
Ladjel Bellatreche
Marlon Dumas
Panagiotis Karras
Raimundas Matulevičius (Eds.)

LN
CS

 1
28

43

Advances in Databases
and Information Systems
25th European Conference, ADBIS 2021
Tartu, Estonia, August 24–26, 2021
Proceedings

Lecture Notes in Computer Science 12843

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0002-4029-7051
https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Ladjel Bellatreche • Marlon Dumas •

Panagiotis Karras • Raimundas Matulevičius (Eds.)

Advances in Databases
and Information Systems
25th European Conference, ADBIS 2021
Tartu, Estonia, August 24–26, 2021
Proceedings

123

Editors
Ladjel Bellatreche
LIAS/ISAE-ENSMA
Futuroscope, Chasseneuil Cedex, France

Marlon Dumas
University of Tartu
Tartu, Estonia

Panagiotis Karras
Aarhus University
Aarhus, Denmark

Raimundas Matulevičius
University of Tartu
Tartu, Estonia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-82471-6 ISBN 978-3-030-82472-3 (eBook)
https://doi.org/10.1007/978-3-030-82472-3

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9968-0066
https://orcid.org/0000-0002-9247-7476
https://orcid.org/0000-0003-0509-9129
https://orcid.org/0000-0002-1829-4794
https://doi.org/10.1007/978-3-030-82472-3

Preface

This volume contains a selection of the papers presented at the 25th European
Conference on Advances in Databases and Information Systems (ADBIS 2021), held
during August 24–26, 2021, at Tartu, Estonia.

The ADBIS series of conferences aims at providing a forum for the presentation and
dissemination of research on database and information systems, the development of
advanced data storage and processing technologies, and designing data-enabled
systems/software/applications. ADBIS 2021 in Tartu continues after St. Petersburg
(1997), Poznań (1998), Maribor (1999), Prague (2000), Vilnius (2001), Bratislava
(2002), Dresden (2003), Budapest (2004), Tallinn (2005), Thessaloniki (2006), Varna
(20007), Pori (2008), Riga (2009), Novi Sad (2010), Vienna (2011), Poznań (2012),
Genoa (2013), Ohrid (2014), Poitiers (2015), Prague (2016), Nicosia (2017), Budapest
(2018), Bled (2019), and Lyon (2020). This edition has been totally managed during
the COVID-19 pandemic.

The program of ADBIS 2021 includes keynotes, research papers, thematic work-
shops, and a doctoral consortium. The conference attracted 70 paper submissions from
261 authors in 39 countries from all continents. After rigorous reviewing by the
Program Committee (73 reviewers from 28 countries), the 18 papers included in this
LNCS proceedings volume were accepted as full contributions, making an acceptance
rate of 26%.

Furthermore, the Program Committee selected 8 more papers as short contributions
and 21 papers from the five workshops and doctoral consortium which are published in
a companion volume entitled New Trends in Databases and Information Systems in
Springer’s Communications in Computer and Information Science (CCIS) series. All
papers were evaluated by at least three reviewers and some by four reviewers. The
selected papers span a wide spectrum of topics in databases and related technologies,
tackling challenging problems and presenting inventive and efficient solutions. In this
volume, these papers are organized in seven sections: (1) High-dimensional Data and
Data Streams, (2) Social Media and Text Mining, (3) Advanced Query Processing,
(4) Patterns and Events, (5) Data Integration, (6) Complex Data, and (7) Database
Internals and Processes.

For this edition of ADBIS 2021, we had three keynote talks by experts from three
continents: America, Asia, and Europe. The first keynote was given by Divesh
Srivastava, Head of Database Research at AT&T, on “Towards High-Quality Big
Data: Lessons from FIT”. The second one by Sanjay Chawla, Research Director of the
Qatar Computing Research Institute (QCRI) Data Analytics department, on “A per-
spective on prescriptive and reinforcement learning”. The third keynote by Dirk
Draheim, Head of the Information Systems Group at Tallinn University of Technology,
Estonia, addressed “Data exchange for Digital Government: Where are we heading?”.

ADBIS 2021 strived to create conditions for more experienced researchers to share
their knowledge and expertise with young researchers. In addition, the following five

workshops and the doctoral consortium associated with ADBIS were co-allocated with
the main conference:

– Intelligent Data - from data to knowledge (DOING 2021), organized by Mírian
Halfeld Ferrari (Université d’Orléans, France) and Carmem H. Hara (Universidade
Federal do Paraná, Curitiba, Brazil).

– Data-Driven Process Discovery and Analysis (SIMPDA 2021), organized by Paolo
Ceravolo (Università degli Studi di Milano, Italy), Maurice van Keulen (University
of Twente, The Netherlands), and Maria Teresa Gomez Lopez (University of
Seville, Spain),

– Modern Approaches in Data Engineering and Information System Design
(MADEISD 2021), organized by Ivan Luković (University of Novi Sad, Serbia),
Slavica Kordić (University of Novi Sad, Serbia), and Sonja Ristić (University of
Novi Sad, Serbia).

– Advances in Data Systems Management, Engineering, and Analytics (MegaData
2021), organized by Yaser Jararweh (Duquesne University, USA), Tomás F. Pena
(University of Santiago de Compostela, Spain) and Feras M. Awaysheh (University
of Tartu, Estonia).

– Computational Aspects of Network Science (CAoNS 2021), organized by Dimitrios
Katsaros (University of Thessaly, Greece) and Yannis Manolopoulos (Open
University of Cyprus and Aristotle University of Thessaloniki, Greece).

– Doctoral Consortium (DC), co-chaired by Mirjana Ivanović (University of Novi
Sad, Serbia) and Olaf Hartig (Linköping University, Sweden).

Each workshop and the DC has its own international Program Committee. The
accepted papers were published by Springer in CCIS.

The best papers from the main conference and workshops were invited for sub-
mission to special issues of the following journals: Information Systems (Elsevier),
Information Systems Frontiers (Springer), and Computer Science and Information
Systems (ComSIS Consortium).

We would like to express our gratitude to every individual who contributed to the
success of ADBIS 2021. First, we thank all authors for submitting their research papers
to the conference. We are also indebted to the members of the community who offered
their precious time and expertise in performing various roles ranging from organizing
to reviewing - their efforts, energy, and degree of professionalism deserve the highest
commendations. Special thanks to the Program Committee members and the external
reviewers for evaluating papers submitted to ADBIS 2021, ensuring the quality of the
scientific program, despite the COVID-19 pandemic. A special thanks to our keynote
speakers who honored us with their exciting talks at ADBIS 2021. Thanks also to all
the colleagues, secretaries, and engineers involved in the conference organization, as
well as the workshop organizers. Special thanks are due to the members of the Steering
Committee, in particular, its chair, Yannis Manolopoulos, for all their help and guid-
ance. A particular thank you to the University of Tartu’s Institute of Computer Science
for hosting and supporting the conference despite the uncertainties created by the
ongoing pandemic.

vi Preface

Finally, we thank Springer for publishing the proceedings containing invited and
research papers in the LNCS series. The Program Committee work relied on Easy-
Chair, and we thank its development team for creating and maintaining it; it offered a
great support throughout the different phases of the reviewing process.

Last but not least, we thank the participants of ADBIS 2021 for sharing their work
and presenting their achievements, thus providing a lively, fruitful and constructive
forum, and giving us the pleasure of knowing that our work was purposeful.

June 2021 Ladjel Bellatreche
Marlon Dumas

Panagiotis Karras
Raimundas Matulevičius

Preface vii

Organization

General Chairs

Marlon Dumas University of Tartu, Estonia
Raimundas Matulevičius University of Tartu, Estonia

Program Committee Co-chairs

Ladjel Bellatreche ISAE-ENSMA Poitiers, France
Panagiotis Karras Aarhus University, Denmark

Workshop Co-chairs

Ahmed Awad University of Tartu, Estonia
Matthias Weidlich Humboldt University of Berlin, Germany

Doctoral Consortium Co-chairs

Mirjana Ivanović University of Novi Sad, Serbia
Olaf Hartig Linköping University, Sweden

Webmaster

Mubashar Iqbal University of Tartu, Estonia

Proceedings Technical Editor

Abasi-Amefon Obot Affia University of Tartu, Estonia

Technical Arrangements

Orlenys Lopez-Pintado University of Tartu, Estonia

Financial and Local Arrangements

Anneli Vainumae University of Tartu, Estonia

Steering Committee

Yannis Manolopoulos
(Chair)

Open University of Cyprus, Cyprus

Ladjel Bellatreche ISAE-ENSMA Poitiers, France

Maria Bielikova Kempelen Institute of Intelligent Technologies,
Slovakia

Barbara Catania University of Genoa, Italy
Jérôme Darmont University of Lyon 2, France
Johann Eder Alpen Adria Universität Klagenfurt, Austria
Tomáš Horváth Eötvös Loránd University, Hungary
Mirjana Ivanović University of Novi Sad, Serbia
Marite Kirikova Riga Technical University, Latvia
Rainer Manthey University of Bonn, Germany
Manuk Manukyan Yerevan State University, Armenia
Tadeusz Morzy Poznan University of Technology, Poland
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Boris Novikov National Research University Higher School

of Economics, Saint Petersburg, Russia
George Papadopoulos University of Cyprus, Cyprus
Jaroslav Pokorny Charles University in Prague, Czech Republic
Bernhard Thalheim Christian Albrechts University, Kiel, Germany
Goce Trajcevski Iowa State University, USA
Valentino Vranić Slovak University of Technology in Bratislava,

Slovakia
Tatjana Welzer University of Maribor, Slovenia
Robert Wrembel Poznan University of Technology, Poland
Ester Zumpano University of Calabria, Italy

Program Committee

Alberto Abello Universitat Politècnica de Catalunya, Barcelona, Spain
Reza Akbarinia Inria, France
Bernd Amann Sorbonne Université, Paris, France
Hassan Badir ENSA Tanger, Morocco
Amin Beheshti Macquarie University, Australia
Andreas Behrend Technical University of Cologne, Germany
Sadok Ben Yahia Tallinn University of Technology, Estonia
Soumia Benkrid ESI Algiers, Algeria
Djamal Benslimane University of Lyon 1, France
Fadila Bentayeb University of Lyon 2, France
Miklos Biro Software Competence Center Hagenberg, Austria
Kamel Boukhafa USTHB, Algeria
Barbara Catania University of Genoa, Italy
Tania Cerquitelli Politecnico di Torino, Italy
Richard Chbeir University of Pau and Pays de l’Adour, France
Isabelle Comyn-Wattiau ESSEC Business School, France
Ajantha Dahanayake Lappeenranta University of Technology, Finland
Jérôme Darmont University of Lyon 2, France
Christos Doulkeridis University of Piraeus, Greece

x Organization

Cedric Du Mouza CNAM, France
Markus Endres University of Passau, Germany
Philippe Fournier-Viger Harbin Institute of Technology, Shenzhen, China
Johann Gamper Free University of Bozen-Bolzano, Italy
Gabriel Ghinita University of Massachusetts at Boston, USA
Olga Gkountouna George Mason University, USA
Giancarlo Guizzardi Free University of Bozen-Bolzano, Italy, and

University of Twente, The Netherlands
Hele-Mai Haav Tallinn University of Technology, Estonia
Dirk Habich TU Dresden, Germany
Mirian Halfeld-Ferrari Université d’Orléans, France
Tomáš Horváth Eötvös Loránd University, Hungary
Mirjana Ivanović University of Novi Sad, Serbia
Stefan Jablonski University of Bayreuth, Germany
Stéphane Jean Poitiers University, France
Zoubida Kedad University of Versailles, France
Marite Kirikova Riga Technical University, Latvia
Attila Kiss Eötvös Loránd University, Hungary
Sergio Lifschitz Pontifícia Universidade Católica do Rio de Janeiro,

Brazil
Sebastian Link The University of Auckland, New Zealand
Ivan Luković University of Novi Sad, Serbia
Zakaria Maamar Zayed University, Dubai, United Arab Emirates
Wojciech Macyna Wroclaw University of Technology, Poland
Federica Mandreoli University of Modena, Italy
Yannis Manolopoulos Open University of Cyprus, Cyprus
Patrick Marcel Université de Tours, France
Pascal Molli University of Nantes, France
Anirban Mondal Ashaka University, India
Tadeusz Morzy Poznan University of Technology, Poland
Kjetil Nørvåg Norwegian University of Science and Technology,

Norway
Boris Novikov National Research University Higher School

of Economics, Saint Petersburg, Russia
Andreas Oberweis Karlsruhe Institute of Technology, Germany
Carlos Ordonez University of Houston, USA
Oscar Pastor Universidad Politécnica de Valencia, Spain
Jaroslav Pokorný Charles University in Prague, Czech Republic
Franck Ravat IRIT and Université Toulouse 1 Capitole, France
Stefano Rizzi University of Bologna, Italy
Oscar Romero Universitat Politècnica de Catalunya, Spain
Carmem S. Hara Universidade Federal do Paraná, Curitiba, Brazil
Gunter Saake University of Magdeburg, Germany
Kai-Uwe Sattler Technical University Ilmenau, Germany
Milos Savic University of Novi Sad, Serbia
Kostas Stefanidis Tampere University, Finland

Organization xi

Sergey Stupnikov Russian Academy of Sciences, Russia
Olivier Teste Université de Toulouse, France
Maik Thiele TU Dresden, Germany
Goce Trajcevski Iowa State University, USA
Anton Tsitsulin University of Bonn, Germany
Panos Vassiliadis University of Ioannina, Greece
Thanasis Vergoulis “Athena” Research Center, Greece
Tatjana Welzer University of Maribor, Slovenia
Marek Wojciechowski Poznan University of Technology, Poland
Robert Wrembel Poznan University of Technology, Poland
Vladimir Zadorozhny University of Pittsburgh, USA

Additional Reviewers

Petar Jovanovic Universitat Politècnica de Catalunya, Spain
Elio Mansour University of Pau and Pays de l’Adour, France
Sergi Nadal Universitat Politècnica de Catalunya, Spain
Rediana Koçi Universitat Politècnica de Catalunya, Spain
Nadia Yacoubi Ayadi Institut Supérieur de Gestion de Tunis, Tunisia
Serafeim Chatzopoulos “Athena” Research Center, Greece

xii Organization

ADBIS’2021 Keynotes

Towards High-Quality Big Data: A Focus
on Time

Divesh Srivastava

AT&T Chief Data Office, USA

Abstract. Data are being generated, collected, and analyzed today at an
unprecedented scale, and data-driven decision making is sweeping through all
aspects of society. As the use of big data has grown, so too have concerns that
poor-quality data, prevalent in large data sets, can have serious adverse conse-
quences on data-driven decision making. Responsible data science thus requires
a recognition of the importance of veracity, the fourth “V” of big data. In this
talk, we first present a vision of high-quality big data, with a focus on time, and
highlight the substantial challenges that the first three V’s, volume, velocity, and
variety, bring to dealing with veracity in long data. We present the FIT Family
of adaptive, data-driven statistical tools that we have designed, developed, and
deployed at AT&T for continuous data quality monitoring of a large and diverse
collection of continuously evolving data. These tools monitor data movement to
discover missing, partial, duplicated, and delayed data; identify changes in the
content of spatiotemporal streams; and pinpoint anomaly hotspots based on
persistence, pervasiveness, and priority. We conclude with lessons relevant to
long data quality that are cause for optimism.

A Perspective on Prescriptive Learning

Sanjay Chawla

Qatar Computing Research Institute, Hamad Bin Khalifa University
schawla@hbku.edu.qa

Abstract. We provide a brief overview of the emerging area of prescriptive
learning which combines supervised learning with optimization. Prescriptive
Learning is most active in operations research but is now finding applications in
diverse areas ranging from database optimization to chip design. Reinforcement
Learning (RL) is the most developed form of PL for sequential and stochastic
optimization problems. We will give an example of how RL can be applied to a
traditional and well-studied join ordering problem for query optimization.

Data Exchange for Digital Government:
Where Are We Heading?

Dirk Draheim

Information Systems Group, Tallinn University of Technology, Estonia
dirk.draheim@taltech.ee

Abstract. In all countries, we currently see major efforts in digital transfor-
mation initiatives. The United Nations e-Government Survey 2020 puts a strong
emphasis on data, which makes sense, given the huge progress in big data and
data science in the last decade. The UN survey distinguishes between data-
informed, data-driven and data-centric approaches to digital government.
Actually, Gartner defined the notion of data-centric government already in 2014.
Still, today, we are far away from such data-centric government. How comes?
How to shape the next generation of e-government technologies? In service of
such and similar questions, we walk through a series of important data exchange
technologies: the Estonian data exchange layer X-Road, the European federated
data infrastructure GAIA-X, the European Blockchain Services Infrastructure
(EBSI), and the IoT data management solution FIWARE. Finally, based on the
notion of data governance architecture, we give an overview of our proposed
digital government architecture framework that is intended to help in large-scale
digital government design efforts.

Contents

Keynotes Talks

A Perspective on Prescriptive Learning ADBIS’2021 Keynote 3
Sanjay Chawla

Data Exchange for Digital Government: Where Are We Heading?
ADBIS2021 Keynote. 7

Dirk Draheim

Patterns and Events

Maximal Mixed-Drove Co-Occurrence Patterns. 15
Witold Andrzejewski and Paweł Boinski

Efficiently Mining Large Gradual Patterns Using Chunked Storage Layout. . . 30
Dickson Odhiambo Owuor and Anne Laurent

A General Method for Event Detection on Social Media 43
Yihong Zhang, Masumi Shirakawa, and Takahiro Hara

5W1H Aware Framework for Representing and Detecting Real Events
from Multimedia Digital Ecosystem. 57

Siraj Mohammed, Fekade Getahun, and Richard Chbeir

Social Media and Text Mining

MONITOR: A Multimodal Fusion Framework to Assess Message Veracity
in Social Networks . 73

Abderrazek Azri, Cécile Favre, Nouria Harbi, Jérôme Darmont,
and Camille Noûs

Joint Management and Analysis of Textual Documents and Tabular Data
Within the AUDAL Data Lake . 88

Pegdwendé N. Sawadogo, Jérôme Darmont, and Camille Noûs

Aggregation and Summarization of Thematically Similar Twitter
Microblog Messages . 102

Markus Endres, Lena Rudenko, and Dominik Gröninger

Indexes, Queries and Constraints

Inserting Keys into the Robust Content-and-Structure (RCAS) Index 121
Kevin Wellenzohn, Luka Popovic, Michael Böhlen, and Sven Helmer

Optimizing Execution Plans in a Multistore . 136
Chiara Forresi, Matteo Francia, Enrico Gallinucci,
and Matteo Golfarelli

Integrity Constraints for Microcontroller Programming in Datalog 152
Stefan Brass and Mario Wenzel

Chance Constraint as a Basis for Probabilistic Query Model 167
Maksim Goman

High-Dimensional Data and Data Streams

Unsupervised Feature Selection for Efficient Exploration of High
Dimensional Data . 183

Arnab Chakrabarti, Abhijeet Das, Michael Cochez, and Christoph Quix

MuLOT: Multi-level Optimization of the Canonical Polyadic Tensor
Decomposition at Large-Scale. 198

Annabelle Gillet, Éric Leclercq, and Nadine Cullot

From Large Time Series to Patterns Movies: Application to Airbus
Helicopters Flight Data . 213

Benjamin Chazelle , Pierre-Loic Maisonneuve, Ammar Mechouche,
Jean-Marc Petit, and Vasile-Marian Scuturici

Data Integration

Experimental Evaluation Among Reblocking Techniques Applied
to the Entity Resolution . 229

Laís Soares Caldeira, Guilherme Dal Bianco, and Anderson A. Ferreira

FiLiPo: A Sample Driven Approach for Finding Linkage Points Between
RDF Data and APIs . 244

Tobias Zeimetz and Ralf Schenkel

SMAT: An Attention-Based Deep Learning Solution to the Automation
of Schema Matching . 260

Jing Zhang, Bonggun Shin, Jinho D. Choi, and Joyce C. Ho

xx Contents

Towards a Cloud-WSDL Metamodel: A New Extension of WSDL
for Cloud Service Description. 275

Souad Ghazouani, Anis Tissaoui, and Richard Chbeir

Author Index . 289

Contents xxi

Keynotes Talks

A Perspective on Prescriptive Learning
ADBIS’2021 Keynote

Sanjay Chawla(B)

Qatar Computing Research Institute, Hamad Bin Khalifa University,
Doha, Qatar

schawla@hbku.edu.qa

Abstract. We provide a brief overview of the emerging area of pre-
scriptive learning which combines supervised learning with optimization.
Prescriptive Learning is most active in operations research but is now
finding applications in diverse areas ranging from database optimization
to chip design. Reinforcement Learning (RL) is the most developed form
of PL for sequential and stochastic optimization problems. We will give
an example of how RL can be applied to a traditional and well-studied
join ordering problem for query optimization.

Keywords: Prescriptive learning · Reinforcement learning · Database
applications

1 Introduction

Data Science is an umbrella term to capture an array of methodologies centered
around the concept of data as a first-class citizen [9]. This is in contrast to
the traditional method of inquiry where data brackets the scientific process by
first capturing observations of an underlying phenomenon and then as output
of experiments to validate a theory proposed to explain the phenomenon. If D
is data and M is a model, in the Sciences, the arrow of knowledge is M → D,
while in Data Science, the direction is reversed: D → M. Prescriptive Learning
(PL) goes beyond inferring a model from data, but uses the model to achieve an
optimization objective denoted as O. Thus PL can be codified as D → M → O.
To put succinctly:

Prescription = Prediction + Optimization

2 Prescriptive Learning

Prescriptive Learning (PL) thrives at the confluence of machine learning and
operations research. For example, Bertismas and Kallus [1] show how traditional
operation research problems can benefit from adding a prediction component
to optimization problems. For example, consider the classical facility location
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 3–6, 2021.
https://doi.org/10.1007/978-3-030-82472-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-82472-3_1

4 S. Chawla

problem where the objective is to open a minimum number of facilities to ser-
vice customers. Often the cost of facility is given as an input to the problem.
However, if secondary data is available in the vicinity of potential facilities, then
a supervised learning framework can be used to learn the facility cost followed
by standard optimization. In our own work, we have combined supervised learn-
ing with reinforcement learning to optimize decision-making in air-cargo man-
agement [6]. However PL and RL are finding applications beyond traditional
areas like operations research, robotics and games. Intractable combinatorial
optimization problems, include those of interest to the database community are
increasingly being looked at from the lens of PL [3].

3 Reinforcement Learning

Reinforcement Learning (RL) is the most well known example of PL and pro-
vides a general framework for modeling sequential problems where feedback and
delayed rewards are an integral part of the problem formulation [8]. In a RL
setting, an agent observes a state s of the environment and based on that takes
an action a which results in a reward r and transitions to a new state s′. The
interaction goes on until a terminal state is reached. The aim of the agent is
to learn a policy π which is mapping from state to action which maximizes the
expected cumulative reward over the space of policies. RL has several special
cases which are studied independently. For example, when the system is state-
less, it is referred to as a multi-armed bandit problem. When distinct states
exists but the system does not transition to a new state after taking an action,
it is referred to as a contextual bandit problem [2]. A famous and multi-billion
dollar worth application of contextual bandit problem is in personalized online
advertising. Here the state is a user (with features), the action is taken by the
online system to show a personalized advertisement, the immediate reward is
whether the user clicks or not.

4 Policy Gradient Optimization

Algorithms for RL come in three flavors: value-based, policy gradient and a
combination known as actor-critic methods. We briefly describe a basic ver-
sion of the policy gradient method as it is finding widespread usage outside
traditional RL applications. In particular, policy gradient method can use the
gradient descent approach for stochastic optimization problems even for a non-
differentiable objective function by shifting the gradients to parameterized poli-
cies. This is known as the REINFORCE method.

Let S be a vectorized state space, A a discrete action space and πθ : S → A
a parameterized policy distribution such that for a fixed s,

∑
a π(a|s) = 1. Let

s̄ = ((s1, a1), . . . , (sT , aT)) be a sequence of state action pairs known as the
episode. Each pair (si, ai) is associated with a reward ri. Let R(s̄) =

∑
γtrt

be the cumulative reward function. Note that we do not place any smoothness

A Perspective on Prescriptive Learning 5

restrictions on R but expect it to be bounded. Then the RL problem can be
abstracted as [7]:

arg max
θ

E
s̄∼Pθ

[R(s̄)]

Note this is a very different problem from supervised learning and we are opti-
mizing the space of policies which generates the sequential data. Thus data
is not a sample from a fixed (but unknown) distribution as in supervised or
unsupervised learning. The key insight that drives policy gradient is that we
can express the gradient of the expectation in terms of the expectation over
the gradient of the logarithm of the policy distribution. Thus, if we define
∇̂(s̄) = R(s̄)

∑
t log(π(at|st)) then Es̄∼Pθ

∇̂(s̄) = ∇Es̄∼Pθ
[R(s̄]. Notice that

gradients are not attached to R(s̄) providing an opportunity to use an arbi-
trary function. However, the approach is not without limitations as it essentially
becomes a zeroth-order optimization problem [5].

