
Chapter 1
Improved Theoretical and Numerical
Approaches for Solving Linear
and Nonlinear Dynamic Systems

Fang Pan, Dai Liming, Wang Kexin, and Wang Luyao

Abstract Complex dynamic systems are described by differential dynamic equa-
tions, mostly nonlinear without closed form analytic solution. To solve them
numerically, there are many methods such as Euler’s method, Taylor-series method
and Runge-Kutta method, etc., each with advantages and disadvantages. In this
chapter, a novel analytical and numerical methodology for the solutions of linear
and nonlinear dynamical systems is introduced. The piecewise constant argument
method combined with the Laplace transform, makes the new method called
Piecewise constant argument-Laplace transform (PL). This method provides better
reliability and efficiency for solving coupled dynamic systems. In addition, the
numerical solutions of linear and nonlinear dynamic systems can be obtained
smoothly and continuously on the entire time range from zero to t. The numerical
results of the analytical solution of the method are given and compared with the
results of the 4th-order Runge-Kutta (RK4) method, and the accuracy and reliability
of the PL method are verified.
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1.1 Introduction

Almost all the complex dynamic systems can be described by differential dynamic
equations [1–3]. For exploring the dynamic characteristics of systems, obtaining
accurate solutions of the dynamic equations is crucial in the engineering design.
Of course, Euler’s method, Taylor series method, and Runge-Kutta method are
relatively mature methods existing in numerical analysis for vibration systems [4, 5].
Euler’s method is the most traditional method to solve differential equations. How-
ever, the numerical accuracy of Euler’s method should be decreased as integral curve
is replaced with approximated polyline in the calculation process [6]. To perfect
numerical accuracy in computing principle, trapezoidal method employs trapezoid
to match integral curve in calculation process, and so the solution precision of this
method is much higher than Euler’s method [7–9]; but the computational efficiency
is restricted on account of its own algorithm complexity and large calculating
quantity. In order to improve the computation efficiency, Carl Runge and Martin
Kutta proposed Runge-Kutta method, and the theoretical basis of this method is
derived from Taylor’s expansion and slope approximation [10]; in the solving
process, the weighted average of the slope of multiple points in an integrating
interval is calculated; the accuracy of the Runge-Kutta method is depended on the
number of points in the integrating interval: the more points, the more accurate the
calculation, and the more time should be needed to be taken in the calculation [11].
Since almost all terms are linearized and discontinuous when solving equations with
Runge-Kutta method, calculative deviation is inevitable, which has attracted much
more attention of numerous researchers. Shampine and Watts proposed a local error
estimator, which seems to be of broad applicability [12]; according to this estimator,
an efficient computational code (Ode45) is compiled [13, 14], and comparing the
results of traditional Runge-Kutta, solution accuracy of Runge-Kutta is defective as
the obtained results are not continuous, and the inherent characteristics of the system
are lost in the second step of the calculation by using the Runge-Kutta method [15].

In this chapter, a novel analytical and numerical methodology for the solutions
of linear and nonlinear dynamical systems is further developed. According to the
piecewise constant argument mentioned in “Nonlinear Dynamics of Piecewise Con-
stant Systems and Implementation of Piecewise Constant Arguments,” combined
with the Laplace transform, a method called piecewise constant argument-Laplace
transform (PL) was established. On account of the characteristics of the Laplace
transform, this method with better reliability and efficiency is for solving the cou-
pled dynamic systems [16–18]. In addition, because of the continuity of solutions
with the piecewise constant argument [Nt]/N and the corresponding recurrence
relations, the numerical solutions of linear and nonlinear dynamic systems can be
obtained smoothly. Unlike the discrete solutions produced by existing numerical
methods, the solutions given by the PL method to be presented are actually
continuous on the entire time range from zero to t. Formulae for numerical
computation in solving various dynamic systems are to be provided and discussed
in the present chapter. Meanwhile, the numerical results of the analytical solution
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of the method are given and compared with the results of the fourth-order Runge-
Kutta (RK4) method [19, 20], and the accuracy and reliability of the PL method are
verified.

With the development of science and technology, the study to the dynamics of
low-dimensional nonlinear dynamic systems can hardly satisfy the requirements of
actual engineering [21, 22]. To explore the exact dynamics in nonlinear systems,
it is necessary to study the identification method of dynamic behavior for high-
dimensional nonlinear systems. Nowadays, the principal method for identifying the
dynamic behavior of the nonlinear system include Lyapunov exponent, Poincaré
mapping method, and bifurcation theory. Lyapunov exponent is an important
method for identifying chaotic signals of nonlinear dynamical systems [21, 23].
The important characteristic of the nonlinear dynamical systems is that the final
value of the system is sensitively depended on the initial value; therefore, Lyapunov
exponent represents the average exponential rates of divergence or convergence
of closed orbits of the vibrating object in phase space of a dynamic system. The
Lyapunov exponent is an efficient tool for estimating whether a dynamic system is
periodic or chaotic. However, the Lyapunov exponent is not suitable for determining
the dynamic behavior that is neither periodic nor chaotic. Poincaré mapping method
can diagnose the dynamic characteristics of the nonlinear system based on the fixed
points in the Poincaré section [24, 25]; however, it is unsuitable to determine the
global dynamics and periodicity. Although global bifurcation and local bifurcation
theory can discern the dynamic characteristics of higher-dimensional dynamical
systems [26, 27], the prerequisite for this approach is BP normalization for the
dynamic systems. Theoretically speaking, we can calculate the canonical form of
any order from a given dynamical system. Actually, it is very difficult to calculate
the high order normal form for the higher-dimensional dynamical system, because
the process of the normalization computation is complex.

For the limitations of identifying characteristics of the dynamic system based
on the methods above, Dai and Singh proposed a periodicity-ratio method to
distinguish the dynamic characteristics of one-dimensional nonlinear dynamic
system [25]. However, the identification method of the dynamic characteristics
for high-dimensional nonlinear system is reported in the recent years. Mahmoud
introduced a new theorem used to construct approximate analytical solutions for n-
dimensional strongly nonlinear dynamical system, and then passive control method
is also used to control n-dimensional chaotic complex nonlinear systems [28]. Here,
considering the principle of Poincaré mapping, the periodicity-ratio (PR) method for
diagnosing the dynamic characteristics of the high-dimensional nonlinear systems is
proposed [29]. This method is employed to determine the dynamics and periodicity
of the hull and Rössler system, respectively. The research findings will develop the
evaluation method of dynamic characteristics for the high-dimensional nonlinear
dynamic system.



6 F. Pan et al.

1.2 Fundamental Theory

To develop the numerical solutions of the dynamic system in this chapter, the
numerical approach named the piecewise constant argument method is used.
By introducing a piecewise constant argument [Nt]/N, the original continuous
governing equations are divided into many segments, denoted as N, and linearized
in each time interval, i/N ≤ t < (i + 1)/N, in which a linear dynamic system is
developed. In the expression, N is a parameter that controls the length of the time
interval and the accuracy of the calculation. When N becomes large enough, the
numerical solutions can be sufficiently accurate. To preferably utilize the PL and
the PR method, some theorems must be understood.

1.2.1 Piecewise Constant Argument

Theorem 1.1 Suppose argument [Nt] is the integer-valued function of product of
time t and parameter N, where N is a positive integer [29]. When N is approached
to infinity, the value of the argument [Nt]/N tends to t, i.e.:

lim
N→∞

[Nt]

N
= t. (1.1)

Theorem 1.2 Considering a vibrating system:

f
(
x′′, x′, x

) = g(t), (1.2)

with initial conditions:

x(0) = d0, x
′(0) = v0. (1.3)

Then, in time interval i/N ≤ t < (i + 1)/N, Eq. (1.2) and Eq. (1.3) are converted
to:

f
(
x′′
i , x′

i , xi

) = g

(
i

N

)
, (1.4)

and:

xi

(
i

N

)
= di, x

′
i

(
i

N

)
= vi, (1.5)

where i = 0, 1, 2, . . . , [Nt].
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1.2.2 Laplace Transformation and Residues Principle

The coupling system can be decoupled with the Laplace transformation. Some
significant theorems should be stressed.

Theorem 1.3 Supposing functions x′′
i (t), x′

i (t), and xi(t) can be rewritten as
Laplace style, i.e. [2, 30]:

L [xi(t)] = Xi(s), (1.6)

L
[
x′
i (t)
] = sXi(s) − xi

(
i

N

)
, (1.7)

L
[
x′′
i (t)

] = s2Xi(s) − sxi

(
i

N

)
− x′

i

(
i

N

)
, (1.8)

where x′′
i (t) = d2xi

dt2 , x′
i (t) = dxi

dt
.

Theorem 1.4 F(s) is assumed to the Laplace style in complex field. F(s) cor-
responding to time-domain solution can be determined with inverse Laplace
transformation, i.e.:

f (t) = L−1 [F(s)] = 1

2πj

σ+j∞∫

σ−j∞
F(s)est ds. (1.9)

Theorem 1.5 Through the definition of residues, the integral in Eq. (1.9) can be
expressed by the summing of all the residuals in the definition domain, i.e.:

1

2πj

σ+j∞∫

σ−j∞
F(s)est ds =

n∑

k=1

Res
[
F(s)est , sk

]
, (1.10)

where sk represents value of the kth pole point of F(s). Here, considering F(s) to be
a rational function, the fraction style of F(s) can be given by F(s) = A(s)

B(s)
, where

A(s) and B(s) are mutually irreducible, and the order of A(s) is lower than B(s) [30].
According to the exponent number of zero point in B(s), Res[F(s)est, sk] can be
calculated with following rules, i.e.:

A. If sk is the first-order zero point of B(s), then Res
[

A(s)
B(s)

est , sk

]
= A(s)

B ′(s) e
st
∣∣
∣
s=sk

.

B. If sk is the n-order zero point of B(s), then Res
[

A(s)
B(s)

est , sk

]

= 1
(n−1)! lim

s→sk

dn−1

dsn−1 (s − sk)
n A(s)

B(s)
est .
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1.2.3 The Periodicity Ratio of Nonautonomous Systems

Consider the following second order of the n-dimensional nonautonomous system
[31]:

ẍ = f (ẋ, x, t) , x ∈ Rn. (1.11)

Suppose that the system is subjected to an external excitation with period time
T; meanwhile, x is the periodic solution of the differential system above, i.e.,
x = [x1, x2, . . . , xn]T. Usually, x is the solution of the harmonic vibration related
to multiple period of T satisfying the following relationship:

x (t0) = x (t0 + jT ) . (1.12)

where t0 is the reference time and j is the number of period points of the system in
the Poincaré section. For a completely periodic nonautonomous dynamic system,
no matter how long the vibration is sustained, only j finite points appear in
Poincaré section x − ẋ (xr − ẋr , (r = 1, 2, . . . , n)). If the phase points are infinite
in Poincaré section x—ẋ, the n-dimensional nonautonomous system is aperiodic.

