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This book contains a comprehensive reference and teaching aid on
decellularization and recellularization methods of tissues and organs in
Tissue Engineering and Regenerative Medicine. The chapter of the current
book will cover from the basics of regenerative medicine to more advanced
topics for translational applications of tissue-engineered scaffolds. This
edition will also provide an update on general understanding of tissue growth
and development, the materials and methods needed to design tissues/organs,
as well as a presentation by the world’s professionals of what is currently
known about tissue engineering of specific tissues/organs.

Tissue engineering is a scientific field concerned with the application of
cells, biomaterials, biochemical (e.g., growth factors), and suitable scaffolds
to improve or replace biological tissues. “Tissue Engineering & Regener-
ative Medicine” provides a platform for the advancement of research and
technologies for the formation of new viable tissues/organs for a medical
purpose. This interdisciplinary field may be able to help with the shortage of
life-saving organs available through donation for transplantation in the near
future. It can also help with the limited donor availability and rejection of the
grafts by the immune system.

Introduced chapters have been dedicated to provide in-depth principles for
many of the supporting and enabling knowledge during the tissue production
process and also to expand focus on stem cells, including adult and
embryonic stem cells and progenitor populations. The tissue fabrication
process is illustrated with specific examples for more than 25 organs, which
may soon lead to new tissue engineering therapies for several diseases that
afflict humanity. Section-coverage includes an overall introduction of
tissue engineering; Materials & Methods; Cell seeding process; Clinical
Applications; Limitations; Conclusion; and future challenges.

The readers may turn to this up-to-date coverage for a widespread
understanding of regenerative medicine that we believe will be useful to
students and experts alike.



vi Introduction

Readership

The readership consists of basic and clinical researchers in fields of medicine,
biology, materials science, and engineering with an interest in tissue
engineering.
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Abstract

The extracellular matrix (ECM) of mam-
malian organs and tissues has been applied
as a substitute scaffold to simplify the restora-
tion and reconstruction of several tissues.
Such scaffolds are prepared in various
arrangements including sheets, powders, and
hydrogels. One of the more applicable pro-
cesses is using natural scaffolds, for this
purpose discarded tissues or organs are natu-

rally derived by processes that comprised
decellularization of following tissues or
organs. Protection of the complex structure
and 3D (three dimensional) ultrastructure of
the ECM is extremely necessary but it is
predictable that all protocols of decellulariza-
tion end in disruption of the architecture and
potential loss of surface organization and
configuration. Tissue decellularization with
conservation of ECM bioactivity and integrity
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can be improved by providing well-designed
protocols regarding the agents and decellular-
ization techniques operated during processing.
An overview of the characterization of decel-
lularized scaffolds and the role of reagnets can
validate the applied methods' efficacy.

Keywords

Acellular - Tissue engineering + Scaffold -
Characterize

1.1 History

Decellularized extracellular matrices (dECM)
provide a possible supply of substances to gen-
erate different scaffolds. To date, there are no
absolute criteria precisely to confirm decellular-
ized ECM. Indeed effective decellularization
methodology is ordained by various factors such
as tissue density and structure, geometric and
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biologic characteristics needed for the targeted
clinical purpose, as well as the specific charac-
teristics of the tissue of the origin. Each tissue
demands its specific characterization methods.
Indeed, efficient cell and genetic elements elimi-
nation are crucial in preventing immune rejection
of the construct to seeded cells. Quantitative
metrics have not been described for the term
decellularization yet. To evaluate the quality of
decellularized tissue and its extracellular matrix
(ECM), multiple aspects should be examined.
Based on current literature and experiments in
which in vivo constructive response was estab-
lished, and immune rejection of the host did not
occur, several criteria have been suggested. These
minimal criteria are suggested to be exercised to
assess the decellularization process and its effi-
cacy. The basis of the suggested criteria lies in the
amount and quality of genetic material that is
remained in the ECM. First, the amount of
dsDNA should be less than 50 nanograms per
milligram of the dry weight of the ECM. Second,
DNA fragments detected in the ECM should not
be more than 200 base pairs. And lastly, histo-
logical evaluation should not be able to identify
genetic material with hematoxylin-eosin staining
(H & E) or 4',6-diamidino-2-phenylindole (DAPI)
(Medberry 2014).

The first and second principle is considered a
quantifiable approach to assess the acellularized
ECM, whereas qualitatively verified by histo-
logical stainings such as H&E or DAPI. Quan-
titive assessment is readily accomplished by
available dsDNA intercalators. For the second
criterion, endonucleases such as DNase and
RNase are applied to break down nucleic acid
base pair fragments. These enzymes, fortunately,
decrease the length of fragments, but they do
little to part the fragments of the ECM. In pursuit
of decreasing immune response, the Intracellular
membrane compartment (e.g., phospholipids)
must be noticed via enzyme-based measurement.

ECM is a vital component during develop-
ment, influencing cell differentiation, prolifera-
tion, and migration, and its prominent role in
providing structural stability and support for cells
and tissue is indispensable (Medberry 2014).
ECM, a non-cellular element of the tissue
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microenvironment, comprises proteins such as
collagens, laminins, fibronectin, and polysac-
charide glycosaminoglycans (GAGs) (Cirulli
et al. 2000). Collagens are the most abundant
component in ECM; so far, they are the main aim
to modify. Several methods have been applied to
determine the amount and quality of ECM
components. For example, to maintain the con-
tent of collagen, histological collagen stains are
used, whereas Scanning electron microscopy
(SEM) provides more information about the
structure and architecture. Additionally, Second
harmonic generation (SHG) detects structural
changes in collagen fibers by loss of signals.

Proteins that help with structural abilities, as
well as mechanical properties of the tissue,
should match the original tissue to a reasonable
extent so that the process would have more
chance to be successful. It is assumed Some
decellularization agents and protocols destroy
basic ECM elements; for example, detergents
may disrupt collagen structure; therefore
mechanical strength of ECM undergoes changes
or most detergents eliminate the amount of GAG,
thus decrease the viscoelasticity feature of ECM
(Kezwon et al. 2016; Conconi et al. 2005).

Consequently, mechanical properties such as
elastic modulus, viscous modulus, tensile
strength, and yield strength should be assessed.
However, all in all, the characteristic is mainly
provisory on the type of the tissue or organ's
sought function (Wang and Guan 2010).

The process of decellularization via a cell
removal agent will alter the ECM composition
and structure. The goal is to try and minimize
these alterations to have a robust ECM. There are
several types of agents and techniques available
for decellularization. The agent can be chemical,
biological, physical, or miscellaneous. Among
the most commonly used chemical agents are
Triton X-100, Triton X-200, and sodium dodecyl
sulfate (SDS). Each reagent has its own charac-
teristics. For example, SDS and Triton X-100 can
remove more significant than 90% of nuclear
remnants. Triton X-100 and Triton X-200 have
mixed results; nevertheless, they both can
remove cells more efficaciously from thin tissue;
however, Triron X-200 tends to disrupt the ECM
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more considerably. SDS is more effective than
both and can remove cells from dense tissues, but
disrupts the ECM, damages the collagen, and
removes GAGs (Merritt et al. 2010; Guo et al.
2010; Hudson et al. 2004). It is worth high-
lighting that all these outcomes depend on the
target tissue. Biologic agents can be enzymes or
chelating compounds. Enzymes like trypsin,
nucleases, and dyspases are commonly used
(Yang et al. 2010; Wainwright et al. 2010).
Chelating agents are not effective when used
alone and should be used with either enzymes or
detergents to be effective. Examples of physical
and miscellaneous agents are freezing and
thawing, direct force and pressure, and electro-
poration. The common side effect of all the
physical methods is ECM disruption which can
happen directly and indirectly (Lehr et al. 2011;
Sellaro et al. 2010; Hashimoto et al. 2010). The
structure of the remaining ECM and the clear-
ance of cell debris and genetic material can
influence the host response's efficacy. Since the
best reagents are still not 100% effective, wash
buffers and extensive wash procedures have been
suggested (Hashimoto et al. 2010; Xing et al.
2015).

1.1.1 Hematoxylin—Eosin Staining (H

& E)

Hematoxylin and eosin (H&E), is well-known
staining used to assess the overall histologic
appearance of samples, showing cells, cytoplasm,
nuclei, and ECM constitution. Hematoxylin and
eosin have distinct functions. Hematoxylin stains
nucleic acids and has a deep purple color. Eosin
stains proteins are pink. In healthy tissue, nuclei
are stained blue, whereas the cytoplasm and
extracellular matrix have diverging degrees of
pink staining. Nucleoli stain with eosin. If abun-
dant polyribosomes are present, the cytoplasm
will have a distinct blue cast. This stain reveals
sufficient structural data with specific functional
implications (Fischer et al. 2008).

For preparation, the samples are fixed in for-
malin solution before being embedded in paraf-
fin. Transversal sections are cut, dewaxed, and

stained. H&E staining is performed according to
the manufacturer's protocols. Decellularized tis-
sue can show a decrease or lack of hematoxylin-
stained nuclei indicating adequate cell elimina-
tion. Such as seen, in many studies that by use of
H & E stain, the first and second criteria for
decellularized tissue can be established. Com-
plete cell removal was also observed in a study
by Pashos et al. within areas of dense collagen
(Pashos et al. 2017). The H & E stain of the
decellularized tissue is altering the color of pink
with considerably less blue-purple portions,
indicating the presence of the nucleus in the
native tissue stain.

1.1.2 4’,6-Diamidino-2-Phenylindole
(DAPI)

Another confirmation test for cell nucleus
removal is staining that is broadly utilized for
assessing decellularized tissue is 4',6-diamidino-
2-phenylindole (DAPI).

For visualization of intact and undamaged
nuclei, DAPI staining is used. The tissue sections
are prepared, as mentioned for H & E staining.
Immunofluorescence staining will be performed,
a fluorescent microscope with a Slide book
software is utilized to get a photo of the slide. If
intact nuclei are present, the fluorescence dye
will manifest in the camera. In the majority of
cases with successful decellularization, the DAPI
image would show a much more limited
fluorescent dye than in the native tissue, and it
will approve the (Pashos et al. 2017; Crapo et al.
2011).

1.1.3 The MTT Cell Proliferation
Assay

MTT (3 4 5 dimethylthiazol 2 y 2 5 diphenyl
tetrazolium) is a yellow water-soluble tetra-
zolium that is reduced by mitochondria of lived
cells. After reduction, it turns to water-insoluble
purple/blue formazan product. Classically 10,000
cells suspended in 100 pl of media are incubated
with 10 micro L of MTT reagent. After 3 h,



detergents should be added to the media, to lyse
the cells and dissolve the colored crystal. Ethanol
or propanol, acid-isopropanol, acid-isopropanol
plus 10% Triton X 100, mineral oil, dimethyl
sulfoxide, all are suggested as solubilized agents.
The amount of purple/blue formazan production
then is detected by spectrophotometry at 570 nm
and is directly proportional to a number of viable
cells. MTT is a sensitive and quantitive assay for
cell proliferation and determining the absence of
viable cells (Purpura et al. 2018) the strength of
using MTT assay to confirm decellularized ECM
is even small changes in metabolic activity can
provoke alteration in MTT.

1.1.4 Electron Microscopy

There are 2 main categories of electron micro-
scopy: scanning electron microscope (SEM) and
transmission electron microscope (TEM). The
critical difference between these is in the optics.
TEM conveys the beam of electrons through a
thin sample onto a detector, then condensed by
lenses and hit the sample. TEM is appropriate for
imaging microscopic particles such as viruses
and organelles inside the cells.

On the other hand, SEM is suitable for imaging
the surface, such as tissues, bacteria, cells, and
organisms. In order to image the surface of the
sample, SEM utilizes a beam of electrons in a
raster pattern through the sample and provides
information about topography, composition, and
directionality (Godwin et al. 2017).

In order to get accurate images, at first, the
sample must be fixed in a serial solution such as
glutaraldehyde or paraformaldehyde in either
phosphate or cacodylate buffer. For biological
samples, distilled water is the right choice.
Afterward, the sample must be entirely dried,
prior to placing in a high vacuum environment.
These two tests confirm the preservance of extra
cellular matrix and lack of distortion in the
scaffold and more specifically the removal of
organelle remanent in the de-cellular scaffold
which is vital for implantation purpose (Keene
and Tufa 2018).

L. Shojaie et al.
1.1.5 Second Harmonic Generation

In 1962, Second harmonic imaging (SHG) intro-
duced by Kleinman in crystalline quartz. SHG is
nonlinear optical microscopy in which two high
energy photons hit a medium and directly con-
vert to a single photon with the same total energy
at double frequency. SHG imaging is used for
non-centrosymmetric spatial arrangements such
as collagen-based structure or birefringent crys-
tals, membranes, proteins. The strength of SHG
is that stationing procedures are not required and
also preserve the molecular architecture and
polarization dependence. SHG intensity depends
on both the size and organization of the collagen
fibers. This imaging tool represents the integrity
and uniformity of collagen fibers in the context
of scaffold and any disorganization in the stroma
of the tissue can be demonstrated with no need
for any specific pretreatment and protocols, so it
can be conducted in the fresh tissue structure
(Keikhosravi et al. 2014; Leonard et al. 2018).

1.1.6 Mechanical Properties

ECM preserves the three-dimensional structure
of the cells and mainly consists of collagen,
elastin, proteoglycans. Cellular function deter-
mines the relative amount of each component.

It has been demonstrated besides these com-
ponents, other molecules such as laminin, also
play roles to maintain the structure, stiffness, and
cell to cell adhesion. To assess the mechanical
properties of ECM, there are 2 main categories of
measurement:

1. Micro-scale measurement: atomic force
microscopy, micro-stretching. For example,
Combining SHG with a micro-stretching
technique presents a practical evaluation of
the collagen residue in decellularized ECM.

2. Macro-scale measurement: measurement of
the force-length curve of a tissue. This curve
is resulted from change in dimensions by a
given material such as collagen sheets or
elastin bands during applying a force or
stress.
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1.1.7 Zymography

Zymography is a substrate gel electrophoresis to
assess the amount of matrix metalloproteinase
Metalloproteinases are a group of proteolytic
enzymes that contribute a key role in tissue
remodeling. The zymography technique estab-
lished the splitting up of proteins by nonreducing
sodium dodecyl sulfate—polyacrylamide gel
electrophoresis (SDS—-PAGE). Most commonly,
the entire gel is composed of gelatin or casein
(Leonard et al. 2018) During electrophoresis,
SDS non-proteolyticly activates MMPs. After
being separated by electrophoresis and a renatu-
ration step; the gel gets incubated in a buffer of
ionized calcium and zinc at 37 °C that is opti-
mized for measuring MMPs activity towards
distinct substrates. In vascular remodeling and
vascular disorders, zymography has also been
employed to evaluate the alterations in MMP
activity (Ren et al. 2017).

1.2 Conclusion

Nowadays these scaffolds are applied in clinical
tissue engineering and the most important issue
with them is the quality characterization of scaf-
folds in order to make them safe and compatible
with body composition. Since the source tissues
for biologic scaffolds are typically allogeneic or
xenogeneic in derivation, highest decellularization
is necessary. The biologic scaffold materials
preparation of mammalian ECM entails decellu-
larization of source tissues. Such decellularization
typically comprises exposure to selected biologic
chemical and non-physiologic agents such as
detergents and enzymes and mechanical forces
that unavoidably cause disruption of the associ-
ated ECM. The optimal choice of decellularization
protocols can be reasonably selected if thorough
information of the mechanism of disorderly action
is considered and assumed.
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Abstract

In pathologies of the esophagus such as
esophageal atresia, cancers and caustic inju-
ries, methods for full thickness esophageal
replacement require the sacrifice of healthy
intra-abdominal organs such as the stomach
and the colon. These methods are associated
with high morbidity, mortality and poor
functional results. The reconstruction of an
esophageal segment by tissue engineering
(TE) could answer this problem. For esopha-
geal TE, this approach has been explored
mainly by a combination of matrices and cells.
In this chapter, we will discuss the studies
on full organ esophageal decellularization,
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including the animal models, the methods of
decellularization and recellularization.

Keywords

Esophagus - Tissue engineering *
Decellularization - Scaffold

2.1 History

The esophagus is a tubular hollow organ composed
of four layers (innermost mucosa, submucosa,
muscularis propria and adventitia) and different cell
types including epithelial, glandular and muscle
cells (Poghosyan et al. 2011; Kuo and Urma 2006).
It has been shown previously that extracellular
matrix (ECM) can induce the recruitment and dif-
ferentiation of cells in their relative compartments
through its biochemical and biomechanical prop-
erties (Reing et al. 2009). Decellularized organs
have the advantage of preserving these complex
properties (Crapo et al. 2011), and very early after
the development of decellularization methods,
research groups started working on decellularized
tissues for esophageal TE.

Decellularized ECM of other organs such as
skin (Bozuk et al. 2006), urinary bladder
(Badylak et al. 2005) or small intestinal submu-
cosa (SIS) (Badylak et al. 2011) have been tried
in animal models and humans for several types of
esophageal repair. These matrices were shown to
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be efficient for superficial lesions or partial
defects (Badylak et al. 2011). However, no suc-
cess has been reported for full thickness cir-
cumferential esophageal replacement with non-
esophageal matrices, with or without cells.
Therefore, researchers turned to organ specific
ECM for esophageal TE.

The first report on decellularized esophagus
dates back to 2005 in a rat model (Ozeki et al.
2006). Porcine esophagi have also been decel-
lularized in several studies with success (Koch
et al. 2012; Totonelli et al. 2013; Luc et al. 2018;
Arakelian et al. 2019).

We will discuss the challenges faced for a
clinical use of these ECM in humans (Fig. 2.1).

2.2 Material and Methods
2.2.1 Animal Models

Full esophageal decellularization has been
mainly carried out on rat (Ozeki et al. 2000;

Characterization of
the matrix

Method of
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Origin of
esophagus

*Xenogenic

Clinical application

Urbani et al. 2018) and porcine esophagi (Luc
et al. 2018; Arakelian et al. 2019). Even though
rat esophagi have served as an important proof of
concept, protocols developed on this small ani-
mal model cannot be directly applied to esophagi
corresponding to human size. Porcine esophagus
has the advantage of a highly similar structure
and size compared to the human one (Ziegler
et al. 2016). For this reason, porcine esophagus
seems to be a relevant model to develop decel-
lularization methods that can be used for a
human esophageal decellularization.

2.2.2 Decellularization

The decellularization of the esophagus has been
mainly carried out using detergents including
SDS, DEOX, triton X-100 or Chaps (Mallis et al.
2019). The detergent is used for rupturing the cell
membranes and eliminating cell content. Cal-
cium chelator EDTA has also been added to
facilitate cell detachment and improve the
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Fig. 2.1 Steps to produce a clinical grade esophageal decellularization: from bench to bedside



2 Esophagus Decellularization

decellularization (Arakelian et al. 2019). The
nature, concentration and treatment period can
highly affect the quality of the final product. For
smaller esophageal models, lower concentrations
or mild detergents can be used for decellular-
ization. However, for larger models, higher
concentrations of stronger detergents such as
SDS and DEOX were needed and the treatment
period was extended to several days.

Decellularization protocols showed that even
though in some experiments in the rat esophagi,
DNA can be eliminated by cycles of detergent
treatment (Mallis et al. 2019), in larger animal
esophagi, the detergent alone does not remove
DNA and the cell nuclei (Arakelian et al. 2019).
Therefore, esophageal decellularization proto-
cols include a DNase treatment. In the two
recent decellularization studies in porcine model,
one treated the decellularized matrix 12 h with
2000 Kunitz units of DNase-I (Sigma-Aldrich)
(Luc et al. 2018), whereas the other team priv-
ileged a shorter 3 h treatment with 100 u/ml
clinical grade DNase (Pulmozyme) (Arakelian
et al. 2019).

At the end of decellularization, an efficient
rinsing method should be developed in order to
fully remove these detergents to avoid cytotoxi-
city. In small animal models, abundant rinsing
with water or PBS was reported to be sufficient to
remove these detergents. In bigger models, the
rinsing cycles were much longer or it could be
necessary to use an absorbing resin which sig-
nificantly improved detergent removal and
reduced cytotoxicity (Arakelian et al. 2019).

In the first attempts of decellularization,
mechanical treatment, along with enzymatic and
detergent treatment, was achieved by placing the
esophagi under constant agitation (Ozeki et al.
2006) or by perfusing the organ using a speed
roller pump (Totonelli et al. 2013). These meth-
ods increased detergent and enzyme infiltration
within the esophagus and improved decellular-
ization compared to static conditions. However,
these technics worked better for smaller rat eso-
phagi compared to larger and thicker porcine
ones. Furthermore, these are open systems which
require a high level of manual manipulation and

an increased risk of contamination. The recent
decellularization protocols included the use of
bioreactors for liquid perfusion (Luc et al. 2018)
or perfusion and axial rotation (Arakelian et al.
2019). These closed systems increased the effi-
ciency of decellularization and reduced manual
handling which may be an advantage for future
clinical applications.

2.2.3 Sterilization

The esophagus is an organ which is in constant
exchange with extracorporeal, non-sterile envi-
ronment. It is therefore important to use a ster-
ilization method to prevent bacterial and fungal
growth throughout the decellularization or at the
end of the process. For decontamination, a team
used sodium azide (Luc et al. 2018), a molecule
which can be highly toxic (Chang and Lamm
2003) and not recommended for clinical use.
Others privileged the use of antibiotics (ATB) for
an initial decontamination. For this purpose, a
mix of ATB (gentamycin, clindamycin van-
comycin and amphotericin B), previously used
for vascular graft applications, was validated for
esophageal decontamination (Arakelian et al.
2019). Due to the high concentration of the ATB,
it is important to efficiently remove them at the
end of the decellularization to avoid toxicity,
while preserving the sterility of the decellularized
matrix.

Another option is a final sterilization with
chemical or physical treatments. Chemical treat-
ments can include ethylene oxide or peracetic
acid (PAA). The difficulty with these treatments
is that these products may remain in the decel-
lularized tissue and induce cytotoxicity (Lucas
et al. 2017). Furthermore, it has been shown that
PAA can prevent vascularization of soft tissues
after implantation in vivo (Scheffler et al. 2008).
Physical sterilization includes treatment with
gamma rays. Even though this treatment
efficiently removes bacterial, fungal and viral
contaminations, it can compromise the biome-
chanical properties of the decellularized matrices
(Witt et al. 2016).
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2.2.4 Characterization
of the Decellularized
Matrix

As for other decellularized organs, the recom-
mended criteria to define a complete decellular-
ization are to validate the absence of residual
cells, the elimination of DNA (less than
50 pg/mg of dry mass) and to make sure that no
residual DNA fragments exceeding 200 bp
remains in the tissue (Crapo et al. 2011). How-
ever, these recommendations can vary slightly
according to the nature and the origin of the
tissue. Furthermore, the general structure, the
bioactive molecules and the biomechanical
properties should also be maintained after
decellularization.

2.2.5 DNA Quantification

In decellularized esophagi, DNA was extracted
from the matrix and was then quantified. In all
these studies, an efficient elimination of DNA
was demonstrated (Luc et al. 2018; Arakelian
et al. 2019). For DNA fragment size, an elec-
trophoresis of the extracted DNA on agarose gel
was carried out which showed that no large DNA
fragments (more than 200 bp) was visible. The
elimination of nuclei was also shown by DAPI
staining (Luc et al. 2018; Arakelian et al. 2019;
Mallis et al. 2019).

2.2.6 General Structure
and Composition

For the demonstration of cell removal, histology
(HES staining) remains the standard method of
validation (Luc et al. 2018; Arakelian et al.
2019). Furthermore, it is important to show that
the components of the ECM such as collagens,
elastin fibers, glycosaminoglycans (GAGs) and
other molecules are preserved after decellular-
ization. In two studies of rat and porcine eso-
phageal decellularization, collagen has been
quantified using a hydroxyproline assay kit
(Mallis et al. 2019) or stained with picrosirius red
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and analyzed by histochemistry (Arakelian et al.
2019). These studies showed that most of the
collagen was preserved, despite some loss of
structure. Elastin fibers have been stained with
orcein after esophageal decellularization, and it
was shown that they were highly preserved after
decellularization. Finally, GAG quantification
with dimethylmethylene blue assay (DMMB) or
staining with toluidine blue (Arakelian et al.
2019) showed that there was a major loss of these
molecules after decellularization. However,
immunostaining with specific antibodies showed
that the loss of GAGs was mainly related to
chondroitin sulfates, whereas the heparan sulfates
and dermatan sulfates were preserved (Arakelian
et al. 2019). These last two categories of GAGs
are the main ones involved in the biomechanical
properties of the matrix, as well as the binding
and the delivery of hormones and growth factors
(Kjellén and Lindahl 2018). It is important to
mention that the extent of loss of these molecules
highly depends on the nature and concentration
of the detergent, as well as the duration of the
treatment (Mallis et al. 2019). It is therefore
important to develop a protocol which allows an
efficient decellularization without a major loss of
structural molecules.

2.2.7 Biomechanical Properties

The biomechanical properties of the decellular-
ized esophagi have been evaluated and compared
to the native esophagi. The two methods that
have been used to evaluate the biomechanical
properties are burst pressure test and tensile
strength. In the decellularized esophagi, porosity
was detected which prevented the decellularized
esophagi from reaching a burst point (Luc et al.
2018). Tensile tests showed that in the transver-
sal orientation, the decellularized and native
esophagi had similar properties. On the other
hand, in the longitudinal orientation, the decel-
lularized esophagi were stiffer than the native one
(Luc et al. 2018; Arakelian et al. 2019). As for
in vivo implantation, decellularized esophagi
were easily handled for surgical procedures and
were resistant to sutures.
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2.2.8 Immunogenicity
and Biocompatibility

One of the main purposes of decellularization is
to reduce the immune reaction of the host to
avoid graft rejection and fibrosis. To study these
properties in decellularized esophagi, an in vitro
assay was developed based on the proliferation
of lymphocytes stained with fluorescent molecule
and analyzed by flow cytometry (Arakelian et al.
2019).This assay showed that the decellularized
esophagi did not induce lymphocyte proliferation
and indicated the absence of an acute
immunogenicity.

However, the immune reaction is a complex
mechanism and true immunogenicity should be
evaluated in vivo. In another study, this reaction
was evaluated by a subcutaneous implantation of
the matrix in non-immunosuppressed Winstar
rats (Luc et al. 2018). After 14 days, an induction
of inflammatory response with infiltration of
mononuclear cells was shown.

2.29 Cytotoxicity

As the products used for decellularization such as
detergents and a high dose of ATB are toxic for
cells, it is important to make sure that they are
efficiently removed after decellularization. It is
therefore necessary to develop assays to answer
these questions efficiently. In decellularized
esophagi, the main assays used so far were based
on the evaluation of cell viability, by direct or
indirect methods (Iso 10993-5-2009). In the
direct method, mesenchymal stromal cells
(MSCs) were seeded on the decellularized eso-
phagi and the viability and metabolic activity
were evaluated by neutral red assay and MTT
assay, respectively (Luc et al. 2018). In the
indirect method, the decellularized esophagi were
incubated with cell culture medium and the
supernatant was then used for Balb/3T3 cell
culture. The viability of these cells was evaluated
by flow cytometry after annexin V and 7AAD
staining (Arakelian et al. 2019).The difficulty
with a direct MTT assay is that the resulting dye
is absorbed by the matrix, and it is difficult to
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have accurate and reproducible results. The
indirect method allows to overcome this diffi-
culty and to evaluate the release of toxic sub-
stances by the matrix. Both methods can be used
for short term cytotoxicity evaluation. However,
the presence of detergents and toxic substances
should be further evaluated by mass spectrome-
try and long-term cytotoxicity should also be
evaluated in vivo.

2.3 Cell Seeding

2.3.1 Cell Types and Origin

Cell seeding on decellularized esophagi has been
explored in order to functionalize these matrices
and to evaluate the potential of cells to accelerate
tissue regeneration. For in vivo applications, it is
essential to question the cell types and their ori-
gin (autologous or allogeneic), as this choice
conditions the desired mechanism of action. The
first choice is to use differentiated cells, organ-
specific or not, such as epithelial cells (Ozeki
et al. 2006; Urbani et al. 2018; Asnaghi et al.
2009; Barron et al. 2016; Jensen et al. 2018;
Poghosyan et al. 2015; Nakase et al. 2008),
smooth muscle cells (Barron et al. 2016;
Poghosyan et al. 2015; Takeoka et al. 2019) and
endothelial cells (Takeoka et al. 2019). The
functionalization of the decellularized esophagus
by these cells can be induced either by a direct
colonization of the ECM by the seeded cells or
by paracrine effects. It has been shown that some
cells can indeed secrete factors that can attract
the host cells and accelerate tissue regeneration
(Marzaro et al. 2006; Xiuunl et al. 2009).

The other option is to use non-differentiated
cells. To date, no clear stem cell niche, able to
give rise to all the cell types, has been identified
in the adult esophagus (Seery 2002). Regarding
stem cells, another possibility is to seed the
matrix with MSCs either originating from adi-
pose tissue or bone marrow (Hass et al. 2011).
These cells promote the recruitment of patient
cells in situ through paracrine effects, accelerate
re-vascularization and reduce inflammatory and
scarring processes (Luc et al. 2018; Arakelian
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et al. 2019; Asnaghi et al. 2009; Jensen et al.
2018; Poghosyan et al. 2015; Takeoka et al.
2019; Tan et al. 2013; Francesca et al. 2018;
Catry et al. 2017). It was shown that bone mar-
row MSC seeded on a non-esophageal extracel-
lular matrix accelerated muscle regeneration and
re-epithelialisation in a patch esophagoplasty and
a full thickness esophageal replacement models
(Tan et al. 2013; Catry et al. 2017).

Beyond these mechanistic aspects, the origin
of cells can lead to significant constraints.
Indeed, autologous cells will require a sample of
the patient, isolation, amplification and then the
constitution of the substitute; while the use of
allogeneic cells will reduce the production time,
but raises the question of immunological rejec-
tion. Thanks to their immunomodulatory prop-
erties, MSCs are an interesting source for the
recellularization of decellularized esophagi.

2.3.2 Seeding Methods

The decellularized esophagus is a cylindrical
hollow tube with an inner and outer surface. The
challenge is therefore to decide which layer
should be seeded and how to distribute the cells
evenly on the matrix.

Cell density, as well as the duration of cell
culture in-vitro are further important parameters
to ensure the colonization of the matrix by the
cells and their infiltration. Five teams showed
very variable culture times, ranging from 7 to
21 days (Ozeki et al. 2006; Luc et al. 2018;
Arakelian et al. 2019; Urbani et al. 2018). The
number of seeded cells varies from one study to
another from 1.10° to several millions per cm?
(Ozeki et al. 2006; Luc et al. 2018; Arakelian
et al. 2019; Urbani et al. 2018). These parameters
could be different according to cell types and
their capacity to adhere and proliferate.

Some tubular esophageal substitutes were
seeded under static conditions. Cells were
deposited on the outer surface or were injected
inside the lumen using a pipette (Catry et al.
2017; Poghosyan et al. 2013). However, in most
studies, axial rotation was applied to homogenize
cell distribution on the matrix. This rotation was
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achieved either manually at regular time intervals
(Urbani et al. 2018; Barron et al. 2016; Jensen
et al. 2018) or using a continuous rotation system
(Ozeki et al. 2006; Arakelian et al. 2019; Urbani
et al. 2018; Asnaghi et al. 2009; Francesca et al.
2018). These systems include: (1) an axial rotary
bioreactor with partial liquid immersion of the
substitute (Asnaghi et al. 2009), (2) an axial
rotating stirrer with a filter plug tube (Arakelian
et al. 2019), (3) a rotating bioreactor with a full
liquid immersion of the matrix (Francesca et al.
2018) or (4) a Waverotor bioreactor (Thermon-
ics, Tokyo, Japan) (Ozeki et al. 2006). The
advantage of using a bioreactor for cell seeding is
that it allows a homogeneous cell distribution, as
well as reducing manual intervention and a better
control of oxygenation, pH and cellular meta-
bolism. These parameters are important for the
reproducibility of cell seeding and for a future
clinical application under GMP conditions.
Urbani et al. clearly demonstrated the benefits of
a dynamic culture (Urbani et al. 2018). However,
the animal model used being the rat, the trans-
position to a human-sized esophagus remains to
be demonstrated. Cell sheet technology is
another option of cell seeding on the decellular-
ized esophagi. This method has been explored
using MSCs. To summarize, MSCs were cul-
tured in a dish at a very high confluence and the
cell sheet was rolled around a decelluarized
esophagus (Luc et al. 2018). Cell sheet seeding
can be improved using thermoresponsive poly-
mers such as pNIPAM which allow a full cell
sheet detachment upon changing the temperature.
This method has already been validated in a
clinical trial for superficial lesions using epithe-
lial cells (Yamaguchi et al. 2017) and could be
used for seeding of decellularized esophagi.

2.4 Clinical Applications

Commercialized non-esophageal decellularized
natural ECM have previously been tested in
clinical trials for treating esophageal leaks with
decellularized skin or superficial esophageal
lesions with SIS patches to prevent stenosis
(Bozuk et al. 2006; Badylak et al. 2011).
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However, these methods have never been suc-
cessfully applied for full thickness circumferen-
tial replacement humans.

For the clinical application of decellularized
esophagi, it is important to consider the regula-
tory aspect which will be applied. In Europe, for
example, if the matrix is to be used alone,
without cell seeding, it could be considered as an
implantable medical device “IMD” or as “human
cells, tissues, and cellular and tissue-based pro-
duct (HCT/P)”. One of the main determining
criteria for choosing between these two cate-
gories is the origin of the decellularized matrix
and the nature of the protocol. A final decon-
tamination is mandatory for IMDs. A human
matrix can be treated both as an IMD and a
HCT/P, whereas a porcine decellularized esoph-
agus can only be treated as an IMD. In both
categories, it is necessary to show the sterility of
the matrix and both can involve an initial
decontamination with antibiotics and a final
sterilization using gamma rays or chemicals such
as ethylene oxide. For IMD, the quality controls
should be carried out to obtain a CE marking and
the matrix can be produced by pharmaceutical
companies. A HCT/P, however, should be pro-
duced in special accredited facilities such as
human tissue banks. In both categories, a long-
term conservation method should be validated
which could include the preparation of a frozen
matrix bank.

If the decellularized esophageal matrix is to be
seeded with cells before implantation, the final
product is considered as an advanced therapy
medicinal product (ATMP), corresponding to a
new category of regulations (https://www.ema.
europa.eu/en/human-regulatory/overview/
advanced-therapy-medicinal-products-overview).
This means that on top of evaluating the bio-
logical properties and the sterility of the matrix,
the nature of the cells and the culture conditions
on the matrix before and after in vivo implanta-
tion should be evaluated. The cells should be
isolated and cultured in a clinical grade cell
culture media, and the optimal cell density as
well as in vitro maturation time should be clearly
defined. Once implanted in the animal, the pos-
sible migration of the cells within different
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organs, as well as their tumorigenic potential,
should be carefully evaluated. Unlike MD and
tissue products, ATMPs need to be produced in
authorized special facilities such as platforms or
pharmaceutical industries.

For all the three categories, a pre-clinical trial
in a big animal model is necessary to show
the efficiency of the matrix in esophageal
replacement.

One of the challenges for in vivo esophageal
replacement is the method of vascularization. As
the esophagus is composed of microvessels
coming from the aorta and the surrounding
organs, it is necessary to find a vascularization
method to prevent organ necrosis. The option
that has been tested in previous esophageal tissue
engineering studies has been a maturation step in
the omentum (Luc et al. 2018; Poghosyan et al.
2015). These studies showed that a tubular sub-
stitute composed of SIS for esophageal replace-
ment was successfully vascularized by this
option. This method has also been used suc-
cessfully for the vascularization of a rat decel-
lularized esophagus and a porcine one. However,
long-term efficiency after organ replacement
should be evaluated in vivo.
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Abstract

Lung transplantation may be considered as a
final treatment option for diseases such as
chronic lung disease, pulmonary hypertension,
bronchopulmonary  dysplasia, pulmonary
fibrosis, and end-stage lung disease. The
five-year survival rate of lung transplants is
nearly 50%. Unfortunately, many patients will
die before a suitable lung donor can be found.
Importantly, the shortage of donor organs has
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been a significant problem in lung transplan-
tation. The tissue engineering approach uses
de- and recellularization of lung tissue to
create functional lung substitutes to overcome
donor lung limitations. Decellularization is
hope for generating an intact ECM in the
development of the engineered lung. The goal
of decellularization is to prepare a suitable
scaffold of lung tissue that contains an appro-
priate framework for the functionality of
regenerated lung tissue. In this chapter, we
aim to describe the decellularization protocols
for lung tissue regenerative purposes.