5 Join Ordering for Query Optimization

Given a collection of atomic relations r1, r2, . . . , rn that need to be joined for
a query, the join ordering problem is to recursively select pairs of atomic or
intermediate relations that are most efficient from a query execution perspective.
Marcus and Papaemmanouil apply the policy gradient method for obtaining an
efficient ordering [3] that was shown to be superior than the default solution
in PostgreSQL. In Table 1 we redefine the query optimization problem in an
RL framework. Notice how the action space Ai is changing at each step and
that there is no intermediate reward. Finally, the objective reward is just the
reciprocal query cost and does not take any functional form.

Table 1. Elements of RL mapped for query optimization

RL Query optimization

Episode Query

Initial state (s1) Relations (r1, . . . , rn)

Action space Ai [1, |si|] × [1, |si|]
Action (x, y) join the xth and yth element of si

si+1 (si − {si[x], si[y]}) ∪ (si[x] �� si[y])

Intermediate reward Zero

Final reward Reciprocal of join cost

6 S. Chawla

6 Conclusion

Prescriptive Learning embeds the strengths of machine learning within opti-
mization frameworks by combining elements of prediction with combinatorial
or stochastic problems. PL is often contrasted with traditional supervised and
unsupervised learning which are considered or reactive forms of inference. PL is
a more active form of inference as it is driven by an optimization task. Rein-
forcement Learning which is the most prominent form of PL for sequential opti-
mization problems is now finding applications beyond robotics, game playing,
neuroscience into non-traditional applications like database query optimization
and chip design [4].

References

1. Bertsimas, D., Kallus, N.: From predictive to prescriptive analytics. Manag. Sci.
66(3), 1025–1044 (2020)

2. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to
personalized news article recommendation. CoRR abs/1003.0146 (2010). http://
arxiv.org/abs/1003.0146

3. Marcus, R., Papaemmanouil, O.: Deep reinforcement learning for join order enumer-
ation. In: Proceedings of the First International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management, pp. 1–4 (2018)

4. Mirhoseini, A., et al.: A graph placement methodology for fast chip design. Nature
594, 207–212 (2021)

5. Recht, B.: A tour of reinforcement learning: The view from continuous control (2018)
6. Rizzo, S.G., et al.: Prescriptive learning for air-cargo revenue management. In: 2020

IEEE International Conference on Data Mining (ICDM), pp. 462–471. IEEE (2020)
7. Shalev-Shwartz, S., Shammah, S., Shashua, A.: Safe, multi-agent, reinforcement

learning for autonomous driving. CoRR abs/1610.03295 (2016). http://arxiv.org/
abs/1610.03295

8. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press, second edn. (2018)

9. Zaki, M.J., Meira, W., Jr.: Data Mining and Machine Learning: Fundamental Con-
cepts and Algorithms. Cambridge University Press, Cambridge (2020)

http://arxiv.org/abs/1003.0146
http://arxiv.org/abs/1003.0146
http://arxiv.org/abs/1610.03295
http://arxiv.org/abs/1610.03295

Data Exchange for Digital Government:
Where Are We Heading? ADBIS2021

Keynote

Dirk Draheim(B)

Information Systems Group, Tallinn University of Technology, Tallinn, Estonia
dirk.draheim@taltech.ee

Abstract. In all countries, we currently see major efforts in digital
transformation initiatives. The United Nations e-Government Survey
2020 puts a strong emphasis on data, which makes sense, given the huge
progress in big data and data science in the last decade. The UN sur-
vey distinguishes between data-informed, data-driven and data-centric
approaches to digital government. Actually, Gartner defined the notion
of data-centric government already in 2014. Still, today, we are far away
from such data-centric government. How comes? How to shape the next
generation of e-government technologies? In service of such and similar
questions, we walk through a series of important data exchange tech-
nologies: the Estonian data exchange layer X-Road, the European fed-
erated data infrastructure GAIA-X, the European Blockchain Services
Infrastructure (EBSI), and the IoT data management solution FIWARE.
Finally, based on the notion of data governance architecture, we give an
overview of our proposed digital government architecture framework that
is intended to help in large-scale digital government design efforts.

Keywords: Digital government · e-government · Data governance ·
Consent management · Data exchange layers · X-Road · GAIA-X ·
European Blockchain Services Infrastructure · EBSI · FIWARE

In many countries, we currently see major investments into digital govern-
ment. The so-called “digital transformation” of society is perceived as the key
enabler for increasing wealth and well-being by many from politics, media and
citizens alike. When it comes to concrete digital transformation initiatives, these
are often simply about digital government implementations.

Data are a core asset of today’s organizations supporting business pro-
cesses [3,8], decision making and knowledge management [20]. In digital govern-
ment, data exchange between authorities makes administrative processes more
efficient and effective. However, there is still a huge unused potential in exploit-
ing data for decision making and leveraging innovations in the public sector. The
United Nations e-Government Survey 2020 [26] puts a strong emphasis on data,
which makes sense, given the immense progress in big data and data science in
the last decade. The survey [26], p. 150, characterizes five different approaches
to utilization of data by the several countries:
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 7–12, 2021.
https://doi.org/10.1007/978-3-030-82472-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-82472-3_2

8 D. Draheim

(i) ICT-driven: “Where Governments are highly influenced by the use of new
and existing information and communications technology (ICT)” [26].

(ii) Data-informed : “Where Governments are guided by data; data play an
inferential role in policymaking, [...]” [26].

(iii) Data-driven: “Where Governments use analytics and algorithms in decision-
making [...]” [26].

(iv) Evidence-based : “Where policy approaches reflect the practical application
of the findings of the best and most current research available [...]” [26].

(v) Data-centric: “Where Governments place data and data science at the core
of public administration; data are seen as a key asset and central to gov-
ernment functions and are leveraged for the provision, evaluation and mod-
ification of people-centric services [7]” [26].

The chosen sequence of (i)–(v) is intended to express a ranking in regards of
“how government data are increasingly leveraged for effective governance.” [26],
i.e., the data-centric approach can be considered as the ideal to be reached. Still,
today, we are far away from such data-centric government. How comes? How to
shape the next generation of e-government technologies? In this talk, we address
such and similar questions. We start with walking through a series of important
established and/or emerging data exchange technologies that are particularly
relevant to digital government (actually and/or potentially):

– the Estonian data exchange layer X-Road: X-Road [1,2,16,17,21,28] is the
backbone of what we call e-Estonia1. There are almost 3000 services on
X-Road (June 2021) with a traffic of 1,57 billion answered queries in 20212.
The UN e-Government Survey 2018 uses X-Road to explain the concept of
what they call “Government as an API” [25], p. 184. Dozens of countries have
used X-Road to implement digital government data exchange3. We briefly
answer some frequently asked questions about X-Road in Sect. 1.

– the European federated data infrastructure GAIA-X: In September 2020,
GAIA-X [12] has been founded as a non-profit organization by 22 companies
from Germany and France under the aegis of the German Federal Ministry
for Economic Affairs and Energy (BMWi). GAIA-X aims “to create the next
generation of data infrastructure for Europe, its states, its companies and its
citizens.”4.

– the European Blockchain Services Infrastructure (EBSI): “[...] in 2018, 21
EU member states and Norway signed a declaration creating the European
Blockchain Partnership (EBP) with the ambition to provide digital public
services matching the required level of digital security and maturity of today’s
society.” [15], p. 183.

– the IoT data management solution FIWARE: FIWARE is a European initia-
tive of the Future Internet Public Private Partnership (FI-PPP)5. FIWARE

1 https://e-estonia.com/.
2 https://www.x-tee.ee/factsheets/EE/.
3 https://x-road.global/xroad-world-map.
4 https://www.data-infrastructure.eu/.
5 https://www.fi-ppp.eu/.

https://e-estonia.com/
https://www.x-tee.ee/factsheets/EE/
https://x-road.global/xroad-world-map
https://www.data-infrastructure.eu/
https://www.fi-ppp.eu/

Data Exchange for Digital Government: Where Are We Heading? 9

has evolved into a community of more than 1000 startups and 150 cities (June
2021) with the mission “to build an open sustainable ecosystem around pub-
lic, royalty-free and implementation-driven software platform standards that
will ease the development of new Smart Applications in multiple sectors”6

Finally, we give an overview of a digital government architecture framework
that we proposed in [10] with the intention to help in large-scale digital govern-
ment design efforts. We give a brief overview of the key notions of the framework
in Sect. 2.

1 The Data Exchange Platform X-Road

In 2020, X-Road7 is mentioned in the UN e-Government Survey as follows [26]:
“The data exchange platform in Estonia (X-Road) is administrated centrally
to interconnect government information systems and databases and allow gov-
ernment authorities and citizens to securely send and receive information over
the Internet within the limits of their authority.” X-Road can be described best
as a peer-to-peer data exchange system; X-Road teams together the following
technological and organizational assets:

– a PKI (public key infrastructure),
– sophisticated software components for secure data exchange,
– a nomenclature of metadata items associated with each message,
– regulated organizational measures (Estonian Regulation no. 105).

What Is the X-Road Software About? The key software component of X-Road
is the security server. An instance of the security server is installed by each
X-Road member (authority or organization participating in X-Road). The secu-
rity servers encrypt and decrypt messages, check identities of other servers, man-
age/enforce access rights and maintain message logs. Each X-Road member has
to register its e-services in a centrally administered directory. Each member
grants access to its e-services itself via its own instance of the security server,
i.e., access right management remains with the member.

Is X-Road a Decentralized Platform? The technical basis of X-Road is decen-
tralized. No middleware such as ESB (enterprise service bus) technology is
involved. No man-in-the-middle is involved either, as we know it from the value-
add networks (VAN) of the EDI (electronic data exchange) era. Messages are sent
directly between members; however, streamlined by the joint X-Road protocol.
This does not mean, that there is no centralization at all. First, there is a state-
managed central organization plus a certification authority (CA) for establishing
the PKI [24]. Then, each X-Road member must publish its information systems
in central registry. Via this registration, different state authorities can monitor
essential data principles: the minimality principle, data quality principles and

6 https://www.fiware.org/about-us/.
7 https://x-road.global/.

https://www.fiware.org/about-us/
https://x-road.global/

10 D. Draheim

the once-only principle. Furthermore, X-Road does not prevent centralized ser-
vices, which can be implemented on top of X-Road. The Estonian Document
Exchange Center (DEC) [9,22], was a perfect example for this. Another exam-
ple for a centralized service is the concept of X-Rooms, which is described in the
architectural vision document of Estonia’s Government CIO [27]. An X-Room is
a publish-subscribe service, a standard pattern in message-oriented middleware.

Is X-Road a Blockchain Technology? Although X-Road has been often per-
ceived as a blockchain technolgy by the media, it is not. The X-Road security
server exploits cryptographic data structures and algorithms that are also used
by blockchain technology (such as Merkle trees for implementing audit logs), but
this alone does not make X-Road a blockchain [5,19]. X-Road makes no efforts
to achieve consensus, except for authentication. What is true, however, is that
many of the Estonian state registries are secured by a so-called KSI blockchain
(keyless signature infrastructure) [4,6].

Is X-Road a Federated Platform? In 2014, Finland and Estonia decided
to start joint efforts to realize cross-border, federated digital government ser-
vices [14] on the basis of X-Road. The Nordic Institute for Interoperability Solu-
tions NIIS8 was founded as a joint agency of Finland and Estonia and was made
the official product owner of the X-Road code base.

2 A Digital Government Archtitecture Framework

A key to successful architecture of digital government ecosystems is in under-
standing data governance (which aims at data principles: data protection [13],
data quality [11,23], and the once-only-principle [18]). In the context of digital
government, data governance is an ultra large-scale, cross-organizational chal-
lenge. In [10], we have elaborated a digital government architecture framework
based on the following line of hypotheses:

– The form of state’s institutions follows the state’s functions. The entirety of
the state’s institutions (i.e., their shape, their interplay) makes the state’s
institutional architecture. The institutional architecture changes slowly: sub-
stantial changes, i.e., those that are the result of societal change, usually occur
non-disruptively and take significant time.

– The state’s institutional architecture determines the state’s data governance
architecture. The data governance architecture links data assets with account-
able organizations along two dimensions: the interoperability dimension and
the provisioning dimension.

– The data governance architecture limits the design space of the digital gov-
ernment solution architecture, which consists of all digital administrative pro-
cesses and delivered e-services.The digital government solution architecture
can show small, ad-hoc and fast changes.

8 https://www.niis.org/.

https://www.niis.org/

Data Exchange for Digital Government: Where Are We Heading? 11

– Changes in the institutional architecture are so severe, that they can trigger
immediate changes in the digital government solution architecture, whereas
changes in the digital government solution architecture can only have a long-
term influence on changes in the institutional architecture (if at all).

We say that the data governance architecture and the digital government
solutions architecture together form the digital government architecture. The
data governance architecture forms the backbone, that deals with the necessary
fulfilment of data governance; whereas the solutions architecture addresses all
kinds of quality aspects of the offered solutions, i.e., usefulness, adherence to
good service-design principles, maturity of processes etc.

References

1. Ansper, A.: E-State From a Data Security Perspective. Tallinn University of Tech-
nology, Faculty of Systems Engineering, Department of Automation, Tallinn (2001)

2. Ansper, A., Buldas, A., Freudenthal, M., Willemson, J.: High-performance qualified
digital signatures for X-road. In: Riis Nielson, H., Gollmann, D. (eds.) NordSec
2013. LNCS, vol. 8208, pp. 123–138. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41488-6 9

3. Atkinson, C., Draheim, D., Geist, V.: Typed business process specification. In:
Proceedings of EDOC 2010 - the 14th IEEE International Enterprise Computing
Conference, pp. 69–78. IEEE Press (2010)

4. Riis Nielson, H., Gollmann, D. (eds.): NordSec 2013. LNCS, vol. 8208. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41488-6

5. Dang, T.K., Küng, J., Takizawa, M., Chung, T.M. (eds.): FDSE 2020. LNCS, vol.
12466. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63924-2

6. Buldas, A., Saarepera, M.: Document Verification with Distributed Calendar
Infrastructure. US Patent Application Publication No.: US 2013/0276058 A1
(2013)

7. Di Maio, A.: Moving Toward Data-Centric Government. Gartner Group Report
G00248186. Gartner (2014)

8. Draheim, D.: Business Process Technology - A Unified View on Business Processes.
Workflows and Enterprise Applications. Springer, Berlin Heidelberg (2010)

9. Draheim, D., Koosapoeg, K., Lauk, M., Pappel, I., Pappel, I., Tepandi, J.: The
design of the Estonian governmental document exchange classification framework.
In: Electronic Government and the Information Systems Perspective, pp. 33–47.
Springer (2016)

10. Draheim, D., Krimmer, R., Tammet, T.: Architecture of digital government ecosys-
tems: from ICT-driven to data-centric. Transactions on Large-Scale Data- and
Knowledge-Centered System, Special Issue In Memory of Univ. Prof. Dr. Roland
Wagner XLVIII, pp. 165–195 (2021)

11. Draheim, D., Nathschläger, C.: A context-oriented synchronization approach. In:
Electronic Proceedings of the 2nd International Workshop in Personalized Access,
Profile Management, and Context Awareness: Databases (PersDB 2008) in Con-
junction with the 34th VLDB Conference, pp. 20–27 (2008)

12. Eggers, G., et al.: GAIA-X: Technical Architecture. Federal Ministry for Economic
Affairs and Energy (BMWi) Public Relations Division, Berlin (2020)

https://doi.org/10.1007/978-3-642-41488-6_9
https://doi.org/10.1007/978-3-642-41488-6_9
https://doi.org/10.1007/978-3-642-41488-6
https://doi.org/10.1007/978-3-030-63924-2

12 D. Draheim

13. European Commission: Regulation 2016/679 of the European Parliament and of
the Council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation). European Commission
(2016)

14. Freudenthal, M., Willemson, J.: Challenges of federating national data access
infrastructures. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS, vol. 10543,
pp. 104–114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69284-5 8

15. Giaglis, G., et al.: EU Blockchain Ecosystems Developments. The European Union
Blockchain Observatory and Forum (2020)

16. Kalja, A.: The X-Road: a key interoperability component within the state infor-
mation system. In: Information technology in public administration of Estonia
- yearbook 2007, pp. 19–20. Ministry of Economic Affairs and Communications
Estonia (2008)

17. Kalja, A.: The first ten years of X-Road. In: Kastehein, K. (ed.) Information tech-
nology in public administration of Estonia - yearbook 2011/2012, pp. 78–80. Min-
istry of Economic Affairs and Communications Estonia (2012)

18. Kalvet, T., Toots, M., Krimmer, R.: Contributing to a digital single market for
Europe: barriers and drivers of an EU-wide once-only principle. In: Proceedings
of DG.O 2018 - the 19th Annual International Conference on Digital Government
Research, pp. 45:1–45:8. ACM (2018)

19. Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). https://
bitcoin.org/bitcoin.pdf

20. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Com-
panies Create the Dynamics of Innovation. Oxford University Press (1995)

21. Paide, K., Pappel, I., Vainsalu, H., Draheim, D.: On the systematic exploitation
of the Estonian data exchange layer X-Road for strengthening public private part-
nerships. In: Proceedings of ICEGOV 018 - the 11th International Conference on
Theory and Practice of Electronic Governance, pp. 34–41. ACM (2018)

22. PricewaterhouseCoopers: Public Services Uniform Document Management - Final
Report. PricewaterhouseCoopers (2014)

23. Tepandi, J., et al.: The data quality framework for the Estonian public sector and
its evaluation. Trans. Large-Scale Data- Knowl.-Centered Syst. 35, 1–26 (2017)

24. Tsap, V., Pappel, I., Draheim, D.: Key success factors in introducing national e-
identification systems. In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa,
M., Neuhold, E.J. (eds.) FDSE 2017. LNCS, vol. 10646, pp. 455–471. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70004-5 33

25. UN Department of Economic and Social Affairs: United Nations E-Government
Survey 2018 - Gearing e-Government to Support Transformation Towards Sus-
tainable and Resilient Societies. United Nations, New York (2018)

26. UN Department of Economic and Social Affairs: E-Government Survey 2020 -
Digital Government in the Decade of Action for Sustainable Development. United
Nations, New York (2020)

27. Vaher, K.: Next Generation Digital Government Architecture. Republic of Estonia
GCIO Office (2020)

28. Willemson, J., Ansper, A.: A secure and scalable infrastructure for inter-
organizational data exchange and eGovernment applications. In: Proceedings of
ARES 2008 - The 3rd International Conference on Availability, Reliability and
Security 2008, pp. 572–577. IEEE (2008)

https://doi.org/10.1007/978-3-319-69284-5_8
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-70004-5_33

Patterns and Events

Maximal Mixed-Drove Co-Occurrence
Patterns

Witold Andrzejewski(B) and Pawe�l Boinski(B)

Poznan University of Technology, Institute of Computing Science,
Piotrowo 2, 60-965 Poznan, Poland

witold.andrzejewski@put.poznan.pl, pawel.boinski@put.poznan.pl

Abstract. Mining of Mixed-Drove Co-occurrence Patterns can be very
costly. Widely used, Apriori-based methods consist in finding spatial
co-location patterns in each considered timestamp and filtering out pat-
terns that are not time prevalent. Such an approach can be inefficient,
especially for datasets that contain co-locations with a high number
of elements. To solve this problem we introduce the concept of Max-
imal Mixed-Drove Co-occurrence Patterns and present new algorithm
MAXMDCOP-Miner for finding such patterns. Our experiments per-
formed on synthetic and real world datasets show that MAXDCOP-
Miner offers very high performance when discovering patterns both in
dense data and for low values of spatial or time prevalence thresholds.

1 Introduction

One of the interesting types of patterns that can be found in spatio-temporal
data is called Mixed-Drove Co-Occurrence Pattern (MDCOP) [5]. The idea of
MDCOPs is based on the well-known co-location patterns [9]. MDCOP rep-
resents a set of spatial feature types (i.e. object types) whose instances are
located close to each other in geographic space for a significant fraction of time.
For example, MDCOP can represent a predator-prey relationship resulting from
predator behavior, i.e. tracking his prey (not necessarily for the whole time and
without interruptions). As time component exists in almost every dataset, co-
occurrence patterns can provide useful knowledge in many domains, e.g. military
- battlefield analysis, ecology/health - monitoring pollution and diseases etc.

Currently available methods for MDCOP discovery are based on itera-
tive expansion of patterns using Apriori strategy known from frequent itemset
mining [1]. In such an approach, the search space is traversed in breadth-first
manner. In a result, to discover a particular pattern of size k, all of its 2k subsets
must be found in advance. This can be regarded as a main bottleneck in search-
ing for patterns of greater sizes or in huge datasets, especially with fast evolving
data. This problem has been considered in the context of standard co-location
patterns discovery [15]. To eliminate costly Apriori-like generate and test meth-
ods, a concept of maximal spatial co-location has been introduced. In short, a
co-location is maximal only if it has no superset co-location. A similar idea can
be applied for MDCOP mining.
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 15–29, 2021.
https://doi.org/10.1007/978-3-030-82472-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-82472-3_3

16 W. Andrzejewski and P. Boinski

In this paper, we introduce and define the novel concept of Maximal Mixed-
Drove Co-Occurrence Pattern. We propose to move away from Apriori-like strat-
egy for candidate generation towards solutions based on maximal cliques dis-
covery. In the proposed algorithm, we avoid costly computation of co-location
pattern participation indices as much as possible by using multiple innovations:
finding maximal candidates, estimating candidate time prevalence and caching
partial results. We have implemented our new method and performed experi-
ments on synthetic and real world datasets. The results show that we can achieve
significant speedups in comparison to the Apriori-like approach.

2 Related Work

MDCOP mining is inspired by the idea of the Co-location Pattern Mining (CPM)
introduced two decades ago [9]. CPM is dedicated for datasets where objects are
stationary. A co-location pattern is defined as a set of features which instances
are frequently located together in space. However, as more and more data is
automatically and continuously collected, the time component can play a crucial
role in various analysis. A trivial approach to cope with time is to calculate
different sets of patterns for subsequent states of the data [2]. Such an approach
might omit potentially useful and interesting patterns hidden in data changes
between consecutive timestamps. Therefore, a new directions of research emerged
to tackle this problem.

One of the very first attempts to incorporate the time component into a co-
location pattern [14], focused more on associations among spatially extended
objects than on the temporal aspects. The first type of pattern directly related to
co-locations, called a co-location episode, was presented in [3]. The authors defined
the co-location episode as a sequence of co-location patterns over consecutive time
slots sharing the same feature (called a common feature). MDCOPs, which are
the main topic of this paper, do not impose such constraints. For MDCOPs, time
prevalence means that spatial features are spatially prevalent (i.e. instances are
located close to each other) for the required, not necessarily consecutive, number
of time moments. Moreover, there is no need to define a common feature. It is worth
to mention that one can find other types spatio-temporal patterns inspired by the
concept of co-locations, e.g. SPCOZs [8] or STCOPs [7].

MDCOPs can be discovered using a naive approach, i.e. by applying one of the
algorithms for CPM to each analyzed time moment followed by computations to
detect which co-locations are time-prevalent. Celik et al. [5] proposed non-naive
algorithms MDCOP-Miner and FastMDCOP-Miner. Both algorithms discover all
size k spatially prevalent patterns and then apply a time-prevalence based filter-
ing to detect MDCOPs. These patterns are used to generate size k + 1 candidates
for MDCOPs. FastMDCOP-Miner additionally utilizes more advanced filtering to
prune candidates that cannot be prevalent. In [13], the authors tried to improve
the efficiency of the MDCOP mining by applying a graph based data structure.
Unfortunately, some parts of this solution are not explained, making them impos-
sible to implement in a way intended by the authors. As the algorithm is also

Maximal Mixed-Drove Co-Occurrence Patterns 17

Apriori-based and presented results show only a slight improvement in compar-
ison to FastMDCOP-Miner, we will refer to FastMDCOP-Miner as that method
is well defined and is the most popular approach to MDCOP mining.