According to Eq. (1.12), the overlapping points in n Poincaré sections can
describe the periodicity of n-dimensional nonautonomous dynamic system. The
number of overlapping points in the rth Poincaré section can be determined by:

Xr,ki = xr (t0 + kT ) − xr (t0 + iT ) , (1.13)

Ẋr,ki = ẋr (t0 + kT ) − ẋr (t0 + iT ) . (1.14)

where k and i are integers: k ∈ [1, j], i ∈ [1,m]. Equation (1.13) represents the
displacement difference between phase point i and k in the Poincaré section when
the phase trajectories pass through the rth section. Equation (1.14) describes the
velocity difference between phase point i and k in the Poincaré section when the
phase trajectories pass through the rth section. m is the sum of the phase points in the
Poincaré section, including the overlapping and nonoverlapping points. Therefore,
the total number of phase points in the Poincaré section can be denoted as:

Sa = n · m (1.15)

According to the above definition, the following conclusions are stressed:

1. In the Poincaré section, the so-called overlapping phase points i (xi, ẋi ) and j(
xj , ẋj

)
represent xi = xj and ẋi = ẋj .

2. According to the overlapping property of the phase points, the phase points of the
nonlinear periodic system in the rth Poincaré section should satisfy the following
condition:
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{
Xr,ki = 0
Ẋr,ki = 0

(1.16)

3. If the phase point in arbitrary Poincaré sections cannot satisfy Eq. (1.16), the
phase points are nonoverlapping.

Applying Eq. (1.16), the total number ζ(k) of the kth overlapping phase pion in
the rth Poincaré section can be expressed as follows:

ζr(k) =
{

n∑

i=k

Q
(
Xr,ki

)
Q
(
Ẋrki

)
}

P

(
n∑

i=k

[
Q
(
Xr,ki

)
Q
(
Ẋr,ki

)]− 1

)

(1.17)

where ζ r(k) is applied to calculate the number of all phase points overlapping to the
kth phase point. Q and P are step functions as follows:

Q(y) =
{

1 if y = 0
0 if y �= 0

(1.18)

p(z) =
{

1 if z = 0
0 if z �= 0

(1.19)

Considering Eq. (1.17), after the total number k of the overlapping phase points
is determined, the number of the jth visible point corresponding to overlapping point
can be calculated. Assign Nr as overlapping points in the rth Poincaré section; thus,
Nr can be expressed by:

Nr = Nr(1) +
n∑

k=2

ζr (k)P

(
k−1∏

l=1

(
Xr,kl + Ẋr,kl

)
)

(1.20)

in which
∏

is the symbol for multiplication and P(·) is the step function as defined
in Eq. (1.19). This equation ensures that the duplicate included in the calculations
for Nr or missing in any overlapping point is prevented. If the response of a
dynamic system is completely periodic, all the points in the Poincaré map must
be overlapping, and the corresponding Nr can be simply expressed in the following
form:

Nr =
j∑

k=1

ζr (k) (1.21)

For periodicity of the nonlinear dynamic system, Nr represents the overlapping
phase points in the rth Poincaré section. Therefore, the total number of overlapping
points and phase points in n-dimensional space can be independently denoted by:
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S =
n∑

r=1

Nr (1.22)

Sa =
n∑

r=1

Sr, (1.23)

where Sr is the number of phase points in the rth Poincaré section. Therefore, the
periodicity ratio of the nonlinear nonautonomous system with n-dimensional space
can be denoted by:

γ = lim
Sa→∞

S

Sa

. (1.24)

It can be known that the number of the overlapping points is less than or equal
to the all phase points, i.e., 0 ≤ S ≤ Sa; in this case, 0 ≤ γ ≤ 1. If the dynamic
responses of the nonlinear system are periodic, thus, all the phase points in the
Poincaré section must be overlapping, and periodicity ratio γ is equal to 1. If the
dynamic responses of the nonlinear system are chaotic, thus, all the phase points
in the Poincaré section must be nonoverlapping, and periodicity ratio γ is equal to
zero. Through the definition for the periodicity ratio γ of the nonlinear dynamic
system, it is easy to find that periodicity ratio γ can describe the periodicity of the
nonlinear dynamic system.

1.2.4 The Periodicity Ratio of Autonomous Systems

Consider the following second order of the n-dimensional autonomous system [32]:

ẋ = f (x) x ∈ Rn (1.25)

As the system is an autonomous system without external excitation, the phase
points in the Poincaré section cannot be determined by Eq. (1.12). For the n-
dimensional nonlinear autonomous system, no matter how long the vibration of
the system is sustained, only j finite phase points appeared in Poincaré section
xr − 1 − xr(r = 2, 3, . . . , n). Therefore, the periodicity of the nonlinear system can
be described by n–1 Poincaré sections. If there are infinite phase points in the n–1
Poincaré sections, the nonlinear dynamic system is nonperiodic.

If the vibration behavior of the autonomous system is periodic, period T1 of x1
can be estimated with the maximum method, as numerical solution of x1 is a series
of points related to time, i.e.,x1(τ ) = x1(tτ ), τ = 1, 2, 3 . . . , ∞. Thus, the search
procedure can be employed to determine the maximum value of x1. If x1(τ ) satisfy
the following condition:
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⎧
⎨

⎩

x1(τ+1) > 1
2

(
x1(τ ) + x1(τ+2)

)

x1(τ ) > x1(τ+1)

x1(τ ) > x1(τ−1)

(1.26)

thus x1(τ ) is the maximum point of x1, and the point of x2 corresponding to x1(τ )
in this time is x2(τ ). Thus, the phase point of the first Poincaré section is expressed
by (x1(τ ), x2(τ )). The amount of the overlapping phase points in the first Poincaré
section is written by:

N1(k) = ζ(1) +
n∑

k=2

ζ1(k)P

(
k−1∏

l=1

x1(τ ),kl

)

, (1.27)

in which x1(τ ), kl = |x1(τ ), k − x1(τ ), l|. Therefore, the period ratio can be determined
through the phase point in the first Poincaré section:

γ1 = lim
Sa→∞

N1

S1
. (1.28)

If γ 1 = 1, the period T of the system can be confirmed as the following:

1. Assume that the number of the visible phase points in the first Poincaré section
is j. Choosing the kth visible point of j, the number of the overlapping points is
q, and so the span of average time between two arbitrary adjacent points can be
expressed as:

η = tk,q − tk,1

q − 1
, (1.29)

where tk, q represents the time of the qth overlapping points in the kth visible points
and tk, 1 represents the time of the qth overlapping points in the first visible points.
If all the overlapping points are periodic, parameter η is equivalent to the vibration
period of the dynamic system.

2. To improve the accuracy and reliability for identifying the periodicity of the
dynamic system, identification parameter ρ is defined as:

ρ2 =

q−1∑

1

(
tk,i+1 − tk,i − η

)

q − 1
, i = 1, 2, 3, . . . , q (1.30)

From the equation above, it follows that when the identifying parameter ρ = 0,
the vibration behavior of the dynamic system is periodic. In this case, the period T1
of the system can be expressed by:

T1 = tk,i+1 − tk,i . (1.31)
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Therefore, the number of overlapping points in the rth Poincaré section can be
determined by:

{
Xr,ki = xr (t0 + kT 1) − xr (t0 + iT 1) ,

Xr+1,ki = xr+1 (t0 + kT 1) − xr+1 (t0 + iT 1) ,
(1.32)

where k and i are integers, k ∈ [1, j], i ∈ [1,m]. Equation (1.32) represents the
displacement difference between phase points i and k. m is the number of the phase
points in an arbitrary Poincaré sections. In this case, the total number of the phase
points for the n-dimensional system can be denoted by:

Sa = (n − 1) · m. (1.33)

According to the definition above, the following conclusions can be stressed:

1. The so-called overlapping phase points represent xi = xj and xi + 1 = xj + 1.
2. According to the characteristics of the overlapping points, the phase points of the

periodic system satisfy the following condition:

{
Xr,ki = 0,

Xr+1,ki = 0.
(1.34)

3. If Eq. (1.34) is not satisfied, these phase points cannot be overlapping.

Employing Eq. (1.34), the amount ζ(k) of the phase points overlapping with the
kth phase point can be determined with:

ζr (k) =
{

n∑

i=k

Q
(
Xr,ki

)
Q
(
Xr+1,ki

)
}

P

(
n∑

i=k

[
Q
(
Xr,ki

)
Q
(
Xr+1,ki

)]− 1

)

.

(1.35)

According to Eq. (1.35), the overlapping points in the rth Poincaré sections can
be defined by:

Nr = Nr(1) +
n∑

k=2

ζr (k)P

(
k−1∏

l=1

(
Xr,kl + Xr+1,kl

)
)

. (1.36)

where
∏

is multiplication and P(·) is step function defined previously. If the
responses of the nonlinear dynamic system are periodic, Nr can be simply expressed
by:

Nr =
j∑

k=1

ζr (k) (1.37)
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Therefore, the amount of the overlapping point and all the points in the Poincaré
section can be represented by:

S =
n−1∑

r=1

Nr (1.38)

Sa =
n−1∑

r=1

Sr (1.39)

where Sr represents the amount of the phase points in the rth Poincaré section.
Therefore, the periodicity ratio of the n-dimensional nonlinear autonomous system
is written by:

γ = lim
Sa→∞

S

Sa

(1.40)

1.3 Analytical and Numerical Solutions of Stiffness Coupling
Systems

To explore the PL method for solving the linear stiffness coupling system, consider
the following research subjects: (1) stiffness coupling system, (2) stiffness and
damping coupling system, and (3) stiffness and damping coupling system encoun-
tered with external excitation.

1.3.1 Stiffness Coupling System

A simple stiffness coupling system (SCS) is firstly shown in Fig. 1.1, where
mn(n = 1, 2) is the mass of the vibrator, kn(n = 1, 2) represents the stiffness
coefficient of the spring, and xn(n = 1, 2) denotes the displacement response of
the vibrator. By applying an initial velocity and initial displacement to the vibrator,
the response of the vibrator changes with time.

According to the physical model, the following differential equation can be
established:

{
m1x

′′
1 + k1 (x1 − x2) = 0,

m2x
′′
2 + k1 (x2 − x1) + k2x2 = 0.