Keywords

Tissue engineering *+ Decellularization -
Extracellular matrix - Regenerated lung

3.1 History

The respiratory system is a biological system
consisting of specific organs and structures used
for gas exchange. It includes tracheal airways,
lungs, and blood vessels. Respiratory disorders,
including interstitial lung disease (ILD), pul-
monary arterial hypertension, cystic fibrosis, or
genetic condition such as o-antitrypsin disorder,
are potential causes of destructive lung tissue.
Nearly 1000-1500 lung transplantation are per-
formed every year in the United States (Orens

17

A. Kajbafzadeh (ed.), Decellularization Methods of Tissue and Whole Organ
in Tissue Engineering, Advances in Experimental Medicine and Biology 1345,

https://doi.org/10.1007/978-3-030-82735-9_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82735-9_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82735-9_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82735-9_3&amp;domain=pdf
mailto:kajbafzd@sina.tums.ac.ir
https://doi.org/10.1007/978-3-030-82735-9_3

18

and Garrity 2009). Tracheal defects or stenosis
may result from trauma, congenital abnormali-
ties, and pathologies such as infection or cancer.
Surgical approaches, including slide tracheo-
plasty and tracheal mobilization in pediatric
(Kocyildirim 2004) and adult patients have been
associated with some success. However, regard-
less of the approach, high rates of complications
and long term morbidities are common problems
in tracheal surgeries (Birchall and Macchiarini
2008). Lung transplantation is an ultimate ther-
apeutic approach for over 25 million patients
with end-stage lung diseases such as COPD, CF,
and IPF (Smith et al. 2012). Despite recent
advances in the treatment of lung disease, irre-
versible structural alterations in lung tissues
remain a significant problem for patients with
end-stage lung disease. To be eligible for a lung
transplant, patients must meet the following re-
quirements: In general, they must be physiolog-
ically 60 years of age or less for bilateral lung
transplantation and 65 years of age or less for
single lung transplantation. Although organ
transplantation is an effective treatment for
destructive lung diseases, there are disadvantages
to it, occurs months to years are:

Immunosuppression is a major concern of
organ transplantation (Prakash et al. 2015).
Moreover, significant short survival rates and
limited number of lung donors, demonstrate a
critical demand to explore new approaches
(Orens and Garrity 2009).

3.2 Lung Tissue Engineering

Tissue engineering can be considered as a bridge
among different medicine fields that relates the
essentials of engineering and basic science
towards the progress of biological substitutes that
restore, maintain, or improve function. Lung is
an organ with complex functional and structural
compositions (Badylak et al. 2011) and ECM
proteins such as laminin, fibronectin, collagen,
elastin, and so on (Prakash et al. 2015). Lung
regenerative engineering research appears to be a
potential method for addressing the limitation of
lung transplantation for organ failure ex vivo

M. M. Zolbin et al.

(Gilpin 2016). Ex vivo lung engineering is con-
sidered as a potential candidate for increasing the
availability of lung tissue for transplantation
(Gilpin 2016). Using patient’s own cells with
reducing immunosuppression problems, includ-
ing infection and neurologic disorders is known
as the advantage of engineered lung tissue
(Nichols et al. 2009; Reichenspurner 2005).
Importantly, using other acellular tissues such as
skin in lung tissue engineering follows a suc-
cessful approach in clinic (Crapo et al. 2011;
Wainwright 1995).

Another approach in engineering is creating
an appropriate biological scaffold for lung tissue
(Vertrees 2008). Currently, decellularization
methods have been used for preparing scaffold
for tissue engineering in many organs as well as
the lung. Decellularization is known as a new
technique for removing cellular remanents and
prepares intact whole organs, which is an
important characteristic of the three-dimensional
matrix for cellular migration (Jensen 2012;
Petersen et al. 2010). During lung decellulariza-
tion, the ECM cells will be removed from the
matrix, and all ECM proteins and growth factors
will be preserved in the lung in order to protect
the native scaffold for the migration, prolifera-
tion, and differentiations of stem cells (Prakash
et al. 2015).

Furthermore, researchers focus on engineered
airway by utilizing a tracheal scaffold made from
a synthetic polymer (Omori 2005) or decellu-
larized tracheal allotransplant (Macchiarini
2008). Available studies have revealed that
acellular scaffolds can be prepared from species,
including non-human primates, pigs, rodents,
and humans (Bombelli 2018). There are various
types of decellularization methods, including
enzymatic, physical, and chemical methods
(Petersen 2009, 2012). Also, several protocols
are existed for obtaining scaffolds of acellular
human lung (Gilpin 2014; Nichols 2013,2017;
Booth 2012; Petersen 2010; Balestrini 2016;
Skolasinski and Panoskaltsis-Mortari 2017; Uhl
et al. 2017; Wagner 2014; Tebyanian 2019). The
aim of this chapter is an overview of the tech-
niques of decellularized lung tissue engineering
purposes.
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3.3 Material and Methods

The study population can be evaluated in several
species including rats, rabbits, monkeys, and
human embryos which have been successfully
decellularized in the laboratory.

3.4 Scaffold Preparation

Decellularized lung tissue can be prepared by
harvesting the tissues from rat, rabbit, monkey,
porcine, and animal models. Different types of
detergents were successfully used for this goal,
including Triton X-100 (nonionic), sodium
deoxycholate (anionic), sodium dodecyl sulfate
(SDS, anionic detergent), 3-[(3-cholamidopropyl)
dimethyl ammonio]-1-propanesulfonate (CHAPS,
zwitterionic detergent), and Tween (nonionic) in
our center. Here we discussed some of species and
in Table 3.1 different protocols are demonstrated in
detail.

3.4.1 In Rat Lung Model

a pulsatile dynamic flow was utilized for the lung
decellularization approach. Upon removal, the
lung was cannulated via trachea and was con-
nected to a solution containing 0.01% heparin
in 0.21 distilled water (at 38 °C for 1h
(0.05 ml/min). Then, phosphate buffered saline
(PBS) (1 h) and 0.05% sodium dodecyl sulfate
(SDS) (2 h) have been applied for washing the
specimens (Kajbafzadeh 2015).

3.4.2 In Human and Porcine Model

after washing the lung section with 2X phosphate
buffered saline (PBS) (15 min), using one of the
following protocols can be done for lung tissue
decellularization; (1) washing with 1.8 mM SDS
(four—2 h), each followed by 2X PBS and
dH20 (15 min), (2) washing with 1.8 mM
CHAPS (four—2 h), each followed by dH20
and 2X PBS (15 min), (3) washing with 3%
Tween-20 (2 h), then washing with 4% sodium
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deoxycholate (2 h), and finally washing with
0.1% peracetic acid (1 h). All slices were sub-
jected to dH20 washes and alternating 1X PBS
(2 of each). Finally, suitable sections of tissue
can be considered as a good candidate for tissue
evaluation.

3.4.3 In Rabbit Model

Sodium dodecyl sulfate (SDS) in phosphate
buffered serum (PBS) has been added to lung
specimens (24 h), After applying 1% Triton X-
100 solution in PBS (12 h), and placing the
specimens in PBS (2 h). The specimen was
placed in PBS for 2 h. Finally, for sterilization,
the specimens were kept in 70% ethanol (30 min,
at 37 °C) (Gilbert et al. 2006). In the monkey
model, the lung transverse section has been
washed with phosphate buffered saline (PBS)
and followed by the decellularization solution of
0.1% (v/v) diluted in sterile distilled water at 4 °
C (Nakayama 2011). Lung decellularization was
continued by detergents such as SDS and Triton
X-100 and three detergent concentrations of v/v
(0.01%, 0.1%, and 1%) carried out at 4 °C.
The solution has been changed 8 h after ini-
tial harvest and every 48 h until tissue trans-
parency (approximately 20-24 days for lung
tissues).

3.5 Casting and SEM of Casts

In this section, foam wound dressing (Cavi-Care;
Smith & Nephew, Victoria, Australia) can be
used for molding of native and decellularized
lungs in order to compare airways structure
before and after decellularization. The liquid
components have been mixed and injected via
the trachea into the lung in order to form a white
foam which conformed to the lung microstruc-
ture. Both native and decellularized lungs were
kept at room temperature for 24 h to allow all the
injected materials to be dried. After the injected
foam was hardened, lungs were kept in 90%
acetic acid for 10 min in order to digest the
tissue.
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3.6 SEM

SEM can be used for detecting of the internal
structure of terminal alveoli in the casts of both
native and decellularized lung tissue. Samples of
native and decellularized lung keeping in 2.5%
glutaraldehyde (at 4 °C 1.5 h), were kept in PBS
at 4 °C for 1.5 h. After washing, graded ethanol
series have been used for 9 h in order to have
dehydrated samples. In order to achieve electrical
conductivity, a layer of gold (approximately
2 nm) was used for coating the tissue samples.

3.7 Maechanical Tests

Decellularized and native lung tissues can also be
analyzed by Instron 5848 equipped with a 10-N
load cell. Lung tissue sections (5-8 mm in length
and 4-16 mm? in cross-sectional area) were used
to cyclically prestretched (10 cycles to 20% strain).
Tissue stretching was continued until failure to
assess ultimate tensile strength (UTS) (Petersen
2012). A tensile testing device is used to identify
the stability of decellularized lung scaffold and in
order to compare it to the natural lung. Samples of
natural and decellularized (2. 2 cm thickness) were
subjected to uniaxial force with an acceleration
rate of 4 mm/min until the disappearance of the
load was identified by the device (Kajbafzadeh
2015). Using tissue dimensions, engineering strain
and engineering stress were calculated from dis-
tance and force. The curve of stress vs strength
was drawn; the maximal point in the curve
demonstrated maximum pressure tolerance of
natural and decellularized lung tissues.

3.8 DNA Staining
and Quantification

The DNA content of decellularized lung tissues
in lung specimens (O’Neill 2013), was suggested
to be quantified by applying the Quant-iT Pico-
Green dsDNA assay kit. The samples were
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weighed and kept in 125 mg/mL papain (Sigma)
overnight (at 60 °C). Measurment of fluores-
cence was done at 520 nm with excitation at
480 nm. DNA was qualified using a standard
curve prepared with A-phage DNA and normal-
ized to lung wet weight. In rat lung, blue-
florescence  4’,  6-diamidino-2-phenylindole
(DAPI) were used to visualize double stranded
DNA (dsDNA). In rat lung, according to Laird
et al. (1991), lung samples were homogenized in
a solution containing trypsin (0.25%) and EDTA
(1 mM) in deionized water. After incubation of
the homogenate with stirring (at 37 °C), Cell
lysis was done using a solution containing
200 mM NaCl, 2% SDS, 5 mM EDTA, and
100 mM Tris—HCI (pH 8.5, for 24 h at 55 °C).
DNA extraction was continued with isopropanol
and dissolving in a solution of 0.1 mM EDTA
and 10 mM Tris HCl. DNA amount was mea-
sured by spectrophotometry at 260 nm.

3.9 Collagen

In order to evaluate the efficiency of the method
and tissue structure presence, lung tissues were
weighed and kept in pepcin (0.1 mg/mL pepsin
overnight at 4 °C). Then, according to this pro-
cedure, Sircol collagen assay kit can be used for
collagen quantification. In another model,
according to Bergman and Loxley (1970) and
Stegemann (1967) (Bergman and Loxley 1970),
the amount of hydroxiprolin was suggested as an
indicator of collagen contents. Following
hydrolyzing the samples in 5 ml 6 N HCI for 14—
16 h (at 110 °C), Chloramine—T (0.5 ml) solu-
tion was added to the samples. Then, samples
were incubated at room temperature (20 min).
Finally, Ehrlich’s (Sigma-Aldrich Co. Radeberg,
Germany) (1 ml) solution was added to the sam-
ple. The resulting solution was incubated for
20 min at 65 °C. OD absorbance at 543 nm was
assessed with a spectrophotometer. Concentration
of hydroxyproline was expressed as mean £+ SD
K g/mg of each tissue.
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3.10 Sulfated Glycosaminoglycans

Dimethylene blue dye assay is recommended for
the quantification of sulfated glycosaminogly-
cans (SGAG) in the lung. After weighing, the
samples were digested in 125 pg/mL papain at
60 °C (overnight) and then were mixed with
dimethylene blue dye (1:8 ratio). The absorbance
was measured at 595 nm immediately and was
normalized to the tissue sample wet weight.

3.11 Elastin

Elastin in the sample was quantified by fastin
elastin assay Kit. The sample was weighed and a-
elastin extraction was done with the combination
of three hot 0.25-M oxalic acid extractions in
each sample (35 mg tissue per 1 mL solution).

3.12 Cell Culture and Seeding

Lung tissue preparing from new born rats were
chopped into nearly 1 mm ? cubes using crossed
scalpels. Tissue was incubated in type I colla-
genase (0.1%) for 30 min at 37 °C with shaking.
10% fetal bovine serum was used for neutral-
ization of the solution and then the solution was
transferred into a centrifuge tube and centrifuge
at 5 min at 172 x g. After removing the super-
natant, the pellet was re-suspended in approxi-
mately 5 ml of Dulbecco’s modified Eagle’s
medium (DMEM) high glucose +15% FBS and
then seeded in a 25 cm 2 flask. After 48 h, the
medium was replaced. Subcultured cells were
done when the cell culture reached 80-90%
confluence (Kajbafzadeh 2015). In fibroblast
culture, Human lung fibroblasts ((MRC-5s) were
cultured in Dulbecco’s modified Eagle medium
(DMEM) with 1% pen/strep and 10% fetal
bovine serum (FBS). The hMSCs were cultured
in DMEM/F12 with 1% pen/strep and 10% FBS
(1:1). Following the 70-80% cell confluency
enreachment, the cells were seeded onto decel-
lularized tissue punches with the density of 2.5 x
104 cells/mL, and were cultured for 7 days
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(O’Neill 2013). In another model, after preparing
the blastemal cell, the scaffold was kept in the
blastemal ring. The scaffold with the blastema
ring was together transferred to a 12 well-plate in
Dulbecco’s Modified Eagle’s Medium and was
incubated at 37 °C in 5% CO, (Shahri 2013). In
monkey lung seeding, scaffolds were cut into
8 mm diameter cylenderical biopsy and were
seeded with 5 x 10° undifferentiated hESCs.
Seeded scaffold was suspended on PET track-
etched membrane cell culture inserts. Then,
scaffolds were cultured in Dulbecco’s Modified
Eagle’s Medium high glucose with 10% fetal
bovine serum (FBS), 1% L-glutamine and 1%
pen-strep at 37 °C and 5% CO,. Finally, 48 h
after seeding, it has been transferred to new
culture media in order to quantify non-adherent
cells remaining in the original inserts with
viability assessed with trypan blue and a
hemacytometer.

3.13 Bioreactor

The cells located in the ECM scaffold were
needed to maintain in the organ-specific biomi-
metic environment after the cell attachment. For
this purpose, the decellularized lung scaffolds
were kept in petri dishes containing DMEM with
either GFP negative or GFP positive lung cells.
The cells were seeded at the density of 2 x 10*
cells/cm?.

Cells and scaffolds were transferred to the
close system bioreactor, which was located in an
incubator for seeding of lung cells. A glass bottle
is connected to a pump with two ports on the cap,
one port for circulation of the medium and the
other for trachea cannula, was used for scaffold
suspending.

The medium was circulated 2 min per hour
with 58 min of resting time to facilitate cell
adherence to the scaffold. On the first day, 70 ml
medium containing 2 x 10° cells were trans-
ferred via trachea cannula into the scaffold with a
flow rate of 5 ml/min at 37 °C in a 5% CO,
atmosphere. On the next day, the medium was
centrifuged and remained cells were added to the
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other 20 x 10° lung stem cells. Cell seeding on
the matrix was conducted for 15 consecutive
days and the medium was every three days.
A shaker can be used in all steps in order to
prevent cells adhesion to the container walls.

3.14 Histological Evaluation

To evaluate the efficacy of decellularization pro-
tocol, tissue sections were stained with Masson’s
trichrome, IHC, and Hematoxylin & Eosin (H &
E), stainings. The pieces of native and decellu-
larized lung (4 x 4 mm) were fixed in 10%
neutral formalin (24 h at room temperature) were
washed in distilled water, dehydrated via graded
ethanol, and embedded in paraffin. After dehy-
dration, Hematoxylin eosin and IHC staining will
be ready to be performed for tissue evaluation.
Briefly, after fixing in 4% paraformaldehyde,
samples were immersed in Triton X-100 diluted
1:100 in PBS to reduced penetration of the
antibody. After blocking with 1% BSA/PBS,
samples were incubated with anti-laminin in
order to tissue architecture preservation. H & E
staining and IHC staining with thyroid tran-
scription factor-1 (anti-TTF1) and anti-GFP
antibodies are proposed for assessing the effi-
cacy of the mentioned protocol for regenerating
recellularized scaffold (Kajbafzadeh 2015).

Fig. 3.1 Sheep and human
embryo decellularization
approval tests H&E and
Trichrome staining

Sheep

Human

Embryo

Briefly, samples were stained in 0.1% Sirius
red solution in a saturated picric acid, and then
samples were rapidly washed in 0.01 N HCL
Under polarized light, type I collagen and type III
collagen fibers turned into strongly birefringent
yellow-red and weakly birefringent and green-
ish, respectively. Picro Sirius red staining can be
applied for collagen typing.

In the human and porcine model, the distri-
bution of matrix proteins was also suggested to
be evaluated by the use of Alcian blue (proteo-
glycans), Masson’s trichrome (collagen), and
Van Gieson’s (elastic fibers) stains. Of note, the
distribution of collagen IV, laminin, fibronectin,
and elastin in native and decellularized can
be assessed by IHC (O’Neill 2013) (Figs. 3.1
and 3.2).

3.14.1 Histomorphological

Evaluation

The main staining method for the evaluation of
the cells’ nuclei morphology was suggested to be
evaluated using a fluorescence microscope at an
excitation wavelength of 350 nm. 4'-6-

Diamidino-2-phenylindole (DAPI) was known
to form fluorescent complexes and showing
fluorescence specificity with natural double
stranded DNA. The cells were washed with PBS
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Rabbit

Fig. 3.2 Different species
lung Acellularization: upper
row represent the Rabbit,
Human Embryo and sheep
decellular tissue and second
row represents the
immunohistochemistry
staining of the lung tissue
after decellularization,
trichrome stating to
demonstrate the collagen
fibers integrity in
decellularization process

Collagen

and re-suspended in PBS containing 0.1% Triton
and incubated on ice (10 min). Then, cells were
spun down and re-suspended at 5000 cells/pl in
4% PBS paraformaldehyde solution containing
10 pg/ml DAPI. The suspension (10 pl) was
placed on the slide and then covered with a
coverslip. The cell’ morphology is ready to be
assessed by fluorescence microscope. Another
main staining is immunohistochemistry staining.
Lung tissue can be stained with H&E and
trichrome and further confirmation can be con-
ducted with specific ECM markers such as
laminin (Fig. 3.1).

3.15 Radiography, MRI, and CT
Scan

In order to verify that the structure of bronchial
trees was preserved in the scaffold of lung tissue
after decellularization, dimeglumine gadopente-
tate was injected into the trachea to obtain ter-
minal alveoli visualization on the radiograph.
Radiography (antero-posterior) can be performed
after 2 min injection of gadopentetate dimeglu-
mine solution.

Superconductive MRI and CT scan can be
performed for comparing the structure of natural
and decellularized lungs. Briefly, specimens

Human Embryo Sheep

Laminin Trichrome

evaluated by MRI were soaked in Magnevist
(Gadoteric acid) 0.5 mmol/ml for 2 h before
analysis. Also, samples subjected to CT were
kept in PBS. MRI scanner was used for three-
dimensional spoiled gradient recalled images
(GRASS) to create ultrathin serial sections with a
special high signal-to-noise ratio. The images
were prepared using pulse sequences (TR = 30—
50 ms, TE = 2-8 ms), flip angle (30° d), and
echo train length (8 moderate). The data were
downloaded to an independent workstation
which was equipped with volume rendering
software. Multiplanar re-formation and 3D
reconstruction can be performed to reformat the
achieved images.

3.16 Limitation

The lung is one of the best sites to test the
implantation of engineered tissues in the body. It
is well known that oxygen diffusion through
synthetic and natural lung matrices depends on
the matrix ultrastructure and can be varied
between materials (Androjna 2008). Thus, the
decellularized lung is the best matrix to support
lung tissue engineering. However, there are some
limitations that we have to consider before using
decellularized extracellular matrix. We have to
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consider the impact of decellularization process
on the lung tissue matrix. It has been suggested
that the matrix structure may be degraded during
decellularization process (Gilbert et al. 2006). On
the other hand, the biological efficacy of recel-
lularized scaffolds has not been examined in vivo
studies. Moreover, evaluation of surfactant pro-
tein and measuring of gas exchange is needed to
be performed in order to confirm the functional
property. Importantly, many unresolved issues
have been remained such as the ideal duration of
recellularization process and decellularization
method, necessary cell types, and minimum
numbers of cells for recellularization in vivo.

3.17 Conclusion

To address the shortage of lungs for transplan-
tation, many approaches have been evalu-
ated. Decellularized lung with the preservation of
lung ECM has been considered as an ideal
scaffold for cell seeding. Lung cells seeding into
decellularized lung scaffolds with the functional
properties of the cells may confirm the engi-
neered lung tissue process. Thus, the recellular-
ization of lung regeneration may be an effective
way for the treatment of lung diseases in the
future.
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Abstract

Since lung tissue is not able to be recon-
structed after substantial injury, lung trans-
plantation often is the only alternative for
treatment. Antibiotic-resistant organisms that
remain in donor lungs causing infection in the
immunosuppressed recipient are among the
complications  following transplantation.
Development of strategies for whole lung
regeneration is a pleasing choice particularly
in patients with end-stage lung diseases.
Reconstruction of lung tissue in vitro for
transplantation received increased attention
which could deal with the shortage of donor
organs. Recent advancements in the field of
tissue engineering and regenerative medicine
have paved the road for beneficial alternative
therapies. Our group has extensive experience
with regard to the structure of the lung tissue,
which makes us to our decision to continue
with the preparation of lung, with the aim of
developing a new ECM scaffold. Herein, we
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aim to review the state-of-art and the tissue
engineering and regenerative medicine tech-
nology highlighting the major achievements
toward the production of a bioengineered lung
obtained decellularization and recellulariza-
tion techniques. We have strong hopes that
recent developments in the engineering of
lung will lead to similar breakthroughs in the
engineering of distal lung components in the
future.

Keywords

Decellularization * Recellularization *+ Lung
matrices + Scaffold - Lung stem cells

4.1 History

The lung is an extremely complex and dynamic
organ with number of diverse cell types with
distinct functions. Respiratory diseases have
been mentioned as the third leading cause of
death globally which is predicted to augment in
the near future. In addition, more than
€380 billion annually is dedicated to respiratory
disease in the EU (Kreuter et al. 2018). In the
field of tissue engineering, both synthetic scaf-
folds such as polyhedral oligomeric silsesquiox-
ane poly (carbonate-urea) urethane (POSS-PCU),
polyglycolic acid (PGA), pluronic F-127 and
biologically derived scaffolds have distinct pros
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and cons. These scaffolds are considered to have
improved storage stability and can be constructed
with excellent accuracy; however, most are
deficient in providing biological possessions
such as native integrin binding sites and bioac-
tive cues for the purpose of cellular attachment,
proliferation and differentiation (Santis et al.
2018). In addition, synthetic polymers are not
successful in driving the differentiation of cul-
tured cells and will not direct seeded cells into
required fate (Mondrinos et al. 2006). Due to the
complex 3D structure of the parenchymal lung
tissue and interconnected pores need for profi-
cient gas exchange (Weibel 2017), manufactur-
ing a scaffold with geometrical parameters
suitable for parenchymal lung tissue is difficult.
A variety of diverse skills such as decellular-
ization for biological scaffolds, casting, electro-
spinning, cryogelation, and microfabrication
techniques has been recently introduced. The
purpose of current tissue engineering and, indeed,
regenerative medicine as a translational approach
is to reconstruct nonfunctional tissues and organs
after disease or traumatic injury (Mandrycky et al.
2017). Decellularized lung scaffolds are obtained
by eliminating the cellular material from natural
tissue as well as maintaining the macroscopic
structure and extracellular matrix (ECM) compo-
sition via the method of decellularization (Wag-
ner et al. 2013; Gilpin et al. 2016; Calle et al.
2017). The ECM is one of the chief components
of the microenvironment which is able to direct
migration, proliferation and differentiation of
cells after recellularization process (Crapo et al.
2011; Wagner et al. 2014a; Fischer et al. 2011).
Remained microscopic ECM proteins and asso-
ciated carbohydrates after decellularization pro-
cess are biologically active and serve as a surface
for further cells attachment and also as a sig-
nalling platform for the related cells. These cells
within an ECM contains combinations of ECM
proteins and glycosaminoglycans (GAGs) which
provide structure support and help direct repair
and regeneration after damage (Burgstaller et al.
2017). Lung biofabrication is based on seeding
cells into a decellularized scaffold and on cultur-
ing the cells in an especially designed bioreactor.
The most advanced method uses whole lung

S. Sabetkish and A.-M. Kajbafzadeh

organ as the scaffold. Whole organs obtained
from donor or cadavers can be decellularized and
then re-seeded with a patient’s own cells (Bady-
lak et al. 2011; Scarritt et al. 2015). Furthermore,
there are encouraging reports of recellularization
and generation of functional lung organ. The first
successful tissue-engineered airway replacement
was performed in a patient in 2008, by implan-
tation of a tissue-engineered trachea to maintain
lung function of a patient with end-stage left-main
bronchus malacia (Macchiarini et al. 2008).
Douglas et al. primarily described the first 3D
culture of lung cells. In their study, they demon-
strated rat fetal lung cells were cultured on a
collagen matrix in order to study lung epithelial
cell biology (Douglas et al. 1976). Decellular-
ization of a biocompatible whole lung scaffold
with terminal preserved alveoli is a novel
approach to functional lung regeneration which
was performed in our center. The results of the
previous study done in this center by the senior
author (AMK) demonstrated preservation of
micro-architecture and terminal alveoli after
decellularization process of rat three-dimensional
lung scaffold which may be able to increase the
probability of an effective cell seeding process
(Kajbafzadeh et al. 2015a). Due to previously
obtained successes in whole lung tissue engi-
neering, this technique can be considered as a
potential therapeutic approach for further organ
transplantation.

In this chapter, we are about to converse the
lung as a subject for tissue engineering paradigm,
discuss about the recent developments made in
the fields of lung tissue-engineering and stem
cells, as well as emphasize the challenges which
we may confront with when applying such con-
structs in a clinical setting.

4.2 Materials and Methods

4.2.1 Decellularization Technology

The choice of the reagents in decellularization
method is critically important, due to the fact that
they can harm the microstructure and composi-
tion of the obtained scaffold and may indirectly
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affect the mechanical properties of the final
product. Frequent techniques for decellulariza-
tion of lungs consist of different physical (os-
motic shock, sonication, freezing—thawing),
ionic, chemical and enzymatic methods (trypsin,
endo- and exo-nucleases) (Wagner et al. 2013).

Chelating agents, including ethylenedi-
aminetetraacetic acid (EDTA) and ethylene gly-
col tetraacetic acid (EGTA), are able to detach
cells from ECM. EDTA and EGTA are regularly
applied in combination with trypsin. The com-
bination of these two agents is recommended in a
multistep protocol as they are not particularly
effective if used alone (Tudorache et al. 2007).
Trypsin as the most frequently used proteolytic
enzyme, in decellularization protocols, will
remove ECM components, and still supports EC
growth in vitro. However, the duration of expo-
sure to trypsin—EDTA treatments should be
limited in order to minimize the disruptive effects
on the ultrastructure of the ECM.

Detergent-based perfusion technique has been
prevalently used to produce decellularized lung
scaffolds. Triton X-100, sodium deoxycholate
(SDC), sodium dodecyl sulfate (SDS), and
3-[(3-cholamidopropyl)  dimethylammonio]-1-
propanesulfonate (CHAPS) are among the com-
monly used detergents, which are used with or
without hypertonic sodium chloride and DNase
and/or RNase solutions (Wagner et al. 2013). In
our center working with more than 24 organs, we
eliminate the use of DNase and RNase in the
decellularization process, due to the fact that
these enzymes remain in the scaffold and can
raise toxicity, which may result in limited cell
seeding. In addition, the concentration and vol-
ume of the mentioned detergents are dissimilar in
different protocols and species. In our center, we
were able to produce a biocompatible three-
dimensional (3D) lung scaffold with comparative
histological and biomechanical properties of
native lung ECM, using a perfusion-based
decellularization method (Kajbafzadeh et al.
2015a).

We should be able to use the most satisfactory
decellularization protocol to obtain the best his-
tological features and reach to satisfactory con-
tent of both ECM and other retained proteins.

However, it still remains vague how different
lung decellularization methods are able to affect
recellularization of the implanted scaffold
(Brown et al. 2009; Badylak et al. 2008). Table 1
summarizes the type of the scaffold and different
decellularization and recellularization processes
used for lung tissue (Kajbafzadeh et al. 2015a;
Kuttan et al. 1981; Petersen et al. 2010; Ott et al.
2010; Wallis et al. 2012; Booth et al. 2012;
Nichols et al. 2013; Sokocevic et al. 2013;
Wagner et al. 2014b; Gilpin et al. 2014; Ren
et al. 2015; Zhou et al. 2018).

4.3 Tests to Confirm the Efficacy
of the Decellularization Process

Macroscopic appearance alone is insufficient to
verify the extent of decellularization. Absence of
visible cellular or nuclear components on histo-
logical examination (DAPI or H&E), less than
50 ng dsDNA per 1 mg of dry weight of the
ECM scaffold, and remnant DNA shorter than
200 bp should be taken into consideration
(Crapo et al. 2011). However, the criteria of
cytocompatibility sterility, composition, and
mechanical properties of the decellularized scaf-
folds should be also taken into account. Mass
spectrometry proteomics is used to characterize
the composition of decellularized scaffolds. But
large amounts cytoskeletal elements and cell-
associated proteins are still remained in the
scaffold after decellularization (Wagner et al.
2014a). Scanning electron microscopy (SEM) is
a valuable examination used to determine the
detailed internal structure of terminal alveoli in
lung tissue after the decellularization process.
Tensile test is also used to measure the stability
of the decellularized lung scaffold and to com-
pare it to the natural one. To verify the mainte-
nance of the structure of the bronchial branch in
the scaffolds after decellularization, radiography,
MRI and CT scan are also valuable examina-
tions. As previously described (Neuman and
Logan 1950), the collagen contents of the native
and decellularized lungs can be assessed by
determining the amount of hydroxyproline.
Picrosirius red staining and Russell-Movat’s
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Table 1 Previous studies regarding advances within the field of in-vitro and in-vivo lung tissue engineering

Species Method of Results Reference
decellularization/Recellul
arization
Ultrastructurally
Perfusion-based heterogeneous
Alveolar consisting of
basement amorphous basement
membrane 4% Triton X-100 /SDC membranes and 21
(various origin) interstitial collagen
and microfibrillar
components
Perfusion-based
Complete cell and
0.05% SDS DNA clearance,
preservation of ECM
Rat lung components, 17
Seeded with GFP positive preservation of
lung cells micro-architecture
and terminal alveoli
Perfusion-based Repopulation of lung
as viable strategy for
CHAPS lung regeneration
Rat lung showing the 22
Seeded with pulmonary implanted lung into
epithelium and vascular rats could
endothelium in- vitro and participated in gas
in-vivo exchange
Perfusion-based
0.1% SDS Gas exchange in 23
Rat lung vivo forupto 6 h
after extubation.
Seeded with epithelial and
endothelial cells in- vitro
and in-vivo
Slices
Complete cells
0.1% Triton-X 100, 2% removal and no
SDC, NaCl, DNAse significant
Mouse lung differences between 24
0.1% SDS detergent-based
protocols for mouse
CHAPS lung de- and
recellularization
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Table 1 (continued)

Seeded with bone

marrow—derived MScs or

with C10 mouse lung
epithelial cells in-vitro

Human lung

Slices

detergents, salts, and
DNase

Complete cell and
DNA clearance,
preservation of ECM
components, while
retaining native
dimensionality and

lung

Reseeded with human
iPSC-derived lung
progenitor cells in- vitro
and in-vivo

cultured on
decellularized lung
slices demonstrated
proliferation and
lineage commitment

stiffness of lung 25
Seeded with fibroblasts in- tissue, ability to
vitro induce angiogenesis,
conservation of the
framework of the
innate vasculature,
and immunogenicity
Slices Cellular material
Human and removal+
porcine lung freezing and 2% SDS preservation of ECM 26
proteins and the
native vascular tree
Slices Production of
decellularized
Mouse lung Triton/SDC, salts, DNase, scaffold with 27
MgS04, CaCl2 retained ECM
components
3D lung segments Small segments to
retain 3D lung
Triton/SDC, salts, structure in acellular
Human and MgS04, CaCl2, DNase, scaffolds from large 28
porcine lung PAA animals and human
origin for
physiologic
recellularisation
Slices and whole organ
Constant-pressure Cellular material
perfusion removal and
preservation of ECM
Rat and human 0.1% SDS proteins/ cells 29
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Porcine lung

progenitor cells

Perfusion-based Complete
Rat and human 1% Triton X-100/ decellularization and
lung 0.1%SDS regeneration of
functional pulmonary 30
Reseeded with endothelial vasculature
and perivascular cells
derived from induced
pluripotent stem cells in-
vitro and in-vivo
Sequential single-pass Generation of
perfusion pulmonary
vasculature with
Triton/ 0.5% SDS mature endothelial 31

Reseeded with human
airway epithelial

lining and sufficient
anti-thrombotic
function/. Creation of
a living, functioning
gas exchange graft.

pentachrome staining are another employed
techniques for collagen typing, and demonstrat-
ing different constituents of connective tissue
including collagen, elastin, muscle, mucin and
finbrin, respectively (Khorramirouz et al. 2014;
Kajbafzadeh et al. 2015b, 2006). Casting of
decellularized lungs has been reported firstly in
our previous study (Kajbafzadeh et al. 2015a). In
our study, both native and decellularized lungs
were molded with special foam in order to
evaluate the airway structure of lung before and
after decellularization by using foam wound
dressing (Cavi-Care; Smith & Nephew, Victoria,
Australia). This casting technique may be useful
for developing useful engineered whole lung
following the cell seeding process by autologous
cells.

4.4 Cell Seeding

In addition to recognizing techniques to manu-
facture appropriate scaffolds for lung tissue
engineering, a supplementary challenge is in
finding cell sources and obtaining sufficient cell
numbers. Selecting the right cell types responsi-
ble for fundamental functions of the lung is still

the biggest uncertainty in the path toward regen-
erating lung organ. Therefore, the use of decel-
lularized lungs is challenging due to the complex
3-D structure of the lung organ and its various
functions. As a result, recellularization technique
of lung tissue in a spatiotemporally and func-
tionally appropriate manner is difficult due to the
large number of cell types with various func-
tions. The decellularized lung could recellularize
with autologous cells or an allogeneic source.
A careful selection of a cell source is a crucial step
for the generation of precise biological functions.
Embryonic stem cells (ESC) (Ali et al. 2002;
Coraux et al. 2005; Samadikuchaksaraei et al.
2006; Rippon et al. 2006), endogenous pul-
monary stem cells (Cortiella et al. 2006; Majka
et al. 2005), extrapulmonary stem cells (Wong
et al. 2009; Sueblinvong et al. 2008; Jiang et al.
2002), and mesenchymal stromal, or stem cells
(MSCs) (Goolaerts et al. 2014; Gotts and Matthay
2012; McAuley et al. 2014), are among the
probable cell sources for engineering of func-
tional lung replacement tissues and for any stem
cell-based therapy.

iPS cells are considered as an alternative
approach to endogenous progenitor cells. Recent
studies have demonstrated the potential of human
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iPS cells differentiation into cells expressing a
distal pulmonary epithelial cell phenotype and
will be re-seeded into decellularized human lung
scaffolds (Huang et al. 2014; Ghaedi et al. 2013).

ESCs are flourishing to produce upper airway
epithelial cells and AECII-like cells which are
able to differentiate into alveolar epithelial type II
cells (AECI) (Garcia et al. 2012). It has been
verified that the microenvironment surrounding
the ESCs has the ability to affect the cell fate.
The capability of pulmonary mesenchyme on
differentiation of murine ESCs has been exam-
ined in the study of Vranken et al. (2005). The
type of mesenchyme can also play a crucial role
in plasticity of pulmonary epithelium (Shannon
and Hyatt 2004). In addition, growth factors
known to be sequestered by the lung ECM are
required for differentiation of pluripotent stem
cells into proximal or distal lung epithelial cells.
The capability of the re-seeded cells to survive,
proliferate and differentiate is vital for evaluating
short- and long-term cytocompatibility of the
scaffolds (Shojaie et al. 2015). Several studies
have depicted that single cell suspensions from
fetal lung homogenates and re-endothelialized
with immortalized endothelial cell lines or iPS-
derived endothelium and epithelium can be used
for recellularization or transplantation of the lung
organ (Ghaedi et al. 2018). Directed differentia-
tion protocols have introduced distal lung cells
from human iPS cells (Ghaedi et al. 2013) and
proximal airway cells from human ES -cells
(Wong et al. 2012).

MSCs have the ability to be isolated from
bone marrow or the fat of patients as peripheral
tissues, expanded in large scale, and then is dif-
ferentiated into other cell types in culture. Hence,
autologous MSCs for patient-specific organ
engineering (McAuley et al. 2014). However,
realization of this potential is dependent on
capability of MSCs to recapitulate anatomical
and functional properties of the diverse lung cell
types. Several studies have also demonstrated
that MSCs can attach and proliferate in lung
scaffolds (Nichols et al. 2013; Daly et al. 2012;
Mendez et al. 2014). It is of great importance to
use one or more types of mesenchymal or stro-
mal cells in order to support scaffold

maintenance (Barkauskas et al. 2013). For better
engraftment of transplanted embryonic epithelial
lung progenitor cells in mice (Rosen et al. 2015)
and also in order to enhance the barrier function
of an endothelial-reseeded decellularized lung
(Ren et al. 2015), adding stromal cells to lung
cultures would be of great importance.

Although obtaining adult lung cells from
surgical resections, and transplant recipients, for
reseeding of scaffolds seems easy, proliferative
capacities of these adult cells are restricted and
are therefore improbable to be practical for
reseeding large surface areas of a bioengineered
human lung (Nichols et al. 2013; O’Neill et al.
2013; Sullivan et al. 2012).

Human amniotic fluid stem cells (hAFSCs) are
applied for lung tissue engineering as a prosper-
ous and capable resource for primitive cells. It has
been verified that these cells play a crucial role in
differentiating into pulmonary lineages following
lung damage. As these cells can be obtained from
umbilical cord blood cells, immediately after
birth, they can be widely used for correction of
congenital lung abnormalities (Azargoon and
Negahdari 2018; Chang et al. 2009).