Nonetheless, all Apriori-based methods can suffer from huge number of candi-
dates when searching for long patterns (dense datasets, low thresholds for spatial
and time prevalence). Similar problem has been addressed for CPM [10,12,15,16],
where researchers utilized the concept of maximal co-locations to reduce the num-
ber of computations. In this paper, we adopt the concept of maximal pattern and
define a maximal MDCOP. We introduce a non-Apriori based algorithm, to effi-
ciently calculate such patterns in spatio-temporal datasets.

3 Definitions

Let F be a set of features. We assume that a total order is defined on the set F .
Each feature f ∈ F has a set of feature instances If associated with it. We
denote a set of all instances as I =

⋃
f∈F If and an instance of feature f as

if . Let K be a set of coordinates. We do not make any assumptions about this
set. A spatial dataset is a tuple Sp = (S, p) where S ⊆ I and p is a function
p : S → K which assigns a coordinate to every feature instance from S.

Let dist : K×K → R
+∪{0} be a non-negative and symmetric function which

computes a distance between two coordinates. Given distance threshold r and
spatial dataset Sp we define a neighborhood relation R(Sp, r). Any two spatial
feature instances in a spatial dataset Sp are in relation R(Sp, r) if the distance
between their coordinates is less than or equal to the threshold r. Formally,
R(Sp, r) = {(i1, i2) ∈ S × S : dist(p(i1), p(i2)) ≤ r}. In the subsequent text, we
will denote the relation R(Sp, r) as R if the arguments stem from the context.

A subset of a set of features C ⊆ F is called a spatial co-location pattern
(or co-location in short). A spatial co-location instance in a spatial dataset Sp

is a subset IC ⊆ S such that ∀if1 ,if2∈IC (if1 , if2) ∈ R ∧ {f : if ∈ IC} = C ∧
|IC | = |C|. To retrieve only potentially interesting co-location patterns, a spatial
prevalence measure called a participation index has been proposed in [9]. To
define the participation index, a participation ratio Pr must be introduced first.
Given a spatial dataset Sp, a co-location pattern C, a set of all of its instances
I
C
Sp in the spatial dataset and a feature f ∈ C, a participation ratio Pr is

defined as Pr(f, C, Sp) = |{if1 :f1=f∧if1∈IC∈I
C
Sp}|

|{if1 :f1=f∧if1∈S}| . Participation index (also called
spatial prevalence of spatial co-location pattern) prev is defined as prev(C,Sp) =
min{Pr(f, C, Sp) : f ∈ C}. Given a threshold minprev, we say that a spatial
co-location C is spatially prevalent if prev(C,Sp) ≥ minprev. Given a spatial
dataset SP , relation R and a threshold minprev, we denote the set of all spatially
prevalent co-location patterns of size s as Cs(Sp, R).

Let T be a finite set of timestamps. A spatiotemporal ST dataset is set of
pairs Sp

t = (t, Sp) where t ∈ T and t is a unique identifier of the Sp
t pair in

the set, while Sp is some spatial dataset. Given a spatiotemporal dataset ST
and a subset C ⊆ F we define spatial co-location time prevalence tprev(C) as a

18 W. Andrzejewski and P. Boinski

fraction of spatial datasets in ST in which C is a spatially prevalent co-location.
Formally, tprev(C) = |{t:(t,Sp)∈ST∧prev(C,Sp)≥minprev}|

|ST | . Given a threshold
mintprev we define a Mixed Drove Co-occurence Pattern as a subset C ⊆ F such
that tprev(C) ≥ mintprev. Given a spatiotemporal dataset ST , relation R for
every Sp

t ∈ ST , a threshold minprev and a threshold mintprev, we denote the set
of all size sMDCOPs asCT

s (ST). Amaximal MDCOPC is any MDCOP such that
no proper MDCOP superset of C exists. A set of all maximal MDCOPs is denoted
as CT (ST).

The maximal MDCOP pattern mining problem can be defined as follows.
Given a spatiotemporal dataset ST , a neighborhood relation R, minimum spa-
tial prevalence threshold minprev and minimum time prevalence threshold
mintprev, find efficiently a complete set of maximal MDCOPs.

4 MAXMDCOP-Miner

In this section we present an algorithm, called MAXMDCOP-Miner, for min-
ing maximal MDCOPs. Some parts of our solution are based on the approach
presented in [15]. However, we use an iCPI-tree structure from [11] for spatial
co-location instance identification since it allows for better optimizations. For
ways on constructing such a tree we refer the reader to paper [11]. In the sub-
sequent sections we assume that an iCPI-tree is constructed for every spatial
dataset Sp in ST . Due to iCPI-tree properties, we assume that a set of neigh-
bors of feature instance if1 which are instances of f2 and f1 < f2, denoted:
N(if1 , f2, Sp, R) = {if2 ∈ S : (if1 , if2) ∈ R ∧ f1 < f2} can be found efficiently.
We also assume that the number of instances count(f, Sp

t) = |{f : if ∈ S}| of
every feature f for every Sp

t ∈ ST is known.
The MAXMDCOP-Miner algorithm is composed of five steps: (1) find preva-

lent size 2 co-location patterns, (2) find size 2 MDCOPs among them, (3) find
candidates for maximal MDCOPs in each spatial dataset, (4) find global can-
didates for maximal MDCOPS and (5) mine MDCOPS. Step 5 also includes
a highly optimized algorithm for finding spatial prevalence of the candidates.
Below we give the description of each step.

Step 1. Find spatially prevalent size 2 co-location patterns C2(S
p
t , R).

This step is performed independently for every spatial dataset Sp
t ∈ ST . First,

an iCPI-tree for Sp
t is scanned to get a list of all neighbor pairs (if1 , if2) (where

f1 < f2). Due to the index structure it is easy to obtain this list with entries
grouped by (f1, f2). Based on each such group, we compute participation index
of the spatial co-location {f1, f2}. If the computed participation index is greater
or equal to minprev then the co-location {f1, f2} is added to the result set.

Step 2. Find size 2 MDCOPs C
T
2 (ST). Only a size 2 spatially prevalent co-

location from one of Sp
t can be an MDCOP. Therefore, as a first step we compute

a sum of C2(S
p
t , R) sets computed in Step 1 to obtain all unique, candidate

MDCOPs. Next, for each candidate we compute its time prevalence based on
the number of Sp

t it is spatially prevalent in. If the candidate’s time prevalence
is greater than mintprev, it is added to the result set.

Maximal Mixed-Drove Co-Occurrence Patterns 19

Algorithm 1. Find global candidates for maximal MDCOPs
Require:

– a set of local candidates for maximal co-locations K(Sp
t) for every Sp

t ∈ ST
– minimum frequency threshold minfreq

Ensure: a set of local candidates for maximal co-locations K(ST)
1: K(ST) ← {}, Y ← ⋃

S
p
t ∈ST K(Sp

t)

2: while |Y | > 0 do
3: maxlen ← max{|X| : X ∈ Y }
4: M ← {X : X ∈ Y ∧ |X| = maxlen}, Y ← Y \M
5: for P ∈ M do
6: if ∃X ∈ K(ST) : P ⊂ X then skip to the next P
7: tprev ← |{t : Sp

t ∈ ST ∧ ∃P ′ ∈ K(Sp
t) : P ⊆ P ′}|/|ST |

8: if tprev ≥ mintprev then K(ST) ← K(ST) ∪ {P}
9: else if maxlen > 2 then Y ← Y ∪ {P ′ ⊂ P : |P ′| = maxlen − 1}

Step 3. Build local candidates formaximalMDCOPs K(Sp
t) for Sp

t ∈ ST .
In this step we find candidates for maximal MDCOPs separately in each Sp

t ∈ ST .
To find such candidates we use a method based on [15]. In [15] candidates for
maximal spatially prevalent co-location patterns are maximal cliques in a graph
G(V,E) where each vertex corresponds to one feature (V ⊆ F) and edges rep-
resent size 2 spatially prevalent co-location patterns (E = C2(S

p
t)). In our case,

we limit the set of spatially prevalent co-location patterns to only those that also
appear in the MDCOP set C2(ST) (E = C2(S

p
t) ∩ C2(ST)), so that candidates

contain only spatially prevalent and time prevalent pairs of features.

Step 4. Build global candidates for maximal MDCOPs K(ST) (see
Algorithm 1). Candidates found in Step 3 can contain co-locations that are:
(1) not time prevalent (they do not appear in enough of K(Sp

t) sets) and (2)
can be subsets (a candidate in one of K(Sp

t) sets is a subset of a candidate in
another K(Sp

t) set). In this step we find a set of candidates K(ST) free of these
flaws.

At first, a sum of all K(Sp
t) sets Y is found to eliminate duplicates of candi-

dates (line 1). Next, the candidates are processed in the order from the largest
to the smallest. We extract the largest sets from the set Y into set M (lines 3–4)
and for each of the candidates in the set M we check: (1) if the candidate is a
subset of some larger candidate found in previous iteration (line 6) and (2) if an
upper bound of the candidate’s time prevalence computed based on how often it
appears in K(Sp

t) sets (line 7) is greater than or equal to the threshold mintprev
(line 8). In the first case, the candidate is skipped as it is not maximal (line 6).
In the second case, the candidate is added to the result set K(ST) (line 8).

In case when the candidate is not a subset of some other candidate but is not
time prevalent enough, we add all subsets (one item smaller) of the candidate
to the set Y for subsequent processing (line 9). We process the set Y until there
are no candidates of size 2 (line 2).

20 W. Andrzejewski and P. Boinski

Step 5. Mine maximal MDCOPs C
T (ST) (see Algorithm 2, 3 and 4).

Mining process is performed by Algorithm 2 At first, we initialize the results
cache (line 2). This is a set of cache[t] sets corresponding to all timestamps in
T . Each such set will contain co-locations known to be spatially prevalent at Sp

t

but not time prevalent. Next, we initialize a set Y with all of global candidates
obtained in Step 4 (line 3). The candidates are processed in the order from the
largest to the smallest. The largest candidates are extracted from the set Y into
set M (line 10). Next, the set N , which will gather all new candidates generated
during mining process, is initialized (line 11). In loop (lines 12–28) we process
candidates P from the set M . We start by initializing the sets TPe, TPc, TNe and
TNc (line 13) which will store timestamps t of Sp

t datasets at which the candidate
P is spatially prevalent (TP sets) or not (TN sets). Subscript e means that the
spatial prevalence of the candidate is determined based on previous results, while
c means that it is based on participation index computations.

Next, in loop (lines 14–17), for each Sp
t ∈ ST we determine whether the

candidate P is spatially prevalent or not based on the information determined
so far. If the candidate is not a subset of any local candidate in K(Sp

t) then it
cannot be spatially prevalent and consequently the timestamp t is added to TNe

set (line 15). However, if the candidate is a subset of any pattern known to be
spatially prevalent in Sp

t then it must be spatially prevalent as well. In such a
case, the corresponding timestamp t is added to TPe set (line 16).

Sizes of TPe and TNe sets allow to determine lower (|TPE |/|ST |) and upper
(1 − |TNe|/|ST |) bound on the candidate’s time prevalence. If the lower bound
is greater or equal to mintprev (candidate is time prevalent) or upper bound is
smaller than mintprev (candidate is not time prevalent) no subsequent compu-
tations are necessary (lines 17 and 18).

If the time prevalence of the candidate cannot be determined yet, then exact
computations are needed. In loop (lines 19–23) for each Sp

t ∈ ST (for which
the candidate’s spatial prevalence has not been determined yet) we compute
the participation index (line 20) and based on the result, the corresponding
timestamp is added either to TPc or TNc set (lines 21 and 22).

Based on the sizes of the TP and TN sets we compute lower (|TPe|+|TPc|
|ST |) and

upper (1 − |TNe|+|TNc|
|ST |) bounds of candidate’s time prevalence. Computations

can be aborted based on these results, similarly as before (line 23).
Next we determine whether the candidate is time prevalent and update set

C
T (ST) if required (line 24). Otherwise we add all of its subsets (one item

smaller) to the set N (line 27). Additionally, we update the spatially prevalent
patterns cache for timestamps at which the candidate is spatially prevalent.

After all of candidates in M are processed we check whether the newly gen-
erated candidates in the N set are subsets of the sets in the result set (line 29).
If not, they are added to the set Y (line 29) for further processing (lines 12–
28). The main loop terminates when the set Y is empty or size 2 patterns are
processed. Since time prevalent size 2 MDCOPS were already found in Steps 1
and 2, it is sufficient to just find intersection Y ∩C

T
2 (ST) to determine maximal

size 2 MDCOPs (lines 6–8). This is also the cause for using cache for testing

Maximal Mixed-Drove Co-Occurrence Patterns 21

Algorithm 2. Mining maximal MDCOPs
Require:

– a set of global candidates for maximal MDCOPs K(ST)
– sets of local candidates for maximal MDCOPs K(Sp

t)
– minimum spatial prevalence minprev and time prevalence mintprev thresholds

Ensure: a set of maximal MDCOPs C
T (ST)

1: C
T (ST) ← {},

2: ∀S
p
t ∈ST cache[t] = {}

3: Y ← K(ST)
4: while |Y | > 0 do
5: maxlen ← max{|X| : X ∈ Y }
6: if maxlen = 2 then
7: C

T (ST) ← C
T (ST) ∪ (Y ∩ C2(ST))

8: break
9: else

10: M ← {X : X ∈ Y ∧ |X| = maxlen}, Y ← Y \M
11: N ← {}
12: for P ∈ M do
13: TPe ← {}, TNe ← {}, TPc ← {}, TNc ← {}
14: for Sp

t ∈ ST do
15: if � ∃X ∈ K(Sp

t) : P ⊆ X then TNe ← TNe ∪ {t}
16: else if ∃X ∈ cache[t] : P ⊂ X then TPe ← TPe ∪ {t}
17: if |TPe|

|ST | ≥ mintprev or 1 − |TNe|
|ST | < mintprev then break

18: if |TPe|
|ST | < mintprev and 1 − |TNe|

|ST | ≥ mintprev then

19: for Sp
t ∈ ST : t /∈ (TPe ∪ TNe) do

20: prev ← compute pi(Sp
t , P) {See Alg. 3}

21: if prev ≥ minprev then TPc ← TPc ∪ {t}
22: else TNc ← TNc ∪ {t}
23: if |TPe|+|TPc|

|ST | ≥ mintprev or 1− |TNe|+|TNc|
|ST | < mintprev then break

24: if |TPe|+|TPc|
|ST | ≥ mintprev then

25: C
T (ST) ← C

T (ST) ∪ {P}
26: else
27: N ← N ∪ {P ′ ⊂ P : |P ′| = maxlen − 1}
28: if maxlen > 3 then: for t ∈ TPc do: cache[t] ← cache[t] ∪ {P}
29: for P ∈ N do: if � ∃X ∈ C

T (ST) : P ⊂ X then Y ← Y ∪ {P}

candidates of size greater or equal to 3 (line 28). After the loop ends, the result
set C

T (ST) contains all maximal MDCOPs.

Step 5a. Computing spatial prevalence. One of the most important parts
of this algorithm, which was not described yet, is the spatial prevalence compu-
tation of a co-location. In [15], authors propose to compress instances of a single
co-location in a spatial dataset using a trie structure [6]. We propose a method
for storing such tries, which allows to: (1) improve the performance of partici-
pation index computations, (2) reuse results when finding instances of another

22 W. Andrzejewski and P. Boinski

Fig. 1. A trie with co-location instances Fig. 2. A trie with instances of co-
location and its prefixes

co-location with a common prefix and (3) further improve compression ratio of
co-location instances.

A trie is a tree structure which is used to store a set of sequences by represent-
ing them as paths from root to leaves. The set of sequences is compressed because
sequences with common prefixes share the same paths in the trie. Assuming any
total order on the feature set F , we can represent both co-locations and their
instances as sequences and store them in a trie. For details please refer to [6,15].
An exemplary trie for a set of instances of a co-location {A,B,C,D} is shown
in Fig. 1. We propose to store levels of a trie as arrays of triples (if , pos, visited)
composed of feature instance if , an index in a higher level array to a parent entry
pos and a boolean visited flag which is used for participation index computations
(we will ignore it for now). We call such arrays the level arrays.

Note, that the same trie can be used for storing instances of the co-location
prefixes, e.g. for co-location {A,B,C,D} instances of {A,B,C} and {A,B} can
be stored as well. This is possible since prefixes of co-location instances are
always instances of the corresponding co-location prefix. To retrieve instances
of a specific co-location it is sufficient to follow paths from the nodes at level
corresponding to the co-location length upwards toward the root. Hence, we use
trie to store instances of a co-location and all of its prefixes. An exemplary trie
for instances of co-location {A,B,C,D} (and its prefixes) is shown in Fig. 2.

Let us consider two co-locations sharing the same prefix, e.g. {A,B,C,D}
and {A,B,E}. Note that the tries that store instances of those co-locations and
their prefixes will have the same two first levels. Assuming the trie for the co-
location {A,B,C,D} has been computed first, we can reuse its first two levels
and only compute the third level corresponding to the E feature. Moreover,
since the first two trie levels are the same, we do not need to store them twice in
memory. Hence, we propose the following data structure. We keep a collection
(e.g. an array) of all level arrays. Additionally, we store co-locations (not co-
location instances) in a trie. In further discussion to distinguish between two
different trie structures we will refer to them as instance tries (which store
co-location instances) and co-location tries (which store co-locations). In the co-
location trie, each node represents a co-location composed of features stored on
a path up to the root. With each node we associate a reference to a level array
in the collection. Given a node corresponding to a co-location, by retrieving
all references on a path to a root we can find all level arrays constituting the
corresponding instance trie. Since co-locations need to have at least two features,

Maximal Mixed-Drove Co-Occurrence Patterns 23

Fig. 3. A co-location tree with the corresponding collection of level arrays

Algorithm 3. Computing spatial prevalence (participation index)
Require:

– Spatial dataset Sp
t with iCPI-tree, co-location trie and relation R

– A candidate set of features P

Ensure: spatial prevalence prev of the candidate P
1: Identify instances of P if not available in the co-location trie {see Alg. 4}
2: L ← an array of references to level arrays retrieved for P from the co-location trie
3: Set all visited flags in all level arrays in L (except last one) to false
4: U ← an array of empty sets of size |P |
5: for (if , pos,) ∈ L[|P | − 1] do {visited flag is ignored}
6: U [|P | − 1] ← U [|P | − 1] ∪ {if}
7: parent ← pos
8: for k ∈ |P | − 2, . . . , 0 do
9: (ig, new parent, visited) ← L[k][parent]

10: if visited then break
11: U [k] ← U [k] ∪ {ig}
12: L[k][parent] ← (ig, new parent, true)
13: parent ← new parent
14: prev ← min{|U [k]/count(P [k], Sp) : k ∈ 0, . . . , |P | − 1}

the nodes at the first level of the co-location trie do not store any pointers, while
nodes at the second level store two pointers for first and second level of the
corresponding instance trie. Exemplary structures are shown in Fig. 3.

Given candidate P , participation index computation requires finding unique
feature instances that are part of candidate P instances. The method utilizing
the co-location trie structure is shown in Algorithm 3. As a first step, the co-
location trie and the corresponding collection of level arrays is supplemented with
candidate’s instances if necessary (line 1). This step is detailed in Algorithm 4
and will be described later. Next, we retrieve consecutive references to level
arrays from the co-location trie and store them in the array L (line 2). In order to
obtain unique feature instances mentioned above, we will traverse the retrieved
instance trie starting at each leaf and go up towards the root to retrieve all
feature instances on the path. Since this is a tree, then paths starting at multiple
different leaves might end up at some common node. To avoid traversing a once
visited path, with each of the trie’s node we associate a visited flag to mark
whether the node has been visited or not. Since level arrays are shared, previous

24 W. Andrzejewski and P. Boinski

Algorithm 4. Building co-location trie
Require:

– Spatial dataset Sp
t with iCPI-tree, co-location trie and relation R

– co-location P

Ensure: co-location trie for Sp
t is updated

1: V ← a sorted array with features from P
2: d ← length of P prefix already stored in co-location trie
3: if d = |P | then abort, all level arrays are computed
4: if d < 2 then
5: L0 ← empty level array, L1 ← empty level array
6: for every iV [0] from first two levels of Sp iCPI-tree do
7: if N(iV [0], V [1], Sp, R) = ∅ then continue
8: append (iV [0], ∅, false) to L0
9: w ← |L[0]| − 1

10: for iV [1] ∈ N(iV [0], V [1], Sp, R) do append (iV [1], w, false) to L1
11: Store size 2 P prefix in colocation trie and add ref. to L1 and L2 to the leaf
12: d ← 2
13: L ← an array of references to level arrays retrieved for size d prefix of P
14: for j ∈ d, . . . , |P | − 1 do
15: Allocate new level array and store reference to it at L[j]
16: for parent pos ∈ 0, . . . , |L[j − 1]| do
17: CO ← ⋂

if∈path to root starting at L[j−1][parent pos] N(if , V [j], Sp, R)

18: Append to L[j] entries (if , parent pos, false) where if ∈ CO
19: Add node to co-location trie for size j P prefix and copy reference from L[j]

computations might have left the flags set to true at some nodes. Hence, we
set them all to false (line 3). To find unique values among all retrieved feature
instances we allocate |P | sets in an array U (line 4), one for each candidate’s
feature. Next, the main loop (lines 5–13) iterates over all entries in the level
array corresponding to the leaves of the instance trie. Retrieved feature instance
is added the corresponding set in U (line 6). Next, we traverse up the instance
trie (lines 8–13). Feature instances are retrieved (line 9) and added to the U
sets (line 11). Each visited node is marked (line 12). If a node has already
been visited, we abort the traversal (line 10). Finally, the participation index is
computed (line 14).

The last algorithm we need to describe is Algorithm 4, which is used to update
the co-location trie. As a first step we determine how much of the instance trie
for the target co-location P has been computed previously. In case every level
has already been built we abort further computations (line 3). Otherwise, we
can have partially built instance trie (≥ 2 features from P are in the co-location
tree) or no levels have been built yet (< 2 features from P are stored). In the
first case, we continue with building remaining levels (lines 13–19). In the second
case, we build the first two levels (lines 5–12) and then solve the first case.

Maximal Mixed-Drove Co-Occurrence Patterns 25

Building the first two levels is easy, since they can be directly retrieved from
the iCPI-tree structure. First, we allocate two new level arrays (line 5). Next, in
loop (lines 6–10) we retrieve from the iCPI-tree all feature instances with feature
V [0] which is the first feature in the sorted co-location P . If the retrieved feature
instance has neighbors with feature V [1] (line 7) then new entries are added to
level arrays L1 and L2 (lines 8–10). After level arrays have been built, the
appropriate nodes are created in the co-location trie and the references to new
level arrays are stored in the leaf node corresponding to feature V [1].

To build remaining levels, we first retrieve levels that have already been
built (line 13). Next, we build subsequent levels one by one in a loop (lines 14–
19). To build a new level array, we iterate over entries in the previous level
(lines 16–18). For each of these entries we retrieve feature instances from all
nodes up to the root and find common neighbors with feature V [j], which is a
feature corresponding to the j-th level of the instance trie (line 17). For each of
such common neighbors a new entry is appended to the new level array (line 18).
After level array has been built, a new node is added to the co-location trie and
the reference to the new level array is stored in it (line 19). Once all the level
arrays have been built, the algorithm ends.

5 Experiments

To compare the performance we implemented both MAXMDCOP-Miner and
FastMDCOP-Miner algorithms using Python3. All experiments have been con-
ducted on a PC (Intel Core I7-6700 3.4 GHz CPU, 32 GB RAM). We examined
processing times using synthetic and real world datasets. Synthetic data was
generated using method based on [4]. First, size of each PATct initial patterns
(subsets of feature types potentially involved in MDCOPs) was randomly cho-
sen using Poisson distribution (mean PATavs). Then, features were uniquely
and randomly chosen (from Fct initial features) and assigned to patterns. Next,
initial patterns were divided into sets of persistent and transient patterns using
RATp parameter - a ratio of persistent patterns over transient patterns. Instances
of patterns were placed in spatial framework (a square with dim length side).
Each pattern instance was placed in a square of size dist randomly chosen from
spatial framework. For each pattern, its instances were put in randomly chosen
number of time frames from the set of TFct frames w.r.t. mintprev parame-
ter (persistent patterns had to occur in at least mintprev fraction of frames).
The number of instances of the particular pattern in a given time moment was
randomly chosen from Poisson distribution (mean INSavc). Finally, NOISEct

objects were placed in the framework. Each noise object was assigned a spatial
feature randomly chosen (uniform distribution) from set of noise features. That
set consisted of RATn percent of Fct initial features (i.e. some of that features
could take part in generated patterns).

