category to also be a free parameter and could thus estimate from behav-
ior a quantity that would otherwise be a private subjective value. They compared 
behavioral and brain responses fit to reinforcement learning models for this task to 
a monetarily incentivized task modeled in a similar manner and demonstrated both 
appetitive and aversive prediction errors in the striatum for both the emotionally 
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evocative task and the monetarily incentivized task. Other co-activated regions 
included bilateral insula and precuneus.

Model-based reinforcement learning algorithms have been used to explore how 
emotion regulation via (re)appraisal processes may be implemented in neural sys-
tems (Etkin et al., 2015; Huys & Renz, 2017). Model-based (versus model-free) 
reinforcement learning refers to an approach wherein the decision-making agent 
uses a model of the environment to speed learning. If a model of the environment is 
available, an agent can use it to simulate experiences and significantly enhance the 
rate of learning compared to solely experience-dependent (i.e., model-free) algo-
rithms (Sutton & Barto, 1998, 2018). There is plenty of evidence that suggests 
humans (and other biological agents) use such models in their decision-making. Yet, 
the physical manifestation in neural systems of these representations and simulated 
experiences remains up for clarification. Nevertheless, model-based algorithms 
serve as an excellent framework to investigate mechanisms supporting emotion 
regulation or control. Etkin and colleagues (Etkin et al., 2015) have proposed the 
use of model-based reinforcement learning to unify diverse findings about the neu-
ral structures involved in the spectrum of emotion regulation strategies. In their 
framework, emotions are generated as part of the typical value-based decision-
making process, whereas regulation of these emotions are thought of as meta to the 
generation process: ‘actions’ taken by the emotion regulation system are themselves 
‘decided’ upon within a value-based decision-making process that adjudicates 
between the value of different state-action pairs representing emotion states and 
associated behavioral repertoires. They argue for a spectrum of model-based to 
model-free strategies for emotion regulation and suggest key differences in neural 
network dynamics that support each strategy. In a similar manner, Huys and Renz 
argue for the need of meta-reasoning over a model-based valuation framework to 
account for the nature of emotional appraisals and the flexibility of emotional 
responses.

The strengths of using a computational reinforcement learning framework to 
investigate mechanisms supporting affective dynamics include the formal nature of 
the description of its algorithms (Bach & Dayan, 2017; Huys & Renz, 2017) and the 
flexibility to explore variations on the core theme (Moerland et  al., 2018). The 
exploration of methods to incorporate ‘emotion computations’ into reinforcement 
learning in artificial intelligence research (e.g., Moerland et al., 2018) provides a 
likely never-ending stream of ‘thought experiments’ that may or may not be relevant 
to the biology of human emotions. Accordingly, research that constrains the space 
of possible solutions using empirical results is necessary.

12.2.3 � Limitations of ‘Dopamine/TD-Reward’: Centric Models

Over the last two and a half decades, the success in applying computational rein-
forcement learning algorithms to elucidate the neurobiological basis of human (and 
non-human animal) decision-making has been fueled by the singular demonstration 
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that dopamine neurons encode the temporal difference reward prediction error 
(Fig. 12.1 and Eq. 12.4; Montague et al., 1996; Schultz et al., 1997). The empirical 
results discussed above that relate reinforcement learning to human affective 
dynamics all have the reward prediction error and dopamine’s hypothesized role at 
their core. This core concept served as an anchor in these early days, but there are 
significant challenges to this construct that must be overcome. Dopamine neurons 
signal temporal difference reward prediction errors by emitting a burst (an increase 
in firing rate for positive reward prediction error), pause (halt in firing rate for nega-
tive reward prediction error), or no change (reward prediction error equals zero) in 
activity (Fig. 12.1, Montague et al., 1996; Schultz et al., 1997; Watabe-Uchida et al., 
2017). This asymmetry poses a problem for encoding aversive input—a missed 
reward and a loss of any magnitude would be treated the same: a pause in dopamine 
neuron activity. This means that a dopamine neuron-centric system (acting in this 
manner) cannot parametrically encode aversive prediction errors. Likewise, theories 
of emotion that rely only on the dopaminergic system do not appear to be able to 
account for subjective feelings in the negative domain, but instead focus largely on 
the positive dimensions like pleasure (Kringelbach & Berridge, 2017).

Further, there is now a significant body of literature that suggests that dopaminer-
gic signaling may be more complex (Bromberg-Martin et al., 2010; and Lammel 
et al., 2014; Watabe-Uchida et al., 2017). Electrophysiological (and more recently 
optical) recordings of putative dopamine neurons in the VTA and SN (in nonhuman 
primates and rodents) during a variety of behavioral task demands provide evidence 
that dopamine neurons respond to a wide range of positive, negative, and neutral 
stimuli. This may not be surprising given the significant heterogeneity in the molec-
ular, cellular, and neuroanatomical characteristics that differentiate dopamine neu-
rons (Watabe-Uchida et al., 2012; Lammel et al., 2014; Beier et al., 2015; Lerner 
et al., 2015; Gantz et al., 2018).

As such, a large number of signals have been proposed to be encoded by dopa-
mine neurons. One parsimonious way to frame these signals is to split them into 
‘positive’ (or at least neutral) and ‘negative’ valence categories. We start with the 
positive or neutral valence category of signals as these responses may be seen as an 
extension of the foundational notion that dopamine neurons encode TD-error sig-
nals that, as has been discussed, may be associated with primary rewards or also 
predictors (e.g., context and cues) of those rewards (Montague et al. 1996; Schultz 
et al., 1997). Then we will review and discuss the more controversial implications 
of dopamine neuron encoding of aversive or negatively valent stimuli.

12.2.4 � Dopaminergic Response to Novelty and Surprise…

Some of the earlier evidence that suggested dopamine neurons encoded more than 
just a TD reward prediction error came from neural recordings in non-human pri-
mates (reviewed in Bromberg-Martin et  al., 2010). In these experiments, it was 
shown that putative (electrophysiologically characterized) dopamine neurons 
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responded in a brief burst in activity to surprising sensory events. These signals 
were diminished if the sensory stimulus became predictable and were absent when 
the animal was asleep (Takikawa et al., 2004; Strecker & Jacobs, 1985; Steinfels 
et al., 1983). These signals also appeared to be sensitive to the attentional demands 
of competing tasks, in that the ‘alerting response’ (following Bromberg-Martin 
et al., 2010) in dopamine neurons to unanticipated sensory stimuli could only be 
elicited when the animal was in a passive resting state, not engaged in a more 
highly-valued, goal-directed activity (Strecker & Jacobs, 1985; Horvitz et al., 1997; 
Horvitz, 2002).

