
Chapter 5
Inertial Morphing as a Novel Concept
in Attitude Control and Design
of Variable Agility Acrobatic
Autonomous Spacecraft

Pavel M. Trivailo and Hirohisa Kojima

Abstract This book chapter presents a systematic overview of the novel concept
of “inertial morphing (IM)”, first introduced by the authors in 2017 and further
expanded in their following publications. It involves deliberate changes of the
inertial properties of the system for control of the attitude of the spacecraft.

The “inertial morphing” control concept is essentially based on the realisation
that the spinning spacecraft can be seen and utilised as gyroscope itself, instead of
utilisation of complex, heavy and energy-consuming gyroscopic devices on-board.
Utilisation of the concept, therefore, enables reduction of the weight and dimensions
of the conventional systems.

It has been discovered and demonstrated via versatile numerical simulations
that IM can be used to enable spacecraft with wide range of attitude control
capabilities (e.g. 90◦ and 180◦ inversions, de-tumbling and controlled agility
acrobatic manoeuvrings). Moreover, it has been also discovered that control of very
complex manoeuvres can be achieved with a few only controlled inertial morphing
actions (two and three morphings correspondingly for 180◦ and 90◦ inversions).

The general control methods presented in this chapter are based on the geometric
interpretation of the arbitrary 3D rotational motion of the spacecraft, using angular
momentum sphere and kinetic energy ellipsoid in the non-dimensional coordinates.
The key control strategies involve combination of installing the angular momentum
vector into transition polhodes and installing into transition separatrices.

Reduction in weight and dimensions, simplicity of the implementation of the
inertial morphing and simplicity of the attitude control, requiring two or three
discrete control actions, make this technology attractive for a variety of applications,
especially involving autonomous spacecraft.
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One of the remarkable features of the IM control is the ability to access a range
of solutions between agile (fast) and prolonged (slow) types and select the most
appropriate speed of the undertaking attitude manoeuvre. This added variable agility
may be useful, for example, to perform for autonomous spacecraft surveillance,
landing or manoeuvring. In particular, the IM may foster effective protection of the
spacecraft from hostile environments (asteroids, radiation, etc.), as the spacecraft
would be able to quickly expose the most protective surfaces to the sources of
danger, hence prolonging survivability of the system. In the other cases of capturing
the tumbling spacecraft, the prolonged mode can be selected, allowing more time
for the capture and handling.

For the practical implementation of the IM concept, this book chapter also
presents a range of conceptual mechanical designs. As Euler’s equation for the
rotational motion of the rigid bodies paved the way for the development of the
theory of gyroscopes and design of various gyroscopic systems, the paradigm of
“inertial morphing” may prompt development of new generation of the acrobatic
spacecraft with significantly reduced weight and dimensions, reduced cost and
enhanced operational capabilities. It may be also possible to design new classes
of gyroscopes, possessing an added-on sense of time, which is in contrast to the
classical gyroscopes that only possess a sense of orientation.

With a wide spectrum of the presented examples, related to the application of a
novel design concept of “inertial morphing”, it is believed that presented concept,
modelling and simulation of the spinning systems and attitude control method of
the spinning systems will be useful not only for the specialists but for a very wide
audience, including engineers, scientists, students and enthusiasts of science and
space technology.

Keywords Rigid-body dynamics · International Space Station · Spacecraft
dynamics · Polhode-to-polhode transfer · Attitude dynamics

5.1 Introduction

There are almost 4900 satellites orbiting the Earth [1], and this number will be non-
linearly increasing with time. Continuous control of the attitude is a vital function
for spacecraft vehicles. Indeed, communication and observation satellites require
directional pointing of their antennae and equipment, for using a single thruster
for breaking (used initially for boost) may require 180◦ attitude reorientation of
the spacecraft body (“inversion”) to apply thruster force against the motion of the
spacecraft, etc. Therefore, attitude dynamics, guidance, navigation and control are
the modern research disciplines, requiring new and the most innovative solutions for
making new challenging space missions possible and stimulating attention of space
engineering community.

Continuous development of new technologies (including miniaturisation of
electronic hardware, introduction of new materials) allows significant reduction of
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the mass of satellites [2]. However, this reduction is in conflict with heavy mass
and complexity of the modern attitude control systems, employing gyroscopes. An
attractive alternative of controlling spacecraft without employment of the traditional
gyroscopic devices has been proposed by the authors. It involves deliberate changes
of the inertial properties of the system, called “inertial morphings (IM)”, used for
control of the attitude of the spacecraft. “Inertial morphing” control concept is
essentially based on realisation that the spinning spacecraft can be seen and utilised
as gyroscope itself, instead of utilisation of complex, heavy and energy-consuming
gyroscopic devices on-board. It has been recently discovered and demonstrated via
versatile numerical simulations that IM can be used to enable spacecraft with wide
range of attitude control capabilities (e.g. 90◦ and 180◦ inversions, de-tumbling and
controlled agility acrobatic manoeuvrings). Moreover, it has been also discovered
that control of very complex manoeuvres can be achieved with a few only control
inertial morphing actions (two and three morphings correspondingly for 180◦ and
90◦ inversions). This book chapter aims to present a systematic overview of the
concept of the “inertial morphing”, firstly introduced by the authors in 2017 [3] and
further expanded in [4–10].

The novel concept of IM enables design and construction of the inertially
morphed spacecraft, possessing acrobatic capabilities, and may allow design of new
class of gyroscopic systems with a “sense” of time.

5.2 Historical Background

5.2.1 Discovery of the “Garriott’s-Dzhanibekov’s Effect”
in Space

Development of the “inertial morphing” concept was prompted by the flipping
motion of the rigid bodies, observed and demonstrated in space.

During his fifth space flight, on June 25, 1985, Vladimir Aleksandrovich
Dzhanibekov discovered a spectacular phenomenon: a spinning wing nut in stable
flight suddenly, without apparent reasons, changed its orientation by 180◦ and
continued its flight backwards, simultaneously changing its direction of rotation
to the opposite. The pattern of the observed as unprovoked 3D flipping motion
of the rigid body, which is initially provided with only a one-axis spin, repeated
itself in a periodic sequence. This phenomenon was initially widely referred to
as Dzhanibekov’s effect [11–12]. Vladimir Dzhanibekov himself explained his
discovery in various lectures, TV programs and interviews (see Fig. 5.1a).

Performing detailed literature search, we were able to find even earlier demon-
strations in space of the flipping motion of the spinning rigid body, dated by 1973.
Indeed, interestingly, an experiment with box-shaped space instrument by famous
US scientist-astronaut Owen Kay Garriott on-board Skylab 3 in 1973, 12 years
before Dzhanibekov’s experiments, demonstrated the flipping motion of the rigid
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Fig. 5.1 (a) Vladimir A. Dzhanibekov, interview at the “Secret Signs” TV program, explaining
flipping of the wing nut, observed in 1985 [11–12]; (b) Owen K. Garriott, demonstration on-board
of “Skylab 3” of the flipping instrument, spun about its intermediate axis, observed in 1973 [13]

body [13], initiated on purpose by providing it manually with initial energetic
spin about the intermediate axis. This immediately resulted in the periodic flipping
motion of the instrument in weightless environment (see Fig. 5.1b). This earlier
reference suggests that the use of the “Garriott’s-Dzhanibekov’s effect” in the future
would be more precise name to the observed flipping phenomenon. In both cases,
spin to the rigid body was applied in zero gravity by providing a torque impulse
about the intermediate axis of inertia of the body, which instantly results in the
peculiar rotational motion of the boxed object about this axis with clearly observed
periodic flipping about this axis.

Similar experiments have subsequently been run on the International Space
Station (ISS), including 30th, 34th and 38th NASA missions. One of the well-
known spectacular demonstration involved unscrewed from the base T-handle [14].
These experiments in space clearly demonstrated that a spinning object always
rotates in the same direction relative to the observation camera (fixed to the inertial
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coordinates frame): that means that in the reference frame of the rotating handle, the
direction of rotation flips changes each time its orientation flips.

Garriott’s-Dzhanibekov’s effect has prompted development of theories suggest-
ing that the Earth, similar to the wing nut, performs periodic flips estimated to be
at the order of 12,000 years. Evidence in support of this theory includes changes
in the Earth’s magnetic field [15]. These theories are still debated in the scientific
programs [16].

Surprisingly, the Garriott’s-Dzhanibekov effect or the “tennis racket theorem” as
it is sometimes referred to [17] can be explained by Euler’s equations, published
in their canonical form in 1758 [18]. During the mid-nineteenth century, Louis
Poinsot, a French geometer, developed a geometric interpretation of the physics
of rotating bodies that provided a much-welcomed visual counterpart to Euler’s
algebraic equations [19]. Interestingly, Euler’s equations paved the theoretical
ground to many scientific manifestations, including Coriolis forces, predicted by
Euler but interpreted to the world many years later by French scientist Gaspard-
Gustave de Coriolis in 1835. So, heritage by Euler often required time for his
ideas to be adopted by scientists. In case of the Euler’s equations, it took more
than 250 years for scientists to relate the beautiful phenomenon of the flipping
motion to these equations. The phenomenon had been conceptually predicted in
1971 by Beachley [20]; however, his work was unnoticed for a very long time
and has been left unnoticed, and an in-depth explanation of the phenomenon
has only been very recently presented in journal publication [21]. During the
last 5 years, interest in the phenomenon has been exponentially increasing. One
of the recent interesting references on the topic is authored by Cleve Moler,
the founder of Mathworks Company (developing world-famous MATLAB and
SIMULINK computer simulation environments), who has been also fascinated with
this phenomenon and has a dedicated publication [22].

Derek A. Muller, an Australian-born Canadian science communicator, film-
maker, television personality and inventor, founder of the popular “Veritasium”
channel on YouTube, on September 20, 2019, presented a special program [16]
dedicated to “Dzhanibekov effect” or “tennis racket theorem”, which during the
6 following months attracted almost 7.5 million views, showing an unprecedented
interest not only from the scientists and engineers but from the broad community in
the discussed topic and its applications.

5.2.2 Demonstrations of the “Garriott’s-Dzhanibekov’s Effect”
on-Board of the ISS

Due to its simplicity and spectacular nature, the Garriott’s-Dzhanibekov’s effect has
become one of the most popular educational and scientific experiments on-board
of the International Space Station. It has been reproduced with various rigid-body
objects and even liquids. Various videos on these experiments, available in the media
and on YouTube, are excellent educational resources.
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Fig. 5.2 Demonstrations of the “Garriott’s-Dzhanibekov’s effect” on-board of the ISS: (a)
Richard Garriott; (b) Dan Burbank and Anton Shkaplerov, 30th expedition to ISS, 2011; (c) Kevin
Ford (NASA), 34th expedition to ISS, 2013’ (d) Koichi Wakata (JAXA), 38th expedition, 2014;
(e–f) “Dancing T-handle” on board of the ISS

An amazing visual demonstration in space of the “Garriott’s-Dzhanibekov’s
effect” or “tennis racket theorem” was performed in 2008 by Richard Allen Garriott
de Cayeux [23], a pioneer in commercial space travel and a son of the US scientist-
astronaut Owen Kay Garriott. Using nothing more complex than a deck of cards,
Richard Allen Garriott demonstrated both stable rotation and tumbling rotation and
explained why you can easily spin a rectangular box around two axes but it quickly
wobbles out of control if you try to spin it along its intermediate axis (see Fig. 5.2a).

Influence of the shape of the rigid bodies, thus mass distribution in various rigid
bodies, including cylinders, cubes and right rectangular prisms, was demonstrated
on-board of the ISS by Dan Burbank and Anton Shkaplerov (see Fig. 5.2b),
members of the 30th expedition [24].
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American astronaut Kevin Ford (NASA) (34th expedition) [25] (see Fig. 5.2c)
and Japanese astronaut Koichi Wakata (JAXA) (38th expedition) [26] (see Fig. 5.2d)
experimented on-board of the ISS with nothing more complex that pliers. They used
this adjustable geometry tool as an object, capable of intriguing spinning, flipping
and tumbling in zero gravity.

One of the most fascinating movies is a continuous short-period flipping of the
T-handle on-board of the ISS, fairly called as “dancing T-handle” [14] (see Fig.
5.2e–f). This is a wonderful demonstration of the “Garriott’s-Dzhanibekov’s effect”,
which very convincingly illustrates instability of rotation of the rigid body with
distinct principal moments of inertia, if the main spin is provided about its principal
axis, associated with intermediate moment of inertia.

All these and other demonstrations can be explained with famous Euler’s
equation.

5.2.3 Leonard Euler and His Famous Equations for
the Rigid-Body Dynamics

Leonhard Euler (April 15, 1707–Sept. 18, 1783) was a famous Swiss physicist
and mathematician (the most eminent of the eighteenth century and one of the
greatest in history), who made key contributions to various fields of mathematics
and mechanics, leaving long-lasting heritage of more than 500 books and papers
(His portrait is presented in Fig. 5.3a.). It has been computed that his publications
during his working life averaged about 800 pages a year.

His “Euler’s identity” is considered an example of mathematical beauty:

eiπ + 1 = 0 (5.1)

called “the most remarkable formula in mathematics” by Richard P. Feynman [27],
for its single uses of the notions of addition, multiplication, exponentiation and
equality and the single uses of the important constants 0, 1, e, i and π.

In 1988, readers of the Mathematical Intelligencer voted it “The Most Beautiful
Mathematical Formula Ever”. In total, Euler was responsible for three of the top 5
formulae in that poll [28].

His interests are amazingly versatile. Even when dealing with music, Euler’s
approach is mainly mathematical. His writings on music are not particularly
numerous (a few 100 pages, in his total production of about 30,000 pages), but
they reflect an early preoccupation and one that did not leave him throughout his
life.

Among numerous Euler’s works, he developed rigid-body dynamics; very
influential publication has a very special place in history. It presented Euler’s
equations for the dynamics of a rigid body, widely used in modern engineering and
science.
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Fig. 5.3 Leonard Euler and his equations for the rigid-body dynamics: (a) Leonard Euler’s portrait
from the University of Tartu collection [29]; (b) the title of the historic Leonard Euler’s work [18],
dated 1758; (c) Euler’s equations as they appeared in the original L. Euler’s work [30]

Being always fascinated with Euler’s scientific work and heritage, the authors
were delighted to find in the Euler’s archive his original work. It is with greatest
pleasure and a profound sense of tribute to Great Euler that we are reproducing in
Fig. 5.3a Euler’s portrait from the University of Tartu collection [29] and in Fig.
5.3b the title of the Euler’s publication, available from the Euler’s archive, and in
Fig. 5.3c we show the famous Euler’s equations, exactly as they appeared in Euler’s
original work [30].

In modern language, the Euler’s equations in Fig. 5.3c can be written as follows:

⎧
⎨

⎩

∑
Nx = Ixx ω̇x + (

Izz − Iyy

)
ωyωz∑

Ny = Iyy ω̇y + (Ixx − Izz) ωzωx∑
Nz = Izz ω̇z + (

Iyy − Ixx

)
ωxωy

(5.2)

where x, y, z are the principal axes of inertia fixed to the body; the components of
angular velocity in this system are ω = (ωx, ωy, ωz); the torque is N = (Nx, Ny, Nz);
and the diagonal elements of the inertia tensor are Ixx, Iyy and Izz.

Equations (5.2) are known as “Euler’s equations” for a rigid body. They
are referred to as equations in principal inertia axes, with the angular velocity
components in terms of the angles α, β, γ, which are the angles subtended by the
rotation axes with the principal ones fixed in the body. It could be said that these are
the Euler angles, although actually they are usually defined by applying the rotation
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operator to the axes fixed on the body, so that each angle is related to the angular
velocities of rotation known as precession, nutation and spin.

5.3 Numerical Modelling and Simulation
of the “Garriott’s-Dzhanibekov’s Effect”

5.3.1 Equations of Motion

Euler’s Eq. (5.2), in the general case, can be applied for moments summed about
any point P, where P is a point on the rigid body that is attached to a fixed pivot in
the inertial reference system. However, in this case the inertia properties should be
calculated relative to the point P.

In this work, we will apply the Euler’s equations for moments summed
about the centre of mass G of the rigid body, free from any external torques
(Nx = Ny = Nz = 0), and in the further notations, we will imply that Ixx, Iyy and
Izz are principal moments of inertia of the body with respect to the G (which, for
brevity, are often denoted as Ix, Iy and Iz):

⎧
⎨

⎩

Ixx ω̇x − (
Iyy − Izz

)
ωy ωz = 0

Iyy ω̇y − (Izz − Ixx) ωz ωx = 0
Izz ω̇z − (

Ixx − Iyy

)
ωxωy = 0

(5.3)

The matrix form of the above is:

⎡

⎣
Ixx 0 0
0 Iyy 0
0 0 Izz

⎤

⎦

⎧
⎨

⎩

ω̇x

ω̇y

ω̇z

⎫
⎬

⎭
=
⎧
⎨

⎩

(
Iyy − Izz

)
ωy ωz

(Izz − Ixx) ωz ωx(
Ixx − Iyy

)
ωx ωy

⎫
⎬

⎭
(5.4)

In order to be able to describe instantaneous orientation of a rigid body with
respect to a fixed coordinate system, we will use the angles ψ , θ and φ, the 3-1-3
Euler angles [31]:

⎧
⎨

⎩

ωx = ψ̇ sin θ sin φ + θ̇ cos φ

ωy = ψ̇ sin θ cos φ − θ̇ sin φ

ωz = ψ̇ cos θ + φ̇

(5.5)
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which can also be written in the matrix form:

⎡

⎣
sin θ sin φ cos φ 0
sin θ cos φ − sin φ 0

cos θ 0 1

⎤

⎦

⎧
⎨

⎩

ψ̇

θ̇

φ̇

⎫
⎬

⎭
=
⎧
⎨

⎩

ωx

ωy

ωz

⎫
⎬

⎭
(5.6)

For solving the rigid-body dynamics problems, using numerical methods, we
combine matrix Eqs. (5.4) and (5.6) into a single equation:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ixx 0 0 0 0 0
0 Iyy 0 0 0 0
0 0 Izz 0 0 0
0 0 0 sin θ sin φ cos φ 0
0 0 0 sin θ cos φ − sin φ 0
0 0 0 cos θ 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ω̇x

ω̇y

ω̇z

ψ̇

θ̇

φ̇

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
Iyy − Izz

)
ωyωz

(Izz − Ixx) ωzωx(
Ixx − Iyy

)
ωxωy

ωx

ωy

ωz

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(5.7)

This matrix equation can be solved directly, or task for more robust solution can
be reformulated in terms of quaternions.

5.3.2 Programming Considerations

Ordinary differential equations can be efficiently solved using Runge-Kutta meth-
ods.

MATLAB
®

has a set of specialised procedures, including ode45, ode23, ode113,
ode15s, ode23s, ode23t, ode23tb, ode15i, to deal with various tasks, for example,
described by the ordinary differential equation in the classical form:

{ .
x
} = {f (t, x)} (5.8)

There is also a very useful option enabling solution of the problems, involving
the so-called “mass” matrix M:

[M (t, x)]
{ .
x
} = {f (t, x)} (5.9)

This option, accessible via the odeset, in some cases can improve efficiency and
can also handle cases when the mass matrix is singular (non-invertible). As it can be
seen, our matrix Eq. (5.7) corresponds to the format given with Eq. (5.9); therefore,
we use MATLAB

®
ode procedure in conjunction with the “mass matrix” option to

simulate dynamic behaviour of the simulated spacecraft models.
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Fig. 5.4 Introduction of the non-dimensional parameters, describing relative values of the princi-
pal moments of inertia of the system

5.3.3 Non-dimensional Formulation of the Equations

For the main derivations in this chapter, it will be typically assumed that the
system has three distinct principal moments of inertia, which are arranged in the
following order: Ixx < Iyy < Izz. For more generic formulations, two non-dimensional
parameters, η and ξ , both restricted in their values within the range between 0 and
1 can be introduced:

η = Ixx

Izz

; ξ = Iyy − Ixx

Izz − Ixx

; (0 < η < 1; 0 < ξ < 1) (5.10)

Parameter ξ in this case would have a similar meaning of the non-dimensional
coordinate “counterpart” from the finite element method, defining the current
position within the finite element. In the context of this study, ξ is specifying
the non-dimensional relative position coordinate of the intermediate value of the
moment of inertia between the minimum value of the moment of inertia Ixx and the
maximum value of the moment of inertia Izz (see Fig. 5.4). In other words, it can
be said that ξ is the non-dimensional parameter in the Hermite functions, enabling
calculation of Iyy using Ixx and Izz, using the following relationship:

Iyy = Ixx (1 − ξ) + Izz ξ (5.11)

The zero value of ξ would now correspond to Ixx, and unit value of ξ would
correspond to Izz and any intermediate value of ξ , expressed via 0 < ξ < 1, would
correspond to Iyy. With these notations, we can also derive several relationships,
enabling useful conversions in the future:

Iyy = Ixx

(

1 − ξ + 1

η

)

; Izz = Ixx

η
. (5.12)

As illustration, we take Ixx = 2; Iyy = 3; Izz = 4 [all in kg × m2] and can see
from Eqs. (5.10, 5.11 and 5.12) that these system’s parameters would correspond to
ξ = 0.5 and η = 0.5.