Autologous cells from the patient could be a
potential source to diminish post-transplantation
immune reactions and also minimize the need for
immunosuppressive medications which decrease
the risk of infection, cancer, and other possible
toxicities.

For the recellularization procedure, seeded
cells should be distributed in a spatial configu-
ration as their innate conformation, in order to
function properly in vivo. For this purpose, an
appropriate type, mixture, and number of cells
should be seeded following intramural injection
or by infusion of cells into the vasculature
(Badylak et al. 2011).

Growth factors also play significant roles for
differentiation of cells to distal epithelium, con-
trol reprogramming of stem cells in lung engi-
neering, and signalling molecules mediating the
autocrine and paracrine signals and specifically
drive the formation of lung tissue. Retinoic acid
(RA), bone morphogenetic protein (BMP), hep-
atocyte growth factor (HGF), granulocyte col-
ony-stimulating factor (G-CSF), the keratinocyte
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growth factor (KGF), adrenomedullin, and
fibroblast growth factors (FGFs) are among the
growth factors and signalling pathways that play
fundamental roles in inducing the cells to specific
lung cells (Tebyanian et al. 2019).

In our center, we recellularized rat lung sat-
isfactory using a mixture of cells obtained from
homogenized rat lungs. For this purpose, tracheal
cannulation was preferred to vascular perfusion
to create an efficient cell seeding process from
the bronchial structures down to the terminal
alveoli (Kajbafzadeh et al. 2015a). Additionally,
we use a bioreactor in which the lung cells were
suspended in the scaffolds for 2 min/h. There-
fore, the lung cells have sufficient time to adhere
to the scaffold. By using this novel technique, we
improved the seeding process and minimized the
seeding time. Large-scale production and culture
of cells using suspension culture bioreactors and
rotating wall bioreactors has been recently
reported (Ghaedi et al. 2013; Raredon et al.
2015). In this regard, bioreactor technology ran-
ges from small-scale apparatuses (Hoganson
et al. 2011, 2008) to whole lung bioreactors as
designed in our center (Kajbafzadeh et al.
2015a). In this technology, the lung organ will
undergo decellularization process by perfusion to
maintaining vascular structures and following
recellularization in sterile, closed systems with
consequent ventilation and perfusion (Tebyanian
et al. 2019; Panoskaltsis-Mortari 2015; Doryab
et al. 2017). However, the method of decellu-
larization and recellularization using bioreactors
needs to be optimized for a cost-effective and less
labour-intensive large-scale production of cells.
In order to diminish the disadvantages by the
application of distinct cell seeding techniques
in vitro, using the human body as a bioreactor
has been also verified as a promising advance for
bioengineering of the upper airways. It should be
also taken into consideration that after the cell
seeding process, the scaffold should be incubated
for a proper length of time for better cell
attachment, proliferation and differentiation. We
are now only able to produce grafts with limited
gas exchange and viability. Further improve-
ments are required to improve the reseeding of
decellularized lung tissue.

S. Sabetkish and A.-M. Kajbafzadeh
4.5 Clinical Applications

There has not been an advanced progress in the
clinical applications of tissue-engineered distal
lung tissue; however, endogenous and exogenous
stem cell populations have been recently striking
attention to be beneficial to be used as a source
for development of engineered tissues. Decellu-
larized cadaveric trachea seeded with mes-
enchymal stem cells has been recently applied to
engineer upper respiratory tract, which has been
considered as a foremost step toward the regen-
eration of lung tissue that may be able to improve
the patient's quality of life which has always been
the goal of regenerative medicine (Macchiarini
et al. 2008). Additionally, some centers per-
formed transplantation of single lobes which
could be valuable for patient with COPD and
A1AD (Sato et al. 2014). Although size matching
is challenging with adult donors, transplantation
of single lobe from an adult donor has been
performed in pediatrics (Takahashi et al. 2013).
This approach may be only useful for patients
that a portion of the parenchyma or airway is
affected. Moreover, the use of an appropriate
large animal model with long-term outcomes
would be helpful before translating these
approaches to the clinic. It is obvious that for
clinical achievements, the tissue-engineered lung
is dependent on creating a stable and functional
blood supply (Orlando et al. 2012). At the pre-
sent time, in vitro lung perfusion systems are
used by many investigators to have a better
understanding of the lung tissue regeneration.
Human-sized bioreactors are now presented for
decellularization and recellularization processes
of lung tissue which is also perfectly designed in
our center as well. The bioreactor designed by
the senior author (AMK) has the ability to
completely mimic the environment of lung such
as CO, and O, exchange, pressure, and so on.
These in vitro lung perfusion systems are also
used in clinical trials of lung transplantation as
system for lung preservation. However, the cur-
rent state of the art in whole-lung bioengineering
is at a proof-of-concept stage, with considerable
queries and roadblocks remaining. From a
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clinical translational viewpoint, we are going to
pave the road to customize clinical-relevant size
decellularized lung in a way slightly different
from the one in experimental studies so far that
can be regenerated with autologous patient-own
cellular population and then transplanted in the
same patient. This approach could address the
limitations that today affect treatment of patients
with severe respiratory diseases. We may also be
able to create recellularized scaffolds with func-
tional cells which can be transplanted in the
patient whose cells were harvested, without any
immunological reactions. This technique may
limit the use of immunosuppressive drug regimes
in related patients.

4.6 Limitations

The lung organ has numerous cell types and the
bench to bedside application of engineered lung
tissues is still challenging due to the complexity
of lung tissue and various cell types that make up
this organ. As highlighted above, the type and
possessions of the lung scaffold and suitable cells
for further recellularization process are predom-
inantly important. However, after addressing
these issues, maintaining and optimizing the
tissue-engineered lung prior to transplantation
still remain to be answered. Regarding
immunogenicity, the balance between reducing
rejection response and failure of the transplanted
organ against preserving the innate immune
functions of the lung tissue and its inhabitant
cells is a mainly challenging barrier which
should be lessened in the near future. Several
fundamental obstacles are not yet overcome and
require imperative improvements, above all
in vivo short- and long-term functional testing.

4.7 Conclusion

As the lung is a complex organ, advances in
development of standardized techniques for
production of decellularized and recellularized
matrices are of great importance. Additionally,

remarkable scientific and technical development
has been performed in the area of bioreactors for
the purpose of studying lung regenerative
strategies. Cell selection, precise and appropriate
bioreactor design, and accurate control of the
volume and frequency of the perfusion during the
tissue culture have decisive impact on the
development of regeneration of the lung tissue.
We are still in need of to design satisfactory
methods to produce engineered lung tissues into
the injured lung environment before realizing our
dream of applying tissue-engineered lung organs
in humans. Further studies are still required to
understand how the remaining ECM and residual
protein composition may affect seeded cell types
over time. This will be an interesting line of
future research to produce normal scaffold which
may help revert the phenotype of cells obtained
from diseased patients. While we move forward,
it is important to keep in mind the complex
anatomy of the lung organ and continue to
improve our tissue engineering models to better
benefit healthcare.
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Abstract

The field of tissue engineering and regenera-
tive medicine is able to depict the mechanism
of cardiac repair and development of cardiac
function as well, in order to reveal findings to
new therapeutic designs for clinical treatment.
The foremost approach of this scientific field
is the fabrication of scaffolds, which contain
cells that can be used as cardiac grafts in the
body, to have the preferred recovery. Cardiac
tissue engineering has not been completely
organized for routine clinical usages. Hence,
engineering innovations hold promise to char-
acter research and treatment options in the
years to come. Our group has extensive
experience with regard to the structure of the
heart, which makes us to our decision to
continue with the preparation of heart, with
the aim of developing a new ECM scaffold.
Herein, we aim to assess the state-of-the-art
fabrication methods, advances in decellular-
ization and recellularization techniques. We
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also highlight the major achievements toward
the production of a bioengineered heart
obtained from decellularization and recellu-
larization techniques.

Keywords

Decellularization * Recellularization + Heart
matrices + Scaffold - Cardiac stem cells

5.1 History

Heart is among the organs with least regenerative
capacity, and cardiomyocytes (CMs) are suscep-
tible to damage by several factors, such as
necrosis, apoptosis, and oncosis (or ischemic cell
death), culminating in heart failure (Heallen and
Martin 2018; Mohamed et al. 2018). Myocardial
infarction causes scar tissue, regions where CMs
are replaced with fibrillar collagen and/or
fibroblast-like cells (Frangogiannis 2016).
About 38 million people globally were affected
by heart failure; as of 2017 (Tzahor and Poss
2017), about 6.5 million of those are in the USA
(Benjamin et al. 2017). According to World
Health Organization (WHO), cardiovascular dis-
eases are still the leading cause of mortality with a
rate of 23 million new cases diagnosed universal
every year (Bui et al. 2011). Such diseases can
result in irreversible damages to the heart tissue
that usually leads to heart failure, with a decrease
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in contractile capacity below a critical threshold
(Chaudhry 2019). Therefore, the heart is one of
the most essential subjects for tissue engineering
research. Currently, despite abundant efforts to
progress options for cardiac damage treatment,
there is no effective therapy for heart failure,
except heart transplantation; however, due to the
invasive nature of the surgery and the shortage of
organ donors, it is appropriate for a limited cohort
of patients. Besides, impediments of state-of-the-
art immunotherapeutic drugs and high risk of
rejection limit the option of healing.

The tissue engineering and regenerative
medicine techniques show enormous prospective
as alternative options that produce constructs for
repairing or replacing cardiovascular tissues
(Kharaziha et al. 2016; Cutts et al. 2015; Tijore
et al. 2018).

In this technology, we will focus on four
important issues of (1) scaffold material selec-
tion; (2) scaffold material production; (3) cell
selection; and (4) cell culture. Fiber production
methods, such as electrospinning (Gabriel et al.
2017; Rockwood et al. 2008) and rotary-jet
spinning, (Cardoso et al. 2014) as well as cell
sheet engineering (Shimizu et al. 2003), are
among the techniques that have been investigated
in order to create grafts to be implanted in the
heart. Besides that, the most efficient and recent
approach is decellularization, aiming to obtain
three-dimensional structures that not only may
regenerate the existing heart, but be used to
create an entire bioartificial organ. Firstly, it is
essential to identify the best scaffold for cardiac
regeneration. Some desired properties are adjus-
table degradation rates, good porosity, biocom-
patibility, hemocompatibility, and good cell
adhesion, mechanical and elastic properties
compatible with the natural heart (McDevitt et al.
2003; Baheiraei et al. 2014). The second most
important point is to select the most promising
technique to construct the scaffold in which cells
are going to be seeded before the implantation. It
has been considered that ischemic or damaged
heart can be repaired by using decellularized
scaffolds as an appropriate modality to deliver
cardiac stem cells to the tissue, create a func-
tional tissue substitute, and restore cardiac
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function after MI. However, the application of an
appropriate extracellular matrix (ECM) as an
appropriate suitable microenvironment for cells
should be explored in order to overcome proba-
ble complications after transplantation and also
to increase cell survival.

This chapter will outline the progress to date
recorded for approaches of converse the heart as
a subject for tissue engineering paradigm, discuss
about the recent developments made in the fields
of cardiac tissue engineering and stem cells, as
well as emphasize the challenges which we may
confront with when applying such constructs in a
clinical setting.

In the next sections of this chapter, several
techniques of decellularization and recellulariza-
tion approaches will be introduced and discussed
followed by methods for scaffold fabrication.
Updates of upcoming and ongoing heart tissue
engineering applications will be then broadly
covered.

5.2 Materials and Methods

Decellularization is a process that consists of
removing all cells from tissues or organs while
preserving the extra cellular matrix (ECM) struc-
ture via different physical, chemical and enzy-
matic methods. Triton X-100, as a nonionic
detergent, may affect lipid—lipid and lipid—pro-
tein interactions. However, this detergent can
keep the proteins within an organ in a functional
conformation (Wang et al. 2017). Anionic
detergents including sodium deoxycholate
(SDC) and sodium dodecyl sulfate (SDS) can be
also used for the complete removal of nuclear
remnants and cytoplasmic proteins. This deter-
gent preserves the structure of the natural tissue
while reducing GAG concentration and collagen
integrity (Sabetkish et al. 2015). Enzyme such
nucleases (DNases or RNases) are also able to
reduce nucleotides after cell lysis (Moore et al.
1997). Ethylenediaminetetraacetic acid (EDTA)
and ethylene glycol tetraacetic acid (EGTA) are
among the non-enzymatic agents, which are able
to detach cells from ECM (O’Connor Mooney
et al. 2016). It has been demonstrated that the
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application of trypsin results in damage to the
ECM components after decellularization process
(Grauss et al. 2003).

The ECM is composed of functional and
structural proteins such as collagen, elastin,
laminin, fibronectin, proteoglycans and many
other glycoproteins which should be preserved
during the decellularization process (Laurie et al.
1989; Young et al. 2019). There are two kinds of
processes containing static- and perfusion-based
decellularization and recellularization methods.
However, perfusion-based technique has been
shown to be more efficient in maintaining the
three-dimensional = structure of tissues/organs
while removing the cells with a more even dis-
tribution of decellularization agents (Tapias and
Ott 2014; Keane et al. 2015). This perfusion-
based technique has been the most commonly
applied for whole heart bioengineering, owing in
part to the anatomical complexity of the macro-
and microanatomy of the heart organ, through
the decellularization approach.

The ECM plays a crucial role in normal car-
diac functioning and homeostasis and cellular
behavior. Ideally, the scaffolds should faultlessly
mimic natural cardiac ECM structures and pre-
sent a physiological microenvironment for cells.
The cardiac ECM consists of a compound
arrangement of proteins, of which three-
dimensional scaffolds have been created from
decellularized cardiac ECM. Natural scaffolds
play a crucial role in anchoring cells to produce
functional tissues (Bhutani et al. 2018; Shevach
et al. 2014; Martinelli et al. 2018; Huang et al.
2019). These decellularized scaffolds serve as a
framework material for proliferation and differ-
entiation of the desired tissue. Carrier substances
facilitate cells to fabricate the ECM that holds
growth factors in cardiac remodeling and reno-
vate (Dolan et al. 2019; Neto et al. 2019;
Mewhort et al. 2017). In the same way, scaffolds
as porous matrices form a biomimetic ECM
which promotes cell adhesion and differentiation,
as well as 3D organotypic cultures. These scaf-
folds also act as a substitute for missing
tissues/organs in the body (Liu et al. 2019; Wade
et al. 2015). Typically, biomaterials for tissue
engineering are synthesized or modified from

primary natural materials. These biomaterials
include polyglycolic acid (PGA) (Bruder et al.
2018), poly(L)-lactic acid (PLA) (Muniyandi
et al. 2020; Tomecka et al. 2017; Flaig et al.
2020), poly(DL) glycolate (PLGA) (Martins
et al. 2018; Bertuoli et al. 2019). Collagens,
alginate, chitosan, fibrin and hyaluronic acids are
among the natural biomaterials.

In cell sheet engineering, temperature-
responsive polymer surfaces are used to facili-
tate the controlled release of cell monolayers;
free-floating sheet of cohesive cells to be placed
onto the epicardium (Haraguchi et al. 2014). This
scaffold-free technology can be applied to all cell
types that are competent of shaping cardiomy-
ocytes for contractile maintenance and non-
myocytes for the delivery of secreted factors
(Matsuura et al. 2007; Gao et al. 2019).

A suitable and applicable scaffold for cardiac
regeneration is required to sustain tissue recon-
struction by active support for cell-to-tissue
procedures by supporting cell-cell adhesion,
proliferation and differentiation. Foremost tech-
nical progression in the field of cardiac tissue
engineering is the ability to fabricate a physical
framework of biocompatible resources and the
control of mechanical characteristics, which can
be efficiently used clinically.

Several investigations such as transthoracic
echocardiography, scanning electron microscopy
(SEM) (Hilbert et al. 2004; Kasimir et al. 2005),
histological (hematoxylin—eosin (H&E) and
Masson’s trichrome) and immunohistochemical
examination, DAPI staining, DNA quantifica-
tion, mechanical properties, hydroxyproline
assay, and 2D electrophoresis are used to eval-
uate the efficacy of the decellularization process.
Movat pentachrome staining can be used to
demonstrate the ECM components such as col-
lagen, elastin and GAGs. Cytotoxicity assay,
metabolic activity and viability tests (MTS assay)
are among other valuable tests that should be
performed after heart valve decellularization. The
aortic heart valve architecture has a naturally
three-layered arrangement including the lamina
ventricularis, lamina spongiosa and fibrosa. The
above-mentioned investigations can afford criti-
cal data on the effective cellular removal as well
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as the biological and structural properties of the
decellularized matrix intended to seed.

Prior to recellularization, it is essential to
ensure that the decellularized scaffolds are
effectively  sterilized to  avoid
contamination and eliminate the risk of infec-
tion. Ethylene oxide, gamma irradiation and
electron beam irradiation are among the steril-
ization techniques used in conventional medical
implants. Nevertheless, these sterilization tech-
niques may change the mechanical properties of
the scaffolds and may also cause adverse immune
response (Bonenfant et al. 2013).

Cross-

5.3 Cell Seeding

Stem cell transplantation strategy, which can
enhance tissue perfusion, angiogenesis, and pre-
serve or regenerate myocardial tissue, has been
proved to enhance cardiac function in patients
with sophisticated heart failure after MI (Suncion
et al. 2014; Xu et al. 2014; Yau et al. 2019). This
technology was first applied to treat MI in 2001
with promising and encouraging results.

To date, autologous and allogeneic adult stem
cell transplants had promising results in cardiac
treatments in some reported cases (Sanz-Ruiz
and Fernandez-Avilés 2018; Barker et al. 2018).
In current techniques of stem cell transplantation,
cells are seeded onto 3D polymer scaffolds after
electrical, mechanical or chemical stimulation
such as heparin and hyaluronic acid to promote
the differentiation of stem cells and restore the
function of injured heart tissues (Hirt et al. 2014;
Aslani et al. 2020; Kenar et al. 2019; Shiekh
et al. 2018). However, due to limitations in the
usage of stem cell-based therapies for human
heart failure, immune tolerance and growth of
stem cells on novel biomaterials have recently
been considered as a capable approach for car-
diac repair (Shiekh et al. 2018; Li et al. 2016).

Captivatingly, it has been confirmed that new
CMs are able to arise from presented CMs and
progenitor or stem cells early on periods of
embryo growth (Yoon et al. 2018; Sereti et al.
2018; Malandraki-Miller et al. 2018; Radisic
et al. 2006; Allegue et al. 2011). Cardiac stem
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cells (CSCs) (Rikhtegar et al. 2019; Su et al.
2018; Tang et al. 2017), embryonic stem cells
(Alagarsamy et al. 2019; Wang et al. 2011), bone
marrow-derived mesenchymal stem cells such as
mesenchymal, endothelial and hematopoietic
stem/ progenitor cells (Blondiaux et al. 2017;
Joshi et al. 2018), cord-derived mesenchymal
stem cells (Lim et al. 2018; Wu et al. 2018;
Pushp et al. 2020; Zhang et al. 2019; Mao et al.
2017), and adipose tissue (ASC)-derived mes-
enchymal cells (Tang et al. 2016) are indis-
pensable cell sources used in cell transplantation
for research associated with MI.

Differentiation of stem-cell-derived CMs into
the preferred lineages needs numerous features of
the scaffold assembles, and cell’s fate and envi-
ronment (Richards et al. 2016; Hansen et al.
2018; Birket et al. 2015; Hosoyama et al. 2018;
Maiullari et al. 2018). Human iPSCs (hiPSCs)
have been showed to differentiate successfully
into mature CMs with optimal protocols, which
can be a probable advance toward heart regen-
eration methods. Fetal hiPSCs can be differenti-
ated into pure CMs as well. Cardiac fibroblasts,
embryonic stem cells (ESCs), and muscle cells
can potentially be replaced for CMs for cardio-
vascular diseases.

The route of cell delivery is another critical
subject in optimizing cardiomyoplasty. Intramy-
ocardial injection has been investigated via ster-
notomy (Mathiasen et al. 2012), the
endomyocardial route (Hashemi et al. 2008), and
the intracoronary route (Revilla et al. 2011). The
in vitro cell culture of the selected cell types is
performed in specialized cell culture facilities, to
encourage increased cellular proliferation, differ-
entiation and maturation. The use of cell biore-
actors, for the purpose of improving, refining and
optimizing the quality and expansion of the cell
itself has been recently taken into consideration.
Bioreactors are considered as systems with con-
trolled conditions and parameters that facilitate
the stimulation of cell growth (Paez-Mayorga
et al. 2019). The most competent technology to
offer the proliferation and differentiation of these
cells is the bioreactor.

In our center, we were able to produce a bio-
compatible heart scaffold with comparative
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histological and biomechanical properties of
native cardiac ECM, using a perfusion-based
decellularization method. In our recent study, we
limited low transplanted cell retention and sur-
vival within the ischemic tissue by using decel-
lularized pericardium patch in an animal model of
MI. We also assessed the hypothesis that tissue-
engineered pericardial patch containing autolo-
gous ADMSC would be beneficial for the treat-
ment of MI with desirable properties in a rabbit
model compared to the application of non-seeded
decellularized pericardium (Kajbafzadeh et al.
2017). We also demonstrated that decellularized
human internal mammary artery could be applied
as a resourceful small-diameter vascular alternate
with high patency. This decellularized internal
mammary artery was considered as a novel vas-
cular graft for small-diameter bypass surgeries
(Kajbafzadeh et al. 2019). In another study, we
demonstrated the efficacy of ADMSC-seeded
human amniotic membrane cardiac patches as
scaffolds for treatment of acute MI in rat models
(Khorramirouz et al. 2019). Pre-seeded decellu-
larized aortic valve conduit with bone marrow-
derived MSCs depicted satisfactory outcomes in
postoperative cell seeding capabilities with
promising functional potentiality, which provides
a new era of biological grafts in cardiovascular
surgery (Kajbafzadeh et al. 2016). Advantages
and disadvantages of different implanted cells are
depicted in Table 1. An overview of the heart
decellularization and recellularization literature is
provided in Table 2 (Mirsadrace et al. 20006;
Singelyn et al. 2012; Wainwright et al. 2010;
Weymann et al. 2011; Akhyari et al. 2011;
Oberwallner et al. 2014; Leyh et al. 2003; Grauss
et al. 2005; Dainese et al. 2012; Malone et al.
1984; Akbarzadeh et al. 2019).Some of the most
commonly used protocols of heart organ decel-
lularization and recellularization processes

5.4 Clinical Applications

The first clinical implantation of a tissue-
engineered heart valve was carried out in 2000.
An allograft pulmonary heart valve was decellu-
larized and underwent the cell seeding process in

bioreactor. In the next step, the decellularized
scaffold was implanted in a 43-year-old man. The
neo-aortic heart valve demonstrated appropriate
function in different follow-ups with no evidence
of regurgitation (Hoerstrup et al. 2000). In the
study of Cebotari et al., pulmonary heart valves
were decellularized with trypsin/EDTA and
reseeded with peripheral mononuclear cells that
were isolated from human blood. The scaffolds
were implanted into two pediatric patients affect-
ing congenital pulmonary valve failure. They
obtained promising postoperative results with no
degenerative signs (Cebotari et al. 2000).

In clinical studies, the concerns of histocom-
patibility of regenerated cardiac cells and stem
cell-derived pro-arrhythmic substrates (Chen
et al. 2018) have restricted the application of
stem cell-based therapies for human heart failure.
Recent clinical studies showed that cell sheet
technology improved the ejection fraction,
regenerated the dysfunctional cardiac wall,
increased vasculargenesis, and diminished fibro-
sis in heart disease models (Sawa et al. 2012;
Sawa and Miyagawa 2013; Miyagawa et al.
2017; Yoshikawa et al. 2018; Yamamoto et al.
2019). From 2001, some clinical studies have
indicated that stem cells are safe and demonstrate
few treatment-related complications compared to
control groups (Jackson et al. 2001; Segers and
Lee 2008). However, the clinical use of tissue-
engineered constructs in myocardial regeneration
is still at an early phase. Most of the clinical
studies over decellularized xenograft heart valves
suggested for investigating the presentation of
decellularized xenograft heart valves in human to
conquer the challenge that allograft and homo-
graft heart valves are in short supply, especially
for pediatric population.

5.5 Limitations

Despite valuable tissue engineering approaches
which may improve cell or tissue preservation,
the difficulties with sources of autologous cell
and survival in the host tissue still remain chal-
lenging (Naderi et al. 2011). In addition, the
quality and number of cells, comorbidities,
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Table 1 Some of the most commonly used protocols of heart organ decellularization and recellularization processes

Species

Human
pericardium
from
cadaveric
donors

Porcine
ventricular
myocardial
tissue

Whole adult
porcine heart

Porcine whole
heart

Adult rat heart

Human Left
ventricular
myocardium
tissue

Porcine and
sheep
pulmonary
valve conduits

Porcine aortic
valves

Aortic
homograft
leaflets

Dog arterial
segment

Method of
decellularization/Recellularization

Decellularization: Hypotonic buffer,
SDS in hypotonic buffer, and nuclease
solution

Recellularization: In-vitro seeding of
human dermal fibroblasts and A549
cells

Decellularization: SDS and Triton X-
100. Pepsin-solubilization of the
myocardial matrix

Recellularization: In-vitro seeding of
neonatal rat cardiomyocytes and in-
vivo injection in left ventricle of rat
models

Decellularization: Aortic perfusion.
Serial perfusion of enzymatic, non-
ionic and ionic detergent, hypotonic
and hypertonic solutions
Recellularization: In-vitro seeding of
chicken cardiomyocyte

Decellularization: Perfusion of
Trypsin/EDTA and TritonX
100/deoxycholic acid (DCA)
Recellularization: none

Decellularization: 1) SDS/TritonX100-
based v/s 2) Trypsin plus Triton/DCA-
based v/s 3) SDS/DCA/saponin-based
Recellularization: Reseeding with
C2C12 myoblasts in-vitro

Decellularization: SDS-based, Triton
X-100-based, DCA-based,
hypo/hypertonic solution-based
decellularization protocols
Recellularization: In-vitro culture with
mesenchymal stem cells, iPS-derived
cardiomyocytes and native neonatal
mouse cardiomyocytes

Decellularization: Trypsin/EDTA
digestion

Recellularization: Orthotopic
implantation in sheep

Decellularization: Triton X-100 v/s
Trypsin
Recellularization: In-vitro EC seeding

Decellularization: Trypsin
Recellularization: In-vitro seeding with
cardiac mesenchymal stromal cell

1° detergent step with Triton X-100, 6
h at room temperature
* Protease inhibitor step

Results

Promising results in
glycosaminoglycan content and
mechanical properties

Preserved glycosaminoglycan content
and satisfactory cell-conductivity

Preserved collagen, elastin, and
glycosaminoglycans, and mechanical
integrity

Retained collagen, proteoglycan and
elastin

Detection of Laminin in all groups.
Collagen IV removed in group 2, No
elastin detection in group 3

Cell viability and growth in both
protocols. More satisfactory cell
removal and ECM architecture
maintenance with SDS-based protocol

Reconstitution of surface endothelial
cell monolayer and interstitial
myofibroblasts. Calcifications were
also noted

Changes in the extracellular matrix
constitution in all methods, EC-
mediated ECM deposition.

Rescuing most of the original cell
density and differentiation towards
endothelial lineage

The results of allogeneic implant
depicted well incorporated tissue
appearance with complete endothelial
layer after 90 d post-implantation

Reference

88

89

90

91

92

93

94

95

96

97

(continued)
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Table 1 (continued)

Method of
decellularization/Recellularization

Species

 2° detergent step with SDS, 72 h at
room temperature

* Washing step with ethanol

« Fixation treatment with carbodiimide;
Detergents concentration not
mentioned

perfusion with a 1% SDS in distilled
water for 72 h at room temperature/ 1%
Triton X-100 in distilled water for 24 h
Recellularization: In-vivo implantation
of decellularized matrix scaffold into
the omentum of rats

Ovine heart

53

Results Reference

Preserved the structure and 98
composition of cardiac ECM and

vascular structures within the scaffold
without residual cellular components
Implantation led to proper

vascularization

Table 2 Advantages and Disadvantages of Implanted Cells

Cell type Advantages

Skeletal myoblasts Easily isolated/High rate of
proliferation/Hypoxia-
resistant/Autologous

Bone marrow-
derived stem cells

Autologous/Easily
isolated/Multipotent/Low immune
response

Adipose tissue-
derived stem cells

Easily isolated/High availability

Cardiac stem cells Multipotent/Autologous

Embryonic stem

cells

iPSC Pluripotent/Easy to expand/Superior
availability/Autologous

Fetal Cardiomyocyte phenotype

cardiomyocytes

iPSC, induced pluripotent stem cells

genetic defects, and gender are among the factors
that affect the cell/tissue survival by the host
tissue environment (Perrino et al. 2020). Other
drawback is the high costs of superior therapy
medicinal products in general as well as the
failure of some scaffolds to convene translation-
ally appropriate requirements. Remarkable
inflammation, foreign body reaction, and
arrhythmogenic potential are other limitations
that commonly occur in long-term follow-ups
after scaffold transplantation, discouraging the
therapeutic effects (Shimizu et al. 2001;

Multipotent/Low immune response

Pluripotent/straightforward to develop

Disadvantages

High occurrence of arrhythmias

Restricted accessibility/bone or cartilage
formation in the myocardium

Low survival

Inadequate accessibility
Teratogenic/Limited availability/Host
immune response/Ethical problems
Potentially teratogenic/Possible oncogenic
potential

Limited availability Low survival Host
immune response Ethical problems

Christman and Lee 2006). These drawbacks
should be investigated and completely addressed
before clinical applications.

Despite several progressions in the field of
heart tissue engineering, the capability and sig-
nificance of adult mammalian cardiomyocytes
and CSCs regeneration remain controversial
(Aquila et al. 2018; Kretzschmar et al. 2018; Lee
2018). In addition, although human ESC-derived
CMs have been considered as principal supply of
adult human cardiac myocyte for medical bene-
ficials, being well-organized and distributed, and
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functional transverse tubules (T-tubules) are
among the essential features that still lack (Parikh
et al. 2017).

Issues regarding cell sheet engineering tech-
nology are the limited number of sheets which
can be stacked on each other without cell death
and the weakness of these sheets which may
ground their folding or tearing during manipu-
lations (Zurina et al. 2020).

5.6 Conclusion

In this chapter, we discussed many essential
achievements associated with tissue engineering
and regenerative medicine technology for cardiac
repair. The heart is tremendously compound
organ, and the scaffold material selection, scaf-
fold material production, cellular selection and
sell seeding process both in vitro and in vivo are
among many variables that can influence its
regeneration. These techniques generally focus
on the scaffold material selection, scaffold
material production, cellular selection and cellu-
lar cultivation in vitro. With the progress of tis-
sue engineering technique for heart organ,
increasing stem cell-derived methods have
already been studied in basic research and clini-
cal trials. The presence of CSC population in
adult hearts is still contentious; however, differ-
entiating other stem cells into mature cardiomy-
ocytes is of great importance in cardiac therapies.
Due to progressive improvements regarding
cardiac tissue engineering, we believe that the
promising applications of stem cell-derived cell
therapy in MI will be increasingly attracted in the
next decade. However, more studies remain to be
performed to better understand and explain the
challenges, improve existing techniques and
develop new techniques, protocols and methods.
The combination of three-dimensional scaffolds,
bioreactors and excellent stem cells can pave the
road for the development of the next-generation
human organ.

A. Akbarzadeh et al.
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Abstract

Natural scaffold appears to have extensive
functions in providing anchorage and struc-
tural requirements, as well as providing a
structural support for cell adherence and cell
interaction for further recellularization pro-
cess. Specific methods used for decellulariza-
tion process play an essential role in the
efficacy of cell removal and successful preser-
vation of ultrastructure and biomechanical
properties of the tissue. Numerous scaffolding
materials and fabrication techniques have
been investigated for pancreatic tissue engi-
neering. Techniques of casting, freeze drying,
injection molding, and electrospinning have
been also used to fabricate scaffolds. Herein,
we aim to review the state-of-the-art and the
tissue engineering and regenerative medicine
technology highlighting the major achieve-
ments toward the production of a bioengi-
neered pancreas obtained decellularization
techniques and cell-on-scaffold technology.
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6.1 History

In 2014, the World Health Organization
(WHO) has predicted diabetes as a worldwide
disease that afflicts 422 million people with
increasing drawbacks for the healthcare system
and the economic policies. The prevalence of
diabetes mellitus has improved in the as a
worldwide disorder which makes it as an epi-
demic of the twenty-first century. Exogenous
insulin treatment and pharmaceutical interven-
tions may fail to restore euglycemia and in a
large number of patients, insulin resistance could
occur.

Pancreas transplantation has been successfully
established for the first time in 1966 by the sur-
gical team driven by Prof. Kelly (1967). In
patients with severe diabetic patients, whole
pancreas or pancreatic islet transplantation
emerged as a fundamental treatment. Although
pancreatic islet transplantation is less invasive
compared to pancreas transplantation, islets
transplantation requires donors and may cause
some acute effects comprehend bleeding (Bren-
nan 2004; Villiger 2005), portal vein thrombosis
(Brennan 2004) or a transient increase of hepatic
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inflammatory markers (Ryan et al. 2004). How-
ever, regenerative medicine is a possible solution
to these problems. Due to the difficulty of
expanding adult derived pancreatic P-cells
in vitro, many efforts have been made to build
up a technique for inducing the self-renewing
multipotent stem cells into functional pancreatic
B-cells, for further transplantation. The embry-
onic stem cells, and mesenchymal stem cells
(MSCs), are considered as two types of
pluripotent cells that are of great interest.

Tissue engineering based on stem cells and
scaffolds has been considered as a potential
alternative therapy to overcome the adverse
effects of the existing pharmacological treat-
ments. Tissue engineering may also serve as a
novel treatment foundation for the repair and
regeneration of pancreas. By the application of
this technique, we may be able to reduce
unavoidable consequences of conventional ther-
apies for diabetes and make an immunosup-
pression free state after transplantation. We may
also be able to combine cells such as islets or
pancreatic beta cells with scaffolds, which pro-
vides mechanical support and appropriate extra-
cellular matrix (ECM) for the survival of cells
both in vitro and in vivo.

The ECM has been considered as an impor-
tant element of the islet microenvironment which
may have a significant influence on cellular
growth, development, differentiation (Hisaoka
et al. 1993; Gittes 1996) proliferation (Hayek
1995), and survival (Hammar 2004; Weber et al.
2008). The ECM in the periphery of the islet has
been reported to contain collagen I, III, IV, V,
and VI, as well as laminin and fibronectin.

Most recent studies have reported the appli-
cation of natural acellular pancreatic tissue as a
bioscaffold for in vitro recellularization. The
suitability of two-dimensional (2D) bioscaffolds
in whole-organ engineering was firstly defined in
the study of De Carlo et al. (2010). Additionally,
whole-organ regeneration of pancreatic tissue has
been demonstrated by in vitro techniques, as the
first proof-of-concept regeneration of functional
islet cells (Napierala 2017).

Our group has extensive experience with
regard to the structure of the pancreas (Hashemi

S. Sabetkish and A.-M. Kajbafzadeh

2018a, b), which makes us to our decision to
continue with the preparation of pancreas, with the
aim of developing and characterizing a new ECM
scaffold. The possible applications in experimental
and medical settings will be discussed.

6.2 Materials and Methods

Several polymeric biomaterials have been used
as scaffold materials for islet tissue engineering,
such as heparin, lactic acid-based polymers,
polyhydroxyalkanoates, hydrogels, bioploymer
films, and biomimetic scaffolds. In particular,
using natural scaffolds is crucial for the survival
and the right function of both cells and higher
organisms.

Cell sheets approach is also included in the
tissue-engineered approach. This has been con-
sidered as a possible approach for pancreatic
islets and B-cell transplantation. Subcutaneous
site is one of the new regions of islets injection in
animal model (Vériter et al. 2013). It should be
also taken into consideration that the most sig-
nificant differentiation is the absence of the vas-
cular connection between transplanted cells and
the blood flow. However, less invasive, the
likelihood of repeated procedures in immuno-
logical rejection, and the opportunity to safely
eliminate transplanted islets are among the
advantages of this technique.

6.3 Decellularization Technology

Decellularization techniques are valid in three
major types: 1. chemical decellularization, 2.
biological decellularization, and 3. physical
decellularization.

Acetic and paracetic acids are the most com-
mon acids used in chemical decellularization
method, which may destroy ECM structure but is
capable to remove cellular components (Nouri
Barkestani et al. 2021). Calcium hydroxide,
sodium sulfide and sodium hydroxide are the
most frequent agents used in this method. The
application of these bases can eliminate growth
factors that enrich the ECM resulting in a loss of
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bioactivity. Therefore, the application of these
agents has been limited. A combination of
chemical, physical, and enzymatic protocols is
usually applied for complete decellularization of
most tissues. However, as the structural proper-
ties of pancreas is not complex as compared with
other organs such as kidney, liver, or lung, the
mildest protocol possible can be applied to
achieve a suitable scaffold without disruption of
the structural and functional properties of the
ECM. Alkaline and acid treatments can remove
cellular components and nuclear remnants.
However, they destroy ECM components such as
GAGs to some extent (Filippo et al. 2002; Falke
2003). Triton X-100, as a nonionic detergent,
may affect lipid-lipid and lipid-protein interac-
tions. However, this detergent can keep the
proteins within an organ in a functional confor-
mation (Yang 2010). The ionic detergent SDS
can be also used for the complete removal of
nuclear remnants and cytoplasmic proteins
(Rieder 2004). This detergent preserves the
structure of the natural tissue while reducing
GAG concentration and collagen integrity
(Blaudez et al. 2019). Dedicated scientific liter-
ature offers many protocol based on the use of
SDS for organ or tissue decellularization (Peloso
et al. 2015; He 2017). Biological decellulariza-
tion includes the application of biologic enzy-
matic and non-enzymatic agents to remove of
cell residues. Enzyme such nucleases (DNases or
RNases) are able to eliminate nucleotides after
cell lysis (Jain 2019). Ethylenediaminetetraacetic
acid (EDTA) and ethylene glycol tetraacetic acid
(EGTA) are among the non-enzymatic agents.
EDTA and EGTA are able to detach cells from
ECM. These two agents are added in a multistep
protocol as they are not particularly effective if
used alone (Tudorache et al. 2007). It has been
reported that the use of trypsin for decellular-
ization results in damage to the ECM compo-
nents (French and Davis 2019).