This idea that a subset of dopamine neurons respond to surprising stimuli or 
novelty (Ljungberg et al., 1992) has been supported by more recent work in rodents 
(Menegas et al., 2017). Here, Watabe-Uchida and colleagues used fiber-fluorometry 
to monitor dopamine axons across the striatum. They observed differences in the 
dopaminergic response to novel cues when they compared responses in the ventral 
striatum and the posterior tail of the striatum. Importantly, these responses were 
monitored in mice performing a classical conditioning task where the reward pre-
diction error hypothesis could be tested. Dopamine responses in the posterior tail of 
the striatum responded strongly to novel cues, whereas the dopamine response in 
the ventral striatum did not—at least not until the novel cue was reliably paired with 
a reward. Like the data generated in nonhuman primates, the dopamine responses 
(in the posterior tail of the striatum) to novel cues diminished with experience, but 
these responses also occurred tied to a variety of stimuli including rewarding, aver-
sive, and neutral sensory stimuli (Menegas et al., 2017). Additionally, Menegas and 
colleagues were also able to show two important controls for these responses within 
the same experimental paradigm: (1) specificity of dopamine neuron activity 
through genetic control over the reporter, but also (2) that reward prediction errors 
could explain the activity observed in the ventral striatum-projecting dopamine neu-
rons, but could not explain the activity in the posterior tail of the striatum.

Interestingly, it has been reported that dopamine neurons in the VTA can pro-
mote wakefulness and arousal (Eban-Rothschild et al., 2016; Taylor et al., 2016), 
and that a class of putative dopamine neurons residing in the dorsal raphe are acti-
vated by salient stimuli and, in so doing, also promote arousal and wakefulness (Lu 
et al., 2006; Cho et al., 2017). These latter cells are atypical in that most investiga-
tions of dopaminergic activity focus on the main populations of dopamine neurons 
found in the VTA and SN.

12.2.5 � Dopaminergic Responses Regarding Context 
and Information…

‘New, potentially informative sensory stimuli’ is one way to characterize “novel” or 
“surprising” cues. Along these lines, it has also been shown that dopamine neurons 
will respond as though they detect changes in the sensory features of rewards 
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(Takahashi et al., 2017), can be modulated by changes in context (Nakahara et al., 
2004), and can respond preferentially to sensory signals that provide advance infor-
mation (Bromberg-Martin & Hikosaka, 2009).

Schoenbaum and colleagues (Takahashi et al., 2017) recorded single-unit activ-
ity of putative dopaminergic neurons in rats during an odor-guided choice task. In 
this task, odors signaled the availability of vanilla or chocolate milk of varying 
quantities. They were able to demonstrate that the rats showed no distinguishable 
preference for chocolate or vanilla flavoring, but did track the quantitative value 
(quantity of milk) delivered. The recorded dopamine neurons tracked the prediction 
error of the value association (reward prediction errors over the quantity of milk 
delivered). But also, notably, when the flavor of the reward delivered was different 
from what was expected (vanilla instead of chocolate, or vice-versa), dopamine 
neurons showed an additional burst in activity. This was true even when the quantity 
of milk was the same as expected. The authors interpret this as a kind of prediction 
error over sensory features, which is consistent with the idea that dopamine neurons 
encode surprising sensory signals—here, the flavor of the milk. These experiments 
nicely control the expectation of sensory stimulation while modulating information 
in a surprising way about the reward delivered. Such additional information may not 
be directly related to the value of what was ingested, but may be used as an informa-
tive signal that the context of the behavioral task may have changed.

Hikosaka and colleagues (Nakahara et al., 2004) have demonstrated the ability of 
dopamine neurons to track reward prediction errors about informative cues 
(Bromberg-Martin & Hikosaka, 2009), and also shown dopaminergic activity that is 
best explained by models that also account for contextual changes (Nakahara et al., 
2004). Nakahara et  al. (2004) used electrophysiological recordings of putative 
dopamine neurons in non-human primates, a classical conditioning task, a context-
dependent conditioning task, and computer modeling to demonstrate that at least 
two classes of dopamine neurons could be identified: dopamine neurons that track 
classic temporal difference reward prediction errors and dopamine neurons that 
detect context-dependent reward prediction errors.

Bromberg-Martin and Hikosaka (2009) used a choice task to demonstrate that 
macaques preferentially choose options that lead to advance information about the 
magnitude of reward to be delivered at a later time. Not only did monkeys display 
this behavioral preference, but dopamine neurons that showed reward prediction 
error responses to reward delivery and predictive cues also showed responses that 
increased when predictive advanced information was provided.

Together, these experiments highlight a strong connection between dopamine 
neuron activity and surprising information and the importance of context. New 
information or surprising changes in the environment may have intrinsic value to a 
system that is geared towards learning statistical structure about appetitive pro-
survival events. New information or a surprising change in the context of delivered 
signals would be important to alert to and may simultaneously be treated as poten-
tially rewarding and potentially punishing. In this sense, one might expect to also 
see an aversive expectation error response signaled in parallel with what we are 
hypothesizing as a dopaminergic appetitive expectation error reported above. These 
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responses would not necessarily be learned ones, but rather an intrinsic valuation 
response to any ‘new information’ or events experienced for the first time that could 
be unlearned should the subsequent associations be consistently positive or negative.

12.2.6 � Dopaminergic Responses to Aversive Stimuli…?

The range of signals encoded above may generally be thought of as signals of posi-
tive valence, or at least not worse than neutral. However, there has been a significant 
amount of work demonstrating dopaminergic activity to aversive stimuli, including 
noxious electric shock (Guarraci & Kapp, 1999; Young, 2004; Brischoux et  al., 
2009; Zweifel et  al., 2011; de Jong et  al., 2019), tail pinch (Mantz et  al., 1989; 
Zweifel et al., 2011), air puff to the eye (Matsumoto & Hikosaka, 2009) or face 
(Cohen et  al., 2012), stress (Abercrombie et  al., 1989; Anstrom & Woodward, 
2005), and social defeat (Cao et al., 2010). Questions that remain in all investiga-
tions of dopamine neuron function include whether the characterized neurons are in 
fact dopamine neurons (Ungless & Grace, 2012). Further, it is unclear whether the 
experimental paradigms that demonstrate dopamine neuron activity to aversive 
stimuli control for alternative possibilities (Tanimoto et al., 2004). For instance, any 
of these apparent aversive events may not be interpreted as aversive, since many of 
the animals may not have had any experience with these kinds of stimulation prior 
to the initial work of the experimenter. Thus, any of these seemingly aversive stim-
uli could also be interpreted by the animal as simply ‘novel’ or ‘potentially informa-
tive’ in an otherwise highly controlled environment.