Furthermore, in many cases, additional advantages could be gained if the Euler
equations can be also rewritten in the non-dimensional quantities [32]:
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d
dt

Hxx +
(

1 − Iyy

Izz

)
HyyHzz = 0,

d
dt

Hyy +
(

Iyy

Izz
− Iyy

Ixx

)
HzzHxx = 0,

d
dt

Hzz +
(

Iyy

Ixx
− 1

)
HxxHyy = 0,

(5.13)

where non-dimensional time is calculated as:

t =
(√

2K0/Iyy

)
t (5.14)

where K0 is the elliptic integral of the first kind.

5.3.4 Numerical Simulation of the “Garriott’s-Dzhanibekov’s
Effect”: Illustration Case

We reproduce simulation results from [3] for the case study, in which the following
parameters were employed: Ixx = 0.3, Iyy = 0.35, Izz = 0.4 (all in kg × m2),
corresponding to ξ = 0.5 and η = 0.75, with the initial conditions ωx0 = 0.1,
ωy0 = 15, ωz0 = 0.1 (all in rad/s). The main results are shown in Fig. 5.5 for
completeness of the presentation.

Figure 5.5a shows that in this illustration case, the initial dominant angular
velocity about the system’s y-body axis is subject to the periodical change of its
initial value to the opposite in sign value, symbolising the flipping motion with
180◦ change in the orientation of the rigid body. From the simulation results, it can
be seen that the period of the flips is equal to T = 12.3 s.

Figure 5.5a confirms that during the “flipping” motion, the angular momentum
in the system is conserved.

At last, Fig. 5.5b shows that while ψ is monotonically increasing, the φ pattern is
quite different: there are evident “plateau” segments corresponding to small changes
in φ around 0◦, 180◦, 360◦, etc. However, the most important observation in the
context of this work is the presence of the multiple zero crossings for various
components of the angular velocity, in particular, for ωx, ωy and ωz in the presented
test case.

5.4 Calculation of the Period of the Flipping Motion

We assume that Iyy is intermediate value of the principal moment of inertia. Then
the period of the observed unstable motion can be estimated, using Eq. (37.12) in
page 154 from the L.D. Landau’s reference [33]:
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Fig. 5.5 Time histories of the key for the Garriott’s-Dzhanibekov’s effect flipping motion:
(a) moments of inertia, angular velocity components and non-dimensional angular momentum
components; (b) Euler angles

If H 2 > 2K0 Iyy, (5.15)

then

T = 4K

√
IxxIyyIzz

(
Izz − Iyy

) (
H 2 − 2K0Ixx

) (5.16)
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Fig. 5.6 Period T of the unstable flipping motion (“Garriott’s-Dzhanibekov’s effect” case) as a
function of intermediate moment of inertia Iyy (for the following example: Ixx = 3; Izz = 3.5
[kg × m2] ; ωx,i = 0.1, ωy,i = 15, ωz,i = 0.1 [rad/s])

If H 2 < 2K0 Iyy, (5.17)

then

T = 4K

√
IxxIyyIzz

(
Ixx − Iyy

) (
H 2 − 2K0Izz

) , (5.18)

where K is complete elliptic integral of the first kind:

K =
1∫

0

ds
√(

1 − s2
) (

1 − k2s2
) =

π/2∫

0

du
√

1 − k2 sin2u
(5.19)

As an illustrative example, let us assume the following parameters of the system:
Ixx = 3, Izz = 3.5 (all in kg × m2), corresponding to η = 0.8571 with the initial
conditions ωx0 = 0.1, ωy0 = 15, ωz0 = 0.1 (all in rad/s). For this case we will
use Eqs. (5.15, 5.16, 5.17, 5.18 and 5.19) and will illustrate the influence of the
intermediate moment of inertia Iyy of the system on the period T of the unstable
flipping motion. Resulting plot is presented in Fig. 5.6.

The shape of the plot in Fig. 5.6 is clearly asymmetrical, but enabling variation
of the period T within the wide range. Most significantly, Fig. 5.6 shows that the
period T of flipping motion is bounded with particular minimum value, and there
are two values of Iyy, providing with local minima values of the flipping periods T
within the range of Iyy between the minimum value of the moment of inertia Ixx and
maximum value of the moment of inertia Izz.
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Fig. 5.7 Period T of the unstable flipping motion (“Garriott’s-Dzhanibekov’s effect” case) of the
rigid body, as a function of its moments of inertia Iyy and Izz

Setting Ixx to a fixed value, and running variation for Izz and Iyy, we can also
calculate more generic plot, showing influence of these two other principal moments
of inertia on the period of the unstable motion. The resultant plot is shown in
Fig. 5.7, giving higher resolution for smaller values of T by changing the T-axis
limits. This is a very interesting plot, which shows more generic nature of the
asymmetry, observed in Fig. 5.6. The plot has also very recognisable “ridge” over
the combination of moments of inertia Iyy and Izz which results in very high periods.

As a second illustrative example, let us assume the following parameters of the
system, in which Ixx = 3, Izz = 3.5 (all in kg×m2), corresponding to η = 0.8571,
with the initial conditions ωx0 = 0.1, ωy0 = 15, ωz0 = 0.1 (all in rad/s). For
this case we will use Eqs. (5.15, 5.16, 5.17, 5.18 and 5.19) and will illustrate the
influence of the intermediate moment of inertia Iyy of the system on the period of
the unstable flipping motion. The resulting plot, presented in Fig. 5.7, is clearly
being asymmetrical and could be easily regarded by many as counter-intuitive, as
there may be a wrongly perceived assumption of the “symmetrical” influence of Iyy
on period T.

This plot prompts that variation in the intermediate value of the moment of inertia
between Ixx and Izz (i.e. changing the ξ value) can allow changes of the period T
of the flipping motion within wide range. However, there is a minimum value of
the period, which could not be reduced further. For the example shown, the lower
threshold of the period is slightly higher than 22.2 s. Also, there is a specific value
of the Iyy which leads to the infinitely large value of the T. For the example shown,
this corresponding value of Iyy is approximately 3.27 kg × m2.

Allowing variation of the Iyy and Izz values (i.e. ξ and η non-dimensional param-
eters), we can also calculate more generic plot, showing influence of these principal
moments of inertia on the period T of the unstable motion. The resultant plot is
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shown in Fig. 5.7. This is an interesting plot, which shows more generic nature of
the asymmetry, observed in Fig. 5.6. However, most significant observation in Fig.
5.7 is that for each of the Izz values, there is a value of Iyy which leads to the infinitely
large period of the flipping motion. We named this area as “high periods ridge”.

The plot in Fig. 5.7 is similar in shape to the plot in Fig. 5.6a, and it similarly
prompts that when Iyy is approaching any of the other moments of inertia, Ixx or Izz,
then the period of the flipping is asymptotically approaching infinite values.

Similarly to the examples above, in the second illustrative example, we initially
assume initial conditions ωx0 = 0.01, ωy0 = 1.5, ωz0 = 0.01 (all in rad/s) for the
system with Ixx = 2, Izz = 4 (all in kg × m2), which corresponds to η = 0.5 (see Eq.
5.10) and plot the flipping period as a function of the intermediate moment of inertia
Iyy, varying its value in-between the minimum value of the moment of inertia Ixx and
maximum value of the moment of inertia Izz. The resultant plot is shown in Fig. 5.8a
with continuous red line. It allows determination of the flipping period. This value
is equal to 47.16 s. Let us now, in addition to the above, consider a similar “variable
Iyy” experiment, changing only the maximum moment of inertia value from Izz = 4
to Izz = 5, which would correspond to η = 0.4. The resultant plot for the period is
shown with dotted blue line in Fig. 5.8a. Comparison of the two curves allows to
suggest another avenue for manipulation with the period of the flipping motion by
changing the ratio between Ixx and Izz, i.e. η value. Figure 5.8b also shows a ridge
with high values of the flipping periods. It can be observed that for the higher values
of Izz, this ridge has more offset towards Izz, than towards Ixx.

5.4.1 Influence of the Value of the Angular Velocity ωy
of the Predominant Spin on the Period T of the Flipping
Motion

In this subsection, we consider systems with non-zero initial angular momentum H0.
In case of the system with predominant spin about its intermediate axis, the major
contributors to H0 are the ωy and Iyy.

Using Eqs. (5.15, 5.16, 5.17, 5.18 and 5.19), we can represent T as a 3D surface
plot, explaining influence on the T(ωy, Iyy) function of its two argument. The
resultant plot is shown in Fig. 5.9. It clearly reveals the tendency of the periods
to become very large, when Iyy is approaching to Ixx or Izz. However, the plot also
reveals the ridge of high value of periods, being asymmetrically in-between Ixx and
Izz. As surface gradient is very high in vicinity of the ridge, it should be avoided for
practical implementations, because in this area T would be very sensitive to small
changes in Iyy, which would make control of the system period impractical.

As an example, in Fig. 5.9 we also intersect the T surface with two illustrative
level values of the period: T = 30s and T = 50s. The intersection lines show that for
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Fig. 5.8 Period of the unstable flipping motion (“Garriott’s-Dzhanibekov’s effect” case) of the
rigid body, as a function of its moments of inertia Iyy and Izz for two variation experiments: (a)
variation of Iyy only in two cases Ixx = 2; Izz = 4; and Ixx = 2; Izz = 5 [kg × m2] ; ωx,i = 0.01,
ωy,i = 1.5, ωz,i = 0.01 [rad/s]; (b) variation of both, Iyy and Izz in the case Ixx = 2 [kg × m2] ;
ωx,i = 0.01, ωy,i = 1.5, ωz,i = 0.01 [rad/s]

the desired value of the flipping period T, there are multiple matching combinations
of ωy and Iyy; however, if the goal of the selection is to minimise the spin rate,
then, there may be two local minimum specific values of Iyy. Two contour lines
for T = 30s and T = 50s are shown separately in Fig. 5.10. It shows, that, if, for
example, the aim of the design process is to keep ωy low, for the T = 50, there are
two solutions for Iyy, approximately equal to Iyy = 3.335 and Iyy = 3.18.
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Fig. 5.9 Variation of the period T(ωy, Iyy) of the flipping motion with the changes in the
predominant spinning angular velocity ωy and value of the intermediate moment of inertia Iyy
for the system with Ixx = 3, Izz = 3.5 kg × m2 (i.e. η = 0.8571)

Fig. 5.10 Two labelled contour lines for the ωy (T, Iyy) surface in Fig. 5.9, corresponding to the
values of the flipping periods equal to T = 30 s and T = 50 s
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Fig. 5.11 Variation of the
period ωy (T, Iyy) of the
flipping motion with the
changes in the predominant
spinning angular velocity T
and value of the intermediate
moment of inertia Iyy for the
system with Ixx = 3,
Izz = 3.5 kg × m2 (i.e.
η = 0.8571)

5.4.2 Influence of the Value of the Period T of the Flipping
Motion on the Angular Velocity ωy of the Predominant
Spin

Results in Fig. 5.9 are presented for the ωy = ωy (T, Iyy), being a function of two
arguments, T and Iyy. This function is shown in Fig. 5.11 as a 3D surface plot.
For the illustration purposes, we assume interest in two special values of angular
velocity of the predominant rotation: ωy = 6 and ωy = 12 rad/s. The intersection
lines of these level panes and the ωy surface, together with other contour curves, are
given in Fig. 5.12.
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Fig. 5.12 Contour lines for the T(ωy, Iyy) surface in Fig. 5.11 with in-between bands individually
coloured. Red band corresponds to the ωy = 4–6 (rad/s) spin rate range, yellow band to the ωy = 6–
8 range, green band to the ωy = 8–10, cyan band to the ωy = 10–12, blue band to the ωy = 12–14
range and purple band to the ωy = 14–16 range

5.5 Geometric Interpretation of the 3D Rotational Dynamics
of Rigid Objects

5.5.1 General Comments

In this section, we will present geometric interpretation of the 3D rotational
dynamics of the rigid body, employing angular momentum spheres, kinetic energy
ellipsoids and hodographs – lines produced by the tip of the vector of the
non-dimensional angular momentum, changing with time. The current angular
momentum is then represented by the vector from the origin to a point on the
hodograph.

5.5.2 Angular Momentum Sphere

Let us consider arbitrary free motion of the rigid body. In the context of the rigid-
body dynamics, the angular momentum vector is defined as the product of matrix of
the moments of inertia and the angular velocity vector. In the following presentation,
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for the modelling purposes, we will use the Cartesian coordinate system with
its origin at the centre of the mass of the system and its axes x, y and z being
the principal axes of inertia of the modelled rigid body. With these, the angular
momentum vector can be represented with its components Hx, Hy and Hz:

−→
HG = Hx

−→e x + Hy
−→e y + Hz

−→e z (5.20)

where −→e x , −→e y and −→e z are unit vectors along x, y and z orthogonal directions.
For exploring 3D rotational dynamics, including “Garriott’s-Dzhanibekov’s

effect”, we will utilise the fundamental law of conservation of angular momentum,
implying that the angular momentum can be exchanged between objects in a closed
system, but total angular momentum before and after an exchange remains constant
(is conserved). Therefore, at any moment of the simulation, the length of the angular
momentum vector must remain constant. We can express the squared length of the

vector
−→
HG and equate it to the initial value, which would be known at the beginning

of the simulation:

[Hx(t)]
2 + [

Hy(t)
]2 + [Hz(t)]

2 =
∣
∣
∣
−→
HG(0)

∣
∣
∣
2

(5.21)

This can be rewritten as follows:

[
Hx(t)

H(0)

]2

+
[
Hy(t)

H(0)

]2

+
[
Hz(t)

H(0)

]2

= 1 (5.22)

Now, let us rewrite previous equation in terms of the non-dimensional quantities,
Hx , Hyand Hz

[
Hx(t)

]2 + [
Hy(t)

]2 + [
Hz(t)

]2 = 1 (5.23)

where

Hx(t) = Hx(t)
H0

= Ixxωx√

(Ixxωx)2+(Iyyωy)
2+(Izzωz)

2

Hy(t) = Hy(t)

H0
= Iyyωy√

(Ixxωx)2+(Iyyωy)
2+(Izzωz)

2

Hz(t) = Hz(t)
H0

= Izzωz√

(Ixxωx)2+(Iyyωy)
2+(Izzωz)

2

(5.24)

Equation (5.23) represents a unit sphere, called angular momentum sphere
(AMS).

The graphical interpretation of Eq. (5.23) is a sphere with unit radius in the
non-dimensionalised angular momentum coordinates and is shown in Fig. 5.13a.
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Fig. 5.13 Angular momentum sphere (AMS): (a) 3D view of the unit AMS in the non-
dimensionalised angular momentum coordinates; (b) + Hx view with visible “parking” points #2,
#3, #4, #5 and #6 shown; (b) −Hx view with visible “parking” points #1, #3, #4, #5 and #6 shown

Amazingly, it would correspond to all rigid bodies and all possible torque-free
motions of the rigid bodies.

5.5.3 Utilisation Angular Momentum Sphere and Its Feasible
Godographs for the Non-dimensional Angular
Momentum Vector as Strategic Basis for the Methods
of Attitude Control of the Rotating Systems

In case of a typical Garriott’s-Dzhanibekov’s effect “flipping” motion, spinning of
the system could be seen as a periodic travel of the hodograph (line, drawn by the



5 Inertial Morphing as a Novel Concept in Attitude Control and Design. . . 141

tip of the non-dimensional angular momentum vector H on the unit AMS) along the
closed path on the AMS. The angular momentum godograph is also called polhode
and will be discussed in the next section. The motion of the hodograph in the vicinity
of the pole (potential “parking” point) is rather slow, and the switch between two
points of the intersection of the AMS with the y-axis – negative y point [0, −1, 0]
and positive y point [0, 1, 0] – is occurring rather rapidly.

For the demo case, these points are numbered as #3 and #4 in Fig. 5.13b and c.
For the selected y rotation example, the simple inversion method [5, 6] can be used,
and the spacecraft could be stabilised around these two opposite points, which we
will call “potential parking” points or just “parking” points. However, there are two
more pairs of the “parking” points on the axes x and z. All six “parking” points are
shown in Fig. 5.13b and c.

We have a special interest in the poles, as we see them as parking points to be
utilised when the arbitrary 3D motion is to be stabilised and reduced to the regular
spin about the body axes. Often, transformation of motion would involve a transfer
of the tip of the non-dimensional angular momentum vector from one parking point
to another. This could only be achieved if there is a feasible godograph for the
vector H. And, as it will be seen in the next section, there are only special types
of trajectories, separatrices, which are crossing the poles, and these trajectories
are for the special type of the rotational motion of the rigid body – “Garriott’s-
Dzhanibekov’s effect” flipping motion. Therefore, we place special emphasis on
the establishment of the connection between the two transfer points for the vector
H, which can be constructed from segments of polhodes and/or separatrices.

In this work, we are proposing to use IM for controlled transfer of the system
into unstable “flipping” motion and use transition from one parking point to another

parking point for switching trajectory of the hodograph of the vector
−→
HG(t) to other

parking points, i.e. not necessarily being opposite to the established flipping.
If this is achieved, the spacecraft could be stabilised around desired/targeted

parking point, as per the morphing procedure in [3, 4]. Stabilisation of the angular
momentum vector in any of the six parking points would mean that the system would
perform most predominant rotation, associated with only one of the selected body
axis, x, y or z, passing through the targeted parking point and almost no rotation
about two other orthogonal body axes. This is the reason for aiming to get to any of
these points and then to stop flipping motion, as per [3–10].

5.5.4 Polhodes on the Angular Momentum Sphere

Let us solve Euler’s equations in the matrix form (5.7) and calculate time responses
of the same rigid body due to different initial conditions. As contrast illustrations,
we consider three cases A, B and C with the following initial conditions, applied to
the rigid body with Ixx = 2, Ixx = 3, Ixx = 4 (all in kg × m2):

• Case-A: ωx0 = 0.01, ωy0 = 1.5, ωz0 = 0.01 (all in rad/s)
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Fig. 5.14 Time histories for angular velocity components ωx, ωy, ωz for three contrast cases of
initial conditions: (A) ωx,i = 0.01, ωy,i = 1.5, ωz,i = 0.01; (B) ωx,i = 0.4, ωy,i = 1, ωz,i = 0.8; (C)
ωx,i = 1.3, ωy,i = 0.6, ωz,i = 0.3 (here and further all angular velocities are given in rad/s)

• Case-B: ωx0 = 0.4, ωy0 = 1, ωz0 = 0.8 (all in rad/s)
• Case-C: ωx0 = 1.3, ωy0 = 0.6, ωz0 = 0.3 (all in rad/s)

Time histories for the angular velocity components for these three cases are
presented in Fig. 5.14.

From a distinct response in Fig. 5.14a, we can conclude that the case-A
response corresponds to a classical “Garriott’s-Dzhanibekov’s effect” flipping
motion, whereas two other responses correspond to tumbling motion.

Angular momentum sphere can be used in the cases A, B and C not only to
mark their respective initial conditions but also to show the corresponding resultant
motion as lines on the AMS, called polhodes. Polhodes are trajectories of the tips
of the non-dimensional angular momentum vectors, HA, HB and HC (these three
polhodes are marked with the red colour in Fig. 5.15), where we also show for
comprehensive visualisation three quiver plots for the HA, HB and HC vectors,
superimposed over the AMS and polhodes.

We should emphasise that for plotting polhodes on the AMS we are using non-
dimensional angular momentum coordinates Hx, Hy, Hz, defined as per Eq.
(5.24).
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Fig. 5.15 Polhodes: (a) for cases A, B and C in Fig. 5.14; (b) examples of broad coverage of initial
conditions and associated responses

5.5.5 Kinetic Energy Ellipsoid

Let us express the kinetic energy of the rotating body in terms of the angular
momentum components:

1

2
Ixxω

2
x + 1

2
Iyyω

2
y + 1

2
Izzω

2
z =

[
Hx(t)√

2Ixx

]2

+
[

Hy(t)
√

2Iyy

]2

+
[

Hz(t)√
2Izz

]2

= K(t)

(5.25)

The classical demonstrations of the “Garriott’s-Dzhanibekov’s effect” are typi-
cally considered rigid bodies with fixed values of the inertial properties.