(1.41)

The simplified form of Eq. (1.41) can be expressed as:
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Fig. 1.1 The stiffness
coupling system

{
x′′

1 + ω2
1,1 (x1 − x2) = 0,

x′′
2 + ω2

1,2 (x2 − x1) + ω2
2,2x2 = 0,

(1.42)

where ω1,1 = √
k1/m1, ω1,2 = √

k1/m2, ω2,2 = √
k2/m2. The initial value of the

system can be assumed by:

{
x1(0) = d1,0, x

′
1(0) = v1,0,

x2(0) = d2,0, x
′
2(0) = v2,0.

(1.43)

Subsequently, the piecewise constant method should be employed to rearrange the
continuous Eq. (1.42) as piecewise constant system. Replace terms x1(t) and x2(t)
with piecewise constant functions x1,i

(
i
N

)
and x2,i

(
i
N

)
at arbitrary intervals of

i/N ≤ t < (i + 1)/N (i = [Nt]), and it can be expressed as:

{
x′′

1,i + ω2
1,1x1,i

(
i
N

)− ω2
1,1x2,i

(
i
N

) = 0,

x′′
2,i + ω2

1,2x2,i

(
i
N

)− ω2
1,2x1,i

(
i
N

)+ ω2
2,2x2,i

(
i
N

) = 0.
(1.44)

In this case, the initial conditions in Eq. (1.43) can be transformed into the following
form:

{
x1,i

(
i
N

) = d1,i , x
′
1,i

(
i
N

) = v1,i ,

x2,i

(
i
N

) = d2,i , x
′
2,i

(
i
N

) = v2,i .
(1.45)

It can be found from Eq. (1.44) that the piecewise style is coupled with respect to x1, i
and x2, i. Therefore, the Laplace transformation can be used to separate the coupling
variables, and the plural form of Eq. (1.44) in the interval i/N ≤ t < (i + 1)/N is
calculated as:
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⎧
⎨

⎩
s2X1,i (s) − sx1,i

(
i
N

)
− x′

1,i

(
i
N

)
+ ω2

1,1
s x1,i

(
i
N

)
− ω2

1,1
s x2,i

(
i
N

)
= 0,

s2X2,i (s) − sx2,i

(
i
N

)
− x′

2,i

(
i
N

)
+ ω2

1,2
s x2,i

(
i
N

)
− ω2

1,2
s x1,i

(
i
N

)
+ ω2

2,2
s x2,i

(
i
N

)
= 0.

(1.46)

Then, X1, i(s) and X2, i(s) can be expressed as:

X1,i (s) = 1

s
x1,i

(
i

N

)
+ 1

s2 x′
1,i

(
i

N

)
− ω2

1,1

s3 x1,i

(
i

N

)
+ ω2

1,1

s3 x2,i

(
i

N

)
,

(1.47)

X2,i (s) = 1

s
x2,i

(
i

N

)
+ 1

s2 x′
2,i

(
i

N

)
− ω2

1,2

s3 x2,i

(
i

N

)
+ ω2

1,2

s3 x1,i

(
i

N

)
− ω2

2,2

s3 x2,i

(
i

N

)
.

(1.48)

In this situation, X1, i(s) and X2, i(s) are the plural form of x1, i(t) and x2, i(t) in
interval i/N ≤ t < (i + 1)/N, respectively. Through using the reverse Laplace
transformation, the expressions of x1, i(t) and x2, i(t) can be obtained by the
replacement of i with [Nt]:

x1,i (t) = A1vi , (1.49)

x2,i (t) = A2vi , (1.50)

where:

A1 =
[

1 − 1
2 ω2

1,1

(
t − [Nt]

N

)2
, t − [Nt]

N
, 1

2 ω2
1,1

(
t − [Nt]

N

)2
, 0

]
,

A2 =
[

1
2 ω2

1,2

(
t − [Nt]

N

)2
, 0, 1 − 1

2 ω2
1,2

(
t − [Nt]

N

)2 − 1
2 ω2

2,2

(
t − [Nt]

N

)2
, t − [Nt]

N

]
,

vi = [d1, i, v1, i, d2, i, v2, i]T .

Therefore, the velocities x′
1,i (t) and x′

2,i (t) should be rewritten as follows:

x′
1,i (t) = ∂A1

∂t
vi , (1.51)

x′
2,i (t) = ∂A2

∂t
vi . (1.52)

As mentioned previously, the displacements (x1, i(t), x2, i(t)) and the velocities
(x′

1,i (t), x
′
2,i (t)) are continuous in t ∈ [0, +∞), which is physically implied that

there is no jump (break) or discontinuity in the displacement and velocity over
t ∈ [0, +∞). Thus, the displacement and velocity in two adjacent points must satisfy
the following continuity condition:
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{
x1,i

(
i
N

) = x1,i−1
(

i
N

)
, x′

1,i

(
i
N

) = x′
1,i−1

(
i
N

)
,

x2,i

(
i
N

) = x2,i−1
(

i
N

)
, x′

2,i

(
i
N

) = x′
2,i−1

(
i
N

)
.

(1.53)

According to the continuity condition in Eq. (1.53), the relation of displacement and
velocity between the two adjacent truncation points can be represented as:

vi = pvi−1, (1.54)

where vi = [d1, i, v1, i, d2, i, v2, i]T , vi − 1 = [d1, i − 1, v1, i − 1, d2, i − 1, v2, i − 1]T ,
p = [pij]4 × 4(i = 1, . . . , 4, j = 1, . . . , 4), and the elements of the matrix p
are shown as follows:

p11 = 1 − ω2
1,1

2N2 , p12 = 1
N

, p13 = ω2
1,1

2N2 , p14 = 0, p21 = − ω2
1,1
N

, p22 = 1, p23 = ω2
1,1
N

, p24 = 0,

p31 = ω2
1,2

2N2 , p32 = 0, p33 = 1 − ω2
1,2

2N2 − ω2
2,2

2N2 , p34 = 1
N

, p41 = ω2
1,2
N

, p42 = 0, p43 = − ω2
1,2
N

− ω2
2,2
N

, p44 = 1.

In light of Eq. (1.54), vi can be expressed via initial condition v0 with iterative
computations of i times, i.e.:

vi = piv0, (1.55)

where v0 = [d1, 0, v1, 0, d2, 0, v2, 0]T .
When the initial condition v0 is determined, the displacement and velocity of the

system at any time can be calculated by utilizing Eq. (1.55). The semi-analytical
solution of the system in ith interval can be rewritten as the style of piecewise
constant, i.e.:

x1,i (t) = A1p[Nt]v0, (1.56)

x2,i (t) = A2p[Nt]v0. (1.57)

The calculation program can be compiled by using the above expressions. The
partial results of solving SCS for each method are obtained, as shown in Table 1.1.

With Table 1.1, take the results from RK4 with step 0.001 s as accurate values.
By comparing the calculation results of each method with same step (0.01 s),
the maximum relative errors of each method can be seen: Euler method, 15.28%;
trapezoidal method, 9.54%; Ode45, 4.21%; RK4, 6.15%; and PL, 1.54%. Therefore,
the most accurate method is the PL method, the second is ode45, the third is RK4,
the fourth is the trapezoidal method, and the last is the Euler method. Figure 1.2 is
the displacement responses of SCS. It also follows that the accuracy of numerical
results calculated by the RK4 method is rougher than PL within time step 0.01 s;
however, the PL solutions within time step 0.01 s are consistent with RK4 within
time step 0.001 s. To evaluate the computational efficiency of the PL method, the
CPU time for solving SCS with PL and RK4 methods in this same time domain
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Fig. 1.2 Displacement response of SCS (ω1, 1 = 22.361, ω1, 2 = 20, ω2, 2 = 17.321, x1(0) =
0.01, x′

1(0) = 0.1,x2(0) = 0.02, x′
2(0) = 0.2.)

Table 1.2 SCS computation
time in time history 30s

Numerical method Time step(s) Iterations CPU time

RK4 0.001 30,000 4.100625
RK4 0.01 3000 0.431250
PL 0.001 30,000 2.093750
PL 0.01 3000 0.228125

is considered. As shown in Table 1.2, the CPU time spent by the PL method is
approximately half of the RK4 method in time step 0.01 s, which reveals that the
PL method is more efficient than RK4 in numerical calculation of SCS. Obviously,
the same kind of computation method with short time step will take more time than
long time step, but reliability result can be obtained with short time step.

1.3.2 Stiffness and Damping Coupling System

In actual engineering, damping usually existed in coupling dynamic system.
Therefore, a dynamic system coupled with the terms of stiffness and damping
(SDCS) is considered, as shown in Fig. 1.3, where mn(n = 1, 2) is the mass of the
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Fig. 1.3 The stiffness and
damping coupling system

vibrator, kn(n = 1, 2) represents the stiffness coefficient of the spring, cn(n = 1, 2)
is the damping coefficient of the damper, and xn(n = 1, 2) denotes the displacement
response of the vibrator. Likewise, give the vibrator an initial velocity and initial
displacement, and the analytical expression of the response of the vibrator can be
obtained by the PL method.

Through this model, the following equation can be obtained:

{
m1x

′′
1 + c1

(
x′

1 − x′
2

)+ k1 (x1 − x2) = 0,

m2x
′′
2 + c1

(
x′

2 − x′
1

)+ k1 (x2 − x1) + k2x2 + c2x
′
2 = 0.

(1.58)

The simplified form of Eq. (1.58) can be expressed as:

{
x′′

1 + ξ1,1
(
x′

1 − x′
2

)+ ω2
1,1 (x1 − x2) = 0,

x′′
2 + ξ1,2

(
x′

2 − x′
1

)+ ω2
1,2 (x2 − x1) + ω2

2,2x2 + ξ2,2x
′
2 = 0,

(1.59)

where ω1,1 = √
k1/m1, ω1,2 = √

k1/m2, ω2,2 = √
k2/m2, ξ1,1 = c1/m1, ξ1,2 =

c1/m2, ξ2,2 = c2/m2.

In arbitrary interval i/N ≤ t < (i + 1)/N, Eq. (1.59) can be rearranged as a style
of piecewise constant. Replace terms x1(t), x′

1(t), x2(t), and x′
2(t) with piecewise

constant functions x1,i

(
i
N

)
, x′

1,i

(
i
N

)
, x2,i

(
i
N

)
, and x′

2,i

(
i
N

)
, and so Eq. (1.59) can

expressed as:

{
x′′

1 + ξ1,1

[
x′

1,i

(
i
N

)− x′
2,i

(
i
N

)]+ ω2
1,1

[
x1,i

(
i
N

)− x2,i

(
i
N

)] = 0,

x′′
2 + ξ1,2

[
x′

2,i

(
i
N

)− x′
1,i

(
i
N

)]+ ω2
1,2

[
x2,i

(
i
N

)− x1,i

(
i
N

)]+ ω2
2,2x2,i

(
i
N

)+ ξ2,2x
′
2,i

(
i
N

) = 0.