12.2.7 � Summary and Discussion 
of Dopamine-Centric Limitations

Altogether, these studies demonstrate that dopaminergic encoding of temporal dif-
ference reward prediction errors is only part of the story. There is clear evidence that 
at least a subset of dopamine neurons encode temporal difference reward prediction 
errors (Montague et al., 1996; Watabe-Uchida et al., 2017). Dopamine release in 
human striatum also encodes reward prediction errors, but also appears to integrate 
this term with contextual information about counterfactual outcomes (Kishida et al., 
2016; Moran et al., 2018). This latter point raises questions about the mechanisms 
that lead to dopaminergic encoding of counterfactual prediction errors—‘are these 
signals a result of modulation of dopamine-releasing terminals that natively would 
otherwise encode standard reward prediction errors, or are these terminals silent 
while counterfactual prediction errors are signaled by a different subset of dopamine-
releasing neurons that innervate the same region of tissue?’. Above, we described 
work from the animal literature that shows that dopamine neuron activity seems to 
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encode contextual and informative signals, and possibly even aversive signals. It is 
not clear whether these studies controlled for the possibility that the stimuli used to 
represent “non-rewarding” signals do not have appetitive associations acquired pre-
viously (e.g., due to routine animal handling procedures) or intrinsically, in that the 
stimuli that we associate with being neutral or aversive may be interpreted very 
differently by experimental animals that experience life very differently from organ-
isms in the wild.

Another major question that is not answered by most of the studies above is the 
degree to which temporal difference learning is or is not at play for these dopami-
nergic responses. Except for the studies that confirm that dopamine neurons encode 
temporal difference reward prediction errors, temporal difference reinforcement 
learning models are not tested nor can be tested given the design of the reported 
experiments. Based on the data and results reported in such studies, temporal differ-
ence reinforcement learning cannot be ruled out. It may be that the reported dopa-
mine responses are encoding temporal difference reward prediction errors in each of 
these cases but the experiments are not designed in a modeling-friendly manner, or 
that the ‘receptive field’ of the dopamine neuron responses under investigation may 
be tuned to a different objective function.

The foundational work in attempting to build a computational hypothesis about 
the generation of affective dynamics from reinforcement learning algorithms by 
Xiang, Rutledge, and Eldar and colleagues (Xiang et  al., 2013; Rutledge et  al., 
2014; Eldar & Niv, 2015) exposes the core role of reward prediction errors (presum-
ably encoded by dopamine neuron activity) in dynamically modulating subjective 
feelings and mood. However, the models that link reward prediction errors to 
dynamic changes in happiness or mood do not provide an obvious mechanistic 
account for how these signals may be integrated in the brain, specifically in pro-
cesses that lead to the generation of subjective feelings.

In the case of the subjective happiness model (Rutledge et al., 2014), the model 
demonstrates that recent expected value estimates and reward prediction errors are 
correlated with changes in subjective ratings. The non-linear model that they pro-
vide is descriptive in the relationship between the role of value estimates and predic-
tion errors about these expected reward values. Notably, these model terms are 
shown to correspond to activity in regions of the brain known to track these signals 
(independent of their connection to subjective ratings), and the insula is demon-
strated to become active during the introspective report. Xiang et al. also implicate 
the striatum, orbital frontal cortex and insula (Xiang et al., 2013). These findings are 
an important first step in connecting neural computations and subjective experience 
but do not yield a clear computational hypothesis about the neural mechanisms that 
implement the integration of these signals into a subjective experience. Likewise, 
Eldar and Niv’s work (Eldar & Niv, 2015) clearly demonstrates the two-way inter-
action of immediately signaled reward prediction errors and a longer-term impact of 
mood-related computations and the impact of these interacting signals on subjective 
ratings. But, the models developed to account for these changes do not clearly indi-
cate how the brain might encode such calculations.
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We believe that the joint demonstrations that dopamine neurons encode temporal 
difference reward prediction errors and that humans and non-human model organ-
isms use this signal to guide value guided behavior provides a solid foundation to 
build computational hypotheses about how the brain generates dynamically chang-
ing subjective experiences. However, to fully capitalize on this foundation, we must 
seek to explain disparate findings about potential alternative roles for dopamine 
neuron signals while building upon our current best theories about the connection 
between dopamine neuron signals and behavioral control (Montague et al., 1996; 
Schultz et al., 1997; Montague et al., 2004; Glimcher, 2011).

12.3 � Extending Temporal Difference Reinforcement 
Learning as a Functional Motif That Underlies 
Affective Dynamics: Valence Partitioned 
Reinforcement Learning

Temporal difference reinforcement learning algorithms were conceived to answer 
the problem of how an agent might learn about the value of different states in order 
to choose states that maximize ‘reward’ (Sutton & Barto, 1998). The computer 
agents implementing these algorithms obviously do not experience subjective 
reward; rather, the calculations aim to maximize a quantitative value defined by the 
algorithms’ objective function (s). A major result in this line of research was tempo-
ral difference reinforcement learning, which provides an optimal way to learn from 
experience and generate optimal estimates of the value of different states, given the 
specified objective function. Thus, given good estimates of the expected ‘reward’ 
value, an agent can implement a policy to choose in a specified manner. It is intui-
tive to connect this objective function to reward since we psychologically associate 
reward with pleasure and generally seek to maximize this in our own subjective 
lives. However, the learning algorithm could also be applied to generate optimal 
estimates for other values that an organism (or agent) may need to track, such as the 
expected harm value or the expected cost of various acts. Given optimally derived 
estimates of what states lead to more harm (now and into the future), policies can be 
implemented to act to avoid these states. Likewise, a nervous system may need to 
track the expected ‘information’ value, which could then be used in policies aimed 
at building models or explore versus exploit tradeoff decisions (e.g., when there is 
‘more than expected’ entropy in the environment a system may benefit from more 
exploration before exploiting based on its current estimates).

This line of thinking and theory-based proposals that hypothesize that the sero-
tonergic system may act as an opponent signal to reward prediction errors signaled 
by dopamine (Daw et al., 2002; Dayan & Huys, 2008) led us to hypothesize that the 
temporal difference learning algorithm may be used by other systems in the brain. 
We remain agnostic as to which systems in the brain may provide these kinds of 
signals but note that other (non-reward responsive) dopamine neurons and the 

K. T. Kishida and L. P. Sands



311

serotonin system are prime candidates. For now, we outline a simple extension of 
traditional temporal difference reinforcement learning (specifically Q-learning, 
Watkins, 1989; Watkins & Dayan, 1992) by which we partition valence into two 
independent dimensions: positive and negative (Montague et al., 2016).