However, in our study, it is essential to consider more general case, allowing
for the moments of inertia to change with time. The imperative importance of this
feature will be explained later.

[
Hx(t)√
2Ixx(t)

]2

+
[

Hy(t)
√

2Iyy(t)

]2

+
[

Hz(t)
√

2Izz(t)

]2

= K(t) (5.26)

We, then, divide both sides of this equation by constant H2(0) and rearrange
result in terms of non-dimensional quantities Hx , Hy and Hz:

[
Hx(t)

H(0)

1√
2Ixx(t)

]2

+
[

Hy(t)

H(0)

1
√

2Iyy(t)

]2

+
[

Hz(t)

H(0)

1
√

2Izz(t)

]2

= K(t)

[H(0)]2

(5.27)
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[
Hx√

2Ixx(t)

]2

+
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Hy
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2Iyy(t)

]2

+
[

Hz
√

2Izz(t)

]2

= K(t)

[H(0)]2 (5.28)

Equation (5.26), finally, can be written in its useful final form as follows:

⎡

⎣
Hx(t)√
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⎤

⎦
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= 1 (5.29)

or

[
Hx(t)

ax(t)

]2

+
[

Hy(t)

ay(t)

]2

+
[

Hz(t)

az(t)

]2

= 1 (5.30)

Equation (5.30) corresponds to the ellipsoid in the Hx , Hy and Hz axis, with the
following values of the semi-major axes:

ax(t) =
√

2 K(t) Ixx(t)
H(0)

ay(t) =
√

2 K(t) Iyy(t)

H(0)

az(t) =
√

2 K(t) Izz(t)

H(0)

(5.31)

5.5.6 Polhodes on the Kinetic Energy Ellipsoids

Kinetic energy ellipsoids (KEEs) can be used in the study cases A, B and C not
only to mark their respective initial conditions but also to show the corresponding
resultant motion as lines on the KEEs, called polhodes. Polhodes are trajectories of
the tips of the non-dimensional angular momentum vectors, HA, HB and HC (these
three polhodes are marked with the blue colour in Fig. 5.16b, e, h), where we also
show for comprehensive visualisation three quiver plots for the HA, HB and HC

vectors, superimposed over the KEEs and polhodes.
We should emphasise that for plotting polhodes on the KEEs we are using non-

dimensional angular momentum coordinates Hx, Hy, Hz, defined as per Eq.
(5.24).

Therefore, in Fig. 5.16, in addition to the angular momentum spheres with
specific polhodes for the cases A, B and C (Fig. 5.16, left column), we also
plotted corresponding kinetic energy ellipsoids (Fig. 5.16, middle column). Then,
combining the surfaces in these two columns, we can see that specific polhodes are,
in fact, lines of intersection between the corresponding AMSs and KEEs (Fig. 5.16
right column).
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Fig. 5.16 (a), (d), (g) Angular momentum unit spheres (left column); (b), (e), (h) kinetic energy
ellipsoids (middle column) for cases A, B, C; (c), (f), (i) superimposed AMSs and KEEs

5.5.7 Polhodes for Systems with Equal Moments of Inertia

Let us consider a special case, when two out of three moments of inertia have the
same values. For illustration, we simulate the case with Ixx = Izz = 5, Iyy = 3 (all
in kg × m2) and ωx,i = 0.2; ωy,i = 1; ωz,i = 0.6 (all in rad/s). A snapshot from the
3D animation is shown in Fig. 5.17a, time histories of the main spacecraft dynamics
parameters are shown in Fig. 5.17b and the co-centred KEE and AMS surfaces are
shown in Fig. 5.17c. Figure 5.17a shows that the y-body axis is circling, indicating
that the motion of the spacecraft is “coning”. This is confirmed with the godograph
of the y-body axis, drawing in 3D a yellow circle, while other body axes, x and z,
are drawing more complex curves (see Fig. 5.17a).
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Fig. 5.17 3D rotational motion of the spacecraft with two equal moments of inertia: (a) 3D
view; (b) time histories of the moment of inertia, angular velocity and non-dimensional angular
momentum components; (3) collocated AMS and KEE

Figure 5.17c shows that KEE is bulging above the AMS in the xz plane and AMS
is intersecting with KEE along the circle, and during the animation process, the
tip of the non-dimensional vector H is sliding along this intersection line, called
polhode. Velocities of the tip of the vector H are shown with black arrows in Fig.
5.17c. Because vector H has a unit length, it is fully embraced by the AMS and
KEE. In order to visualise its current orientation in the body axes, its magnified
version with increased length and added small black sphere at the end is shown in
Fig. 5.17c. Simulation results show that the values of the semi-major axes of the
KEE are equal to ax = az = 1.1471 and ay = 0.8885.

For another interesting special case, when all moments of inertia are given with
the same number, for example, with Ixx = Iyy = Izz = 5 (all in kg × m2) and
ωx,i = 0.2; ωy,i = 1; ωz,i = 0.6 (all in rad/s), similar results are presented in Fig. 5.18.
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Fig. 5.18 3D rotational motion of the spacecraft with two equal moments of inertia: (a) 3D
view; (b) time histories of the moment of inertia, angular velocity and non-dimensional angular
momentum components; (3) collocated AMS and KEE

In this case, both surfaces, AMS and KEE, are given by unit spheres, displayed in
Fig. 5.18a on the simulation control panel on the right side with mosaic surface. It is
interesting to observe that all body axes, x, y and z, are drawing perfect circles with
their tips, as shown in Fig. 5.18a. In this case, components of the angular velocities
are not changing their values with time (see Fig. 5.18b), and the angular momentum
vector is not changing its orientation in the body axes (see Fig. 5.18).
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5.6 Geometric Interpretation
of the “Garriott’s-Dzhanibekov’s Effect”, Using Angular
Momentum Sphere and Kinetic Energy Ellipsoid

5.6.1 Collocated Angular Momentum Sphere and Kinetic
Energy Ellipsoid for the Garriott’s-Dzhanibekov’s
Flipping Motion Example

Figure 5.19 shows collocated H sphere (shown in light blue colour) and K ellipsoid
(shown in red colour) for the case, considered in Sect. 5.3.4: Ixx = 0.3; Iyy = 0.35;
Izz = 0.4 (all in kg × m2); ωx,i = 0.1, ωy,i = 15, ωz0 = 0.1 (all in rad/s). It is clearly
seen from Fig. 5.19a that the value of the z semi-major axis of the K ellipsoid is
larger than 1, and therefore, around the “north” and “south” poles, it is extending
(extruding/bulging/swelling) outside the H unit sphere. The values of the semi-
major axes of the KEE can be calculated, using Eq. (5.28), giving the following
values: ax = 0.9258; ay = 1; az = 1.0690. As solution points of the attitude
dynamics problem are simultaneously restricted by H sphere and K ellipsoid, they
must belong to the intersection of H and K surfaces.

In order to indicate the direction of motion of the H hodograph, in Fig. 5.19c
we mark some of the discrete instants for the tip of the H vector with their
corresponding times. In addition, we are adding the quiver arrow plot, indicating
the speed of vector H along of the hodograph. Figure 5.19c shows that close to
the point, where y-axis intersects with H sphere, the density of the points is getting
larger, and the length of the quiver arrows is smaller. It indicates that the H vector is
slowing down, when it is getting more aligned with y-axis, which is an intermediate
axis for the system.

The 3D marked plots in Fig. 5.19 conform with the pattern of motion, observed
in “Garriott’s-Dzhanibekov’s effect” experiments, where there is local (in time)
stabilisation of the system, where its main rotation is getting closer to the y-axis,
and then, the flip is happening rather rapidly (see Fig. 5.19b, c and d).

5.6.2 Conceptual Spacecraft Model, Based on the Flipping
Motion

The periodic flipping motion of the system about its intermediate axis prompts
design of the spacecraft utilising this peculiar motion. Indeed, if the spacecraft
is provided with rotation about its intermediate axis, it would start flipping and
would start exposing its instruments to different directions, without any additional
involvement of attitude control devices and systems. If, in one particular case, the
spacecraft has a camera, scanning instrument or antenna, externally attached to the
spacecraft, it could be directed to various directions on its own, due to the flipping
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Fig. 5.19 Angular momentum sphere and Kinetic energy ellipsoid for the flipping object (typical
“Garriott’s-Dzhanibekov’s effect” case): (a) 3D view of collocated H sphere and K ellipsoid; (b)
2D “minus” Hy view with H hodograph marked; (c) enlarged H hodograph with the selected
discrete time points shown; (d) “flipping” fast phase and “sleeping” slow phases

motion of the body of the spacecraft. What makes this concept attractive is the
following:

• Simplicity of the design and robustness of the flipping motion, which may
allow use of the concept for far space autonomous missions, where no real-time
interference by the mission specialist would be possible

• Ability to control the period of the flipping motion by proper selection of the
principal moments of inertia of the system, which may allow selection of the
most efficient agility of the spacecraft

In the presentation of the concept of the flipping spacecraft, we need to make two
important comments:
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(a) The main disadvantage of the “continuously flipping” spacecraft concept in its
basic configuration is its inability to switch flips ON only when they are needed:
indeed, it would be impractical for the system to perform flips all the time,
including launching and deployment stages. Therefore, it would be imperative
to learn on how to switch ON and OFF the flipping motions. The method of
initiation of the flipping motion on the spacecraft in stable spin and transferring
flips into the stable spin has been discovered in [3] and will be presented in the
following section.

(b) Observing the flipping motion of the T-handle [14] or other rigid bodies in
the flipping motion demonstrations [23–26], one may get the impression that
the instrument, attached to any side of the flipping body, would scan the
spacecraft surrounding, pointing in all possible directions. However, our study
[8] showed that this impression about full scanning coverage of the instruments
on the flipping spacecraft is wrong, and it also showed that attachment of the
instrument to different sides of the flipping spacecraft may result in restricted
hemispheres for the intended coverage. This aspect is analysed in the next
subsection.

5.6.3 Investigating Orientation of the Sides of the Spacecraft
Exposed to the Specific Directions

As spacecraft may have directional sensing equipment, attached to the sides, let us
explore possible exposure of this equipment to the specified directions of interest.
For this purpose, let us introduce a semi-transparent green coloured spherical dome,
embracing the rotating spacecraft (which, in turn, has its rotating body axes system
xyz with unit orts e1, e2 and e3). We collocate the centre of the dome (point O) with
the centre of the mass of the rotating body. However, most significant, we fix the
dome in the global coordinates XYZ, so it is not rotating with the body and its body
axes xyz. Then we consecutively plot lines of intersection of the rotating orts e1, e2
and e3 with the dome. It must be emphasised that the spheres in Fig. 5.20 are not the
bodies of the spacecraft (which may have any arbitrary shape), but the embracing
imagined domes.

For the illustration purposes, let us simulate the motion of the spacecraft with the
following parameters: Ixx = 2, Iyy = 4, Izz = 3 (all in kg × m2). Let us for t = 0
align xyz body axes with XYZ global inertial axes as follows: x is aligned with X, y
is aligned with Z and z is aligned with −Y. If the spacecraft is installed in orbit with
initially provided angular velocity ωx,i = 0.01, ωy,i = 0.01, ωz,i = 1 (all in rad/s),
the spacecraft starts “flipping” along axis z, being an intermediate axis of inertia (as
Ixx < Izz < Iyy).

During this flipping process, we trace all intersections of the orts e1, e2 and e3
with the dome and present them as continuous lines with different colours. Results
are shown in Fig. 5.20. It should be noted that for each of the computer screen
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Fig. 5.20 Lines of intersection of the rotating orts e1, e2 and e3 with the spherical dome (green),
fixed in the global axes system XYZ: “ball of wool” lines. (a) e1 diagrams (t = 0, 12 and 120 s),
(b) e2 diagrams (t = 0, 12 and 120 s), (c) e3 diagrams (t = 0, 12 and 120 s) and (d) e1, e2 and e3
diagrams, presented together (t = 0, 12 and 120 s)
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snapshots in this figure, the individual viewpoint was selected for better observation
of the simulation results. Selection of the viewpoints could be clearly understood
using the vector of the angular momentum H as a reference, as it is pointing in the
same direction in the global coordinates XYZ for all presented snapshots.

Last images for the e2 in Fig. 5.20b are remarkably interesting and illustrate our
new finding! They show that y-body rotating axis, associated in this example with
the maximum moment of inertia, is “drawing” e2 intersection lines on the dome
only on one hemisphere, bulging towards the angular momentum vector H (we call
it H+ hemisphere), and is never pointing towards the other hemisphere of the dome
(shown as H− hemisphere in Fig. 5.21). This is valid for the direction of y with
positive component of the angular velocity along this direction (ωy,i > 0). We have
run many other various simulations, confirming that it is a general pattern, so the
side, perpendicular to the axis with maximum moment of inertia and associated
with positive angular velocity component, is never turned away from the vector H
direction.

In Fig. 5.20, initially, vector H is almost aligned with z body axis (which is, in
turn, is initially positioned along the –Y global axis); this is because initial values
of ωx,i and ωz,i (and ultimately Hx,i and Hz,i) are small compared with ωy,i (and
ultimately Hy,i). Therefore, the 2D plane surface, subdividing H+ and H−, is almost
parallel to the XZ plane. Discovery of the H+ and H− planes is also illustrated on the
model of the spacecraft (see Fig. 5.21b), flipping about x body axis and “drawing”
godograph on the surrounding dome with its “y” body axis. Figure 5.21b also shows
on the right the simulation Virtual Reality control panel, displaying AMS and KEE
of the system with enlarged non-dimensional angular momentum vector, sliding
along the separatrix.

H+ and H− are also shown in Fig. 5.22, where we consider additional contrast
case with the following parameters: Ixx = 2, Iyy = 4, Izz = 3 (all in kg × m2) and
initial angular velocities ωx,i = 0.5, ωy,i = 0.5, ωz,i = 1 (all in rad/s), which has
much more significant initial values of ωx,i and ωy,i, than in the previous example,
hence has large components of Hx,i and Hz,i, as compared with Hy,i. It results in the
subdivision of the dome into two parts (H+ and H−) by the inclined 2D plane, shown
in white in Fig. 5.22a. Results of the intersection lines of the e2 ort with the dome
are shown in Fig. 5.22a. They somehow resemble “ball of wool” (see Fig. 5.22b),
especially with the knitting needles resembling the H and e2 vectors. However, the
simulated resulting “ball of wool” lines are “sitting” on one hemisphere only! This
hemisphere is on the side of the plane, perpendicular to H vector (and we will call it
H+ hemisphere). The other side of the hemisphere (H−) does not have any threads
of the “ball of wool”.

This discovered new result can be used in the design of various spacecraft
missions. For example, in case of the communication mission, if the spacecraft is
installed in orbit with predominant rotation about an intermediate axis of inertia
and is carrying an antenna, it should be ensured that the initial direction of the
angular momentum vector H is consistent with the “source”, sensed by antenna,
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Fig. 5.21 (a) H+ and H− hemispheres of the “dome” (Ixx = 2, Iyy = 4, Izz = 3, all in kg × m2;
ωx = 0.01, ωy = 0.01, ωz = 1, all in rad/s); (b) H+ and H− hemispheres of the “dome” shown on
the flipping acrobatic spacecraft (on the left) concurrently with the AMS/KEE simulation Virtual
Reality control panel (on the right)

i.e. with H+ hemisphere facing the “source”; otherwise, spacecraft communication
would be blanked for all instants of the mission. So, it matters which side of
the spacecraft, perpendicular to the axis with maximum moment of inertia, is
selected: one side would be good for utilising antenna, and the other side would
be inoperable/terminal. The exposure “efficiency” of the equipment on the selected
sides was explored in reference [34].
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Fig. 5.22 “Ball of wool” lines: (a) simulation results for the case Ixx = 2, Iyy = 4, Izz = 3 (all in
kg × m2) and initial angular velocities ωx,i = 0.5, ωy,i = 0.5, ωz,i = 1 (all in rad/s); (b) original
“balls of wool”, which prompted the used analogy and terminology

On the same token, in some other cases, when, for example, the spacecraft is
subject to directional adhere conditions (heat, radiation, flying debris), it may be
advisable to “reinforce” the spacecraft, facing the intended H− hemisphere, install
the spacecraft in orbit with the direction of the initial angular momentum pointing
outwards the “danger” and place all sensitive equipment on the side, perpendicular
to the axis with maximum moment of inertia and with positive component of the
angular velocity along this direction (i.e. “plus” e2 in the two previously considered
illustration cases).

As a summary from this subsection, we present in Fig. 5.23 godographs of all
body axes orts e1, e2 and e3, for the base case study in Subsect. 5.3.4 (Ixx = 0.3,
Iyy = 0.35, Izz = 0.4 (all in kg × m2), corresponding to ξ = 0.5 and η = 0.75, with
the initial conditions ωx0 = 0.1, ωy0 = 15, ωz0 = 0.1 (all in rad/s)).

It shows that if the system performs classical “Garriott’s-Dzhanibekov’s” flip-
ping motion, the godograph of the port with maximum moment of inertia is drawing
on the half of the dome, surrounding a flipping object, therefore on this object, where
will be a side, which will be only exposed to one half of the semi-space, pointed by
the angular momentum vector H, and will never be exposed to the second semi-
space.
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Fig. 5.23 “Ball of wool” lines for body axes orts e1, e2 and e3 in base study case in Subsect. 5.3.4:
(a) red ort e1 along axis with minimum moment of inertia; (b) yellow ort e2 along intermediate
axis; (c) green ort e3 along axis with maximum moment of inertia
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5.7 Proposing New Spacecraft Designs/Missions, Utilising
Garriott’s-Dzhanibekov’s Effect and Inertial Morphing

5.7.1 Proposing Method of “Switching ON/OFF”
Garriott’s-Dzhanibekov’s Spacecraft Flipping Motion
by Controlled Inertial Morphing

Flipping motion of the rigid body, during which the direction of the angular velocity
of the main rotation, let’s say, ωy, is intermittently changing to opposite, is called
“Garriott’s-Dzhanibekov’s effect”. It is a consequence of the moment of inertia,
associated with the main rotation, being between two other values of the moments
of inertia, Ixx and Izz, in other words, having an intermediate value among principal
moments of inertia.

What if there is a need to stop or suspend for some time the unstable “flipping”
motion of the object?

For this purpose, Beachley [20] proposed four types of mass translations.
However, this proposition was rather conceptual, as it did not involve equations of
motion of the spacecraft with variable inertial properties, did not explain the change
in moments of inertia and did not investigate the inversion timing.

In [3], and then in [4–10], we have addressed all these issues in a systematic
manner and for the purpose of control of the spacecraft attitude, proposed general
method of inertial morphing of the spacecraft, mathematically linking these modifi-
cations to the changes in moments of inertia and simulating transitional spacecraft
response, using rigorous equations of motion [3]. In particular, we showed that
for stabilisation of the spacecraft, there exist two morphing strategies, and after
implementation of which, the intermediate moment of inertia becomes the smallest
or largest among all principal moments of inertia.

In the illustration case, where we selected “y” axis to be the axis of the
main rotation, the condition for the unstable “Garriott’s-Dzhanibekov’s effect”-type
motion can be written as:

Ixx < Iyy < Izz (5.32)

However, if via special design of the spacecraft, enabling the change of its
principal moments of inertia (via mechanical or other means), the targeted value
of Iyy is in controllable way forcefully “moved” outside the embrace of Ixx and Izz,
then the condition of instability Eq. (5.32) would no longer be satisfied and the
unstable motion would be “switched OFF”!

Conceptually, this proposition can be illustrated with the diagram in Fig. 5.24,
which presents two sets of solutions. The first conceptual solution set involves
reduction of initial value of Iyy (which we denote as Iyy,i) to its new (or final) value
Iyy,f , being smaller than Ixx value. And the second solution involves increase of the
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Fig. 5.24 Possible conceptual solutions for stabilizing an unstable spacecraft with its main
rotation about the y-axis

initial value of Iyy (which we denote as Iyy,i) to its new value Iyy,f , being larger than
Izz.

For the numerical verification of the concept, let us assume the following
demonstration values: Ixx = 0.3, Iyy = 0.35 and Izz = 0.4 (all in kg × m2), which are
conforming with the general condition in Eq. (5.32) of the flipping unstable motion,
which would result if the main rotation about y-axis is initiated. And in this case,
in order to test the concept of “switching OFF” the flipping motion, we will change
Iyy,i = 0.35 to its new value of Iyy,f = 0.2 (solution-1) or Iyy,f = 0.5 (solution-2).

However, in order to proceed with the numerical simulations, we need to expand
Euler Eq. (5.3), allowing variations in the moments of inertia of the rigid body.