We recently used a perfusion-based approach
using the combination of Triton and SDS for
pancreas tissue engineering. The applied method
of decellularization completely removed the cells
and preserved the ECM structure, while the
vasculature remained intact (Hashemi 2018b). In

another research, pancreatic bioscaffold of a
mouse was created with SDS/Triton that was
perfused through the anterior hepatic portal vein.
The results showed that the scaffold was capable
of mimicking the natural pancreas for pancreatic
tissue engineering (Goh 2013). In addition,
temperature protocols such as freeze—thaw cycles
technology is satisfactory for the decellulariza-
tion of simple structure (tendon or cartilage base
organs). However, the results are hardly appli-
cable for structural complex architectures such as
pancreas, kidney, or liver.

6.4 Whole Pancreas
Decellularization
and Regenerative Medicine

The decellularization technique and the methods
of final sterilization are two important points in
achieving a suitable scaffold for further recellu-
larization. An ideal decellularization process may
be able to produce a suitable scaffold for tissue
regeneration. This scaffold should consist of
functional ECM components, an intact vascular
network, preserved biomechanical properties, for
further pancreatic tissue regeneration. Various
studies verified that whole-organ perfusion-based
decellularization process can result in preserva-
tion of ECM, perfusion networks, and complete
removal of DNA components, in contrast to
other protocols (Soto-Gutierrez 2012). This
technique is also naturally designed to permit the
delivery of oxygen and nutrients by blood flux
and permits the same time-to-contact between
detergents and cells in the entire organ, in the
attempt of creating a bioengineered pancreas.

In our center, we were able to produce a
biocompatible three-dimensional (3D) pancreas
scaffold with comparative histological and
biomechanical properties of native pancreatic
ECM, using a perfusion-based decellularization
method (Hashemi 2018a). In one study, the
whole pancreas was decellularized using the
perfusion-based method from the main pancre-
atic duct. However, high-dose detergents and
enzymes in pancreas dissolve fatty tissue and
altered the protein content (Goh 2013).
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6.5 Tests to Confirm the Efficacy
of the Decellularization Process

Several tests are used to confirm the efficacy of
the decellularization process in cell removal as
well as preservation of ECM such as histological
staining, DNA content, collagens and proteo-
glycans assessment, and tridimensional imaging
technologies (scanning electron microscopy).
Residual DNA fragments in the scaffold are able
to induce incompatibility and undesirable
immunological response (Keane 2012). For that
reason, DAPI staining and DNA quantification
should be performed to confirm the removal of
cellular and nuclear components. Additionally,
several studies have confirmed changes in the
biomechanical properties of the scaffold after the
decellularization process (Haag 2012). Hence,
strength testing is of great importance to evaluate
the mechanical properties of the obtained scaf-
fold and compared with those of natural pancreas
tissue. Moreover, CT angiography is another
employed technique to evaluate vascular network
competency, for further cell seeding of the scaf-
folds (Mirmalek-Sani 2013). The above-
mentioned investigations can provide crucial
data on the effective cellular removal as well as
the biological and structural properties of the
decellularized matrix intended to seed.

6.6 Cell Seeding

Recellularization strategies play a crucial role for
the creation of a functional-bioengineered orga-
noid. The most common cell types used in gen-
erating pancreatic islet cells are embryonic stem
cells (ESCs), induced pluripotent stem cells
(iPSC), pancreatic stem cells, and mesenchymal
stem cells (MSC).

Cell—cell adhesion, adhesion signaling, and
cell-matrix interactions are indispensable for
differentiation. In addition, a number of signals
are essential for the metabolism of cells for vital
tissue or cell processes such as proliferation and
differentiation (Matta and Mobasheri 2014).
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The principal feature of ESC contains its abil-
ity to self-renew and the potential to differentiate
into all embryonic cell types, under in vivo and
in vitro conditions. Several studies have tried to
produce cells with some level of insulin produc-
tion from mouse (Soria 2000), monkey (Lester
2004), and human (Assady 2001). However, the
in vitro functionality of B-cells has not been
confirmed in none of these studies, and the cells
were not able to secrete physiologically sufficient
amounts of insulin in response to glucose. The
reason would be that pancreatic -cells are not the
only cell type that can synthesize and release
insulin (Basford 2012). Cultured embryonic stem
cells have been also reported to have the capa-
bility of differentiation into insulin-positive cells
by the application of a cell-trapping strategy
(Abdelalim and Emara 2015; Rattananinsruang
et al. 2018). These approaches have some limita-
tions including neuronal characteristics in the
majority of islet-like structures, a small fraction of
insulin-positive cells, loss of Pdx-1 expression
which is a specific pancreatic B-cells transcription
factor, low insulin content, insufficient insulin
response to glucose, and unsatisfactory post-
transplantation results (Lumelsky 2001). The
results of one in vivo study showed promise
results regarding differentiation of the ESC into
B-cell precursors, which was characterized by
transcription factors Pdx1 (pancreatic and duode-
nal homeobox 1) and Nkx6.1. Precursor cells
were matured into functional B-cells and reverse
hyperglycemia after being implanted into
immunodeficient mice (Schulz 2012). Although
several studies obtained promising results using
ESCs, risk of teratocarcinoma formation, immune
rejection and social/legal/ethical issues is among
the remained obstacles.

Few researches were conducted on deriving
insulin-producing cells from iPSC. The Edmon-
ton protocol has been developed for pancreatic
islet transplantation in order to replace the lost f3-
cells (Shapiro 2006). In this method, cadaveric
human islets are grafted to patients by applying a
minimal, glucocorticoid-free immunosuppressive
regimen. However, this protocol provides insulin



6 The Most Ideal Pancreas Extracellular Matrix as a Platform ... 65

independence for a limited period of time.
Moreover, immune rejection and scarcity of
donor islets are the major limitations of this
procedure (Shapiro 2000). To overcome these
obstacles, insulin-producing cells (IPCs) have
been derived from different progenitor sources
including embryonic, bone marrow, pancreatic,
skin, hepatic duct, or adipose-derived stem cells.
In one study in 2012, a combination of activin A
and retinoic acid was used to differentiate
human-induced pluripotent stem cells (hiPSC)
into insulin-producing cells. The outcomes
demonstrated that above 10% of the cells became
insulin-positive and differentiated cells secreted
human C-peptide (Hosoya 2012). The results of
another paper showed that diabetes was reversed
in immunodeficient mice using murine and rhe-
sus monkey-derived iPSC-differentiated pancre-
atic precursor cells (He et al. 2014). Since iPSC
may activate related oncogenes, the safety issue
of these cells should be further investigated
before clinical applications.

Regarding the use of pancreatic stem cells, it
has been verified that pre-existing B-cells pre-
served the proliferative capacity which may be
the major source of new B-cells in adult life (Dor
2004). However, other papers have found evi-
dence of the participation of pluripotent stem
cells in B-cell regeneration.

MSCs may play a significant role in diabetes
therapy by islet differentiation and transplanta-
tion. In addition, immunoregulatory, anti-
inflammatory, and proangiogenic properties of
MSCs make these cells beneficial to improve
islet engraftment and survival. In one study,
MSC derived from mouse and rat bone marrow
was cultured under high glucose condition with
B-cell-stimulating growth factors. The results
depicted capability of expressing pancreatic
B-cell genes (insulin, GLUT2, and Pdx1) which
reversed hyperglycemia in an animal model
of diabetes (Tang 2004). Cotransplantation of
syngeneic bone marrow cells with syngeneic/
allogeneic MSCs resulted in pancreas tissue
repair, normal blood glucose, and serum insulin-
level stabilization, which recover the mice
suffered from streptozotocin-induced diabetes
(Urban 2008). Furthermore, cotransplantation of

MSCs with neonatal porcine islets improved the
function of the graft in diabetic mice (Hayward
2017). Functional islet-like cells were also dif-
ferentiated from marrow MSCs, which suggested
as a new procedure for clinical diabetes stem-cell
therapy to control blood glucose level in diabetic
rats (Chen et al. 2004). The effect of rat FM-
derived MSCs (rFM-MSCs) and human amnion-
derived MSCs (hAMSCs) on the inflammatory
reaction in vitro and therapeutic effects in rats
with acute and chronic pancreatitis was also
investigated. The outcomes verified suppressed
inflammatory reaction of acute and chronic pan-
creatitis in rats (Kawakubo 2016). The thera-
peutic efficacy of umbilical cord-derived
mesenchymal stem cells in patients with type 2
diabetes was also depicted in one study in 2015
(Guan 2015).

Stage-specific differentiation protocol can be
also used to aggregate the differentiation of
human adipose stem cells to competent func-
tional islet-like cells (Chandra 2011). The avail-
ability, autologous source, and large quantity of
adipose tissue make it a suitable cell replacement
alternative in type 1 diabetes.

Use of pre-seeded or none pre-seeded pan-
creas scaffolds are crucial for further recellular-
ization process in vivo. Recently, the generation
of a whole three-dimensional pancreas scaffold
was described in porcine model the effectiveness
of which was confirmed by imaging studies
(Mirmalek-Sani 2013). Moreover, human stem
cells and porcine pancreatic islets were success-
fully seeded on this scaffold to demonstrate the
cellular adhesion and maintenance of cell func-
tions on this bioscaffold. In spite of the suc-
cessful results of this study, same results may not
be obtained in a human-sized model as the best
decellularization method has not been deter-
mined. Struecker has refined a proof of concept
for the repopulation of the decellularized rat
pancreas with functional islets of Langerhans
(Napierala 2017). Briefly rat pancreas was
decellularized via vascular perfusion using Tri-
ton X and SDS and then repopulated with islets
via the pancreatic duct to test viability and
functionality of the islets. TUNEL staining and
glucose-stimulated insulin secretion (GSIS)
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demonstrated the viability and functionality of
islets after the injection inside the acellular
scaffold. The establishment of circulating stem
cells over the transplanted pancreas scaffold
could result in functional tissue regeneration,
which may activate cell signaling pathways. In
our recent study, we applied a surgical technique
by transplanting the pancreas scaffold over the
host pancreas could the result of which induced
islet cell regeneration (Hashemi 2018a).

6.7 Clinical Applications

Regarding the clinical application, we are going
to pave the road to customize clinical-relevant
size decellularized pancreas that can be regener-
ated with autologous patient-own cellular popu-
lation and then transplanted in the same patient.
This approach could address the limitations that
today affect diabetic treatments. We may also be
able to create recellularized scaffolds with func-
tional cells which can be transplanted in the
patient whose cells were harvested, without any
immunological reactions. This technique may
limit the use of immunosuppressive drug regimes
in related patients.

6.8 Limitations

With no doubt, the field of stem cell research
related to diabetes and pancreatic B-cell devel-
opment has considerably enhanced. However,
further studies are required to address the chal-
lenging facing the field. For the application of
B-cells for cell replacement therapy, it is essential
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to differentiate the cells into a pure population of
differentiated cells. This may avoid development
of teratoma formation after transplantation into
patients. In addition, using of hESCs faces a lot
of concern, because of the ethical and religious
issues in several countries. Moreover, by the
application of hESCs for cell therapy, patient
may confront with the problem of immune
rejection due to the fact that the differentiated
cells are not genetically identical to the patients.
Future studies are needed to develop our under-
standing regarding the pathophysiology of dif-
ferent forms of diabetes, the most effect
decellularization method of the pancreas organ,
as well as providing new treatment strategies.
Several fundamental obstacles are not yet over-
come and require imperative improvements,
above all in vivo short- and long-term functional
testing.

6.9 Conclusion

An appropriate and time-efficient decellulariza-
tion method is essential for a successful regen-
eration of the pancreas organ through which
organ replacement will probably be achieved. As
of now, the emergent use of stem cells appears as
an exciting and encouraging field to discover. As
well, understanding the interaction between cells
and the ECM could pave a road in designing an
innovative approach for therapeutic applications.
In conclusion, it is clear that the decellularized
pancreas scaffold is much more similar to native
tissue, and appropriate application of this scaf-
fold could be a great assist to patients in need of
transplantation.
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(A) cannulation of pancreas for further decellularization process (B)
Injection of methylene blue in decellularized scaffold to demonstrate
preservation of structures; the dye did not leak from the scaffold.(C)
Decellularized pancreas (D) H&E staining of decellularized scaffold
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Reference | Results Duration | Method of decellularization Species
1 Complete cells removal + rich ECM 64 h Perfusion-based Mouse

scaffold (1% Triton x —100 + 0.1% pancreas
Ammonia + DNase
2000U/ml + PBS)
2 Complete cells removal + intact 72 h Perfusion-based Mouse
vasculature system 0.5% SDS + Milli-Q water pancreas
containing benzonase + DMEM
containing 10% FBS
3 Tissue disruption or incomplete cell 16 h Perfusion-based Rat
removal 18 h 0.25% Triton x —100 + 0.5 pancreas
Intact ECM and proper biomechanical 20 h SDS + PBS
characteristics 20 h 0.25% Triton x —100 + 0.25
Intact ECM and proper biomechanical SDS + PBS
characteristics 0.25% Triton x —100 + 0.1
Intact ECM and proper biomechanical SDS + PBS
characteristics 0.25% Triton x —100 + 0.05
SDS + PBS
4 Complete cells removal + rich ECM 4 h and Perfusion-based Rat
scaffold 18 min 1% Triton x —100 + 0.5% pancreas
SDS + PBS
5 Complete cells removal 26 h Perfusion-based Rat
1%Triton x —100 + 0.1% pancreas
ammonium hydroxide + PBS
6 Complete cell and DNA clearance, 7 days Perfusion-based Human
preservation of ECM components, and 1 h 1% Triton x —100 + 0.1% pancreas
growth factors and stiffness, ability to ammonium
induce angiogenesis, conservation of hydroxide + DNAse + 0.0025%
the framework of the innate magnesium chloride + PBS
vasculature, and immunogenicity
7 Cellular material 24 h Perfusion-based Porcine
removal + preservation of ECM 1% Triton x —100 + 0.1% pancreas
proteins and the native vascular tree ammonium hydroxide + PBS
8 Production of decellularized scaffold 63 h Perfusion-based Porcine
which retained the gross shape of the 0.05% trypsin + 0.1% Triton X pancreas
whole organ 100 + 0.05% EGTA
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Abstract

Small intestinal submucosa (SIS) is the most
studied extracellular matrix (ECM) for repair
and regeneration of different organs and
tissues. Promising results of SIS-ECM as a
vascular graft, led scientists to examine its
applicability for repairing other tissues. Over-
all results indicated that SIS grafts induce
tissue regeneration and remodeling to almost
native condition. Investigating immunomodu-
latory effects of SIS is another interesting field
of research. SIS can be utilized in different
forms for multiple clinical and experimental
studies. The aim of this chapter is to inves-
tigate the decellularization process of SIS and
its common clinical application.
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7.1 History

Small intestinal submucosa (SIS) is the most
studied extracellular matrix (ECM) for repair and
regeneration of different organs and tissues
(Holubec et al. 2015). It is a trilaminar structure
consisting of stratum compactum, muscularis
mucosa and submucosa. The main components
of this structure are various collagen types
including I (comprises 90% of SIS), III, IV, V,
and VI, fibronectin, glycosaminoglycans such as
heparin, growth factors like vascular endothelial
growth factor (VEGF), transforming growth
factor beta (TGFP) and basic fibroblast growth
factor (bFGF) and proteoglycans (Badylak et al.
1999). Recently, matrix-bound nanovesicles
(MBV) which are membranous nanovesicles
similar to exosomes, but are bound within col-
lagen fibrils rather than circulating in body fluids,
are also introduced as components of different
ECM types including SIS. It’s been shown that
MBVs are responsible for biological effects of
ECM bioscaffolds; like modulation of macro-
phages toward M2 anti-inflammatory phenotype
and promoting cell differentiation in vitro
(Huleihel et al. 2016).

The very first application of SIS dates back to
more than 50 years ago when it was prepared by
physical abrasion of inverted small intestine and
used as an autograft to replace inferior vena cava
in dogs (Matsumoto et al. 1966). A few similar
studies were also conducted with inverted small
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intestinal submucosa to replace thoracic aorta
and vena cava (Huber et al. 2003; Lawler et al.
1971). Emerging as a new material in the world
of regenerative medicine, noninverted SIS also
primarily was used to repair small and large
diameter vasculatures such as inferarenal aorta
(Badylak et al. 1989) and femoral or carotid
artery (Lantz et al. 1990). In most of the afore-
mentioned studies the grafts were patent; how-
ever, there were also cases of failure due to
aneurysm formation (Lawler et al. 1971). In 1992
porcine SIS was studied for the first time and
used to substitute carotid artery in dogs.
Regarding the results, SIS-ECM xenografts and
saphenous vein autografts elicited similar
responses, indicating the competence of SIS
(Sandusky et al. 1992). Also, it was shown that
in comparison to polytetrafluoroethylene (PTFE)
grafts, SIS grafts were more resistant to bacterial
infection (Badylak et al. 1994). Seemingly, this
new material could overcome shortcomings
related to vascular and synthetic grafts; it was
shown that SIS graft is nonthrombogenic, non-
immunogenic, not infected, not mineralized and
also it supports tissue remodeling, neovascular-
ization and endothelial cell growth (Badylak
1993).

From 1994 onward, SIS grafts were inten-
sively investigated to repair defects of bladder
(Knapp et al. 1994), ligament (Aiken et al. 1994),
tendon (Badylak et al. 1995), skin (Prevel et al.
1995a), abdominal wall (Prevel et al. 1995b),
dura mater (Cobb et al. 1996), urethra (Kropp
et al. 1998), cartilage (Peel et al. 1998), bone
(Suckow et al. 1999), fascia (Dejardin et al.
1999) and corneosclera (Lewin 1999) in animal
models. In 1998, Badylak et al. cultured different
cell types on SIS-ECM scaffolds and found them
suitable (1998). Meanwhile, Surgisis® was mar-
keted as the first FDA approved SIS-derived
product. Soon after, other tissue specific SIS
products such as Oasis®, Restore® and Cuff-
Patch”" were marketed in early 2000s (Badylak
2004). At the same time, clinical applications of
these products, which we will discuss later in this
chapter, began to come out. Also, examining SIS
grafts to repair different new tissue injuries in
animal models continued to emerge by the
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beginning of twenty-first century; namely they
had defects in esophagus (Badylak et al. 2000),
heart valve (Matheny et al. 2000), small bowel
(Chen and Badylak 2001), ureter (Jaffe et al.
2001; Sofer et al. 2002), meniscus (Welch et al.
2002), heart ventricle (Badylak et al. 2003), lar-
ynx (Huber et al. 2003) and tympanic membrane
(Spiegel and Kessler 2005). Although most
studies demonstrated compelling results, there
were also failures and shortcomings using SIS
grafts in preclinical and clinical studies; which
will be mentioned later in this chapter.

The most common type of SIS in preclinical
and clinical settings are single or multilayered
sheets, but powders (Khang et al. 2002) and
hydrogels (Keane et al. 2017) are also prepared
from this biomaterial (Fig. 7.1). For example,
SIS hydrogel was examined to treat ulcerative
colitis in a study by Keane et al. The hydrogel
was adhesive to colonic tissue and could reduce
the signs of the disease in a rodent model (2017).
Cell seeding is another way to produce a SIS
scaffold with more desirable properties in some
applications. On the other hand, SIS-ECM
modifications are also investigated in some
studies; although primarily it was emphasized
that these changes, such as crosslinking, can
reduce its impact on tissue remodeling and
regeneration by inducing foreign body reaction
and decreasing of SIS degradation rate (Badylak
2004). The purpose of these modifications is to
obtain scaffolds with greater strength and
homogeneity or SIS-derived improvement of
biological properties. In one study, SIS was
modified by poly(lactic-co-glycolic)  acid
nanoparticles (PLGA NPs) which resulted in a
more homogenous SIS and also enhanced growth
of endothelial cells in vitro (Mondalek et al.
2008). It’s been shown that Electrospun poly(e-
caprolactone) (PCL)/SIS powder conduits have
enhanced hydrophilicity and caused more
favorable neural cell attachment in comparison to
PCL (Hong and Kim 2010). Also, injectable SIS
biomaterial was successfully applied for repair of
ischemic myocardium in murine models (Okada
et al. 2010) or as drug depot to treat rheumatoid
arthritis (Kim et al. 2016). Also, Adipose-derived
stem cells on SIS microcarriers accelerated



7 Decellularization of Small Intestinal Submucosa

73

Small
T intestine

Porcine e ———

organs
—— |

Decellularization

ra

@ Cell lysate B e
: e o
‘-‘-‘!-9 and debggj:f;"®__. " e

@ - A 2

Detergents (SDS, Triton X-100)
Chemicals (CHAPS, EDTA)

L Enzymes (Trypsin, DNase I)

—

ECM solubilization
Pepsin

Acetic acid

ECM hydrogel

( ECM hydrogel formation
Salt and pH adjusted
to physiological levels
Temperature (37°C)

H (7.5
\ pH(7.5)

Fig. 7.1 Preparation of bioscaffolds from small intestinal
submucosa (SIS) requires mechanical, detergent-based
(such as sodium dodecyl sulfate (SDS)), chemical (such
as EDTA) and enzymatic (such as DNase and trypsin)
treatment of the tissue to remove cellular components.
After decellularization, the SIS sheet can also be utilized

wound closure in vivo (Zhou et al. 2011).
Improved mechanical properties and better ECM
production in hybrid PLGA-SIS scaffolds has
also been reported; respectively due to PLGA
and SIS (Kim et al. 2014). According to Da et al.
chemically crosslinked polyurethane (PU)/SIS
scaffolds are suitable for soft tissue engineering
because of their superior resilience and improved
cell viability (2017). FGF2-impregnated gelatin
hydrogel sheet was embedded in SIS sheet and
utilized successfully as a cardiac patch with
FGF2 controlled release in pigs (Tanaka et al.
2015).

Investigating immunomodulatory effects of
SIS is another interesting field of research. SIS
elicits Th2-mediated immune response which can
promote graft remodeling by attenuating pro-
inflammatory cytokine induction of Thl path-
way. SIS enhanced immunity against prostate

Fibrillar ECM
molecule

i .jl) /I Tubular ECM grafts

in tubular form for specific applications like gastrointesti-
nal tract reconstruction and also as hydrogels. Pepsin is
usually the solubilizing enzyme to obtain the precursor
material for producing hydrogel out of SIS (Hussey et al.
2017). Reprinted from Hussey et al. (2017) with permis-
sion from Springer Nature

tumor by evoking cell-mediated immunity
(Suckow et al. 2008). Adjuvanticity of com-
mercial SIS was also evaluated in a mouse model
and compared with alum. In contrast to alum, SIS
did not provoke pro-inflammatory cytokines; but
SIS-mediated Th2 antibody response was as
effective as alum (Aachoui and Ghosh 2011).
In the following sections, we will discuss
different methods of decellularization and SIS
preparation protocols. Also seeding of different
cell types, various clinical applications and pos-
sible limitations will be mentioned separately.

7.2 Materials and Methods

SIS which is commonly derived from jejunum of
porcine small intestine has to be decellularized
due to the inflammatory and immunological
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responses of host tissues to cellular components.
Effective decellularization will result in the
nuclei elimination, drastic reduction of DNA
content and also minimum disruption of
remaining ECM structure. SIS preparation which
is nicely depicted in Fig. 7.1, begins with
mechanical abrasion of tunica mucosa, tunica
serosa, and tunica muscularis externa; and
leaves intact submucosa, stratum compactum and
muscularis mucosa at the end. Primarily,
mechanical removal of cells and saline wash was
the only method used to prepare SIS in preclin-
ical studies. However, 0.1% peracetic acid
(PAA) and ethanol was later introduced for
removing remaining cells, DNA and RNA.
Finally, SIS was rinsed in phosphate buffered
saline (PBS, pH: 7.0) and distilled water exten-
sively. The Thickness of final material will be
80—-100 um (Badylak et al. 1999). Later in 2000,
Abraham et al. utilized EDTA in 10 mM NaOH
and then 1 M HCI in consecutive steps, to more
completely remove cells from SIS. In the next
step, it was washed with PBS and degreased by
methylene chloride (2000). In another study,
enzymatic digestion and detergent treatment after
mechanical abrasion and lipid removal helped to

Fig. 7.2 H&E staining of
SIS sample after
decellularization by

a mechanical treatment,

b mechanical treatment and
defatting, ¢ Enzymatic
digestion and d Detergent
treatment. Cells are present in
a and b (Luo et al. 2011).
Reprinted from Luo et al.
(2011) with permission from
Elsevier

eliminate cellular components (Fig. 7.2). Also,
they showed that subcutaneous implantation of
enzymatically  decellularized SIS reduced
inflammatory cell infiltration in comparison to
mechanically prepared ones (Luo et al. 2011).
It’s shown that after mechanical removal of
mucosa and serosa, further decellularization was
achieved by sodium deoxycholate and sodium
azide at 4 °C. Final SIS product was durable with
longitudinally oriented collagen fibers (Hata
et al. 2010).

Syed et al. compared different protocols of
decellularization to produce a tubular esophageal
graft out of SIS. They used perfusion for the first
time as a SIS decellularization method. Decel-
lularization was achieved either by perfusion of
detergents (sodium dodecyl sulfate (SDS) and
Triton X-100), SDS/DNase and PAA or by
shaking of SIS in PAA. It was found that PAA-
based methods did not decellularize SIS com-
pletely and detergent-based methods were more
efficient in terms of both decellularization and
retaining mechanical properties. It was assumed
that the tubular SIS or the method caused this
insufficient decellularization rather than the PAA
itself. On the other hand, biocompatibility of
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PAA treated SIS was far better than SDS/Triton
X-100 treated ones; but lower than that of
SDS/DNase treated samples. As a result, it is
concluded that SDS/DNase method would be
suitable in all aspects if DNase elimination step
will be added (2014). In 2018, Ji et al. evaluated
four decellularization methods; namely simple
mechanical abrasion (SIS-N) or PAA plus etha-
nol treatment (SIS-A), acid-base treatment (SIS-
B) and enzyme-detergent treatment (SIS-C) after
mechanical delamination. The level of decellu-
larization was similar in SIS-A, B and C and
much more than SIS-N. Cell proliferation was
also achieved at the same level in all processed
tissues. However, microstructure of SIS-C was
damaged the most with obvious collagen fibers
breakage. SIS-C also had the minimum types of
proteins between these groups. At the end, it was
stated that since SIS preparation by badylak
method (SIS-A) underwent brief decellulariza-
tion with optimum results and retaining of active
components and native microstructure; it could
be the effective way for SIS decellularization
(2019).

Other sources of SIS were also examined to
evaluate their advantages or disadvantages over
porcine SIS. Rashtbar et al. reported the decel-
lularization of ovine SIS, which is thinner than
porcine SIS, with lower concentration of deter-
gents in comparison to common protocols and so
resulted in less harmful effects of detergent to the
Scaffold (2018). In another study, bovine SIS
was subjected to freeze-thaw cycles for better
disruption of cell membrane, before PAA treat-
ment (Parmaksiz et al. 2018). It is worth men-
tioning that small bowel decellularization as a
whole was also studied in order to retain fine
structure of small intestine which could replace
properly the defected intestinal tissue (Nowocin
et al. 2016). In a well-established study, Totonelli
et al. decellularized rat small intestine by the
combination of detergent (sodium deoxycholate)
and enzymatic (DNasel) treatment in a continu-
ous peristaltic delivery setting via both lumen
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and vasculature. This method resulted in decel-
lularized small intestine with preserved villus-
crypt architecture (2012).

After decellularization, the common procedure
is lyophilization and then sterilization of SIS with
ethylene oxide, gamma or e-beam irradiation. It’s
been shown that hydrolytic degradation of SIS
would accelerate after sterilization and unsteril-
ized SIS has more prolonged effect on protein
expression and cell growth (Grimes et al. 2005).
Retention of growth factors like TGFB, VEGF
and bFGF after decellularization and sterilization
of SIS has been confirmed (McDevitt et al. 2003;
Azzarello et al. 2007); so their beneficial effects
on cell growth and proliferation would not be
eliminated by processing. Dehydration of the
product by means of lyophilization renders a
more durable product with prolonged shelf life.
Also, multilayered SIS was usually produced to
bring mechanical strength for different applica-
tions. Vacuum pressing is a physical procedure
that is established to produce laminated SIS
(applied to obtain 10-layered Restore® product).
Carbodiimide can also be used as a crosslinker to
laminate SIS, which does not inhibit cell growth
in contrast to glutaraldehyde (Abraham et al.
2000). It is noteworthy mentioning that since SIS
has high rate of degradation and bioinductivity,
mechanical properties will change rapidly after
implantation.

SIS hydrogel preparation has also been
examined in different in vitro and in vivo studies.
Usually, after decellularization and lyophiliza-
tion, ECM is pulverized and then solubilized
by pepsin and different acidic condition or vari-
ation in treatment duration (Fig. 7.1). Then
temperature-mediated gelation is achieved by
assembly of collagen fibers at 37 °C. Possibility
of applying in minimally invasive procedures
while retaining biochemical properties is the
advantage of the SIS hydrogels. ECM hydrogel
preparation methods and characterization of
these hydrogels is comprehensively reviewed by
Saldin et al. (2017).
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7.3 Cell Seeding

Suitable SIS microstructure and therapeutic
importance of cellular component encouraged
scientists to culture different cell types on SIS
scaffolds and assess their capability in various
tissue regeneration applications either by in vitro
or in vivo studies. In most of these studies SIS-
ECM supported the growth, proliferation,
migration and sometime differentiation of dif-
ferent cell types. Primarily, Badylak et al. cul-
tured six different cell types including three types
of fibroblasts, human primary Kkeratinocytes,
human microvascular endothelial cells (HMECs)
and an osteosarcoma cell line. All of these cell
types proliferated on SIS substrate similar to their
in vivo environment (1998). This distinctive
spatial orientation and behavior regarding cell
type was confirmed by co-culturing fibroblasts
and epidermal cells on SIS. Presence of epider-
mal cells facilitated fibroblast migration and
invasiveness (Lindberg and Badylak 2001). In
another study, different cell types were cultured
on SIS and SIS-derived gel. The ability of both
substrata to support specific morphology, growth
and differentiation of these cell types were
equivalent or superior in comparison to Matrigel
and Vitrogen (Voytik-Harbin et al. 1998). It’s
been shown by Badylak et al. that HMECs
adhere to hydrated SIS in a greater degree than
plastic dishes and dehydrated or rehydrated SIS.
Also, collagen type IV and fibronectin are not the
only proteins which cause cell attachment to SIS;
and RGD peptide is not critical for HMECs
binding to SIS (1999). 1It’s been shown that cul-
ture of pancreatic islets on SIS would improve
their in vitro function and help them retain their
morphology (Woods et al. 2004). Another
in vitro study successfully recruited muscle-
derived cells to remodel SIS to the state of sim-
ilar compliance to bladder wall (Lu et al. 2005).
Growth and differentiation of bone marrow
derived-mesenchymal stem cells (MSC) (Zhang
et al. 2005) and migration and growth of
embryonic stem cells (ESCs) (Lakshmanan et al.
2005) is also supported by SIS-ECM. Biome-
chanical properties of cell-seeded SIS after cyclic
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loading was also increased in comparison to non-
loaded and non-seeded SIS; so made it suitable
for tendon repair (Androjna et al. 2007). In car-
diovascular field, Thick contracting myocardial
graft was generated from cardiomyocyte (CM)-
seeded SIS accompanied by stacking of one or
three-layered CM cell sheets (Hata et al. 2010).
Human crypt-derived primary intestinal epithelial
(IECs) cells from small intestinal organoids were
seeded as single cells on SIS and cocultured with
fibroblasts in transwell-like setup to establish
small intestine model. This led to emergence of
differentiated intestinal cells and formation of
intact epithelial barrier (Schweinlin et al. 2016).
Sun et al. examined the osteogenic and angio-
genic capacity of composite of SIS and meso-
porous bioactive glass (MBG). Osteogenic and
angiogenic gene expression of rat bone marrow
stem cells (rBMSCs) and human umbilical vein
endothelial cells (HUVECs) were respectively
upregulated in composite scaffolds in comparison
to SIS and SIS/non-mesoporous BG (2018).
However, generally speaking, it’s believed that
tissue-specific ECM can profoundly contribute to
maintenance of cell phenotype and promotion of
cell proliferation and differentiation in tissue-
specific manner (Hussey et al. 2017).

There are also in vivo experiments utilizing
cell-seeded SIS-ECM; not only to improve
mechanical and biological properties of grafts,
but also to establish more suitable niches for cell
growth and differentiation. In an early example,
chondrocytes were cultured on SIS and implan-
ted to repair articular cartilage in rabbits. Overall
results suggested that healing in SIS-
cartilaginous transplanted defects and unfilled
self-repaired ones was similar. It seemed that SIS
alone inhibited host tissue formation in vivo
(Peel et al. 1998). Bladder augmentation in a
mouse model with smooth muscle and urothelial
cell-seeded SIS was also conducted successfully
and organized bladder regeneration was
achieved; although the number of cells were
significantly reduced after implantation (Zhang
et al. 2004). MSC-seeded SIS were applied to the
infarct area in a rabbit model. SIS sheets were
incorporated into infarcted host tissue with mild
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inflammatory reaction and no rejection response.
Improved left ventricle contractile function and
angiogenesis were observed in the patch
implantation region (Tan et al. 2009). Isl1*
embryonic cardiac progenitor cells (CPCs) were
viable on SIS-ECM scaffolds and after 7 days
differentiated in to cardiomyocytes and
endothelial cells. These cardiomyocytes started
contraction spontaneously and improved mouse
cardiac function after myocardial infarction
(Wang et al. 2017). Tongue regeneration of a rat
model was also investigated by applying human
gingiva-derived  mesenchymal stem cells
(GMSCs) seeded on SIS-ECM. Soft tissue healing
and expression of myogenic transcription factor
were promoted in GMSC/SIS-ECM group in
comparison to control groups (Xu et al. 2017). Kim
et al. studied the SIS sponge seeded with rBMSCs
for repairing cranial bone defect in a rat model.
Bone formation was significant in rBMSC-seeded
SIS scaffolds in comparison to SIS itself and other
control groups (2010). In order to achieve more
controllable mechanical stability and degradation,
SIS was also modified by four-arm polyethylene
glycol (PEG) crosslinker. The bioactive sponge was
successfully utilized to deliver skin cells to the
wound site and accelerate healing (Dong et al.
2019). For further reading on older in vitro and
in vivo applications of cell-seeded SIS we refer the
readers to a review article by Andree et al. (2013).

7.4 Clinical Applications

Different SIS-based products such as Surgisis®,
Durasis®, stratasis®, CuffPatch™, Oasis®,
Restore®, CorMatrix® and Dynamatrix® are
available for specific clinical applications. It is
estimated that more than one million patients
were subjected to SIS grafting in clinical basis
(Mosala Nezhad et al. 2016; Badylak 2007). The
popularity of ECM scaffolds in general and SIS
scaffolds in particular, which led them to make
their way toward clinic, is rooted in their bioin-
ductive and biomechanical properties, modest
immune response and reasonable degradation
rate (Badylak 2007). Most of the marketed SIS
products are available as patches and rehydration
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before application is necessary. Among these
products, here we summarize the results related
to those examined in several studies and entered
to clinical trials and applications.

Surgisis® (Cook Biotech Inc., West Lafayette,
IN, USA) is a 4 or 6-ply SIS sheet and mostly
substituted to repair soft tissues like hiatal
(Oelschlager et al. 2012; Watson et al. 2015),
diaphragmatic (Smith et al. 2004; Romao et al.
2012) and inguinal hernia (Ravo and Falasco
2019). Although in most cases SIS grafts were
support tissue repair with less pain and compli-
cations, hernia recurrence in long term is an
obvious shortcoming of the patch in comparison
to suturing and also evidence in favor of SIS over
synthetic meshes is not sufficient (Antoniou et al.
2015; Grethel et al. 2006; Sarr et al. 2014).
Synthetic mesh and 4 or 6-ply SIS grafting in
patients with gastroesophageal reflux disease
who underwent crura reinforcement showed that
with respect to reduction of hernia recurrence and
patient satisfaction, 6-ply SIS is a promising
substitute (Wang et al. 2016). There are also
studies which grafted SIS for vaginal prolapse
treatment. Overall results were favorable with
reduced recurrence rate and improvement of
disease condition (Armitage et al. 2012; Feldner
et al. 2010). SIS-assisted bladder augmentation
in a small group of patients was not satisfactory
due to insufficient increase in bladder compliance
(Schaefer et al. 2013). Peyronie’s disease (PD) is
an unusual curvature in penis which is sometimes
accompanied by erectile dysfunction (ED).
Inflammation with subsequent plaque formation
in the tunica albuginea is the cause of this
abnormality. Patients with PD were also sub-
jected to SIS grafting in several studies. In most
of these cases ED was reported after surgery.
However, except one study that reported curva-
ture recurrence (John et al. 2006), the overall
outcome of these studies was reported as satis-
factory and with a low risk of complication
(Cosentino et al. 2016; Rosenhammer et al.
2018). Treatment of anal fistula by SIS grafts was
also examined in clinical studies; with the
reported success rate ranging from 20 to 94%
(Garg et al. 2010; O’Riordan et al. 2012). There
are also two studies with small sample size that
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compared Surgisis® and Gore synthetic plug in
anal fistula repair. In one study, healing rate was
12.5% for SIS compared to 54.4% in Gore plug
(Buchberg et al. 2010); and 39% for both plugs
in another study (Hansen et al. 2019). Chest wall
reconstruction after Ewing’s tumor resection is
also case-reported. Superior wound healing and
symmetric growth of chest wall led to the con-
clusion that SIS utilization is a reasonable path
toward chest wall reconstruction. However, the
authors mentioned that the follow-up period was
short (Murphy and Corbally 2007). Tubular SIS
grafts were successfully transplanted in five
patients with esophageal adenocarcinoma. The
follow-up showed restitution of normal esopha-
gus without recalcitrant stricture formation and
recurrence of neoplasia (Badylak et al. 2011).