12.3.1 � Classic Reward Versus Valence-Partitioned Temporal 
Difference Reinforcement Learning

First, we describe the classic (unidimensional valence) approach to temporal differ-
ence Q-learning. Then we extend this approach by one step and partition the valence 
of inputs such that experienced appetitive and aversive outcomes are handled by 
independent systems before being integrated at the level of an overall value esti-
mate. Again, the goal of Q-learning is to learn to act optimally (e.g., take actions in 
order to maximize reward) in uncertain environments based on past experience. 
Here, the Quality of an action (a) in a given state (s) is given by Q(s, a) rather than 
simply the value of a sate (as implied in Eqs. 12.1–12.4) and is updated by the famil-
iar temporal difference reward prediction error (δt):

	
Q s a Q s at t t t t, ,( ) ← ( ) + ∗α δ

	
(12.5)

α is again the learning rate that determines how quickly the agent updates its 
expected value for the state-action pair. The temporal difference reward prediction 
error in Q-learning can be calculated as follows:

	
δ γt t t

a
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Again, this should look very familiar to Eq.  12.4 above—now, r(st, at) is the 
reward collected at time t following the state-action pair that occurs at time t; γ is 
once again a discounting parameter that weights how forward looking the agent is. 
The value of the future state (st  +  1) depends on the available actions ( a) . Here, 
max




a
tQ s a+( )1,  represents that value of future states when the agent chooses the 

action a out of all possible actions a  that maximizes the expected state-action value 
in the immediate future state st + 1. Using these Q-value estimates, the agent will 
enact its choice policy. The softmax policy is one policy that allows agents to make 
choices that balance exploiting current Q-value estimates versus exploring alterna-
tive actions so that Q-value estimates can be improved through experience. The 
softmax equation looks like this:
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Equation (12.7) represents a Boltzmann distribution that specifies the probability 
P(st, at) that action at will be chosen in state st given the current estimates of Q(st, ai). 
at, i represents each of the possible actions, indexed by i while in state st. τ is a ‘tem-
perature’ parameter that parameterizes the exploration versus exploitation trade-off: 
higher temperature values increase the variability of choices (weighted by the 
expected value Q(∙)) while lower temperatures crystalize behavior such that actions 
with current maximum Q(∙) estimates are always chosen.

To overcome limitations of the ‘dopamine/TD-reward’-centric models, we 
extend the traditional unidimensional valent Q-learning framework by partitioning 
the ‘reward’ and ‘valuation system’ into valence-specific ‘Positive’ (appetitive) and 
‘Negative’ (aversive) systems. In this way, each system can be thought of as having 
a kind of receptive field for only appetitive or aversive inputs, respectively. We call 
this approach “Valence Partitioned” such that each system independently computes 
TD prediction errors and updates separate Q-values for positive (P) and negative (N) 
value estimates:

	
Q s a Q s aP

t t
P

t t
P

t
P, ,( ) ← ( ) + ∗α δ

	
(12.8)
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N

t t
N

t
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(12.9)

These “P” and “N” systems independently track the positive quality (QP(st, at)) 
and the negative quality (QN(st, at)) of state-action pairs, respectively. The P and N 
system Q-values are updated according to their own independent learning rates (αP, 
αN, respectively). They are updated by temporal difference prediction errors as in 
unidimensional Q-learning but do so only for their respective valence-specific 
receptive fields.

For the positive-valence P system, the appetitively oriented TD prediction error 
(δ t

P ) takes the form:
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where γP is the P system temporal discounting parameter directly analogous to the 
standard unidimensional Q-learning model temporal discounting parameter.

The negative-valence N system similarly encodes an aversively oriented TD pre-
diction error term (δ t

N ):
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(12.11)

where γN is the N system temporal discounting parameter. Notably, the P system 
only tracks appetitive outcomes (Eq. 12.10, outcomet > 0) and the N system only 
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tracks aversive outcomes (Eq. 12.11, outcomet < 0); otherwise, both systems ignore 
outcomes that are not within their receptive field (treats the opponent valence out-
come as though nothing happened, Eqs. (12.10) and (12.11), outcomet ≤ 0 or out-
comet ≥ 0, respectively).

Before the P and N systems’ estimates of appetitive and aversive value can be 
used to direct action, they must be integrated in some manner such that a policy can 
use these estimates to direct choice. A simple approach is to contrast them (though 
other schemes are possible):

	
Q s a Q s a Q s at t

P
t t

N
t t, , ,( ) ← ( ) − ( ) 	

(12.12)

Now the output of the integrated Q-value (Eq. 12.12) can be input in to the soft-
max policy equation (Eq. 12.6; or some other specified policy) and a decision about 
the best action can be made.

Temporal Difference Reinforcement Learning with valence partitioning serves 
three purposes here. One, as a hypothetical account for how a system that is an 
opponent, yet complementary, to dopaminergic reward prediction error signals 
might behave (Daw et al., 2002; Dayan & Huys, 2008; Montague et al., 2016). Two, 
to serve as a hypothesis to account for observed serotonergic signals in humans 
(Moran et al., 2018; Bang et al., 2020). And three, as a hypothetical example of how 
one might extend the concept of optimal control and explore the idea that temporal 
difference learning algorithms are a functional motif used by multiple systems in 
the nervous systems of organisms that express complex adaptive behavior and 
behavioral control. For example, one could extend this framework such that expec-
tations about the frequency of common versus rare signals could be optimally 
tracked and signaled as an ‘entropy’ prediction error that would alert the system to 
novel or rare signals or surprising changes in context that ought to be attended to 
and investigated (or avoided depending on the agent’s estimated value of new 
information).

Simultaneously recorded measurements of serotonin and dopamine release at 
sub-second temporal resolution in humans during decision-making is consistent 
with serotonin and dopamine acting as opponent signals (Kishida et  al., 2016; 
Moran et al., 2018; Bang et al., 2020). In each of these reports, the measured sero-
tonin responses are consistent with a temporal difference aversive prediction error 
signal and, in the case of Moran et al., 2018, are shown to anti-correlate with simul-
taneously measured dopamine prediction error signals that integrate reward predic-
tion errors and counterfactual prediction errors (Kishida et al., 2016; Moran et al., 
2018). Sub-second serotonin and dopamine fluctuations are also shown to anticipate 
actions of the participant, which may be interpreted as a signal related to behavioral 
control or a prediction error signal associated with anticipated outcomes—these are 
not necessarily mutually exclusive hypotheses.
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Fig. 12.3  Dynamic affect from valence partitioned reinforcement learning. (a) The international 
affective pictures system (IAPS) provides a widely utilized database of emotionally evocative 
images that have been rated by men and women for dimensions of pleasure and arousal (and domi-
nance) (Lang & Bradley, 2007). (b) Valence Partitioned Reinforcement Learning (VP-RL) largely 
leaves dopamine neurons’ relationship to positive valence (i.e., psychologically rewarding) stimuli 
intact; the main difference is that the inability of this system to track variable magnitude aversive 
outcomes is made explicit. (c) VP-RL posits that an additional independent system that runs in 
parallel but also uses TD-RL to track and estimate the expected value of aversive outcomes; we 
hypothesize that the serotonin system may act to track and signal aversive prediction errors (δt