5.7.2 Extending Euler’s Equations for Rigid-Body Rotations,
Allowing Variation of Moments of Inertia

In order to simulate the cases of the morphing spacecraft with variable moments
of inertia, we need to extend classic Euler’s Eq. (5.3). We note that the sum of the
moments about the centre of mass of a rigid body due to external forces and couples
equals to the rate of change of the angular momentum about the centre of mass [35]:

∑−→
N = d

−→
H

dt

∣
∣
∣
∣
∣
Inertial

= d
−→
H

dt

∣
∣
∣
∣
∣
Body

+ −→
ω × −→

H (5.33)

Also, the components of the angular momentum vector,
−→
H , with respect to the

body-axis frame can be expressed by the product between the principal moment of
inertia matrix IG and the components of the angular velocity vectors as follows:



158 P. M. Trivailo and H. Kojima
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Therefore, extended Euler’s equations can now be written as:
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For solving the morphing rigid-body dynamics problems, using numerical
methods, we combine matrix Eqs. (5.35) and (5.6) into a single equation:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ixx 0 0 0 0 0
0 Iyy 0 0 0 0
0 0 Izz 0 0 0
0 0 0 sin θ sin φ cos φ 0
0 0 0 sin θ cos φ − sin φ 0
0 0 0 cos θ 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ω̇x

ω̇y

ω̇z

ψ̇

θ̇

φ̇

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
Iyy − Izz

)
ωyωz − İxx ωx
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(5.36)

Equation (5.33) is the main equation, used in this work and solved using
MATLAB

®
ode MATLAB Runge-Kutta solver, with “mass matrix” option, as per

Eq. (5.9). This equation is applicable to the systems which moments of inertia are
changing with time.

5.7.3 Six-Mass Conceptual Model of the Spacecraft
with Inertial Morphing Capabilities

To demonstrate the feasibility of the controllable behaviour of the spacecraft, let
us consider a simple conceptual model of the morphing spacecraft, constructed as
an axisymmetric set of three orthogonal dumbbells, each of which has negligible
mass of the rod, connecting two equal concentrated masses at its ends. Let us also
assume, for conceptual simplicity, that three dumbbells are connected at the middle
points of their rods, and the corresponding masses mx, my and mz are located at the
distances rx, ry and rz from the axes of rotation x, y and z, as shown in Fig. 5.25.



5 Inertial Morphing as a Novel Concept in Attitude Control and Design. . . 159

Fig. 5.25 Six-mass conceptual model of the morphing spacecraft

In the illustrated conceptual design, morphing of the spacecraft is achieved via
independent synchronized control of the position coordinates rx = rx(t), ry = ry(t)
and rz = rz(t) of the masses mx, my and mz.

The principal moments of inertia of the system can be calculated as follows:

Ixx = 2myr
2
y + 2mzr

2
z

Iyy = 2mzr
2
z + 2mxr

2
x

Izz = 2mxr
2
x + 2myr

2
y

(5.37)

Then by adding all equations in (5.34), and taking only a half of the left and right
hand sides, we can get:

1

2

(
Ixx + Iyy + Izz

) = 2
(
mxr

2
x + myr

2
y + mzr

2
z

)
(5.38)

Then, subtracting from Eq. (5.35) consecutively each of Eq. (5.34), we can
obtain:

rx(t) =
√

Iyy(t) + Izz(t) − Ixx(t)

4 mx

ry(t) =
√

Izz(t) + Ixx(t) − Iyy(t)

4 my

rz(t) =
√

Ixx(t) + Iyy(t) − Izz(t)

4 mz

(5.39)

Equations (5.39) are very important equations, as they mathematically represent
a basis for the concept of “inertial morphing”, as formulated for the six-mass model
of the morphed spacecraft. They show that at any instant of time t, the exact set of
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positions for the masses mx, my and mz in the model can be uniquely determined,
based on the values of the required moments of inertia of the system for this instant
of time. Equations (5.39) assume that masses mx, my and mz have constant values,
but they are not imposing these as constraints. In fact, it may be possible in some
IM designs to employ masses, which would have variable values, and in these cases,
notations mx, my and mz in Eq. (5.39) should be replaced with mx(t), my(t) and mz(t).
There rather exquisite designs may involve, for example, solidification, evaporation
or ablation of the mass materials.

5.7.4 Conceptual Example of the Morphed Spacecraft,
Self-Transferring from Unstable Flipping Motion
to Stable No-Flips Spin

Let us assume, as an example, that the system’s parameters are given with the
following numbers: mx = my = mz = 1 kg, Ixx = 0.3 kg × m2, Iyy = 0.35
0.3 kg × m2, Izz = 0.40 kg × m2, the same as in Sect. 5.3.4 example. Then, for
the case of the tumbling spacecraft considered in Sect. 5.3.4, we can find the initial
radial positions of the spacecraft masses, using Eq. (5.39):

rx0 = 0.2500 m; ry0 = 0.2958 m; rz0 = 0.3354 m. (5.40)

These values for the unit masses would ensure that the inertial properties of the
spacecraft are Ixx = 0.3 kg × m2, Iyy = 0.35 kg × m2, Izz = 0.4 kg × m2 (this can be
proven via Eqs. 5.34). Note that in our example here Iyy has an intermediate value
among all principal moments of inertia: Ixx < Iyy < Izz; therefore, if the spacecraft is
provided with the initial angular velocity ωx0 = ωz0 = 0.1 rad/s and ωy0 = 15 rad/s,
with the prevailing rotation about y-body axis, then the spacecraft rotation about this
axis would be unstable and the classical “Garriott’s-Dzhanibekov’s effect” periodic
flipping would be observed.

It will be shown in Sect. 9.1 that, if during the “flipping” motion, at the instant,
when the angular velocities ωx0 and ωz0 are close to zeros, the moment of inertia
Iyy,i = 0.35 kg × m2 is rapidly changed to its new value, less than Ixx, for example,
Iyy,f = 0.2 kg × m2, then the nature of the followed motion of the system would
change from unstable “flipping” to stable. This would happen, because with the
deliberate assignment of the described new values of the moments of inertia,
predominant rotation of the system would not be longer along the intermediate axis
but would be instantly changed in favour of the rotation about the same body axis
but now having its new status of the axis with minimum moment of inertia, and the
resulting rotation would become stable, without flips. We call it “switching OFF”
the flipping motion manoeuvre. Note: this would require a single instant inertial
morphing.

http://doi.org/10.1007/978-3-030-82719-9_9
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Fig. 5.26 Solution-1 for the conceptual six-mass design of the morphing spacecraft, self-
transferring from unstable “Garriott’s-Dzhanibekov’s effect”-type flipping motion to stable
spinning no-flips motion (and vice versa): (a) graphical representation, where white spheres
correspond to unstable flipping about y – axis of predominant initial rotation and black spheres
to stable no-flips spin; (b) table representation with radii for all masses specified for initial and
final stages of the inertial morphing

The new values of the position radii, corresponding to this particular solution
(being one out many solutions in the “solution-1” set), can be calculated using Eq.
(5.39) and are shown in the graphical form in Fig. 5.26a and in the table form in Fig.
5.26b:

rxf = 0.1581 m; ryf = 0.3536 m; rzf = 0.2739 m. (5.41)

The spacecraft masses at these final radius positions are shown in Fig. 5.26a with
dark colour.

The flipping motion can be also stopped, using a solution from the “solution-
2” set. One of the examples is shown in conceptual Fig. 5.24. For the purpose of
the illustration of the concept, let us consider rapid increase of the Iyy from its initial
value of Iyy,i = 0.35 kg × m2 to its new (final) value of Iyy,f , being larger than Izz, for
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Fig. 5.27 Solution-2 for the conceptual six-mass design of the morphing spacecraft, self-
transferring from unstable “Garriott’s-Dzhanibekov’s effect”-type flipping motion to stable
spinning no-flips motion (and vice versa): (a) graphical representation, where white spheres
correspond to unstable flipping about y – axis of predominant initial rotation and black spheres
to stable no-flips spin; (b) table representation with radii for all masses specified for initial and
final stages of the inertial morphing

example, Iyy,f = 0.5 kg × m2. The new values of the position radii, corresponding
to the “solution-2” in Fig. 5.27b, can be calculated using Eqs. (5.39):

rxf = 0.3162 m; ryf = 0.2236 m; rzf = 0.3873 m. (5.42)

The spacecraft masses at these radius positions are shown in Fig. 5.27b with dark
colour.

The morphing of the spacecraft from the initially unstable configuration [as per
Eq. (5.40)], associated with the “flipping” motion, to its final stable configuration
[as per Eqs. (5.41) or (5.42) and solution-1 or 2 in Fig. 5.24] is shown in Figs. 5.26a
and 5.27a, where masses for the initial unstable (flips) configuration are shown in
white, whereas the masses for the final (no-flips) stable configuration are shown in
black colour.
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Summary for both particular solutions is presented in Figs. 5.26b and 5.27b. It
would be important to note that, in the presented cases, it was not obligatory during
the morphing of the system and its transition from the “initial” to “final” states to
keep both values of Ixx and Izz unchanged. However, it was done for purpose to
emphasize the role of the Iyy in the process of stabilisation of the system.

5.7.5 Geometric Interpretation of the Cases, Where
“Garriott’s-Dzhanibekov’s Effect” Is Controlled

5.7.5.1 Stopping Flipping Motion, Using One Inertial Morphing:
Solution-1

At last, in this section, we consider the case of “switching OFF” the flipping motion
and fully stabilising the system.

As proposed and illustrated in [3] on the six-mass dumbbell model, full stabili-
sation of the spinning rigid body (e.g., spacecraft or rocket) can be achieved with a
controllable change of all moments of inertia. However, in order to emphasise the
importance of the Iyy in stabilisation of the system, Ixx and Izz were not involved.
Application of the applied changes in Iyy (shown in Fig. 5.28a) ensures that the
periodic change in ωy is stopped, as illustrated with Fig. 5.28b.

Figure 5.29a shows that while the angular momentum is conserved in the system,
the kinetic energy may be a subject to variations. In the presented example, increase
in the dominant angular velocity component ωy triggers significant increase in the
kinetic energy by 74%, as demonstrated in Fig. 5.29b.

Figure 5.28d of the associated controlled action shows that the kinetic energy
ellipsoid has dramatically swollen and is now fully embracing and hiding (inside of
the KEE) the angular momentum sphere, which is in great contrast with solution-2,
to be illustrated in Fig. 5.30. Nevertheless, both surfaces are touching each other at
two points: pole S and another pole on the opposite side of the y-axis.

Conclusion from this subsection is as follows: stabilisation of the flipping motion
(i.e. switching OFF the “Garriott’s-Dzhanibekov’s effect”) manipulating with Iyy
only may be achieved using two avenues – making Iyy the smallest moment of inertia
or making it largest moment of inertia [3]. The first avenue has been illustrated in
Figs. 5.28 and 5.29.

5.7.5.2 Stopping Flipping Motion, Using One Inertial Morphing:
Solution-2

One of the two types of solutions is presented in Fig. 5.30.
Solution-2 has been achieved at the “expense” of the kinetic energy E, which

has reduced its initial value after the morphing by 30% (see Fig. 5.31a). The
geometric interpretation of this controlled action in Fig. 5.30 shows that the kinetic
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Fig. 5.28 Stopping the flipping motion (solution-1): (a) explanation of the inertial morphing
applied; (b) time history of the resulting angular velocity components ωx, ωy, ωz; (c) radii of
the KEE; (d) geometric interpretation, showing the AMS and KEE before and after application of
the inertial morphing

energy ellipsoid has dramatically shrunk and is now fully embraced by the angular
momentum sphere, which is in great contrast with solution-1, illustrated in Fig. 5.28.
In solution-2, the final KEE is not seen, as is entirely residing inside the shrunk
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Fig. 5.29 Time histories of the key characteristics of the inertially morphed system: (a) non-
dimensional angular momentum H , (b) kinetic energy E

AMS. Nevertheless, both surfaces AMS and KEE are touching each other at just
two points: pole S and the pole on the opposite side along the y-axis.

5.8 Attitude Dynamics of Spacecraft with Inertial Morphing

5.8.1 Study Case-2: “Switching OFF” Flipping Motion
of the Spacecraft After One Flip (Solution-1)

Figure 5.32 shows that at the instant t = 6.77 s, the angular velocity ωy has its
highest value and ωx changes its value from negative to positive. It is believed that
this instant, corresponding to the most prominent rotation about the y-body axis,
would be the best time to apply morphing to the spacecraft. In our demo case, the
moment of inertia Iyy is changed from 0.35 to 0.2, as per Fig. 5.32a within relatively
short period of time of 0.2 s. Results of the simulation are given with Fig. 5.32b and
c. Figure 5.32b shows that the simulated morphing led to the step-type increase of
the angular velocity ωy of the body and did not initiate significant oscillations in ωx

and ωz. In contrast to Case-1, where ω and H plots had similar shapes, in Case-2
these plots are different.

Figure 5.32b shows that morphing did not change the angular momentum Hy

and after the morphing was completed, the value of Hy stayed almost unchanged,
evidencing that attempt to stop the “flipping” motion was successful. At last,
note that as the stabilised value of |φ| = 180◦, the stabilised spacecraft is flying
backwards, with its initial heading attitude changed by 180◦!
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Fig. 5.30 Stopping the flipping motion (solution-2): (a) explanation of the inertial morphing
applied; (b) time history of the resulting angular velocity components ωx, ωy, ωz; (c) radii of
the KEE; (d) geometric interpretation, showing the AMS and KEE before and after application of
the inertial morphing
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Fig. 5.31 Time histories of the key characteristics of the inertially morphed system: (a) kinetic
energy E; (b) non-dimensional angular momentum H

5.8.2 Study Case-3: “Switching OFF” Flipping Motion
of the Spacecraft After One Flip (Solution-2)

It is interesting to observe that stabilisation of the system, illustrated with Fig.
5.33, has been achieved with a controllable change of the moment of inertia Iyy
(associated with the main rotation of the spacecraft), which initially had its value of
Iyy,i = 0.35, being an intermediate value, surrounded by the smallest Ixx = 0.2 and
largest Izz = 0.4 moments of inertia:

Ixx < Iyy,i < Izz (5.43)

While keeping values of Ixx and Izz unchanged, the value of Iyy in the presented
experiment was changed from Iyy,i = 0.35 to the final value of Iyy,f = 0.5, as per Fig.
5.33a, after which it became the largest principal moment of inertia:

Ixx < Izz < Iyy,f (5.44)

Figure 5.33 shows that one of the consequences of the increase of Iyy was
a reduction from 15 to 10.5 rad/s of the associated angular velocity ωy of the
spacecraft. This simulation result is in perfect agreement with the conservation of
the angular momentum of the system, suggesting that ωy must be reduced by the
ratio of 15*(Iyy,i/ Iyy,f ) = 15*(0.35/0.5) = 10.5 rad/s.

In contrast to Case-1, where ω and H plots had similar shapes, in the Case-3
these plots are different.

Figure 5.33b shows that morphing did not change the angular momentum Hy

and after the morphing was completed, the value of Hy stayed almost unchanged,
evidencing that the stopping “flipping” motion has been successful.
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Fig. 5.32 Time histories for Case-2 (switching OFF the flipping motion of the system) of the
key parameters: (a) controlled moment of inertia Iyy; (b) angular velocity components; (c) angular
momentum components; (d) Euler angles

5.8.3 Study Case-4: “Switching OFF” Flipping Motion
of the Spacecraft After Two Flips (Solution-1)

We now demonstrate switching OFF the “flipping” motion of the morphing
spacecraft after it performs two flips. The time history of morphing is similar to
the one presented in Fig. 5.33, but morphing is starting at t = 13.54 s. Results of
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Fig. 5.33 Time histories for Case-3 (switching OFF the flipping motion of the system) of the
key parameters: (a) controlled moment of inertia Iyy, (b) angular velocity components, (c) angular
momentum components and (d) Euler angles

this Case-4 are presented in Fig. 5.34. Observed reduction of the angular velocity ωy

is the same, as for the Case-2; however, in Case-2 after the motion is stabilised, the
spacecraft continues its flight backwards, whereas in the current case, the stabilised
attitude of the spacecraft is the same as at the initial time.
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Fig. 5.34 Time histories for Case-4 (switching OFF the flipping motion of the system) of the
key parameters: (a) controlled moment of inertia Iyy, (b) angular velocity components, (c) angular
momentum components and (d) Euler angles

5.8.4 Study Case-5: “Switching ON” Spacecraft Flipping
Motion

In a similar way as stabilisation, described in Cases 2–4, was achieved, we can
initiate the “flipping” motion of the spacecraft. For this, the axis of the major
rotation of the system (let’s say, y) initially should coincide with the axis of minimal
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or maximal moments of inertia, i.e. one of the conditions should be satisfied:
Iyy < min(Ixx, Izz) or Iyy > max(Ixx, Izz).

In this case, initiated rotation would be stable, without “flipping”. To activate
the “flipping” motion, morphing of the system should be performed, which should
result in Iyy becoming an intermediate value between Ixx and Izz. In the study Case-5,
as illustration, we use the following values: ωx = 0.1, ωy = 26.25, ωz = 0.1 (all – in
rad/s), Ixx = 0.3, Iyy,i = 0.2, Iyy,f = 0.35, Izz = 0.4 (all – in kg*m2). The time history
of applied morphing is presented in Fig. 5.35a, and the results of the simulation are
shown in Fig. 5.35b and c.

5.8.5 Study Case-6: “Switching ON” Spacecraft Flipping
Motion with Following One Flip and “Switching OFF”

Case-6 represents further development of the Case-5 by switching OFF the “flip-
ping” motion at t = 9.89 s, instant of the maximal value of ωy. The time history of
applied morphing is presented in Fig. 5.36a, and the results of the simulation are
shown in Fig. 5.36b and c.

5.8.6 Study Case-7: Control of the Frequency of the Flipping
Motion via “Inertial Morphing”

Case-7 demonstrates the ability of the proposed “inertia morphing” for control of the
frequency of the “flipping” motion. In this demo, inertia properties of the “flipping”
system are as follows:

• Ixx,i = 0.3, Iyy,i = 0.395, Izz,i = 0.4 were changed after three 180◦ flips to
• Ixx,f = 0.3, Iyy,f = 0.35, Izz,f = 0.3 = 0.4 (all in kg × m2), as per Fig. 5.37a.

However, the intermediate value of the moment of inertia Iyy was still kept
within the values of Ixx and Izz: Ixx < Iyy < Izz. It is really interesting to observe
that it was possible to achieve substantial change of the frequency of the flipping
motion. Calculations of the flipping motion periods before and after “morphing”
can be calculated, using Eqs. (5.15, 5.16, 5.17, 5.18 and 5.19): Ti = 21.5 s and
Tf = 10.8 s (twice reduction!). This is in perfect correspondence with the results of
the simulations, partially shown in Fig. 5.37.
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Fig. 5.35 Time histories for Case-5 (switching ON the flipping motion of the system) of the key
parameters: (a) controlled moment of inertia Iyy, (b) angular velocity components, (c) angular
momentum components and (d) Euler angles

5.9 Inertial Morphing and the Law of Conservation
of Angular Momentum

The law of conservation of angular momentum is one of the fundamental laws
in physics, mechanics and quantum mechanics, stating that the total angular
momentum of a closed system remains constant. There are numerous fascinating
qualitative demonstrations of this law, for example, involving Hoberman sphere

https://en.wikipedia.org/wiki/Quantum_mechanics
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Fig. 5.36 Time histories for Case-6 (switching ON the flipping motion of the system with
following one flip and switching OFF) of the key parameters: (a) controlled moment of inertia
Iyy, (b) angular velocity components, (c) angular momentum components and (d) Euler angles

[36], a plastic sphere frame that can be contracted by pulling on a string. Pulling
on the string while the sphere is rotating causes the sphere’s moment of inertia to
decrease and its angular speed to increase, demonstrating conservation of angular
momentum.

Figure skaters in a spin (Fig. 5.38a) use conservation of angular momentum:
changing their moments of inertia enables them to vary their rate of spin. For the
same total angular momentum, they will spin faster by bringing their arms in (lower
moment of inertia) and slower by extending their arms (higher moment of inertia).

https://en.wikipedia.org/wiki/Figure_skating
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Fig. 5.37 Time histories for Case-7 (control of the frequency) of the key parameters: (a) controlled
moment of inertia Iyy, (b) angular velocity components, (c) angular momentum components and
(d) Euler angles

Reduction of the moment of inertia can be achieved by drawing skater’s arms and
legs. Increase of the moment of inertia can be achieved by moving the skater’s arms
outwards.