We have prepared two datasets, namely SD1 (136K objects) and SD2 (29K
objects), using following sets of values: (1) for SD1: PATct = 15, PATavs = 5,
Fct = 100, RATp = 0.4, dim = 10000, dist = 10, TFct = 100, minfreq =

26 W. Andrzejewski and P. Boinski

0, 6, INSavc = 25, NOISEct = 20000, RATn = 0.4; (2) for SD2: PATct = 5,
PATavs = 10, Fct = 200, RATp = 0.3, dim = 10000, dist = 10, TFct = 50,
minfreq = 0, 6, INSavc = 15, NOISEct = 10000, RATn = 0.2.

Real world dataset RD contains positions of pigeons from animal study [17].
We limited our analysis to a single day and we used linear interpolation to
calculate pigeons positions for each of 1440 time moments (one per minute).
There were 29192 objects and 29 spatial features in the RD dataset.

In the first experiment, we observed how the processing time for synthetic
data (Fig. 4a and Fig. 4b for SD1 and SD2) is affected when changing the
minprev threshold (constant maxdist = 10, mintprev = 0.3). In general, the
lower the minprev, the higher probability that we will find a pattern in a par-
ticular frame. Thus, processing times should decrease with the decreasing values
of minprev. Exactly such a behavior can be noticed for FastMDCOP-Miner. In
the proposed algorithm, lower minprev results in a greater chance of generating
long, prevalent patterns which eliminates the need to check their subsets. When
we increase minprev, both algorithms start to behave similarly, although our
proposal is still more efficient. For the largest values of minprev the number of
candidates is very limited and both algorithms complete tasks very quickly.

In the second experiment, we examined the influence of mintprev on the pro-
cessing time for synthetic data (Fig. 4c and Fig. 4d) while maxdist and minprev
were set to 10 and 0.3 respectively. In MAXMDCOP-Miner, for low and high
values of mintprev there is a higher chance that lower or upper bound time
prevalence filtering will take place resulting in a reduced number of computa-
tions. For the lowest value of mintprev, MAXMDCOP-Miner is more than 4
times faster. For higher values of mintprev, the number of patterns decreases as
well as the performance gap between algorithms.

In the third experiment, we checked how the maximum distance maxdist
impacts the performance for synthetic data (Fig. 4e and Fig. 4f, minprev = 0.3,
minprev = 0.3). It clearly observable that there is a significant increase in
processing time when maxdist reaches 10. This is related to the parameters used
for synthetic data generator (dist = 10). When maxdist is greater than 10, the
number of instances (and candidates) increases very rapidly and Apriori-based
approach is inefficient in comparison to the new method.

Finally, we examined the efficiency of the algorithms for the real world
dataset. Due to the limited number of observed pigeons, we skip minprev
threshold assuming that all candidates are spatially prevalent. We were vary-
ing mintprev (Fig. 4g, constant maxdist = 0.4) and maxdist (Fig. 4h, constant
mintprev = 0.3). Gathered data confirm the results obtained for synthetic
dataset. In all cases, the performance of the new method was better that in
the compared algorithm, reaching approx. 7 times faster execution times for
mintprev = 0.1.

Maximal Mixed-Drove Co-Occurrence Patterns 27

Fig. 4. Results of experiments

28 W. Andrzejewski and P. Boinski

6 Summary and Future Work

In this paper we introduced the concept of maximal MDCOPs and proposed effi-
cient algorithm for mining such patterns. We have tested the proposed solution
using synthetic and real world datasets. Results show, that MAXMDCOP-Miner
offers better performance in comparison to the popular Apriori-based approach.
Moreover, we can notice that the more challenging parameter values (i.e. lower
spatial or time prevalence thresholds or higher maximum distance thresholds),
the higher performance gain is achieved. In future work, we plan to introduce
more optimizations for eliminating even higher number of candidates as well as
to parallelize maximal MDCOP mining process.

Acknowledgement. This research has been partially supported by the statutory
funds of Poznan University of Technology.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994)

2. Andrzejewski, W., Boinski, P.: Parallel approach to incremental co-location pattern
mining. Inf. Sci. 496, 485–505 (2019)

3. Cao, H., Mamoulis, N., Cheung, D.W.: Discovery of collocation episodes in spa-
tiotemporal data. In: Proceedings of the 6th International Conference on Data
Mining, ICDM 2006, pp. 823–827. IEEE Computer Society, Washington, DC (2006)

4. Celik, M., Shekhar, S., Rogers, J.P., Shine, J.A.: Sustained emerging spatio-
temporal co-occurrence pattern mining: a summary of results. In: Proceedings
of the 18th IEEE International Conference on Tools with Artificial Intelligence
(ICTAI 2006), pp. 106–115, November 2006

5. Celik, M., Shekhar, S., Rogers, J.P., Shine, J.A.: Mixed-drove spatiotemporal co-
occurrence pattern mining. IEEE Trans. Knowl. Data Eng. 20(10), 1322–1335
(2008)

6. Fredkin, E.: Trie memory. Commun. ACM 3(9), 490–499 (1960)
7. Hamdi, S.M., Aydin, B., Angryk, R.A.: A pattern growth-based approach for min-

ing spatiotemporal co-occurrence patterns. In: Proceedings of the 16th IEEE Inter-
national Conference on Data Mining Workshops, pp. 1125–1132, December 2016

8. Qian, F., He, Q., He, J.: Mining spread patterns of spatio-temporal co-occurrences
over zones. In: Gervasi, O., Taniar, D., Murgante, B., Laganà, A., Mun, Y.,
Gavrilova, M.L. (eds.) ICCSA 2009. LNCS, vol. 5593, pp. 677–692. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-642-02457-3 57

9. Shekhar, S., Huang, Y.: Discovering spatial co-location patterns: a summary of
results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD
2001. LNCS, vol. 2121, pp. 236–256. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-47724-1 13

10. Tran, V., Wang, L., Chen, H., Xiao, Q.: MCHT: a maximal clique and hash table-
based maximal prevalent co-location pattern mining algorithm. Expert Syst. Appl.
175, 114830 (2021)

https://doi.org/10.1007/978-3-642-02457-3_57
https://doi.org/10.1007/3-540-47724-1_13
https://doi.org/10.1007/3-540-47724-1_13

Maximal Mixed-Drove Co-Occurrence Patterns 29

11. Wang, L., Bao, Y., Lu, J.: Efficient discovery of spatial co-location patterns using
the iCPI-tree. Open Inf. Syst. J. 3(2), 69–80 (2009)

12. Wang, L., Zhou, L., Lu, J., Yip, J.: An order-clique-based approach for mining
maximal co-locations. Inf. Sci. 179(19), 3370–3382 (2009)

13. Wang, Z., Han, T., Yu, H.: Research of MDCOP mining based on time aggregated
graph for large spatio-temproal data sets. Comput. Sci. Inf. Syst. 16, 32–32 (2019)

14. Yang, H., Parthasarathy, S., Mehta, S.: A generalized framework for mining spatio-
temporal patterns in scientific data. In: Proceedings of the 11th ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, KDD 2005, pp.
716–721. ACM, New York (2005)

15. Yao, X., Peng, L., Yang, L., Chi, T.: A fast space-saving algorithm for maximal
co-location pattern mining. Expert Syst. Appl. 63(C), 310–323 (2016)

16. Yoo, J.S., Bow, M.: Mining maximal co-located event sets. In: Huang, J.Z., Cao, L.,
Srivastava, J. (eds.) PAKDD 2011. LNCS (LNAI), vol. 6634, pp. 351–362. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20841-6 29

17. Zannoni, N., et al.: Identifying volatile organic compounds used for olfactory nav-
igation by homing pigeons. Sci. Rep. 10(15879), 1–16 (2020)

https://doi.org/10.1007/978-3-642-20841-6_29

Efficiently Mining Large Gradual
Patterns Using Chunked Storage Layout

Dickson Odhiambo Owuor1(B) and Anne Laurent2(B)

1 SCES, Strathmore University, Nairobi, Kenya
dowuor@strathmore.edu

2 LIRMM Univ Montpellier, CNRS, Montpellier, France
anne.laurent@umontpellier.fr

Abstract. Existing approaches for extracting gradual patterns become
inefficient in terms of memory usage when applied on data sets with huge
numbers of objects. This inefficiency is caused by the contiguous nature of
loading binary matrices into main memory as single blocks when validat-
ing candidate gradual patterns. This paper proposes an efficient storage
layout that allows these matrices to be split and loaded into/from mem-
ory in multiple smaller chunks. We show how HDF5 (Hierarchical Data
Format version 5) may be used to implement this chunked layout and
our experiments reveal a great improvement in memory usage efficiency
especially on huge data sets.

Keywords: Binary matrices · Gradual patterns · HDF5 · Memory
chunk · Zarr

1 Introduction

Gradual patterns may be described as linguistic rules that are applied on a data
set to extract correlations among its attributes [7,10]. For instance, given a data
set shown in Table 1 (which is a numeric data set with 3 attributes {age, games,
goals}), a linguistic gradual correlation may take the form: “the lower the age,
the more the goals scored.”

Table 1. Sample data set D1.

id age games goals

r1 30 100 2

r2 28 400 4

r3 26 200 5

r4 26 500 8

One major step in mining gradual patterns involves ranking tuples in the
order that fulfill a specific pattern. For example, in Table 1 the pattern “the
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 30–42, 2021.
https://doi.org/10.1007/978-3-030-82472-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_4&domain=pdf
http://orcid.org/0000-0002-0968-5742
http://orcid.org/0000-0003-3708-6429
https://doi.org/10.1007/978-3-030-82472-3_4

Efficiently Mining Large Gradual Patterns 31

lower the age, the more the goals scored.” is fulfilled by at least 3 ordered tuples:
{r1 → r2 → r3}. For the reason that computing processors are natively designed
to operate on binary data, the approach of representing ordered rankings as
binary matrices yields high computational efficiency for mining gradual patterns
using the bitwise AND operator [2,7,10].

However, the same can not be said of these binary matrices in terms of main
memory usage. For instance, given a data set with n tuples and m attributes:

– for every attribute a in m, there may exist at least 2 frequent gradual items
- (a, ↑) and (a, ↓) and,

– for every gradual item, a binary matrix of size (n × n) must be loaded into
memory.

Consequently, a single bitwise AND operation loads and holds multiple n × n
binary matrices into memory. This problem becomes overpowering when dealing
with data sets with huge number of tuples. Most often, algorithms implemented
on this approach crash when applied on such data sets since they require to be
assigned an overwhelming amount of main memory at once (when performing
the bitwise AND operation).

In this paper, we propose an approach that advances the bitwise AND opera-
tion such that it operates on multiple smaller chunks of the binary matrices. This
approach allows efficient use of main memory while performing this operation
on huge binary matrices. In addition, we design GRAD-L algorithm that imple-
ments this proposed approach. Our experiment results show that our proposed
approach by far outperforms existing approaches especially when dealing with
huge data sets.

The remainder of this paper is organized as follows: we provide preliminary
definitions in Sect. 2; we review related approaches in Sect. 3; in Sect. 4, we pro-
pose an approach that allows efficient use of main memory through chunking
binary matrices for the bitwise AND operation; we analyze the performance of
our proposed approach in Sect. 5; we conclude and give future directions regard-
ing this work in Sect. 6.

2 Preliminary Definitions

For the purpose of putting forward our proposed approach for mining large grad-
ual patterns; in this section, we recall some definitions about gradual patterns
taken from existing literature [2,10].

Definition 1. Gradual Item. A gradual item g is a pair (a, v) where a is an
attribute of a data set and v is a variation such that: v ∈ {↑, ↓}, where ↑ denotes
an increasing variation and, ↓ denotes a decreasing variation.

Example 1. (age, ↓) is a gradual item that may be interpreted as: “the lower the
age.”

32 D. O. Owuor and A. Laurent

Definition 2. Gradual Pattern. A gradual pattern GP is a set of gradual items
i.e. GP = {(a1, v1), ..., (an, vn)}.

Example 2. {(age, ↓), (goals, ↑)} is a gradual pattern that may be interpreted
as: “the lower the age, the more the goals scored.”

The quality of a gradual pattern is measured by frequency support which may
be described as: “the proportion of objects/tuples/rows in a data set that fulfill
that pattern.” For example, given the data set in Table 1, the pattern GP =
{(age, ↓), (goals, ↑)} is fulfilled by tuples {r1, r2, r3} (which is 3 out of 4 tuples).
Therefore, the frequency support, sup(GP), of this pattern is 0.75.

On that account, given a minimum support threshold σ, a gradual pattern
(GP) is said to be frequent only if: sup(GP) ≥ σ.

In the case of designing algorithms for mining gradual patterns from data
sets, many existing works apply 3 main steps [2,7,9,10]:

1. identify gradual item sets (or patterns) that become frequent if their frequency
support exceed a user-defined threshold,

2. ranking tuple pairs that fulfill the individual gradual items (of a candidate
item set) and representing the ranks as binary matrices and,

3. applying a bitwise AND operator on the binary matrices in order to identify
which gradual items may be joined to form a frequent gradual pattern.

For instance, given the data set in Table 1, we may identify 2 gradual patterns:
gp4 = {(age, ↓), (games, ↑)} and gp5 = {(games, ↑), (goals, ↑)}. These 2 patterns
require 3 gradual items g1 = (age, ↓), g2 = (games, ↑), g3 = (goals, ↑) whose
binary matrices MG1 , MG2 and MG3 (after ranking tuples of corresponding
columns in Table 1) are shown in Table 2.

Table 2. Binary matrices MG1 , MG2 and MG3 for gradual items: (a) g1 = (age, ↓),
(b) g2 = (games, ↑), (c) g3 = (goals, ↑).

� r1 r2 r3 r4

r1 0 1 1 1

r2 0 0 1 1

r3 0 0 0 0

r4 0 0 0 0

(a)

� r1 r2 r3 r4

r1 0 1 1 1

r2 0 0 0 1

r3 0 1 0 1

r4 0 0 0 0

(b)

� r1 r2 r3 r4

r1 0 1 1 1

r2 0 0 1 1

r3 0 0 0 1

r4 0 0 0 0

(c)

[2,7] propose the theorem that follows in order to join gradual items to form
gradual patterns:

“Let gp12 be a gradual pattern generated by joining two gradual items g1 and
g2. The following matrix relation holds: MGP12 = MG1 AND MG2”.

This theorem relies heavily on the bitwise AND operator which provides good
computational performance. For instance, we can apply a bitwise AND operation

Efficiently Mining Large Gradual Patterns 33

Table 3. Binary matrices MGP12 and MGP23 for gradual patterns: (a) gp12 = {(age, ↓),
(games, ↑)}, (b) gp23 = {(games, ↑), (goals, ↑)}.

� r1 r2 r3 r4

r1 0 1 1 1

r2 0 0 0 1

r3 0 0 0 0

r4 0 0 0 0

(a)

� r1 r2 r3 r4

r1 0 1 1 1

r2 0 0 0 1

r3 0 0 0 1

r4 0 0 0 0

(b)

on the binary matrices in Table 1 in order to find binary matrices MGP12 and
MGP23 for patterns gp12 and gp23 as shown in Table 3.

As can be seen in Table 2 and Table 3, the total sum of ordered ranks in
the binary matrices is given by s = n(n − 1)/2 where n is the number of
columns/attributes. Therefore, the support of a gradual pattern gp is the ratio
of concordant rank count in the binary matrix to the sum s [7].

3 State of the Art

Scientific data is increasing rapidly every year, thanks to technological advances
in computing and storage efficiency [11,12]. Technologies such as HDF5 (Hier-
archical Data Format v5) and Zarr provide high performance software and file
formats that efficiently manage these huge volumes of data. For instance, [6] and
[14] describe two models whose efficiencies have been greatly improved by using
the Zarr and HDF5 data formats respectively.

According to [4], HDF51 is a technology suite that comprises a model, a
software library and a hierarchical file format for storing and managing data.
This suite is designed: (1) to support a wide variety of datatypes, (2) for fast
Input/Output processing and (3) for managing BigData. These similar features
are offered by Zarr2 technology suite.

Fig. 1. (a) Contiguous storage layout and, (b) chunked storage layout.

1 https://portal.hdfgroup.org/display/HDF5/HDF5.
2 https://zarr.readthedocs.io/en/stable/index.html.

https://portal.hdfgroup.org/display/HDF5/HDF5
https://zarr.readthedocs.io/en/stable/index.html

34 D. O. Owuor and A. Laurent

One particular feature (provided by HDF5 and Zarr) that may be useful
in mining gradual patterns from huge data sets is the chunked storage layout
shown in Fig. 1b. This feature allows for a huge data set to be split into mul-
tiple chunks which are stored separately in any order and any position within
the HDF5/Zarr file. Additionally, chunks can be compressed, written and read
individually, improving performance when dealing with such data sets [5].

Applying HDF5/Zarr chunked storage layout to binary matrices is one app-
roach that may solve the problem (described in Sect. 1) of mining gradual pat-
terns from huge data sets. The chunked storage layout may be exploited to
allow the split of the bitwise AND operation (described in Sect. 1) on huge matri-
ces (generated by reading and ranking all data set tuples in one attempt) into
several repeated steps (where each step targets and loads manageable binary
chunks into main memory).

However, using this approach implies chunking and storing binary matrices
in secondary memory (i.e. HDF5/Zarr file) and, every repeated bitwise AND step
includes the process of reading binary matrices from a secondary memory to
main memory or/and writing updated binary matrices from the main memory
to a secondary memory.

According to [4], chunked storage layout presents a higher overhead than
contiguous storage layout when it comes to accessing and locating any element
in the data set. The read/write overhead further increases when the chunked data
set is compressed. Therefore, performance of the suggested approach of using a
HDF5 chunked storage layout for gradual pattern mining may be greatly slowed
down by the read/write overhead.

In the section that follows, we propose an approach that begins by chunking
data set tuple reads in order to produce chunked binary matrices (getting rid of
the need to store in HDF5/Zarr files).

4 Proposed Chunking Approach

In this section, we propose an approach for chunking binary matrices of gradual
items into multiple small matrices that can be loaded and held into main memory
piece-wisely in order to improve the memory usage efficiency. We modify the 3
main steps (described in Sect. 1) for mining gradual patterns as follows:

1. identify valid gradual patterns,
2. rank tuple pairs that fulfill the gradual items in the candidate gradual pattern

in chunks and represent them in multiple smaller binary matrices and,
3. apply a bitwise AND operator on the chunked binary matrices in a piecewise

manner.

4.1 Mapping Matrices into Chunked Layout

In the following, we use an example environment to expound on the steps of the
proposed chunking approach. For the purpose of painting a clearer picture of this
proposed approach, we use a sample data set (shown in Table 4a) to demonstrate
the modified steps.

Efficiently Mining Large Gradual Patterns 35

Example 3. Let gp = {(age, ↓), (games, ↑)} be a candidate gradual pattern.
Using a user-defined chunk size (in this case we set the chunk size to 2) as
shown in Table 4b.

Table 4. (a) Sample data set D2, (b) data set D2 with its tuples chunked by a size
of 2.

id age games goals

r1 30 100 2
r2 28 400 4
r3 26 200 5
r4 25 500 8
r5 25 200 9
r6 24 500 1

(a)

id age games goals

r1 30 100 2
r2 28 400 4
r3 26 200 5
r4 25 500 8
r5 25 200 9
r6 24 500 1

chunk 1

chunk 2

chunk 3

(b)

Firstly, we read and rank tuples fulfilling gradual items g1 = (age, ↓) and
g2 = (games, ↑) using the chunks in a piecewise manner as shown in Table 5 and
Table 6. Again in these two tables, we observe that the tuple rankings of gradual
items g1 = (age, ↓) and g2 = (games, ↑) are represented by a total of 18 (2 × 2)
binary matrices. In the classical approach, these rankings would be represented
by 2 (6×6) binary matrices (see Table 1 and Table 2 in Sect. 1). Both approaches
require the same size of memory to store all data in the binary matrices (which is
72 in total). However, the classical approach maps this data using a contiguous
layout while, our proposed approach maps this data using a chunked layout.

Table 5. Chunked binary matrices for ranked tuples in Table 4b that fulfill gradual
item g1 = (age, ↓).

� r1 r2

r1 0 1

r2 0 0

(a)

� r3 r4

r1 1 1

r2 1 1

(b)

� r5 r6

r1 1 1

r2 1 1

(c)

� r1 r2

r3 0 0

r4 0 0

(d)

� r3 r4

r3 0 1

r4 0 0

(e)

� r5 r6

r3 1 1

r4 0 1

(f)

� r1 r2

r5 0 0

r6 0 0

(g)

� r3 r4

r5 0 0

r6 0 0

(h)

� r5 r6

r5 0 1

r6 0 0

(i)

36 D. O. Owuor and A. Laurent

Table 6. Chunked binary matrices for ranked tuples in Table 4b that fulfill gradual
item g2 = (games, ↑).

� r1 r2

r1 0 1

r2 0 0

(a)

� r3 r4

r1 1 1

r2 0 1

(b)

� r5 r6

r1 1 1

r2 0 1

(c)

� r1 r2

r3 0 1

r4 0 0

(d)

� r3 r4

r3 0 1

r4 0 0

(e)

� r5 r6

r3 0 1

r4 0 0

(f)

� r1 r2

r5 0 1

r6 0 0

(g)

� r3 r4

r5 0 1

r6 0 0

(h)

� r5 r6

r5 0 1

r6 0 0

(i)

Secondly, we perform a bitwise AND operation on the corresponding chunked
matrices of gradual items g1 = (age, ↓) and g2 = (games, ↑) in order to determine
if by joining them, the gradual pattern gp12 = {(age, ↓), (games, ↑)} is frequent
(this is shown in Table 7). It should be underlined that gradual items (i.e. g1
and g2) should have binary matrices that match in number and size. Similarly,
each matrix of one gradual item must be mapped to the corresponding matrix
of the other gradual item during an AND operation. For instance, the matrix in
Table 5(a) can only be mapped to the matrix in Table 6(a) during a bitwise AND
operation to obtain the matrix in Table 7(a), and so on.

Table 7. Binary matrices for gp12 = {(age, ↓), (games, ↑)} after performing bitwise
AND operation on chunked matrices of g1 and g2.

� r1 r2

r1 0 1

r2 0 0

(a)

� r3 r4

r1 1 1

r2 0 1

(b)

� r5 r6

r1 1 1

r2 0 1

(c)

� r1 r2

r3 0 0

r4 0 0

(d)

� r3 r4

r3 0 1

r4 0 0

(e)

� r5 r6

r3 0 1

r4 0 0

(f)

� r1 r2

r5 0 0

r6 0 0

(g)

� r3 r4

r5 0 0

r6 0 0

(h)

� r5 r6

r5 0 1

r6 0 0

(i)

It is important to highlight that this chunked layout for binary matrices
allows a bitwise AND operation to be broken down into multiple repetitions
instead of a single operation as seen in the contiguous layout. This capabil-
ity can be exploited to allow at least 2 chunked matching matrices to be loaded
and held in main memory for every repeated AND operation. In this example, the
bitwise AND operation is repeated at least 9 times for each twin of corresponding
matrices.

Efficiently Mining Large Gradual Patterns 37

Again in Table 7, we observe that binary matrices at (d), (g) and (h) sum
up to 0; therefore, they are not significant in determining whether pattern gp12
is frequent. This phenomenon may be harnessed to increase the efficiency of
this approach by skipping less significant binary matrices during the repetitive
bitwise AND operation.

Lastly, let the user-defined support threshold be 0.5, then pattern gp12 =
{(age, ↓), (games, ↑)} is frequent since its support is 10/15 or 0.667 (see deriva-
tion for frequency support in Example 2 - Sect. 1).

4.2 GRAD-L Algorithm

In the following, we present GRAD-L (Gradual-Large) shown in Algorithm 1
which implements the approach described in Sect. 4.1.