(1.60)

The Laplace transformation can be used to separate the coupling variables, and the
transformed plural form of Eq. (1.60) in the interval i/N ≤ t < (i + 1)/N is calculated
as:
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⎧
⎨

⎩

s2X1,i (s) − sx1,i

(
i
N

)− x′
1,i

(
i
N

) = − ξ1,1
s

[
x′

1,i

(
i
N

)− x′
2,i

(
i
N

)]− ω2
1,1
s

[
x1,i

(
i
N

)− x2,i

(
i
N

)]
,

s2X2,i (s) − sx2,i

(
i
N

)− x′
2,i

(
i
N

) = − ξ1,2
s

[
x′

2,i

(
i
N

)− x′
1,i

(
i
N

)]− ω2
1,2
s

[
x2,i

(
i
N

)− x1,i

(
i
N

)]− ω2
2,2
s

x2,i

(
i
N

)

− ξ2,2
s

x′
2,i

(
i
N

)
.

(1.61)

Then, X1, i(s) and X2, i(s) can be expressed as:

X1,i (s) = −ξ1,1

s3

[
x′

1,i

(
i

N

)
− x′

2,i

(
i

N

)]
− ω2

1,1

s3

[
x1,i

(
i

N

)
− x2,i

(
i

N

)]

+1

s
x1,i

(
i

N

)
+ 1

s2 x′
1,i

(
i

N

)
,

(1.62)

X2,i (s) = −ξ1,2

s3

[
x′

2,i

(
i

N

)
− x′

1,i

(
i

N

)]
− ω2

1,2

s3

[
x2,i

(
i

N

)
− x1,i

(
i

N

)]

−ω2
2,2

s3 x2,i

(
i

N

)
− ξ2,2

s3 x′
2,i

(
i

N

)
+ 1

s
x2,i

(
i

N

)
+ 1

s2 x′
2,i

(
i

N

)
.

(1.63)

Through using the inverse Laplace transformation, the expressions of x1, i(t) and
x2, i(t) can be obtained by the replacement of i with [Nt]:

x1,i (t) = B1vi , (1.64)

x2,i (t) = B2vi , (1.65)

where:

vi =
[
d1,i , v1,i , d2,i , v2,i

]T
,

B1 =
[

1 − 1
2 ω2

1,1

(
t − [Nt]

N

)2
, t − [Nt]

N
− 1

2 ξ1,1

(
t − [Nt]

N

)2
, 1

2 ω2
1,1

(
t − [Nt]

N

)2
, 1

2 ξ1,1

(
t − [Nt]

N

)2
]

,

B2 =
[

1
2 ω2

1,2

(
t − [Nt]

N

)2
, 1

2 ξ1,2

(
t − [Nt]

N

)2
, 1 − 1

2 ω2
1,2

(
t − [Nt]

N

)2 − 1
2 ω2

2,2

(
t− [Nt]

N

)2
,
(
t− [Nt]

N

)
− 1

2 ξ1,2

(
t− [Nt]

N

)2

− 1
2 ξ2,2

(
t − [Nt]

N

)2
]

.

Therefore, the velocities x′
1,i (t) and x′

2,i (t) should be rewritten as follows:

x′
1,i = ∂B1

∂t
vi , (1.66)

x′
2,i = ∂B2

∂t
vi . (1.67)
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In the light of the continuity condition in Eq. (1.53), the relation of displacement
and velocity between the two adjacent truncation points can be represented as:

vi = qvi−1, (1.68)

where vi − 1 = [d1, i − 1, v1, i − 1, d2, i − 1, v2, i − 1]T , q = [qij]4 × 4 (i = 1, . . . , 4,
j = 1, . . . , 4), and the elements in matrix q are given by:

q11 = 1 − ω2
1,1

2N2 , q12 = 1
N

− ξ1,1

2N2 , q13 = ω2
1,1

2N2 , q14 = ξ1,1

2N2 ,

q21 = −ω2
1,1
N

, q22 = 1 − ξ1,1
N

, q23 = ω2
1,1
N

, q24 = ξ1,1
N

,

q31 = ω2
1,2

2N2 , q32 = ξ1,2

2N2 , q33 = 1 − ω2
1,2

2N2 − ω2
2,2

2N2 , q34 = 1
N

− ξ1,2

2N2 − ξ2,2

2N2 ,

q41 = ω2
1,2
N

, q42 = ξ1,2
N

, q43 = −ω2
1,2
N

− ω2
2,2
N

, q44 = 1 − ξ1,2
N

− ξ2,2
N

.

According to Eq. (1.68), vi can be expressed via initial condition v0 with iterative
computations of i times, i.e.:

vi = qiv0, (1.69)

where v0 = [d1, 0, v1, 0, d2, 0, v2, 0]T .
When initial condition v0 is determined, the displacement and velocity of the

system at any time can be calculated by utilizing Eq. (1.69). The semi-analytical
solution of the system in ith interval can be rewritten as the style of piecewise
constant, i.e.:

x1,i (t) = B1q[Nt]v0, (1.70)

x2,i (t) = B2q[Nt]v0. (1.71)

The partial numerical results of solving SDCS for each method are shown in
Table 1.3. Similarly, the maximum relative errors of each method can be seen: Euler
method, 23.12%; trapezoidal method, 11.97%; Ode45, 6.78%; RK4, 10.18%; and
PL, 1.52%. Likewise, the most accurate method is the PL method. As can be seen
from the maximum relative error, compared to solving SCS, the relative error of
each method has increased. This is due to the added damping term of the SDCS,
which makes the calculation more complicated.

The displacement responses of SDCS are shown in Fig. 1.4, and it can be seen
that the accuracy of numerical results calculated by RK4 is rougher than PL within
time step 0.01 s; however, on account of continuity of the PL method, the numerical
results within time step 0.01 s are coincident with the RK4 method within time step
0.001 s. The value of amplitude of the SDCS is gradually damped with the increase
of time t. In order to evaluate the computational efficiency of the PL method, the
CPU time for solving SDCS with PL and RK4 methods is considered. As shown in
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Fig. 1.4 Displacement response of SDCS (ω1, 1 = 22.361, ω1, 2 = 20, ω2, 2 = 17.321, ξ1, 1 = 10,
ξ1, 2 = 5, ξ2, 2 = 2, x1(0) = 0.01, x′

1(0) = 0.1,x2(0) = 0.02, x′
2(0) = 0.2.)

Table 1.4 SDCS
computation time in time
history 30s

Numerical method Time step(s) Iterations CPU times

RK4 0.001 30,000 4.533125
RK4 0.01 3000 0.412515
PL 0.001 30,000 2.572750
PL 0.01 3000 0.296875

Table 1.4, the CPU time taken by the PL method is less than RK within the same
time steps, which illustrates that PL calculating SDCS is faster than RK4 method.
Comparing with Table 1.2, because of the existence of damping term, the CPU time
taken by SDCS is longer than SCS.

1.3.3 Stiffness and Damping Coupling System with External
Excitation

In practical engineering, the stiffness and damping coupling system is encountered
with external excitation. Consider a cosine force related to time t acted in the system
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Fig. 1.5 The stiffness and
damping coupling system
with external excitation

(SDCSF), i.e. (Fig. 1.5): where mn(n = 1, 2) is the mass of the vibrator, kn(n = 1, 2)
represents the stiffness coefficient of the spring, cn(n = 1, 2) is the damping
coefficient of the damper, F is the magnitude of the cosine force, ω represents the
frequency of the cosine force, and xn(n = 1, 2) denotes the displacement response of
the vibrator. When the external excitation acting on the vibrator changes periodically
with time, the vibrator will respond accordingly.

According to the physical model, the following equation is established:

{
m1x

′′
1 + c1

(
x′

1 − x′
2

)+ k1 (x1 − x2) = F cos (ωt) ,

m2x
′′
2 + c1

(
x′

2 − x′
1

)+ k1 (x2 − x1) + k2x2 + c2x
′
2 = 0.

(1.72)

The simplified form of Eq. (1.72) can be expressed as:

{
x′′

1 + ξ1,1
(
x′

1 − x′
2

)+ ω2
1,1 (x1 − x2) = a cos (ωt) ,

x′′
2 + ξ1,2

(
x′

2 − x′
1

)+ ω2
1,2 (x2 − x1) + ω2

2,2x2 + ξ2,2x
′
2 = 0,

(1.73)

where a = F/m1, ω1,1 = √
k1/m1, ω1,2 = √

k1/m2, ω2,2 = √
k2/m2, ξ1,1 =

c1/m1, ξ1,2 = c1/m2, ξ2,2 = c2/m2.
At time interval i/N ≤ t < (i + 1)/N, the piecewise constant method is employed

to rearrange Eq. (1.73) as the style of piecewise constant. Replace terms x′
1(t),

x′
2(t), and a cos (ωt) with the piecewise constant functions x′

1,i

(
i
N

)
, x′

2,i

(
i
N

)
, and

a cos
(
ω i

N

)
, respectively. Equation (1.73) can be expressed as:

⎧
⎨

⎩

x′′
1 + ξ1,1

[
x′

1,i

(
i
N

)− x′
2,i

(
i
N

)]+ ω2
1,1 (x1 − x2) = a cos

(
ω i

N

)
,

x′′
2 + ω2

1,2 (x2 − x1) + ξ1,2

[
x′

2,i

(
i
N

)− x′
1,i

(
i
N

)]+ ω2
2,2x2 + ξ2,2x

′
2,i

(
i
N

) = 0.

(1.74)
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The Laplace transformation can be used to separate the coupling variables, and the
plural form of Eq. (1.74) in the interval i/N ≤ t < (i + 1)/N is calculated as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s2X1,i (s) + ω2
1,1

[
X1,i (s) − X2,i (s)

] = a cos
(
ω i

N

)− ξ1,1

[
x′

1,i

(
i
N

)− x′
2,i

(
i
N

)]

+sx1,i

(
i
N

)+ x′
1,i

(
i
N

)
,

s2X2,i (s) + ω2
1,2

[
X2,i (s) − X1,i (s)

]+ ω2
2,2X2,i (s)= − ξ1,2

[
x′

2,i

(
i
N

)−x′
1,i

(
i
N

)]

−ξ2,2x
′
2,i

(
i
N

)+ sx2,i

(
i
N

)+ x′
2,i

(
i
N

)
.

(1.75)

Then, X1, i(s) and X2, i(s) can be decoupled and expressed as:

X1,i (s) = sW

QW−ω2
1,1ω

2
1,2

x1,i

(
i
N

)+
[

W

QW−ω2
1,1ω

2
1,2

+ ξ1,2ω
2
1,1−ξ1,1W

s
(
QW−ω2

1,1ω
2
1,2

)

]

x′
1,i

(
i
N

)

+ sω2
1,1

QW−ω2
1,1ω

2
1,2
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(1.77)

where Q = s2 + ω2
1,1,W = s2 + ω2

1,2 + ω2
2,2.

