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Abstract

The field of tissue engineering and regenera-
tive medicine is able to depict the mechanism
of cardiac repair and development of cardiac
function as well, in order to reveal findings to
new therapeutic designs for clinical treatment.
The foremost approach of this scientific field
is the fabrication of scaffolds, which contain
cells that can be used as cardiac grafts in the
body, to have the preferred recovery. Cardiac
tissue engineering has not been completely
organized for routine clinical usages. Hence,
engineering innovations hold promise to char-
acter research and treatment options in the
years to come. Our group has extensive
experience with regard to the structure of the
heart, which makes us to our decision to
continue with the preparation of heart, with
the aim of developing a new ECM scaffold.
Herein, we aim to assess the state-of-the-art
fabrication methods, advances in decellular-
ization and recellularization techniques. We

also highlight the major achievements toward
the production of a bioengineered heart
obtained from decellularization and recellu-
larization techniques.
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5.1 History

Heart is among the organs with least regenerative
capacity, and cardiomyocytes (CMs) are suscep-
tible to damage by several factors, such as
necrosis, apoptosis, and oncosis (or ischemic cell
death), culminating in heart failure (Heallen and
Martin 2018; Mohamed et al. 2018). Myocardial
infarction causes scar tissue, regions where CMs
are replaced with fibrillar collagen and/or
fibroblast-like cells (Frangogiannis 2016).
About 38 million people globally were affected
by heart failure; as of 2017 (Tzahor and Poss
2017), about 6.5 million of those are in the USA
(Benjamin et al. 2017). According to World
Health Organization (WHO), cardiovascular dis-
eases are still the leading cause of mortality with a
rate of 23 million new cases diagnosed universal
every year (Bui et al. 2011). Such diseases can
result in irreversible damages to the heart tissue
that usually leads to heart failure, with a decrease
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in contractile capacity below a critical threshold
(Chaudhry 2019). Therefore, the heart is one of
the most essential subjects for tissue engineering
research. Currently, despite abundant efforts to
progress options for cardiac damage treatment,
there is no effective therapy for heart failure,
except heart transplantation; however, due to the
invasive nature of the surgery and the shortage of
organ donors, it is appropriate for a limited cohort
of patients. Besides, impediments of state-of-the-
art immunotherapeutic drugs and high risk of
rejection limit the option of healing.

The tissue engineering and regenerative
medicine techniques show enormous prospective
as alternative options that produce constructs for
repairing or replacing cardiovascular tissues
(Kharaziha et al. 2016; Cutts et al. 2015; Tijore
et al. 2018).

In this technology, we will focus on four
important issues of (1) scaffold material selec-
tion; (2) scaffold material production; (3) cell
selection; and (4) cell culture. Fiber production
methods, such as electrospinning (Gabriel et al.
2017; Rockwood et al. 2008) and rotary-jet
spinning, (Cardoso et al. 2014) as well as cell
sheet engineering (Shimizu et al. 2003), are
among the techniques that have been investigated
in order to create grafts to be implanted in the
heart. Besides that, the most efficient and recent
approach is decellularization, aiming to obtain
three-dimensional structures that not only may
regenerate the existing heart, but be used to
create an entire bioartificial organ. Firstly, it is
essential to identify the best scaffold for cardiac
regeneration. Some desired properties are adjus-
table degradation rates, good porosity, biocom-
patibility, hemocompatibility, and good cell
adhesion, mechanical and elastic properties
compatible with the natural heart (McDevitt et al.
2003; Baheiraei et al. 2014). The second most
important point is to select the most promising
technique to construct the scaffold in which cells
are going to be seeded before the implantation. It
has been considered that ischemic or damaged
heart can be repaired by using decellularized
scaffolds as an appropriate modality to deliver
cardiac stem cells to the tissue, create a func-
tional tissue substitute, and restore cardiac

function after MI. However, the application of an
appropriate extracellular matrix (ECM) as an
appropriate suitable microenvironment for cells
should be explored in order to overcome proba-
ble complications after transplantation and also
to increase cell survival.

This chapter will outline the progress to date
recorded for approaches of converse the heart as
a subject for tissue engineering paradigm, discuss
about the recent developments made in the fields
of cardiac tissue engineering and stem cells, as
well as emphasize the challenges which we may
confront with when applying such constructs in a
clinical setting.