Treatment of different types of skin wounds
was also clinically evaluated by SIS grafting.
Oasis® wound matrix (Smith & Nephew, Inc.,
Andover, MA, USA) has been evaluated for
treatment of chronic leg ulcers (Mostow et al.
2005), diabetic ulcers (Niezgoda et al. 2005;
Landsman et al. 2008) and pressure ulcers
(Brown-Etris et al. 2019). All of these random-
ized studies suggested that SIS is a suitable
wound care product; the clinical outcomes are
comparable to other available products and pro-
cedures like Regranex Gel (Niezgoda et al.
2005), living skin equivalent (Dermagraft®,
Advanced BioHealing, La Jolla, Calif) (Lands-
man et al. 2008), compression therapy alone
(Mostow et al. 2005) and standard care alone
(Brown-Etris et al. 2019). Treatment of mixed
arterial/venous (A/V) ulcers by SIS were also
studied and compared to Hyaloskin® (Romanelli
et al. 2007) and a moist wound dressing
(Romanelli et al. 2010). In both cases, applica-
tion of SIS-ECM resulted in higher number of
ulcer closure.

Clinical application of 4-ply SIS CorMatrix®
(CorMatrix Cardiovascular, Inc., Roswell, GA,
USA) which is the most widely used SIS product
in cardiovascular surgery, started almost 10 years
ago; after multitude of preclinical studies (Mos-
ala Nezhad et al. 2016). It is a strong and durable
construct which makes it suitable in cardiovas-
cular applications. Pericardial reconstruction by
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means of SIS patch was the first clinical report
using this product. Although there were limita-
tions in this study, relative risk of atrial fibrilla-
tion was reduced by 54%; which was compelling
to consider this product as a suitable substitute in
cardiac clinical applications (Boyd et al. 2010).
Thereafter, CorMatrix® was applied to recon-
struct pediatric and adult valve and vascular
defects, congenital cardiac defects, endocarditis
and infarcted myocardium; which have been
comprehensively reviewed by Mosala Nezhad
et al. (2016). Although most of the studies sup-
ported suitability of the patch, severe chronic
inflammation (Zaidi et al. 2014; Rosario-
Quinones et al. 2015), calcification (Stelly and
Stelly 2013) and stenosis (Witt et al. 2013;
Poulin et al. 2013) are major complications
occurred in clinical settings and indicating the
importance of further evaluation of CorMatrix®
in randomized studies with large number of
patients and longer follow-up periods (Mosala
Nezhad et al. 2016). For further reading on pre-
clinical studies using this SIS-ECM patch and
other ECM based products, the readers are
referred to a recent article by Iop et al. (2018).

7.5 Limitations

Although SIS products are widely examined in
preclinical and clinical applications, reports of
adverse or no beneficial effects should not be
ignored. In clinical applications, failure of rotator
cuff regeneration is an infamous example. In this
regard; unimproved regeneration, retearing and
low healing rate in comparison to control group
were common complications (Sclamberg et al.
2004; Walton et al. 2007; Iannotti et al. 2006). In
the case of stress urinary incontinence treatment
by SIS, inflammatory response and failed pro-
cedure has been reported (John et al. 2008;
Siracusano et al. 2011). It seems that matching of
mechanical properties between target tissue and
the scaffold, more importantly in under stress
tissues, has an impact in success rate. Another
issue to be considered is the differential regen-
erative impact of distinct segments of SIS. It’s
been shown that distal ileum resulted in a more
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robust regeneration and less adverse effects than
proximal jejunum (Kropp et al. 2004). Insuffi-
cient nourishment of cells in 3D constructs of
multilayer SIS is another limitation for estab-
lishing cell-seeded SIS to reinforce beneficial
aspects of this natural scaffold. Chemical
manipulation of SIS by means of other synthetic
or natural materials and also crosslinkers are
strategies of improving mechanical properties or
to better control degradation rate of SIS; how-
ever, mostly they lead to weaker tissue remod-
eling. As a result, proper evaluation of the
situation and considering all the benefits and
limitations of SIS scaffolds and its variations
would help to improve final outcome of tissue
regeneration and lessen the risk of failure.

7.6 Conclusion

From an inverted autograft for vena cava
replacement in dogs to several marketed prod-
ucts, SIS has come a long way before being
established as a reliable substitute in regenerative
medicine applications. Although whole small
bowel decellularization was also reported, its
applications will be limited to replacement of
small intestinal segments and it can cause more
pronounced immune response. The natural
structure and properties of SIS-ECM scaffolds
make them suitable substitutes in regenerative
medicine and expand their application by their
emergence. The growth factors like VEGEF,
TGFp and bFGF which are preserved after SIS
processing, enable tissue remodeling and regen-
eration. On the other hand, this scaffold promotes
differentiation of monocytes toward M2 macro-
phages rather than M1 and accordingly facilitates
tissue remodeling by releasing anti-inflammatory
cytokines. Although some limitations and fail-
ures were also reported in preclinical and clinical
applications, the beneficial properties of SIS-
ECM predominated and opened up lots of
opportunities for marketing SIS-based products.
Obviously, like other synthetic and natural scaf-
folds, improving mechanical and functional
properties of SIS-based scaffolds would enlarge
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its applicability in different fields of regenerative
medicine.
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8.1 History

We began to work with the isolated mucosa of
the rat colon in a project in which this structure
was investigated in vitro using the Ussing
chamber (Bohme et al. 1992). The project
examined the secretory mechanisms of colon
enterocytes under the influence of the mucosal
nerve plexus as well as under the effect of
mediators (Diener et al. 1989).

In our model, the basement membrane
(BM) was a support par excellence for the ente-
rocytes, to which they are attached through cell
membrane adhesions and specialized contacts,
providing them with mechanical support (Mes-
tres et al. 1991). An important aspect in this
context was the possible barrier function of the
basement membrane; which is why ultra-
structural studies were performed (Mestres
et al. 1991, 2014).

In order to examine the surface of the base-
ment membrane, procedures were applied to
remove the attached enterocytes with minimal
damage to the BM while, at the same time, pre-
serving vitality and viability of the cells (Andres
et al. 1985; Diener et al. 1989). The
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decellularization procedure selected in these
experiments only relates to the decellularization
of the superficial epithelium, and not to the
innermost layers of the mucosa, such as the
lamina propria with proper neural elements and
muscular layer of the mucosa (Mestres et al.
1992a, b). Our first observations after this treat-
ment were that BM had been preserved and
presented a discretely globular surface with fen-
estrations. The latter is related to the passage of
delicate prolongations of the basal pole of ente-
rocytes through the BM as well as macrophages
and other cells able to move through the mucosa
compartments (Mestres et al. 1991).

The superficial epithelium of the colon was
dislodged using EDTA and controlled mechani-
cal vibration (Diener et al. 1989). However, the
degree of decellularization of the mucosa was, on
the whole, not satisfactory, as the large number
of cells which remained in the network of the
extracellular matrix represent a disruptive factor.
Therefore, decellularization was intensified with
the application of a protocol based on detergents,
which will be described in detail later (see Lopez
Gomez et al. 2018).

There are many decellularization strategies,
which have been applied with varying success,
depending on the tissues and organs selected
(Crapo et al. 2011). Hollow organs have received
particular attention as they permit the obtain of
scaffolds of adequate size and easy handling.
Good examples of this are the esophagus (Ozeki
et al. 2006; Keane et al. 2013), the small intestine
(Maghsoudlou et al. 2013; Oliveira et al. 2013;
Denost et al. 2015; Massie et al. 2017), and the
urinary bladder (Barnes et al. 2011). Even tumor
extracellular matrix (ECM) has been isolated in
order to study the interactions of this particular
ECM with diverse cell types (Nietzer et al.
2016).

Studies of the relevant literature reveal that the
wall of the colon has rarely aroused the interest
of researchers and merely a few studies of this
organ and its walls, especially in the context of
its uses in tissue engineering, have been carried
out. One exception is a study using sheep colon,
in which the entire wall was decellularized
(Kajbafzadeh et al. 2014). Another more recent
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study deals with the mucosa of the colon,
studying the host responses to the ECM derived
from this organ (Keane et al. 2017). As previ-
ously mentioned, our group has extensive expe-
rience with regard to the structure of the rat colon
(Mestres et al. 2014; Lopez Gomez et al. 2018).
This fact, together with the circumstances pre-
viously explained, led to our decision to continue
with the preparation of this organ, with the aim
of developing and characterizing a new ECM
scaffold derived from the colon wall.

8.2 Material and Methods

8.2.1 Animal Care

Adult Wistar and Sprague—Dawley rats of both
sexes (200-300 gr body weight) were kept in
animal facilities under controlled light, tempera-
ture, humidity, and food conditions. The animals
were euthanized with carbon dioxide and in
accordance with the relevant Spanish and EU
regulations. The project was also examined and
authorized by the ethical commission of the Rey
Juan Carlos University (Madrid, Spain).

8.3 Organ Dissection and Tissue
Preparation

After the opening of the abdominal wall, the
entire colon was removed and carefully separated
from its peritoneal adhesions. The colon was then
washed to free it of fecal contents, for which a
physiological solution was used at pH 7.2 and
4 °C (Parsons and Paterson 1965).

To separate the mucosa from the muscular
layer, a cylindrical rod of 5 mm caliber was
introduced into the lumen of the colon, and a
circular section was made in one of the ends in
order to lift the muscular layer slightly and sep-
arate it from the submucosa and mucosa, which
remained on the cylinder. By carrying out a
longitudinal section, the luminal surface of the
colon was exposed (Bridges et al. 1986; Mestres
et al. 1991). The isolated mucosa was spread
onto a piece of smooth and uncreased filter
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paper, enabling simple and safe handling of the
samples. Generally, two or three relatively large
samples can be obtained from each colon (Lopez
Gomez 2015).

With this preparation, the muscle layer (tunica
muscularis) of the colon can also be separated,
forming a rather large specimen somewhat
rougher than the mucosa. As the muscle layer is
also susceptible to decellularization, our proce-
dure provided a substrate with a surface consti-
tuted mainly of deep-running connective tissue
fibers, which are in contact with the sheaths of
the basement membrane of the smooth muscle
cells of the muscularis mucosae.

8.4 Decellularization

The mucosa, still attached to the filter paper, was
divided into squares of approx. 2 cm side length
and attached to plastic holders by means of an
acrylic glue used for surgery (Histoacryl®,
Braun-Aeskulap, Germany). The holders
(Fig. 8.1) have a hole of 1.5 cm in diameter that
is covered by the mucosa.

In a first decellularization step, the holders
with the mucosa were plunged into a Parsons and
Paterson solution containing 10 mM EDTA at
pH 7.4, but without Ca** or Mg**, for 5 min and
vibrated (frequency 50 Hz) for 15 s. This treat-
ment was repeated for 45 min, resulting in the
complete removal of surface mucosal epithelium.
To restore ion levels, the tissue was washed with
Parsons and Paterson solution containing Ca®*
and Mg**.

In a second decellularization step, two deter-
gents were used: First Triton X-100 (Sigma-
Aldrich) and then SDS (Sigma-Aldrich). They
were applied separately at a temperature of 4 °C
under constant stirring.

The two following procedures were applied: A
short treatment: Triton X-100 (0.5% in PBS) for
30 min, followed by SDS (0.5% in PBS) for
10 min and 15 min with DNase I Invitrogen (1U/
ul) and a long treatment: Triton X-100 (0.5% in
PBS) for 2 h, followed by SDS (0.5% in PBS)
for 30 min and then 15 min with DNase I, with

Fig. 8.1 Plastic holder to which the isolated colonic
mucosa is glued with Histoacryl®. 1: holder with 1.5 cm
diameter hole; 2: rod for attachment to the vibration
equipment

the washing in Parsons and Paterson solution
between each step (Lopez Gomez et al. 2018).
The treatment with DNase I, which was carried
out at 37 °C, was especially required after SDS
treatment in order to remove free-spreading
DNA, which was visualized on the HRSEM
pictures (see Fig. 8.4d). In order to eliminate
detergent and enzyme residues and re-establish
the ionic medium, the samples were thoroughly
washed with the Parsons and Peterson solution.

The reaction time of both detergents was
tested in experiments carried out in one of our
department's other laboratories, using our proto-
col but with prolonged application times: Triton
X-100 overnight at 4 °C and SDS at room tem-
perature for one hour. The results were good in
both cases (Potschke 2012).
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8.5 Light and Electron Microscopy
of Decellularized Colon Mucosa

In order to determine the state of preservation of
colonic ECM after decellularization, samples
were processed for light (LM) and electron
(EM) microscopy.

For LM the samples were fixed with 10%
formaldehyde in PBS, dehydrated in an ascend-
ing series of ethanol, and embedded in paraffin
(Panreac Quimica SA, MP 56-58 °C). Histolog-
ical sections of 5 pm thickness were stained with
hematoxyline-eosin (general ECM morphology)
or with propidium iodide (a specific staining
agent for nuclear nucleic acids, see Riccardi and
Nicoletti 2006). Figure 8.2 shows the effects of
our treatments on the ECM and on cell nuclei of
the isolated colonic mucosa (Lopez Gomez et al.
2018). The treatments with detergents practically
dissected the structures of the ECM, leaving
them free of cellular elements (Fig. 8.2). In order
to have a negative control of basement mem-
brane preservation and, at the same time, to
visualize the ECM of the lamina propria, some
samples were incubated in 0.25% trypsin-EDTA
in PBS at pH 7.4 for 2 and 24 h at 4 °C with
constant stirring. The basement membrane was
already eliminated after the 2 h treatment
(Figs. 8.2d—g). The samples were then washed in
the Parsons and Paterson solution in order to
remove traces of the protease and to restore the
ionic medium.

A particular compartment of the ECM is the
basement membrane and to determine its per-
sistence after decellularization some of its
specific molecular components were detected by
immunohistochemistry (ICC). The following
antibodies were used: anti-collagen IV (rabbit
polyclonal, Abcam, ab6586), anti-laminin (rabbit
polyclonal laminin 1 + 2, Abcam, ab7463), and
anti-perlecan (rabbit polyclonal, Santa Cruz
Biotechnology, H-300). The histological sections
were de-waxed, rehydrated, and then treated with
pepsin (pepsin crystalline, Sigma-Aldrich, Ger-
many, P6887) to unmask collagen IV and lami-
nin antigens, while for perlecan this pretreatment
was unnecessary. Endogenous peroxidase was
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inhibited with H,O, for 15 min at room tem-
perature, and unspecific binding sites were
blocked with 10% FCS in PBS for 30 min in a
humid chamber at room temperature. The pri-
mary antibodies against collagen IV (dilution
1/1000), laminin (dilution 1/1500), and perlecan
(dilution 1/1000) were incubated overnight in a
humid chamber at 4 °C. The binding of the pri-
mary antibodies was detected using Histofine
Simple Stain MAX PO (Nichirei Biosciences,
Tokyo, Japan).

For LM an Axioplan 2 Optical Microscope
(Zeiss, Oberkochen) equipped with an HCR
Axiocam camera (Zeiss, Oberkochen) was used
and digital images were obtained and stored in
JPEG and TIFF format. Figure 8.3 shows the
results of the three BM-proteins mentioned
above obtained by immunohistochemistry. While
collagen and laminin appear in BMs, perlecan
also appears weak in other locations of the ECM.
Together they demonstrate that the BM was
preserved.

Electron microscopy allowed us not only to
examine details of the fine structure of ECM and
basement membrane but also to see how cells
cultured on this scaffold attach and migrate inside
it. Thus, scanning (SEM) as well as the new
technique called block-face SEM (BFSEM) and
transmission electron microscopy (TEM) have
proven very useful.

For EM the samples were processed as fol-
lows: Samples attached to plastic holders
(Fig. 8.1) were fixed in 2.5% glutaraldehyde
(Fluka, Switzerland) buffered with cacodylate
0.12 M, at pH 7.4, post-fixed in buffered 1%
osmium tetroxide (Electron Microscopy Sci-
ences, EMS) for 2 h at 4 °C and then dehydrated
in an increasing alcohol series. The specimen
remained attached to the holder during all these
steps.

For SEM the fixed and dehydrated samples
were transferred to 100% acetone and dried
according to the critical point method (CPD) us-
ing CO, as an intermediary (Mestres et al. 2014).
The drying procedure is an important step as
otherwise, the 3D structure of the sample would
collapse and the original tissue architecture
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Fig. 8.2 Light microscopy (reproduced with permission
of reference Lopez Gomez et al. 2018). a Partial view of
the colon wall (control). H/E staining. 1: Surface epithe-
lium; 2: Lamina propria; 3: Crypts in cross and length
section; 4: Tunica muscularis mucosae; 5: Submucosa
with a large blood vessel; 6: Partial view of tunica
muscularis. In the following light microscopy images,
structural features are indicated as in Fig. 8.2a. b Isolated
colonic mucosa after decellularization after
EDTA/vibration treatment. H/E staining. The surface
epithelium has been completely removed. ¢ Isolated
colonic mucosa decellularized after the combined treat-
ment (see diagram on Fig. 8.2). H/E staining. The surface
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Fig. 8.3 Immunohistochemical detection of marker pro-
teins of BM after decellularization of isolated colonic
mucosa (short treatment). (Reproduced with permission of
reference: Lopez Gomez et al. 2018). a Collagen IV. The
luminal side of the colonic mucosa appears cell free with a
sharp line corresponding to the BM (arrow). The BM is
also clearly stained at the crypts (3) around blood vessels
and smooth muscle of the muscularis mucosae layer (4);
b Laminin. The BM membrane of the surface epithelium

epithelium has been completely removed. d Isolated
colonic mucosa after trypsin treatment. H/E staining. The
surface epithelium has been completely removed (arrow).
e Untreated colon wall stained with PI. Note the cell
nuclei in red. f Isolated colonic mucosa treated with
EDTA/vibration and stained with PI. The surface epithe-
lium has been completely removed (arrow). g Isolated
colonic mucosa after combined short treatment (see
Fig. 8.1) and stained with PI. Cell nuclei are no longer
visible. h Isolated colonic mucosa after trypsin treatment.
Particles stained with PI are still visible and correspond to
fragments of cell nuclei trapped in the ECM structure. The
surface epithelium has been completely removed (arrow)

20pm

(arrow), blood vessels in the lamina propria, and in the
smooth muscle of lamina muscularis mucosae layer, are
well stained (arrow head). In contrast, the submucosa
(5) remains unstained; ¢ Perlecan. The BM membranes
appear stained but there is also a weak staining of
extracellular matrix (ECM) in other parts of the colon
wall; d Negative control in which the primary antibody
was omitted
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Fig. 8.4 Scanning electron microscopy of the luminal
surface of the colonic mucosa after decellularization
(reproduced with permission of reference Lopez Gomez
et al. 2018). a Overview showing the cell-free BM surface
and the mouths of the crypts (¥). b Epithelial side of the
BM membrane at higher magnification. Note the presence
of globules. ¢ Measurements of particle diameter or
globules. Some globules rise to the surface, whereas
others appear embedded in the BM membrane. d Surface
of the BM membrane after SDS treatment. Note the

presence of a network of fibers, which subsequently
disappeared upon the application of the enzyme DNase.
e Insert showing the surface of the mucosa after trypsin
treatment. Note the regular distribution of the crypts (dark
mouth). f The enzymatic action of trypsin has hydrolyzed
the BM membrane rendering the collagen fibers under-
neath directly visible. g Detail of Fig. 8.9f. The collagen
fibers do not appear to have been affected by the action of
trypsin, indicating that only the BM has been removed
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would be lost. To render them conductive, the
samples were sputter-coated with platinum
(Lopez Gomez et al. 2018) and examined with a
Nano-SEM 240 FEG FEI scanning electron
microscope. Figure 8.4 shows various SEM
aspects of the luminal surface of the colon
mucosa after decellularization with detergents
and the enzyme trypsin.

For TEM, the samples were treated as
described above, but instead of being dried, they
were carefully detached from the holder and
embedded in epoxy resin (TAAB). Semi-thin
Sects. (0.5-1.0 pm thick) were stained Azur II
and methylene blue (Richardson et al. 1960) and
examined with a light microscope. Ultrathin
Sects. (80 nm thick) were stained with uranyl
acetate and lead citrate (Reynolds 1963) and
examined in a Jeol JEM 1010 transmission
electron microscope (for details see Lopez
Gomez et al. 2018).

In summary, it can be said that microscopic
studies have shown that, with the decellulariza-
tion protocol used, complete decellularization is
achieved with practically no contamination with
DNA fragments (Fig. 8.4). The network of the
ECM is well preserved as shown by the SEM
images (Fig. 8.4). On the other hand, TEM
reveals that the luminal basement membrane
remains thinned only at the side where the
epithelium is attached (Fig. 8.5). On the

Fig. 8.5 Thickness of 120 1
luminal colonic BM after

decellularization (short

treatment). X = Treatments. 100 A
Y = Thickness of the BM in
nm. Mean values with
standard deviation: Control:
98.35 + 12.1; Short
treatment: 29.92 + 5.78;
Long treatment: 24.4 £ 3.75
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underside of the mucosa, the relation between
collagen fibers and BM appears to have been
well preserved. As explained elsewhere (Lopez
Gomez et al. 2018) the release of enterocytes
ruptures the links between them and the BM so
that molecules located in the BM lamina lucida
(LL) are lost, and consequently, this layer
apparently disappears (Lopez Gomez et al.
2018). On the other hand, as the released ente-
rocytes remain vital, the action of EDTA appears
not to be lethal for these cells (Diener et al.
1989).

The ICC and TEM studies show that part of
the BM corresponding approximately to the BM
lamina densa (LD) retains its surface properties,
enabling the renewed attachment of cells when
the specimen is recellularized. On the other hand,
these BM components provide the scaffold here
with special functional properties (Lopez Gomez
et al. 2018). The nanotopography of the BM
surface after these treatments is characterized by
small globules approx. 40 nm in diameter, a size
which seems to be their original size and is not
significantly different after the two treatments
described here (Fig. 8.4) (Mestres et al. 2014;
Lopez Gomez et al. 2018).

Not only was the mucosa isolated success-
fully, but also very good results were achieved in
experiments to remove the cells of the isolated
muscle layer and the entire colon wall (Fig. 8.6).

CONTROL

SHORT TREATMENT LONG TREATMENT
DECELLULARIZATION TREATMENT
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Fig. 8.6 The whole colon wall was decellularized.
Paraffin section was stained after the PAS reaction.
a Overview of the decellularized colon wall in longest
Sect. 1: mucosa, 2: muscularis mucosae, 3: submucosa

These tests were not part of the routine procedure
but merely intended to test the effectiveness of
the decellularization procedure and to examine
possible further scaffolds.

With the above-described treatment, the basal
membrane was preserved and already after the
short treatment complete decellularization of the
isolated mucosa was achieved (Mestres et al.
2014; Lopez Gomez et al. 2018).

If the BM is removed, for instance with
trypsin, then the remaining fibers of the lamina
propria can be visualized (Fig. 8.4). The differ-
ence between the arrangement of the collagen
fibers at the luminal side and the underside of
isolated mucosa is noteworthy (compare
Figs. 8.4 and 8.9).

and 4: tunica muscularis. b Detail of the tunica muscularis
in long section. ¢ Detail of the tunica muscularis in cross
section

8.6 Cell Cultures

Cell cultures on the isolated colon mucosa served
as proof of compatibility between cells and
substrate. In general, the suitability of a substrate
depends not only on its properties but also on the
affinities of cells for it. One property is the
chemical composition, another is the nanoto-
pography of the surfaces on which the cells set-
tle, and also mechanical properties, such as
stiffness. The first two points will be examined
more closely.

In the present study, both cells from primary
human cultures and permanent cell lines were
chosen:
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e Primary cultures of human fibroblasts isolated
from the umbilical cord, generously provided
by Dr. Fernando Serrano Gémez (University
Hospital Foundation Alcorcon, Madrid).

e Primary cultures of human endothelial cells
isolated from umbilical veins and supplied by
Dr. Jose Uranga Ocio (Department of Basic
Health Sciences, Faculty for Health Sciences.
University Rey Juan Carlos, Alcorcon,
Madrid).

e And cell lines commercially available such as
804 G cells (access: CVCL_J122; Izumi et al.
1981), PC3 cells, a line of epithelial nature
from a prostate adenocarcinoma (ATCC,
Kaighn et al. 1979) and P21 (hPCP) cells, a
cell line isolated from stroma of a prostate
adenocarcinoma were used particularly in the
co-culture experiments (Janssen et al. 2000).

Human fetal fibroblasts. Before seeding, the
mucosa, isolated and decellularized as described,
was incubated in DMEM culture medium with
antibiotics (1% penicillin/streptomycin) with
FCS (10%) or without serum at 4 °C and under
constant stirring.

For the culture of the cells, an incubation
chamber was constructed as shown in Fig. 8.7.

I ~J

Fig. 8.7 Scheme of the chamber for in vitro experiments.
(1): 3D view where the cutting plane represented in the
second diagram is marked. (2): Transwell; (3): Makrolon
ring; (4): medium; (5): isolated and decellularized colon

The mucosa was attached to a Macrolon™ ring
using Histoacryl™ with the luminal side of the
mucosa, i.e., with the BM, facing the inside of
the ring. The ring has a height of 1 cm and also
an internal diameter of 1 cm. This enables the
construction of a small container to safely keep
the cells in. The Macrolon rings with the attached
mucosa were placed in a 12-Transwell plate
(Falcon-Corning) (Fig. 8.7). Fetal fibroblasts in a
concentration of 6 x 10* were placed in such
small containers and both the ring and the 12-
Transwell were filled with culture medium. The
cultures were maintained in an incubator at 37 °
C, with humidity control, an atmosphere with 5%
CO; and frequent changes of medium.

As the mucosa offers very poor optical prop-
erties, which do not permit direct microscopi-
cally monitoring of culture growth, cells were
parallel cultivated on Thermanox™ coverslips.

For fine structural studies, the samples were
processed for electron microscopy as described
above and semi-thin and ultrathin sections were
examined with light and electron microscopes
respectively.

Human fetal fibroblasts adhere well to the
surface of the mucosa, adopting a very flat form
and thus become adapted to the topography of

mucosa; (6) plastic support on which the Makrolon ring is
located; (7) places where Histoacryl has been used;
(8) cells on the BM and (9) cells on the downside of the
scaffold in the co-cultures
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Fig. 8.8 SEM of fetal human fibroblasts in vitro.
(Reproduced with permission of reference Lopez Gomez
et al. 2018). a Fibroblasts in vitro are already morpho-
logically developed. The cells show fine ruffled borders
and thin filopodia, making contact with neighboring cells
and with the substrate, in this case, the BM. b Fibroblasts
in an early phase of cultivation. About four crypts and
BM between the crypt openings can be seen. Several cells
have settled in the crypts. ¢ 1 pm thick section stained
with Azure II and methylene blue. The fibroblasts are

the substrate. After approximately 4-7 days of
cultivation, they begin to infiltrate the scaffold,
presenting fine extensions winding their way
between the collagen bundles of the mucosa
(Fig. 8.8). In fact, the BM is not really a barrier
for these cells, as probably at this stage, they are
encountering a BM, which is already in a
somewhat degraded state as there are no cells to
renew it or form new BM material.

Endothelial cells. The endothelial cells
became attached very early after seeding. They
display a more or less round shape with only
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stained dark. At the surface, strongly flattened cells can be
observed (thin arrow). Other cells display a more stellate
shape with thin processes penetrating into the neighboring
ECM, indicating migration into deeper layers (thick
arrow). d Correlative SEM/TEM image where the cyto-
plasmic border of a fibroblast in close contact with the
BM can be seen. The metallic conductive coating of the
specimen can be recognized as a very dark line that
protects the surface (arrow)

punctual contacts and still maintain this shape
after 3—4 days of culture (Jaffe et al. 1973).
Although FCS was added to the culture medium
they do not, after four days of cultivation, yet
seem to be able to build an epithelial carpet, still
displaying a shape similar to that of the early
hours of cultivation, i.e., with an elevation in the
middle corresponding to the cell nucleus and a
laminar extension around this with thin processes
at the borders. It is possible that they lack some
factors which they need to be able to grow and
differentiate, and that this could be due to the
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Fig. 8.9 SEM of 804G cells growing on the isolated
colonic mucosa. a Cells recently attached and in contact
with others; b cells attached to the BM and openings of

extraction of materials from the ECM during the
process of decellularization (not shown).
Attempts to confirm or refute this hypothesis are
in preparation.

804G cells—The 804G cells were cultivated
for 3, 4, and 7 days. From the very beginning,
they adhered satisfactorily, showing normal
growth patterns (Fig. 8.9) (Langhofer et al. 1993).

The next point deals with the experiments
carried out by Pdtschke (2012) in which two cell
lines then separated through the mucosa scaffold
were simultaneously cultivated. The chamber
described above was used in these experiments
(Fig. 8.7). In cultures with only the PC3 cells,
they were seeded on the side of the scaffold with
a basement membrane. These cells attached very
well, developing contacts and building a cellular
carpet of polarized epithelial cells (Fig. 8.10).

two adjacent crypts can be distinguished; ¢ Two cells with
fine filopodia on the edge and in close contact by means
thin processes; d detail of the filopodia and cell surface

In the co-cultures, the P21 cells (hPCP)
derived from the prostatic stroma were placed on
the underside of the scaffold where there is no
BM the cells established direct contact with the
ECM (Fig. 8.10). In fact, this arrangement of the
cells represents a further development of our
initial experimental design, giving information
about the suitability of decellularized mucosa for
studies in vitro.

Both cell lines require RPMI 1640 medium,
supplemented with 10% FCS, as well as 2.5%
HEPES and must be kept in the incubator at 37 °
C with 5% CO,.

This arrangement was tested not only to see
how both cell lines behave on this substrate but
also to detect possible interactions which could
modify, for example, the growth rates of one or
both cell types involved.
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Fig. 8.10 Electron microscopy of co-cultures of PC3 and
P21 (hPCP) cells. a Cell surface of PC3 cells after 4 days’
culture. b Block-face SEM image. Crypts and surface of
scaffold occupied by PC3 cells arranged in an epithelial
manner. 1: opening of a crypt with cells; notice the
nucleus with prominent nucleoli. ¢ Decellularized colonic
mucosa with cells growing on both sides. The PC3 cells
lie directly on top (BM), while the P21 cells are found

LTt

directly on the extracellular matrix to the underside of the
scaffold. (1): Crypts and free surface occupied by PC 3
cells; (2) scaffold; (3) P21 cells forming a flat layer.
d Underside of the scaffold. P21 cells appear bright in the
picture and show a rather elongated form with processes
in contact with each other. In between, there are fields
where the fibrous structure of the scaffold ECM at this
side can be clearly seen
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The cells and their relationship with the sub-
strate were investigated with scanning electron
microscopy and the so-called block-face SEM
technique, a method in which the tip of the resin
block, already prepared for ultra-microtomy, is
examined in the SEM, mainly using the back-
scattered electrons (BSE) signal to obtain the
images (Laue et al. 2005; Nufiez-Lopez et al.
2018).

In single and co-cultures both PC3 and P21
cell lines appear well adapted to the culture
conditions. The PC3 cells form a monolayer,
which extends across the free surface and also
occupies the crypts as well (Fig. 8.10). The
stromal P21 cells adhere to the lower face of the
mucosa scaffold, where collagen fibers of the
ECM are found, and developed stellate shapes
with long extensions, forming close relations to
each other (Fig. 8.10). There are indications that,
under the described conditions, the epithelial
PC3 cells could positively influence the prolif-
eration of stromal cells (Potschke 2012).

8.7 Discussion

In the present study, it has been shown that the
mucosa layer of the rat colon can be isolated and
decellularized, producing a scaffold of ECM,
which can serve as a substrate for tissue engi-
neering. Other studies deal with the colon
mucosa of the pig (Keane et al. 2015) and the
entire colon wall of the sheep (Kajbafzadeh et al.
2014) and have also prepared scaffolds, but this
has—so far—mnot been the case yet with rat
mucosa.

Our aim was to decellularize the mucosa
while, at the same time, preserving the BM on
the luminal side of the colon wall. In this way,
the scaffold would have a top side with BM and
an underside with decellularized muscularis
mucosae, which is partially covered by submu-
cosa tissue, the latter resulting from the separa-
tion of the mucosa from the rest of the colonic
wall.

The decellularization procedure foresees the
use of a chelator, EDTA, and two detergents, an
ionic one, Triton X-100, and a non-ionic one,

SDS. This is a procedure that has been used
successfully in the past in our laboratory (Mes-
tres et al. 2014; Lopez Gomez et al. 2018). In
principle, the decellularization methods are all
rather similar, using detergents and other sub-
stances such as proteolytic enzymes and physical
factors like hypo and hyperosmotic shocks (Liao
et al. 2007; Du and Wu 2011; Soto-Gutierrez
et al. 2011; Keane et al. 2013; Friedrich et al.
2014; Ji et al. 2018). The combination of the
above-mentioned agents results in different
recipes, thus permitting the adaptation of decel-
lularization to the various organs, from which
ECM scaffolds can be obtained.

To determine the extent of decellularization,
histological procedures such as staining with H
and E and fluorescence microscopy were used
(Badylak et al. 1998; Bhrany et al. 2006; Nar-
ayanan et al. 2009; Brown and Badylak 2013;
Oliveira et al. 2013; Keane et al. 2017; Lopez
Gomez et al. 2018). The presence of cell nuclei
or residues thereof was monitored in serial sec-
tions, where nucleic acids were stained with
propidium iodide (Crapo et al. 2011; Lopez
Gomez et al. 2018). After treatment with deter-
gents, our protocol has an added step with
DNAse to eliminate the DNA residues that dec-
orate the surface of the specimens in the form of
filaments and complex networks (Inaga et al.
1991) and are also present inside the sample
(Narayanan et al. 2009; Keane et al. 2013). The
degradation and rinsing off of such cell debris
from the sample is of crucial importance as
otherwise the suitability of the scaffold might be
affected. This would in turn influence the cells
which could be cultured on it and could even
cause further problems if the sample is implanted
in vivo, where significant inflammatory reactions
could be triggered which might prevent the
process of tissue reconstruction (Zhang et al.
2010; Brown and Badylak 2013; Keane et al.
2015).

The BM is a distinct entity of the extracellular
matrix, located between parenchymal cells and
the connective tissues (Brown et al. 2006; Vlla-
saliu et al. 2014). Our experiments have shown
that with the removal of enterocytes, the base-
ment membrane becomes significantly thinner,
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with a loss of material at the ad-epithelial side of
the BM, the LL. The LD of the BM, located at
the ab-epithelial side, seems to be more stable
and, after decellularization, still maintains the
fine structure and the relationship with the
underlying ECM of the lamina propria (Lopez
Gomez et al. 2018). Such changes in BM thick-
ness had already been observed after EDTA
treatment, but not quantified (Mestres et al. 1991;
Lopez Gomez et al. 2018). Although this is a
phenomenon which presumably also occurs in
many other decellularization procedures, there
are as yet no studies with the electron microscope
(TEM) to examine this question and compare the
various procedures (Lopez Gomez et al. 2018).

On the other hand, our various examinations
of the BM marker proteins using ICC show that
collagen IV, laminin, and GAG perlecan remain
in the BM; molecules which are very important
for adhesion, growth, and differentiation of cells
(Massie et al. 2017; Ozeki et al. 2006; Brown
et al. 2006; Song and Ott 2011; Lopez Gomez
et al. 2018).

In general, cells respond to topographical
features of the substrate such as ridges, sulci,
protrusions of different sizes, etc. with evident
changes in metabolism, in orientation and
arrangement of the cells, in their motility, adhe-
sion, and cell shape (Folkman and Moscona
1978; Curtis and Wilkinson 1997; Kim et al.,
2012).

Scanning electron microscopy has shown that
the nanotopography of the BM surface is not
completely smooth and is characterized by very
small globules of a relatively constant diameter,
regardless of the decellularization method used.
These globules could be considered as a type of
basic construction unit of BM (Carlson and
Carlson 1991; Mestres et al. 2014) and may offer
clues relating to cell attachment and other func-
tional cyto-parameters.

The surface of the BM with the described
topographical and chemical properties has pro-
ven to be a useful substrate for cell cultures and
the morphology and dynamics of the cells is in
first approximation an important indicator for the
assessment of the biocompatibility of a scaffold.
In this context, it should also be remembered that
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not only is the composition of the scaffold
important, but also that of the other substances
used for decellularization, which have to be
washed out to avoid negative effects on the cell
cultures (Crapo et al. 2011; Friedrich et al. 2014).
However, thorough washing of the sample means
that several necessary factors such as growth
factors attached to the ECM (sponge effect) will
also be removed and must subsequently be
replaced (Reing et al. 2010). We have observed
the dramatic effects of such deficits on our cul-
tures, especially when working without serum
and especially on endothelial cells.

Fibroblasts growing on the rat scaffold
develop their own characteristic cell form and
arrangement (Chou et al. 1995).