It is difficult to transform plural solution above into time-domain solution with
the general inverse Laplace transformation. However, through Theorem 1.5 in Eq.
(1.10), the expressions of x1, i(t) and x2, i(t) can be obtained by the replacement of i
with [Nt]:

x1,i (t) = C1vi +
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, (1.78)

x2,i (t) = C2vi +
5∑
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where vi = [
d1,i , v1,i , d2,i , v2,i

]T
, L = ω2

1,1 + ω2
1,2 + ω2

2,2,
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Therefore, the velocities x′
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2,i (t) should be rewritten as follows:
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The first-order zero in expression 5s4
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2,2 are shown below:
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According to the continuity condition in Eq. (1.53), the relation of displacement
and velocity between the two adjacent truncation points can be represented as:
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According to Eq. (1.82), vi can be expressed via initial condition v0 with iterative
computations of i times, i.e.:

vi = γiv0 +
i∑

k=1

γk−1g a cos
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)
. (1.83)
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When the initial condition v0 is determined, the displacement and velocity of the
system at any time can be calculated by using Eq. (1.83). The approximate solution
of the system in ith interval can be rewritten as the style of piecewise constant, i.e.:
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The partial numerical results of solving SDCSF for each method are as shown
in Table 1.5. The maximum relative errors of each method can be found: Euler
method, 38.47%; trapezoidal method, 18.21%; Ode45, 8.75%; RK4, 16.44%; and
PL, 3.41%. The PL method still has the highest accuracy. Compared to solving
SDCS, the relative error of each method is increasing. This is due to the added
external excitation related to time in SDCSF, which makes the calculation process
more complicated and leads to a reduction in accuracy.

Figure 1.6 shows the displacement responses of the SDCSF. It follows that the
accuracy of PL results is more accurate than RK4 within same time step; but PL
solutions with time step 0.01 s are more approximately approached to RK4 with
time step 0.001 s. As shown in Table 1.6, computational speed of the PL method
is faster than RK4 when calculating SDCSF, and the CPU time required in solving
the SDCSF is longer than that of SCS and SDCS in time step 0.01 s because of the
presence of damping and external excitation.

1.3.4 Convergence Analysis of the PL Method

The convergence of the PL method in calculating the above three systems is
discussed, as illustrated in Figs. 1.7, 1.8 and 1.9. It can be seen that when N = 1000,
the numerical results obtained by the PL method are deviated from the accurate
value (AV). When N = 2000, the deviation of the numerical solution is reduced.
Finally, when N = 20,000, the curve obtained by the PL method is coincident with
that of AV. It is indicated that the numerical value obtained by the PL method is
approached to the AV as the value of N is gradually increased. Obviously, parameter
N is an important factor to control the precision of numerical results and speed
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Fig. 1.6 Displacement response of SDCSF (ω1, 1 = 15.811, ω1, 2 = 17.321, ω2, 2 = 20, ξ1, 1 = 30,
ξ1, 2 = 20, ξ2, 2 = 10, a = 50, ω = 160, x1(0) = 0.01, x′

1(0) = 0.1,x2(0) = 0.02, x′
2(0) = 0.2.)

Table 1.6 SDCSF
computation time in time
history 30s

Numerical method Time step(s) Iterations CPU times

RK4 0.001 30,000 4.943750
RK4 0.01 3000 0.457751
PL 0.001 30,000 3.062512
PL 0.01 3000 0.371920

of convergence. Therefore, when the value of N is increased, the calculation can
converge faster and the precision of the PL method is improved. In order to obtain
the high-precision results and faster convergence for solving the coupling dynamic
systems, it is better to select a sufficiently large value of N.

The above are the general processes of using PL method to solve the stiffness
coupling systems, and some important conclusions should be stressed as the
following:

1. When solving the coupling system by using the traditional RK method, high
order differential equations of dynamic system are usually descended into
multiple first-order differential equations. In this way, crucial dynamic property
of the original system may be neglected or simplified, which leads to the
computational error when searching solution for dynamic model encountered in
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Fig. 1.7 Convergence of the solution of SCS by the PL method (ω1, 1 = 22.361, ω1, 2 = 20,
ω2, 2 = 17.321, x1(0) = 0.01, x′

1(0) = 0.1,x2(0) = 0.02, x′
2(0) = 0.2.)

Fig. 1.8 Convergence of the solution of SCDS by the PL method (ω1, 1 = 22.361, ω1, 2 = 20,
ω2, 2 = 17.321, ξ1, 1 = 10, ξ1, 2 = 5, ξ2, 2 = 2, x1(0) = 0.01, x′

1(0) = 0.1,x2(0) = 0.02, x′
2(0) =

0.2.)

actual engineering. However, solving differential equations above with the PL
method, the semi-analytical solution of systems is obtained directly through the
derivation of equation. Therefore, the physical properties of systems are well
preserved. In addition, the whole-time interval is divided into many tiny intervals
by the PL method, and the solution is continuous on each interval. In this case, the
accuracy of numerical solution of the PL method is better than the RK method,
which is demonstrated by numerical analysis.

2. The computed efficiency of the PL and RK methods are compared through
statistics of operation time of CPU during computing process. The CPU time
taken by the PL method is less than the RK method in the same time steps, which
indicates that the PL method is more efficient than the RK method. The main
reason is that value continuity of two adjacent truncation points is maintained
by using the PL method, which simplifies the solving process and saves the
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Fig. 1.9 Convergence of the solution of SCDSF by the PL method (ω1, 1 = 15.811, ω1, 2 = 17.321,
ω2, 2 = 20, ξ1, 1 = 30, ξ1, 2 = 20, ξ2, 2 = 10, a = 50, ω = 160, x1(0) = 0.01, x′

1(0) =
0.1,x2(0) = 0.02, x′

2(0) = 0.2.)

calculated time, while the RK method combines iterative and averaged slope to
search solutions, which makes the solution process more complicated.

3. The numerical results of the PL method reflect the essence of dynamic system,
since the PL method keeps the physical characteristics of dynamic system. The
precision of the solution obtained by the PL method is related to the value of
N. This article is an exploratory study for implementation of the PL method
in coupling systems. Therefore, the classic two-degree freedom systems are
considered, and whether the PL method is suitable to solve problems of multi-
degree freedom system should be further verified in our next work.

1.4 Analytical and Numerical Solutions of Inertial Coupling
Systems

There is no direct solution for the dynamic equations, which are fundamentally
mutual coupling with inertia terms. Development of solutions for such equation
is therefore unique in comparing with conventional dynamic equation. For purpose
of simplification and demonstration of PL method, the solutions for the following
equation of inertial coupling dynamic systems are primarily considered.

1.4.1 Undamped Inertial Coupling System

Consider an undamped inertial coupling equation such as:



1 Improved Theoretical and Numerical Approaches for Solving Linear. . . 33

{
m1ẍ + kxx + m2ÿ = 0,

m3ÿ + kyy + m4ẍ = 0.
(1.86)

where mi(i = 1, 2, 3, 4) is constant related to masses. x and y represent the
displacement response in x and y directions, respectively. kx and ky represent the
spring stiffness in x and y directions in the vibrating system, respectively.

The simplification style of the equation above can be expressed by:

{
ẍ + ω2

xx + mÿ = 0,

ÿ + ω2
yy + nẍ = 0.

(1.87)

where ωx = √
kx/m1, ωy = √

ky/m3,m = m2/m1, n = m4/m3. The initial
condition for the system may be assumed as follows:

{
x(0) = d0, ẋ(0) = v0,

y(0) = d∼0
, ẏ(0) = v∼0

.
(1.88)

Then, the piecewise constant argument is applied to transform the continuous Eq.
(1.87) into many piecewise constant systems. The system corresponding to that
governed by Eq. (1.87) can be constructed by replacing the terms x(t) and y(t) with
the piecewise constant function over an arbitrary time interval i/N ≤ t < (i + 1)/N
(i = [Nt]/N). The corresponding equation of motion is expressible in the following
form:

⎧
⎨

⎩

ẍi + mÿi = −ω2
xx
(

[Nt]
N

)
,

ÿi + nẍi = −ω2
yy
(

[Nt]
N

)
.

(1.89)

In this case, in arbitrary time interval i/N ≤ t < (i + 1)/N, the local initial conditions
can be considered as:

{
xi

(
i
N

) = di, ẋi

(
i
N

) = vi,

yi

(
i
N

) = d∼i
, yi

(
i
N

) = v∼i
.

(1.90)

With the consideration of the Laplace transformation, Eq. (1.89) in interval
i/N ≤ t < (i + 1)/N can be expressed by plural form:

{
s2Xi(s) + ms2Yi(s) = − 1

s
ω2

xxi

(
i
N

)+ sxi

(
i
N

)+ ẋi

(
i
N

)+ msyi

(
i
N

)+ mẏi

(
i
N

)

s2Yi(s) + ns2Xi(s) = − 1
s
ω2

yyi

(
i
N

)+ nsxi

(
i
N

)+ nẋi

(
i
N

)+ syi

(
i
N

)+ ẏi

(
i
N

)

(1.91)

Then, Xi and Yi can be solved by:
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Xi(s) =
[

ω2
x

(mn − 1) s3 + 1

s

]
xi

(
i

N

)
+ 1

s2 ẋi

(
i

N

)
− mω2

y

(mn − 1) s3 yi

(
i

N

)
,

(1.92)

Yi(s) = −nω2
x

(mn − 1) s3
xi

(
i

N

)
+
[

1

s
+ ω2

y

(mn − 1) s3

]

yi

(
i

N

)
+ 1

s2
ẏi

(
i

N

)
.

(1.93)

Xi(s) and Yi(s) are pluralities corresponding to xi(t) and yi(t) in interval
i/N ≤ t < (i + 1)/N, respectively. Based on inverse Laplace transformation and
initial condition in Eq. (1.90), xi(t) and yi(t) is expressible in arbitrary time interval
i/N ≤ t < (i + 1)/N with the substitution of i by [Nt]:

xi(t) = A1vi (1.94)

yi(t) = B1vi (1.95)

where:

A1 =
[

1 − ω2
x

2(1−mn)

(
t − [Nt]

N

)2
, t − [Nt]

N
,

mω2
y

2(1−mn)

(
t − [Nt]

N

)2
, 0

]
,

B1 =
[

nω2
x

2(1−mn)

(
t − [Nt]

N

)2
, 0,

[
1 − ω2

y

2(1−mn)

] (
t − [Nt]

N

)2
, t − [Nt]

N

]
,

vi =
[
di vi d∼i

v∼i

]T
.