For example, let us assume the initial spin rate of the skater to be equal to 30 rad/s
and ability to increase its angular momentum by a factor of 3. Then, using the law
of conservation of energy, and ignoring energy losses due to the ice friction and air
drag, etc. during the spin, we can estimate a new spin rate of the skater being equal
to 10 rad/s.
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Fig. 5.38 A figure skater, employing manipulations with the moments of inertia of the human
body to control the spin rate: (a) fast spin and (b) fastest spin by O. Oliver of 342 RMP or 5.7 Hz
(19 January 2015, Guinness Book of World Records)

Figure 5.38b shows Olivia Oliver, who achieved the fastest recorded spin on ice
skates of 342 RPM (this record was achieved in Warsaw, Poland, on 19 January 2015
and is in the Guinness Book of World Records [37]). This spin speed corresponds
to 5.7 Hz or the angular velocity of 35.81 rad/s.

All numerical demonstrations in Figs. 5.29a, 5.32b, 5.33b, 5.34b, 5.35b, 5.36b
and 5.37b, involving inertial morphing, showed that the angular momentum was
conserved: | H |, the absolute value of the magnitude of the non-dimensional vector
of the angular momentum H, plotted with grey dashed line, remained its constant
value.

Analysis of the numerically simulated changes in the angular velocity of the
presented rotating systems was in full agreement with the law of conservation
of angular momentum. In particular example, Study Case-3, applying inertial
morphing, which resulted in increase of the angular momentum Iyy from 0.35 to
0.5 kg × m2, has led to the reduction of the angular velocity from 15 to 10.5 rad/s.
These changes allow us to express this observation as follows: Iyy,iωy,i = Iyy,fωy,f .

Figure 5.33 shows that one of the consequences of the increase of Iyy was
a reduction from 15 to 10.5 rad/s of the associated angular velocity ωy of the
spacecraft. This simulation result is in perfect agreement with the conservation of
the angular momentum of the system, suggesting that ωy must be reduced by the
ratio of 15*(Iyy,i/ Iyy,f ) = 15*(0.35/0.5) = 10.5 rad/s.

On the surface, there is apparent similarity between the skaters and proposed
inertially morphed spacecraft, manipulating with the inertial properties.

However, there is a significant difference: skater is “operating” within the stable
modes of motion [38], whereas a morphed spacecraft is actually extracting most
advantages from its inertial manipulations in its ability to manipulate with the
attitude, as it is able to access unstable motions!
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In this respect, we would like to suggest the following analogy, which could be
easier understood by a wide audience. Let us consider nothing more complex than
heating of water. When this is occurring for the water temperature, being within the
range 0–100 ◦C, let us say 80 ◦C, then the heating energy, passed on to the water,
leads to the quantitative change in the water’s temperature. However, if the energy
is passed on the system, after we reached 100 ◦C, then we can observe conversion
of the water from the liquid state to the gaseous state! This is a change in quality of
the substance. In a similar way, considering an experiment with water to be cooled,
where water has initial temperature, let us say 10 ◦C, we can see conversion of the
matter from liquid to the solid state after we reached 0 ◦C. This would be also a case
with a change in quality of the substance.

Similar to the heating/cooling of the water within the range 0–100 ◦C, manipula-
tion with the moments of inertia, during which their order, let us say, Ixx,i < Iyy,i < Izz,i
is not changing with Ixx,f < Iyy,f < Izz,f , rotational characteristics of the system (like
angular velocity components) are changing only in a sense of their quantities, but
without the change in the “quality” of the rotational motion. However, similar to the
water being evaporated or frozen, with the change of the order of the moments of
inertia (due to the applied IM), let us say, from Ixx,i < Iyy,i < Izz,i to Iyy,f < Ixx,f < Izz,f ,
(or Iyy,f < Izz,f < Ixx,f or Ixx,f < Izz,f < Iyy,f or Izz,f < Ixx,f < Iyy,f ), then, in addition
to the quantitative changes in the rotational parameters of the system, we would be
also expecting a qualitative change in the motion.

Therefore, it is proposed to distinguish between the inertial morphings, which do
not employ non-stable modes of motion and is called the cold inertial morphings
from the inertial morphings, which employ non-stable modes of motion and are
called the “hot IM”. With these definitions, the most useful of the IM for spacecraft,
allowing acrobatic capabilities, are “hot inertial morphings”.

5.10 Inertial Morphing in Novel Designs of Acrobatic
Spacecraft for 180 Degrees Inversions: Method
of “Installing into Separatrix”
with Pole-Separatrix-Pole Transfer

5.10.1 Applications of Acrobatic Missions

It is believed that new results of this research may have multiple applications. We
would like to propose and list a few of them, which may be useful in planning new
space missions:

1. Assistance in establishing formation flight:

Eject one spacecraft in the forward direction, and then, after one flip, eject
another spacecraft in the opposite direction, so that the formation flying is achieved
in orbit around the Earth or other planet or celestial body (comet, asteroid).



5 Inertial Morphing as a Novel Concept in Attitude Control and Design. . . 177

2. Thruster direction control:

To boost (accelerate) or decelerate spacecraft velocity by only one thruster. Of
course, deep space mission vehicles change its attitude to boost (escape from the
Earth) and to decelerate its velocity when it enters to an orbit around another planet.

Usually other small thrusters (or reaction wheels) are used to change attitude
of vehicles. In addition to this, our new proposed method could be also used for
changing the attitude of the spacecraft and its following stabilisation in the fixed
body frame.

3. Frequency of “flipping” motion control:

Inertial morphing can be used to control within wide range the frequency of the
“flips” for the “Garriott’s-Dzhanibekov’s effect” mode. However, we showed that
there is a minimum (i.e. low bounding limit) for the period of these oscillations.

5.10.2 Illustrated Description of Application of IM for
Thruster Direction Control

Figure 5.39 is dedicated to one (out of many) possible application of the IM. It
illustrates inversion of the spacecraft, using two morphing procedures: the first is to
activate unstable flipping motion and second is to stop flipping motion. This enables
for a single thruster to be used for acceleration of the spacecraft (boosting stage,
Fig. 5.39a) and also for its deceleration (braking stage, Fig. 5.39f).

Fig. 5.39 Examples of application of inertial morphing for inversion of spacecraft [9]: (a–f) 180◦
inversion, allowing to use the same thruster for the boost and braking stages
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Fig. 5.40 Positions of the
masses during spacecraft
inversions via inertial
morphing for acrobatic
manoeuvre in Fig.
5.39(a)–(e): 180 degrees
inversion, illustrated for
six-mass spacecraft
conceptual model [9]

5.10.3 Fast 180 Degrees Inversion of the Spacecraft

To demonstrate the feasibility of the proposed application, let us consider six-
mass model of the spacecraft with corresponding numerical parameters mx = 4 kg,
my = 5 kg; mz = 1 kg. The key requirement to this design would be the ability of
the system to reposition six paired masses (e.g. via linear actuators), in accordance
to the control considerations. Let us assume that the mission profile would enable
instalment of the spacecraft with initial predominant spin about y-axis (with angular
velocity ωy,i = 8.57 and other components of ω being small: ωx,i = ωz,i = 0.01,
all in rad/s). If the masses are initially positioned at their locations, shown in Fig.
5.40 with white spheres, with position radii equal to rx,i = 548, ry,i = 510, and
rz,i = 447 mm correspondingly, then the inertial properties of the spacecraft would
be Ixx,i = 3; Iyy,i = 2.8; Izz,i = 5 (all in kg × m2). With these selected parameters, the
y spin of the system would be stable, as axis of rotation coincides with the minimal
inertia axis.

Let assume that at the instant t = 10 s we wish to initiate flipping motion of
the system. This can be achieved by applying inertial “Morphing-1”, during which
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moment of inertia Iyy should become an intermediate axis. Aiming for the new
moments of inertia to be Ixx,1 = 3; Iyy,1 = 3.4; Izz,1 = 5 (kg × m2), we calculate
new radii for the masses, using the following relationships, as per Eq. (5.39):

rx1 = 1
2

√(
Iyy,1 + Izz,1 − Ixx,1

)
/mx

ry1 = 1
2

√(
Izz,1 + Ixx,1 − Iyy,1

)
/my

rz1 = 1
2

√(
Ixx,1 + Iyy,1 − Izz,1

)
/my

(5.45)

Resultant values of the new position radii, ensuring transition of the system
from stable regular spin to the flipping unstable motion, are as follows: rx1 = 581,
ry1 = 480 and rz1 = 592 mm. Therefore, to trigger the spinning motion, it is
just necessary to move paired masses from initial positions (shown in Fig. 5.40
with white spheres) to their new positions, shown with black spheres. For better
perception of the 3D design, an imagined semi-transparent xz plane is added to the
figure.

For the system, initially satisfying Iyy,i < Ixx,i < Izz,i condition, rapid assignment at
t = 10 s of the new moments of inertia, satisfying now Ixx,1 < Iyy,1 < Izz,1 condition,
transfers regular y spin motion into unstable spin. Its period can be calculated using
Eqs. (5.15, 5.16, 5.17, 5.18 and 5.19) for the corresponding regular spin conditions
at t = 10 s:

• Ixx,1 = 3, Iyy,1 = 4.8, Izz,1 = 5, ωx1 = −0.2917, ωy1 = 5.0284, ωz1 = −0.6714.

Calculations give us T = 17.784 s; therefore, the time to 180◦ flip would be
T/2 = 8.8920 s. At this very moment, rapid “Morphing-2” should be applied to
stop flipping phase and stabilise the system. For this morphing, in accordance with
[3], any set of new moments of inertia can be selected, strictly satisfying any of the
two conditions: Iyy,2 < Ixx,2 < Izz,2 (“solution Iyy min” strategy) or Ixx,2 < Izz,2 < Iyy,2
(“solution Iyy max” strategy). In one case scenario, return to the initial moments
of inertia can be implemented. However, as an additional example, we illustrate
implementation of the Ixx = 3, Iyy = 5.2, Izz = 5 (“solution-1” strategy) scenario.
To achieve these new inertia characteristics, as per Eq. (5.39), spacecraft control
masses should be rapidly moved to their final positions: rx2 = 671, ry2 = 374 and
rz2 = 894 mm.

The described morphings (achieved via controlled changes in rx(t), ry(t) and
rz(t)), time histories for the resulting moments of inertia, angular velocity and
angular momentum components are presented in Fig. 5.41. Interestingly, that rapid
changes in ωy and Iyy do not lead to similar changes in Hy . Also, as evidenced
by Fig. 5.41c, the total angular momentum |H| is conserved during the flipping
acrobatics (Figs. 5.42 and 5.43).
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Fig. 5.41 Variation of the system’s parameters during fast 180 degrees inversion: (a) principal
moments of inertia and their derivatives, (b) angular velocity and non-dimensional angular
momentum components and (c) Euler angles

5.10.4 Slow 180 Degrees Inversion of the Spacecraft (Figs.
5.44, 5.45 and 5.46)

The same principle can be used for complete reconfiguration (“repackaging”) of
the articulated compound spacecraft, consisting, for example, of three segments
A1-B1, B2-C2 and C3-D3. If all of these segments are un-docked, they can
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Fig. 5.42 Radii of the KEE and kinetic energy E of the system during 180 degrees inversion

independently perform the same flipping manoeuver, as described above, and then
(after stabilisation) docked to a new configuration: B1-A1, C2-B2 and D3-C3. Note
that the reconfiguration can be applied to the selected segments only and to the
spacecraft with any number of segments. For example, if only central segment B2-
C2 is inverted, the new configuration would be A1-B1, C2-B2 and C3-D3.

5.11 Inertial Morphing in Novel Designs of Acrobatic
Spacecraft for De-tumbling: Method of “Installing into
Separatrix” with Polhode-Separatrix-Pole
or Polhode-Polhode-Separatrix-Pole Transfer

5.11.1 Application of Inertial Morphing to the Tumbling
Spacecraft Model: Observations

In the classical “Garriott’s-Dzhanibekov’s effect” cases, the rigid body is “given”
and its inertial properties are assumed fixed. Moreover, typically, it is assumed that
the rigid body/system is provided with most prominent rotation about the y-axis,
with two other rotations being very small.

Let us explore more general case where we will also allow other rotations to
be more significant. Assume, for example, the following parameters of the system:
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Fig. 5.43 Collocated AMS and KEE for different stages of the 180◦ inversion: (a) t = 0.6 s, (b)
t = 2.1 s, (c) t = 9.9 s, (d) t = 10s, (e) t = 13.1 s, (f) t = 14.2 s, (g) t = 14.7 s, (h) t = 16.4 s and
(i) t = 19–28 s
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Fig. 5.44 Variation of the system’s parameters during slow 180 degrees inversion: (a) principal
moments of inertia and their derivatives, (b) angular velocity and non-dimensional angular
momentum components and (c) Euler angles

Ixx = 0.3, Iyy = 0.395, Izz = 0.4 (all in kg × m2), with the initial conditions ωx,i = 3,
ωy,i = 15, ωz,i = 0.1 (all in rad/s). System can be simulated, using Eq. (5.7). The time
history of the angular velocity components is given with Fig. 5.47. Firstly it shows
that the initially small x-rotation is quickly evolving and becoming comparable with
initially dominant y-rotation. Also, it shows that the pattern of motion is different
from the observations in the Garriott’s–Dzhanibekov’s effect cases: the angular
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Fig. 5.45 Variation of the system’s parameters during slow 180 degrees inversion: (a) values of
the semi-major axes and (b) AMS and KEE for the initial instant (on the left) and after completion
of the I (on the right)

velocity curves are free from distinct sharp gradients, which prompts that there are
no intermitted fast and slow phases.

Quick analysis of the Euler angles in Fig. 5.47 suggests that the motion of
the body can be characterised as tumbling, due to active involvement of several
rotations.

The H sphere and K ellipsoid can be also constructed for the case. They are
shown in Fig. 5.48, which shows two lines of intersection between H sphere and K
ellipsoid, with only one being the solution hodograph. Figure 5.48 also confirms
previous observation: the density of the step points on the hodograph is rather
uniform, and the arrows of the quiver plot have almost the same length.

In the following series of experiments, we will be using extended Euler’s
equations, taking into account variations in the system’s moment of inertia.

In the next several experiments, we will be starting simulation of the system
with these parameters, Ixx = 0.3, Iyy = 0.395, Izz = 0.4 (all in kg × m2), with the
initial conditions ωx,i = 3, ωy,i = 15, ωz,i = 0.1 (all in rad/s), and then will initiate
morphing of the system at different times in the experiments.

Firstly, let us apply morphing, as per Fig. 5.49.
Reduction of the y moment of inertia leads to the slight increase in its y

angular velocity, as evidenced by Fig. 5.50a with time histories of angular velocity
components.

In fact, as the angular momentum is conserved, the ωy is expected to increase
to 15*(0.395/0.350) = 16.9 rad/s. However, this leases to the change in the kinetic
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Fig. 5.46 180 degrees inversion of the spacecraft, using IM: flipping acrobatic spacecraft “draws”
on the dome with y intermediate body axis (on the left) concurrently with the AMS/KEE simulation
Virtual Reality control panel (on the right): (a) spacecraft initially is in stable spin; (b–d) transition
stage, when spacecraft flips after unstable mode is activated with first IM; and (e) spacecraft is in
stable spin, stabilised with the second IM
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Fig. 5.46 (continued)

energy of the system: change from 45.79 to 51.32 [kg × m2/s2]. As a result of
this, the semi-major axes of the energy ellipsoid should be re-calculated, using Eq.
(5.12), giving us the following numbers:

• Initial semi-major axis of the KEE: 0.8746, 1.0036, 1.0099
• Final semi-major axis of the KEE: 0.9271, 1.0014, 1.0706.

These numbers suggest that the kinetic energy ellipsoid is now bulging more in
the areas of its poles. In view of changed K shape, we now need to show two sets
of collocated H sphere and K ellipsoid, corresponding to the stages before and after
morphing (applied at 3.32 s), as shown in Fig. 5.50.

Note that the angular velocity vector is now escaping from its initial hodograph,
leaving it at the point S (corresponding to 3.32 s) and continuing its motion along
another trajectory on another H sphere from point S.

It is interesting to realise that the hodograph trajectory is very sensitive to
the instant of initiation of morphing. To illustrate this, we perform two more
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Fig. 5.47 Time histories of the parameters of the study case system with Ixx = 0.3, Iyy = 0.395,
Izz = 0.4 (all in kg × m2), with the initial conditions ωx0 = 3, ωy0 = 15, ωz0 = 0.1 (all in rad/s):
(a) angular velocities and (b) Euler angles

experiments, this time, applying morphing at 4 s. Geometric interpretation of this
case, presented in Fig. 5.51, shows that the after-morphing hodograph is now
circling around the z-axis, which is in contrast to Fig. 5.50, showing coning/circling
about x-axis. Figure 5.51 is also suggesting that the period of the circling has been
reduced after the morphing.

Two more cases are presented for completeness. They are illustrated with Figs.
5.52 and 5.53. They look similar in terms of the rotational motion; however, their
hodographs are at the different poles of the H sphere, on the “North” and on the
“South” poles.

These simple experiments with the application of the same inertial morphing are
showing importance of the instant, when this IM is applied, and also they show
variety of results to be achieved. In particular, it was possible from common initial
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Fig. 5.48 Angular
momentum sphere (AMS)
and kinetic energy ellipsoid
(KEE) for the system with
compound rotations

Fig. 5.49 Time history of the controlled manipulation with the moment of inertia Iyy

polhode to transfer to new polhodes around various body axes. Essentially, in all of
these experiments, we were able to transfer from one polhode to another. In the next
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Fig. 5.50 Simulated results for the inertial morphing in Fig. 5.49 applied at t = 3.32 s: (a) time
histories of the angular velocity components; (b) AMSs (blue) and KEEs (red) shown before (on
the left) and after (on the right) inertial morphing was initiated at t = 3.32 s; (b) continuous
hodograph of the non-dimensional angular momentum vector

section, a rigorous method of selection of the new polhode and timing for the IM
will be presented and illustrated with particular examples.

5.11.2 Formulation of the Conceptual Solution for
De-tumbling of the Spacecraft, Using “Installing into
Polhode” via “Polhode-to-Polhode” Transfer

Figure 5.54 shows a conceptual of the “installing into polhode” method with
“polhode-to-polhode transfer, with the conjugate transition point shown as white
dot. It is important that this can be seen as transition between polhodes, associated
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Fig. 5.51 Simulated results for the inertial morphing in Fig. 5.49 applied at t = 4 s: (a) time
histories of the angular velocity components; (b) AMSs (blue) and KEEs (red) shown before (on
the left) and after (on the right) inertial morphing was initiated at t = 4 s; (c) continuous hodograph
of the non-dimensional angular momentum vector for the case of inertial morphing, initiated at
t = 4 s

with different poles, being z and y poles in this example. As a particular case, the
second polhode can be selected to be a separatrix. And this case is presented in the
next section.

5.11.3 Detailed Example on “Installing into Polhode” via
“Polhode-to-Polhode” Transfer (Fig. 5.55)

Figure 5.56(a) shows non-dimensional angular momentum sphere with two sepa-
ratrices and sets of representative polhodes for the wide range initial conditions. It
also shows, as a blue bold line, a specific polhode (or hodograph of the H vector)
for the Phase-1 conditions: Ixx = 2, Iyy = 3, Izz = 4, ωx,i = 0.4, ωy,i = 1, ωz,i = 0.8.

If the spacecraft possesses inertial morphing capabilities, then the “switch” to any
new inertial properties can be simulated and illustrated graphically. Let us assume,
for illustration purposes, that the new principal moments of inertia are Ixx = 3.5,
Iyy = 3, Izz = 4. Then, for the Phase-2, its own non-dimensional angular momentum
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Fig. 5.52 Simulated results for the inertial morphing in Fig. 5.49 applied at t = 5 s: (a) time
histories of the angular velocity components; (b) AMSs (blue) and KEEs (red) shown before (on
the left) and after (on the right) inertial morphing was initiated at t = 5 s; (c) continuous hodograph
of the non-dimensional angular momentum vector for the case of inertial morphing, initiated at
t = 5 s

sphere with two separatrices and sets of representative polhodes (for the wide range
initial conditions) can be also produced (see Fig. 5.56b). Morphing can be applied
at any stage during the execution of Phase-1. For certainty, let us also assume that
the morphing is rapidly applied at t = 21.5 s instant. Then, the new corresponding
angular velocities of the spacecraft could be calculated, using Eqs. (5.36).