In the next sections of this chapter, several
techniques of decellularization and recellulariza-
tion approaches will be introduced and discussed
followed by methods for scaffold fabrication.
Updates of upcoming and ongoing heart tissue
engineering applications will be then broadly
covered.

5.2 Materials and Methods

Decellularization is a process that consists of
removing all cells from tissues or organs while
preserving the extra cellular matrix (ECM) struc-
ture via different physical, chemical and enzy-
matic methods. Triton X-100, as a nonionic
detergent, may affect lipid–lipid and lipid–pro-
tein interactions. However, this detergent can
keep the proteins within an organ in a functional
conformation (Wang et al. 2017). Anionic
detergents including sodium deoxycholate
(SDC) and sodium dodecyl sulfate (SDS) can be
also used for the complete removal of nuclear
remnants and cytoplasmic proteins. This deter-
gent preserves the structure of the natural tissue
while reducing GAG concentration and collagen
integrity (Sabetkish et al. 2015). Enzyme such
nucleases (DNases or RNases) are also able to
reduce nucleotides after cell lysis (Moore et al.
1997). Ethylenediaminetetraacetic acid (EDTA)
and ethylene glycol tetraacetic acid (EGTA) are
among the non-enzymatic agents, which are able
to detach cells from ECM (O’Connor Mooney
et al. 2016). It has been demonstrated that the
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application of trypsin results in damage to the
ECM components after decellularization process
(Grauss et al. 2003).

The ECM is composed of functional and
structural proteins such as collagen, elastin,
laminin, fibronectin, proteoglycans and many
other glycoproteins which should be preserved
during the decellularization process (Laurie et al.
1989; Young et al. 2019). There are two kinds of
processes containing static- and perfusion-based
decellularization and recellularization methods.
However, perfusion-based technique has been
shown to be more efficient in maintaining the
three-dimensional structure of tissues/organs
while removing the cells with a more even dis-
tribution of decellularization agents (Tapias and
Ott 2014; Keane et al. 2015). This perfusion-
based technique has been the most commonly
applied for whole heart bioengineering, owing in
part to the anatomical complexity of the macro-
and microanatomy of the heart organ, through
the decellularization approach.

The ECM plays a crucial role in normal car-
diac functioning and homeostasis and cellular
behavior. Ideally, the scaffolds should faultlessly
mimic natural cardiac ECM structures and pre-
sent a physiological microenvironment for cells.
The cardiac ECM consists of a compound
arrangement of proteins, of which three-
dimensional scaffolds have been created from
decellularized cardiac ECM. Natural scaffolds
play a crucial role in anchoring cells to produce
functional tissues (Bhutani et al. 2018; Shevach
et al. 2014; Martinelli et al. 2018; Huang et al.
2019). These decellularized scaffolds serve as a
framework material for proliferation and differ-
entiation of the desired tissue. Carrier substances
facilitate cells to fabricate the ECM that holds
growth factors in cardiac remodeling and reno-
vate (Dolan et al. 2019; Neto et al. 2019;
Mewhort et al. 2017). In the same way, scaffolds
as porous matrices form a biomimetic ECM
which promotes cell adhesion and differentiation,
as well as 3D organotypic cultures. These scaf-
folds also act as a substitute for missing
tissues/organs in the body (Liu et al. 2019; Wade
et al. 2015). Typically, biomaterials for tissue
engineering are synthesized or modified from

primary natural materials. These biomaterials
include polyglycolic acid (PGA) (Bruder et al.
2018), poly(L)-lactic acid (PLA) (Muniyandi
et al. 2020; Tomecka et al. 2017; Flaig et al.
2020), poly(DL) glycolate (PLGA) (Martins
et al. 2018; Bertuoli et al. 2019). Collagens,
alginate, chitosan, fibrin and hyaluronic acids are
among the natural biomaterials.

In cell sheet engineering, temperature-
responsive polymer surfaces are used to facili-
tate the controlled release of cell monolayers;
free-floating sheet of cohesive cells to be placed
onto the epicardium (Haraguchi et al. 2014). This
scaffold-free technology can be applied to all cell
types that are competent of shaping cardiomy-
ocytes for contractile maintenance and non-
myocytes for the delivery of secreted factors
(Matsuura et al. 2007; Gao et al. 2019).