N), 
but other neuromodulatory systems can be considered as alternative hypotheses. Positive system 
prediction errors (δt

P), hypothesized to be delivered by dopamine are well suited to drive appetitive 
motivational responses as cues (e.g., images) that are predictive of positive outcomes would elicit 
anticipated value driven prediction errors. In a similar manner, negative system prediction errors 
(δt

N) would be suited to drive defensive motivational responses. Interestingly, the independence of 
these systems in the VP-RL framework suggests that these signals can be integrated or contrasted 
by receptive systems that may in turn drive increases in arousal or enhance the discrimination of 
states and actions that result in complex valence superposition, respectively

Partitioning incoming appetitive (positive, P) and aversive (negative, N) signals 
would not be a challenge for biological systems and doing so would increase the 
dynamic range of the spectrum of valence interpretations. Behavioral results from 
human participants subjectively rating pictures for valence and arousal suggest that 
appetitive and aversive stimuli may not be unidimensional but rather independent 
dimensions that may be integrated in the behavioral report (Fig. 12.3, Lang et al. 
2007). For example, separate P and N systems may send prediction error signals 
that are integrated downstream (P + N) or contrasted (P − N) depending on the 
neurotransmitters and receptors that carry and receive these signals, respectively 
(Montague et al., 2016). The neuroanatomy of the ascending valuation systems that 
include dopamine, serotonin, and norepinephrine neurons are prime candidates for 
this kind of diverse signaling (Fig. 12.4, Schiff & Plum, 2000; Doya, 2000).
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Fig. 12.4  Dynamic Affective Core. The original dynamic core hypothesis (Edelman & Tononi, 
2000), similar to other neuroscientific theories of consciousness, is largely (a) corticothalamic 
centric. We propose the dynamic affective core, which explicitly incorporates the (b) ascending 
valuation systems (e.g., dopamine, serotonin, norepinephrine, and histamine)). Input from all over 
the brain is able to drive and modulate these systems wherein they provide critical neuromodula-
tory feedback. For example, (c) In the mouse, where detailed neuroanatomical tracing can be per-
formed with the help of viral and sophisticated genetic tools, dopamine and serotonin neurons are 
observed to receive monosynaptic input from and send directly back signals to the amygdala, 
hypothalamus, thalamus, insula, cingulate cortex, striatum and many other cortical and subcortical 
structures (Ogawa et al., 2014). (a) Schematic of corticocortical and thalamocortical connections 
that comprise the core structures that dynamically encode and represent the contents and spatio-
temporal context of conscious experience (images adapted from Edelman & Tononi, 2000). (b) 
Schematic of ascending projections of dopamine, serotonin, norepinephrine, and histamine neu-
rons from the midbrain and brainstem (images adapted from Fuchs & Flügge, 2004). (c) Schematic 
of monosynaptic inputs to dopamine (ventral tegmental area, VTA and substantia pars compacta. 
SNc) and serotonin (median raphe, MR and dorsal raphe, DR) neurons in the mouse brain (images 
adapted from Ogawa et al., 2014). Neural structures that project to the dopamine and serotonin 
neurons in their respective nuclei are color coded according to their projection target. VTA blue; 
SNc red; MR yellow; and DR green. Pie charts indicate the proportion of neurons in that region that 
project to each of the respective nuclei

12.4 � Subjective Experience and the ‘Dynamic Affective 
Core’ Hypothesis

“Subjective feelings” are at the core of what humans try to describe when we com-
municate our experience. The contents (i.e., objects and spatio-temporal context) of 
our experience are part of the description, but it is the subjective feeling bound to 
those elements that drive our descriptions. Fundamentally, these phenomenal expe-
riences are integral to how we perceive, navigate, and communicate about the world 
and consist not only of the informative content of the environmental context we find 
ourselves in, but critically the subjective feelings associated with it. “How we feel” 
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from moment to moment impacts our mood and behavior (and vice versa) and likely 
involves an extensive network of dynamically interacting neural structures. Edelman 
and Tononi proposed the dynamic core as a hypothesis about how neural activity 
may generate conscious experiences (Tononi & Edelman, 1998; Edelman & Tononi, 
2000). The dynamic core hypothesis, as originally stated (Edelman & Tononi, 2000), 
has two fundamental parts:

	1.	 “A group of neurons can contribute directly to conscious experience only if it is 
part of a distributed functional cluster that, through reentrant interactions in the 
thalamocortical system, achieves high integration in hundreds of milliseconds.”

	2.	 “To sustain conscious experience, it is essential that this functional cluster be 
highly differentiated, as indicated by high values of complexity.”

In this hypothesis, cortical-cortical and thalamo-cortical loops are fundamental 
to the ‘dynamic core’; timing is key, as is reverberant activity such that there is 
wide-spread activity (throughout the cortex) that is tightly coupled in a brief win-
dow of time. Further, not just any coupled activity will do: they propose a complex-
ity metric that is aimed at identifying specific levels of information integration and 
differentiation. This notion has evolved into the Integrated Information Theory of 
consciousness with phi (Φ), a measure of information integration, central to the 
theory (Tononi et al., 2016 for a recent review). In the original formulation of the 
dynamic core hypothesis, the ascending valuation systems that include dopaminer-
gic, serotonergic, norepinephrinergic, and cholinergic neurons (Schiff & Plum, 
2000) is noted for their likely role in dynamically modulating behavior in response 
to “external stimuli, learning and memory, emotion, and cognition” and in coupling 
“value and emotions” to conscious experience (Edelman & Tononi, 2000). Within 
the framework of the dynamic core hypothesis, it seems that the role of the ascend-
ing valuation systems is simply to shape the cortical networks based on the organ-
ism’s life experience (learning) and to drive behavioral dynamics in response to 
subjective emotional experience.

While we find the dynamic core hypothesis useful in depicting the notion of a 
momentary, widely distributed functional cluster of neural activity that is necessary 
for representing the contents of a conscious experience, we believe it lacks a critical 
component of subjective phenomenal experience—the emotional subjective affect 
that colors what would otherwise simply be a dry representation of integrated infor-
mation collected by the sensory systems.