Algorithm 1: GRAD-L (Gradual-Large)
Input : Data set D, minimum support σ, chunk size C
Output: gradual patterns GP

1 GP ← ∅;
2 GPc ← gen gp candidates();
3 for gp ∈ GPc do

; /* gp - gradual pattern */

4 Msum ← 0;
5 for gi ∈ gp do

; /* gi - gradual item */

6 Mbin ← chunk to matrix(gi, D,C);
7 if calc sum(Mbin) ≤ 0 then
8 Continue;
9 else

10 if gi is firstElement then
11 Mbin1 ← Mbin;
12 Break;

13 else
14 Mbin2 ← Mbin;
15 Mbin ← Mbin1 AND Mbin2;
16 Msum ← Msum+ calc sum(Mbin);

17 end for
18 sup ← calc support(Msum);
19 if sup ≥ σ then
20 GP .append(gp);

21 end for
22 return GP ;

In this algorithm, first we use existing techniques to identify gradual pat-
tern candidates (line 2). Second, for each candidate we use its gradual items
user-defined chunk-size to build chunked binary matrices and perform a bitwise

38 D. O. Owuor and A. Laurent

AND operation piece-wisely (lines 3 − 13). Third, we determine if the candidate
pattern is frequent by comparing its support to the user-defined threshold.

4.3 Computational Complexity

In the following, we use the big-O notation [1,13] to analyze the computational
complexity of GRAD-L algorithm. For every gradual pattern candidate that
is generated: GRAD-L algorithm constructs multiple chunked binary matrices,
performs a bitwise AND operation on the chunked binary matrices and calculates
the frequency support of that candidate. We formulate the problem to and show
the computational complexity of GRAD-L algorithm.

Problem Formulation. Given a dataset D with m attributes and n objects,
we can generate numerous gradual pattern candidates each having k gradual
items (where 2 ≥ k ≤ m). For each candidate, the classical GRAANK algo-
rithm (proposed in [7]) builds binary matrices for every gradual item as shown
in Table 2 (see Sect. 2). Next, a bitwise AND operation is performed on these
matrices and frequency support of the resulting matrix computed as shown in
Table 3 (see Sect. 2). Using the big-O notation, constructing the binary matrices
through GRAANK algorithm results in a complexity of O(k · n2). The bitwise
AND operation and support computation have small complexities in comparison
to that of constructing binary matrices.

For the case of GRAD-L algorithm, a user-defined chunk-size (q × q) (where
q < n) is used to construct y binary matrices for every gradual item. There-
fore, the complexity of constructing binary matrices for every gradual pattern
candidate is O(k ·∑y

1 q2). Similarly, the bitwise AND operation and support com-
putation have small and almost constant complexities.

Search Space Size. It is important to mention that for every generated can-
didate, the classical GRAANK algorithm and the proposed GRAD-L algorithm
constructs binary matrices. Therefore, the complexity of x generated gradual
pattern candidates is O(x · k · n2) for GRAANK algorithm and O(x · k · ∑y

1 q2)
for GRAD-L algorithm.

5 Experiments

In this section, we present an experimental study of the computational and mem-
ory performance of our proposed algorithm. We implement the algorithm for
GRAD-L approach described in Sect. 4 using Python Language. All the experi-
ments were conducted on a High Performance Computing (HPC) Meso@LR3

platform. We used one node comprising 14 cores of CPU and 128GB of RAM.

3 https://meso-lr.umontpellier.fr.

https://meso-lr.umontpellier.fr

Efficiently Mining Large Gradual Patterns 39

5.1 Source Code

The Python source code of the proposed algorithm is available at our GitHub
repository: https://github.com/owuordickson/large gps.git.

5.2 Data Set Description

Table 8. Experiment data sets.

Data set #tuples #attributes Domain

Cargo 2000 (C2K) 3,942 98 Transport

Power Consump. (UCI) 2,075,259 9 Electrical

The ‘Cargo 2000’ data set, obtained from UCI Machine Learning Reposit-
ory (UCI-MLR) [8], describes 98 tracking and tracing events that span 5 months
of transport logistics execution. The ‘Power Consumption’ data set, obtained
from UCI-MLR [3], describes the electric power consumption in one household
(located in Sceaux, France) in terms of active power, voltage and global intensity
with a one-minute sampling rate between 2006 and 2010.

5.3 Experiement Resultts

In the following, we present our experimental results which show the computa-
tional and memory usage of our proposed algorithm (GRAD-L), HDF5-based
algorithm (GRAD-H5) and classical algorithm (GRAD) for mining gradual pat-
terns. Using these 3 algorithms, we perform test runs on C2K and UCI data sets
with minimum support threshold (σ) set to 0.1.

We split the UCI data set into 5 data sets whose number of tuples
range from 10,000 (10K), 116,203 (116K), 523,104 (523K), 1,000,000 (1M) and
2,075,259 (2M). All the test runs were repeated several times and the results
are available at: https://github.com/owuordickson/meso-hpc-lr/tree/master/
results/large gps/.

Computational Performance Results. Table 9 shows a result summary for
computational run-time performance, number of extracted patterns and mem-
ory utilization of algorithms GRAD, GRAD-H5 and GRAD-L. It is important
to highlight that algorithms GRAD and GRAD-H5 yield ‘Memory Error’ when
executed on UCI data sets whose tuple size is greater than 100,000 and 500,000
respectively (represented as ‘NaN’ in Table 9). Figure 2 illustrates how run-time
and memory usage breaks for GRAD (due to ‘Memory Error’) grows exponen-
tially for GRAD-H5 (due to read/write overhead).

Computational run-time results show that GRAD-L (which implements our
proposed chunked layout for loading binary matrices into memory) is the fastest
of the 3 algorithms when executed in all the data sets. GRAD (which uses
contiguous layout to load and hold binary matrices into memory) is relatively

https://github.com/owuordickson/large_gps.git
https://github.com/owuordickson/meso-hpc-lr/tree/master/results/large_gps/
https://github.com/owuordickson/meso-hpc-lr/tree/master/results/large_gps/

40 D. O. Owuor and A. Laurent

Table 9. Summary of experiment results.

Run-time (sec) No. of patterns Memory (KiB)

Data set Size Algorithm St.d. Mean St.d. Mean St.d. Mean

C2K 3.9K GRAD 24.125 702.536 0.000 2.000 2.044 172.089

GRAD-H5 12.162 3786.30 0.000 2.000 4.313 497.450

GRAD-L 0.653 15.821 0.894 1.400 38.643 501.200

UCI 10K GRAD 1.448 51.682 0.408 1.833 0.564 109.617

GRAD-H5 98.794 47.162 0.000 2.000 118.713 172.383

GRAD-L 0.630 5.017 0.516 1.333 1.089 291.350

UCI 116K GRAD NaN NaN NaN NaN NaN NaN

GRAD-H5 143.543 33209.50 0.000 2.000 0.566 427.600

GRAD-L 63.772 524.787 0.000 2.000 15.312 276.367

UCI 523K GRAD NaN NaN NaN NaN NaN NaN

GRAD-H5 NaN NaN NaN NaN NaN NaN

GRAD-L 1716.374 10947.60 1.000 1.000 22.228 287.800

UCI 1M GRAD NaN NaN NaN NaN NaN NaN

GRAD-H5 NaN NaN NaN NaN NaN NaN

GRAD-L 367.723 39460.3 0.577 1.667 1.386 350.400

UCI 2M GRAD NaN NaN NaN NaN NaN NaN

GRAD-H5 NaN NaN NaN NaN NaN NaN

GRAD-L 22113.287 162616.7 0.577 1.333 5.605 367.333

Fig. 2. Plot of run-time and memory usage against size of UCI data set.

fast (compared to GRAD-H5) when executed on data set C2K and UCI 10K.
However, it yields ‘Memory Error’ for UCI data sets greater than 100K since
sizes of binary matrices in main memory increase exponentially within a very
short time and this exceeds the available memory. GRAD-H5 (which implements
HDF5-based approach for dealing with huge binary matrices) has the slowest
run-times of all the 3 algorithms. This may be attributed to read-write overhead
that occurs in all bitwise AND operations.

Efficiently Mining Large Gradual Patterns 41

Memory usage results show that GRAD has better memory utilization on
data sets C2K and UCI 10K. However, GRAD-L has the best overall memory
utilization since it does not yield ‘Memory Error’ on any of the 6 data sets.
Number of patterns results show that almost all 3 algorithms extract similar
number of gradual patterns.

Consistent Gradual Patterns. This experiment reveals the consistent grad-
ual patterns extracted by the 3 algorithms from data sets C2K and UCI when
minimum support threshold (σ) is set to 0.1. The results are shown in Table 10.

Table 10. Consistent gradual patterns.

Data set Gradual patterns

C2K (3.9K) {(i2 rcs e, ↓), (o legid, ↑), (o dlv e, ↓)}, sup = 0.23

UCI (10K) {(Sub metering 3, ↑), (Global intensity, ↓)}, sup = 0.172

UCI (116K) {(V oltage, ↓), (Sub metering 1, ↑)}, sup = 0.109

UCI (523K) {(Global intensity, ↓), (Sub metering 2, ↑)}, sup = 0.16

UCI (1M) {(Global reactive power, ↓), (Global intensity, ↓)}, sup = 0.558

UCI (2M) {(Sub metering 3, ↑), (Sub metering 2, ↓)}, sup = 0.159

It is important to mention that for huge data sets, extracted gradual patterns
are of relatively low quality. For this reason, we chose a low minimum support
threshold (σ = 0.1) in order to extract gradual patterns from all the data sets.

6 Conclusion and Future Works

In this paper, we explore two different approaches to solve the problem of mining
gradual patterns from huge data sets (see Sect. 3 and Sect. 4). From the experi-
ment results (presented in Sect. 5), we conclude that GRAD-L algorithm is the
best performing algorithm (relative to GRAD and GRAD-H5 algorithms) both
in terms of computational run-time and memory utilization. This proves that our
proposed chunking approach (described in Sect. 4) utilizes main memory more
efficiently than the classical approach (proposed in [7]) HDF5-based chunking
approach (discussed in Sect. 3).

Future work may involve extensive experimentation on the GRAD-L app-
roach with the aim of improving its memory usage efficiency even further. In
addition to this, other future work may entail integrating the GRAD-L approach
into data lake environments that hold numerous huge data sets. A good example
of such an environment is OREME4 which is a scientific research observatory
that holds a huge collection of large scientific data sets.

4 https://data.oreme.org/.

https://data.oreme.org/

42 D. O. Owuor and A. Laurent

Acknowledgements. This work has been realized with the support of the
High Performance Computing Platform: MESO@LR https://meso-lr.umontpellier.
fr, financed by the Occitanie / Pyrénées-Méditerranée Region, Montpellier Mediter-
ranean Metropole and Montpellier University.

References

1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press (2009)

2. Di-Jorio, Lisa., Laurent, Anne, Teisseire, Maguelonne: Mining frequent gradual
Itemsets from large databases. In: Adams, Niall M., Robardet, Céline, Siebes, Arno,
Boulicaut, Jean-François (eds.) IDA 2009. LNCS, vol. 5772, pp. 297–308. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03915-7 26

3. Dua, D., Graff, C.: UCI machine learning repository (2019). http://archive.ics.uci.
edu/ml

4. Folk, M., Heber, G., Koziol, Q., Pourmal, E., Robinson, D.: An overview of the
HDF5 technology suite and its applications. In: Proceedings of the EDBT/ICDT
2011 Workshop on Array Databases, pp. 36–47. AD 2011. Association for Com-
puting Machinery, New York (2011). https://doi.org/10.1145/1966895.1966900

5. Howison, M., Koziol, Q., Knaak, D., Mainzer, J., Shalf, J.: Tuning HDF5 for lustre
file systems. In: Workshop on Interfaces and Abstractions for Scientific Data Stor-
age (IASDS10). Office of Scientific and Technical Information (U.S. Department
of Energy), USA (2010). https://www.osti.gov/biblio/1050648

6. Krijnen, T., Beetz, J.: An efficient binary storage format for IFC building models
using HDF5 hierarchical data format. Autom. Construc. 113, 103–134 (2020).
https://doi.org/10.1016/j.autcon.2020.103134

7. Laurent, Anne., Lesot, Marie-Jeanne, Rifqi, Maria: GRAANK: exploiting rank
correlations for extracting gradual Itemsets. In: Andreasen, Troels, Yager, Ronald
R., Bulskov, Henrik, Christiansen, Henning, Larsen, Henrik Legind (eds.) FQAS
2009. LNCS (LNAI), vol. 5822, pp. 382–393. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04957-6 33

8. Metzger, A., et al.: Comparing and combining predictive business process moni-
toring techniques. IEEE Trans. Syst. Man Cybern. Syst. 45(2), 276–290 (2015)

9. Negrevergne, Benjamin., Termier, Alexandre., Rousset, Marie-Christine, Méhaut,
Jean-François: ParaMiner: a generic pattern mining algorithm for multi-core
architectures. Data Min. Knowl. Disc. 28(3), 593–633 (2013). https://doi.org/10.
1007/s10618-013-0313-2

10. Owuor, D., Laurent, A., Orero, J.: Mining fuzzy-temporal gradual patterns. In:
2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1–6.
IEEE, New York, June 2019. https://doi.org/10.1109/FUZZ-IEEE.2019.8858883

11. Owuor, D., Laurent, A., Orero, J., Lobry, O.: Gradual pattern mining tool on
cloud. In: Extraction et Gestion des Connaissances: Actes EGC’2021 (2021)

12. Owuor, Dickson Odhiambo., Laurent, Anne, Orero, Joseph Onderi: Exploiting IoT
data crossings for gradual pattern mining through parallel processing. In: Bella-
treche, L., et al. (eds.) TPDL/ADBIS/EDA -2020. CCIS, vol. 1260, pp. 110–121.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55814-7 9

13. Vaz, R., Shah, V., Sawhney, A., Deolekar, R.: Automated Big-O analysis of algo-
rithms. In: 2017 International Conference on Nascent Technologies in Engineering
(ICNTE), pp. 1–6, January 2017. https://doi.org/10.1109/ICNTE.2017.7947882

14. Xu, H., Wei, W., Dennis, J., Paul, K.: Using cloud-friendly data format in earth
system models. In: AGU Fall Meeting Abstracts, pp. IN13C-0728, December 2019

https://meso-lr.umontpellier.fr
https://meso-lr.umontpellier.fr
https://doi.org/10.1007/978-3-642-03915-7_26
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1145/1966895.1966900
https://www.osti.gov/biblio/1050648
https://doi.org/10.1016/j.autcon.2020.103134
https://doi.org/10.1007/978-3-642-04957-6_33
https://doi.org/10.1007/978-3-642-04957-6_33
https://doi.org/10.1007/s10618-013-0313-2
https://doi.org/10.1007/s10618-013-0313-2
https://doi.org/10.1109/FUZZ-IEEE.2019.8858883
https://doi.org/10.1007/978-3-030-55814-7_9
https://doi.org/10.1109/ICNTE.2017.7947882

A General Method for Event Detection
on Social Media

Yihong Zhang(B), Masumi Shirakawa, and Takahiro Hara

Multimedia Data Engineering Lab, Graduate School of Information Science
and Technology, Osaka University, Osaka, Japan

shirakawa@hapicom.jp, hara@ist.osaka-u.ac.jp

Abstract. Event detection on social media has attracted a number of
researches, given the recent availability of large volumes of social media
discussions. Previous works on social media event detection either assume
a specific type of event, or assume certain behavior of observed variables.
In this paper, we propose a general method for event detection on social
media that makes few assumptions. The main assumption we make is
that when an event occurs, affected semantic aspects will behave differ-
ently from its usual behavior. We generalize the representation of time
units based on word embeddings of social media text, and propose an
algorithm to detect events in time series in a general sense. In the exper-
imental evaluation, we use a novel setting to test if our method and
baseline methods can exhaustively catch all real-world news in the test
period. The evaluation results show that when the event is quite unusual
with regard to the base social media discussion, it can be captured more
effectively with our method. Our method can be easily implemented and
can be treated as a starting point for more specific applications.

1 Introduction

Event detection on social media in recent years has attracted a large number
of researches. Given large volumes of social media data and the rich informa-
tion contained in them, event detection on social media is both beneficial and
challenging. With social media text as the base data, important previous works
have proposed methods for detecting earthquakes [17], emerging topics for orga-
nizations [5], and influenza trends [8]. In these works and many others, how-
ever, it is required to have some prior knowledge or assumptions of the potential
event. These assumptions include some known keywords or entity names that are
associated with the event [4,5,13,14,17,22], and some manually created labels
for events as the supervised training dataset [8,11]. Furthermore, the defini-
tion of event also differs in these works. Some consider an event as a temporal-
spatial concentration of similar texts [7,8,11,22,26], while others consider it as
an unusual burstiness in term frequency [5,15,24].

In this paper, in contrast, we attempt to provide a general solution to event
detection in social media with minimum prior assumption of the event. First of
all, we follow a general definition of event that is not restricted to social media
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 43–56, 2021.
https://doi.org/10.1007/978-3-030-82472-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-82472-3_5

44 Y. Zhang et al.

data. This definition was proposed by Jaegwon Kim, who considered that an
event consists of three parts, a finite set of objects x, a property P , and a time
interval t [10]. To better illustrate, let us consider a scenario of an amusement
park. Normally, customers wander around the park, visiting different attractions
in almost a random manner. When a show starts to perform in the central stage,
those who are interested in the show will be moving towards the stage. In this
scenario, the object x are the customers who interested in the show, the property
P is the direction of the stage, and the time interval t is the duration of the show.
Note that just as not all customers in the park are interested in the show, x ∈ X
in an event is a subset of all possible objects.

Putting it on the social media case, when an event creates an impact on
people’s lives, it is likely that it will be reflected on online discussions. Certain
semantic aspects of posted text, which can be considered as the object set x,
would suddenly have unusual trends together, whose deviation can be considered
as the property P , for the duration of the event t. This is realistic, if we recall that
when a critical political event happened, some aspects of social media discussion,
such as the terms and sentiments involved in the event, would have a higher-
than-usual visibility. The problem then is how to capture x, P and t in social
media text through a computational method.

The principle of our design is to make as few assumptions about the event as
possible. Here are two assumptions we make in our method. First, there is a finite
set of components in the system, and a subset of components will be affected
by the event. Second, for the duration of the event, affected components behave
differently from their usual, normal behavior. We consider these are minimum
assumptions that are within restrictions in Kim’s definition of an event. Given
these assumptions, our method takes two steps to achieve event detection. First,
we convert unstructured social media text data into distributed representation,
also called word embeddings, where each dimension represents a semantic aspect,
and is considered as a component in the system. This can be done with existing
distributed representation learning techniques such as word2vec [12]. Note that
in this paper we consider only social media text. However, the images in social
media can be studied in a similar way as they be turned into multi-dimension
vector representations using models such as Inception [20]. Second, we design
and use a multi-dimension anomaly detection algorithm to capture the unusual
behavior, with a customizable normality test. The algorithm detects abnormal
intervals in single time series and combines them to form affected components
of an event by finding the intersections.

Our method is general in two ways. First, our method generalizes social
media text into semantic aspects. With this generalization, we now look at the
collective behavior of social media posts instead of tracking individual term fre-
quency. This is useful in many scenarios. For example, during New Year holiday
in Japan, many aspects of real-world phenomenon become visible, including New
Year’s meal (), a specific TV program (), New Year’s greeting (),
and the general happy mood. Individually, these terms may not have a signifi-
cant frequency change, but collectively, they make the New Year event unusual.

A General Method for Event Detection on Social Media 45

Second, our method generalizes event detection as anomaly detection in time
series. In contrast to previous works, we deal with durative events instead of
punctual events. With a customizable normality test function, we can detect
events with arbitrary lengths. Such generality allows our method to be applicable
to a wider range of tasks than previous works. Since our method is straightfor-
ward to implement, future extension can be easily made for the need of specific
tasks.

We organize the remainder of this paper as the following. In Sect. 2, we will
discuss related works on event detection in social media. In Sect. 3 and 4, we will
present our method to generalize social media text to temporal word embeddings,
and to detect unusual behavior in them. In Sect. 5, we will present experimental
evaluation, with a novel evaluation task of recommending newsworthy words.
Finally Sect. 6 will conclude this paper.

2 Related Work

Previous surveys on social media event detection works have commonly divided
works according to whether detected events are specific or non-specific [1,16].
Here we would like to provide a new aspect of events in existing works, that is
whether events are considered as one-time events or events lasting for a period
of multiple time units. In other words punctual and durative events. Essentially,
punctual events are supposed to be the point of drastic change in the observed
variables [9]. While this limits the phenomenon they can represent, events with
this definition are indeed easier to capture, and many works followed this app-
roach. For example, the Twitter-based earthquake detection system proposed by
Sasaki et al. [18] raises an alarm at the moment when number of tweets classified
as earthquake reports reaches a certain threshold. Similarly, the event detection
system proposed by Zhang et al. raises an alarm at the moment when the num-
ber of incident reports within a geographical region reaches a threshold [25].
Weng and Lee proposed an event detection method based on wavelet transfor-
mation and word clustering [24]. An event flag is set for a time slot if frequency
correlation of co-occurring words is larger than a threshold. The crime and dis-
aster event detection system proposed by Li et al. aims to extract the time an
event happened, by location estimation and geographical clustering [11]. The
location-based event detection method by Unankard et al. also uses a threshold
to decide if an event has happened, by comparing the frequency in the current
and previous time unit [22]. The disaster monitor system by Rossi et al. decides
if an event happened by determining if word frequency in the current time slot
is an outlier [15].

While not uncommon in time series pattern mining [3], comparing to punc-
tual events, social media event detection methods that follow a durative event
definition are rather scarce. Relevant works include the emerging topic detection
method proposed by Chen et al., which identifies two time points, the moment
the topic starts and the moment the topic becomes hot [5]. The purpose of the
method is to identify emerging topic before the topic becomes hot, and detected

46 Y. Zhang et al.

events thus last for periods of varied lengths. One requirement of the method,
however, is that the tweets collected should be related to certain organizations,
which makes the method less applicable. The multiscale event detection method
proposed by Dong et al. [7] aims at discovering events with spatio-temporally
concentrated tweets. Without a preset time length for the event, the method
clusters tweets that have similar spatio-temporal context, and thus indirectly
detects events that last for a period. However, the requirement of spatial infor-
mation also limits the applicability of the method. In this paper, on the other
hand, we aim at providing a general method for detecting durative events with
less restrictions.

3 Generalized Representation of Temporal Social Media
Text

We first deal with problem of representing temporal social media text in a general
way. A simple way to represent social media text is through bag-of-words (BOW).
BOW representation essentially considers that words in text are independent
tokens, and each document is a collection of them. There are two problems with
BOW representation. First, in a large text collection, the vocabulary is also large,
usually includes thousands of words, and tracking temporal activity of each word
is computationally expensive. Second, considering words as independent tokens
ignores semantic information about words, which may be important for event
detection. For example, Covid-19 and Corona are both names of the virus in
current pandemic, and should be considered together in one event, but BOW
representation would consider them separately.

To mitigate these problems, we propose to use word embeddings to represent
temporal social media texts. First proposed by Mikolov et al., word embeddings
are distributed representation of words learned from text contexts [12]. The
learning technique extracts the surrounding words of a certain word and encode
them in a neural network encoder, so that a vector, called an embedding, can
be associated with the word, and each element in the vector represents a certain
semantic aspect of the word. While the meaning of the semantic aspect of the
embedding is difficult to be understood by human reader, it has been shown
that words with similar embeddings would have a similar semantic meaning. For
example, apple would have a more similar embedding to orange than to bird.

Using word embeddings thus mitigates the problems of BOW representation.
First, it reduces dimensionality. Typical word embeddings would have between 50
and 300 dimensions. Second, it allows consideration of semantics, so that words
of similar meanings can be considered together. By considering semantics, we
actually generalize text into a more abstract level. For example, when detecting
the pandemic event, we no longer deal with individual words such as Covid-19
and Corona, but the virus or disease these words refer to. Given it is effectiveness,
previous works have already use word embedding to represent not only text
documents, but also users and spatial units such as locations [19,23]. In this

A General Method for Event Detection on Social Media 47

work, we utilize word embeddings to generate vector representations of time
units.

To generate vector representation for a time unit, we take the following steps.

1. assigning collected text messages to time units.
2. tokenizing text messages so that words are also assigned to time units
3. obtaining word embeddings for assigned words
4. the vector representation for a time unit is taken as the average value of all

embeddings of the words assigned to the time unit

We can use existing natural language processing libraries to segment and turn
tweets into words. To obtain word embeddings, we can use existing implemen-
tations of word2vec and a general purpose training corpus such as Wikipedia1.
Word embedding learned under such setting would represent words with their
general meaning in daily usages. The final result of this process is a vector rep-
resenting the totality of social media discussions for each time unit.

4 Generalized Multi-dimension Event Detection in Time
Series

At this point we have a vector for each time unit representing social media
discussions. The next task is to detect events from such representations. In a
way this representation can be seen as multivariate time series data, with each
dimension as one observed variable. While there are previous works that have
proposed event detection for time series data, most of them are dealing with
punctual event [6,9], or require the events to be repeating and predictable [3].
In this work, we accept the hypothesis that an event is something that cannot
be predicted, thus the behavior of affected components cannot be pre-defined
[21]. We aim to make minimum assumptions about the event, and the main
assumption we make is that when affected by an event, the component will
behave differently from its usual behavior.