A suitable and applicable scaffold for cardiac
regeneration is required to sustain tissue recon-
struction by active support for cell-to-tissue
procedures by supporting cell–cell adhesion,
proliferation and differentiation. Foremost tech-
nical progression in the field of cardiac tissue
engineering is the ability to fabricate a physical
framework of biocompatible resources and the
control of mechanical characteristics, which can
be efficiently used clinically.

Several investigations such as transthoracic
echocardiography, scanning electron microscopy
(SEM) (Hilbert et al. 2004; Kasimir et al. 2005),
histological (hematoxylin–eosin (H&E) and
Masson’s trichrome) and immunohistochemical
examination, DAPI staining, DNA quantifica-
tion, mechanical properties, hydroxyproline
assay, and 2D electrophoresis are used to eval-
uate the efficacy of the decellularization process.
Movat pentachrome staining can be used to
demonstrate the ECM components such as col-
lagen, elastin and GAGs. Cytotoxicity assay,
metabolic activity and viability tests (MTS assay)
are among other valuable tests that should be
performed after heart valve decellularization. The
aortic heart valve architecture has a naturally
three-layered arrangement including the lamina
ventricularis, lamina spongiosa and fibrosa. The
above-mentioned investigations can afford criti-
cal data on the effective cellular removal as well
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as the biological and structural properties of the
decellularized matrix intended to seed.

Prior to recellularization, it is essential to
ensure that the decellularized scaffolds are
effectively sterilized to avoid cross-
contamination and eliminate the risk of infec-
tion. Ethylene oxide, gamma irradiation and
electron beam irradiation are among the steril-
ization techniques used in conventional medical
implants. Nevertheless, these sterilization tech-
niques may change the mechanical properties of
the scaffolds and may also cause adverse immune
response (Bonenfant et al. 2013).

5.3 Cell Seeding

Stem cell transplantation strategy, which can
enhance tissue perfusion, angiogenesis, and pre-
serve or regenerate myocardial tissue, has been
proved to enhance cardiac function in patients
with sophisticated heart failure after MI (Suncion
et al. 2014; Xu et al. 2014; Yau et al. 2019). This
technology was first applied to treat MI in 2001
with promising and encouraging results.

To date, autologous and allogeneic adult stem
cell transplants had promising results in cardiac
treatments in some reported cases (Sanz-Ruiz
and Fernández-Avilés 2018; Barker et al. 2018).
In current techniques of stem cell transplantation,
cells are seeded onto 3D polymer scaffolds after
electrical, mechanical or chemical stimulation
such as heparin and hyaluronic acid to promote
the differentiation of stem cells and restore the
function of injured heart tissues (Hirt et al. 2014;
Aslani et al. 2020; Kenar et al. 2019; Shiekh
et al. 2018). However, due to limitations in the
usage of stem cell-based therapies for human
heart failure, immune tolerance and growth of
stem cells on novel biomaterials have recently
been considered as a capable approach for car-
diac repair (Shiekh et al. 2018; Li et al. 2016).

Captivatingly, it has been confirmed that new
CMs are able to arise from presented CMs and
progenitor or stem cells early on periods of
embryo growth (Yoon et al. 2018; Sereti et al.
2018; Malandraki-Miller et al. 2018; Radisic
et al. 2006; Allegue et al. 2011). Cardiac stem

cells (CSCs) (Rikhtegar et al. 2019; Su et al.
2018; Tang et al. 2017), embryonic stem cells
(Alagarsamy et al. 2019; Wang et al. 2011), bone
marrow-derived mesenchymal stem cells such as
mesenchymal, endothelial and hematopoietic
stem/ progenitor cells (Blondiaux et al. 2017;
Joshi et al. 2018), cord-derived mesenchymal
stem cells (Lim et al. 2018; Wu et al. 2018;
Pushp et al. 2020; Zhang et al. 2019; Mao et al.
2017), and adipose tissue (ASC)-derived mes-
enchymal cells (Tang et al. 2016) are indis-
pensable cell sources used in cell transplantation
for research associated with MI.