Consequently, the velocities of the system in x- and y- directions can be expressed
by:

ẋi (t) = ∂A1

∂t
vi , (1.96)

ẏi (t) = ∂B1

∂t
vi . (1.97)

As a rotational hypothesis of the actual response of a piecewise constant system in
practice, there should be no jump or discontinuity of the displacements xi(t) and yi(t)
and velocities ẋi (t) and ẏi (t) in the time of t ∈ [0, +∞). This implies the kinematic
parameters xi(t), ẋi (t), yi(t), and ẏi (t) are continuous within time t. The following
condition of continuity should therefore be satisfied for the solutions of piecewise
constant system over all of time intervals, i.e.:
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{
xi

(
i
N

) = xi−1
(

i
N

)
, ẋi

(
i
N

) = ẋi−1
(

i
N

)
,

yi

(
i
N

) = yi−1
(

i
N

)
, ẏi

(
i
N

) = ẏi−1
(

i
N

)
.

(1.98)

With the condition of continuity, a recursive relation is obtained with the considera-
tion of Eqs. (1.94), (1.95), (1.96) and (1.97), such that:

vi = αvi−1 (1.99)

where α = [αij]4 × 4 (i= 1, . . . , 4, j= 1, . . . , 4), vi−1=
[
di−1 vi−1 d∼i−1

v∼i−1

]T
.

α is a fourth-order matrix, and the elements of the matrix are shown as the following:

α11 = 1 − ω2
x

2(1−mn)N2 , α12 = 1
N

, α13 = mω2
y

2(1−mn)N2 , α14 = 0,

α21 = − ω2
x

(1−mn)N
, α22 = 1, α23 = mω2

y

(1−mn)N
, α24 = 0,

α31 = nω2
x

2(1−mn)N2 , α32 = 0, α33 = 1 − ω2
y

2(1−mn)N2 , α34 = 1
N

,

α41 = nω2
x

(1−mn)N
, α42 = 0, α43 = − ω2

y

(1−mn)N
, α44 = 1.

Because of an iterative procedure, vi can be expressed by the initial displace-
ments v0 in the following form:

vi = α[Nt]v0 (1.100)

where v0 =
[
d0 v0 d∼0

v∼0

]T
.

One can see that the displacement and velocity of the system at any given point
of time [Nt]/N can be calculated by using Eq. (1.100) on the condition that the initial
values of displacement and velocity are known. Considering that ith time interval is
arbitrarily chosen, the complete solution of the system is obtained by:

xi(t) = A1α
[Nt]v0 (1.101)

yi(t) = B1α
[Nt]v0 (1.102)

The calculation program can be compiled by using the above expressions. To
express the difference of the RK4 method and the PL method for computing the
solution of the dynamic system, the comparison of the two methods with different
time step is treated under the same initial value. Figure 1.10 shows the difference
of the computation results for the inertial coupling system with undamping term
(ICSUT). By using longer time step (0.01 s) with the PL method, one can obtain the
same accurate solution as classical fourth-order RK4 method with shorter time step
(0.001 s). However, the numerical results of RK4 method within time step 0.01 s
are less accurate than that of the PL method within time step 0.01 and that of the
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Fig. 1.10 Comparison of the numerical results with the RK4 method and the PL method for Eq.
(1.86) (x0 = 0.1, ẋ0 = 0.2,y0 = 0, ẏ0 = 0.1.)

Table 1.7 Comparison of the numerical result for solving the ICSUT

Time (s) RK4 (Step:0.01 s) RK4 (Step:0.001 s) PL (Step:0.01 s)

25.5 0.016473797231490 0.0190415455200814 0.0190694960305990
26.0 0.036368197172967 −0.0472301678349378 −0.0472486938586073
26.5 −0.013064521870364 −0.0147807819379706 −0.0147876980845763
27.0 0.035980540467921 0.0472258341798137 0.0472256879462556
27.5 0.012015075793593 0.0130923119300392 0.0130233245487664
28.0 −0.040012192731396 −0.0523579818551743 −0.0523989783656799

Table 1.8 Comparison of the
CPU time computed for
solving the ICSUT in time
history 50s

Numerical method Time step (s) Iterations CPU times

RK4 0.001 50,000 4.7813
RK4 0.01 5000 0.4063
PL 0.001 50,000 2.4219
PL 0.01 5000 0.2656

RK4 method within time step 0.001 s. This is mainly due to the cumulative error
of iteration computation of the RK4 method in longer time step. Table 1.7 shows
the computation values of the PL method and the RK4 method. It is indicated that
the PL method is more accurate for solving the problem of dynamic system, because
numerical solutions produced by the PL method are continuous everywhere in whole
time history. Therefore, if a fixed accuracy of the numerical solution is required, the
PL method with long time step can obtain the same or even more accuracy solution
than the RK4 method. Table 1.8 shows the CPU time for solving ICSUT in the
same time history. One can see that in the same time step, the PL method needs
shorter CPU time to finish to the numerical computations than the RK4 method.
This implies that the PL method is more efficient for computation of ICSUT than
the RK4 method.
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1.4.2 Damped Inertial Coupling System

In general, damping and resistance forces against motion may be existed in the
inertia coupling system. For solving for the motion of a damped inertia coupling
system, the dynamic equation in the following specific system is taken into
consideration:

{
m1ẍ + fxẋ + kxx + m2ÿ = 0,

m3ÿ + fyẏ + kyy + m4ẍ = 0.
(1.103)

With simplification, the dynamic equation can be also rewritten as:

{
ẍ + ξxẋ + ω2

xx + mÿ = 0,

ÿ + ξyẏ + ω2
yy + nẍ = 0.

(1.104)

where ωx = √
kx/m1, ωy = √

ky/m3,m = m2/m1, n = m4/m3, ξx =
fx/m1, ξy = fy/m3.

Then, the piecewise constant system corresponding to that governed by Eq.
(1.104) can be constructed by replacing the terms ẋ(t) and ẏ(t) with piecewise
constant function over an arbitrary time interval i/N ≤ t < (i + 1)/N. The
corresponding equation of motion is expressible in the following form:

{
ẍi + mÿi = −ξxẋi

(
i
N

)− ω2
xxi

(
i
N

)
,

ÿi + nẍi = −ξyẏi

(
i
N

)− ω2
yyi

(
i
N

)
.

(1.105)

With the Laplace transformation, Eq. (1.105) can be also expressed as plural form:

{
s2Xi(s) + ms2Yi(s) = − 1

s
ω2

xxi

(
i
N

)− 1
s
ξx ẋi

(
i
N

)+sxi

(
i
N

)+ẋi

(
i
N

)+ msyi

(
i
N

)+ mẏi

(
i
N

)

s2Yi(s) + ns2Xi(s) = − 1
s
ω2

yyi

(
i
N

)− 1
s
ξy ẏi

(
i
N

)+ nsxi

(
i
N

)+ nẋi

(
i
N

)+ syi

(
i
N

)+ ẏi

(
i
N

)

(1.106)

Then, Xi and Yi can be solved by:

Xi(s) =
[

1

s
+ ω2

x

(mn − 1) s3

]
xi

(
i

N

)
+
[

1

s2 + ξx

(mn − 1) s3

]
ẋi

(
i

N

)

− mω2
y

(mn − 1) s3 yi

(
i

N

)
− mξy

(mn − 1) s3 ẏi

(
i

N

)

(1.107)

Yi(s) = − nω2
x

(mn − 1) s3 xi

(
i

N

)
− nξx

(mn − 1) s3 ẋi

(
i

N

)
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+
[

1

s
+ ω2

y

(mn − 1) s3

]

yi

(
i

N

)
+
[

1

s2 + ξy

(mn − 1) s3

]
ẏi

(
i

N

)
(1.108)

Based on inverse Laplace transformation, xi(t) and yi(t) can be obtained in arbitrary
time interval [Nt]/N ≤ t < ([Nt] + 1)/N:

xi = A2vi (1.109)

yi = B2vi (1.110)

with:

A2 =

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

1 + ω2
x

2(mn−1)

(
t − [Nt]

N

)2

(
t − [Nt]

N

)
+ ξx

2(mn−1)

(
t − [Nt]

N

)2

− mω2
y

2(mn−1)

(
t − [Nt]

N

)2

− mξy

2(mn−1)

(
t − [Nt]

N

)2

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

T

,

B2 =

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

− nω2
x

2(mn−1)

(
t − [Nt]

N

)2

− nξx

2(mn−1)

(
t − [Nt]

N

)2

1 + ω2
y

2(mn−1)

(
t − [Nt]

N

)2

(
t − [Nt]

N

)
+ ξy

2(mn−1)

(
t − [Nt]

N

)2

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

T

.

Then, the velocities of the system in x- and y- directions can be expressed by:

ẋi = ∂A2

∂t
vi (1.111)

ẏi = ∂B2

∂t
vi (1.112)

With the condition of continuity, the recursive relation is obtained by:

vi = βvi−1 (1.113)

where β = [β ij]4 × 4 (i = 1, . . . , 4, j = 1, . . . , 4), and the elements of matrix β

are shown as the following:
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β11 = 1 − ω2
x

2(1−mn)N2 , β12 = 1
N

− ξx

2(1−mn)N2 , β13 = mω2
y

2(1−mn)N2 , β14 = mξy

2(1−mn)N2 ,

β21 = − ω2
x

(1−mn)N
, β22 = 1 − ξx

(1−mn)N
, β23 = mω2

y

(1−mn)N
β24 = mξy

(1−mn)N
,

β31 = nω2
x

2(1−mn)N2 , β32 = nξx

2(1−mn)N2 , β33 = 1 − ω2
y

2(1−mn)N2 , β34 = 1
N

− ξy

2(1−mn)N2 ,

β41 = nω2
x

(1−mn)N
, β42 = nξx

(1−mn)N
, β43 = − ω2

y

(1−mn)N
, β44 = 1 − ξy

(1−mn)N
.