The endothelial cells also adhere, but more
slowly than the fibroblasts. This behavior could
be due to the absence or reduced amount of
factors in the medium which the cells themselves
are not able to produce. They thus remain vital
but arrested during cultivation (Jaffe et al. 1973).

The culture chamber developed in our labo-
ratory allows the cultivation of one or even two
cell types, in this case, separated from each other
by the substrate, i.e., the isolated colonic mucosa.
This is a special situation in which possible
interactions between the two cell types in terms
of adhesion, growth, and differentiation can be
investigated. Studies have reported that chon-
drocytes were potentiated by co-culture with
mesenchymal stem cells, being the first cells to
move in a growth phase and differentiate prior to
implantation in an in vivo model (Meretoja et al.
2012). The studies performed by Potschke
(2012) have shown that both cell lines used to
adhere to the mucosa scaffold and cell counts
suggest an influence of PC3 cells on the growth
rates of P21 (hPCP) cells. This is remarkable as,
in our setting, such an influence could only take
place through cell release of substances, which
then diffuse through the scaffold.

The stiffness and mechanical properties of the
scaffold can also affect the behavior of the cells.
The isolated mucosa of the colon is rather thin,
approximately 200-250 pum thick, depending on
the extent of colon dilatation, but once isolated, it
can be stretched, thus automatically becoming
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thinner, but not significantly stiffer (Wiesner
et al. 2002). In our preparations, we have tried to
compensate these weaknesses by clamping the
isolated mucosa over the Macrolon ring. This
measure also seems to be adequate for other
cultures, as the various cell types display normal
growth and typical cell morphology (Emonard
et al. 1987; Kleinman and Martin 2005). Another
way of stabilizing the mucosa is the application
of cross-linkers such as genipin or even the
assembly of several layers of the substrate (Koch
et al. 2012). Some such mono- and multilayered
scaffolds are commercially available (Badylak
2007; Badylak et al. 2009).

With regard to future experiments with the
implantation of mucosa scaffolds, a comparison
with the small intestine submucosa (SIS) might
prove interesting. While the thickness and
structure of the connective fibers appear to be
very similar, the difference lies in the presence of
the BM in the mucosa scaffold. Such compar-
isons might lead to the extrapolation of similar
applications for such a scaffold despite the size
difference.

One problem that can arise with implantation
is the presence in the scaffold of factors such as
the alpha-gal epitopes, which can trigger a neg-
ative reaction in the recipient (McPherson et al.
2000). However, the fact that SIS fails to activate
the complement in vitro leads us to suspect that
the density of these epitopes is very low, espe-
cially after decellularization treatment; a situation
that could also be possible in the mucosa of the
colon of the rat (McPherson et al. 2000; Naso
et al. 2011). And finally, SIS reabsorbs relatively
quickly (Badylak et al. 1998). This could be due
to the architecture of the connective tissue fibers,
which again is similar in the colonic mucosa.

8.8 Conclusions

The present studies show that an ECM scaffold
can be prepared from the colon of the rat and that
it is comparable to other ECM scaffolds derived
from other sections of the gastrointestinal tract.

However, this scaffold has characteristics that
distinguish it from others. The scaffold of the
colonic mucosa remains continuous on one side
with basement membrane material, while on the
other side remnants of submucosa and the muscle
layer of mucosa tissue remain. With these surface
differences, this scaffold gains a certain singu-
larity. The method we have followed here fore-
sees the use of a chelator, two detergents, and no
proteolytic enzymes. The application schedule is
flexible as far as it is possible to change the
duration of the different steps. In such cases, it is
advisable to reduce the temperature more the
longer the treatment is applied. We have
achieved complete decellularization, even in the
case of the entire rat colon wall.

The chamber for cell cultures was designed
especially for experiments with rat material, but
it can, in principle, be modified and adapted to
suit other objectives or questions. The strategy of
co-cultures described here could be of interest for
questions related to tissue reconstruction
involving, for instance, stem cells.

As both primary cultures and cell lines grew
well on the scaffold of the colon mucosa, the
biocompatibility of this ECM scaffold can be
considered proven. The slightly different behav-
ior of the endothelia indicates that they require
additives in the medium and seems to be not so
much a problem of the scaffold itself.

With regard to possible applications, a com-
parison of this scaffold to the SIS is justified in
view of the thickness and the microscopic and
3D structure of the ECM. These similarities
suggest that the ECM scaffold of the colonic
mucosa might be rapidly resorbed in implanta-
tion trials—similar to SIS. It is also important to
note that SIS only triggers moderate inflamma-
tory responses. This is mostly due to the fact that
certain epitopes are reduced in quantity after
decellularization. By analogy, similar responses
could also be expected for ECM scaffolds of the
colonic mucosa. Future studies will be devoted to
clarifying these last points in order to propose
potential applications for this new scaffold, be it
on animal models or for clinical issues.
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Abstract

During the past decades, diverse methods
have been used toward renal tissue engineer-
ing in order to replace renal function. The
goals of all these techniques included the
recapitulation of renal filtration, re-absorptive,
and secretary functions, and replacement of
endocrine/metabolic activities. It is also
imperative to develop a reliable, up scalable,
and timely manufacturing process. Decellu-
larization of the kidney with intact ECM is
crucial for in-vivo compatibility and targeted
clinical application. Contemporarily there is
an increasing interest and research in the field
of regenerative medicine including stem cell
therapy and tissue bioengineering in search for
new and reproducible sources of kidneys. In
this chapter, we sought to determine the most
effective method of renal decellularization and
recellularization with emphasis on biologic
composition and support of stem cell growth.
Current barriers and limitations of bioengi-
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neered strategies will be also discussed, and
strategies to overcome these are suggested.

Keywords

Decellularization - Recellularization * Kidney
matrices + Scaffold - Renal stem cells

9.1 History

End-stage renal disease (ESRD) is a disturbing
problem which may culminate in the progressive
worsening of renal function with donor organ
transplantation (Sullivan et al. 2012). The ways
by which kidney function can be restored in
humans consist of dialysis and renal allotrans-
plantation. Furthermore, Medicare expenses of
these patients exceed $29 billion, yearly (Saran
et al. 2017). Due to decreased organ donation,
poorly tolerated dialytic therapies, and the mor-
bidity related to immunosuppression, regenera-
tive medicine methods have been considered as
proficient curative alternatives (Song et al. 2013).
In 2014, a report into organ transplantation in the
USA showed that kidneys are the most recur-
rently transplanted organ with 15,978 procedures
(Alachkar et al. 2011). Dialysis and allogenic
transplantation are the widespread types of
pyelonephritis treatment, although their note-
worthy complications and high cost, accessibil-
ity, and long-term dependency are still main
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concerns of these modalities (Kajbafzadeh et al.
2010).

The function of the mature kidney with an
outstandingly complex structure is dependent on
the growth and differentiation of its precursor
cells within the intermediate mesoderm into a
mature organ with numerous diverse cell types
(Hammerman 2003). Definition of twenty six
terminally differentiated nephron cell types, as
mentioned by Awqati and Oliver, takes into
account cell morphology, location, and function
(Al-Awqati and Oliver 2002). The nephrons
should be incorporated in three dimensions with
a collecting system and with one another and, the
origin of which is the ureteric bud, for the pur-
pose of glomerular filtration, reabsorption, and
secretion of fluid and electrolytes (Horster et al.
1999; Sariola et al. 1983; Hyink et al. 1996;
Rogers and Hammerman 2001). The whole kid-
ney regeneration may be intricate; however
functional recovery of about 10% of kidney fil-
tration function will withdraw the dialysis in
patients with ESRD, resulting in significantly
increasing quality of life (Locatelli et al. 2005).
The regeneration of a functional kidney signifies
a gigantic convenient challenge. However, with
the progress in the field of regeneration, we are
optimistic about overcoming ESKD through
kidney regeneration.

State-of-the-art tissue engineering techniques
try to construct decellularized scaffolds that
could avoid allograft rejection and prevent the
need for immunosuppressive therapy (Perin et al.
2008; Crapo et al. 2011). The novel therapeutic
potential of tissue engineering and stem cell
therapy with anti-inflammatory properties and
immune modulation has been the focus of recent
studies. In an ideal tissue-engineered kidney, the
function of erythropoietin, renin synthesis, 1-
o hydroxylation of 25(OH)D38, and 5’ deiodi-
nation of thyroid hormone should be recapitu-
lated (Yasuoka et al. 2020; Martini and Danser
2017; Bland et al. 2000; Benedetti et al. 2019).
Natural extra cellular matrices (ECM) and syn-
thetic scaffolds are the two major categories of
3D scaffolds. However, ECMs have demon-
strated superior performance compared to syn-
thetic scaffolds. Preservation of the ultrastructure,
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integrity, and bioactivity of the ECM can be
optimized by using an effective decellularization
methodology (Kawecki et al. 2018). As the kid-
ney organ has complexity with more than thirty
different cell types, using tissue engineering and
regenerative medicine techniques with the unique
microenvironment and preserved ECM may pave
a road for the bioengineering of a whole trans-
plantable kidney (Figliuzzi et al. 2017). Extra-
corporeal bioartificial kidney (BAK) support
systems were first developed in the 1980s when
synthetic scaffolds were merged with cellular
constituents (Aebischer et al. 1987; Ip and
Aebischer 1989). In these studies, human proxi-
mal renal tubular cells were cultured on hollow
fiber scaffolds and put in sequences with a
hemofiltration path. In phase I/IT clinical trials,
bioartificial kidney systems were successful in
filtering urine, develop metabolic parameters,
diminish pro-inflammatory cytokine levels, and
enhance cardiovascular stability (Humes et al.
2003, 2004). Nevertheless, a considerable impact
on survival was hard to determine due to the fact
that the Phase II clinical trial achieved in 2004—
2005 was underpowered (Tumlin et al. 2008;
Chertow and Waikar 2008). Presently, the usage
of BAKSs is limited by the survival of tubular
cells and the cost-effective developing of the
device (Humes et al. 2014; Sanechika et al.
2011).

Our group has extensive experience with
regard to the structure of the kidney, which
makes us to our decision to continue with the
preparation of kidney, with the aim of develop-
ing a new ECM scaffold. Herein, we aim to
review the state-of-art and tissue engineering and
regenerative medicine technology highlighting
the major achievements toward the production of
bioengineered renal obtained decellularization
and recellularization techniques.

This chapter will delineate the progress to date
recorded for approaches of converse the kidney
as a subject for tissue engineering paradigm,
discuss about the recent developments made in
the fields of renal tissue engineering and stem
cells, as well as emphasize the challenges which
we may confront with when applying such con-
structs in a clinical setting.
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9.2 Materials and Methods

Native kidney ECM, which plays a crucial role in
kidney development and repair, has been
demonstrated to provide a scaffold for cell
seeding and a niche for stem cells to differentiate
into a whole renal organ (Ohata and Ott 2020;
Oliver 1953). Findings of previous studies in
whole organ decellularization (Sabetkish et al.
2015) encouraged scientists to reconstruct entire
kidneys by a combination of different decellu-
larization kidneys. Moreover, in the case of
whole organ decellularization, it is of utmost
importance to maintain an intact vascular net-
work. Organogenesis and repair of the renal
organ are influenced by molecules of the ECM
and their receptors. These scaffolds provide
spatial organization of cells with secreting and
storing growth factors and cytokines and regu-
lating signal transduction (Yi et al. 2017). Bio-
materials such as polymer scaffolds have been
examined for kidney tissue engineering with a
limited capacity. It has been also demonstrated
that combination of synthetic polymers, such as
PLGA with natural ECM may enhance biocom-
patibility and decrease hydrophobicity of scaf-
folds compared to PLGA alone (Lih et al. 2016).
Collagen, elastin, glycosaminoglycans (GAGs),
growth factors, fibronectin, and laminin also
participate in the development and preservation
of vascular structures which is remarkable when
the ECM is used as a scaffold for whole organ
reconstruction. The preservation of these com-
ponents is of great importance in the decellular-
ization method (Badylak 2004). BFGF and
VEGF are among the most important growth
factors in the decellularized kidney matrix.
BFGF is recognized in the developing kidney
and early renal organization, while VEGF is
critical for angiogenesis and renal podocyte
development (Wang et al. 2018; Little and
McMahon 2012). Using high concentration of
SDS (1%) may completely eliminate the bFGF or
VEGF within the decellularized tissues, as
reported by Nakayama et al. and Soto-Gutierrez
et al.

105

The meticulous structural components of the
kidney ECM such as glomerular basement
membrane, are decisive for suitable tissue-
specific function, and integrin-binding ligands
of the basement membrane and bound growth
factors as extracellular signaling cues, are
imperative for driving renal cell growth (Uzarski
et al. 2014). Detergents, enzymes, or other cell-
lysing solutions are perfused antegrade via the
renal vasculature to eliminate the antigenic par-
enchyma from the whole renal ECM.

ECM scaffolds from animal and whole
human-cadaveric organs can be produced by
detergent-based decellularization (Orlando et al.
2011). The choice of the detergents in decellu-
larization method is significantly essential, as
they can harm the microstructure and composi-
tion of the obtained scaffold and may indirectly
affect the mechanical properties of the final
product. The widespread use of detergents, such
as the nonionic Triton X-100 (Song et al. 2013;
Ross et al. 2009; Ross et al. 2012; Kajbafzadeh
et al. 2019) and the anionic sodium dodecyl
sulfate (SDS) (Kajbafzadeh et al. 2019; Burgkart
et al. 2014; Bonandrini et al. 2014; Nakayama
et al. 2013) to solubilize and wash out cellular
components, has been reported in a number of
kidney decellularization protocols. In our center,
no enzymatic methods are used owing to the
possibility of adverse effects of enzymes on
sensitive molecules in the ECM. Additionally, no
snap freezing method is performed as extremely
low temperatures can alter the 3D architecture of
the scaffolds. Guan et al. used both 1% SDS and
1% Triton X-100 to decellularize porcine kid-
neys, with preserved ECM components and the
microarchitecture of the kidneys (Guan et al.
2015a). The choice of sterilization method has
also an impact on the quality of the scaffold.
Pressurized steam and dry heat are among the
commonly used sterilization methods which have
the potential to cause protein denaturation (Song
and Ott 2011). Several studies have applied
decellularization and recellularization techniques
for kidney regeneration. Many animals such as
rats (Ross et al. 2009), rhesus monkeys
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(Nakayama et al. 2010), and pigs (Sullivan et al.
2012) have been used for decellularization stud-
ies. Zebrafish are also a brilliant animal model
utilized in studying kidney regeneration. To date,
zebrafish have been applied to progress our
awareness of renal development as well as
characteristics of numerous kidney disease phe-
notypes (Swanhart et al. 2011; Lieschke and
Currie 2007).

Perfusion-based and static-based decellular-
ization methods have been considered as effec-
tive methods for preserving the 3D architecture
and vascular tree of the native ECM scaffolds
which can guide organ development and recon-
struction (Song and Ott 2011). Bioreactor sys-
tems have been also designed to enable the
perfusion of decellularized whole kidneys
through their native vasculature. This process
assists standardized delivery of nutrient-rich
culture media to cells seeded throughout the
scaffold (Ross et al. 2012; Bijonowski et al.
2013; Fraser and Endres 2014; Kajbafzadeh et al.
2017). Enhancing the effectiveness of cell seed-
ing process by the application of novel bioreac-
tors and creative cell delivery approaches is
fundamental to scale-up recellularization tech-
niques to human-sized kidney scaffolds with a
significantly more number of cells.

Regardless of the decellularization technique
used, the obtained renal ECM must be meticu-
lously assessed to confirm sufficient cell removal
and preserved ECM. DNA quantification, DAPI
staining, histological loss of nuclei or MHC
antigens, maintenance of basement membrane
proteins and growth factors through immuno-
histochemical (IHC) staining, ELISA, proteomic
analysis, scanning electron microscopy (SEM),
and histological staining are among the applied
examinations (Crapo et al. 2011). Measurement
of hydroxyproline content, sirius red staining,
movat’s pentachrome staining, biophysical
properties (tensile test), and computerized
tomography (CT) angiography are all among the
other valuable examinations in renal regenera-
tion. The competence of the obtained scaffold
should be also verified to support cellular adhe-
sion, growth, and stem cell differentiation and
authenticate the bioactivity of the renal matrix
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(Uzarski et al. 2014). The required criteria for
efficient decellularization including <50 ng
dsDNA per mg ECM dry weight, <200 bp DNA
fragment length, and lack of visible nuclear
material in tissue sections stained with DAPI or
H&E (Crapo et al. 2011).

To date, few cases have been reported
regarding the transplantation of decellularized
whole kidney ECM scaffolds, due to the inherent
thrombogenicity of the non-endothelialized vas-
culature. However, in our recent study, we
evaluated the efficacy of two different whole
organ decellularization protocols, vasculature
integrity, and in-vivo transplantation of sheep
kidneys (Kajbafzadeh et al. 2019). The results
verified the efficacy of well-preserved decellu-
larized scaffold and vasculature network in post
renal transplant outcome in a sheep model.

We also introduced simultaneous transplan-
tation of bilateral decellularized kidneys in a rat
model as a more feasible and practical approach
(Kajbafzadeh et al. 2018). Various microvascular
techniques of arterial and venous anastomosis in
renal transplant in rat models have been previ-
ously described (Soma et al. 2009; Asfar et al.
1988). In one study in 2012, the renal artery and
vein of decellularized porcine kidneys were
anastomosed to the aorta and vena cava,
respectively, in pig model. Although sufficient
blood flow without bleeding was observed dur-
ing one hour of intra-operative monitoring,
extensive thrombosis was noted throughout the
kidney scaffolds 2 weeks after surgery (Orlando
et al. 2012).

The on the rise field of tissue engineering is
also to produce structures and devices to restore
lost tissue or organ functions (MacKay et al.
1992; Humes et al. 1999). The combination of
regenerative medicine and bioengineering pro-
poses promise for the regeneration of the whole
renal organ (Salvatori et al. 2014). A renal tubule
assist device (RAD) with living renal proximal
tubule cells demonstrated differentiated absorp-
tive, metabolic, and endocrine functions similar
to host kidneys in animal experiments (Song and
Humes 2009). Application of 3D bioprinting
techniques was also flourishing in reconstructing
the complex structures of proximal tubules and
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vasculatures in vitro (Mota et al. 2020), although
the physiological functions reproduced by these
technologies reflect only a small part of organs.
An overview of the kidney decellularization lit-
erature has been provided in Table 9.1 (Sullivan
et al. 2012; Song et al. 2013; Bonandrini et al.
2014; Guan et al. 2015a, b; Nakayama et al.
2010,2013, 2011; Ross et al. 2012, 2009; Vish-
wakarma et al. 2014; Orlando et al. 2013; Peloso
et al. 2015; Rafighdoust et al. 2015; Sambi et al.
2017; Baptista et al. 2009; Park and Woo 2012;
Choi et al. 2015; Poornejad et al. 2015, 20164, b;
Willenberg et al. 2015; He et al. 2017; Liu et al.
2015; Yu et al. 2014; Burgkart et al. 2014; Caralt
2015; Uzarski et al. 2015).

ECM, extracellular matrix; ddH,O, double-
distilled water; PBS, phosphate-buffered saline;
SDS, sodium dodecyl sulfate; NaDOC, sodium
deoxycholate; DNase, deoxyribonuclease; DMEM,
Dulbecco’s modified Eagle’s medium; EGTA,
ethylene glycol tetraacetic acid; FGF, fibroblast
growth factor; hESCs, human embryonic stem cells;
dH20, distilled water; NaCl, sodium chloride; KCI,
potassium chloride; HEPES, 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid; PAA, peracetic acid;
iPSC, induced pluripotent stem cell.

9.3 Cell Seeding

Different cell types are considered to be profi-
cient to contribute directly to renal reconstruction
after injury or considerably improve renal dam-
age without directly contributing to the renal
epithelium. For the treatment of patients with
early stage renal disease, cell-based therapies
have been considered as a crucial step. However,
these approaches may not be effective in ESRD
cases with severe fibrosis (Bandeiras et al. 2019).
Hence, whole organ regeneration using seeded
cells would be a fascinating conception. Gener-
ating precise renal progenitor cells is indispens-
able for the development of a whole kidney de
novo. How well the decellularized ECM pre-
serves the significant functions is likely to be
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influenced by the decellularization technique
(Caralt et al. 2015) the age and health of the
donor tissue (Nakayama et al. 2010, 2011). In
addition, different routes of cell administration
such as renal artery vs. ureter perfusion; or
medullary vs. cortical injection have been used
for reseeding the renal scaffold. Each of these
techniques may influence migration, differentia-
tion, and functional results (Uzarski et al. 2014).

A variety of stem cell sources have been
verified to be capable to form kidney cell types
such as human fetal kidney stem cells, cells from
the amniotic fluid, or the directed differentiation
of human PSCs to kidney endpoints.

Pluripotent stem cells (PSCs) which include
both embryonic stem cells (ESCs) and iPSCs,
signify an essential cell type for bioengineering
techniques aimed at kidney regeneration.
Embryonic stem (ES) cells have been considered
as a useful starting material for some clinical
purposes of tissue engineering (Hielscher et al.
2018). As iPSCs can be produced effortlessly
from any patient, they are considered as the
promise of disease modeling and stem cell ther-
apies without any immunologic rejection. In
order to entirely recapitulate kidney improve-
ment, ureteric bud progenitor, metanephric mes-
enchyme progenitor, and angioblasts are required
as three different types of progenitors, all of
which are successfully generated from hPSCs.

The existence, location, and contribution of
renal progenitor cells (RPCs) to epithelial repair
have been investigated in many studies and the
application of these cells has been depicted to be
successful in both acute and chronic animal
models (Bussolati et al. 2005; Angelotti et al.
2012; Romagnani and Remuzzi 2013). Addi-
tionally, the isolation and culture of RPCs from
human urine may pave the road for personalized
disease modeling (Lazzeri et al. 2015).

The kidney is originated from intermediate
mesoderm (IM) and arises from the ureteric bud
and metanephric mesenchyme (MM) cells, fol-
lowing interactions between several signals
(Blake et al. 2014). Recent advance in stem cell
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Table 9.1 Previous studies regarding advances within the field of in-vitro and in-vivo kidney tissue engineering

Source
of
kidney

Goat

Human

Human

Mouse

Mouse

Porcine

Porcine

Porcine

Porcine

Porcine

Method of decellularization

Perfusion-based 0.1% SDS;
gradient of SDS (0.5%, 1.0%);
0.1%Triton X-100; 5 mM
calcium chloride and magnesium
sulfate

Perfusion-based 0.5% SDS for
48 h, PBS 5 days at a flow rate
of 6 mL/min

Perfusion-based 0.5% SDS,
DNase for 6 h at a flow rate of
6 mL/h and then with PBS at the
same flow rate for 5 days

Perfusion-based Nitrogen for
2 min, PBS at 37 °C

Perfusion-based 0.1% SDS 0.1%
Triton X100 for 24-72 h 0.4%
Sodium deoxycholine for 24—
72 h £ 90 U/mL benzonase for
2h

Perfusion-based 1% of the
detergent Triton X-100 and 0.1%
ammonium hydroxide in ddH,0,
10-60 mL/h for 24 h or until
translucent. Perfused with
ddH,O prior to sterilization
(gamma irradiation)

Perfusion-based 0.5% SDS in

1 x PBS, 0.25% SDS in

1 x PBS, or 1% Triton X-
100/0.1% Ammonium
Hydroxide in 1 x PBS were
perfused through the kidneys for
a total of 36 h

Perfusion-based 1% (v/v) SDS in
dH,0

Perfusion-based 1% Triton X-
100 or 1% SDS

Perfusion-based 0.5% SDS

Overall
time

5-6 days

7 days

7-8 days

1-2 days

1-2 days

2 days

6-7 days

2-3 days

Not
reported

2-3 days

Results

Preserved the structure and
composition of renal ECM and
vascular structures within the
scaffold without residual cellular
components

SDS-based decellularization
protocol removed cellular
compartment, while the innate
ECM framework maintained its
architecture and biochemical
properties

A well-preserved structure and
function of the vasculature, as
well as growth factors

Complete removal of cells and
nuclei

Scaffolds provided regionalized
factors, resulting in organized
kidney structures within the
acellular kidney

Preserved vascular network

Satisfactory decellularization of
kidneys of a clinically relevant
size

Preservation of major
architecture and vasculature

Verified that 1% Triton X-100 is
a more suitable decellularizing
agent than SDS regarding
structural, biochemical integrity,
and biocompatibility of the
scaffold

Freeze porcine kidneys before
decellularization. The
decellularized organs can be
preserved for months without

References

Vishwakarma
et al. (2014)

Orlando et al.
(2013)

Peloso et al.
(2015)

Rafighdoust
et al. (2015)

Sambi et al.
(2017)

Baptista et al.
(2009)

Sullivan et al.
(2012)

Park and Woo
(2012)

Choi et al.
(2015)

Poornejad
et al. (2015)
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Table 9.1 (continued)

Source
of
kidney

Porcine

Porcine

Porcine

Porcine

Rat

Rat

Rat

Method of decellularization

Perfusion-based dH»O; 1% SDS;
1% Triton X-100

Perfusion-based 1.0% Triton X-
100; PBS; 0.25% or 0.75% SDS;
PBS; DNase; 1% antibiotics/
antimycotics; sterilized with 1%
MIN-NCARE® (4.5% PAA and
22.0% hydrogen peroxide), or by
irradiation with 12-16 kGy over
24-30 h

Solutions of 0.1 N NaOH (pH
11.8-12), 1% (w/v) PAA (pH
2.6), 3% (v/v) Triton X-100 (pH
7.2), 1% (w/v) SDS (pH 8.1),
and 0.05% Trypsin/
ethylenediaminetetraacetic acid
(EDTA)

Hypertonic solution (0.5 M
NaCl in H,O) was pumped into
the kidneys for 30 min. 0.5%
w/w SDS solution for 30 min,
followed by DI water (hypotonic
solution) for 30 min

SDS at differing concentrations
and durations (1.0, 0.125, 0.25,
and 0.5%), PBS for 1 h

1% SDS for 12 h, ddH,O for
12 min, 1% Triton X-100 for
30 min, PBS for 48 h, and
antibiotic containing PBS

NaDOC as the ionic detergent:
Triton X-100 at 0.5, 3, 6, and
10% solutions; ddH,0O;
DNase;4% NaDOC; use of SDS:

Overall
time

3—4 days

4 days

24 h

2 days

4 hat
24 h

3 days

5 days

Results

cryoprotectants and thawed just
prior to recellularization

Scaffolds maintain their basic
components and show intact
vasculature system

Preservation of diverse vascular
and collecting system sections

The NaOH solution caused
efficient cell removal with the
highest amount of cell viability
and proliferation after
recellularization. The most
significant damage to
collagenous fiber networks

The SDS solution led to less
severe damage to the ECM
structure but with lower
metabolic activity and less
proliferation

PAA and Triton X-100 caused
minimum disruption of ECMs
and the most preserved
glycosaminoglycans (GAGs) and
FGF. These last two agents were
not as efficient in removing
cellular materials as NaOH and
SDS

Preservation of the
microstructure and complete cell
removal

Preservation of both structural
and functional components of the
whole kidney ECM bioscaffold

No cell residue was found in the
scaffolds

The detergent-based perfusion
protocols produced
decellularized kidneys, yet
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Guan et al.
(2015a)

Willenberg
et al. (2015)

Poornejad
et al. (2016a)

Poornejad
et al. (2016b)

He et al.
(2017)

Liu et al.
(2015)

Ross et al.
(2009)
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Table 9.1 (continued)

Source
of
kidney

Rat

Rat

Rat

Rat

Rat

Rat

Method of decellularization

3% Triton X-100, DNase, repeat
3% Triton X-100, and then the
4% SDS. 0.05% sodium azide

Multiple sequential solutions that
included Triton X-100 and SDS
detergents, DNase, and
deionized water rinses

12 h of 1% SDS in ddH,0,

15 min of ddH,O, and 30 min of
1% Triton X-100 in ddH,O0,
Washed the kidney scaffolds
with PBS containing

10,000 U/mL penicillin G,

10 mg/mL streptomycin, and

25 pg/mL amphotericin-B at

1.5 mL/min constant arterial
perfusion for 96 h

1% SDS in PBS for 17 h at a
flow rate of 0.4 mL/ min

0.1% Triton X-100 for 3 h,
ddH,O for 30 min, 0.8% (v/v)
SDS for 3 h, and ddH,O
containing 100 U/mL penicillin
and 100 mg/mL streptomycin for
24 h. Kidney scaffolds were kept
in 50 mL of ddH,O containing
the penicillin and streptomycin at
4 °C for less than 7 days

ddH,O for 10 min. 1st: SDS
concentrations of 0.25, 0.5, 0.66,
and 1% combined with a
perfusion time of 0.5, 1, 2, and
4 h. 2nd: concentration of SDS
was always 0.66% and the
perfusion time was 1 h. After the
first 30 min of perfusion with
SDS, the kidneys were washed
for 10 min with dH20 and then
the organs were perfused for
another 30 min with the SDS
solution

0.5% SDS

Overall
time

Over
5 days

4 days

17 h

8 days

5h

1-2 days
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Results

retained the web-like appearance
of the basement membrane

New evidence for matrix-to-cell
signaling in Decellularized
whole organ scaffolds that
induces differentiation of
pluripotent precursor cells to
endothelial lineage

Yield decellularized scaffolds
with vascular, cortical, and
medullary architecture,
collecting system, and ureters

Rat kidneys were efficiently
decellularized to produce renal
ECM scaffolds in a relatively
short time and rapid
recellularization of vascular
structures and glomeruli

Decellularized kidney scaffolds
could be able to promote renal
recovery in the treatment of
chronic kidney disease

Novel standardized, time-
efficient, and reproducible
protocol for the decellularization
of solid tissues to derive a ready-
to-use biomatrix within only 5 h

Preserved ECM 3D architecture,
an intact vascular tree, and
biochemical components

References

Ross et al.
(2012)

Song et al.
(2013)

Bonandrini
et al. (2014)

Yu et al.
(2014)

Burgkart et al.
(2014)

Guan et al.
(2015b)

(continued)



9 The Renal Extracellular Matrix as a Supportive Scaffold ...

Table 9.1 (continued)

Source Method of decellularization
of

kidney

Rat Protocol 1: 1% Triton X-100;
Protocol 2: 1% Triton X-100;
0,1% SDS; Protocol 3: 0.02%
Trypsin-0.05% EGTA; 1%
Triton X-100

Rat Demonstrated non-invasive
monitoring capabilities for
tracking dynamic changes within
scaffolds as the native cellular
component is removed during
decellularization and model
human cells are introduced into
the scaffold during
recellularization and proliferate
in maintenance culture

Rhesus 1% SDS

monkeys

Rhesus
monkeys

1% (v/v) SDS or 1% (v/v) Triton
X-100 diluted in dH20 at either
48 °C or 37 °C.
Decellularization solution was
changed 8 h after the initial
tissue harvest and then every

48 h until the tissues were
transparent

1% (v/v) SDS diluted in dH20 at
4 °C. The solution was changed
8 h after initial tissue harvest and
then every 48 h until the tissue
was transparent, washed with
PBS; 10% (v/v)
penicillin/streptomycin (Gibco,
Invitrogen) in PBS at 4 °C until
use

Rhesus
monkeys

Overall
time

1-2 days

7 days

10-
14 days

10 days

10 days

Results

Triton and Triton/ SDS
preserved renal microarchitecture
and retained matrix-bound basic
FGF and vascular endothelial
growth factor

Trypsin caused structural
deterioration and growth factor
loss. Triton/ SDS-scaffolds with
3 h of leak-free blood flow in a
rodent transplantation model and
supported repopulation with
human iPSC-derived endothelial
cells and tubular epithelial cells
ex Vivo

1% Triton X-100, 1% Triton X-
100/0.1% SDS and 0.02%
Trypsin-0.05% EGTA/1% Triton
X-100

Scaffolds with intrinsic spatial
ability to influence hESC
differentiation by physically
shaping cells into tissue-
appropriate structures and
phenotypes

SDS was the most effective for
decellularization of kidney
sections. Triton X-100 was
unable to completely
decellularize the tissues and
caused greater disruption of the
basement membrane and
connective tissue ECM

Removal of cellular components
while preserving the structural
and functional properties of the
native ECM
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therapy research has presented human nephron
progenitor cells, including intermediate meso-
derm (IM) and metanephric mesenchyme
(MM) cells (Lam et al. 2014; Mae et al. 2013;
Takasato et al. 2014).

Mesenchymal stem cells (MSCs) have
attracted extreme attention for their probable
therapeutic applications in the treatment of kid-
ney disease, as a regenerative approach already
in translation (Humphreys 2014). MSCs have
been considered to apply anti-inflammatory, pro-
repair, immunomodulatory effects by secretion of
soluble factors including growth factors and
angiogenic cytokines, in a paracrine fashion
(Humphreys and Bonventre 2008; Bruno et al.
2009). Although some studies have investigated
those MSCs remain in kidney only transiently
after injection (Togel et al. 2005; Taylor et al.
2019), numerous investigations also verified the
satisfactory results of these cells to improve a
wide variety of kidney diseases (Wang et al.
2013). Despite the convincing development
shown by the application of MSCs, unanswered
questions about how best to apply MSCs to
kidney disease remain concerning.

Adipose-derived mesenchymal stem cells
(ADMSC) are a flexible and proficient stem cell
source with practicable and therapeutic potentials
that can be used for the regeneration of damaged
tissues. ADMSCs can be regained in high num-
bers from adipose tissue fragments and can
resourcefully be expanded in vitro (Bruno et al.
2009). We hypothesized that the source of
ADMSCs may be fundamental for cell therapy
reasons and better outcomes may be obtained if
the cells are harvested from adjacent adipose
tissue of an organ for which cell therapy is
intended to be performed. In our previous study,
we compared the effect of autologous and
heterologous ADMSC injections in rabbit mod-
els of pyelonephritis. The efficacy of two differ-
ent sources of ADMSCs (neck subcutaneous
adipose tissue and perirenal adipose tissue) was
also evaluated. The results indicated that the
usage of perirenal autologous ADMSCs is a
superior alternative in the amelioration of renal
scarring in the rabbit model of pyelonephritis
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compared to autologous ADMSCs derived from
nape. Moreover, autologous cells were shown to
be a better modality for cell therapy in compar-
ison with non-autologous cells (Sabetkish et al.
2018).

Nephron progenitors, isolated from human
amniotic fluid collected between 12 and
18 weeks of gestation, are another approach to
sourcing cells capable of acting as nephron pro-
genitors (Villani et al. 2018). These cells, with a
capacity for long-term expansion in culture, have
been depicted to be competent to self-renew in a
chromosomally stable fashion for >350 dou-
blings (Spitzhorn et al. 2017).

Whole kidney ECM seeding has been per-
formed by perfusion of cells through the renal
artery (Ross et al. 2012; Burgkart et al. 2014) or
ureter (Song et al. 2013; Ross et al. 2009). Ret-
rograde injection of cells through the ureter cul-
minated in an irregular cellular allocation, with
cells failing to reach glomeruli (Maruyama et al.
2002). In the novel strategy introduced by Song
et al., a negative pressure gradient was applied to
the bioreactor chamber while injecting neonatal
rat renal cells into decellularized rat kidney
scaffolds through the ureter. The results showed
improvement in the distribution and retention of
cells within the collecting system (Song et al.
2013). In a recent study, an isolated rat kidney
was decellularized with a detergent-based
method and seeded with renal progenitor cells,
the results of which represented a remarkable
technical feat. The vasculature, the tubules, and
glomeruli were seeded with cultured endothelial
cells and rat kidney progenitor cells isolated from
embryonic rat kidneys, respectively. The out-
comes demonstrated that pre-seeded kidneys
produced urine and filtrate suggesting active
absorptive and secretory function (Song et al.
2013). In another study, rat kidneys were used as
native, decellularized, or recellularized with
human umbilical vein endothelial cells and rat
neonatal kidney cells and were implanted into
immunodeficient rats. The outcomes did not
show any specific duration of in-vivo perfusion
however, no thrombosis or bleeding was reported
over the implantation period (Song et al. 2013).
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9.4 Clinical Applications

Latest technological progressions in clinical tis-
sue engineering and regenerative medicine can
pave the road for regenerating compound spatial
arrangement of kidneys with a vascular network
and urinary excretion pathway. There are cur-
rently no published clinical reports regarding the
regeneration of functional organs for the treat-
ment of terminal organ failure. Currently, human
MSCs have been used to more than one hundred
patients by autologous or allogenic transplanta-
tion (Rabelink and Little 2013; Salem and
Thiemermann 2010; Leuning et al. 2017). In the
study of Tan et al. (2012) patients showed
reduced transplant rejection and improvement in
renal function at 1 year of given autologous
infusion of MSCs. The bioengineered artificial
kidney is presently being assessed in patients
with only short-term use in the setting of severe
acute renal failure (Fissell et al. 2001; Humes
et al. 2002). To be clear, it is still uncertain
whether stem cells have long-term efficacy or
adverse side effects. Therefore, we need a
specific guideline for isolation, expansion, and
characterization protocols in order to extend the
use of stem cells in different trials. It is also
imperative that an understanding of the innate
inconsistency or strength of any iPSC differen-
tiation practice is achieved before its use for
patient disease modeling purposes. Cost-effective
techniques to raise cell yield from differentiation
protocols will be necessitated to permit the usage
of these methods in clinical medicine.