Differentiation of stem-cell-derived CMs into
the preferred lineages needs numerous features of
the scaffold assembles, and cell’s fate and envi-
ronment (Richards et al. 2016; Hansen et al.
2018; Birket et al. 2015; Hosoyama et al. 2018;
Maiullari et al. 2018). Human iPSCs (hiPSCs)
have been showed to differentiate successfully
into mature CMs with optimal protocols, which
can be a probable advance toward heart regen-
eration methods. Fetal hiPSCs can be differenti-
ated into pure CMs as well. Cardiac fibroblasts,
embryonic stem cells (ESCs), and muscle cells
can potentially be replaced for CMs for cardio-
vascular diseases.

The route of cell delivery is another critical
subject in optimizing cardiomyoplasty. Intramy-
ocardial injection has been investigated via ster-
notomy (Mathiasen et al. 2012), the
endomyocardial route (Hashemi et al. 2008), and
the intracoronary route (Revilla et al. 2011). The
in vitro cell culture of the selected cell types is
performed in specialized cell culture facilities, to
encourage increased cellular proliferation, differ-
entiation and maturation. The use of cell biore-
actors, for the purpose of improving, refining and
optimizing the quality and expansion of the cell
itself has been recently taken into consideration.
Bioreactors are considered as systems with con-
trolled conditions and parameters that facilitate
the stimulation of cell growth (Paez-Mayorga
et al. 2019). The most competent technology to
offer the proliferation and differentiation of these
cells is the bioreactor.

In our center, we were able to produce a bio-
compatible heart scaffold with comparative
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histological and biomechanical properties of
native cardiac ECM, using a perfusion-based
decellularization method. In our recent study, we
limited low transplanted cell retention and sur-
vival within the ischemic tissue by using decel-
lularized pericardium patch in an animal model of
MI. We also assessed the hypothesis that tissue-
engineered pericardial patch containing autolo-
gous ADMSC would be beneficial for the treat-
ment of MI with desirable properties in a rabbit
model compared to the application of non-seeded
decellularized pericardium (Kajbafzadeh et al.
2017). We also demonstrated that decellularized
human internal mammary artery could be applied
as a resourceful small-diameter vascular alternate
with high patency. This decellularized internal
mammary artery was considered as a novel vas-
cular graft for small-diameter bypass surgeries
(Kajbafzadeh et al. 2019). In another study, we
demonstrated the efficacy of ADMSC-seeded
human amniotic membrane cardiac patches as
scaffolds for treatment of acute MI in rat models
(Khorramirouz et al. 2019). Pre-seeded decellu-
larized aortic valve conduit with bone marrow-
derived MSCs depicted satisfactory outcomes in
postoperative cell seeding capabilities with
promising functional potentiality, which provides
a new era of biological grafts in cardiovascular
surgery (Kajbafzadeh et al. 2016). Advantages
and disadvantages of different implanted cells are
depicted in Table 1. An overview of the heart
decellularization and recellularization literature is
provided in Table 2 (Mirsadraee et al. 2006;
Singelyn et al. 2012; Wainwright et al. 2010;
Weymann et al. 2011; Akhyari et al. 2011;
Oberwallner et al. 2014; Leyh et al. 2003; Grauss
et al. 2005; Dainese et al. 2012; Malone et al.
1984; Akbarzadeh et al. 2019).Some of the most
commonly used protocols of heart organ decel-
lularization and recellularization processes

5.4 Clinical Applications

The first clinical implantation of a tissue-
engineered heart valve was carried out in 2000.
An allograft pulmonary heart valve was decellu-
larized and underwent the cell seeding process in

bioreactor. In the next step, the decellularized
scaffold was implanted in a 43-year-old man. The
neo-aortic heart valve demonstrated appropriate
function in different follow-ups with no evidence
of regurgitation (Hoerstrup et al. 2000). In the
study of Cebotari et al., pulmonary heart valves
were decellularized with trypsin/EDTA and
reseeded with peripheral mononuclear cells that
were isolated from human blood. The scaffolds
were implanted into two pediatric patients affect-
ing congenital pulmonary valve failure. They
obtained promising postoperative results with no
degenerative signs (Cebotari et al. 2006).