The original dynamic core hypothesis (Edelman & Tononi, 2000) does not 
include an account for the central role dopaminergic signals likely play in driving 
dynamic changes in subjective experience. Though the role dopamine neurons play 
in signaling reward prediction errors was demonstrated at the time (Montague et al., 
1996; Edelman & Tononi, 2000), those findings were not discussed. Since then, the 
dynamic core hypothesis seems to have evolved into Integrated Information Theory 
where the main focus has been on developing a theoretic model that quantifies the 
structure of information integration that would support consciousness—whether it 
be biological or otherwise—and less emphasis has been placed on determining how 
any such a dynamic core may generate conscious experience.
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12.4.1 � The Dynamic Affective Core Hypothesis

We propose to update the dynamic core hypothesis to include the ascending valuation 
systems and suggest that emotional circuitry and ascending neuromodulatory systems 
are critical components of a dynamic affective core. We hypothesize that this dynamic 
affective core (Fig. 12.4) is necessary for human subjective experience. In contrast to 
the dynamic core hypothesis, we view the neuromodulatory systems (i.e., dopaminer-
gic, serotoninergic, adrenergic, cholinergic, and histaminergic neurons) as a necessary 
component that was excluded from the original dynamic core description. Also, in 
contrast to the dynamic core, we hypothesize that emotional circuitry is a necessary 
element of the dynamic affective core that generates human subjective experience, 
and that together the emotional circuitry and ascending neuromodulatory systems 
engenders the dynamic core content with the “what it is like…” aspects of subjective 
feelings and qualitative conscious experience. We believe that to make progress in 
understanding the nature of the dynamic affective core and how it generates con-
sciousness, computationally constrained hypotheses will be necessary and will include 
the foundational work connecting temporal difference learning algorithms to dopa-
mine neurons and their cortical and subcortical targets.

12.4.2 � Experimental Support for the Dynamic Affective 
Core Hypothesis

Much research has been done to elucidate neural structures that support neural rep-
resentations of emotion-related behavior and subjective phenomenal experience 
(LeDoux, 2000; Lang & Bradley, 2010). These structures (e.g., amygdala, insula, 
striatum, and orbital frontal/ventromedial prefrontal cortex) and their dynamic 
interaction are hypothesized to be critical elements in a dynamic affective core that 
supports a dynamically evolving representation of continuously evolving emotional 
states that are in turn bound to dynamically evolving contextual sensory states. To 
determine the composition of these dynamic systems and their behavior in regard to 
affective dynamics, we turn again to computational approaches to human 
neuroscience.

Above, we reviewed recent research that connects reward prediction errors (puta-
tively encoded by dopamine neuron activity) with dynamic changes in subjective 
feelings about social gestures (Xiang et al., 2013), subjective well-being (Rutledge 
et al., 2014) and mood (Eldar & Niv, 2015). It has also been shown that reward 
prediction errors are associated with sub-second fluctuations in dopamine release 
(Kishida et al., 2016; Moran et al., 2018) and aversive prediction errors are associ-
ated with sub-second serotonin release (Moran et al., 2018) in the striatum, both of 
which are consistent with the VPRL hypothesis described above. In both of these 
studies, dopamine and serotonin fluctuated in ways that were consistent with how 
participants’ feelings ought to have been modulated given the reward prediction 
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error and counterfactual error signals present in the game. All together, these results 
are consistent with the dynamic affective core hypothesis, though significant gaps 
remain. Direct dopamine and serotonin measurements with the temporal resolution 
required are currently restricted to the striatum, though technology appears to be on 
the horizon that may overcome this challenge and permit real-time neurochemical 
detection throughout the human brain (Montague & Kishida, 2018). Dopamine and 
serotonin (and norepinephrine) neurons project from the midbrain and brainstem 
throughout the human brain (Fig. 12.4), and whole-brain connections to the dopa-
mine and serotonin neurons have been demonstrated (Watabe-Uchida et al., 2012; 
Ogawa et al., 2014). Thus, through direct and indirect pathways, dopamine neurons 
likely broadcast prediction error signals throughout the brain. Consistent with this 
idea, one ought to see evidence of reward prediction errors modulating whole net-
works, which would be consistent with dopamine neurons providing distributed 
parallel signals capable of shaping and also driving the synchronous activity of a 
dynamic affective core.

12.4.3 � Reward Prediction Errors Modulate Task Specific 
Dynamic Cores

A few studies have begun to look for evidence that reward prediction errors modu-
late whole functional networks. These studies were performed investigating the role 
of reward prediction errors in instrumental reinforcement learning or associative 
learning tasks and did not probe associated subjective experiences. Nonetheless, 
these studies do demonstrate evidence that reward prediction errors modulate net-
work-level dynamics consistent with task specific dynamic cores.

Using an associative learning task with BOLD imaging, den Ouden and col-
leagues demonstrated that prediction errors in the striatum modulate cortical cou-
pling (den Ouden et al., 2010). In this task, participants were required to generate 
motor responses indicating whether an auditory tone (high or low) was followed by 
one of two visual stimuli (human faces or houses). The probability of each tone 
being followed by each visual stimulus was changed over time. Using a Bayesian 
learner model, expectations (i.e., probability that a visual stimulus would occur) 
were estimated throughout the task, and violations of those expectations generated 
prediction errors that parametrically modulated brain activity measured using 
fMRI. Visual stimulus non-specific prediction error signals were observed in the 
putamen and premotor cortex, whereas activity in the fusiform face area (FFA) was 
found to correlate with the probability of observing human face stimuli, and activity 
in the parahippocampal place area (PPA) correlated with the probability of observ-
ing houses. As such, responses in the FFA and PPA to faces and houses, respec-
tively, appeared to be a function of how surprising each stimulus was, indicating 
that FFA and PPA regional activity is modulated by prediction errors over expecta-
tions of stimulus occurrence. Notably, nonlinear dynamic causal modeling was 
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consistent with the hypothesis that prediction error signals in the putamen (a site of 
significant dopaminergic innervation) served to modulate functional connections 
from FFA and PPA to the dorsal premotor cortex. In all, these results demonstrated 
that regional activity in visual cortex is modulated by learning-relevant prediction 
error signals and that inter-regional functional connectivity within a visuomotor 
network (i.e., a task specific dynamic core) is modulated by prediction error signals 
emanating from human striatum. These findings are in line with a previous report 
(den Ouden et al., 2009) which used dynamic causal modeling to determine that 
learning-induced activity in visual cortex reflecting prediction error signals was 
mirrored by alterations in inter-regional functional connectivity between auditory 
and visual cortices, with auditory-to-visual top-down connectivity positively corre-
lating with the prediction error-dependent regional activity in visual cortex.