9.5 Limitations

The practicability of incorporating new nephrons
into a damaged kidney using current approaches
is most likely pretty low. The diseased host
kidney would limit the utility of this technique,
even if a way was established to connect the new
nephron units to the host’s collecting system. In
addition, massive thrombi, despite strong anti-
coagulation prophylaxis, have been considered as
the problem of decellularized cadaveric scaffolds.
The use of nephron progenitor populations
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originated from human fetal kidney tissue, has
been considered as one of the regenerative
approaches that has been investigated. However,
in some countries, it still presents ethical and
technical challenges as there is yet no good
understanding of how to preserve a human
nephron progenitor population outside the stem
cell niche (Brown et al. 2015). Despite the pos-
sible application of hPSC-derived kidney tissue
for modeling genetic renal disease, present dif-
ferentiation procedures will remain limited in
their capability to model the mass of adult onset
kidney disease using patient-derived iPSC. Kid-
ney regeneration is particularly complicated due
to the anatomical complexity of the organ, and
reconstruction of the kidney’s cubic organization
is hard. To date, regeneration of all the compo-
nent cells of the kidney has not been attained.
However, we will hopefully resolve these issues
and open the door to new therapeutic strategies
for kidney regeneration by advances in stem cell
research and cellular engineering. Another major
challenge and limitation is regarding the selec-
tion of a way for cell delivery. The tail vein is
frequently used as a place for intravenous injec-
tion of cells in murine injury models. However,
injection of cells into the tail vein will mean the
instant delivery of the injected cells into the
microvasculature of the lungs and possible
elimination from circulation within the spleen.
As a result, only a few injected cells will reach
the kidney. Injection of cells via the vasculature
is another challenge regarding entering the cells
in the renal parenchyma. The risk of extreme
bleeding and the long-term risk of interstitial
fibrosis have been mentioned as complications
after direct renal parenchymal injection. Briefly,
scale, structure, and functional maturation are the
key challenges include that represent noteworthy
obstacles to renal bioengineering.

9.6 Conclusion

The development of tissue engineering tech-
nologies for the regaining of renal function will
take time. Regarding the advancement in renal
tissue engineering, we should consider that we
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are only one or two decades into renal tissue
engineering. There will be more renal tissue
engineering techniques to arrive. Further inves-
tigations to examine the unique ECM configu-
ration associated with the diverse sections of the
renal organ are of great importance to inform
further tissue engineering strategies for renal
tissue. Although all the approaches have offered
very promising results, many challenges such as
size, sufficient vascularization, immunological
issues, and proper connection to the host vascular
and draining system must be overcome before
engineered kidneys become clinically useful.
This method should ensure structural integrity of
the ECM and vascular tree. The selection of cell
type, and an understanding of each cell type’s
differentiation and proliferation, as well as the
cultural environment required to support a kid-
ney scaffold for the production of whole kidney
organ capable of replicate native kidney function,
requires considerable further research. In con-
clusion, suitable, systematic, and reproducible
protocols must be further optimized for decellu-
larization and recellularization for future clinical
application.
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Abstract

Surgical repair for the end stage bladder
disease utilises vascularised, autogenous and
mucus-secreting ~ gastrointestinal tissue to
replace the diseased organ or to augment
inadequate bladder tissue. Post-operatively,
the compliance of the bowel is often enough
to restore the basic shape, structure and
function of the urinary bladder; however,
lifelong post-operative complications are com-
mon. Comorbidities that result from interpo-
sition of intestinal tissue are metabolic and/or
neuromechanical, and their incidence
approaches 100%. The debilitating comorbidi-
ties and complications associated with such
urological procedures may be mitigated by the
availability of alternative, tissue-engineered,
animal-derived extracellular matrix
(ECM) scaffolds such as porcine urinary
bladder matrix (UBM). Porcine UBM is a
decellularized biocompatible, biodegradable
biomaterial derived from the porcine urinary
bladder. This chapter aims to describe the
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production and preparation techniques for
porcine UBM for urinary bladder regenerative
purposes.
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10.1 History

The bladder’s function is compromised by
malignant and benign conditions such as bladder
cancer, bladder exstrophy, spinal cord injury,
myelomeningocele, multiple sclerosis and inter-
stitial cystitis (Davis et al. 2014). For some
patients, conservative treatments such as pelvic
floor physical therapy, pharmacological therapy
(e.g. treatment with antimuscarinic drugs) and
non-therapeutic  interventions  (e.g.  self-
intermittent catheterisation) are enough to
improve bladder stability (Davis et al. 2017).
However, there is a subset of patients for whom
malignancy, intractable incontinence or pain is
incompatible with an acceptable quality of life,
and this can necessitate surgical intervention.
Surgical repair for the end stage bladder disease
utilises vascularised, autogenous and mucus-
secreting gastrointestinal tissue to either replace
the diseased organ or to augment inadequate
bladder tissue (Davis et al. 2018a).
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Augmentation cystoplasty involves the addition
of viscoelastic ileal tissue to defective bladder
tissue to improve functional bladder capacity.
Post-operatively, the compliant smooth muscle
of the bowel is often sufficient to restore the basic
shape, structure and function of the urinary
bladder, however, lifelong post-operative com-
plications are common (Davis et al. 2010).
Morbidities that result from interposition of
intestinal tissue are usually sub-classified into
three broad areas: metabolic, neuromechanical
and technical-surgical (Davis et al. 2010).

Metabolic complications are the result of
altered solute reabsorption by the intestine of the
urine that it contains. Neuromechanical aspects
involve the configuration of the bowel, which
affects the storage volume and contraction of the
intestine that may lead to difficulties in storage
(Davis et al. 2018b). Technical-surgical com-
plications involve perioperative aspects of the
procedure that result in surgical morbidity. Post-
operative complications associated with these
urological procedures are largely attributable to
the mucus-producing absorptive bowel epithe-
lium. Therefore, it seems logical that the removal
of gastrointestinal epithelium inner prior to
bladder reconstruction should negate such com-
plications. However, experimental animal mod-
els have shown that the augmentation with de-
epithelialised bowel segments results in signifi-
cant fibrosis and shrinkage (Aktug et al. 2001;
Flood et al. 1995).

Limitations associated with gastrointestinal
tissue may be moderated by the availability of
alternative, readily available and animal-derived
(i.e. xenogenic) tissue sources (Davis et al.
2010). Ideally, an engineered xenograft should
restore or preserve the normal function of the
organ it is augmenting or replacing. Furthermore,
it should be biologically inert to minimise
rejection or foreign body inflammatory reactions.
Throughout the twentieth century, several syn-
thetic scaffold materials were investigated for
potential use in reconstructive urology. In the
1950s, non-biodegradable synthetic materials
like polytetrafluoroethylene (PTFE), silicone,
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rubber, polyvinyl and polypropylene were
investigated but rapidly encrusted with pro-
longed urinary contact. Additionally, synthetic
biomaterials were susceptible to bacterial
colonisation and foreign body reactions (Davis
et al. 2010). Therefore, contemporary research
has focused on the use of biodegradable materi-
als derived from the extracellular matrix
(ECM) layer. ECMs such as porcine small
intestine submucosa (SIS) and porcine urinary
bladder matrix (UBM) are advantageous as they
are minimally immunogenic. Both biomaterials
are porcine in their origin and are prepared by
mechanical, chemical and enzymatic treatments
to yield tissue that is minimally immunogenic but
retains its basic structural elements, including
collagen, glycosaminoglycans, fibronectin, lami-
nins and other intrinsic growth factors to facili-
tate the attachment, growth and differentiation of
host cells (Davis et al. 2010). There are two
approaches for manipulating the biodegradable
scaffolds after they are prepared: seeded and
unseeded techniques. The seeded method
requires the in vitro culture and expansion of
various cell types onto a scaffold to create com-
posite ‘cellular-scaffold’ template for grafting
in vivo. The unseeded method involves the use of
a bare scaffolding material in vivo to provide a
framework for the ingrowth of native tissue. The
aim of this chapter is to provide an overview on
the production and preparation techniques for
ECMS, namely porcine UBM for urinary bladder
tissue-engineering purposes.

10.2 Materials and Methods
10.2.1 ECM Tissue Harvest
and Preparation

ECM sheets are manufactured by harvesting
porcine urinary bladders from market weight pigs
(110-130 kg) from an abattoir immediately after
euthanasia. Tissues are then immediately trans-
ferred to the laboratory on ice for further pro-
cessing. After draining the urine, bladders are
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Fig. 10.1 Harvested porcine lower urinary tract prior to
preparation of UBM

cleaned in the laboratory sink by rinsing under a
cold tap (Fig. 10.1). Excess fatty or connective
tissue is resected from the edges and outer sur-
face of the bladder. Bladders are then placed in
type 1 water (e.g. Barnstead  Filtered water).
Each bladder is then sliced open lengthwise to
form a sheet like structure with the abluminal
surface of the bladder facing outwards.
Muscular layers are then manually stretched
by applying a bevelled acrylic across the mus-
cular surface of the bladder. This process is
performed by applying the scraper to the centre
of the sheet and working towards the peripheral
muscular layers, thereby loosening the underly-
ing muscle. Occasionally, gauze is necessary to
achieve optimal tissue grip. A scissors is used to
create a horizontal incision across the middle of
the bladder perpendicular to the original incision
from the apex to the bladder neck. Each hori-
zontal incision involves cutting through the
muscularis externa and submucosal layers of the
bladder tissue. Muscle layers are manually
delaminated away with forceps, and the final
product contained only tunica propria and an
underlying basement membrane (Fig. 10.2).

Fig. 10.2 Manual delamination of bisected porcine
bladder

10.2.2 UBM Sheet Manufacture

UBM is stored in type 1 water at 4 °C. A second
stage of muscle removal may be required if any
muscle content remains on the scaffold. Decel-
lularisation is continued by exposing the scaffold
to peracetic acid (ml) solutions (Fig. 10.3).

The amount of peracetic acid solution
required is calculated by multiplying the weight
of the ECM material (grams) by a factor of 20,
thereby creating a ratio of 20:1 (volume:weight).
Peracetic acid solution consists of appropriately
pure water (96%) and 100% EtOH alcohol (4%).
Alternatively, the volume of peracetic acid
required can be calculated by the following
equation:

Fig. 10.3 Decellularised UBM after exposure to ethy-
lene peracetic acid
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axy=bxux

where

a = percent concentration of peracetic acid

y = amount of peracetic acid required

b = percent concentration of final peracetic
acid solution for disinfection

x = volume of peracetic acid stock solution.

Typically, the final concentration of peracetic
acid solution is 0.1%. An appropriately sized
calibrated pipette is used to aspirate the correct
volume of peracetic acid and dispense the solu-
tion into a disinfection chamber. UBM is then
added to the peracetic acid solution and placed
on a shaker for 2 h. After this timeframe, the
peracetic acid solution is disposed into a waste
disposal container.

Contamination is avoided by refilling the
container with Dulbecco’s phosphate-buffered
saline (DPBS, pH 7.4) and placing the con-
tainer on the shaker for a further 15 min.
The DPBS solution is drained off, and the con-
tainer is refilled with the same volume of filtered
water and placed on the shaker for a further
15 min. This step is repeated twice. Finally,
terminal sterilisation is achieved by exposure to
y-irradiation (Fig. 10.4).

10mm

Fig. 10.4 Sheet of one-ply UBM scaffold that was
prepared according to the standardised manufacturing
protocol. (scale bar represents 10 mm)
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10.3 Cell Seeding

10.3.1 Cell Culture

Human urothelial cell (HUC) lines are initially
obtained from a bladder biopsy and frozen in
liquid nitrogen. Prior to cell culture, vials are
then stored at 37 °C in a water bath and rotated
gently until the contents are completely thawed.
Vials are then rinsed with 70% ethanol and
wiped to remove excess. The cap is removed
with care ensuring that the interior thread
remains sterile.

Five millilitres (mls) of Urothelial Cell
Growth Supplement UCGS and S5mls of
penicillin/streptomycin solution P/S solution are
thawed at 37 °C. The UCGS tube is gently tilted
several times during the thawing process to help
the contents dissolve. Each bottle and tube is
rinsed with 70% ethanol and wiped to remove
excess. UCGS and P/S solution are then added
into the basal medium in a sterile field and mixed
until the reconstituted medium was ready for use.

Using a 1 ml pipette, the contents of the vial
are gently dispensed into equilibrated, poly-L-
lysine-coated vessels (Sarstedt Ltd®, Wexford,
Ireland). The cover is replaced, and the vessel
slowly rocked to distribute the cells evenly.
Culture vessels are returned to the incubator 16 h
after initiation. Growth medium is removed the
following day to remove residual DMSO and any
unattached cells, then every second day there-
after. A healthy urothelial culture displayed
polygonal, cobblestone-shaped sheets of con-
tiguous cells (Fig. 10.5).

10.3.2 Maintenance of Culture

Cell medium is changed to fresh supplemented
medium after 16 h when a culture from cryop-
reserved cells was established. For subsequent
subcultures, medium is changed every 48 h after
establishing the initial subculture until the culture
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Urothelial cells

Fig. 10.5 Urothelial cells cultured and expanded prior to
seeding onto UBM

is approximately 50% confluent. Once the culture
reaches 50%, confluence medium is changed
every 24 h until the culture is approximately
80% confluent.

10.3.3 Subcultures

Cells are subcultured/passaged at 80% con-
fluency. Poly-L-lysine-coated cell culture flasks
are prepared by warming media, trypsin/EDTA
solution,  trypsin  neutralisation  solution
(TNS) and Dulbecco’s phosphate-buffered saline
(DPBS) to room temperature.

Cell medium is removed from the culture
vessel by aspiration and the monolayer washed
with DPBS to remove all traces of serum. DPBS
solution is removed by aspiration. Subsequently,
cells are incubated with 3 ml of trypsin/EDTA
solution and placed in an incubator for approxi-
mately 2 min or until 80% of the cells are
rounded up (microscope monitored). Three ml of
trypsin neutralisation solution is added to the
digestion, and the culture vessel is gently rocked.
Released cells are harvested and transferred into
a 15 ml centrifuge tube, and the vessel is rinsed
with another 3 ml of growth medium to collect
any residual cells. Vessels are examined under a
microscope to ensure cell harvesting is success-
ful. Ideally, there should be less than 5% of the
cell population remaining in the flask. Harvested
cell suspensions are centrifuged at 1000 rpm for
5 min and re-suspended in growth medium.

Cells are counted and plated in a new poly-L-
lysine-coated flask with a selected cell density.

10.3.4 Cell-Seeding Techniques

Specimens of UBM are cut into circles of 2 cm
diameter, transferred into tissue culture plates
and weighted with stainless steel rings also 2 cm
in diameter to inhibit their lifting (Fig. 10.6).

Each stainless steel ring is autoclaved prior to
insertion to ensure sterility. The biomaterials are
then seeded with urothelial cells (2.5-5.0 x 10*
cells/cm? per well).

10.3.5 AlamarBlue™" Experimental
Protocol to Assess Cell
Viability on UBM

Viability and proliferative activity are assessed
with the AlamarBlue™ cell viability reagent
(Fig. 10.7).

In the presence of viable cells, the dye redu-
ces, turns red and becomes highly fluorescent.
One-tenth of the volume of AlamarBlue
reagent is added directly into culture medium
based on the protocol summarised below
(Table 10.1).

After adding the reagent, the solution is
incubated for 4 h at 37 °C in a cell culture
incubator that is protected from direct light.

Fig. 10.6 Cell-seeded UBM weighted with stainless
steel rings
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Fig. 10.7 AlamarBlue™ cell viability reagent cultured
with urothelial cells in 12-well plate

Table 10.1 AlamarBlue™ protocol for assessing viable
cell numbers

Format Volume of cells Volume of
and medium 10 x AlamarBlue®

to add (uL)

Cuvette 1 mL 100

96-well 100 pL 10

plate

284-well | 40 pL 4

plate

Sensitivity for detecting cell viability generally
increases with longer duration times. Therefore,
samples with fewer cells should use incubation
times up to 24 h. For greater sensitivity, the
extent of AlamarBlue” dye reduction is quanti-
fied by fluorescence spectrophotometry. Prolif-
eration rate is measured as a fold increase in the
number of viable cells per day.

10.3.6 Fluorescence

Fluorescence is read using a fluorescence exci-
tation wavelength of 540-570 nm (peak excita-
tion is 570 nm). Read fluorescence emission is
read at 580—610 nm (peak emission is approxi-
mately 585 nm). Fluorescence methods are more
sensitive than absorbance methods. Assay plates
can be wrapped in foil, stored at 4 °C and read
within 1-3 days without affecting the fluores-
cence or absorbance values.

To plot a calibration, curve cells are plated in
100 pL medium into 96-well tissue culture plates
after performing cell number titration in the
range of 40—10,000 for adherent cells and 2000—
500,000 for suspension cells. A background
control of 100 pL. of medium without cells
should be used. Subsequently, 10 pL of Ala-
marBlue" is added into the medium, and cells
are incubated at 37 °C overnight. Fluorescence is
measured at 580-610 nm. Fluorescence intensity
versus concentration of the test compound is then
plotted (Fig. 10.8).

10.4 Clinical Applications

Reconstructing genitourinary tract tissue with
ECM scaffolds has been extensively described
(Table 10.2). An important urological advantage
of ECMs is their multifunctional potential after
implantation due to their versatility. Acellu-
lar ECM scaffolds are useful for providing
intraoperative haemostasis through compression
and for repairing small tissue defects by releasing
bio-inductive growth factors. In addition, cell-
seeded and composite ECM scaffolds may be
capable of repairing larger and perhaps more
complicated genitourinary tract defects and
organs (Atala et al. 2006, 1999; Gilbert et al.
2006). Initially, most of these studies were per-
formed on animal models. However, reports of
successful human trials with encouraging short-

and long-term follow-up results are now
becoming more frequent.
Bladder augmentation with a tissue-

engineering approach has been described in 22
patients to date in three different clinical trials
(Table 10.3) (Atala et al. 2006; Joseph et al.
2014; Caione et al. 2012). Cell-seeded
UBM/bladder submucosal matrix (BSM) scaf-
folds cultured in conjunction with biodegradable
synthetic materials did show early promise for
augmenting or replacing the urinary bladder as
exemplified in a phase 2 clinical trial study by
Atala et al. in 2006 (2006). Native urothelial and
smooth muscle cells were cultured onto
UBM/BSM scaffolds or a composite scaffold
composed of collagen and polyglycolic acid
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Table 10.2 Current applications of ECMs for genitourinary procedures

——Trend Line

*Haemostasis in nephron sparing surgery for renal
*Ureteral replacement post excision of stricture or low-

Urinary bladder reconstruction (Atala et al. 2006)

Commercially available as a pubovaginal sling (Giri

Organ/tissue = Pathology ECM Urological application
Kidney Renal tumour SIS
tumours (Simon et al. 2008)
Ureter Ureteral stricture SIS
grade TCC (Liatsikos et al. 2001)
Bladder Myelomeningocele | UBM
Neuropathic urinary | SIS Bladder neck slings (Misseri et al. 2005)
incontinence
Stress urinary SIS
incontinence et al. 2006)
Urethra Urethral stricture UBM

Hypospadias

*‘Onlay Graft’ for defects <0.5 cm post-urethroplasty
(Dorin et al. 2008)

Repair of defects >0.5 cm post-urethroplasty (Fu and
Deng 2006)

Tubularised cell-
seeded UBM

UBM urinary bladder matrix, SIS small intestinal submucosa

*. . .
Procedure carried out on animal models

(PGA) in paediatric patients requiring augmen-
tation cystoplasty for myelomeningocele (n = 7).
The tissue-engineered scaffolds were implanted
with or without an omental wrap, and no post-
operative complications were noted after
46 months. Furthermore, post-operative cys-
tograms and urodynamic studies demonstrated an
increase in bladder capacity and compliance
values that were 1.58-fold to 2.79-fold improved
compared to baseline values. Mean bladder leak
point pressure at capacity decreased post-
operatively by 56% (67-37.5 cm H,O) (Atala
et al. 2000).

Notably, one other recent phase 2 clinical trial
by Joseph et al. was unable to replicate these
encouraging results when an autologous cell-
seeded polyglycolide/polylactide (PGA/PLA)

composite scaffold was utilised for augmentation
cystoplasty in patients with spina bifida (n=10)
(Joseph et al. 2014). There was no improvement
in bladder capacity on urodynamics after 1 year
or 3 years, and serious adverse events occurred in
four patients with five patients requiring re-
operation in the form of a conventional ileo-
cystoplasty (Joseph et al. 2014). Such findings
demonstrate that further prospective studies are
needed to demonstrate the clinical effectiveness
of tissue engineering for reconstructing the uri-
nary bladder.

Most recently, urologists have developed a
PGA urinary conduit scaffold as an alternative to
a conventional ileal conduit for urine drainage
after cystectomy. The ‘neo-conduit’ was seeded
with autologous smooth muscle cells (SMCs),
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grown from adipose-derived mesenchymal stem
cells, for patients undergoing radical cystectomy
for bladder cancer (Sopko et al. 2015; Kates et al.
2015). Eight patients have been enrolled in this
phase 2 clinical trial to date, and early findings
have demonstrated the regeneration of urothe-
lium, smooth muscle and neuronal tissue on
histopathology (Kates et al. 2015). Long-term
functional results are currently awaited.

10.5 Limitations

At present, cell-seeded UBM is not being
implanted into urological patients on a regular
basis as ethical considerations, cost, regulation,
manufacturing and reimbursement need to be
fully clarified and transparent. The concept of
unregulated application of these exploratory
therapies into patients without evidence-based
clinical trials is concerning to researchers. Fur-
thermore, the increasing popularity of tissue-
engineered interventions in non-scientific media
should be cautiously perceived by scientists and
clinicians. The effect of a patient’s microenvi-
ronment on porcine UBM should be fully con-
sidered prior to implantation for lower urinary
tract reconstruction. Surrounding mechanical
forces, pH, cytotoxic agents, signalling agents
and oxygen levels need to be carefully consid-
ered. Most importantly, international collabora-
tion with recognised consensus guidelines is
required to facilitate standards that allow safe use
of these therapies in human patients with thera-
peutic benefit.

Specific urological factors that have inhibited
the progression of UBM include the cytotoxic
effects of urine and the presence of uropathogens
in the upper and lower urinary tracts. One in vitro
study demonstrated that ‘off-the-shelf” UBM is
limited by their inability to induce urothelial
proliferation in the host’s natural urine environ-
ment (Davis et al. 2011). Cytotoxicity is attri-
butable to cationic substances and low molecular
weight products that are normally found in urine
(Davis et al. 2011). It appears that a pre-
established impermeable urothelial layer prior
to in vivo implantation is a prerequisite. Another
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limiting factor is the absence of a sophisticated
vascular network when implanted in vivo.
Although angiogenesis can develop in vivo, the
process is not sufficient for clinical urological
applicability (Bertassoni et al. 2014). Prefabri-
cation of biomaterials and stimulation with pro-
angiogenic bioactive factors such as VEGF and
bFGF are limited due to their inability to develop
a vascular network over a short period of time
(Baptista et al. 2011).

10.6 Conclusion

Significant experimental and clinical progress
has been made with tissue-engineered xenografts
in urological surgery. Importantly, concerns over
poor regenerative in vivo capability need to be
addressed to maintain the established clinical
applicability of unseeded and cell-seeded UBM.
If future studies can address and resolve this issue
through the development of effective, standard-
ised and repeatable UBM preparation techniques,
tissue-engineered scaffolds may continue to
contribute to reconstructive urology.
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Abstract

The ovaries or female gonads are situated in
the ovarian fossa of the abdominal cavity.
These are paired, almond-shaped organs mea-
suring about 3.5 cm long and 1.5 cm thick
and exist out of a central medullary zone and a
peripheral cortex that are enclosed in a fibrous
capsule called the tunica albuginea. The
ovaries serve 2 main functions, the first one
being the production of female gametes called
oocytes (oogenesis). Interestingly, the number
of primary oocytes that reside in the ovary is
determined at  birth. About 400
oocyte-containing follicles successfully go
through all the developmental stages from
this limited pool during folliculogenesis
throughout the female reproductive life. In
this process, primordial follicles grow and
advance until forming a mature or Graafian
follicle; during ovulation, secondary oocytes
are released and the remaining follicular wall
collapses and forms the highly vascularized
corpus luteum or luteal gland. This ovarian
cycle is regulated by several hormones
secreted from the adenohypophysis and lasts
about 28 days. During this cycle, the ovaries
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also serve as endocrine glands and produce
female sex hormones such as estrogens and
progesterone (steroidogenesis), influencing
the growth and development of tissues sensi-
tive to these hormones such as the endome-
trium. Hence, the endometrial cycle goes
synchronized with the ovarian cycle.

Keywords

Ovary - Decellularization *+ Regeneration *
Fertility

11.1 History

While the ovary is considered as a non-vital
organ, the option to store and transplant ovarian
tissue is considered as a major possible
improvement on the quality of life for many
women, and this can be based from the preser-
vation of fertility to the improvement of health
(Andersen and Kristensen 2015; Shea et al.
2014). Investigation behind the transplantation
and cryopreservation of the ovary started as early
as the 1950s and found its way into clinical
practice half a century later (Deanesly 1954;
Donnez et al. 2004). In the pursuit of replacing or
regenerate human cells, tissues, or organs in
order to restore or establish normal function, a
new multidisciplinary field was born, namely
regenerative medicine (Mason and Dunnill
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2007). By using cells and designing materials
mimicking their native reproductive tissues and
organs, the subfield “reproductive tissue engi-
neering” (REPROTEN) has been coined recently
(Amorim 2017). In this chapter, we intend to
give an overview of the different methods used in
a novel technique used within this field, namely
the decellularization (DC) and recellularization
(RC) of the ovary.

11.2 Materials and Methods

Decellularization intends to obtain the tissue-
specific and complex extracellular —matrix
(ECM) and utilize it as a bioscaffold for tissue
engineering. By removing the cells and cellular
antigens, detrimental inflammatory reactions are
attenuated. There has been much progress
reported in virtually all vital organs such as the
liver (Baptista et al. 2011) and heart (Kim et al.
2016b) or in the case of reproductive medicine,
the uterus (Campo et al. 2017) to name a few. In
this section, we will provide an overview of the
methodologies and reagents used for the decel-
lularization of the ovary, and a summary of all
relevant publications can be found in Table 11.1.

Laronda et al. were the first to publish the
successful decellularization of human and bovine
ovarian tissues (Laronda et al. 2015). The human
samples originated from cancer patients, most of
which had a history of treatment (radiation,
chemotherapy, immunosuppression) who dona-
ted ovarian tissue for fertility preservation and
investigation, and the bovine ovaries came from
young cows and were processed in 500-micron-
thick slices. The presence of cancer cells was
also demonstrated in approximately half of the
human samples. To decellularize human and
bovine tissues, an excess of 0.1% sodium dode-
cyl sulfate (SDS) solution was used, and samples
were left for 24 h in agitation at room tempera-
ture. Complete decellularization was demon-
strated first by histological analysis, where DAPI
and hematoxylin and eosin (HE) staining did not
show any cells nor nuclei, which was corrobo-
rated by DNA quantification. Furthermore, after
DC the SALL4-positive cells in the human
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samples were also completely removed. In this
study, the DC of the whole organ was also
attempted by immersing whole bovine ovaries in
0.1% SDS for 3 weeks at 4 °C. From these
samples, an analysis of the ultrastructure was
performed by scanning electron microscopy,
showing the preservation of the major hierar-
chical organization containing important struc-
tural fibers. This was further analyzed by
immunohistochemistry. Signals for collagen IV,
laminin and fibronectin were present after DC in
the bovine samples, with some not presenting in
the cortex or medulla layer. Human samples
stained positive for collagen I and IV, but very
little signal was present for fibronectin and
laminin, suggesting that this protocol has a rel-
ative harsh effect on the human cortical ECM.
This two to four week long protocol was also
employed by Jakus et al., confirming the efficacy
of the protocol by HE staining and scanning
electron microscopy (Jakus et al. 2017). In this
study, the acellular ovarian tissue was lyophi-
lized, pulverized and mixed with poly(lactic-co-
glycolic acid) (PLGA) polymer (65 vol% and 35
vol%, respectively) to create ECM “inks.” These
hybrid scaffolds were made into “tissue papers,”
and a unique tissue-specific surface topology was
observed. Furthermore, the ovarian tissue paper
(OTP) could absorb up to 300% of its volume,
while the elastomeric polymer matrix provided
mechanical stability, allowing for easy manipu-
lation (folding, cutting, suturing), resulting in a
promising new biomaterial.

Liu et al. on the other hand published a DC
protocol for pig ovarian tissue. Here, ovaries
were cleaned from connective tissue and fat,
were subjected to three freezing and thawing
cycles (from —80-37 °C) and were cut in 1.5-
mm-thick pieces. The DC protocol included a
wash in deionized water (H,Od), and fragments
were agitated for 9 and 3 h at room temperature
in 1% Triton X-100 and 0.5% SDS, respectively.
After a 12-h wash in distilled water (H,Od), the
residual DNA was removed by 200 U/ml of
DNAse I at 37 °C for 12 h and washed for
another 4 h in H,Od. Sterilization was performed
with 3% peracetic acid. Correct DC was first
assessed visually and was confirmed by histology
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(HE and DAPI) and DNA quantification. The
presence of glycosaminoglycans (GAGs) was
demonstrated by Alcian blue staining, and
quantification did show a significant decrease in
GAG content. Total collagen amount was quan-
tified based on hydroxyproline content and
showed no significant increase, and collagen type
I and IIT presence was confirmed by immuno-
histochemistry, as was also the case for fibro-
nectin and laminin.  Scanning electron
microscopy showed the intact hierarchical com-
position of the ovaries, showing empty space
where follicles, granulosa and theca cells used to
reside.

All the protocols mentioned above use the
ionic detergent SDS for a certain period of time,
which is hard to remove and could have negative
impact on cell culture or transplantation if not
washed properly (Friedrich et al. 2018). Has-
sanpour et al. sought an alternative protocol
using solely the milder anionic detergent sodium
lauryl ester sulfate (SLES) (Hassanpour et al.
2018). It has been reported that SLES improved
the preservation of GAGs (mainly glycans on
hydrophilic proteins) and growth factors com-
pared to SDS and that after transplantation the
SLES decellularized scaffolds showed signifi-
cantly reduced inflammation and platelet adhe-
sion compared to scaffolds decellularized by SDS
(Kawasaki et al. 2015). For DC, 2.0-mm-thick
slices of the cortex were agitated in 1% SLES for
48 h at 1820 °C, and residual DNA was
removed by using 500 u/ml DNase I in PBS for
24 h at 36 °C (Hassanpour et al. 2018). Similar
to other publications, whole ovarian DC was
performed by immersing bisected ovaries for 30—
40 days in 1% SLES. Afterward, the ovaries
turned white and transparent, and DC was con-
firmed by histology (HE and Hoechst) and DNA
quantification. The composition of the ECM was
assessed by histochemical analysis: The presence
of GAGs and elastic fibers was confirmed by
Alcian blue and Gomori’s aldehyde fuchsin,
respectively, and Heidenhain’s AZAN and
Masson Trichrome staining showed the preser-
vation of collagen fibers. This was further cor-
roborated by immunohistochemistry, and
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collagen I was present throughout the decellu-
larized cortex, while collagen IV was found in
the cortex, theca cells compartment and some
parts of the medullary stroma. A higher signal for
laminin was found near the cortex, while for
fibronectin this was the case in the tunica
albuginea, theca cells compartment and the
medullary stroma.

In conclusion, the studies presented here show
various immersion-based DC protocols using
both established detergents such as SDS and
Triton X-100 and new promising ones such as
SLES. While basic (immuno)histological, topo-
logical and biochemical analysis has been per-
formed to assess the DC, their effect on the
mechanical stability and proteomic profile of the
DC ovarian tissues has not been done. The latter
would be especially interesting seeing that the
matrisome has been recently defined for the
ovary (Ouni et al. 2019). Furthermore, while the
DC of whole organs was presented, this was not
done via perfusion of the vascular system but
rather by prolonged immersion (up to 40 days),
limiting their future use as vascularized perfus-
able bioscaffolds for the generation of whole
ovarian constructs (Hassanpour et al. 2018;
Laronda et al. 2015). Nonetheless, these studies
represent an important first step toward the
engineering of the ovary and follicle
microenvironment.

11.3 Cell Seeding

In vitro cell seeding can be used for many goals,
it can be used to make organoids or organotypic
3D culture systems for investigation, to test the
cytotoxicity of the bioscaffold or to recellularize
whole organs/fragments to create transplantable
constructs. The ovary is made out of different cell
types that support and interact with follicles of
different stages: Some or all of these can be used
to recellularize the scaffold. For this, several
techniques can be used; sections or fragments
can be covered with cells so they adhere, pro-
liferate and penetrate, and they can be injected
directly into the scaffold (fragments or whole
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organs) or delivered via perfusion (via single
infusion or by introducing them into the bulk
media, only for whole organs).

A natural first step after establishing success-
ful DC is testing the cytotoxicity of the scaffold
in vitro. Here, the proliferation and behavior of
native primary cultured cells, (stem) cell lines
and follicles are tested. Laronda et al. used pri-
mary ovarian cells isolated from 3- to 4-week-old
mice (Laronda et al. 2015). This cell population
exists predominantly out of granulosa cells (theca
cells and adherent follicles were also present
before trypsinization) and was cultivated for 48 h
on decellularized disks of bovine medulla sec-
tions. Some penetration of the scaffold was
observed, and circular, follicle-like patterns and
steroid blebs were observed on the scaffolds by
scanning electron microscopy (SEM) as well. To
demonstrate the functionality of these recellu-
larized disks, they investigated whether they
could restore endocrine function
immunodeficient mice prior to puberty. Encour-
aging results were found in this group: Serum
estradiol (E2) levels were restored in most cases,
circulating inhibin-o was measured, and vaginal
opening (a secondary sex characteristic) was
induced. Furthermore, the graft did not induce an
immune reaction, and follicle-like structures
were found, demonstrating the potential of
decellularized scaffolds. Similarly, Jakus et al.
confirmed the adhesion, proliferation and infil-
tration of mesenchymal stem cells (MSCs); after
28 days, live—dead stain showed no cytotoxicity
of the OTP (Jakus et al. 2017). The porous
tissue-specific structure allowed for the in vitro
culture of mouse ovarian follicles. Human and
rhesus macaque ovarian cortical strips were also
cultured for up to 4 and 56 days, respectively,
without observing negative effects or even
improving on previously published results (Jakus
et al. 2017; Laronda et al. 2014).

After demonstrating no negative effects of
culture media incubated with the decellularized
ovary, Lui et al. proceeded to demonstrate the
scaffolds’ biocompatibility in vivo by xenogeneic
subcutaneous implantation of decellularized and
native ovarian fragments. While only few cells
infiltrated the acellular scaffold,

in  non-
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immunohistochemistry of CD68, CD86 and CD3
showed a mild immune response compared to the
native tissue. In a last in vitro study, rat native
tissue was implanted in the decellularized pig
ovarian. Here, granulosa cells adhered, migrated
and proliferated in the scaffold and E2 secretion
functions were sustained (Liu et al. 2017).

Hassanpour et al. seeded Wharton’s jelly
mesenchymal stem cells on top of decellularized
disks to test the biocompatibility. Using a MTT
assay, no differential expression with standard
2D culture systems was observed after 3 days;
furthermore, after one week of culture the pro-
liferation rate observed was higher than in the
controls (Hassanpour et al. 2018). For in vivo
studies, rat primary ovarian cells were allowed to
adhere for one day in static culture. After this,
non-recellularized and recellularized constructs
were sutured onto the renal fat pad bilaterally.
Neovascularization and invasion of native cells
were observed, and furthermore, primordial or
primary follicle-like structures were identified in
the primary ovarian cell grafts, presenting
inhibin-o0 and steroid receptors. Finally, a
restauration of progesterone to physiological
levels and an elevation of estradiol levels resulted
in the improvement of vaginal patency of the
rats.

In these studies, it became clear that decellu-
larized ovarian tissues (and derivatives) are
cytocompatible with various cell types such as
stem cells (Hassanpour et al. 2018; Jakus et al.
2017), primary culture cells (Laronda et al. 2015)
and follicles or cortical strips (Jakus et al. 2017).
Furthermore, the biocompatibility was demon-
strated by transplanting (non-) recellularized
scaffolds in animal models (Hassanpour et al.
2018; Laronda et al. 2015; Liu et al. 2017),
paving the way for further improvement of
in vitro models and in vivo studies with possible
future clinical applications.

11.4 Clinical Applications
Infertility is described by the World Health

Organization (WHO) as “a disease of the repro-
ductive system defined by the failure to achieve a
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clinical pregnancy after 12 months or more of
regular unprotected sexual intercourse.” Cur-
rently, the number of affected couples is around
15% of the world population and a third of
infertility problems are because of female causes
(Center for Disease Control and Prevention,
CDC). There are several diseases that are related
to or directly affecting the ovaries and women’s
fertility, including ovarian cancer, polycystic
ovary syndrome (PCOS), endometriosis and
premature ovarian failure (POF).

POF, also referred to as primary ovarian
insufficiency (POI), is a major cause of female
infertility that affects one in every 10.000 women
before 20, 1: 1000 before 30 and 1: 100 before
40 years old (Hewlett and Mahalingaiah 2015;
Qin et al. 2015). It is characterized by a depleted
ovarian reserve that leads to amenorrhea, hypo-
estrogenism and elevated gonadotropin levels
(Shelling 2010). The most prominent potential
causes are radio/chemotherapy, genetic alter-
ations, viral infections, metabolic pathologies,
immune diseases and environment factors (Kuo
et al. 2017; Torrealday et al. 2017). The various
possible spontaneous or induced causes of POF
are listed in Table 11.2. Women with established
POF have a low amount and poor quality of
oocytes, for these patients to achieve biological
parenting only in vitro fertilization (IVF) with
donor gametes remains.

One group of women that are of special
interest in the field of REPROTEN are those
receiving cancer treatment; with the rising sur-
vival rates, it becomes more pertinent to take the
patients’ post-treatment quality of life into con-
sideration  (Letourneau et al.  2012).
Radio/chemotherapy such as abdominal ionizing
radiation and alkylating agents (for example,
cyclophosphamide) have been described to have
devastating effects on the ovarian reserve,
inducing POF (Meirow et al. 2010).