Because of the iterative procedure, di, vi, d∼i
and v∼i

can be expressed by the initial

displacements d0, d∼0
, and velocities v0, v∼0

in the following form:

vi = βiv0 (1.114)

The displacement and velocity of the system at any given point of time
i/N(i = [Nt]) can be calculated by using Eq. (1.114). Considering that ith time
interval is arbitrarily chosen, the complete solution is as follows:

xi(t) = A2β
[Nt]v0 (1.115)

yi(t) = B2β
[Nt]v0 (1.116)

For mastering the accuracy and efficiency of the PL method for computation of
the inertial coupling system with damping term (ICSDT), the numerical results of
displacements in x- and y- directions are shown in Fig. 1.11. Just like the numerical
result of the ICSUT, the data points obtained by the PL method in time step 0.01 s
are overlapped with that of the RK4 method in time step 0.001 s. On the contrary,
one can see that the RK4 method in time step 0.01 s reduces the calculation accuracy
of the ICSDT. Therefore, in the same time step, the numerical result of PL method
for solving the ICSDT is more accurate than the RK4 method. The reason is that
the solution of every piecewise system obtained with the PL method is continuous,
unlike the RK4 method missing the physical characteristics of original system. In
speaking of vibrating characteristics, the amplitude of the inertial coupling system
is damping with time, and value of amplitudes will be stabilized at zero. Table 1.9
shows comparison of the numerical result for solving ICSDT with the two methods.
One can see the numerical value with the PL method is approached to that of the
RK4 method, although the time step of the former method is tenfold as the latter.
Table 1.10 shows the CPU time for solving ICSDT in time history 50s. Comparing
with Table 1.7, the CPU time of ICSDT needs longer than that of ICSUT as the
existence of the damping terms. This implies that the PL method is more efficient
for computation of dynamic systems than the ICSDT in the same time history.
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Fig. 1.11 Comparison of the numerical results with the RK4 method and the PL method for Eq.
(1.103) ( ξ x = 1.36, ξ y = 1.52, x0 = 0.05, ẋ0 = 0.2,y0 = 0.1, ẏ0 = 0.)

Table 1.9 Comparison of the numerical result for solving ICSDT

Time (s) RK4 (Step:0.01) RK4 (Step:0.001) P-L (Step:0.01)

0.5 −0.008058698944357 −0.00896109624079123 −0.0089467489044681
1.0 −0.0208986465721304 −0.0224128402743939 −0.0224768947658039
1.5 0.0040899042076537 0.00538415167707660 0.0053284894060684
2.0 0.0096873942118691 0.0106810776987243 0.0106765545344556
2.5 −0.0021873664629323 −0.00373881916250538 −0.0037684737489403
3.0 −0.0035768493032044 −0.00458828573192142 −0.0045982333947589

Table 1.10 Comparison of
the CPU time computed for
solving ICSDT in time
history 50s

Numerical method Time step (s) Iterations CPU times

RK4 0.001 50,000 4.9674
RK4 0.01 5000 0.4565
PL 0.001 50,000 2.9531
PL 0.01 5000 0.3281

1.4.3 Forced and Damped Inertial Coupling System

In practical engineering, external forces always may be existed in the damped inertia
coupling system. Suppose that the dynamic system is acted with a linear cosine force
F cos ωt related to time t, therefore, the dynamic equation in the following specific
system is undertaken:

{
m1ẍ + fxẋ + kxx + m2ÿ = F cos (ωt) ,

m3ÿ + fyẏ + kyy + m4ẍ = 0.
(1.117)

Simplification of Eq. (1.117) can be written by:
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{
ẍ + ξxẋ + ω2

xx + mÿ = A cos (ωt) ,

ÿ + ξyẏ + ω2
yy + nẍ = 0.

(1.118)

where ωx = √
kx/m1, ωy = √

ky/m3,m = m2/m1, n = m4/m3, ξx =
fx/m1, ξy = fy/m3, A = F/m1.

In this case, the piecewise constant system corresponding to that governed by
Eq. (1.118) can be constructed by replacing damped terms ẋ(t) and ẏ(t) and
external force A cos (ωt) with piecewise constant function over an arbitrary time
interval i/N ≤ t < (i + 1)/N. The corresponding dynamics equation of the system is
expressible in the following form:

{
ẍi + mÿi + ω2

xxi = −ξxẋi

(
i
N

)+ A cos
(
ω i

N

)

ÿi + ω2
yyi + nẍ = −ξyẏi

(
i
N

)
.

(1.119)

With the Laplace transform, Eq. (1.119) can be also expressed as plural form:

{ (
s2 + ω2

x

)
Xi(s) + ms2Yi(s) = − ξx

s
ẋi

(
i
N

)+ A
s

cos
(
ω i

N

)+ sxi

(
i
N

)+ ẋi

(
i
N

)+ msyi

(
i
N

)+ mẏi

(
i
N

)
(
s2 + ω2

y

)
Yi(s) + ns2Xi(s) = − ξy

s
ẏi

(
i
N

)+ nsxi

(
i
N

)+ nẋi

(
i
N

)+ syi

(
i
N

)+ ẏi

(
i
N

)
.

(1.120)

Further separating variables, Xi and Yi can be obtained by:

Xi(s) = s3−sσω2
y

υ(s) xi

(
i
N

)+ s3+σξxs2−σω2
ys+σξxω2

y

sυ(s) ẋi

(
i
N

)− σmω2
ys

υ(s) yi

(
i
N

)

− σmξys+σmω2
y

υ(s) ẏ
(

i
N

)− σAs2+σAω2
y

sυ(s) cos
(
ω i

N

)

(1.121)

Yi(s) = −nω2
xs

υ(s)
xi

(
i
N

)− nξxs+nω2
x

υ(s)
ẋi

(
i
N

)+ (mn−1)s3−ω2
xs

υ(s)
yi

(
i
N

)

+ (mn−1)s3+ξys2−ω2
xs+ξyω2

x

sυ(s)
ẏi

(
i
N

)+ Ans
υ(s)

cos
(
ω i

N

) (1.122)

where υ (s) = s4 − σ
(
ω2

x + ω2
y

)
s2 − σω2

xω
2
y, σ = (mn − 1)−1.

With the Theorem 1.5 in Eq. (1.10), substituting i with [Nt], displacement
responses xi(t) and yi(t) in arbitrary time interval i/N ≤ t < (i + 1)/N can be
expressed by:

xi = A3vi −
5∑

i=1

5∏

j=1

σs2
i + σω2

y

si − sj
e
si

(
t− [Nt]

N

)

A cos

(
ω

[Nt]

N

)
(1.123)

yi = B3vi −
4∑

i=1

4∏

j=1

nsi

si − sj
e
si

(
t− [Nt]
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with:
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where sj and sk are zeros of function υ(s) shown as:
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s5 = 0.

It should be noted that sj − sk = 1 in the whole process of the computations when
j = k.

Then, the velocities of the system in x- and y- directions can be expressed by:

ẋi = ∂A3
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(1.125)
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ẏi = ∂B3
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With the continuity condition, a recursive relation is obtained by combining Eqs.
(1.123). (1.124), (1.125) and (1.126), such that:
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)
(1.127)
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,

γ = [γ ij]4 × 4, and the elements of matrixes γ are shown as:
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With the recursive relation in Eq. (1.127), the recursive relation with respect to initial
conditions is obtained, such that:

vi = γiv0 +
i∑

r=1

γr−1gA cos

(
ω ([Nt] − r)

N

)
(1.128)

The displacement responses of the system at any given point of time i/N can
be calculated by using Eq. (1.128). Considering that ith time interval is arbitrarily
chosen, thus, the complete solution is obtained by:
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Fig. 1.12 Comparison of the numerical results with the RK4 method and the PL method for Eq.
(1.117) ( ξ x = 1.36, ξ y = 1.52, A = 1.89, ω = 15, x0 = 0.05, ẋ0 = 0.2,y0 = 0.1, ẏ0 = 0.)
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In the engineering application, the damping term and the external force term are
considered. Finally, the numerical computation is implemented with the PL method
and the RK4 method for computation of the inertial coupling system with damping
and external force term (ICSDEFT). Figure 1.12 shows the displacement responses
in x and y directions with the two method. It is also evident that the RK4 method
for solving dynamic characteristics of the ICSDEFT is less accurate than the PL
method in same time step 0.01 s. In summary, the solution process of RK4 method,
employing the slope iteration related to an arithmetic mean value, damages the
physical meaning contained in the original dynamic system and causes undesirable
influence on the accuracy and reliability of numerical results. And the comparison
of the numerical result for solving the ICSDEFT is shown in Table 1.11. In the
speaking of computational efficiency, the computation time with the PL method is
also shorter than the RK4 method in the ICSDEFT, as shown in Table 1.12. Because
of the existence of the damping term and the external force term, the CPU time
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Table 1.11 Comparison of the numerical response in x direction computed by PL and RK4
methods

Time (s) RK4 (Step:0.01 s) RK4 (Step:0.001 s) P-L (Step:0.01 s)

0.5 −0.00309940302934400 −0.00357349548568479 −0.00358645375869738
1.0 −0.0237709803733659 −0.0257734136575020 −0.02579745265768369
1.5 −0.00198463439997458 −0.00237332971024369 −0.00237746434566889
2.0 0.00928862918350417 0.0102924435591604 0.01029465738970809
2.5 0.00320229632300177 0.00380853448101097 0.00380573696026353
3.0 0.00080383120714058 0.00091033743407989 0.00091038769476465

Table 1.12 Comparison of
the CPU time computed for
solving the ICSDEFT in time
history 50s

Numerical method Time step (s) Iterations CPU times

RK4 0.001 50,000 5.8354
RK4 0.01 5000 0.5476
PL 0.001 50,000 5.1703
PL 0.01 5000 0.4985

of the ICSDEFT needed is longer than that of the ICSUT and ICSDT in the same
iterations.

1.4.4 Convergence Analysis of the PL Method

Taking undamped inertial coupling system in Eq. (1.86) as a sample, the conver-
gence of the PL method is discussed. Starting with the initial state, Eq. (1.101) and
Eq. (1.102) are used in a computer program to obtain solution in each interval. The
numerical results obtained by the application equations are illustrated in Fig. 1.13.
As shown in the figure, the error of the numerical results from the accurate value
(AV) is already small as N is given a value of 10. The numerical results are getting
closer and closer to the AV as the value of N increases. The parameter N obviously
acts as a factor controlling the accuracy of the numerical solution, since it is directly
related to the time interval i/N ≤ t ≤ (i + 1)/N. In order to have a numerical solution
of high accuracy, one may choose a sufficiently large N.

With the finds for computations of the inertial coupling system, the following can
be concluded:

1. When applying the RK4 method to solve the inertial coupling system, the
dynamic equations are primarily rewritten into the first-order differential equa-
tions, which leads to the loss of the essential characteristics of the dynamic
system. In addition, the solution process of RK4 method, employing the slope
iteration related to an arithmetic mean value, damages the physical meaning
contained in the original dynamic system and causes undesirable influence on
the accuracy and reliability of numerical results.
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Fig. 1.13 Convergence of the solution of Eq. (1.59) (x0 = 0.1, ẋ0 = 0.2,y0 = 0, ẏ0 = 0.1.)