Our method detects multi-dimension event from multivariate time series in
two steps. First it detects unusual intervals of observations in a single dimension
(Algorithm 1). Then given a list of abnormal intervals in each dimension, it finds
basically the intersections of abnormal intervals, and outputs them as multi-
dimension events (Algorithm 2).

Shown in Algorithm 1, we design an algorithm to find the largest interval
with significant alternation to normality. It takes a univariate time series as
input, as well as two parameters kmin and kmax, which are the minimum and
maximum number of time units for the detected intervals. It also requires a
customizable function fn for the normality test, and a corresponding threshold
δ. The algorithm starts from the beginning of the time series (line 2, 3). At each
time point i, it tests all intervals that ends between i+kmin and i+kmax (line 5).

1 An example online resource that provides an implementation under this setting:
https://github.com/philipperemy/japanese-words-to-vectors.

https://github.com/philipperemy/japanese-words-to-vectors

48 Y. Zhang et al.

Algorithm 1. Find largest intervals with significant alternation to normality
INPUT: TS, kmin, kmax, fn, δ
OUTPUT: a list of intervals Is
1: Is ← {}
2: i ← 1
3: while i < (|TS| − kmin) do
4: largest interval ← {}
5: for j in (i + kmin) to min(|TS|, i + kmax) do
6: if fn(TS \ TS(i, j)) − fn(TS) > δ then
7: largest interval ← (i, j)
8: end if
9: end for

10: if largest interval is empty then
11: i ← i + 1
12: else
13: Is ← Is ∪ largest interval
14: i ← (b in largest interval) + 1
15: end if
16: end while

With each interval, it performs normality test with the specified function fn, and
if the normality difference between the time series with and without the interval
is larger than δ, then the interval is considered abnormal (line 6). The largest
interval considered as abnormal will be taken as the abnormal interval starts at
time i (line 7). If an abnormal interval is found, the algorithm will move to the
end of the interval (line 13, 14), and continue until it reaches the end of the time
series. Finally the algorithm returns all abnormal intervals found as Is.

It is worth noting that Algorithm 1 does not necessarily find intervals that
deviate most from normality. For example, given a highly abnormal interval I, a
few time units surrounding I may be normal by themselves, but when considered
together with I, this larger interval may still be abnormal above the threshold.
And our algorithm will pick the larger interval instead of the more deviating
interval. Since our goal is to detect multi-dimension events, and the intervals are
to be taken as the input of next step, it is rather desirable to have the largest
possible abnormal intervals, instead of smaller, more deviating intervals.

The normality test function fn can be defined by the user, as long as it
outputs a score for data normality or randomness. There are many existing nor-
mality test functions available to use, including Box test and Shapiro Wilk test
[2]. For the completion of the method, we use the rank version of von Neumann’s
ratio test [2] in our experimental analysis 2. After some trying a few test func-
tions, we found that this randomness test tests to capture unusual intervals in
data more consistently.

2 An implementation of this test is available as an R package: https://cran.r-project.
org/web/packages/randtests/randtests.pdf.

https://cran.r-project.org/web/packages/randtests/randtests.pdf
https://cran.r-project.org/web/packages/randtests/randtests.pdf

A General Method for Event Detection on Social Media 49

Algorithm 2. Find multi-dimension events
INPUT: Is, kmin, cmin

OUTPUT: E
1: E ← {}
2: Ehalf ← {}
3: for i in 1 to n − kmin do
4: Dcur ← {dj |i ∈ Isj}
5: Dold ← {}
6: for each ehalf ∈ Ehalf do
7: Dcontinuing ← d(ehalf) ∩ Dcur

8: if Dcontinuing = {} then
9: next

10: end if
11: remove ehalf from Ehalf

12: if |Dcontinuing| > cmin then
13: econtinuing ← (start(ehalf), i, Dcontinuing)
14: Ehalf ← Ehalf ∪ econtinuing

15: Dold ← Dold ∪ Dcontinuing

16: else
17: Dcontinuing ← {}
18: end if
19: efinished ← (start(ehalf), i, d(ehalf) \ Dcontinuing)
20: if l(efinished) > kmin & |d(efinished)| > cmin then
21: E ← E ∪ efinished

22: Dold ← Dold ∪ (d(efinished) ∩ Dcur)
23: end if
24: end for
25: Dnew ← Dcur \ Dold

26: if |Dnew| > cmin then
27: Ehalf ← Ehalf ∪ (i, i, Dnew)
28: end if
29: end for

After processing the data with Algorithm 1, we now have a list of abnormal
intervals Is for each of the word embedding dimension. The goal of next algo-
rithm, shown as Algorithm 2, is to find the intersection of these intervals. It is an
incremental algorithm that needs to go through the dataset only once. It takes
the set of Is as inputs, as well as two parameters, kmin as the minimum length
of an event period, and cmin as the minimum number of affected dimensions in
an event.

At each time point i, the first thing to do is find the dimensions that behave
unusually at i, based on the intervals detected (line 4). From there, these dimen-
sions are either considered as a part of a continuing event, or put to form a new
event. We always keep a list of events that are halfway through Ehalf , and at
each time point, we check through all halfway events for continuity (line 2, 6). If
affected dimensions at time i match halfway events, they are assigned to these
events, and if enough dimensions are assigned (> cmin), the halfway event is

50 Y. Zhang et al.

considered as continuing (line 7 to 18). If a halfway event could not be matched
with enough affected dimensions, the event is considered as finished (line 19 to
23). Those dimensions not matched with any halfway event are grouped to form
a new halfway event, if there are enough of them (line 25 to 28). The final out-
put is a list of events E, where each e ∈ E has e = {x, t}, with x as affected
dimensions, and t as the event period.

5 Experimental Evaluation

We use real-world social media data to verify the effectiveness of our event detec-
tion method. We are unable to establish a way to directly evaluate the detected
events, which consist of duration and affected dimensions in word embeddings,
and are not human-readable. Therefore, we attempt to evaluate them indirectly.
We extend our method to perform a task called recommending newsworthy
words, which has been the evaluation task in other event detection works [7,22].
We will present the details of this task and the results in this section. It is
worth noting here, though, that our event detection can potentially do more
than recommending newsworthy words.

5.1 Evaluation Task

Our evaluation task is as follows. Given a set of time units T = {t1, ..., tc}, for
each time unit, we apply the event detection method on a social media discussion
dataset, and generate a ranked list of event words P from detected events. Also
for each time unit, we generate from news sources a ranked list of news words
G. The evaluation is done by comparing P and G. If |G ∩ P | is large, then the
event detection method is considered as capable of capturing newsworthy words,
which also shows that the news has an impact on the social media discussion.

Traditional evaluation of event detection is centered on detected events [22].
It verifies whether detected events is corresponding to real-world events, and does
not do anything when a real-world event has not been detected (false negative).
We on the other hand, attempt an exhaustive evaluation that concerns all real-
world events happened. Specifically, we consider all news headlines from news
source for each time unit, and evaluate to what degree corresponding information
can be detected by the event detection method.

5.2 Social Media Discussion Dataset

Since it is not feasible to monitor all messages in a social media platform such
as Twitter, we select a subset of all messages on Twitter as our social media dis-
cussion dataset. First we obtain a list of Japanese politician Twitter accounts3.
Then we monitor all tweets mentioning these accounts using Twitter Stream

3 Since politician are public, such a list can be found in many online sources, for
example: https://meyou.jp/group/category/politician/.

https://meyou.jp/group/category/politician/

A General Method for Event Detection on Social Media 51

API4. For period of six months between January and July, 2020, we collected
about 6.9 million tweets, after removing retweets. We take this as the discussion
dataset. We understand this dataset does not represent the overall discussion
happening on Twitter, but rather has a focused theme that is Japanese politics.
But such discussions and the community producing them may still be affected
by general news, and it will be interesting to see what unusual events can be
captured from these discussions and how they correspond to news sources. It is
expected that if we can detect the events in this discussion dataset, we can also
detect events in discussion of different themes in the same way.

We use the natural language processing package kuromoji5 to process the
Japanese text in social media discussion dataset. The package can effectively
perform segmentation and part-of-speech (POS) tagging for Japanese text. After
POS tagging, we select only nouns to represent the information in the text. We
also filter out some less frequent words, and consider only 8,267 words that have
appeared at least 500 times in the dataset.

5.3 Ground Truth Generation

We generate ground truth news words as follows. First we collect messages posted
by a number of Japanese news Twitter accounts6. Among 916 news account
considered, some are general news accounts reporting local and international
news, some are specific news accounts reporting news for example in sports or
entertainment. Messages sent from these accounts are usually news headlines. To
make our target clearer, we select from collected messages three specific topics,
namely, politics, international, and Corona. The selection is done by filtering
collected messages with these three topic words as hashtags. During a one-month
period between June and July, 2020, we collected 814 political news headlines,
503 international news headlines, and 602 Corona news headlines. These news
headlines are assigned to time units of one hour length.

We turn these news headlines into nouns by the same kuromoji software
described in the previous section, and count the frequencies. These words are
then ranked using tfidf , which is calculated as:

tfidf(w) = tf(w) · log
|D|

|d ∈ D : w ∈ d|
where tf(w) is the frequency of word w, and D is a collection of documents,
which in our case is messages assigned to |D| time units. Finally, for each time
unit, we pick top-20 words ranked by tfidf as the ground truth news words.

4 https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data—.
5 https://github.com/atilika/kuromoji.
6 A list of popular Japanese news Twitter accounts can be found on the same source:

https://meyou.jp/ranking/follower media.

https://developer.twitter.com/en/docs/tutorials/consuming-streaming-data
https://github.com/atilika/kuromoji
https://meyou.jp/ranking/follower_media

52 Y. Zhang et al.

5.4 Recommending Newsworthy Words from Detected Events

Since our method does not generate ranked words directly, we need a method
to convert the output of our method into words. The output of our method is
a list of events E = {e1, ..., em}, where for each event we have a set of affected
dimensions x and duration t.

To convert this result back to words, we first calculate the deviation of a
affected dimension in the event duration as the difference between mean value of
the dimension in the event duration, and the mean value outside the duration:

deve(x) = mean freq(x, t) − mean freq(x,¬t)

which can be considered as a part of event property P . Then for each word w
with embedding embeddingw, an event score is calculated as the product of the
embedding value and the deviation in the affected dimensions:

event scoree(w) =
∑

x∈x

embeddingw(x) × deve(x)

In this way, words with the same deviation tendency as the affected dimensions
will have a higher score. Finally, to calculate a word score in a time unit, we
have

time score(w) =
m∑

e=1

event scoree(w)

which gives higher scores to words with higher event scores in multiple events.
The time score is thus used to rank the words in each time unit.

5.5 Baseline Methods

We compare our method with two baseline methods in this evaluation task. The
first is a tfidf -based method commonly used in previous works. In the same way
we generate ground truth, we apply the method to the social media discussion
dataset and obtain a tfidf score for each word in each time unit. Essentially,
with this method, we make a comparison of tfidf -ranked words between base
source, which are social media discussion tweets, and the reference source, which
are news tweets.

The second baseline method is based on the Shannon’s Wavelet Entropy
(SWE). This method is proposed in a Twitter event detection work by Weng
and Lee [24], and can be adopted for news word recommendation. From the tfidf
time series of each word in the social media discussion dataset, the method first
performs a wavelet transformation to learn a wavelet function ψ and a coefficient
C. The coefficient C can be interpreted as the local residual errors. Then an
energy value E is calculated as

E =
∑

k

|C(k)|2

A General Method for Event Detection on Social Media 53

where k indicates k-th coefficient. Then the Shannon’s Wavelet Entropy is cal-
culated as

SWE = −
∑

j

ρj · log ρj

where ρj = Ej/Etotal, j indicates the j-th time unit in the time slide. SWE
measures how unpredictable of the time series in a time slide t, and it will be
a higher value when residual errors are more even in the time slide. Once the
SWE is obtained, a score can be assigned to a word for ranking.

s(w) =

{
SWEt−SWEt−1

SWEt−1
, if SWEt > SWEt−1

0, otherwise

which means if SWE of a word is increasing, it will get a higher score. In our
experiments, we use the R package wavethresh7 to perform the wavelet transfor-
mation and obtain coefficient C.

5.6 Evaluation Results

Evaluation results measured as Recall@K are shown in Fig. 1, where K is the
number of recommended words. We compare our method (event) with theoretic
random, tfidf, and SWE methods. A number of Ks are taken between 20 and
200. The theoretical random Recall@K is calculated as K/|W |, where W is the
set of candidate words. The higher the result means the more words in ground
truth are recommended by the method.

At the first glance, we can see that generally, tfidf performs better for the
political news, while event method performs better for the Corona news. SWE
method performs better for the international news, although only slightly bet-
ter than the event method. All three methods achieve better results than the
theoretical random method.

We now attempt to explain the results. First thing to note is that recom-
mended words from a method is the same for all three news categories. Since
words from news categories are quite different, with limited space, a method
better at recommending words for one news category will be worse for other cat-
egories. And we can see the results are showing different strength and weakness
from different methods. The reason comes from different interpretation of what
is news by different methods. For the tfidf method, news is considered as unusu-
ally rises of word usages, and thus words closer to the theme of the social media
discussion will be more likely to be recommended. For the event method, news
is considered as something quite different from the usual state of the discussion,
and thus words different from the social media discussion will be more likely
to be recommended. And indeed we understand that, since the social media
discussion is generally related to politics, political news is more similar to the
discussion, while Corona news is more different from the discussion. That is why
we see tfidf performing better for political news, and event method performing
better for Corona news.
7 https://cran.r-project.org/web/packages/wavethresh/wavethresh.pdf.

https://cran.r-project.org/web/packages/wavethresh/wavethresh.pdf

54 Y. Zhang et al.

Fig. 1. Recall@K results for three news categories

6 Conclusion

In this paper we propose a general method for event detection on social media.
Two main steps of our method are generalizing social media text into word
embeddings, and detecting multi-dimension event from time series. The detected
events represent something unusual and affecting semantic aspects of social
media discussions, over a finite period. Comparing to previous works on social
media event detection, our method makes very few assumptions. We only assume
that the event will be affecting a finite number of dimensions and, when affected,
these dimensions behave differently from their usual, normal behavior. We eval-
uate detected events from social media discussions against three news categories,
exhaustively collected over a testing period, and find that when the news is quite
different from the base social media discussion, it can be better captured based
on the detected events.

Despite some positive results from indirect evaluation, we consider that our
method has some drawbacks. For example, our method demands test of normal-
ity, and requires a large portion of base data, which may not be always avail-
able. Furthermore, if it is a long period event, event-related semantics would
become the norm and thus there would be problem detecting the event with our

A General Method for Event Detection on Social Media 55

method. Nevertheless, our method has its merits. It can be easily implemented
and applied to different, more specific datasets. One can, for example, pre-select
a discussion dataset about finance or entertainment, and apply our method to
detect events of certain type. The detected events can furthermore be used in
various analysis, for example, for detecting associations between product sales
and social media activities. Currently, our method detects events retrospectively.
A future extension to our method would be making an incremental algorithm
that can detect events in data streams.

Acknowledgement. This research is partially supported by JST CREST Grant Num-
ber JPMJCR21F2.

References

1. Atefeh, F., Khreich, W.: A survey of techniques for event detection in twitter.
Comput. Intell. 31(1), 132–164 (2015)

2. Bartels, R.: The rank version of von Neumann’s ratio test for randomness. J. Am.
Stat. Assoc. 77(377), 40–46 (1982)

3. Batal, I., Fradkin, D., Harrison, J., Moerchen, F., Hauskrecht, M.: Mining recent
temporal patterns for event detection in multivariate time series data. In: Proceed-
ings of the 18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 280–288 (2012)

4. Cataldi, M., Di Caro, L., Schifanella, C.: Emerging topic detection on twitter based
on temporal and social terms evaluation. In: Proceedings of the Tenth International
Workshop on Multimedia Data Mining, pp. 4:1–4:10 (2010)

5. Chen, Y., Amiri, H., Li, Z., Chua, T.-S.: Emerging topic detection for organizations
from microblogs. In: Proceedings of the 36th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 43–52. ACM (2013)

6. Cheng, H., Tan, P.-N., Potter, C., Klooster, S.: Detection and characterization of
anomalies in multivariate time series. In: Proceedings of the 2009 SIAM Interna-
tional Conference on Data Mining, pp. 413–424. SIAM (2009)

7. Dong, X., Mavroeidis, D., Calabrese, F., Frossard, P.: Multiscale event detection
in social media. Data Min. Knowl. Disc. 29(5), 1374–1405 (2015)

8. Gao, Y., Wang, S., Padmanabhan, A., Yin, J., Cao, G.: Mapping spatiotemporal
patterns of events using social media: a case study of influenza trends. Int. J.
Geographical Inf. Sci. 32(3), 425–449 (2018)

9. Guralnik, V., Srivastava, J.: Event detection from time series data. In: Proceedings
of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 33–42 (1999)

10. Kim, J.: Events as property exemplifications. In: Brand, M., Walton, D. (eds.)
Action Theory, pp. 159–177. Springer, Dordrecht (1976). https://doi.org/10.1007/
978-94-010-9074-2 9

11. Li, R., Lei, K.H., Khadiwala, R., Chang, K.-C.: TEDAS: a Twitter-based event
detection and analysis system. In: Proceedings of 28th International Conference
on Data Engineering, pp. 1273–1276 (2012)

12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

https://doi.org/10.1007/978-94-010-9074-2_9
https://doi.org/10.1007/978-94-010-9074-2_9

56 Y. Zhang et al.

13. Olteanu, A., Castillo, C., Diaz, F., Vieweg, S.: CrisisLex: a lexicon for collecting
and filtering microblogged communications in crises. In: Proceedings of the 8th
International AAAI Conference on Weblogs and Social Media, pp. 376–385 (2014)

14. Popescu, A.-M., Pennacchiotti, M.: Detecting controversial events from Twitter.
In: Proceedings of the 19th ACM International Conference on Information and
Knowledge Management, pp. 1873–1876 (2010)

15. Rossi, C., et al.: Early detection and information extraction for weather-induced
floods using social media streams. Int. J. Disaster Risk Reduction 30, 145–157
(2018)

16. Saeed, Z., et al.: What’s happening around the world? a survey and framework on
event detection techniques on twitter. J. Grid Comput. 17(2), 279–312 (2019)

17. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time
event detection by social sensors. In: Proceedings of the 19th International World
Wide Web Conference, pp. 851–860 (2010)

18. Sakaki, T., Okazaki, M., Matsuo, Y.: Tweet analysis for real-time event detection
and earthquake reporting system development. IEEE Trans. Knowl. Data Eng.
25(4), 919–931 (2013)

19. Shoji, Y., Takahashi, K., Dürst, M.J., Yamamoto, Y., Ohshima, H.: Location2Vec:
generating distributed representation of location by using geo-tagged microblog
posts. In: Staab, S., Koltsova, O., Ignatov, D.I. (eds.) SocInfo 2018. LNCS, vol.
11186, pp. 261–270. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
01159-8 25

20. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

21. Taylor, J.B., Williams, J.C.: A black swan in the money market. Am. Econ. J.
Macroecon. 1(1), 58–83 (2009)

22. Unankard, S., Li, X., Sharaf, M.A.: Emerging event detection in social networks
with location sensitivity. World Wide Web 18(5), 1393–1417 (2015)

23. Wang, Y., Jin, F., Su, H., Wang, J., Zhang, G.: Research on user profile based
on User2vec. In: Meng, X., Li, R., Wang, K., Niu, B., Wang, X., Zhao, G. (eds.)
WISA 2018. LNCS, vol. 11242, pp. 479–487. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02934-0 44

24. Weng, J., Lee, B.-S.: Event detection in twitter. In: Proceedings of the Fifth Inter-
national Conference on Weblogs and Social Media, pp. 401–408 (2011)

25. Zhang, Y., Szabo, C., Sheng, Q.Z., Fang, X.S.: SNAF: observation filtering and
location inference for event monitoring on Twitter. World Wide Web 21(2), 311–
343 (2018)

26. Zhou, X., Chen, L.: Event detection over twitter social media streams. VLDB J.
23(3), 381–400 (2014)

https://doi.org/10.1007/978-3-030-01159-8_25
https://doi.org/10.1007/978-3-030-01159-8_25
https://doi.org/10.1007/978-3-030-02934-0_44
https://doi.org/10.1007/978-3-030-02934-0_44

5W1H Aware Framework for Representing
and Detecting Real Events from Multimedia

Digital Ecosystem

Siraj Mohammed1(B) , Fekade Getahun1 , and Richard Chbeir2

1 Computer Science Department, Addis Ababa University, 1176 Addis Ababa, Ethiopia
{siraj.mohammed,fekade.getahun}@aau.edu.et

2 Univ. Pau & Pays Adour, E2S UPPA, LIUPPA, 64600 Anglet, France
rchbeir@acm.org

Abstract. A digital media sharing platform (e.g., YouTube, Twitter, Facebook,
and Flickr) is an advanced Digital Ecosystem that focuses on mobile device to
share multimedia resources. Millions of users share different events (e.g., sport,
earthquake, concerts, etc.) through social media platforms. As a result, the plat-
forms host heterogeneous and a significant amount of user-generated multimedia
documents (e.g., image, voice, video, text, etc.). In this paper, we introduce a
general framework for representing events while keeping expressivity and capa-
bility to recognize events from Multimedia-based Digital Ecosystem. It takes as
input: a collection of multimedia objects from heterogeneous sources, and then
produces as output clustered real-world events. The proposed framework consists
of two main components for: (i) defining and representing each dimension of
multimedia objects (such as, participant (who), temporal (when), spatial (where),
sematic (what) and causal (why)); (ii) detecting real events using scalable cluster-
ing algorithm in an unsupervised manner. To improve our clustering framework,
we developed clustering comparison strategies using combination of dimensions
(contextual features) of multimedia objects. We also showed how clustering com-
parison strategies can be used to detect real-world events and measured the qual-
ity of our clustering algorithm using F-score. The experimental results exhibited
promising result.

Keywords: Multimedia documents · Event detection · Multimedia Digital
Ecosystem · Event Representation

1 Introduction

In modern society, digital technologies and digital innovations are bringing various
forms of specialized Digital Ecosystems, such as Bank-based Digital Ecosystem [1],
Healthcare Digital Ecosystem [2], Industry-based Digital Ecosystem [3], and Social
Media-based Digital Ecosystem [4]. A Digital Ecosystem can provide a standardized
way to design heterogeneous and adaptive systems that are digitally connected, enabled

© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 57–70, 2021.
https://doi.org/10.1007/978-3-030-82472-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_6&domain=pdf
http://orcid.org/0000-0003-4862-6865
http://orcid.org/0000-0001-6455-5150
http://orcid.org/0000-0003-4112-1426
https://doi.org/10.1007/978-3-030-82472-3_6

58 S. Mohammed et al.

by modularity, and exchange information in a mutually beneficial manner [5]. Further-
more, Digital Ecosystem can be viewed as a framework that can provide a general refer-
ence/guideline to a particular approach, having high-level phases to design, develop, and
interact with digital platforms in an open, heterogeneous, loosely coupled, independent
and distributed manner [6, 7]. It also includes characteristics like scalability, compatibil-
ity, sustainability, self-organizing, self-management, and much more. More specifically,
Social Media-based Digital Ecosystem aims at creating a digital environment for agents
(e.g., machine or human) to easily publish and share multimedia resources (i.e., texts,
images, movies, etc.,) for a mutually beneficial purpose [7]. Digital media sharing plat-
forms (e.g., YouTube, Twitter, Facebook, and Flickr) are primarily internet/mobile-based
systems for creating, sharing, and using massive heterogeneous data. Currently, many
of us freely and spontaneously generate and share various types of multimedia data
using Digital media sharing platform [8]. As a result, the digital ecosystem has a huge
amount of real-time, machine/user-generated multimedia content with diversified rep-
resentations [7]. Due to this, several issues and challenges are exhibited [7, 8], such as:
(i) absence of common description technique that facilitate creating, sharing, collecting,
and representing heterogeneous multimedia content; (ii) existing platforms do not pro-
vide generic services for representing events, detecting events stated in the multimedia
content, and searching relevant events that fits to the request of users; and (iii) identify-
ing real-world events and model relationship among them remain one of the challenging
tasks.