BOLD activity in human striatum has also been shown to dynamically correlate 
with distributed brain regions in visual, motor, and prefrontal cortices in a manner 
consistent with orchestrating valence-processing mechanisms required for rein-
forcement learning (Gerrarty et al., 2018). In an fMRI-scanned instrumental condi-
tioning task, participants learned which of two cues was paired with a visual 
stimulus. The pairings were associated probabilistically, and participants were given 
feedback (i.e., showing the words “correct” or “incorrect”) at the end of each trial. 
Choice behavior on this task was modeled such that reward prediction errors could 
be calculated during learning and these parametric responses could then be used to 
investigate changes in dynamic network connectivity using sophisticated computa-
tional tools for quantifying network dynamics (Medaglia et al., 2015). In particular, 
Gerrarty and colleagues were interested in investigating how a measure of “striatal 
flexibility” changes during reinforcement learning. Here, flexibility is a measure of 
dynamic network activity that indicates the degree to which a brain region function-
ally interacts with different brain networks over time (Bassett et  al., 2011). The 
results demonstrated that striatal flexibility was associated with learning of cue-
stimulus associations throughout the task, negatively correlated with model-derived 
individual-differences in learning rates, and positively correlated with individual 
choice temperature parameter values. Moreover, the increased striatal flexibility 
association with learning was determined to be implemented by increased func-
tional coupling between nucleus accumbens and putamen with regions of visual 
cortex and by functional coupling between putamen and orbitofrontal and ventro-
medial prefrontal cortices. Together, these results suggest that regions that are 
highly innervated by dopaminergic inputs (e.g., nucleus accumbens, putamen, and 
orbitofrontal and ventromedial prefrontal cortices) are co-driven during instrumen-
tal tasks with positively- and negatively-valent feedback. This kind of dynamic net-
work activity is consistent with our dynamic affective core hypothesis.

These studies demonstrate how the influence of putative dopaminergic reward 
prediction error signals may be investigated in non-invasive studies. However, direct 
measurement will be needed to determine whether these changes in network level 
representations are driven directly by dopaminergic fluctuations at key nodes or indi-
rectly through the influence of nodes one or more synapses away within the dynamic 
affect core. These studies also did not investigate associated subjective experiences 
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throughout these tasks, and future work will require experiments aimed at directly 
investigating the interaction of these network level dynamics and moment-to-moment 
changes in affect. One would expect, in these studies, that insula, amygdala, orbital 
frontal/ventromedial prefrontal cortex, and the striatum would be engaged as specific 
components of the dynamic affective core based on their previously demonstrated 
role in emotion and value-based decision-making behavior.

Other aspects of the dynamic affective core hypothesis that are not addressed in 
these studies is the relative lack in temporal precision and electrochemical specific-
ity that constrains interpretation of BOLD imaging data. These studies clearly 
implicate regions of interest for further investigation, but BOLD imaging does not 
provide the temporal resolution required to observe the hypothesized affective core 
temporal dynamics of hundreds of milliseconds or less. Nor does fMRI provide the 
electrochemical specificity to discriminate the sources of neural activity that drive 
the blood-oxygen-level-dependent response (e.g., synaptic field potentials, somatic 
action potentials, or fast synaptic neurochemical signals). Studies utilizing MEG or 
intracranial measurements of human brain activity during conscious subjective 
experience may provide data with the requisite spatiotemporal resolution and, in the 
case of intracranial human electrochemical measurements (Montague & Kishida, 
2018), the requisite neurochemical specificity to determine the necessary and suf-
ficient components and behavior of the dynamic affective core.

12.5 � Summary and Future Directions

Approaches using computational neuroscience to investigate affective dynamics are 
beginning to suggest methods that will enable objective investigations about the 
hardest problem in consciousness research. The subjective phenomenal experience 
of “what it is like…” to be human is not just about the contents (i.e., the objects and 
spatiotemporal context) of our experience. Rather, the subjective feelings or values 
that are also bound to these contents are what make qualitative phenomenal experi-
ence (i.e., qualia) unique to the experiencing individual. These values are likely 
learned (or at least modulated) through experience, become associated with states 
and actions that result from past states and actions, and become associated with 
states and actions that are predictive of future experiences as we move through 
space and time. Dynamic algorithms derived from artificial intelligence research 
(i.e., temporal difference reinforcement learning) that learn and change based on 
experience appear to be embodied by key neurobiological substrates and have begun 
to provide critical insight into how human nervous systems may encode subjective 
value. These models, in combination with computational approaches to characterize 
complex dynamic network structure, are beginning to permit the expression of 
quantitative hypotheses about the neural architecture that supports conscious sub-
jective experience in humans. This, in turn, provides guidance regarding the kinds 
of experiments required for advances in consciousness and affective dynamics 
research.
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We introduce the dynamic affective core hypothesis. It is different from the origi-
nal ‘dynamic core’ hypothesis as stated by Edelman and Tononi (2000) and previ-
ous notions of a psychological affective core, which are not necessarily tied to the 
neural structure and dynamics that are central to the dynamic affective core that we 
describe. The dynamic affective core departs from the original notion of the dynamic 
core by specifically requiring the ascending valuation systems (i.e., dopaminergic, 
serotonergic, noradrenergic, and histaminergic neurons) and emotional circuitry 
(e.g., amygdala, insula, anterior cingulate cortex, and orbital frontal cortex) as nec-
essary elements. The interaction of these systems is hypothesized to be fundamental 
to the binding of subjective feeling and affective value to the contents (i.e., objects 
and spatiotemporal context) represented in the cortico-thalamic systems of focus in 
the original dynamic core hypothesis. In this way, the dynamic affective core 
hypothesis may serve as a bridge connecting cognition, emotion, and the impact of 
‘surprises’ on individuals emotional experience (Mellers et  al., 2013). In the 
dynamic affective core hypothesis, we retain the notion of the functional cluster and 
timing aspects of the original dynamic core hypothesis; however, we posit that the 
role of the ascending valuation systems (like the distributed dopaminergic signal) is 
necessary for not only the selection of which functional clusters are active but also 
for creating and maintaining functional clusters that bind subjective value and emo-
tion to the contents and context that activity in the cortico-thalamocortical networks 
encode. The timing of dopamine neuron activity (Fig.  12.1) and modulations in 
extracellular dopamine levels (Fig. 12.2) are consistent with the requisite timing to 
achieve “high integration in hundreds of milliseconds”. Also, the anatomical projec-
tions of dopamine (and other ascending valuation systems) neurons (Fig.  12.4) 
make plausible parallel simultaneous signaling to cortical, thalamic, and sub-
cortical structures which would allow adaptive formation of new functional clusters 
or dynamic modulation of existing ones. The dynamic affective core hypothesis is 
also significantly different from IIT (Tononi et al., 2016), which is primarily con-
cerned with quantifying dynamic network structure (the amount of information 
integration and differentiation in a dynamic network) that might support conscious 
experience. The dynamic affective core is also distinct from a global workspace 
theory (Baars, 1997) or a global neuronal workspace as proposed by Dehaene and 
Naccache, 2001. Chiefly, like the dynamic core and the global neuronal workspace 
hypotheses, the dynamic affective core is grounded by neurobiological data; how-
ever, unlike the dynamic affective core hypothesis, both the dynamic core and the 
global neuronal workspace hypotheses appear to be extremely cortical-
thalamocortical centric. Some of the functional attributes of the ‘workspace neu-
rons’ in the global neuronal workspace appear consistent with the long range and 
diffuse projections of dopamine, serotonin, and norepinephrine neurons, but to our 
knowledge these neurons are not explicitly discussed as likely candidates (Dehaene 
and Naccache, 2001); further, dopamine, serotonin and norepinephrine neurons 
appear to have functional attributes that either go beyond the role of ‘workspace 
neurons’ to the point that they may be inconsistent with this notion. Our dynamic 
affective core hypothesis does not reject the critical role of cortical-thalamocortical 
networks and reentrant activity but adds the requirement that the dopaminergic 
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system (and other valuation systems) be considered as critical components that co-
activate, shape, and coordinate network activity underlying affective dynamics and 
associated subjective feelings.