In clinical studies, the concerns of histocom-
patibility of regenerated cardiac cells and stem
cell-derived pro-arrhythmic substrates (Chen
et al. 2018) have restricted the application of
stem cell-based therapies for human heart failure.
Recent clinical studies showed that cell sheet
technology improved the ejection fraction,
regenerated the dysfunctional cardiac wall,
increased vasculargenesis, and diminished fibro-
sis in heart disease models (Sawa et al. 2012;
Sawa and Miyagawa 2013; Miyagawa et al.
2017; Yoshikawa et al. 2018; Yamamoto et al.
2019). From 2001, some clinical studies have
indicated that stem cells are safe and demonstrate
few treatment-related complications compared to
control groups (Jackson et al. 2001; Segers and
Lee 2008). However, the clinical use of tissue-
engineered constructs in myocardial regeneration
is still at an early phase. Most of the clinical
studies over decellularized xenograft heart valves
suggested for investigating the presentation of
decellularized xenograft heart valves in human to
conquer the challenge that allograft and homo-
graft heart valves are in short supply, especially
for pediatric population.

5.5 Limitations

Despite valuable tissue engineering approaches
which may improve cell or tissue preservation,
the difficulties with sources of autologous cell
and survival in the host tissue still remain chal-
lenging (Naderi et al. 2011). In addition, the
quality and number of cells, comorbidities,
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Table 1 Some of the most commonly used protocols of heart organ decellularization and recellularization processes

Species Method of
decellularization/Recellularization

Results Reference

Human
pericardium
from
cadaveric
donors

Decellularization: Hypotonic buffer,
SDS in hypotonic buffer, and nuclease
solution
Recellularization: In-vitro seeding of
human dermal fibroblasts and A549
cells

Promising results in
glycosaminoglycan content and
mechanical properties

88

Porcine
ventricular
myocardial
tissue

Decellularization: SDS and Triton X-
100. Pepsin-solubilization of the
myocardial matrix
Recellularization: In-vitro seeding of
neonatal rat cardiomyocytes and in-
vivo injection in left ventricle of rat
models

Preserved glycosaminoglycan content
and satisfactory cell-conductivity

89

Whole adult
porcine heart

Decellularization: Aortic perfusion.
Serial perfusion of enzymatic, non-
ionic and ionic detergent, hypotonic
and hypertonic solutions
Recellularization: In-vitro seeding of
chicken cardiomyocyte

Preserved collagen, elastin, and
glycosaminoglycans, and mechanical
integrity

90

Porcine whole
heart

Decellularization: Perfusion of
Trypsin/EDTA and TritonX
100/deoxycholic acid (DCA)
Recellularization: none

Retained collagen, proteoglycan and
elastin

91

Adult rat heart Decellularization: 1) SDS/TritonX100-
based v/s 2) Trypsin plus Triton/DCA-
based v/s 3) SDS/DCA/saponin-based
Recellularization: Reseeding with
C2C12 myoblasts in-vitro

Detection of Laminin in all groups.
Collagen IV removed in group 2, No
elastin detection in group 3

92

Human Left
ventricular
myocardium
tissue

Decellularization: SDS-based, Triton
X-100-based, DCA-based,
hypo/hypertonic solution-based
decellularization protocols
Recellularization: In-vitro culture with
mesenchymal stem cells, iPS-derived
cardiomyocytes and native neonatal
mouse cardiomyocytes

Cell viability and growth in both
protocols. More satisfactory cell
removal and ECM architecture
maintenance with SDS-based protocol

93

Porcine and
sheep
pulmonary
valve conduits

Decellularization: Trypsin/EDTA
digestion
Recellularization: Orthotopic
implantation in sheep

Reconstitution of surface endothelial
cell monolayer and interstitial
myofibroblasts. Calcifications were
also noted

94

Porcine aortic
valves

Decellularization: Triton X-100 v/s
Trypsin
Recellularization: In-vitro EC seeding

Changes in the extracellular matrix
constitution in all methods, EC-
mediated ECM deposition.