Different strategies have been developed to
preserve fertility in female patients of reproduc-
tive age undergoing radio/chemotherapy, and
these include the cryopreservation of oocytes,
embryos and ovarian cortical tissue; ovarian
shielding by ferto-protective adjuvant therapy
and surgical techniques such as ovarian
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Table 11.2 Causes of premature ovarian failure
Spontaneous

Idiopathic

Genetic

Turner syndrome (45X0O) or mosaic Turner
(45X/46XX)

Trisomy X (47XXX or mosaic)
Fragile X premutation

Galactosemia (galactose-1-phosphate uridyltransferase
deficiency)

Autoimmune polyglandular syndrome (types 1 and 2)
Follicle-stimulating hormone receptor mutations
17a-hydroxylase deficiency

Aromatase deficiency

Blepharophimosis, ptosis, epicanthus inversus
syndrome

Bloom syndrome

Ataxia telangiectasia

Fanconi anemia

Autoimmune

Infections

Mumps oophoritis

Tuberculosis, malaria, cytomegalovirus, varicella and
shigella

Induced

Bilateral oophorectomy, bilateral ovarian cystectomies
Chemotherapy-primarily, alkylating agents and
anthracyclines

Radiation-external beam or intracavitary
Environmental toxins

Pelvic vessel embolization

Reprinted from (Torrealday et al. 2017) licensed under
CC BY 4.0

transposition and transplantation (Donnez and
Dolmans 2013; Levine et al. 2015; Mahajan
2015). Each of these techniques has their
respective advantages and disadvantages, and
specific use cases.

Oocyte/embryo cryopreservation, for exam-
ple, requires controlled ovarian stimulation,
which takes 2 weeks starting from the second
day of the period, and naturally, this delay is
unadvisable for cancer treatment. Furthermore, it
is unwise to apply this hormonal treatments in
patients with hormone-dependent cancers, and
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some data even suggest an indirect mitogenic
effect of estrogens on hormone receptor-negative
cancers (Shea et al. 2014). On the other hand,
ovarian transplantation is still an experimental
technique that has several limitations such as
onset of avascular ischemic period after re-
transplantation (Donnez et al. 2013; Lee et al.
2016; Oktay and Oktem 2010).

Cryopreservation and transplantation of
ovarian tissue have several advantages and are
the only option for prepuberal girls that cannot
delay treatment (Jadoul et al. 2010). Firstly, it
can effectively preserve large amounts of pri-
mordial follicles and can be performed at the
time of diagnosis, without the need for hormonal
stimulation. Furthermore, transplanting the
ovarian tissue not only restores fertility but also
endocrine function. While this technique is still
considered experimental in nature, it has resulted
in at least 60 live births at the time of writing
(Donnez and Dolmans 2015). However, cryop-
reserved ovarian tissue can also contain malig-
nant metastatic cells, and 12.4% of patients died
due to recurrence after reimplantation over a 12-
year period (Amorim and Shikanov 2016; Imbert
et al. 2014).

In other words, current techniques used for
treating these disorders are limited by their high
risks and suboptimal effectiveness rates, posing a
significant threat to the prognoses and quality of
life for female patients. Thus, tissue-engineered
constructs using ovarian cells and/or follicles
could play an important role in the future.

Approaches for in vitro folliculogenesis were
proposed along the last years. Three-dimensional
culture systems using hydrogels to encapsulate
isolated follicles provide physical support that
preserves oocyte—somatic cell connections and
promotes survival of early stage follicles. Non-
tissue-specific hydrogels such as polyethylene
glycol (PEG), agarose, alginate, collagen and
fibrin are currently tested in vitro supporting
successfully the growth and maturation of ovar-
ian follicles in mice, large mammalian species
and humans (He 2017; Shea et al. 2014; Skory
et al. 2015; Xiao et al. 2015). These systems
would be interesting to obtain mature oocytes
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from primordial follicles, improving on current
IVF approaches.

Another major aspect besides fertility preser-
vation is the restauration of the hypothalamus—
pituitary—gonadal axis; much like with normal
ovarian tissue transplantation, it has also been
demonstrated that recellularized DC fragments
and other types of constructs are capable to
reestablish endocrine functions (Hassanpour
et al. 2018; Kim et al. 2016a; Kniazeva et al.
2015; Laronda et al. 2015). This implies that
these tissue-engineered constructs could also be
used to improve the quality of life of many
women not undergoing cancer treatment. An
innovative example of this is to postpone
menopause by transplanting ovarian tissue that
was cryopreserved before menopause (Andersen
and Kristensen 2015). REPROTEN approaches
could in theory be used in the future to create
constructs for menopausal women that did not
cryopreserved ovarian tissue.

11.5 Limitations

Even though the decellularization and recellular-
ization of the ovary show promise, relatively few
protocols and methods have been published as of
yet and more investigation is needed to truly
pinpoint the specific limitations of these tech-
niques. While its final use can be up to discussion
or example, no perfusion-based whole organ
decellularization protocol has been published.
The in vivo cell seeding protocols were used to
test biocompatibility of the decellularized scaf-
fold; however, no attempts were made to main-
tain a perfusable construct in a bioreactor. As
with all organs, the main limitation in the DC/RC
is the recellularization efficiency, the ovary con-
sists of a heterogeneous population of follicles in
different phases of development and it is not
known whether this dynamic tissue can be com-
pletely recapitulated in an in vitro setup. Further-
more, follicles are relatively well isolated from
the ovarian stroma, and it is unclear whether
pluripotent stem cells can recreate the successes
presented in other organs (Ott et al. 2008).
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Lastly, it is complicated to obtain whole organ
donors, and in some studies, they come from
xenogenous sources (Jakus et al. 2017; Liu et al.
2017). Due to the morphological similarities, the
best xenogeneic whole organ donor would be the
sheep ovary. If the donor tissue would be human,
then they could come from females undergoing
sexual reassignment surgery (Hassanpour et al.
2018), as small fragments as part of fertility
preservation (Laronda et al. 2015) or from
deceased donors.

11.6 Conclusion

This chapter describes innovative perspectives
and ideas of tissue and whole organ engineering
related to the ovaries, including the different
methods for whole/partial decellularization,
characterization of the extracellular matrix,
techniques and functionality tests of the recellu-
larization process and the future clinical appli-
cations. The regenerative medicine based on the
ovary setting is essential to preserve and to
reestablish female fertility as we have explained
along these lines.

The decellularization and recellularization of
ovarian tissue represent in the therapeutic context
an interesting solution; while creating bioscaf-
folds that are specifically compatible with ovar-
ian cells and follicles, it also effectively removes
cancer cells and as such the risk of reintroducing
them. Furthermore, the compatibility with the
ovarian tissue fragments makes them an inter-
esting biomaterial to improve current ovarian
tissue transplantation techniques.

The recent advancements in the bioengineer-
ing applied to the ovary, recapitulate the char-
acteristic microenvironment and promote the
specific ovarian cellular development as a ther-
apeutic strategy. The advantages of these
emerging techniques are encouraging due to the
preservation or improvement of female fertility.
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Abstract

A new field of investigation which aims to
design tissues and organs similar to their
native origin has been developed recently,
named as regenerative medicine (tissue engi-
neering and bio-engineering). Uterus is the
main organ for regeneration and contributes in
the fertility. At an ultimate level, the uterus
plays a role in embryo implantation, sperm
migration and fetal nutrition. Uterine congen-
ital anomalies, attained uterine lesions and
immune system disorders may affect such
uterine functions preventing successful preg-
nancy. Due to following reasons, it is essential
to consider regenerative medicine as a new
approach for the treatment of uterine dysfunc-
tions to overcome the failures that cannot be
treated with clinical medication.
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12.1 History

The uterus is the largest organ of the female
reproductive system, consisting of the fundus
(superior to the fallopian tubes), corpus and
cervix. This muscular, inverted pear-shaped
organ evacuates the unfertilized egg during
menstruation or nourishes the growing embryo
until delivery. There is a large variety of uterus
forms in mammals; the human uterus is fused in
one organ (simplex), while other forms include
duplex (rabbit, mouse, rat) and bicornuate (dog
and pig) anatomy. The uterine wall is comprised
of three histological layers, namely the outer
perimetrium, middle myometrium and inner
endometrium. The thickest layer is the myome-
trium, having three layers of smooth muscle
cells. These cells are circularly or spirally orga-
nized allowing for elongation and distention of
the uterus during the pregnancy. The most
luminal and complex layer is the endometrium
and is responsible for embryo implantation and
development. This mucosal layer is highly
responsive to the female sex hormones and is
composed mainly by epithelial (luminal and
glandular) and stromal compartments (Simoén
et al. 2009; Speroff and Fritz 2005).

Important advances have been demonstrated
in different organs like liver (Baptista et al.
2011), kidney (Arenas-Herrera et al. 2013),
pancreas (Berney and Berishvili 2015) and heart
(Kim et al. 2016; Sanchez et al. 2015).
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Concerning the uterus, it is classified as a non-
vital organ such as the spleen, appendix, testicles,
ovaries and eyes. But, transplantation involving
these non-vital organs has been previously per-
formed in humans to improve the quality of life
(Kisu et al. 2013). Consequently, the uterus is not
outside of the (r)evolution of traditional medicine
showing huge progresses in the field of regen-
erative medicine investigating the improvement
of quality of life ,as we are going to explain
along this chapter.

12.2 Materials and Methods

Decellularized tissues have been proposed as the
ideal biological scaffold for the development and
homeostasis of cells, tissues and organs (Badylak
2007; Crapo et al. 2011). In order to obtain these
acellular three-dimensional scaffolds, various
decellularization (DC) techniques and protocols
have been developed. It is necessary to adapt
these to the specific organ/tissue characteristics
and final objective (in vitro models, regeneration
of tissues, whole organs replacements). It has
been demonstrated that one DC technique does
not always translate well between different
organs or even the same organs of different
species. Hence, optimization and comparison of
protocols are necessary (Hellstrom et al. 2014;
Santoso et al. 2014).

Tissues can be decellularized using (a com-
bination of) the three main types of DC methods:
These are physical, enzymatic and chemical
methods, and extensive reviews have been pub-
lished describing their respective advantages and
disadvantages (Badylak et al. 2011). Physical
decellularization techniques such as freeze—
thawing and high hydrostatic pressure (HHP) are
usually ineffective on its own. For this, they are
commonly combined with the other two methods
and can be applied via two ways, namely
immersion and perfusion; a summary of relevant
publications is given in Table 12.1. Furthermore,
the methods used to validate the decellularization
of uterine tissues are given in Fig. 12.1.

The most common approach, which is mainly
used for small fragments and thin tissues, is to
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immerse and agitate them in the decellularization
reagents. This has been proven effective for vir-
tually all tissues, including all uterine histologi-
cal layers. Young et al. were among the first to
use these methodologies to decellularize frag-
ments of the human and rat myometrium (Young
and Goloman 2013). Strips (2 x 2 x 10 mm) of
the pregnant human myometrium were obtained
after Cesarean delivery, while rectangular
sects. (1.5 x 2.0 cm) were obtained from timed
pregnant rats (days 20-21). Cells were destroyed
by agitating the fragments in 70% ethanol at
room temperature for 24 h, followed by a 1-h
wash in distilled water. They were also the only
protocol using trypsin (1X in 0.25% EDTA, 3 or
24 h) in order to remove cellular debris. Com-
plete decellularization was only demonstrated
using a Masson’s trichrome stain.

The first study comparing various DC tech-
niques in the whole uterus was performed by
Santoso et al. Rectangular cuts (15 mm x 65
mm) of the complete uterine wall (including peri-
, myo- and endometrium) were subjected to
various DC protocols, using the ionic detergent
sodium dodecyl sulfate (SDS), the non-ionic
detergent Triton X-100 and HHP (Santoso et al.
2014). A combination of concentrations and
incubation times in solely SDS or Triton X-100
was investigated, and high hydrostatic pressure
(980 MPa) was applied at different temperatures
each being subjected to a different pressure gra-
dient. Afterward, all tissues were washed exten-
sively for one week at 4 °C in a DNase I solution
containing antibiotics. After histological analysis
(hematoxylin and eosin (HE), Masson’s tri-
chrome (MT) and Verhoeff’s Van Gieson
(VVQ)), the best decellularization methods were
selected for further analysis. These were 1% SDS
for 1 h and HHP at 30 °C, and all Triton X-100
conditions were excluded, seeing they were
unable to fully decellularize the tissues. Both
protocols were able to destroy the native DNA.
In contrast to HHP, a negative effect of SDS on
the collagen fibers was observed but without
significantly affecting ultrastructure. Further-
more, the HPP-treated samples showed increased
mechanical strength. However, in a further article
from the same group, the SDS-based protocol
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Fig. 12.1 Different methods used to validate the decel-
lularization of the uterus and uterine tissues. Abbrevia-
tions: HE: hematoxylin and eosin; DAPI: 4', 6-diamidino-
2-phenylindole; MT: Masson’s trichrome; VVG: Verho-
eff’s Van Gieson; AB: Alcian blue; SEM: scanning

was used, suggesting that the convenience using
the more commonly used SDS outweighs the
possible benefits of HPP (Hiraoka et al. 2016).

Solely, endometrial tissue was also decellu-
larized; Olalekan et al. developed a DC protocol
to be used in 3D models of the endometrium
(Olalekan et al. 2017; Xiao et al. 2017). Here,
0.5 mm thin sections were agitated in 0.25% of
Triton X-100 and 0.25% sodium deoxycholate
(SDC) at 37 °C for 48 h. After washing for 72 h
with Dubelcco’s modified Eagle medium
(DMEM) at 4 °C, nuclear material was removed
using 100 pg/ml ribonuclease and 150 IU/ml
DNase I. Histology (HE and MT) showed an
acellular scaffold, which was further corrobo-
rated by DNA quantification. Electron micro-
scopy showed a fibrous collagen-rich scaffold,
while a precise proteomic analysis showed a
scaffold rich in proteins related to cell adhesion,
cell matrix and cytoskeletal proteins.

Even though immersion and agitation are
convenient methods of DC, samples are limited
by the penetration of the DC agents in the tissue.
This means that the possible samples are
restricted by a maximum thickness. For this,
perfusion-based DC techniques provide a solu-
tion for thick samples. Here, the vasculature of

electron microscopy; TEM: transmission electron micro-
scopy; GAGs: glycosaminoglycans; PSR: picrosirius red;
MES: Miller’s elastic stain; [HC: immunohistochemistry;
IF: immunofluorescence; VM: vimentin; CK: cytokeratin

whole organs is used to deliver DC reagents,
remove the cellular material and provide cells
and nutrients for recellularization (RC) purposes
(Ott et al. 2008). The first fully vascularized
three-dimensional uterine scaffold in rats was
published by Miyazaki et al.; via the aorta, rising
concentrations of SDS were perfused at 50 ml/h
through the organ to remove cellular material
(Miyazaki and Maruyama 2014). Washing steps
to remove SDS included the use of distilled water
and Triton X-100 (1%). Lastly, the organs were
extensively washed in PBS and stored at 4 °C for
up to a week in PBS with antibiotics and
antimycotics. Decellularization was demon-
strated by HE, nuclear staining and
immunofluorescence for a-smooth muscle actin,
vimentin, cytokeratin, laminin and collagen I
Electron microscopy showed an intact ultra-
structure and vasculature. In the same year, an
extensive comparative study of three whole rat
uterus decellularization protocols was published
by Hellstrom et al. Perfusion was set at 8 ml/min
(Hellstrom et al. 2014). The first DC protocol
(P1) used five cycles consisting of 4-h perfusion
with 4% DMSO, 4 h with 1% Triton X-100 (both
diluted in PBS+0.05% sodium azide and PBS
+A) and 30 min with PBS+A. Between the
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cycles, the organ was left unperfused at RT in
PBS+A. The second protocol (P2) was very
similar, the dilutions were made in distilled
water, and a freeze—thaw procedure (—80 °C)
was introduced between cycles 2 and 3. Lastly,
P3 (protocol 3) used five cycles of 6-h perfusion
with 2% SDC (in dH,O+A) and 2-h perfusion
with dH,O+A. A quantitative analysis of the
ECM and its biochemical composition following
vascular decellularization was done. Differences
were observed in various levels. For example,
using unbuffered perfusion medium (P2)
removed significantly more DNA than the other
protocols. P3 on the other hand preserved more
of the important structural ECM proteins such as
elastin and provided the most mechanically
strong scaffold.

Lastly, in order to establish a DC protocol for
large reproductive organs, our laboratory created
a robust protocol for the pig uterus, lasting only
49 h in total (Campo et al. 2017). Furthermore,
the effect of a freeze—thaw cycle before decellu-
larization was assessed. To procure the large
vascularized scaffold, two identical perfusion
cycles at a physiological rate of 15 ml/min were
employed: After an initial flush of PBS for one
hour, 0.1% SDS was perfused for 18 h, followed
by wash steps for 30 min with distilled water,
half an hour of 1% Triton X-100 and 5 h of PBS.
Decellularization was demonstrated by histology
(HE, DAPI, MT) and quantification of DNA and
proteins. The collagen-rich scaffold was further
analyzed with MT and Alcian blue staining and
immunofluorescence of collagens I and IV,
elastin, laminin and fibronectin. The ultrastruc-
ture showed a fibrous stroma with intact collagen
fibers and an intact endometrial surface and
vascular structures; the latter was further cor-
roborated by a vascular corrosion cast, where
capillary structures were present in all DC con-
ditions. This protocol was slightly adapted in a
further study in a different animal model, namely
the rabbit model. Here, non-synchronous (NS,
with a non-proliferating endometrium) and syn-
chronous rabbit uteri (S, 72 h after ovarian
stimulation and proliferating endometrium) were
perfused at a flow rate of 8 ml/min (Campo et al.
2019). The same SDS and Triton X-100-based
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cycles were used, and finally, a perfusion with
2 pg/mL DNase 1 solution was done to improve
the removal of residual DNA. After testing DC
efficiency, the acellular endometrium was sepa-
rated, via microdissection, lyophilized and mil-
led. Tissue- and proliferation-specific NS and S
hydrogels were made from these powders,
yielding interesting biomaterials for possibly
treating endometrial pathologies that can also
serve as a future platform for three-dimensional
cell culture (Campo et al. 2019).

These publications show that it is possible to
decellularize uterine tissues, where different
protocols successfully remove nearly all cellular
material in tissues and whole organs while
retaining the hierarchical structures of the com-
plex extracellular matrix.

12.3 Cell Seeding

Ideally, these acellular three-dimensional
bioscaffolds will be recellularized with several
types of cells in order to create tissue-engineered
constructs that are re-implantable in future
recipients (Peloso et al. 2015) or to mimic organ-
like microenvironment. To recellularize these
extracellular matrix (ECM) scaffolds, several
techniques can be used; they can be simply
covered with cells and allowed to adhere, pro-
liferate and penetrate, they can be introduced
directly into the scaffold by injection, or it could
be delivered via perfusion (only for whole
organs). For reproductive tissue engineering
(REPROTEN) purposes (Amorim 2017), only
the covering and injection with cells techniques
have been published.

The original goal of tissue engineering as
described by Langer and Vacanti was to “restore,
maintain or improve function of tissues or whole
organs” (Langer and Vacanti 1993). However, it
can also play a transformative role for in vitro
applications such as drug testing, disease model-
ing and precision medicine (Wobma and Vunjak-
Novakovic 2016). In the pursuit of restoring
uterine defects before pregnancy, Young et al.
cultured human and rat myocytes in vitro on
(autologous and non-autologous) myometrial



148

decellularized scaffolds. Cells were allowed to
adhere first by covering scaffold “hammocks”
with media containing 4-5 x 10° cells/mL and
kept still for one hour, followed by culture in
agitation. This way, allo-neo-myometrium (same
species) and xeno-neo-myometrium (human and
rat components) were made and were able to
remodel over artificially made defects. The rat
decellularized myometrium was the preferred
environment for both cell types, showing
improved adhesion and penetration of even
human cells. This xeno-neo-myometrium formed
typical myometrial-bundles structures that
showed coordinated contractions. In an effort to
closely mimic the in vivo conditions of repro-
ductive tissues, a complex microfluidic systems
(EVATAR) integrating female reproductive tract
tissues (murine ovary, human fallopian tube,
endometrium, ectocervix) and liver (Xiao et al.
2017) was created. In this system, endometrial
constructs were made by covering the scaffold
with approximately one million expanded
endometrial cells in 50 pl of culture media. In the
EVATAR setup, it was influenced by the female
sex steroids produced by the ovarian module, and
the endometrial cells expressed typical specific
markers such as vimentin, cytokeratin, Ki67,
estrogen receptors and progesterone receptors. In
a different publication, this construct was sub-
jected to a stepwise hormone protocol (Olalekan
et al. 2017). Despite using endometrial tissue
from different developmental stages, it was stated
that more investigation was needed to assess the
possible effects of the innate differences of the
developing endometrium. Furthermore, the cul-
ture conditions clearly favored stromal cells.
Despite these constraints, the construct produced
and expressed typical decidualization markers
such as prolactin and insulin-like growth factor-
binding protein 1 IGFBP-1).

To create a true three-dimensional environ-
ment, organoid-like structures were also created
using human endometrial stem cell lines (Cer-
velld et al. 2011) and acellular endometrial disks,
obtained from whole decellularized pig uteri
(Campo et al. 2017). Disks measuring 100
microns thick and 5 mm wide were covered with

H. Campo et al.

a physiological ratio of stromal, and epithelial
side population (SP) stem cells from human
endometrial origin (4/5 ICE6 and 1/5 ICE7, 0.5
million in total) were cultured in hypoxic con-
ditions for up to 12 days. After 4 days, these
covered disks began to roll up, forming an
organoid-like structure, containing cells that are
closely interacting with the ECM and expressing
typical endometrial markers (cytokeratin and
vimentin).

To create ECM “inks,” lyophilized powder of
decellularized uterus (65 vol%) was mixed with
PLGA polymer (35 vol%), and a unique surface
topology was observed. These hybrid scaffolds
(“tissue papers”) were stable, and adhesion,
proliferation and infiltration of mesenchymal
stem cells (MSCs) were demonstrated (Jakus
et al. 2017).

The injection of cells into the bioscaffolds is
usually done to create a transplantable tissue-
engineered construct. In a recent publication,
Hellstrom et al. removed patches (20 x 5 mm)
from the whole decellularized organ, 7.3 x 108
cells (0.66% isolated rat endometrial cells and
99.33% GFP-MSCs) per patch were injected and
were incubated statically for 3 days. A typical
gene-expression profile for GFP-MSCs in vitro
before transplantation was observed (Hellstrom
et al. 2016). Miyazaki et al. used a similar
approach but with some key differences. Here, a
mixture of neonatal uterine cells, adult uterine
cells and rat mesenchymal stem cells was injec-
ted in the whole decellularized uterus matrix
(DUM). Dynamic culture conditions were
established via perfusion of oxygenated culture
medium via the aortic tubing for 3 days. Recel-
lularization was demonstrated by HE staining
and immunofluorescent staining of vimentin,
cytokeratin, o-smooth muscle actin and CD31
(Miyazaki and Maruyama 2014).

While much progress has been made in the
recellularization of small sections mainly for
in vitro models and also for pilot transplantation
experiments, the recellularization of whole
organs represents the next frontier/main hurdle in
tissue engineering. Such as with other organ
systems, there is still much investigation to be
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done to increase the RC efficiency and vascu-
larization to one day regenerate whole trans-
plantable organs (Pellegata et al. 2018).

12.4 Clinical Applications

Many uterine pathologies exist that result in
reproductive dysfunction, while most of these
can be treated adequately, some are still poorly
treatable. One main example is congenital or
acquired absolute uterine factor infertility
(AUFI), affecting 1 in every 500 women (Milliez
2009). Congenital AUFI includes pathologies
such as  Mayer—Rokitansky—Kuster—Hauser
(MRKH) syndrome, uterine hypoplasia and
uterine malformation. MRKH syndrome or
Miillerian agenesis is characterized by the
absence of the uterus and upper two-third of the
vagina  (Bombard and Mousa 2014).
Acquired AUFI on the other hand is the result of
hysterectomy due to malignant uterine tumor,
benign diseases (e.g., leiomyoma and adeno-
myosis), postpartum hemorrhage and loss of
fertility due to intrauterine adhesions (Asher-
man’s syndrome).

The only strategy available until recently was
gestational surrogacy, but is far from ideal
because of economic, legal and ethical reasons
and is not practiced in many countries (Shenfield
et al. 2005). The only real cure to restore fertility
can be found in allogeneic uterus transplantation,
and a proof of concept for this was published in
2015 by the Brénnstrdm group, with the first
successful live birth after uterus transplantation
(Brannstrom et al. 2015). The long-term effect of
transplantations, tissue rejection and
immunosuppressant-related side effects remains
an issue (Sayegh and Carpenter 2004). Here,
reproductive tissue engineering could play a
transformative role by creating transplantable
whole organs, effectively circumventing these
issues.

Miyazaki and Maruyama were the first to test
the in vivo viability of these biomaterials. Here,
the DUM (without recellularization) was used to
assess the potential of the scaffold to regenerate
whole uterine wall injuries in rat models
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(Miyazaki and Maruyama 2014). Compared to
the “excision” group, where the damages were
left unrepaired, a well recellularized and thicker
graft site was observed after 28 and 90 days.
Furthermore, the regenerated horns supported the
pregnancy, but there was no mention of embryo
implantation or placentation on the graft sites.
Interesting results were also shown concerning
the epithelial regeneration, where after 90 days
an organized epithelium with glands was
observed. Even more, an intact epithelial layer
was found after 28 days, suggesting the
improved capacity of the endometrium to re-
epithelialize, much like what happens after
menstrual shedding. After shedding, torn sur-
faces with gland openings without epithelial
layer are left, and during this phase, the re-
epithelialization occurs (Maybin and Critchley
2015). Hiraoka et al. investigated this further,
demonstrating that re-epithelialization takes
place within a week and showing the important
role of STAT3 in this regeneration process.
Furthermore, using their DUM developed in
previous investigation, they demonstrated fetal
development over patched areas (Hiraoka et al.
2016). Published in the same year, Hellstrom
et al. recellularized in vitro DUMs originating
from three different protocols with primary
uterine cells and green fluorescent protein-
labeled bone marrow-derived mesenchymal
stem cells (Hellstrom et al. 2016). Here, suc-
cessful implantation at the transplanted DUM
construct site was also demonstrated.

While these studies demonstrate that the
expertise in this field is advancing rapidly, much
investigation is still needed, from the tissue
engineering techniques such as culturing uterine
cells and creating novel 3D scaffolds to the
chirurgical know-how to transplant these engi-
neered patches and whole organs.

In conclusion, decellularized uterine con-
structs provide a promising avenue in creating
recellularized and transplantable constructs.
These investigations add to the regenerative
approaches using other biomaterial such as col-
lagen scaffolds loaded with growth factors (Li
et al. 2011) or cells (Ding et al. 2014; Song et al.
2015), collagen hydrogels (Xu et al. 2017),
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myofibroblast-rich tissue (Campbell et al. 2008)
or cell sheet engineering (Takagi et al. 2014).

12.5 Limitations

Although the decellularization methodologies of
the uterus and uterine tissues are advanced and
show promise, nowadays the focus is on
improving the main limiting factor in generating
transplantable tissue-engineered uterine con-
structs, namely the recellularization efficiency.
Despite many efforts to recreate the promising
results in other organ systems (Ott et al. 2008)
and the many encouraging publications in both
small and large animal models (Campo et al.
2017; Hellstrom et al. 2016; Hiraoka et al. 2016;
Miyazaki and Maruyama 2014), this has not been
achieved yet for the uterus.

Lastly, there is one other limitation that needs
to be taken into consideration, which are the
morphological differences of the uterus in
mammals. Where different studies can use
xenogeneic donors such as the pig this is not the
case here, only the human uterus is large enough
and of the simplex form. In other words, though
DC protocols are established for mouse, rat, pig
and rabbit uteri, it is paramount that the DC of
the human uterus will be developed in order to
one day regenerate and transplant the entire
organ to humans.

12.6 Conclusion

This chapter describes the fundamental concepts
of tissue and whole-organ engineering related to
the uterus, including methods for decellulariza-
tion, characterization of the extracellular matrix
as a scaffold, types of cell seeding, techniques for
the recellularization process and clinical
applications.

Nowadays, the decellularization techniques
and protocols can provide an acellular, natural
and three-dimensional biologic scaffold material
that can be used with or without several cell
populations to create re-implantable tissue-
engineered constructs or to mimic organ-like

H. Campo et al.

microenvironment. However, there are still some
cons to consider like the standardization of
scaffold production, the different materials or
hydrogels, how to assess scaffold function and
the potential beneficial impact in the damaged
organ or tissue.

Preliminary studies with animal models have
provided encouraging results as a proof of con-
cept in the reproductive field (as described along
this chapter). But, some aspects of these new
technologies should also be clarified to facilitate
the translation of tissue engineering in the labo-
ratory to the clinic. Further investigation is
required to establish the contribution of these
scaffolds to organ function, and it should be
determined which diseases are more likely to be
successfully treated with success.
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Abstract

The vagina is a fibromuscular elastic tubular
tract that connects the cervix with the outer
genitals and has an important function dis-
charging uterine secretions, sexual intercourse
and acts as the passage for the full-term fetus.
Currently, a new field of investigation which
aims to design tissues and organs similar to
their native origin has been developed recently
and was named regenerative medicine (tissue
engineering and bioengineering). Malforma-
tions in cervix tissue represent a hard chal-
lenge for medicine. Experts in bioengineering
have tried to reconstruct vaginas or cervix
with the aim to achieve cervicovaginal disor-
ders, most of them with congenital cause.
However, only few research groups have
launched themselves upon the decellulariza-
tion. The aim of this chapter is investigating
the decellularization methods for cervix and
vaginal tissues.

Keywords

Vagina - Cervix - Tissue engineering *
Decellularization

S. Lopez-Martinez - H. Campo - I. Cervello (D<)
Fundacion Instituto Valenciano de Infertilidad
(FIVI), Instituto de Investigacion Sanitaria La Fe,
Valencia, Spain

e-mail: Irene.Cervello@ivirma.com

© Springer Nature Switzerland AG 2021

13.1 History

The vaginal wall is composed of three layers: a
stratified squamous non-keratinized epithelium
with an underlying lamina propria of connective
tissue, a muscular layer of smooth muscle fibers
and a dense connective tissue that blends with the
surrounding fascia (Mulhall et al. 2011). A key
feature of the vagina is its elasticity, permitting
elongation during sexual intercourse and the
passing of the baby during birth. These charac-
teristics depend greatly on the vaginal extracel-
lular matrix (ECM), which composition contains
various structural proteins such as collagen,
elastin and microfibrils (Gartner and Hiatt 2006).
Likewise, the cervix is a cylindrical anatomical
structure with a central canal, the endocervical
canal, through which spermatozoids enter the
uterine cavity (Jordan et al. 2006). The wall of
the cervix is thick and is composed of a dense
fibroelastic connective structure housing smooth
muscle and cervical glands (Gartner and Hiatt
2006). The cervix plays an important role in
fertility and during pregnancy supporting the
fetus (Kuo et al. 2017). Important advances have
been demonstrated in different organs (Baptista
et al. 2011; Arenas-Herrera et al. 2013; Berney
and Berishvili 2015; Sanchez et al. 2015; Kim
et al. 2016), and the vagina and the cervix are
also participating in this new challenge as we
detailed below. The first article in which vagina
is decellularized to obtain an acellular vaginal

153

A. Kajbafzadeh (ed.), Decellularization Methods of Tissue and Whole Organ
in Tissue Engineering, Advances in Experimental Medicine and Biology 1345,

https://doi.org/10.1007/978-3-030-82735-9_13


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82735-9_13&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82735-9_13&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82735-9_13&amp;domain=pdf
mailto:Irene.Cervello@ivirma.com
https://doi.org/10.1007/978-3-030-82735-9_13

154

matrix (AVM) was published in 2017 by Zhang
et al. (2017). In the same way, they followed in
other organs the purpose of generating decellu-
larized tissues from cervix and vagina is to obtain
cell-free tissue-derived scaffolds with a tissue-
specific cocktail of bioactive growth factors and
structural proteins. These scaffolds must have a
low antigenicity but at the same time must be
able to induce chemotaxis and proliferation over
endogenous or exogenous cells. Finally, the
biocompatibility of these decellularized tissues
among mammalian species is essential, allowing
xenogeneic donors and consequently a quick and
big source of material that is necessary for this
kind of interventions.

13.2 Materials and Methods

Up to date, the successful decellularization of the
vagina has been reported by two studies, in both
cases using the pig as tissue source (Zhang et al.
2017; Greco et al. 2018). A summary of principal
aspects of these studies can be found in
Table 13.1.

In the first of the reported protocols, the fully
decellularization of porcine vagina was achieved
in 10 days (Zhang et al. 2017). The selected DC
method consisted in the immersion of the tissue
is subjected to a broad range of chemical and
enzymatic treatments. First, tunica serosa and
tunica muscularis were manually removed, and
protease activity was inhibited with phenyl-
methylsulfonyl fluoride (PMSF) before starting
decellularization. The main detergents used were
0.1% sodium dodecyl sulfate (SDS) and 1%
Triton X-100, both commonly used decellular-
izing solutions. Then, the tissue was exposed to
an enzymatic treatment with deoxyribonuclease I
and ribonuclease A to remove the remaining
DNA/RNA. Disinfection was done using perox-
yacetic acid (PAA) and ethanol. Finally, AVM
was freeze-dried, sealed into packages and ster-
ilized one final time using gamma irradiation.
After the decellularization process, the vaginal
mucosa matrix became white and translucent, as
described for other organs. The protocol showed

S. Lopez-Martinez et al.

good decellularization, following the guidelines
suggested by Crapo et al. with a final amount of
remnant DNA <50 ng/mg ECM dry weight, no
presence of bands in gel electrophoresis and no
presence of nuclei and cells after histological
analysis (Crapo et al. 2011). A vital feature of
DC matrix compared with other biomaterials is
the presence of natural growth factors. In this
case, AVM showed the retention of two impor-
tant growth factors: fibroblast growth factor
(FGF), a very effective angiogenic cytokine and
an important differentiation inducing factor, and
platelet-derived growth factor BB (PDGF-BB),
which plays a critical role in cell proliferation,
angiogenesis and fibrosis (Zhang et al. 2017).

Another important aspect is the amount of
tissue recovered from the DC process. The nat-
ural human vagina measures around 6-10 cm
and up to 11-12 cm long during sexual arousal
(Pendergrass et al. 2003; Barnhart et al. 2006).
With their presented approach, the average size
of dried AVM was 7.6 cm wide and 11.6 cm
long (Zhang et al. 2017), allowing for the use of
one unique piece to reconstruct the vagina.

Recently, a milder and shorter approach pub-
lished by Greco et al. used 0.25% Triton X-100
and 0.25% sodium deoxycholate (Greco et al.
2018). Here, complete decellularization of the
porcine vagina was achieved within 5 days, using
a modified protocol previously used for tracheae
(Lange et al. 2017). As the protocol described
above, a combination of detergents, DNase and
RNase were used, and sterilization was done
using antibiotics and antimycotics. Cells were
also ruptured by osmotic forces by using (hypo-
tonic) deionized water. After decellularization of
the entire vagina, the mucosal layer is stripped
from the muscularis and adventitia layers, steril-
ized again with peracetic acid and stored. Anal-
ysis of protocol efficiency was done by histology
(H&E) and DNA quantification (40% of DNA
remained compared with fresh tissue), showing a
good decellularization. The mild DC allowed for
the preservation of basement membrane proteins
and the conservation of collagen and elastin, and
a conservation of 50% of GAGs was also mea-
sured (Greco et al. 2018).
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The difference in time and aggressiveness of
both protocols showed here could be explained
by an important point of difference of both
studies, namely the size of the organs. Zhang
et al. used pigs of approximately 100 kg, while
Greco et al. used pig weighing around 35-55 kg.
So, the time for achieving a successful DC is
probably proportional to the size of the organ,
pass from a time of 10 days for 100 kg to 5 days
for 50 kg. So, the difference in the size of vagi-
nas may be the clue in the time of choosing
between a mild or more aggressive protocol.

13.3 Cell Seeding

The first question to answer after establishing
successful DC is if the obtained vaginal scaffold
is biocompatible and could improve the prolif-
eration and behavior of natural vaginal and other
cell components.

Greco et al. demonstrated the cytocompati-
bility and differentiation potential of porcine
AVM using allogeneic porcine vaginal epithelial
cells and adipose-derived mesenchymal stem
cells (AD-MSCs), both from primary cultures
(Greco et al. 2018). In this experiment, a three-
dimensional (3D) in vitro platform was made by
separately seeding both cellular types with a
density of 250,000/cm” onto 1.2 cm® of AVM
that was previously primed with culture medium.
Sterile stainless-steel rings were used to make
sure that the seeded cells remained on the matrix.
Both setups were cultured at standard culture
conditions of 5% CO, and 37 °C for up to
10 days. AVM allowed the proliferation of both
types of cells. Cells grew on the scaffold, and
after 3 days of culture, a well-established
monolayer was formed and was maintained up
to day 10. Furthermore, AVM achieved differ-
entiation in both type of cells, showing markers
of adipose, chondrocytes and osteoblasts lineages
in AD-MSCs and the development of two dif-
ferent populations, parabasal cells and interme-
diate cells, in vaginal epithelial cells.

Zhang et al. on the other hand investigated the
biocompatibility by implanting the acellular
AVM subcutaneously for up to 56 days. By this
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“in situ” recellularization technique, they showed
that porcine AVM induces a low immune reac-
tion when impl