The role (specifically) of the dopaminergic system in the dynamic affective core 
implies a role for temporal difference learning algorithms and dynamic modulation 
of the dynamic affective core though the delivery and representation of the compu-
tational signals described in this framework. We want to make explicit this connec-
tion in our hypothesis. The dynamic affective core hypothesis requires computational 
depictions of dynamic network structure in order to move the work forward. We 
propose a first step in extending the dynamic affective computational framework 
with our valence-partitioned reinforcement learning (VPRL) model. VPRL 
describes one way that the dynamic affective core may be modulated independently 
by positive and negative input, which are expected to be able to also occur indepen-
dently in nature. VPRL prediction error signals about reward and punishment are 
consistent with simultaneously recorded sub-second data of dopamine and sero-
tonin in humans (Kishida et al., 2016; Moran et al., 2018) and with the non-linear 
relationship of pleasure and arousal in consciously rated IAPS images (Fig. 12.3). 
The neurocomputational framework put forward in the dynamic affective core 
hypothesis may also be used to investigate the neurobiology underlying emotion 
behavior observed in reaction to ‘surprising’ information in real world settings 
(Mellers et al., 1997, 2013; Bhatia et al., 2019). At the behavioral level, errors in 
predicted outcomes seem to drive the strongest emotional reactions (Mellers et al., 
1997; Villano et al., 2020). Other ideas that are likely to inform models about sub-
jective experience and the neurobiological dynamics that support it are likely to 
come from research exploring the role of various reinforcement learning model 
elements like variations in model-based implementations or off-policy learning 
strategies (Doya, 2000; Montague et al., 2006, 2016; Bach & Dayan, 2017; Huys & 
Renz, 2017) and how they interact with dynamic functional networks. To the latter, 
we argue for the use of computational models and descriptions of network architec-
ture (Bassett et al., 2011; Medaglia et al., 2015). As research connecting these areas 
emerges, we speculate the need for mathematically depicted network structures to 
describe the details of the structure and function of the dynamic affective core and 
its relationship to conscious subjective experience.

We focus much of our review on the neurobiology of dopaminergic signals and 
their connection to temporal difference reward prediction errors. These neurons and 
their impact on behavioral control and learning have a rich literature that is grounded 
on the initial discovery of Montague, Dayan, and Sejkowski (1996) that dopamine 
neurons encode temporal difference reward prediction errors. Other systems that are 
certainly involved in dynamic affective processing and consciousness include the 
serotonergic, noradrenergic, and cholinergic and histaminergic systems (Schiff & 
Plum, 2000). Attempts to model these other systems has yet to yield a clear picture, 
but current evidence strongly suggests a role for serotonin in aversive processing 
(Dayan & Huys, 2008; Cools et al., 2011; Rygula et al., 2015; Moran et al., 2018; 
Bang et al., 2020; Doya et al., 2021) and norepinephrine and cholinergic signals in 
arousal and attention (Schiff & Plum, 2000). Our valence-partitioned reinforcement 
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learning model is consistent with dopamine and serotonin acting as opponent 
(orthogonal) systems that signal appetitive and aversive prediction errors, respec-
tively and independently (also see Montague et al., 2016). Moran and colleagues 
observed that dopamine and serotonin release appear to encode these signals in the 
striatum simultaneously and in a colocalized manner in humans, which suggests 
that downstream dopamine and serotonin receptors may integrate or contrast these 
signals to give rise to a spectrum of neural interpretations. Notably, an integration of 
appetitive and aversive prediction errors is consistent with a saliency signal that may 
directly or indirectly engage arousal systems and direct attention towards relevant 
environmental features; contrasting these signals would increase the signal to noise 
in systems gauging whether to increase or decrease appetitive versus aversive repre-
sentations (Montague et al., 2016). Clearly, more work is needed to elucidate what 
dopamine, serotonin, norepinephrine, acetylcholine, and histamine release encode 
in the human brain and what role these signals play in affecting the hypothesized 
dynamic affective core.

We hope it is apparent that we should no longer ignore the investigation of 
behavior directly associated with subjective human experience (i.e., self-report). 
Quantifying subjective experience is challenging. Combining questions like, “How 
much pain do you feel?” with a visual analogue scale is the gold standard for assess-
ing pain in clinical settings and really the only way to directly capture how a person 
feels in the moment. What is good about the visual analogue scale (and related 
measures) is that it reliably assesses subjective feeling and is a semi-quantitative 
and reproducible choice behavior. The latter points allow researchers to integrate 
subjective self-report ratings with the computational models (e.g., reinforcement 
learning framework) and model the answers as value-based decisions dependent on 
states and available actions. This approach, in combination with computational 
depictions of network structure and dynamics, will allow the field to translate 
reports about subjective feelings into an empirical and mathematical framework 
capable of precise hypothesis testing (i.e., computational modeling) analogous to 
what several groups have begun to do (Xiang et al., 2013; Rutledge et al., 2014; 
Eldar & Niv, 2015).

We propose the dynamic affective core hypothesis to be tested within the domain 
of computational human neuroscience to tackle the ‘hard problem’ of conscious-
ness. The ‘hard problem’ of consciousness originally stated by Chalmers (1996) has 
stood as a major barrier in scientific progress in consciousness research and the 
subjective aspect of affective dynamics. We take the position that prescientific 
descriptions of phenomena always appear as ‘hard problems’ given that the state of 
scientific knowledge at the time of such distinctions are not up to the task of making 
the problem appear ‘easy’ (Churchland, 2005). We are in a time where there is so 
much neuroscientific knowledge that it may seem inconceivable that there are natu-
ral neural phenomena yet to be unraveled, but human consciousness stands as a 
definitive example. Our challenge is to convert consciousness research from a philo-
sophically hard problem as it seems to be to one that has some scientific traction. 
This can only be achieved if we tackle it as an ‘observable’ phenomenon even if 
such observations are initially reliant on simple behavioral reports. The way through 
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will be to constrain our hypotheses with mathematical models that relate brain and 
behavior such that errors and assumptions can be clearly observed and corrected. 
We introduce the dynamic affective core hypothesis as an idea that can take us fur-
ther down this path and look to an integration of the computational neuroscience of 
decision-making and network dynamics to lead the way forward.
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