2. The solutions of the PL method are directly obtained from the original dynamic
system and continuous over the whole-time domain considered, which can obtain
more accurate solution for solving the inertial coupling system than RK4 method
in the fixed time step. And by using the PL method, the semi-analytical solutions
of the system are determined, which is also verified with numerical computations.

3. The PL method generates more accurate and reliable solutions in the comparison
of RK4 method within shorter CPU time. The reason is that the solution of every
piecewise system obtained with the PL method is continuous, unlike the RK4
method missing the physical characteristics of original system.

4. The inertial coupling system presented in this section is linear. The computation
results with PL method reflect the nature of the inertial coupling system and are
close to the exact solution, since the PL method maintains the original physics
characteristics of dynamic system. However, for solving the nonlinear dynamic
system, the solutions are sensitive to the initial conditions and system parameters.
Whether the PL method is suitable to handle the nonlinear dynamic system is our
next work to purse.

1.5 Diagnosing Irregularities of Nonlinear Systems

1.5.1 Nonlinear Nonautonomous System

Here, the fourth-order Runge-Kutta method is employed to determine the periodicity
ratio of the hull system, as shown in Eq. (1.131). This model is applied to describe
the nonlinear coupling characteristics of the pitching and rolling of the hull.

{
ẍ1 + 2μ1ẋ1 + ω2

1x1 = α1x1x2 + F cos (ωt)

ẍ2 + 2μ2ẋ2 + ω2
2x2 = α2x

2
1 + F cos (ωt)

(1.131)
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Consider F and ω as control parameters, and the initial value of the system is
assumed to be x1(0) = 0.1, ẋ1(0) = 0.2, x2(0) = 0.3, and ẋ2(0) = 0.4. The other
parameters of the system are defined by μ1 = 0.1, μ2 = 0.1, α1 = 0.5, ω1 = 5.5, and
ω2 = 5.5. Figure 1.14 shows the periodicity ratio when the parameters of the system
satisfy that α2 = 1.0, α2 = 1.5, α2 = 2.0, and α2 = 2.5. The red region in this figure
represents that the dynamic characteristics of the system are periodic, i.e., γ = 1;
the blue region denotes that the dynamic characteristics of the system are chaotic,
i.e., γ = 0; and the other color region signifies that the dynamic characteristics of
the system are neither periodic nor chaotic, i.e., 0 < γ < 1. The figure reveals the
dynamic behavior of the system with the change of system parameters. As shown in
this figure, when ω is located in region of (0, 2], the vibration behavior of the system
is transferred from chaos to periodicity with the increase of the external excitations;
when ω is located in region of (5.2, 5.8], the probability of nonperiodic vibration
of the system is increased with the increase of coupling coefficient α2; when ω is
located in the other region, the vibration behavior of the system is periodic. It can
be seen that the system is super near resonance, near resonance, sharp resonance,
and far resonance when ω ∈ (0, 2], ω ∈ (2, 5.2], ω ∈ (5.2, 5.8], and ω ∈ (5.8, 10],
respectively. It can be concluded that the dynamic characteristics are chaotic when
the system is sharp resonance or super near resonance.

As shown in Fig. 1.14d, the system parameters are located in the blue region
when ω = 0.2, α2 = 2.5, and F = 0.9, and the vibration behavior is chaotic because
of γ = 0; the system parameters are located in the red region when ω = 8, α2 = 2.5,
and F = 20, and the vibration behavior is chaotic because of γ = 1. The vibration
characteristics of the hull are shown in Fig. 1.15 when ω = 0.2, α2 = 2.5, and
F = 0.9. Figure 1.15 (a) and (c) follow that the trajectory of the system is periodic
in x1-direction; and the trajectory is chaotic in x2-direction as shown in Fig. 1.15b,
d. Therefore, the vibration characteristics of the system are chaotic in the condition
of ω = 0.2, α2 = 2.5 and F = 0.9. As a result, the vibration characteristics of the
system are chaotic in the condition of ω = 0.2, α2 = 2.5 and F = 0.9. Figure 1.16
shows the vibration characteristics of the hull system considering ω = 8, α2 = 2.5,
and F = 20. It can be seen that the trajectory of the system is periodic in x1- and
x2- directions. And so the vibration characteristics of the system are periodic in the
condition of ω = 8,α2 = 2.5, and F = 0.9. According to the analysis above, if the
vibration characteristics in all dimensionality are periodic, the system is periodic or
deterministic. Conversely, it is an uncertain system.

1.5.2 Nonlinear Autonomous System

Consider the famous Rössler system, shown in Eq. (1.132):

⎧
⎨

⎩

ẋ1 = −x2 − x3

ẋ2 = x1 + ax2

ẋ3 = b + (x1 − c) x3

(1.132)
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Fig. 1.14 Periodicity of hull dynamic system. (a) α2 = 1.0, (b) α2 = 1.5, (c) α2 = 2.0, (d)
α2 = 2.5

Assuming b and c to be control parameters, the periodicity of Rössler system
can be determined with the periodicity-ratio method in Sect. 1.2.4. Considering
the initial value of the system as x1(0) = 0.1, x2(0) = 0.1, and x3(0) = 0.3,
Fig. 1.17 shows the periodicity of Rössler system with different values of a. The
red region in this figure represents that the dynamic characteristics of the system
are periodic, i.e., γ = 1; the blue region denotes that the dynamic characteristics
of the system are chaotic, i.e., γ = 0; and the other color region signifies that
the dynamic characteristics of the system are neither periodic nor chaotic, i.e.,
0 < γ < 1. The figure can intuitively determine the process of the dynamic behavior
changed with parameters of the system. Because of the nonlinear characteristics of
Rössler system, the dynamic characteristics of the system are sensitive to the system
parameters.

As shown in Fig. 1.17d, the parameters are located in the red region when
a = 0.20, b = 0.20, and c = 3.50; in this case, the vibration characteristics of the
system are periodic; when a = 0.20, b = 0.20, and c = 5.50, the parameters are
located in the blue region; in this case, the vibration characteristics of the system
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Fig. 1.15 Vibration characteristics of hull dynamic system for ω = 0.2 α2 = 2.5 F = 0.9. (a) Phase
diagram in x1- direction, (b) phase diagram in x2- direction, (c) Poincaré map in x1- direction, and
(d) Poincaré map in x2- direction

are chaotic. Figure 1.18 shows the periodic vibration of the Rössler system. It can
be found that the phase trajectory is periodic when a = 0.20, b = 0.20, and c = 3.50,
as shown in Fig. 1.18e, and the number of the visible points in the Poincaré sections
of x1–x2 and x2–x3 is 2, respectively. However, the phase trajectory is chaotic when
a = 0.20, b = 0.20, and c = 5.50; therefore, the number of the visible points in the
sections of x1–x2 and x2–x3 is infinite, as shown in Fig. 1.19.

Through the discussions of theoretical research and numerical analysis, it can be
found that periodicity ratio is an effective tool to identify the dynamic behavior of
high-dimensional nonlinear systems. The conclusions of the study on the periodicity
ratio are as follows:

1. If the dynamic responses of the nonlinear system are periodic, the phase points
in the Poincaré sections are overlapping. In this case, the value of the periodicity
ratio is equal to 1.
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Fig. 1.16 Vibration characteristics of hull dynamic system for ω = 8 α2 = 2.5 F = 20. (a) Phase
diagram in x1- direction, (b) phase diagram in x2- direction, (c) Poincaré map in x1- direction, and
(d) Poincaré map in x2- direction

2. If the dynamic responses of the nonlinear system are chaotic, the phase points in
the Poincaré sections are nonoverlapping. In this case, the value of the periodicity
ratio is equal to 0.

3. For a nonlinear dynamic system, there may exist an infinite number of nonpe-
riodic solutions, which are neither periodic nor chaotic. For these nonperiodic
solutions, the corresponding periodicity-ratio values are in the range of 0 < γ < 1.
The larger value of the periodicity ratio represents the dynamic characteristics
closed to periodic motion, and the smaller value of the periodicity ratio represents
the dynamic characteristics closed to chaotic motion.
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Fig. 1.17 Periodicity of Rössler dynamic system. (a) a = 0.05, (b) a = 0.10, (c) a = 0.15, (d)
a = 0.20

1.6 Conclusion

Using the traditional RK method for solving the dynamic system, high order
differential equations of dynamic system are usually descended into multiple first-
order differential equations. In this way, crucial dynamic property of the original
system may be neglected or simplified, which leads to the computational error when
searching solution for dynamic model encountered in actual engineering. However,
solving differential equations above with the PL method proposed in the chapter,
the semi-analytical solution of systems is obtained directly through the derivation
of equation. Therefore, the physical properties of systems are well preserved. In
addition, the whole-time interval is divided into many tiny intervals by the PL
method, and the solution is continuous on each interval. In this case, the accuracy
of numerical solution of the PL method is better than the RK method, which is
demonstrated by numerical analysis. In addition, the computed efficiency of the PL
and RK methods are compared through statistics of operation time of CPU during
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Fig. 1.18 Vibration characteristics of Rössler dynamic system for a= 0.20, b= 0.20, and c= 3.50

Fig. 1.19 Vibration characteristics of Rössler dynamic system for a= 0.20, b= 0.20, and c= 5.50

computing process. The CPU time taken by the PL method is less than the RK
method in the same time steps, which indicates that the PL method is more efficient
than the RK method. The main reason is that value continuity of two adjacent
truncation points is maintained by using the PL method, which simplifies the solving
process and saves the calculated time, while the RK method combines iterative
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and averaged slope to search solutions, which makes the solution process more
complicated. Therefore, the numerical results of the PL method reflect the essence of
dynamic system, since the PL method keeps the physical characteristics of dynamic
system. The precision of the solution obtained by the PL method is related to
the value of N. This article is an exploratory study for implementation of the PL
method in coupling systems. Therefore, the classic two-degree freedom systems
are considered, and whether the PL method is suitable to solve problems of multi-
degree freedom system should be further verified in our next work. Based on the PL
method, the periodicity ratio is proposed to explore the dynamic characteristics of
the nonlinear system. If the dynamic responses of the nonlinear system are periodic,
the phase points in the Poincaré sections are overlapping. In this case, the value of
the periodicity ratio is equal to 1. If the dynamic responses of the nonlinear system
are chaotic, the phase points in the Poincaré sections are nonoverlapping. In this
case, the value of the periodicity ratio is equal to 0. For a nonlinear dynamic system,
there may exist an infinite number of nonperiodic solutions, which are neither
periodic nor chaotic. For these nonperiodic solutions, the corresponding periodicity-
ratio values are in the range of 0 < γ < 1. The larger value of the periodicity ratio
represents the dynamic characteristics closed to periodic motion, and the smaller
value of the periodicity ratio represents the dynamic characteristics closed to chaotic
motion.
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