Moreover, a large number of multimedia data are produced and shared every day
in unstructured format in heterogeneous content type (e.g., texts, images, videos, etc.),
having different standard formats (e.g., svg, mpeg, x3d, etc.), created by various users
using different digital platforms (e.g., YouTube, Twitter, Facebook, and Flickr). Due
to these data handling technique becomes more and more complicated. To mitigate
these complexities, the concept of “Multimedia –Oriented Digital Ecosystem” has been
introduced and applied in digital platforms (e.g., [6, 7]). Multimedia-Oriented Digital
Ecosystem (MMDES) is a comprehensive form of Digital Ecosystem (DES) which
consists of Web applications, physical objects (devices) and actors (i.e., users/software
agents) as components within the Ecosystem with predefined usage rules for sharing
and processing multimedia resources [6]. It serves as a bridge between different digital
platforms and users with characteristics of scalability, compatibility, sustainability, self-
organization, self-management, and much more. The goal of MMDES [7] is to provide a
shared digital environment and effective multimedia data handling technique in an open,
loosely coupled, independent, adaptive and distributed manner [6]. MMDES allows
actors (i.e., users/software agents) to collaborate and share their multimedia data to build
collective knowledge (CK) [7]. From this heterogeneous multimedia-based collective
knowledge, extracting, representing, and detecting meaningful events are important.
Thus, a new approach that effectively (i) extracts multimedia contents fromMultimedia
Digital Ecosystem; (ii) identifies context features (5W1H) for event only (e.g., capture
time/location) to distinguishmultimedia objects that are potentially indicative of an event
fromnon-events; and (iii) detects real-world events based on the 5W1Haspect of an event
is needed. In this paper, we proposed a novel framework that keeps expressivity and
capability to identify real events from Multimedia-based Digital Ecosystem. It takes as

5W1H Aware Framework for Representing and Detecting Real Events 59

input a collection of multimedia objects from heterogeneous sources, and then produces
as output clustered real-world events. In summary, the main contributions of this study
are as follows:

• We introduced a unified 5W1H aware framework which handles representation of real
event from multimedia documents (cf. Sect. 6).

• We presented an incremental/scalable clustering algorithm for detecting real-world
event from different social media platforms.

• We provided a new cluster comparison strategy based on hierarchical clustering and
expressed in incremental clustering algorithm (cf. Sect. 7.2).

• We demonstrated the effectiveness of our proposed approach using different
similarity-based clustering comparison strategies using participant, temporal, spatial,
and semantic dimensions/features of multimedia objects.

2 Motivation

A person is looking for relevant information about earthquake event in Hawassa,
Ethiopia. This person could search the web for relevant information using single source
search engines (e.g., Google). Unfortunately, web search results are a list of informa-
tion resources (or ranked lists of URLs) containing the search query terms, the result
may not be necessarily about the requested event, and user involvement is necessary to
browse, interpret and combine results. Overall, such web search results do not consider
basic event related features/dimensions of multimedia objects (e.g., time (when), loca-
tion (where), sematic (what), etc.). Moreover, vast amount of user/machine generated
event-related multimedia documents are published, shared, and distributed every day
on social media platforms. However, multimedia contents from these sources having
different representations pose several issues and challenges, such as: (i) harmonizing the
different multimedia representationmodels and providing a unified framework for repre-
senting events and (ii) detecting real-world events frommultimedia contents considering
different dimensions of event. Thus, there is a need of designing unified framework to
address these issues and challenges. In this study, we proposed a unified 5W1H aware
framework for representing and detecting real-world events from different social media
sites.

3 EventCharacteristics,Challenges,Opportunities andApproaches

Real-world events can be characterized using five W’s (i.e., Where, When, What, Who,
and Why) and one H (i.e., How) dimensions/features [9]. Specifically, these features
of events have been well explored and studied in rich textual narrative texts, such as
news articles. From such texts, extracting event expressive features set (i.e., 5W1H) to
decide a given text as an event and non-event is not difficult [9]. In contrast, multimedia
objects published on social media sites contain little textual description, usually in the
form of a short textual description, title, or keyword tags [7]. Importantly, this text
often heterogeneous (in terms of contents and formats) and noisy (containing spelling
error, abbreviation, non-standard words, etc.) which makes existing event detection

60 S. Mohammed et al.

approaches less efficient frommultimedia-based social media documents [10]. Although
the nature of multimedia contents published on social media sites present challenges
for event detection, they also present opportunities not found in news articles, among
them, “context features/dimensions” is one of them. Some of these context features
are: (i) semantic (what) (e.g., title/tags/content description); (ii) spatial (where) (e.g.,
longitude-latitude pairs values); (iii) temporal (when) (content capture time); and (iv)
participant-related information (who) (e.g., who created it and who participated in it).
Often these features can be used to determine whether a given multimedia object is
event-related or not. Following this intuition, numerous recent approaches have been
proposed for event detection from multimedia-based digital ecosystem (cf. Sect. 4, for
more details).

4 Related Work

Recently, several relatedworks focusing on event detection especially from digital media
sharing platforms are available. Existing event detection approaches from multimedia
digital ecosystem can be grouped into three main categories: cluster-based [6, 14] and
hybrid-based [10, 11], and classification-based [12, 13]. The hybrid approaches combine
classification-based (or supervised) and clustering-based (or unsupervised) techniques.
As an example, the authors in [10] introduced a hybrid-based event detection approach
for grouping event and non-event contents. They use multi-features similarity learning
techniques to measure social media document similarity, considering textual features,
date/time, and location information. However, this approach does not take into account
the semantic meaning of textual features and only focuses on TF-IDF weight analysis.
Moreover, participant-related dimension (e.g., Who) and additional semantic dimensions
(e.g., Why and How) are not considered.

Classification-based approaches have been used to detect events from multimedia-
based social media documents. The goal is to classify events into pre-defined categorical
class labels based on their similarity by learning from labeled data sets. The authors
in [12] propose a classification-based approach using only location (Where) and time
(When) dimensions. The approach is inefficient as it ignores semantically information
(i.e., What) associated to the multimedia objects. The authors in [13] present a method
that classify social media documents based on multi-features (e.g., textual, temporal and
geographical) similarity learning techniques. The task is however does not consider the
semantic meaning of textual features (e.g., content titles, descriptions, and tags) and
additional semantic dimensions (e.g., Why and How).

Take a cluster-based event detection approach as an example, in which consider only
temporal features might be insufficient to detect events and identify which multimedia
objects correspond to the same events. This is mainly because, different events (e.g.,
sport events, music festivals, etc.) can occur at the same time or different events can
occur at the same location. Therefore, using a clustering approach based on individual
feature (e.g., only spatial/temporal feature) for clustering events is not effective as context
features are ignored; and (ii) considering the combination of spatial and temporal event
descriptive features in the event detection process can causemissing semantically related
information (i.e., What) associated with multimedia contents. To address the above two

5W1H Aware Framework for Representing and Detecting Real Events 61

research gaps, Abebe, M.A. et al., [6] proposed a novel approach based on an aggregate
of three event descriptive features (i.e., Spatial (Where), Temporal (When), and Sematic
(What)). This study effectively addressed the issue of how to use semantic features (what)
of multimedia objects in cluster-based event detection process. However, scalability,
participant-related information (i.e., Who) and additional semantics (i.e., Why and Wow
dimensions) were not considered in this study.

To summarize, most prior event-detection approaches are either: (i) only focus on
two/three of 5W1H aspect of event descriptor and focus on homogenous event (sport
only, criminal only, etc.); (ii) Do not incorporate participant (Who) dimension of event
in event detection process; or (iii) do not consider scalability while detecting events. To
address the above listed research gaps, we proposed scalable event detection approach.
Our event detection approach is inspired by Abebe, M.A. et al. works [6, 14] to include
participant-related information (i.e., Who) in scalable manner from Multimedia Digital
Ecosystem.

5 Preliminaries and Problem Definition

5.1 Basic Definition

Let us define formal concepts used in this paper.

Definition 1 (Multimedia Objects (O)). A multimedia object O is any uniquely iden-
tifiable media type such as image, video, audio, text, etc., having Name/title, location,
temporal information related to when it was taken or uploaded/shared time, who appears
or take part in the object and specific category of the object. It is formalized as follows:

O = (oid , N , L, T , S, P, C). (1)

where:

• Oid: a unique id;
• N: name(title);
• L: a spatial information (i.e., location);
• T: temporal information;
• S: textual description;
• P: participants within multimedia object; and C: category of multimedia object.

Although these features can be used to characterize/describe a multimedia object,
we cannot use them directly to determine whether a given multimedia object is event-
related or not. For example, the availability of textual description, upload time/location
and uploader information, i.e., organization/social media user for amultimedia object is
not sufficient to determine to claim that multimedia object is event-related or not, except
for live events (e.g., football live match). This is the case as the event’s occurrence
location and time may differ from the Uploaded/Shared time and location. Therefore,
there is a need for further research that can (i) identify common features for both event

62 S. Mohammed et al.

and non-event multimedia objects (e.g., a textual description of multimedia objects (i.e.,
title/tag/content description)); (ii) extract unique features for event only (e.g., capture
time/location (When/Where), participates (Who) during the course of the event) and
define the characteristics of an event to distinguish multimedia objects that are indicative
of an event from non-events. Following this intuition, we define an event as follows:

Definition 2 (Event ε). An event ε is concept that describes an occurrence of social,
political, natural, etc. phenomena in a certain time Tε and location Lε involving one or
more participants Pε with semantic textual descriptions Sε, discussing the cause Cε and
the used method Mε . It is represented as follows:

ε = (Tε, Lε, Sε, Pε, Cε, Mε). (2)

where:

• Tε: temporal information (e.g., content creation time) describing when the event
occurs,

• Lε: spatial information (e.g., longitude-latitude pairs) describing where the event is
taking place,

• Sε : textual semantic description (e.g., name/title/tags/content description) describing
what happened,

• Pε : participants (e.g., person/organization) describingwho take part during the event,
• Cε: causal description describing why the event occurred (or which event is causing

this event and hence shows the causal relationship between two events where event 1
is identified as the cause and event 2 as the effect),

• Mε : textual information related to how an event was performed.

5.2 Multimedia Object Dimensions Definition and Representation

Structure of multimedia documents, especially from social media sites, consists of two
essential parts [15]: (i) contents, e.g., image, voice, video, text, etc., and (ii) contextual
features, e.g., participant (who), semantic (what), spatial (where), temporal (when), etc.
These dimensions together provide ameans for detecting events fromMultimediaDigital
Ecosystem. Each dimension attached to multimedia objects is defined as follows:

Definition 3 (Participant Dimension (Pε)). Event participant dimension Pε refers to
an actor (e.g., person/organization) who participated during the event. The participant-
related information is usually stated in the content description. Extracting such informa-
tion can be done by knowing Entities (e.g., person/organization) applying Named Entity
recognition.

Definition 4 (Temporal Dimension (Tε)). It indicates the date/time of an event (or
object) when occurred, shared, uploaded, ormodified. A singlemultimedia object posted
on socialmedia platformsmay contain several timestamps; itmay be the past, the present,
or the future. Such timestamps could be capture time, content uploaded time, content
modification time, and streaming time (e.g., football live match). In this study, we use
only content creation and streaming timestamp since they accurately express event occur-
rences. Following temporal dimension definition, we represent the temporal coverage
representative point (i.e., midpoint values) as a secondary descriptor.

5W1H Aware Framework for Representing and Detecting Real Events 63

Definition 5 (Spatial Dimension (Sε)). Multimedia object spatial dimensionSε defines
where the multimedia object was created using latitude (∅), longitude (λ) and altitude
(λ) [14]. Formally, it is represented as follows:

L =< ∅, λ, h > (3)

Definition 6 (Semantic Dimension (Sε)). The semantic dimension is represented using
concepts from a knowledge base (KB). The KB contains three types of information,
namely: (i) a set of concepts (e.g., words/phrases extracted from the title/description/tag
of multimedia objects); (ii) concept description (or gloss) including sentences to describe
the meaning of concept for a better understanding of its semantic; and (iii) rela-
tionship to see meanings as relations between concepts (e.g., “hyponymy”, “cause-
effect”, “part of”, etc.) [16]. It is represented as a graph having three main attributes,
i.e., G = (N,E,R), where N is the set of nodes representing concepts, E is a set of edges
linking nodes and R symbolizes the set of semantic relationships. Note that representing
of multimedia textual feature terms as graph do not capture the meaning (semantic) of
synonymous terms, which means that the relationships among concepts are disregarded.
To address this problem, we used WordNet [17] as knowledge based to identify syn-
onymous concepts so that similar concepts (e.g., car, auto-care, automobile, etc.) are
viewed as one concept.

Definition 7 (Causal/Reason Dimension (Cε)). A causal dimension Cε is defined as
a set of causal knowledge representing the causes of the effect. The causal dimension
deals with determining how various events relate in terms of cause and effect; it can be
represented as below:

Cε =< Oi, Oj, Rn > (4)

Where: Cε represents causal dimension; Oi represents causal objects; Oj repre-
sents the effect of the causal object, i.e., Oi; and Rn represents relationship among
objects/events.

Definition 8 (Method Dimension (Mε)). A method dimension Mε is defined as a set
of textual information representing how an event Oi was performed using the method
(or How) Mi and represented as follows:

Mε =< Oi, Mi > (5)

6 Proposed Framework

In this study, we propose a novel framework, shown in Fig. 1, to represent and detect
event. The proposed approach adopts existing approach with (i) include one additional
dimension of multimedia object/events (i.e., participant), and (ii) scalable event detec-
tion approach to handle the high amount and continuously growing nature of multime-
dia contents. It consists of two main components: (I) multimedia documents (objects)
extraction and representation and (II) real event detection and event type determination.

64 S. Mohammed et al.

Fig. 1. Proposed framework for representing and detecting real events.

6.1 Multimedia Object Extraction and Representation

In this component, first, we extract multimedia objects via the APIs provided by Twitter,
YouTube and Flicker. Then, the objects are preprocessed to transform into a unified
format without changing their forms to handle the structure and format heterogeneity
problem [6]. To do this, we begin by examining the nature of multimedia objects and
its context features. One of the basic context features of multimedia object is textual
description attached to a multimedia object. Multimedia object textual description is
incomplete, inaccurate (contain noise contents) and often consists of concatenations of
keywords and short sentences [6, 10, 14]. Therefore, several acceptable linguistic pre-
processing tasks are essential to identify semantically meaningful words. In our study,
the pre-processing phase involves activities like, smoothing noise data, tokenization,
stop word removal, part of speech tagging, word sense disambiguation, named entity
recognition and stemming. Similarly, HTML tags and special characters are removed
and multimedia objects describing by less than 3 features are also removed, as these
multimedia objects are less likely to have 5W1H elements. Moreover, indexing and
feature selection (e.g., spatial, temporal, semantic, etc.) are performed for detecting
events. Location distance value transformed into geospatial midpoint value (or center of
gravity) and metric unit. On the other hand, any kind of temporal value is transformed
into second(s) unit.

6.2 Cluster-Based Real Event Detection

In this study, the problem of detecting real events is done as a clustering problem. To do
so, we begin with the task of selecting an appropriate and scalable clustering approach
from previous works. For our multimedia document scenario, the selected clustering
algorithm considering features: (i) scalable (to handle the continuously growing nature
of multimedia contents); (ii) ability to handle noise data aswell as data variety (e.g., video,
text, photo, etc.); (iii) incremental (automatically assigning new object to a cluster, when

5W1H Aware Framework for Representing and Detecting Real Events 65

it arrives); and (iv) absence of a-prior knowledge about the number of clusters. Thus,
clustering approaches that require knowledge about the number of clusters, such as
Expectation-Maximization (EM), K-mean, and Fuzzy C-means (FCM) are not suitable
for our problem. Graph Partitioning Algorithm (SGPA) is also not appropriate as it is
difficult, cost-ineffective, and memory-intensive when the graph/data size is becoming
too large. Moreover, Agglomerative Hierarchical Clustering Algorithm [14] is also not
suitable as it does not work well for heterogeneous and large datasets. On the basis
of the above observation, we adopt a scalable clustering approach called “Incremental
Clustering Algorithm”. The incremental clustering algorithm is preferred compared
to conventional static clustering algorithms, as the approach is simple, scalable and
effective. In the following subsection, we describe the algorithm in detail.

Fig. 2. Pseudo code of real event detection algorithm

Algorithm Description: The algorithm pseudo-code is shown in Fig. 2. Given multi-
media objectsO1,, On, a similarity threshold�, a similarity function, the algorithm
starts by producing an empty set,Ω , of clusters and an empty set Z of decision score. The
algorithm has two parts initialization and iteration. In the iteration step, the first object
O1 be added as the element of the first cluster i.e., C1 consisting of O1 · C1 = {O1}. The
iteration steps make sure that all objects are clustered. It picks a multimedia object Oi,

66 S. Mohammed et al.

add it to the most relevant cluster otherwise add it to a new cluster. The relevance of a
cluster to an object Oi is computed as similarity between the object and the cluster using
cluster decision score

(
Oi, Cj

)
, cluster decision score is either the average score per

dimensions (i.e., semantic, location, time and participant) across all objects in the clus-
ter, multimedia object with maximum decision score in a cluster or multimedia object
with the highest minimum score in each cluster. If the similarity of Oi to the cluster
decision score (or object-cluster pairs) is ≥ � , then Oi is assigned to the corresponding
cluster Cj and the decision score is recomputed/updated. Otherwise, it generates a new
cluster that contains only Oi. In Sect. 6, we describe the similarity measures used in our
clustering approach.

7 Similarity Measures and Cluster Comparison Strategies

The process to construct clusters can be summarized into three main steps: (i) define
similarity measure to compare the similarity of two events, (ii) threshold estimation to
yield high-quality clustering result and (iii) cluster comparison strategies to compare
the quality of clusters. We discuss similarity measure and cluster comparison strategy
in more detail hereunder.

7.1 Similarity Measures

Clustering algorithms use the notion of similarity function to place similar events into
the same cluster, while dissimilar events are located into the different cluster. Typically,
event similarity is computed using contextual features of multimedia objects. The rest
of this section describes similarity measure functions used in our clustering algorithm.

Participant (Who) Similarity. To compute the similarity between two participants
Pi and Pj, first represent values as a list of participants. Then, we used a Jaccard
Coefficient similarity measure as defined in (6):

SimP
(
Pi, Pj

) =
∣∣pi ∩ pj

∣∣
∣∣pi ∪ pj

∣∣ (6)

The similarity value is between 0 and 1; a value close to 1 implies that pi and pj are
relating to one another otherwise are relatively dissimilar.

Temporal (When) Similarity. For temporal (i.e., time/date) similarity, first, we rep-
resent values as second units (cf. Definition 4). Then, Euclidian distance is utilized
to compare the temporal similarity (SimT

(
Oi, Oj

)
) [6, 10, 14]. The similarity decision

scores close to 1 imply that object Oi and Oj are relating to one another temporally
otherwise they are relatively dissimilar temporally.

Spatial (Where) Similarity. The spatial similarity measure considers the distance
between two events on the surface of a sphere. We compute the similarity between two
points of event locations (SimL(L1,L2)) using the Haversine distance [18] as follows:

DistL((Oi, Oj) = 2 ∗ r ∗ arcsin(

√

sin2
(∅j − ∅i

2

)
+ cos ∅icos∅j sin2

(
λj − λi

2

)
(7)

5W1H Aware Framework for Representing and Detecting Real Events 67

where:

• r is radius of Earth in kilo meters i.e., 6,371 km;
• ∅j, ∅i : represent latitude values of the two multimedia objects;
• λj, λi: represent longitude values of the two multimedia objects;
• arcsin is the invers of sine function.

Semantic (What) Similarity. Semantic similarity measures play an important role
in the event detection processes. The semantic (meaning) similarity between words
can be computed by involving a lexical knowledge base, such as WordNet [17]. The
measurement determines how similar the meanings of the two concepts are.

Events (ε) Similarity. The similarity between pairs of events can be computed by com-
bining the above aforesaid individual dimensional similarity measures, such as, aver-
age, weighted, maximum, or minimum sum. In this study, we consider the average. The
average function is computed as follows

Sim
(
εi, εj

) = SimP
(
εi, εj

) + SimT
(
εi, εj

) + SimL
(
εi, εj

) + SimS
(
εi, εj

)

N
∈ [0, 1] (8)

Where, N is number of dimensions in a single event. The similarity value is between
0 and 1; a value close to 1 implies that εi and εj are relating to one another otherwise
they are relatively dissimilar.

7.2 Cluster Comparison Strategies

This section explains how to measure the efficiency of our clustering algorithm. For
efficiency, we represent each cluster using cluster comparison strategies, namely: single-
link, average-link, and complete-link strategies. We summarize these strategies as
follows:

• In single-link strategy, we define the similarity between two objects/events as the
maximum similarity score between the current object Oi and any single object in each
cluster. At each stage, if there is no cluster with the maximum optimistic similarity
score (or if no similarity score exceeds the user-defined maximum threshold value), it
creates a new cluster for the object Oi. Otherwise, object Oi is assigned to the cluster
that has the highest similarity score.

• In the average-link strategy, we define the similarity between two events/objects as the
average similarity between the members of their clusters. Accordingly, the algorithm
assigns Oi to a cluster that has the nearest cluster average decision score. Otherwise,
it creates a new cluster for object Oi .

• In complete-link strategy, similarity is computed taking the minimum similarity score
ofmembers of pairs of clusters. The cluster containing the highestminimum similarity
score will be used for assigning the current multimedia object Oi . Otherwise, it
initiates a new cluster for object Oi .

68 S. Mohammed et al.

8 Experimental Settings and Results

To demonstrate the efficiency of the proposed framework and its algorithm, we carried
out experiments using single, average and complete linkage clustering strategies to mea-
sure the influence of participant (Who), spatial (Where), temporal (When), and semantic
(What) dimensions in detecting real-world events. In the following subsection, dataset,
cluster quality metrics, and experimental results are described.

Experimental Dataset. We evaluate our real event detection method using MediaEval
2013 dataset [19], which has been used in the Social Event Detection (SED) task. The
dataset consists of more than 400,000 Flickr images assigned to 21, 000 unique events.
The dataset also includes context features (or dimensions) such as location, time, tags,
title, description, username, image_id, etc. in an XML format. Statistics for each dimen-
sion are given as follows, on average, 100% of the images include temporal information,
98.3% of the images include capture time information, 45.9% of them include geo-
graphic information, 95.6% of them include tags, 97.6% of them include titles, 37.8% of
the images include description information, and 100% of them include uploader infor-
mation. Based on our dimension definitions, we only extract and process images with
semantic (i.e., title, tags and descriptions), temporal (i.e., capture time), spatial (i.e.,
capture location specified by Latitude-Longitude Pairs), and participant dimension (i.e.,
person/organization).

Cluster Quality Metrics. To evaluate the quality of our algorithm, we use F-score
quality metric, which is a widely used metric in information extraction, particularly
in event detection. F-score considers both precision (PR) and recall (R) into a single
measure and measures how good the resulting of the clustering solution and computed
as:

F − score = 2 × PR × R

PR + R
(9)

Evaluation Results. We ran our experiments using different similarity-based clustering
comparison strategies based on participant, temporal, spatial, and semantic dimensions
of multimedia objects for detecting real events. The effectiveness of our incremental
clustering algorithm depends on the used comparison strategies. We measured F-score
for clusters having size of 25, 50, 10, 200, and 400. Figure 3 summarizes the results of the
three clustering comparison strategies applied on MediaEval 2013 dataset [19]. These
results indicate three main observations: (i) the average-link strategy does perform better
than the single and complete-link strategy as it pays too much attention to the entire
structure of the cluster; (ii) in single-link strategy, the entire structure of the cluster
are not taken into account to assign an object to a cluster, since it is preoccupied on
the maximum-similarity between two objects; (iii) the complete-link is not effective in
comparing to other strategies or is sensitive to noise, since it focuses too much on the
longest distance (or the minimum-similarity) between two objects.

5W1H Aware Framework for Representing and Detecting Real Events 69

Fig. 3. Visualizing F-Scores results on the three clustering comparison strategies.

Figure 3 illustrates F-score measurement results for each clustering comparison
strategies. For example, onMediaEval 2013 corpus using 100 features, the experimental
result exhibited 0.85, 0.77 and 0.70 average F-score value using average-link, single-
link and complete-link strategies, respectively. In terms of processor time, single-link
is better than average-link approach. For example, the average-link approach required a
few hours, whereas the single-link approach ran in a few minutes for clustering events.