95

Aortic
homograft
leaflets

Decellularization: Trypsin
Recellularization: In-vitro seeding with
cardiac mesenchymal stromal cell

Rescuing most of the original cell
density and differentiation towards
endothelial lineage

96

Dog arterial
segment

1° detergent step with Triton X-100, 6
h at room temperature
• Protease inhibitor step

The results of allogeneic implant
depicted well incorporated tissue
appearance with complete endothelial
layer after 90 d post-implantation

97

(continued)
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genetic defects, and gender are among the factors
that affect the cell/tissue survival by the host
tissue environment (Perrino et al. 2020). Other
drawback is the high costs of superior therapy
medicinal products in general as well as the
failure of some scaffolds to convene translation-
ally appropriate requirements. Remarkable
inflammation, foreign body reaction, and
arrhythmogenic potential are other limitations
that commonly occur in long-term follow-ups
after scaffold transplantation, discouraging the
therapeutic effects (Shimizu et al. 2001;

Christman and Lee 2006). These drawbacks
should be investigated and completely addressed
before clinical applications.

Despite several progressions in the field of
heart tissue engineering, the capability and sig-
nificance of adult mammalian cardiomyocytes
and CSCs regeneration remain controversial
(Aquila et al. 2018; Kretzschmar et al. 2018; Lee
2018). In addition, although human ESC-derived
CMs have been considered as principal supply of
adult human cardiac myocyte for medical bene-
ficials, being well-organized and distributed, and

Table 1 (continued)

Species Method of
decellularization/Recellularization

Results Reference

• 2° detergent step with SDS, 72 h at
room temperature

• Washing step with ethanol
• Fixation treatment with carbodiimide;
Detergents concentration not
mentioned

Ovine heart perfusion with a 1% SDS in distilled
water for 72 h at room temperature/ 1%
Triton X-100 in distilled water for 24 h
Recellularization: In-vivo implantation
of decellularized matrix scaffold into
the omentum of rats

Preserved the structure and
composition of cardiac ECM and
vascular structures within the scaffold
without residual cellular components
Implantation led to proper
vascularization

98

Table 2 Advantages and Disadvantages of Implanted Cells

Cell type Advantages Disadvantages

Skeletal myoblasts Easily isolated/High rate of
proliferation/Hypoxia-
resistant/Autologous

High occurrence of arrhythmias

Bone marrow-
derived stem cells

Autologous/Easily
isolated/Multipotent/Low immune
response

Restricted accessibility/bone or cartilage
formation in the myocardium

Adipose tissue-
derived stem cells

Easily isolated/High availability
Multipotent/Low immune response

Low survival

Cardiac stem cells Multipotent/Autologous Inadequate accessibility

Embryonic stem
cells

Pluripotent/straightforward to develop Teratogenic/Limited availability/Host
immune response/Ethical problems

iPSC Pluripotent/Easy to expand/Superior
availability/Autologous

Potentially teratogenic/Possible oncogenic
potential

Fetal
cardiomyocytes

Cardiomyocyte phenotype Limited availability Low survival Host
immune response Ethical problems

iPSC, induced pluripotent stem cells
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functional transverse tubules (T-tubules) are
among the essential features that still lack (Parikh
et al. 2017).

Issues regarding cell sheet engineering tech-
nology are the limited number of sheets which
can be stacked on each other without cell death
and the weakness of these sheets which may
ground their folding or tearing during manipu-
lations (Zurina et al. 2020).

5.6 Conclusion

In this chapter, we discussed many essential
achievements associated with tissue engineering
and regenerative medicine technology for cardiac
repair. The heart is tremendously compound
organ, and the scaffold material selection, scaf-
fold material production, cellular selection and
sell seeding process both in vitro and in vivo are
among many variables that can influence its
regeneration. These techniques generally focus
on the scaffold material selection, scaffold
material production, cellular selection and cellu-
lar cultivation in vitro. With the progress of tis-
sue engineering technique for heart organ,
increasing stem cell-derived methods have
already been studied in basic research and clini-
cal trials. The presence of CSC population in
adult hearts is still contentious; however, differ-
entiating other stem cells into mature cardiomy-
ocytes is of great importance in cardiac therapies.
Due to progressive improvements regarding
cardiac tissue engineering, we believe that the
promising applications of stem cell-derived cell
therapy in MI will be increasingly attracted in the
next decade. However, more studies remain to be
performed to better understand and explain the
challenges, improve existing techniques and
develop new techniques, protocols and methods.
The combination of three-dimensional scaffolds,
bioreactors and excellent stem cells can pave the
road for the development of the next-generation
human organ.
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