5.11.4 Control Method of Installing into Separatrix Using
Inertial Morphing: Geometric Interpretation

Using torque-free case Euler’s Eq. (5.3) and employing numerical simulator of the
rotational motion of the morphing spacecraft [3], let us produce various sets of the
feasible polhodes. Figure 5.57 presents three contrast cases, where Ixx < Iyy < Izz
and intermediate value of Iyy is (a) close to Ixx, (b) almost equally distant from Ixx
and Izz and (c) Iyy close to Izz. These three cases are characterised with the following
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Fig. 5.53 Simulated results for the inertial morphing in Fig. 5.49 applied at t = 8 s: (a) time
histories of the angular velocity components; (b) AMSs (blue) and KEEs (red) shown before (on
the left) and after (on the right) inertial morphing was initiated at t = 8 s; (c) continuous hodograph
of the non-dimensional angular momentum vector

non-dimensional ratios between the principal moments of inertia Ixx: Iyy: Izz: (a)
1:1.02:1.26; (b) 1:1.144:1.26; (c) 1:1.22:1.26.

It is quite clear that polhodes can be grouped, based on their “association” with
the y (also coinciding with Hx) and z (also coinciding with Hz) axes, both being
stable axes of rotation. Figure 5.57 distinguishes with bold black lines transition
polhodes (called separatrices) between two areas of stable periodic rotations about
the x and z axes. Note that separatrices pass through the y (coinciding with Hy) –
axis of intermediate inertia.

The separatrices, shown in Fig. 5.57, are critical for the explanation of the
“Garriott’s-Dzhanibekov’s effect” and “tennis racket theorem” [3], during which
the object being spun about their intermediate axis y is performing periodic flips,
seen as the periodic change of its attitude in the global coordinate system by 180◦.
As it can be observed from the Fig. 5.57, during the Garriott’s-Dzhanibekov’s effect
classical demonstration, for example, using T-handle [14], the system is usually
provided with predominant rotation about its axis, coinciding with the intermediate
moment of inertia axis. Using the geometric interpretation, it can be said that at the
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Fig. 5.54 Conceptual demonstration of the “installing into polhode” method with “polhode-to-
polhode transfer, with the conjugate transition point shown as white dot

Fig. 5.55 Non-dimensional angular momentum spheres with polhodes and separatrices and
truncated specific hodographs for (a) Phase-1 (before inertial morphing) conditions – Ixx = 2,
Iyy = 3, Izz = 4, ωx,i = 0.4, ωy,i = 1, ωz,i = 0.8; specific hodograph shown with blue line – and (b)
Phase-2 (after inertial morphing) conditions: Ixx = 3.5, Iyy = 3, Izz = 4, ωx,tQ = 0.7133, ωy,tQ =
−0.7318, ωz,tQ = 0.9016, tQ = 21.5 s; hodograph shown with red line

initial instant, the system is “inserted” in one of the saddle points on the y-axis (i.e.
point #3 or #4 in Fig. 5.13 notations), where separatrices intersect.
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Fig. 5.56 Illustration of the transition between Phase-1 and Phase-2 of the inertial morphing of
the system: (a) side 3D view; (b) z-axis 2D view

Therefore, any small applied disturbance leads to the trigger of the unstable
motion along one of the polhodes, standing very close to one of the separatrices,
shown in bold black in Fig. 5.57.

For completeness, we should compare the shapes of the polhodes, as seen from
various points of view. For this purpose, we take the AMS with plotted polhodes for
the case shown in Fig. 5.5c (Ix: Iy: Iz = 2.5: 3.05: 3.15). Then we show in Fig. 5.57
(d)–(f) three orthogonal projections of the AMS for case (c).

Polhode projections on the
(
Hy,Hz

)
plane (shown in Fig. 5.57d) are represented

by ellipses. In the illustrated case, these ellipses have small eccentricity and
resemble circles. However, strictly speaking, they are ellipses.

Polhode projections on the
(
Hx,Hz

)
plane (shown in Fig. 5.57e) are represented

by hyperbolas. However, projections of the separatrices are given by straight lines,
and we will prove this shortly. These projections of the separatrices along the
intermediate axis view are the key for the proposed method.

Polhode projections on the
(
Hx,Hy

)
plane (shown in Fig. 5.57f) are represented

by ellipses. For the particular set of selected principal moments of inertia in the
demo case, these ellipses have high eccentricity.

Comparison of the polhodes in Fig. 5.57a, b, c, viewed from the intermediate axis
direction y shows that the tilt of the separatrices varies within substantial range and is
a function of the relative location of the intermediate moment of inertia Iyy between
the minimum value of the principal moments of inertia (Ixx) and the maximum value
of the principal moments of inertia (Izz). Next, we establish analytical relations for
these parameters.

In this current study we consider various cases of the inertial morphing, during
which each of the initially assigned body axes, x, y and z could become an
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Fig. 5.57 Feasible polhodes for three contrast cases, characterised with the same minimum and
maximum values of principal moments of inertia but different intermediate values (hence, ratios
Ixx: Iyy: Izz): (a) Ixx = 2.5; Iyy = 2.55; Izz = 3.15, (b) Ixx = 2.5; Iyy = 2.86; Izx = 3.15, (c)
Ixx = 2.5; Iyy = 3.05; Izz = 3.15 (all in kg × m2); (d) x-view of Case (c); (e) minus y-view of
Case (c); (f) z-view of Case (c)

intermediate axis. However, for derivation of some useful analytical relationships,
let us assume first that:

Ixx < Iyy < Izz (5.46)
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This assumption would also mean that:

ax < ay < az (5.47)

If, in view of these assumptions, we divide Eq. (5.23) by a2
y and subtract

resultant equation from Eq. (5.30), we can eliminate Hy , which leads us to a very
important relationship, describing slopes of the projections of the separatrices on
the

(
Hx, Hz

)
plane, being normal to the intermediate axis:

Hx

Hz

=

√
√
√
√
√

a2
x

(
a2
z − a2

y

)

a2
z

(
a2
y − a2

x

) =
√

1 − a2
yz

a2
yx − 1

; (
only valid if Ixx < Iyy < Izz

)

(5.48)

where ayz = ay/az and ayx = ay/ax.
From Eq. (5.31) we can conclude that:

Ixx

a2
x

= Iyy

a2
y

= Izz

a2
z

= const (5.49)

In view of this, we can present Eq.(5.48) in an alternative format:

Hx

Hz

=
√

Ix

(
Iz − Iy

)

Iz

(
Iy − Ix

) (5.50)

Let us call the α-angle from the vertical direction Hz to the plane of separatrix a
tilt angle. Then:

α = arctan

(
Hx

Hz

)

; (
only valid if Ixx < Iyy < Izz

)
(5.51)

As an example, we produce a particular plot of the values of the α-angle during
variation of Iyy between given values of Ixx = 2.4 and Izz = 3.15 to be used in the
upcoming simulation cases (Fig. 5.58).

However, in this work we are dedicated to the non-dimensional construction
of the analytical tools. With this in mind, let us represent results in Eqs. (5.44
and 5.45) in non-dimensional format. For this purpose, let us employ a non-
dimensional variable ξ introduced with Eq. (5.10), enabling to express the value
of the intermediate moment of inertia via Eq. (5.11), reproduced below:

Iyy = Ixx (1 − ξ) + Izzξ (5.52)
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Fig. 5.58 Variation of the α-angle for separatrix (measured from vertical) due to the variation in
Iyy, based on Eqs. 5.50 and 5.51

Zero value of ξ would now correspond to Ixx and unit value of ξ would
correspond to Izz and any intermediate value of Iyy could be expressed via 0 < ξ < 1.

With these notations, Eqs. (5.44 and 5.45) can be now expressed as a function
of ξ :

α = arctan

(√(
Ixx

Izz

)(
1

ξ
− 1

))

; (
only valid if Ixx < Iyy < Izz and 0 < ξ < 1

)

(5.53)

Equation (5.47) can be plotted as a 3D surface, corresponding to the α, being
a function of two non-dimensional variables: (1) variable ξ , describing relative
“location” of Iyy between Ixx and Izz, and (2) ratio (η = Ixx/Izz), which is subject to
the inequalities 0 < Ixx/Izz < 1. This 3D surface plot is shown in Fig. 5.59, together
with superimposed plot from Fig. 5.58 and also level lines, corresponding to the
angles α = [10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦], i.e. with equal 10◦ increments.

As mentioned before, this study is not restricted to the cases, stipulated by Eq.
(5.40), as in our work intermediate axes may vary during the simulated scenarios.
In the cases of the change of the intermediate axes, for example, when intermediate
axes change from y to x, (i.e. when after morphing is applied, the new moments
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Fig. 5.59 Variation of the
α-angle for separatrix
(measured from vertical) due
to the variations in ξ and ratio
(Ixx/Izz)

of inertia would satisfy Iyy < Ixx < Izz), Eqs. (5.44 and 5.45) must be rewritten as
follows:

Hy

Hz

=
√
√
√
√
√

a2
y

(
a2
z − a2

x

)

a2
z

(
a2
x − a2

y

) =
√

1 − a2
xz

a2
xy − 1

; (
only valid if Iyy < Ixx < Izz

)

(5.54)

α = arctan

(
Hy

Hz

)

; (
only valid if Iyy < Ixx < Izz

)
(5.55)

Similarly, when intermediate axes change from y to z (i.e. when after morphing
is applied, the new moments of inertia satisfy Ixx < Izz < Iyy), Eqs. (5.50 and 5.51)
must be rewritten as follows:

Hx

Hy

=

√
√
√
√
√

a2
x

(
a2
y − a2

z

)

a2
y

(
a2
z − a2

x

) =
√

1 − a2
zy

a2
zx − 1

; (
only valid if Ixx < Izz < Iyy

)

(5.56)
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α = arctan

(
Hx

Hy

)

; (
only valid if Ixx < Izz < Iyy

)
(5.57)

As this has been mentioned before, if the spinning system is initially provided
with a predominant spin about the intermediate axis of inertia, the flipping motion
could be initiated. Essentially, this is a very special case of the motion, initiated
with particular initial conditions. Geometrically, this would mean that the tip of the
angular momentum vector of the system is initially “inserted” in one of the saddle
points, where separatrices are intersecting. This means that the vector of initial

angular momentum
−→
HG(0) is initially aligned with y-axis! And, as the angular

momentum is conserved, the total vector of the angular momentum keeps its initial
orientation in the global XYZ coordinate system all the time, allowing AMS to rotate
about centre of the mass G in the body-axis system with y-axis periodically coming

to the initial alignment with vector
−→
HG(t). With this, from Fig. 5.57, it is quite

obvious that with this particular initial condition, the system has to follow one of
the polhodes, located very close to the separatrix.

5.11.5 Control Method of Installing into Separatrix, Using
Inertial Morphing: Selection of the IM Parameters
and IM Activation Time

Let us consider a task of stabilisation of a spacecraft, which is initially in tumbling
motion. Geometric interpretation of the inversion of the spinning body about its
intermediate axis also offers an effective solution for this task.

Apart from traditional use of the flipping motion for spacecraft inversion, we
are suggesting its another application: it can be used as a “vehicle”, pulling the
angular momentum vector away from the tumbling polhode and “driving” it along
the separatrix to the saddle point, which, after stabilisation at this point, can be called
a “parking” point. However, the whole manoeuvre would require application of the
inertial morphing a few (two or more) times!

First morphing would be required to transfer the system from its initial polhode
into separatrix, corresponding to the supplementary case of unstable flipping
motion. This is needed to force the H vector to get to the saddle point, where
two of its components Hx and Hz are close to zero. Second morphing would be
very similar to the one described in the previous section and would be required for
stopping the flipping motion of the system.

During flipping process, the system’s angular velocity vector “spends” consid-
erable time in the vicinity of the saddle points, where only one component of the
angular momentum

(
Hy

)
has the most prevailing value, with two other components

(
Hx and Hz

)
having very small values. After leaving the saddle points, the angular

momentum vector performs rapid transit to the opposite saddle point, using adjacent
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Fig. 5.60 Particular study case: Ixx = 2.4, Iyy = 2.5, Izz = 3.15 (all in kg × m2), ωx0 = −4.93,
ωy0 = 2.73, ωz0 = 5.75 (all in rad/s): (a) polhode (shown with red line), (b) separatrices (shown
with black thick lines)

separatrix. During transition stage, all magnitudes of the angular velocity vector
have comparable absolute values.

However, in the general case, when initial conditions are not selected in rather
unique way, the system performs compound rotation, involving all, x, y and z
rotations. One of the particular illustration cases [Ixx = 2.5, Iyy = 2.4, Izz = 3.15
(all in kg × m2), with the initial conditions ωx,i = −4.93, ωy,i = 2.73, ωz,i = 5.75
(all in rad/s)] is presented in Fig. 5.60, where polhode is shown as red line.

For the initiated motion shown, it may be desirable to stabilise spacecraft,
reducing compound rotations (with all, ωx, ωy, ωz) involved to a rotation with only
y rotation.

This would mean that we need to reduce (shrink) current trajectory, given by
the red polhode in Fig. 5.60 to a point, marked as #3. However, this point is only
accessible from the polhode, close to the separatrix. Current separatrices, shown in
Fig. 5.60b with bold black lines, are not accessible, as the current polhode does not
intersect any of the separatrices.

Solving Euler’s Eqs.(5.3) for the particular case data, we can determine the
maximum projected angle for the point on the polhode, denoted as α1 in Fig. 5.61.
Its value is equal to |α1| = 36.1

◦
.

Using Eqs. (5.60 and 5.61), we can calculate the incline angle of the separatrix,
shown in Fig. 5.61 (being a semi-transparent y projection of the AMS in Fig. 5.60b)
as α2. Its value is equal to |α2| = 65.8

◦
.

This prompts a solution to the task: in order for the current hodograph of the
angular momentum vector trajectory (along polhode) to be switched to the saddle
point, or “parking” point (shown as point #3 in Fig. 5.13), we need to aim to get
to the separatrix, applying morphing to the system. In other words, we will aim



5 Inertial Morphing as a Novel Concept in Attitude Control and Design. . . 201

Fig. 5.61 Calculation of the
important angles for the
illustration study case
[Ixx = 2.4, Iyy = 2.5,
Izz = 3.15, ωx,i = −4.93,
ωy,i = 2.73, ωz,i = 5.75]: (a)
α1, minimum incline angle
for the polhode; (b) α2,
incline angle for the
separatrix plane

to “insert” hodograph of the system into the separatrix. In order to achieve this
objective, parameters of the morphing should be carefully selected to ensure that
the associated incline angle |αnew|for the new inertial properties is increased and is
exactly equal to |α1| = 36.1

◦
.

If we keep the values of Ixx and Izz unchanged and if we keep the value of Iyy
between Ixx and Izz, then we can get from Eqs. (5.50 and 5.51) solution Iyy = 2.84
for this study case. Graphical solution of the task is illustrated in Fig. 5.62.

Moreover, success of implementation of this solution (enabling to get to the
hodograph of H vector to the parking point #3) is a subject to the right moment
of activation of this morphing. In our case, we select the instant, when the angular
momentum vector is in the

(
Hx,Hz

)
plane.

This concludes stage-1 (out of two) for the whole manoeuvre. When hodograph
is on the orbit, which is close to the separatrix, “flipping” motion is activated. If we
wish to stop flipping, another morphing is needed to convert unstable motion into
stable. This can be done via application of the morphing, assigning Iyy a new value,
which would be the smallest or largest value out of all moments of inertia. Therefore,
there could be two classes of solutions to stabilisation of the second stage.

For demonstration purpose, we select solution-2 [5], assigning Iyy a value of 3.5,
which would make Izz a new intermediate value.

Similar to the stage-1 morphing-1, time of activation of the morphing-2 is also
very important. We apply morphing at the instant, when hodograph reaches the
desired one (out of two) parking point on the axis y.
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Fig. 5.62 Determination of the new morphing value of the principle intermediate moment of
inertia Iyy for stabilising spin around the y-axis

5.11.6 Example of the “Flipping”-Assisted Stabilisation
(De-tumbling) of the Tumbling Spacecraft, Using
Inertial Morphing

We demonstrate in detail stabilisation of the tumbling spacecraft, using the proposed
method. The key to understanding this method is with the graphical interpretation
of the attitude dynamics.

Let us assume that the spacecraft with given initial values of the moments of
inertia (Ixx = 2.5, Iyy = 2.4, Izz = 3.15) is originally in arbitrary free rotation,
involving all three angular velocities, as shown in Fig. 5.63a.

This motion can be visualised, using intersecting kinetic energy ellipsoid and
angular momentum sphere, as shown in Fig. 5.63b. The genuine length H vector
cannot be used for visualisation as its length is equal to 1, and it would not be seen at
any instant, as it would be completely hidden by the embracing angular momentum
sphere with unit radius. Therefore, for visualisation of the instantaneous orientation
of H in Fig. 5.63b, we use a black line with a dot at its end and extruding beyond the
surface of the sphere. The godograph of the H vector is shown with a black line on
the surface of the angular momentum sphere, coming strictly along the intersection
between the AMS and KEE.

Let us set a task to control rotations of the system, via the changes of the values
of its principal moments of inertia.
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Fig. 5.63 Illustration of the spacecraft tumbling motion: (a) time history of ωx, ωy, ωz –

components of its angular velocity vector −→
ω ; (b) graphical interpretation of the motion, using

KEE and AMS

In each case of using flipping mode for escaping from the closed smooth polhode,
we need to apply change to moments of inertia, which could be calculated based on
the parameters of the targeted separatrix, using Eqs. (5.50), (5.51) or (5.53).

An example of complete set of morphings, stabilising the system about the y-axis,
being initially in the tumbling state as per Fig. 5.64, is presented in Figs. 5.65, 5.66,
5.67 and 5.68. Figure 5.65 explains the sequence and nature of inertial changes.
Figure 5.66 gives consecutive snapshots from the simulation process, illustrating
changes of the kinetic energy ellipsoid and polhodes – resultant feasible trajectories
for the angular momentum vector. Figure 5.68 shows time histories for the angular
momentum components and also values of the kinetic energy semi-major axes.

Figure 5.65 explains the sequence and nature of the inertial changes, deliberately
applied to the system. Figure 5.66 gives consecutive snapshots from the simulation
process, illustrating changes of the kinetic energy ellipsoid and polhodes – resultant
feasible trajectories for the angular momentum vector.

It is interesting to observe that at the initial stage of the motion of the system, its
e2 body axis ort is “drawing” a pretty spread trajectory on the “dome” (Fig. 5.67a).
However, after stabilisation is completed, this trajectory is essentially reduced to the
point (Fig. 5.67b). Also, at the last stage of the simulation, trajectories for e1 and
e3 are very close to the equatorial plane, which confirms that the stabilised motion
is close to the rotation of the body along the direction of the angular momentum
vector. The feature of the example is the final direction of the y-body axis system,
selected for stabilisation in this example, which is opposite to the direction of H. If
the goal of stabilisation was to have them both aligned, then third stage should be
activated at instant close to 15 s, as evidenced by Fig. 5.68.
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Fig. 5.64 Sets of feasible polhodes for the system with Ixx = 2.5, Iyy = 2.4, Izz = 3.15

Fig. 5.65 Two-stage stabilisation (de-tumbling) of the tumbling spacecraft via morphing: time
history of the Ixx, Iyy, Izz
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Fig. 5.66 Critical instances of spacecraft stabilisation: (a) start of the simulation; (b) initially,
hodograph is “circling” around z-axis; (c) stage-1 ends, and transition to “flipping” is initiated,
t = 9.792 s; (d) approach to the saddle point-1, t = 12 s; (e) near the saddle point-1 (possible
“parking” or stabilisation point), t = 15 s; (f) passing saddle point-1, t = 19 s; (g) approach to the
saddle point-2, t = 22 s; (h) stage-2 ends and third stage starts at t = 26 s, parking at the stable
“saddle point-2 attractor” is activated and de-tumbling (stabilisation) is completed

5.11.7 Reversing Vector of Angular Momentum
on the Separatrix, Installing Its Godograph into
the Same Separatrix

For any system with Imin, Iint and Imax, regardless of the values of the initial
velocities ωx, ωy and ωz, there is a set of two polhodes, which plane has an angle
αprime with the Hmax axis. For example, in case of Ixx < Iyy < Izz, the α-angle
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Fig. 5.67 “Balls of wool” for (a) the first stage of spacecraft motion with tumbling/coning
(t = 0 s); (b) last stage of stabilisation of the spacecraft (t = 0.6842 s) with e1, e2 and e3 intersection
lines with the “dome”

Fig. 5.68 Time history of (a) Htotal, Hx, Hy, Hz; (b) ax, ay and az during two-stage stabilisation
(de-tumbling) of the tumbling spacecraft via inertial morphing

can be calculated using Eq. (5.51) or Eq. (5.53). This can be illustrated with the
pair of collocated surfaces, AMS and KEE, and for the particular illustration case,
Ixx < Iyy < Izz these two surfaces, which we will call prime surfaces, are shown in
Fig. 5.69c. However, there is another pair of two surfaces, AMS and KEE, which
we will call dual surfaces, with Izz < Iyy < Ixx, which have the same intermediate
axis and the same separatrix.

The “prime” and “dual” surfaces are shown in Fig. 5.69 in each row for the x, y
and z flipping motions.

For the dual surfaces in the illustration example, the angle αdual should be
measured from the separatrix plane to the axis with maximum moment of inertia,
and it is a complimentary angle to αprime:



5 Inertial Morphing as a Novel Concept in Attitude Control and Design. . . 207

Fig. 5.69 Prime combinations of KEE and AMS for “Garriott’s-Dzhanibekov’s effect” flipping
motion and their dual counterpart combinations: (a)–(b) for x being an intermediate axis; (c)–(d)
for y being an intermediate axis; (e)–(f) for z being an intermediate axis
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αdual = 90
◦ − αprime ⇒ tan (αdual) = tan−1 (αprime

)
(5.58)

The dual surfaces for Fig. 5.69c case are shown in Fig. 5.69d, located in the
same row. New morphed moments of inertia for the dual case can be calculated as
follows: we can first set any new values for the minimum and maximum values of
the moments of inertia in a dual: Izz, dual < Ixx, dual. And, then, the intermediate value
can be calculated, using adjusted Eq. (5.53), solved for the value of the intermediate
moment of inertia and for the current example, and can be written in the explicit
form:

Iyy =

[(
tan−1αprime

)2 + 1

]

Izz

(
tan=1αprime

)2 +
(

Izz

Ixx

) =

[(
tan−1αprime

)2 + 1

]

(
tan−1αprime

)2 + η
Imin, where η = Imin

Imax
= Izz

Ixx

(5.59)

As a particular numerical simulation example, let us consider the case of the
system with initial Ixx,i = 0.3, Iyy,i = 0.35, Izz,i = 0.4 (all in kg × m2), and
ωx,i = 0.1, ωy,i = 15, ωz,i = 0.1 (all in rad/s). With these conditions, the system starts
classical “Garriott’s-Dzhanibekov’s” flips, during which the godograph of the non-
dimensional angular momentum vector is sliding along the line, being close to the
separatrix. Angle of the plane of the separatrix with the “z” axis can be determined,
using Eqs. (5.50 and 5.51):

α = atan (sqrt (0.3 ∗ (0.4 − 0.35) / (0.4 ∗ (0.35 − 0.3)))) ∗ 180/π = 40.8934
◦

This angle is related to the KEE, bulging over the AMS along the “z” axis.
However, the same separatrix would characterise the “dual” KEE, which is bulging
over the AMS along the “x” body axis, corresponding to:

Ixx,f = 0.4 and Izz,f = 0.3
(

all in kg × m2
)

and αdual = 90
◦ − 40.8934

◦ = 49.1066
◦

(5.60)

Equation (5.50) can now be solved for Iyy,f or Eq. (5.59) can be used to obtain
Iyy,f = 0.336.

If during the flipping motion at any stage, let say at t = 9.5 s if the values of
Ixx,i = 0.3, Iyy,i = 0.35, Izz,i = 0.4, are morphed to the new values Ixx,f = 0.4,
Iyy,f = 0.336 and Izz,f = 0.3, then the angular momentum vector, instead of
continuation of its motion along the separatrix, would start moving along the same
separatrix, but in the opposite direction, i.e. “backwards” along the previous path of
the tip of the vector H, as shown in Fig. 5.70!

Results of the animation of the direct and reverse sliding of the godograph of
the angular momentum along the same separatrix are shown in Fig. 5.70. On the
snapshots, the floating view angle was used, enabling always to the extended in
length vector H.
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Fig. 5.70 Sliding of the tip of the non-dimensional angular momentum vector along the same
separatrix for two different combinations of the moments of inertia: (a)–(g) direct sliding along
“prime” separatrix, (h)–(i) reverse sliding along coincident “dual” separatrix

In addition to this case, when reversing was activated at the point, being in-
between two poles, we also present results for the case, when revering was activated
after the non-dimensional angular momentum vector performed full cycle along two
semi-separatrices. Results of this simulation case are shown in Fig. 5.71. Figure
5.71b shows slight increase in ωy immediately after the application of the IM at
t = 13 s. This is because of the required switch for the Iyy value from 0.35 to 0.366,
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Fig. 5.71 Simulation results for the “Garriott’s-Dzhanibekov’s effect” flipping motion with
godograph sliding along “prime” and “dual” AMSs and KEEs: (a) principal moments of inertial
and their rates; (b) components of the angular velocity non-dimensional angular momentum; (c)
radii of the KEE

ensuring transition from the “prime” to the “dual” KEE, shown in Fig. 5.72. It is
interesting to observe the change of the direction of the motion of the godograph on
the “prime” from counterclockwise to opposite after the switch to the “dual” KEE.
These directions are shown in Fig. 5.72 with red arrows. Also, the KEEs are shown
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Fig. 5.72 (a) CCW is the direction of the godograph on “prime” AMS and KEE; (b) CW is the
reversed direction of the godograph on “prime” AMS and KEE

as semi-transparent surfaces, enabling to see through and recognise the segments of
the AMSs, covered by the KEEs.

5.11.8 Summary of the Method of Installing of the Godograph
of the Non-dimensional Vector of Angular Momentum
of Tumbling Spacecraft into Conjugate Separatrix

In view of the importance of this method, we are presenting its brief summary. The
tumbling spacecraft with assumed Ixx < Iyy < Izz can be represented with the polhode
(shown in Fig. 5.73 with red line). For the given Ixx, Iyy and Izz the current separatrix
has a dihedral angle with z body axis. As one of the simplest manoeuvres, leaving y-
axis to be an intermediate axis after the applied morphing, it is proposed to use point
#1 or #2 for installing godograph of the non-dimensional angular momentum into
a new separatrix, touching polhode at points #1 and #2, being intersection points
between the xz plane and polhode. (Another similar simple manoeuver can involve
points #3 and #4 but would require to change intermediate axis from y to x.)

For the given Ixx and Izz, we can select Iyy, ensuring that the separatrix for the new
set of moments of inertia is passing through points #1 and #2. For this selection, we
determine α -angle of inclination of the separatrix plane with respect to the z-axis
[3]:

α = arctan

(√
Ix

(
Iy − Iz

)

Iz

(
Ix − Iy

)

)

= arctan

(√

η

(
1

ξ
− 1

))

(
only applicable for the Ixx < Iyy < Izz notations and 0 < η < 1 and 0 < ξ < 1

)

(5.61)
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Fig. 5.73 System current separatrices shown together with the current polhode and points,
enabling installing into separatrices for possible switch to the new separatrices, changing motion
from tumbling to flipping type

Fig. 5.74 Changes in the α-angle due to the variation in both η and ξ : (a) 3D surface plot for
α(η, ξ ) function with colorbar added; (b) 2D projection of the α(η, ξ ) surface with its contour
lines: η = 0 : 0.1 : 1; α = 0 : 10 : 90

Changes in the α-angle due to the variation in both, η and ξ , are shown in Fig.
5.74. Note that for convenience, values of α-angles are presented in degrees.

The method, described in [3], was based on the calculation of the value of the
intermediate moment of inertia Iyy for the specified α-angle and known values of
Ixx = 2.4 and Izz = 3.15. For this formulation, Eq. (5.61) can be rewritten as follows:

ξ =
{

1 +
[
(tan α)2/η

]}−1
(5.62)
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Fig. 5.75 Changes in the α-angle due to the variation in ξ for selected values of η = [1:10]/10

In the particular case considered in reference [4], for Ixx = 2.4 and Izz = 3.15,
the corresponding value of η is equal to η = 0.7619; furthermore, Eq. (5.62) gives
ξ = 0.5907, which (as per Eq. (5.52)) corresponds to Ixx = 2.8430.

The generic graphical method, corresponding to this procedure, is illustrated in
Fig. 5.75, where α-angle (shown in degrees) is plotted as a function of ξ for various
values of η = [.1, .2, .3, .4, .5, .6, .7, .8, .9, 1].

Alternatively, if the minimum and maximum values of the moments of inertia are
fixed and the α-angle is established, then the intermediate value of the moment of
inertia can be calculated, using Eq. (5.50), solved for Iyy:

Iint =
[
(tan α)2 + 1

]
Imin

(tan α)2 +
(

Imin
Imax

) =
[
(tan α)2 + 1

]

(tan α)2 + η
Imin, where η = Imin

Imax
(5.63)

5.12 Inertial Morphing in Novel Designs of Acrobatic
Spacecraft for 90 Degrees Inversions: Method
of “Installing into Separatrix”
with Separatrix-to-Separatrix Transfer

Figure 5.76 is dedicated to another possible application of inertial morphing. It
illustrates 90◦ change of the spacecraft spin axis, using three morphing procedures:
the first is to activate unstable flipping motion; second is to switch to x separatrix;
and the third is to stop tumbling motion with transfer of spacecraft spin from y to a
new nominated body axis, being x in this illustration example.
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Fig. 5.76 Example of application of inertial morphing for inversion of spacecraft [9]: (a–e) 90◦
inversion, allowing change of spacecraft rotation from longitudinal to lateral

System’s initial conditions are as follows: ωx,i = 0.01, ωy,i = 8.57, ωz,i = 0.01
(all in rad/s), Ixx = 3, Iyy = 2.8, Izz = 5 (all in kg × m2). It should be noted that in Fig.
5.76 initial and final spin axes are presented in body-axis system. And in the global
axis system, due to the law of conservation of angular momentum, both initial and
final spin orientations are aligned with the same direction of the non-dimensional
angular momentum vector H.

Spacecraft morphing parameters, corresponding to Fig. 5.76, are shown in Table
5.1 and are also illustrated in Fig. 5.77.

Initially the system is in stable spin (shown as IM0 in table). IM1 was designed
to insert the system into y separatrix, similar to shown in Fig. 5.69c. This initiates a
y flip, during which IM2 is applied, forcing the system to transfer to x separatrix. So,
this acrobatics involves two “installing into separatrices” actions. Important control
consideration is as follows: IM2 is applied at the instant when in body axes vector
H (to be displayed in body axes, as in Fig. 5.69c) passes intersection of x and y
separatrices. IM3 is designed to stop x flips in the way shown in Fig. 5.78a. Figure
5.78b shows components of the angular velocity of the spacecraft. It is remarkable
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Table 5.1 Spacecraft morphed parameters in the example with 90◦ inversion

IM t rx ry rz Ixx Iyy Izz
Index s mm mm mm kg ×m2 kg ×m2 kg ×m2

0 0 548 510 447 3 2.8 5
1 10 565 495 524 3 3.1 5
2 18.25 474 566 806 4.5 3.1 5
3 25.15 403 608 949 5.5 3.1 5
f 35.14 403 608 949 5.5 3.1 5

Fig. 5.77 Positions of the
masses during spacecraft 90◦
inversion via inertial
morphing for acrobatic
manoeuvre in Fig. 5.76
(a)–(e) [9]: illustrated for
six-mass spacecraft model

that, initially, the system had y predominant angular velocity component ωy,i, with
two other components being close to zero ωx,i = ωz,i ≈ 0. After three morphings,
the system has only one predominant component of the angular velocity, ωx,i, with
the values of two other components being close to zero: ωy,i ≈ 0, ωz,i ≈ 0. At last,
Fig. 5.78c shows changes of the radii of the KEE, reflecting the applied changes to
the values of the moments of inertia during controlled morphings.
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Fig. 5.78 Time histories of the parameters of the system: (a) moments of inertia and their time
rates, (b) components of the angular velocity and non-dimensional angular momentum and (c)
radii of the KEE

5.13 Demo of Combined Multiphase Inertial Morphing:
Consecutive “Parade” of All Three Orthogonal
Inversions, Associated with x, y and z Body Axes

In order to demonstrate capability of the proposed method, in Fig. 5.79 we
present results for a single simulation case, during which the spinning body is



Fig. 5.79 Time history of the (a) Ixx, Iyy, Izz; (b) ωx, ωy, ωz; (c) Htotal, Hx, Hy, Hz; (d) ax, ay and
az during four-stage “all-axes inversion parade”
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reconfigured four times. The carefully selected scenario for the applied inertial
morphing (changes in the system, leading to the change of the values of the principal
moments of inertia) enables to achieve the following:

(1) Established flipping motion along the y-axis (with possibility for y inversion),
distinguished with a white background in Fig. 5.79

(2) Established flipping motion along the z-axis (with possibility for z inversion),
distinguished with green background in Fig. 5.79

(3) Established flipping motion along the x-axis (with possibility for x inversion)
distinguished with pink background in Fig. 5.79

So, it has been demonstrated that the predominant spin can be consecutively
passed on to any of the body axis with multiple possibilities for inversion at any
stage of the stabilised motion and then stabilisation of the desirable orientation. In
other words, if the object had a cube shape, based on this example, it was possible to
perform transition of the spinning motion of the cube, allowing exposure of each of
its six faces to the direction of the initial predominant spin. We call this compound
demo case “all-axes inversion parade”.

In Fig. 5.79 areas with yellow and light blue backgrounds are the transition
phases. It can be seen that the angular momentum is conserved. The total simulation
time for this case was 240 s, and the instants, when inertial morphings were initiated,
were 16.5555 s, 30.8525 s, 111.0420 s and 157.9995 s.

Some of the most critical stages of the “parade” scenario are also illustrated in
Fig. 5.80.

It can be observed that the period of inversion stages differs significantly. Periods
for the “flipping” stages can be calculated analytically [8], using elliptic integrals.
They are becoming very large, especially when the values of two moments of inertia
come close.

5.14 Enhancement of the Reorientation and Change
of the Spin Axis Using Moment Wheel

For completeness of this chapter, we need to mention another powerful aspect of
further enhancement of the spinning spacecraft attitude control capabilities: adding
one or a set of moment reaction wheels, which are often used on various space
systems [39].

Differential equations of motion of the spacecraft, equipped with wheels, could
be presented as follows:
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Fig. 5.80 Critical instances of spacecraft “parade” of all three orthogonal inversions: (a) y inver-
sion stage (established “flipping”), (b) tumble (orbiting x-axis), (c) x inversion stage (established
“flipping”), (d) tumble (orbiting y-axis) and (e) x inversion stage (established “flipping”) (f) at
“parking” point: stabilisation opportunity

⎡
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(5.64)

Even simple preliminary cases, involving one wheel and not sophisticated
wheel’s controls (with one of them presented in Fig. 5.81), enabled us to find sig-
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Fig. 5.81 Shift of stabilisation point, achieved with compounding use of the inertial morphing and
reaction wheel

nificant influence of this enhancement on performance of the system. In particular,
it was possible to significantly influence the period of inversion, make inversions
asymmetrical, etc. Authors intend to explore these capabilities in more detail in the
future works.

The proposed multistage transfer method can be called a method of “installing
into the separatrices”. It enables conversion of the predominant rotation about any
body axis into rotation about any other body axis.
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With the capability of this axis-to-axis transfer, spacecraft essentially could
perform three types of inversions, associated with any of three body axes.

In order to demonstrate capabilities of the method, “all-axes inversion parade”
was presented, during which the spinning system was transitioned through three
consecutive stages with inversion, associated with each of the body axes, x, y and z.
This is in contrast with the classical Garriott’s-Dzhanibekov’s effect demonstration,
where only one axis inversion was possible.

This method enables to get precision control of the spacecraft multi-axis
inversion without using conventional gyroscopes.

The method is based on the geometric interpretation of the spinning systems.
It employs angular momentum sphere and kinetic energy ellipsoid, polhodes and
separatrices and their evolution due to the variation of the inertia properties of the
system, called inertial morphing. In this chapter, we formalised non-dimensional
constructions.

5.15 Animations in Virtual Reality

Computer capabilities of the spinning rigid-body simulator, intended to deal with
systems, enabling “inertial morphing”, were enhanced with programming of the
Virtual Reality block. It enables animated visualisation of the attitude dynamics of
the spinning spacecraft.

It allows the operator/designer to observe results of the control actions on
the spacecraft, initiating (on the operator’s request), for example, transfers of the
spacecraft from stable spin to unstable, flipping, mode and vice versa. Virtual
Reality not only provides the operator with instant impression on the quality of
the executed manoeuvre but also enables observation of the progression of the
manoeuvre from various coordinate systems (inertial and body axes).

An example of the simulation of the scenario is shown in Fig. 5.82. During this
simulation, the stable spacecraft is transferred into the unstable mode, performs
one flip (i.e. changes its axial attitude by 180◦) to direct its antenna and then is
stabilised by the operator, with flipping completely stopped. Various controls and
diagnostics on the progression of the scenario are displayed on the screen, including
notification on the current control status, for example, “Garriott’s-Dzhanibekov’s
effect” is “OFF” or “ON”.
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Fig. 5.82 Computer screen snapshot, presenting one of the instants in the animated scenario,
involving control of the “Garriott’s-Dzhanibekov’s effect”

5.16 Examples of the Conceptual Designs of the Inertially
Morphed Systems

5.16.1 Example-1 Design, Involving “Six-Masses”
Repositioned Along Body Axes

Figure 5.83 shows a simple “six-mass” model of the rotating system, where
masses in pairs can be independently repositioned along their respective axes.
This reposition is done symmetrically in each pair and can be performed with
independent actuators.

Variation of the principal moments of the inertia of the system Ixx, Iyy and Izz with
controlled parameters rx, ry and rz can be described with the following analytical
relationships:

Ixx = 2 × [
myry

2 + mzrz
2
]

Iyy = 2 × [
mzrz

2 + mxrx
2
]

Izz = 2 × [
mxrx

2 + myry
2
]

(5.65)

These can be illustrated graphically as 3D surfaces. To be specific, three surfaces,
corresponding to Ixx, Iyy and Izz, are plotted in Fig. 5.84a for the example, given by
the following parameters: m1x = m2x = m1y = m2y = 0.5 kg, m1z = m2z = 0.3 kg –
and the radii for the masses m1z and m2z are equal to rz = 0.3 m.
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Fig. 5.83 Illustration of the “six-mass” model, with masses symmetrically repositioned in pairs
via their translation along the x, y and z axes

Fig. 5.84 Illustration of the “six-mass” model, with masses symmetrically repositioned in pairs
along the x, y and z axes

Figure 5.84 shows that in the illustration example, there could be found numerous
combinations of rx and ry for which the green surface, corresponding to Iyy, could
take lowest, intermediate and highest positions. With this, if the system is provided
with y initial predominant rotation, even for the fixed rz, proper selection of varied rx
and ry could switch the rotation about the y axis between the stable spin and unstable
flipping motion. For example, if the system starts with rx = 0.3 m, ry = 0.1 m,
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Fig. 5.85 Period of the flipping motion T = T(rx, rz) as a function of the x and z positions of the
mx and mz masses in the six-mass model for fixed ry = 0.12 m

rz = 0.3 m, ωx = 6 rad/s, ωy = 0.01 rad/s, ωz = 0.01 rad/s, we should expect
this spin to be stable, because for the given parameters, Iyy would be the maximum
moment of inertia (see point A in Fig. 5.84). If using translational actuators for the
masses mx and my can change position of these masses to the new values, let us say
rx = 0.1 m, ry = 0.15 m, and no change to rz = 0.3 m, then for the new radii of
the masses, Iyy would become an intermediate moment of inertia (shown as point
B in Fig. 5.84), and the unstable flipping motion would be triggered. If afterwards,
at the time of passing the pole by the system’s angular momentum vector, another
morphing is applied (setting ry = 0.27 m), and with no changes applied to (leaving
them at rx = 0.15 m and ry = 0.3 m), then the moment of inertia Iyy (shown as
point C in Fig. 5.84) would become the minimal moment of inertia, and the flipping
motion of the system would be transferred to the stable spin.

Figure 5.85 complements design process and shows periods of the flipping
motions of the “six-mass” design for various combinations of rx and rz. This
function is shown as a 3D surface for the fixed value of the distance ry = 0.12 m.
It confirms that proper selection of rx, ry and rz would not only allow desired
manipulations with the principle moments of inertia of the system but would also
enable selection of the desired period of the flipping motion. This may be important
for the cases, where agile or prolonged manoeuvre would be required.

5.16.2 Example-2 Design: “Scissors” Model for Inertial
Morphing

Figure 5.86 shows an example of using the “XZ scissors” mechanism for performing
changes to the inertial properties of the system. It enables that the system remains
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Fig. 5.86 Illustration of the “XZ scissors” mechanism, employed to perform controlled inertial
morphing of the system: (a)–(h) correspond to the following angles between the mx-mx link and
the x axis (also synchronised with the angle between the mz-mz link and the x axis): β = 10◦, 20◦,
30◦, 40◦, 50◦, 60◦, 70◦, 80◦
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Fig. 5.86 (continued)

dynamically balanced about any of the body axes. Figure 5.86 presents configuration
of the same system, but with different angles β between the mx-mx links and the “x”
axis (being kept by the mechanism the same as the angle between the mz-mz links
and the x axis), which can be controlled with a single actuator, which will be called
β-actuator (not shown in the Fig. 5.86). It is assumed in the presented example, the
synchronously symmetric positions ry of the y masses.

Variation of the principal moments of the inertia of the system Ixx, Iyy and Izz with
both controlled parameters, β and ry, can be described with the following analytical
relationships:

Ixx = 2 ×
[
mx(rx sin β)2 + mz(rz sin β)2 + myr

2
y

]

Iyy = 2 × (
mxr

2
x + mzr

2
z

)

Izz = 2 ×
[
mx(rx cos β)2 + mz(rz cos β)2 + myr

2
y

]

(5.66)

These can be illustrated graphically as 3D surfaces. To be specific, three surfaces,
corresponding to Ixx, Iyy and Izz, are plotted in Fig. 5.87(a) for the example, given by
the following parameters: m1x = m2x = m1z = m2z = 0.3 kg, m1y = m2y = 0.5 kg –
and the length L of all radii for the masses m1x, m2x, m1y, m2y, m1z and m2z is equal
to rx = ry = rz = L = 0.25 m.

Figure 5.87b shows the same plot, but with different axes limits and as the top
view. It is interesting to observe that if the design with ry = 0.25 m β = 45◦ is
initially provided with the predominant rotation about the y axis, the system would
remain in the stable spin, and as for the specified parameters, Iyy would be the
maximum moment of inertia, being larger than any other moments of inertia, Ixx and
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Fig. 5.87 Principal moments of inertia of the system in Fig. 5.86 as functions of β and ry
variables, which can be controlled individually by two actuators: (a) 3D representation and (b)
2D representation

Izz (Ixx < Iyy and Izz < Iyy). However, should the angle θ be increased well above 49◦
or reduced well below 41◦ (with the ry kept unchanged at ry = 0.25 m), then the Iyy
would become an intermediate moment of inertia, and the flipping motion would be
triggered with the first, β-actuator. Similarly, the Iyy would become an intermediate
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moment of inertia if the angle β is kept unchanged at β = 45◦ but the ry value is
increased well above ry = 0.1935 m, using the second, β-actuator. Therefore, in the
illustration example, transition from stable spin to unstable flipping motion can be
independently triggered by any of the two system’s actuators or by combined action
of two actuators.

Figure 5.88 complements design process and shows periods of the flipping
motions of the “scissors” design for various combinations of ry and β. This function
is shown as a 3D surface for the fixed value of the distance to the masses in the xz
plane.

5.16.3 Example-3 Design: Rhombus Model for Inertial
Morphing

Figure 5.89 shows an example of using the “XZ rhombus” mechanism for per-
forming changes in the inertial properties of the system. It enables that the system
remains dynamically balanced about any of the body axes. Figure 5.89 presents
configuration of the same system, but with different angles β between the mx-mz

links and the x axis, which can be controlled with a single actuator, which will be
called β-actuator (not shown in Fig. 5.89). It is assumed in the presented example,
the synchronously symmetric positions ry of the y masses can be varied separately,
with another ry -actuator (also not shown in Fig. 5.89).

Variation of the principal moments of the inertia of the system Ixx, Iyy and Izz with
both controlled parameters, β and ry, can be described with the following analytical
relationships:

Ixx = 2 ×
[
myr

2
y + mz(L sin β)2

]

Iyy = 2 × [
mx(L cos β)2 + mz(L sin β)2]

Izz = 2 ×
[
myr

2
y + mx(L cos β)2

]

(5.67)

These can be illustrated graphically as 3D surfaces. To be specific, three surfaces,
corresponding to Ixx, Iyy and Izz, are plotted in Fig. 5.90a for the example, given by
the following parameters – m1x = m2x = m1y = m2y = m1z = m2z = 0.3 kg – and
the length L of the mx-mz links is equal to 0.25 m.

Figure 5.90b shows the same plot, but with different axes limits and as the top
view. It is interesting to observe that if the design with ry = 0.15 m, β = 45◦ is
initially provided with the predominant rotation about the y axis, the system would
remain in the stable spin, and as for the specified parameters, Iyy would be the
maximum moment of inertia, being larger than any other moments of inertia, Ixx and
Izz (Ixx < Iyy and Izz < Iyy). However, should the angle β be increased well above 53◦
or reduced well below 37◦ (with the ry kept unchanged at ry = 0.15 m), then the Iyy
would become an intermediate moment of inertia, and the flipping motion would be
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Fig. 5.88 Period of the flipping motion T = T(ry, β) as a function of the ry and β parameters in
the “scissors” model: (a) T = T(ry, β) presented as 3D surface, (b) T = T(ry, β) presented as 2D
plot

triggered with the first, β-actuator. Similarly, the Iyy would become an intermediate
moment of inertia if the angle β is kept unchanged at β = 45◦, but the ry value is
increased well above ry = 0.1767 m, using the second, β-actuator. Therefore, in the
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Fig. 5.89 Illustration of the “XZ rhombus” mechanism, employed to perform controlled inertial
morphing of the system: (a)–(h) correspond to the following angles between the mx-mz links and
the “x” axis: β = 10◦, 20◦, 30◦, 40◦, 50◦, 60◦, 70◦, 80◦



5 Inertial Morphing as a Novel Concept in Attitude Control and Design. . . 231

Fig. 5.89 (continued)

illustration example, transition from stable spin to unstable flipping motion can be
independently triggered by any of the two system’s actuators or by combined action
of two actuators.

5.16.4 Example-4 Design: Two Cylinders System

Figure 5.91 shows an example of using the two cylinders mechanism for performing
changes in the inertial properties of the system. In this conceptual design, two
cylinders of length L are synchronously translated in opposite directions to keep
symmetry. Initial position of the cylinders is shown with green colour, and an
example of the intermediate position with outwards translations is shown with
yellow colour. Direction of morphing translations for cylinders is shown with equal
size thick black arrows. It enables that the system remains dynamically balanced
about any of the body axes. Figure 5.91 presents configuration of the same system,
but with different positions of the cylindrical masses along y axis, which can be
controlled with a single actuator, which will be called ry-actuator (not shown in the
figure), ensuring the synchronously symmetric repositioning ry of the y masses.

Variation of the principal moments of the inertia of the system Ixx, Iyy and Izz
with one controlled parameter, ry, can be described with the following analytical
relationships:
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Fig. 5.90 Principal moments of inertia of the system in Fig. 5.89 as functions of β and ry
variables, which can be controlled individually by two actuators: (a) 3D representation and (b)
2D representation

Ixx = 2 ×
(

M L2

12
+ M ry

2
)

= Iyy + Izz

Iyy = 2 × (
M ry

2
)

Izz = 2 ×
(

M L2

12

)

(5.68)
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Fig. 5.91 Illustration of the two cylinders conceptual mechanism, employed to perform controlled
inertial morphing of the system: (a) cylinders are moved outwards; (b) cylinders are moved inwards

These can be illustrated graphically as 3D surfaces. To be specific, three surfaces,
corresponding to Ixx, Iyy and Izz, are plotted in Fig. 5.92 for the example, given by
the following parameters: mass of each cylinders M = 0.9 kg – the length L is varied
within 0.1–0.3 m range; and the position of the cylinder parameter is varied within
0.1–0.3 m range.

Figure 5.92 shows that the limited options exist for transition to flipping motion,
if the initial predominant stable spin of the system is arranged about y or z axes. The
feasible combination of L and ry parameters corresponds to the areas, where Iyy and
Izz surfaces are changing their bottom-to-top order in the Fig. 5.92.

However, as it can be seen from Eq. (5.62) and from Fig. 5.92, surface Ixx is
always staying above any of the Iyy or Izz surfaces. Therefore, if there is a goal to use
the mechanism for transition from stable rotation to unstable flipping motion, this
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Fig. 5.92 Principal moments of inertia in the “two cylinders” model, as functions of the length of
the cylinder L and its distance from the y-axis ry

mechanism would be inefficient for this intended change, if predominant rotation of
the system is selected about x axis.

As Fig. 5.92 shows, at least for large values of ay (0.1–0.3 m), change of the
distances for these cylinders from the axis of rotation is not an effective mean for
changing the “status” of the axis of rotation. With this model, the intermediate axis
will stay intermediate axis, regardless of the controlled distance. [The green surface
is always staying between the red and yellow surfaces.]

5.16.5 Suggestions on Some Practical Implementation
of the Inertial Morphing

This section does not aim to present comprehensive collection of the implementation
of the methods to control the principal moments of inertia of the spacecraft, which
we called “inertial morphing”. Nevertheless, for completeness, we wish to present
just a few of the methods/concepts, being considered as promising for realization
in real spacecraft systems. In these examples, for simplicity of the illustrations, the
conceptual model of the spacecraft (Fig. 5.25) will be used. As equations for the
moments of inertia are functions of the distances r and masses m, conceptually,
there could be two main approaches to the implementation of the inertial morphing:
(a) based on variation of r - positions of the masses and (b) based on variation of
masses. These approaches are briefly explained below.
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(a) The first approach to implementation of the inertial morphing is based on the
controlled reposition of the spacecraft masses, using actuators. Let us consider
the following case: mx = my = mz = 1 kg; these masses are initially located at
their radii: rx = 0.8 m; ry = 1 m; rz = 1.2 m. Let us assume that the system
is equipped with linear actuator (motor and appropriate mechanical system),
capable of translational repositioning of the masses mz via changing the length
of rz from 1.2 to 0.6 m within 1 s. The morphing process is shown in Fig. 5.93a,
where initial positions of the masses are shown with white spheres and the final
positions with black spheres and where direction of the translations for two mz

masses is shown with two red arrows. Also, for better perception of the 3D
design, a semi-transparent yz plane is added to the Fig. 5.93a.

In this example, the positions of the masses on the x and y axes remain
unchanged; only rz is subject to variation (as per Fig. 5.93b). Equation (5.65) permits
the calculation of the associated resulting time history of the principal moments of
inertia of the system. Figure 5.93c shows that while Izz keeps its value unchanged,
during morphing, the Ixx value is changing from 4.88 to 2.72 [kg × m2] and the Iyy
is changing from 4.16 to 2.0 [kg × m2]. However, most significant in the context
of this work is an observation that, in this example, the role of the intermediate
moment of inertia (which initially “belongs” to Iyy) is “passed” from Iyy to Izz (at
t = 0.33 s) and then is further “passed” to Ixx (at t = 0.67 s). Consequently, using
only one variable rz in the morphing process, it was possible to arrange for each of
the spacecraft axes x, y and z at different stages, to become the intermediate axis of
rotation.

The method, presented above, can be extended to the actuation of all masses,
including mx and my. With this general arrangement, the morphing would permit
continuous control of the position of all masses, hence enabling assignment of
any arbitrary values to the principal moments of inertia of the system, as per
requirements of the morphing scenarios. Of course, these assignments should
be compatible with the mechanical/electrical/thermal constrains of the particular
designs/implementations of the morphing systems.

A variation of the same method may involve application of the special actuators
to reposition large segments of the spacecraft. This idea is illustrated with the
controlled change of the angular positions θ i of the solar panels to manipulate the
inertial properties of the spacecraft (see Fig. 5.94).

We envisage that similar implementations of the illustrated principle can be
achieved in some other ways. For example, deployment of the masses, to the new
destination (in any, inwards, outwards or inclined directions), can be ensured via
unconstraining the pre-compressed springs, as per Fig. 5.95. This, however, would
permit only a single discrete actuation. Nevertheless, it can be a good choice for
the small autonomous system, where the control actions should be minimized and
simplified.

Alternatively, for continuous actuation, instead of using solid masses, heavy
liquids and/or liquid metals [41] can be used, which could be controlled via
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Fig. 5.93 Particular example of inertial morphing via translational reposition of the z dumbbell
masses mz while keeping positions of the x and y masses unchanged (mx = my = mz = 1 kg):
(a) 3D view of the spacecraft model, (b) time history of the position of the masses and (c) time
history of the resulting principal moments of inertia Ixx, Iyy and Izz

manipulation with valves and employment of the passive inertial forces and/or
controlled magnetic field forces to move these liquid media.

(b) The second approach to implementation of the inertial morphing is based on
the controlled change of the spacecraft masses and may involve, for example,
mass ejection, ablation, evaporation or solidification of the components of the
structure, etc.

Geometric reconfigurations of the spacecraft systems (e.g. during deployment
of the inflatable components or solar panels and reorientation of the antennae)
are a widely used concept and proved to be successful for many space systems
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Fig. 5.94 Spacecraft, deploying solar arrays [40]

Fig. 5.95 Particular example of inertial morphing via translational reposition of the “z” dumbbell
masses mz (shown with black colour) via release of the pre-constrained compressed springs (shown
with red colour): (a) initial configuration and (b) masses deployed inwards

(e.g. Spartan-207, Hughes/Boeing HS-376, SMART-1 and RAE-B satellites, space
probes Rosetta and Down, etc.). However, these are provided to ensure the
functionality of the spacecraft, without any relevance to the attitude dynamics
objectives [42]. In contrast, concept of spacecraft reconfiguration, explicitly aiming
to assist in attitude manoeuvering [3–10], is a very new concept. Indeed, idea of
the reconfigurable spacecraft systems, transformable spacecraft, which consist of
multiple modules connected with each other by hinges or universal joints, proposed
by JAXA [43, 44], is only 3 years old, and further development of the concept is
underway [45].
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It is believed that this chapter will further contribute to much wider application
of the spacecraft reconfigurations with the primary goal to enhance the attitude
dynamics capabilities of spacecraft.

5.17 Conclusions

This book chapter presented development of a series of conceptual controlled
scenarios, useful for real life of small spacecraft missions. It explored the pos-
sible applications of the “inertial morphing” concept, together with the method
of “installing into polhodes and separatrices” for the possible applications in
efficient spacecraft missions, involving small, low-weight and low-cost autonomous
spacecraft with acrobatic capabilities.

We are hopeful that the proposed efficient (few actions) control methods, using
inertial morphing, will pave the way for the design of real autonomous spacecraft
without using conventional gyroscopic devices or enhance the traditional gyroscopic
systems, adding to their operational capabilities and agility or saving energy.

The “inertial morphing” offers a general control platform for spacecraft attitude
dynamics manipulations. However, in view of the immediate readiness for the
practical application due to simplicity, the 180◦ and 90◦ inversions and de-tumbling
of the spacecraft should be specially mentioned.

It is believed that the remarkable simplicity of the “OFF” “one control action”
method of stopping flipping motion of the systems, rotating about its intermediate
axis (“Garriott’s-Dzhanibekov’s effect”), and the “ON” “one control action” acti-
vation of the flipping motion of the systems, being initially set into the regular
stable spin about axes with maximum or minimum principal moments of inertia,
can be very attractive for the autonomous microsatellites and deep space exploration
apparatus. Combination of these results in the “two control actions” method for the
180◦ inversion of the spinning spacecraft, with additional ability to scale the final
rotational speed. This enables to use single thruster for boost and braking. This may
be also useful for protection of the most fragile on-board equipment by exposing
mostly protected surface towards the environmental hazards (asteroids, radiation,
etc.), hence contributing to the prolonged survivability of the spacecraft and adding
to the probability of success of the missions with high environmental risks.

Similarly, combination of the “OFF” and “ON” single control actions with the
proposed method of “Installing (or, using other word, Inserting) into Separatrix”
leads to the “three control actions” method of 90◦ inversion of the spacecraft.

The third, very important application of the inertial morphing is in combination
of the “Installing (or Inserting) into Polhode” or “Installing into Separatrix” (“single
control action” each), and “OFF” method allows de-tumbling of the spacecraft from
arbitrary spatial tumbling to the regular spin about any of the body axes, selected
by the space mission operator. If future spacecraft are designed with the inertial
morphing capabilities, de-tumbling manoeuvre, using only “two” or “three control
actions”, can be useful for facilitating the capture of the spacecraft for servicing or
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removal of the spacecraft after its service lifespan. This feature can also be useful
for changing axis of rotation to more stable option for the long station keeping.

In summary, the list of the discovered and proposed novel capabilities, offered
in spacecraft design by inertial morphing, includes but is not limited to the
following:

1. Ability to switch on and off the “Garriott-Dzhanibekov effect”, using meticulous
inertial morphings

2. Peculiar exposure of the sides of the flipping object to the global axis directions,
illustrated with the “ball of wool” method

3. Ability to control flipping periods within the wide range and discovery of the
3D ridge of the parameters with high periods and two valleys with minimum
periods, using the proposed “instalment into separatrices” method and “pole-to-
pole” transfers

4. Ability to perform 180◦ inversions with two discrete control actions and ability
to perform 90◦ inversions with three discrete control actions

5. Ability to effectively manipulate with arbitrarily rotational motions of the
tumbling systems, using the proposed method of “polhode-to-polhode transfer”

6. Ability to de-tumble spacecraft using combination of “polhode-to-polhode-to-
separatrix transfer” or “polhode-to-separatrix” and “instalment into separatrix”

7. Ability to reverse the direction of the slide of the tip of the non-dimensional
angular momentum vector, employing “prime” and “dual” separatrices

8. Ability to perform conjugated “parade” of all body axes inversions
9. Ability to enhancement of attitude control of the spacecraft with traditional

reaction wheels via added inertial morphing

The novelty of the presented materials, based on [3–9], includes the following:

• Utilisation of deliberately applied changed to the inertial properties of the system
for its attitude control and enhancement of the spinning spacecraft attitude
dynamics capabilities using inertial morphing

• Generalised geometric interpretation of arbitrary attitude motions of the mor-
phed systems, using non-dimensional angular momentum coordinates, angular
momentum sphere and kinetic energy ellipsoid

• Determination of the required IM changes and their phasing
• Development of the methods and mechanisms for inertial morphing
• Development of a general method of de-tumbling of the spacecraft and transition

of the rotational motion to the rotation about any nominated body axis
• Reduction of continuous control actions to a limited number of discrete control

actions (e.g. two only inertial morphings for 180◦ inversion and three only
morphings for 90◦ inversion)

• Discovery of the limited exposures of tumbling and flipping bodies to specific
orientation

• Establishment of the ranges of the flipping periods
• Suggestion of new spacecraft designs, enabling agile space acrobatic or pro-

longed attitude capabilities
• Suggestion of new space applications
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• Proposition of applications of inertial morphing for the possible future space
missions

• Demonstration of the proposed concepts and methods, using versatile advanced
non-linear numerical simulations and virtual reality

As Euler’s equations paved the way for the development of the theory of
gyroscopes and design of various gyroscopic systems, the paradigm of “inertial mor-
phing” may prompt development of new generation of the acrobatic spacecraft with
significantly reduced weight and dimensions, reduced cost and enhanced operational
capabilities. It may be also possible to design new classes of gyroscopes, possessing
an added-on sense of time, which is in contrast to the classical gyroscopes that only
possess a sense of orientation.

With a wide spectrum of the presented examples, related to the application of a
novel design concept of “inertial morphing”, it is believed that presented concept,
modelling and simulation of the spinning systems and attitude control method of
the spinning systems will be useful not only for the specialists but for a very wide
audience, including engineers, scientists, students and enthusiasts of science and
space technology.
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Appendixes

Nomenclature

ψ , θ , φ Euler angles

ωx, ωy, ωz Components of the angular velocity
ωx,i, ωy,i, ωz,i Initial components of the angular velocity
ax, ay, az Values of the semi-major axes of the ellipsoid of the kinetic energy
α Angle between the plane of the separatrix and axis with maximum

moment of inertia
β Masses position angle in the “scissors” and “rhombus” mechanisms
G Centre of the mass of the spacecraft−→
H (t) Angular momentum vector

H =| −→
H | Value of the system’s angular moment

Hx,Hy,Hz Non-dimensionalised components of the angular momentum vector
Ixx, Iyy, Izz Principal moments of inertia
k Parameter in complete elliptic integral k
K(k) Complete elliptic integral of the first kind
K0 Kinetic energy of the system
l Angular momentum vector of wheels, expressed in the body-fixed

reference frame
mx, my, mz Dumbbell masses in six-mass spacecraft model
nωi

Control torque applied to the i-th wheel
M Mass matrix
Nx, Ny, Nz Torque components
P Pivot point
P, Q, R Torque components in original Euler’s work
rx, ry, rz Axial positions of the spacecraft masses in the “six-mass” model
t Time
T Period of the flipping motion
x, y, z Principal body axes of the rigid body
x Vector of system’s states

Acronyms/Abbreviations

ISS International Space Station
AMS Angular momentum sphere
KEE Kinetic energy ellipsoid
IM Inertial morphing
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