9 Conclusion and Further Research

This paper introduced a general event representation and extraction framework along
with its algorithms. The framework has two main components for representing each
dimension of a multimedia objects, and real event extraction using a scalable clustering
algorithm. To evaluate our clustering approach, we employed clustering comparison
strategies using dimensions ofmultimedia object.We showedhowclustering comparison
strategies detect events. Finally, we measured the quality of our clustering algorithm
using cluster quality metric (i.e., F-score). The experimental results show the quality
and potential of our clustering algorithm.

We are currently conducting further experiments using dimension weighting app-
roach for improving quality of event detection. In futurework,we are planning to develop
dedicative event relationship inference rules to identify semantic relationships among
pairs of objects. We also plan to (i) include additional semantic dimensions (e.g., causal
(Why) and method (How)) and (ii) represent events and relationships among them using
graph model.

References

1. Digital Banking Ecosystem: strategies, investments, and digital transformation in 2020,
https://www.businessinsider.com/digital-banking-ecosystem-report?IR=T. Accessed 01 Nov
2020

2. Serbanati, L.D., Ricci, F.L., Mercurio, G., Vasilateanu, A.: Steps towards a digital health
ecosystem. J. Biomed. Inform. 44, 621–636 (2011)

https://www.businessinsider.com/digital-banking-ecosystem-report%3FIR%3DT

70 S. Mohammed et al.

3. Digital Ecosystems: An Imperative for the Manufacturing Industry. https://www.logicbay.
com/digital-ecosystems-for-manufacturing. Accessed 02 Nov 2020

4. Suseno, Y., Laurell, C., Sick, N.: Assessing value creation in digital innovation ecosystems:
a Social Media Analytics approach. J. Strateg. Inf. Syst. 27(4), 335–349 (2018)

5. Wenbin, L., Youakim, B., Frédérique, B.: Digital ecosystems: challenges and prospects. In:
MEDES 2012, pp. 117–122. ACM, Addis Ababa (2012)

6. Abebe, M.: Event extraction framework in multimedia digital ecosystem. Ph.D, diss, Addis
Ababa University (2018)

7. Kidanu, S.A., Cardinale, Y., Tekli, G., Chbeir, R.: A Multimedia-Oriented Digital Ecosys-
tem: a new collaborative environment. In: 14th International Conference on Computer and
Information Science (ICIS), vol. 2015, Las Vegas, pp. 411–416. IEEE (2015)

8. Tat-Seng, C.: The multimedia challenges in social media analytics. In: Proceedings of the 3rd
International Workshop on Socially-Aware Multimedia (SAM 2014), New York, NY, USA,
pp. 17–18. Association for Computing Machinery (2014)

9. Wang, W.: Chinese news event 5W1H semantic elements extraction for event ontology pop-
ulation. In: 21st International Conference Proceedings on World Wide Web, New York,
pp. 197–202. ACM (2012)

10. Becker, H., Naaman, M., Gravano, L.: Learning similarity metrics for event identification in
social media. In: Proceedings of the Third ACM International Conference onWeb Search and
Data Mining, New York, USA, no. 10, pp. 291–300. ACM (2010)

11. Nguyen, T., Dao, M., Mattivi, R., Sansone, E., De Natale, F., Boato, G.: Event clustering and
classification from social media: watershed-based and kernel methods. In: MediaEval 2013
Multimedia benchmark Workshop, Barcelona (2013)

12. Becker, H., Iter, D., Naaman, M., Gravano, L.: Identifying content for planned events across
social media sites. In: Proceedings of the Fifth ACM International Conference onWeb Search
and Data Mining, Seattle, Washington, USA, pp. 533–542. ACM (2012)

13. Timo, R., Philipp, C.: Event-based classification of social media streams. In: Proceedings of
the 2nd ACM International Conference on Multimedia Retrieval (ICMR12), New York, NY,
USA, pp.1–8. ACM (2012)

14. Abebe, M.A., Tekli, J., Getahun, F., Chbeir, R., Tekli, G.: Generic metadata representation
framework for social-based event detection, description, and linkage.Knowledge-Based Syst.
188(2020), 104817 (2020)

15. Liu, X., Troncy, R., Huet, B.: Using social media to identify events. In: SIGMM International
Workshop on Social Media, Scottsdale, Arizona, USA, pp. 3–8. ACM (2011)

16. Mylonas, P., Athanasiadis, T., Wallace, M., et al.: Semantic representation of multimedia
content: knowledge representation and semantic indexing.Multimed Tools Appl. 39, 293–327
(2008)

17. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)
18. Chopde, N.R., Nichat, M.: Landmark based shortest path detection by using a* and Haversine

formula. Int. J. Innov. Res. Comput. Commun. Eng. 1(2), 298–302 (2013)
19. MediaEval-2013 dataset. http://www.multimediaeval.org/mediaeval2013/sed2013/index.

html. Accessed 13 Oct 2020

https://www.logicbay.com/digital-ecosystems-for-manufacturing
http://www.multimediaeval.org/mediaeval2013/sed2013/index.html

Social Media and Text Mining

MONITOR: A Multimodal Fusion
Framework to Assess Message Veracity

in Social Networks

Abderrazek Azri1(B), Cécile Favre1(B), Nouria Harbi1(B),
Jérôme Darmont1(B), and Camille Noûs2(B)

1 Université de Lyon, Lyon 2, UR ERIC, 5 avenue Pierre Mendès France,
69676 Bron Cedex, France

{a.azri,cecile.favre,nouria.harbi,jerome.darmont}@univ-lyon2.fr
2 Université de Lyon, Lyon 2, Laboratoire Cogitamus, Lyon, France

camille.nous@cogitamus.fr

Abstract. Users of social networks tend to post and share content with
little restraint. Hence, rumors and fake news can quickly spread on a
huge scale. This may pose a threat to the credibility of social media and
can cause serious consequences in real life. Therefore, the task of rumor
detection and verification has become extremely important. Assessing the
veracity of a social media message (e.g., by fact checkers) is a very time-
consuming task that can be much helped by machine learning. In the lit-
erature, most message veracity verification methods only exploit textual
contents and metadata. Very few take both textual and visual contents,
and more particularly images, into account. In this paper, we second
the hypothesis that exploiting all of the components of a social media
post enhances the accuracy of veracity detection. To further the state
of the art, we first propose using a set of advanced image features that
are inspired from the field of image quality assessment, Then, we intro-
duce the Multimodal fusiON framework to assess message veracIty in
social neTwORks (MONITOR), which exploits all message features (i.e.,
text, social context, and image features) by supervised machine learning.
Extensive experiments are conducted on two multimedia datasets. The
experimental results show that MONITOR can outperform the state-of-
the-art machine learning baselines.

Keywords: Social networks · Rumor verification · Image features ·
Machine learning

1 Introduction

After more than two decades of existence, social media platforms has attracted a
large number of users. They enable the rapid diffusion of information in real-time,
regardless of its credibility, for two main reasons: first, there is a lack of a means
to verify the veracity of the content transiting on social media; and second,

c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 73–87, 2021.
https://doi.org/10.1007/978-3-030-82472-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-82472-3_7

74 A. Azri et al.

Fig. 1. Two sample rumors posted on Twitter

users often publish messages without verifying the validity and reliability of
the information. Consequently, social networks, and particularly microblogging
platforms, are a fertile ground for rumors to spread.

Widespread rumors can pose a threat to the credibility of social media and
cause harmful consequences in real life. Thus, the automatic assessment of infor-
mation credibility on microblogs that we focus on is crucial to provide decision
support to, e.g., fact checkers. This task requires to verify the truthfulness of mes-
sages related to a particular event and return a binary decision stating whether
the message is true.

In the literature, most automatic rumor detection approaches address the
task as a classification problem. They extract features from various aspects of
messages, which are then used to train a wide range of machine learning [26] or
deep learning [27] methods. Features are generally extracted from the textual
content of messages [20] and the social context [29]. However, the multimedia
content of messages, particularly images that present a significant set of features,
are little exploited.

In this paper, we second the hypothesis that the use of image properties is
important in rumor verification. Images play a crucial role in the news diffusion
process. For example, in the dataset collected by [8], the average number of
messages with an attached image is more than 11 times that of plain text ones.

Figure 1 shows two sample rumors posted on Twitter. In Fig. 1(a), it is hard
to assess veracity from the text, but the likely-manipulated image hints at a
rumor. In Fig. 1(b), it is hard to assess veracity from both the text or the image
because the image has been taken out of its original context.

Based on the above observations, we aim to leverage all the modalities of
microblog messages for verifying rumors; that is, features extracted from textual
and social context content of messages, and up to now unused visual and sta-
tistical features derived from images. Then, all types of features must be fused
to allow a supervised machine learning classifier to evaluate the credibility of
messages.

MONITOR: Assessing Message Veracity in Social Networks 75

Our contribution is twofold. First, we propose the use of a set of image
features inspired from the field of image quality assessment (IQA) and we prove
that they contribute very effectively to the verification of message veracity. These
metrics estimate the rate of noise and quantify the amount of visual degradation
of any type in an image. They are proven to be good indicators for detecting
fake images, even those generated by advanced techniques such as generative
adversarial networks (GANs) [5]. To the best of our knowledge, we are the first
to systematically exploit this type of image features to check the veracity of
microblog posts.

Our second contribution is the Multimodal fusiON framework to assess mes-
sage veracIty in social neTwORks (MONITOR), which exploits all types of mes-
sage features by supervised machine learning. This choice is motivated by two
factors. First, these techniques provide explainability and interpretability about
the decisions taken. Second, we do also want to explore the performance of deep
machine learning methods in the near future, especially to study the tradeoff
between classification accuracy, computing complexity, and explainability.

Eventually, extensive experiments conducted on two real-world datasets
demonstrate the effectiveness of our rumor detection approach. MONITOR
indeed outperforms all state-of-the-art machine learning baselines with an accu-
racy and F1-score of up to 96% and 89% on the MediaEval benchmark [2] and
the FakeNewsNet dataset [22], respectively.

The rest of this paper is organized as follows. In Sect. 2, we first review and
discuss related works. In Sect. 3, we detail MONITOR and especially feature
extraction and selection. In Sect. 4, we present and comment on the experimen-
tal results that we achieve with respect to state-of-the-art methods. Finally, in
Sect. 5, we conclude this paper and outline future research.

2 Related Works

2.1 Non-image Features

Studies in the literature present a wide range of non-image features. These fea-
tures may be divided into two subcategories, textual features and social context
features. To classify a message as fake or real, Castillo et al. [4] capture prominent
statistics in tweets, such as count of words, capitalized characters and punc-
tuation. Beyond these features, lexical words expressing specific semantics or
sentiments are also counted. Many sentimental lexical features are proposed in
[12], who utilize a sentiment tool called the Linguistic Inquiry and Word Count
(LIWC) to count words in meaningful categories.

Other works exploit syntactic features, such as the number of keywords, the
sentiment score or polarity of the sentence. Features based on topic models are
used to understand messages and their underlying relations within a corpus. Wu
et al. [28] train a Latent Dirichlet Allocation model [1] with a defined set of topic
features to summarize semantics for detecting rumors.

76 A. Azri et al.

The social context describes the propagating process of a rumor [23]. Social
network features are extracted by constructing specific networks, such as diffu-
sion [12] or co-occurrence networks [21].

Recent approaches detect fake news based on temporal-structure features.
Kwon et al. [11] studied the stability of features over time and found that, for
rumor detection, linguistic and user features are suitable for early-stage, while
structural and temporal features tend to have good performance in the long-term
stage.

2.2 Image Features

Although images are widely shared on social networks, their potential for veri-
fying the veracity of messages in microblogs is not sufficiently explored. Morris
et al. [18] assume that the user profile image has an important impact on infor-
mation credibility published by this user. For images attached in messages, very
basic features are proposed by [28], who define a feature called “has multime-
dia” to mark whether the tweet has any picture, video or audio attached. Gupta
et al. [6] propose a classification model to identify fake images on Twitter during
Hurricane Sandy. However, their work is still based on textual content features.

To automatically predict whether a tweet that shares multimedia content is
fake or real, Boididou et al. [2] propose the Verifying Multimedia Use (VMU)
task. Textual and image forensics [13] features are used as baseline features for
this task. They conclude that Twitter media content is not amenable to image
forensics and that forensics features do not lead to consistent VMU improvement
[3].

3 MONITOR

Microblog messages contain rich multimodal resources, such as text contents,
surrounding social context, and attached image. Our focus is to leverage this
multimodal information to determine whether a message is true or false. Based
on this idea, we propose a framework for verifying the veracity of messages.
MONITOR’s detailed description is presented in this section.

3.1 Multimodal Fusion Overview

Figure 2 shows a general overview of MONITOR. It has two main stages: 1)
Features extraction and selection. We extract several features from the message
text and the social context, we then perform a feature selection algorithm to
identify the relevant features, which form a first set of textual features. From
the attached image, we drive statistics and efficient visual features inspired from
the IQA field, which form a second set of image features; 2) Model learning.
Textual and image features sets are then concatenated and normalized to form
the fusion vector. Several machine learning classifiers may learn from the fusion
vector to distinguish the veracity of the message (i.e., real or fake).

MONITOR: Assessing Message Veracity in Social Networks 77

Fig. 2. Overview of MONITOR

3.2 Feature Extraction and Selection

To better extract features, we reviewed the best practices followed by information
professionals (e.g., journalists) in verifying content generated by social network
users. We based our thinking on relevant data from journalistic studies [15] and
the verification handbook [24]. We define a set of features that are important
to extract discriminating characteristics of rumors. These features are mainly
derived from three principal aspects of news information: content, social context,
and visual content. As for the feature selection process, it will only be applied
to content and social context features sets to remove the irrelevant features that
can negatively impact performance. Because our focus is the visual features set,
we keep all these features in the learning process.

Message Content Features. Content features are extracted from the mes-
sage’s text. We extract characteristics such as the length of a tweet text and the
number of its words. It also include statistics such as the number of exclamation
and question marks, as well as binary features indicating the existence or not
of emoticons. Furthermore, other features are extracted from the linguistics of a
text, including the number of positive and negative sentiment words. Additional
binary features indicate whether the text contains personal pronouns.

We calculate also a readability score for each message using the Flesch Read-
ing Ease method [10], the higher this score is, the easier the text is to read. Other
features are extracted from the informative content provided by the specific
communication style of the Twitter platform, such as the number of retweets,
mentions(@), hashtags(#), and URLs.

Social Context Features. The social context reflects the relationship between
the different users, therefore the social context features are extracted from the
behavior of the users and the propagation network. We capture several features
from the users’ profiles, such as number of followers and friends, number of tweets
the user has authored, the number of tweets the user has liked, whether the user

78 A. Azri et al.

Table 1. Content features

Description

chars, words

(?), (!) mark

uppercase chars

positive, negative words

mentions, hashtags, URLs

happy, sad mood emoticon

1st, 2nd, 3rd order pronoun

The readability score

Table 2. Social context features

Description

followers, friends, posts

Friends/followers ratio, times listed

re-tweets, likes

If the user shares a homepage URL

If The user has profile image

If the user has a verified account

of Tweets the user has liked

is verified by the social media. We extract, also, features from the propagation
tree that can be built from tweets and re-tweets of a message, such as the depth
of the re-tweet tree. Tables 1 and 2 depicts a description of a sets of content
feature, and social context features extracted for each message.

To improve the performance of MONITOR, we perform a feature selection
algorithm on the features sets listed in Tables 1 and 2. The details of the feature
selection process are discussed in Sect. 4.

Image Features. To differentiate between false and real images in messages,
we propose to exploit visual content features and visual statistical features that
are extracted from the joined images.

Visual Content Features. Usually, a news consumer decides the image veracity
based on his subjective perception, but how do we quantitatively represent the
human perception of the quality of an image?. The quality of an image means
the amount of visual degradations of all types present in an image, such as noise,
blocking artifacts, blurring, fading, and so on.

The IQA field aims to quantify human perception of image quality by pro-
viding an objective score of image degradations based on computational mod-
els [14]. These degradations are introduced during different processing stages,
such as image acquisition, compression, storage, transmission, decompression.
Inspired by the potential relevance of IQA metrics for our context, we use these
metrics in an original way for a purpose different from what they were created
for. More precisely, we think that the quantitative evaluation of the quality of
an image could be useful for veracity detection.

IQA is mainly divided into two areas of research: first, full-reference evalua-
tion; and second, no-reference evaluation. Full-reference algorithms compare the
input image against a pristine reference image with no distortion. In no-reference
algorithms, the only input is the image whose quality we want to measure. In
our case, we do not have the original version of the posted image; therefore,
the approach that is fitting for our context is the no-reference IQA metric. For
this purpose, we use three no-reference algorithms that have been demonstrated

MONITOR: Assessing Message Veracity in Social Networks 79

to be highly efficient: The Blind/Referenceless Image Spatial Quality Evaluator
(BRISQUE) [16], the Naturalness Image Quality Evaluator (NIQE) [17], and the
Perception based Image Quality Evaluator (PIQE) [25].

For example, Fig. 3 displays the BRISQUE score computed for a natural
image and its distorted versions (compression, noise and blurring distortions).
The BRISQUE score is a non-negative scalar in the range [1, 100]. Lower values
of score reflect better perceptual quality of image.

Fig. 3. BRISQUE score computed for a natural image and its distorted versions

No-reference IQA metrics are also good indicators for other types of image
modifications, such as GAN-generated images. These techniques allow modifying
the context and semantics of images in a very realistic way. Unlike many image
analysis tasks, where both reference and reconstructed images are available,
images generated by GANs may not have any reference image. This is the main
reason for using no-reference IQA for evaluating this type of fake images. Figure 4
displays the BRISQUE score computed for real and fake images generated by
image-to-image translation based on GANs [30].

Fig. 4. Distribution of true and false classes for top-15 important features

Statistical Features. From attached images, we define four statistical features
from two aspects.

80 A. Azri et al.

Number of Images: A user can post one, several, or no images. To denote this
feature, we count the total number of images in a rumor event and the ratio of
posts containing more then one image.

Spreading of Images: During an event, some images are very replied and generate
more comments than others. The ratio of such images is calculated to indicate
this feature. Table 3 illustrates the description of proposed visual and statistical
features. We use the whole set of these features in the learning process.

3.3 Model Training

So far, we have obtained a first set of relevant textual features through a fea-
ture selection process. We have also a second set of image features composed of
statistical and visual features. These two sets of features are scaled, normalized,
and concatenated to form the multimodal representation for a given message,
which is fed to learn a supervised classifier. Several learning algorithms can be
implemented for the classification task of message veracity. In the experimental
part, we investigate the algorithms that provide the best performance.

Table 3. Description of image features

Type Feature Description

Visual features BRISQUE The BRISQUE score of a given image

PIQE The PIQE score of a given image

NIQE The NIQE score of a given image

Statistical features Count Img The number of all images in a news event

Ratio Img1 The ratio of the multi-image tweets in all tweets

Ratio Img2 The ratio of image number to tweet number

Ratio Img3 The ratio of the most widespread image in all distinct images

4 Experiments

In this section, we conduct extensive experiments on two public datasets. First,
we present statistics about the datasets we used. Then, we describe the exper-
imental settings: a brief review of state-of-the-art features for news verification
and a selection of the best of these textual features as baselines. Finally, we
present experimental results and analyze the features to achieve insights into
MONITOR.

4.1 Datasets

To evaluate MONITOR’s performance, we conduct experiments on two well-
established public benchmark datasets for rumor detection. Next, we provide
the details of both datasets.

MONITOR: Assessing Message Veracity in Social Networks 81

MediaEval [2] is collected from Twitter and includes all three characteristics:
text, social context and images. It is designed for message-level verification. The
dataset has two parts: a development set containing about 9,000 rumor and 6,000
non-rumor tweets from 17 rumor-related events; a test set containing about 2,000
tweets from another batch of 35 rumor-related events. We remove tweets without
any text or image, thus obtaining a final dataset including 411 distinct images
associated with 6,225 real and 7,558 fake tweets, respectively.

FakeNewsNet [22] is one of the most comprehensive fake news detection bench-
mark. Fake and real news articles are collected from the fact-checking websites
PolitiFact and GossipCop. Since we are particularly interested in images in this
work, we extract and exploit the image information of all tweets. To keep the
dataset balanced, we randomly choose 2,566 real and 2,587 fake news events.
After removing tweets without images, we obtain 56,369 tweets and 59,838
images. The detailed statistics of these two datasets are listed in Table 4.

Table 4. MediaEval and FakeNewsNet statistics

Dataset Set Tweets Images

Real Fake

MediaEval Training set 5,008 6,841 361

Testing set 1,217 717 50

FakeNewsNet Training set 25,673 19,422 47,870

Testing set 6,466 4,808 11,968

4.2 Experimental Settings

Baseline Features. We compare the effectiveness of our feature set with the
best textual features from the literature. First, we adopt the 15 best features
extracted by Castillo et al. to analyze the information credibility of news propa-
gated through Twitter [4]. We also collect a total of 40 additional textual features
proposed in the literature [6,7,12,28], which are extracted from text content, user
information and propagation properties (Table 5).

Feature Sets. The features labeled Textual are the best features selected among
message content and social context features (Tables 1 and 2). We select them
with the information gain ratio method [9]. It helps select a subset of 15 relevant
textual features with an information gain larger than zero (Table 6).

The features labeled Image are all the image features listed in Table 3. The
features labeled MONITOR are the feature set that we propose, consisting of
the fusion of textual and image feature sets. The features labeled Castillo are
the above-mentioned best 15 textual features. Eventually, the features labeled
Wu are the 40 textual features identified in literature.

82 A. Azri et al.

Table 5. 40 features from the literature

Feature

Fraction of (?), (!) Mark,# messages

Average Word, Char Length,

Fraction of 1st, 2nd, 3rd Pronouns,

Fraction of URL,@, #,

Count of Distinct URL, @, #,

Fraction of Popular URL, @, #,

If the Tweet includes pictures,

Average Sentiment Score,

Fraction of Positive, Negative Tweets,

Distinct People, Loc, Org,

Fraction of People, Loc, Org,

Fraction of Popular People, Loc, Org,

Users, Fraction of Popular Users,

Followers, Followees, Posted Tweets,

If the User has Facebook Link,

Fraction of Verified User, Org,

comments on the original message

Time between original message and repost

Table 6. Best textual features selected

MediaEval FakeNewsNet

Tweet Length Tweet Length

Num Negwords Num Words

Num Mentions Num Questmark

Num URLs Num Upperchars

Num Words Num Exclmark

Num Upperchars Num Hashtags

Num Hashtags Num Negwords

Num Exclmark Num Poswords

Num Thirdpron Num Followers

Times Listed Num Friends

Num Tweets Num Favorites

Num Friends Times Listed

Num Retweets Num Likes

Has Url Num Retweets

Num Followers Num Tweets

Classification Model. We execute various learning algorithms for each fea-
ture set. The best results are achieved by four supervised classification models:
decision trees, KNNs, SVMs and random forests. We use Scikit-learn library
for Python [19] implementation. Training and validation is performed for each
model through a 5-fold cross validation. Note that, for MediaEval, we retain the
same data split scheme. For FakeNewsNet, we randomly divide data into train-
ing and testing subsets with the ratio 0.8:0.2. Table 7 present the results of our
experiments.

4.3 Classification Results

From the classification results recorded in Tables 7, we can make the following
observations.

Performance Comparison. With MONITOR, using both image and textual
feature allows all classification algorithms to achieve better performance than
baselines. Among the four classification models, the random forest generates the
best accuracy: 96.2% on MediaEval and 88.9% on FakeNewsNet. They indeed
perform 26% and 18% better than Castillo and 24% and 15% than Wu, still on
MediaEval and FakeNewsNet, respectively.

Compared to the 15 “best” textual feature set, the random forest improves
the accuracy by more than 22% and 10% with image features only. Similarly, the

MONITOR: Assessing Message Veracity in Social Networks 83

Table 7. Classification results

Model Feature sets MediaEval FakeNewsNet

Acc Prec Rec F1 Acc Prec Rec F1

Decision trees Textual 0.673 0.672 0.771 0.718 0.699 0.647 0.652 0.65

Image 0.632 0.701 0.639 0.668 0.647 0.595 0.533 0.563

MONITOR 0.746 0.715 0.897 0.796 0.704 0.623 0.716 0.667

Castillo 0.643 0.711 0.648 0.678 0.683 0.674 0.491 0.569

Wu 0.65 0.709 0.715 0.711 0.694 0.663 0.593 0.627

KNN Textual 0.707 0.704 0.777 0.739 0.698 0.67 0.599 0.633

Image 0.608 0.607 0.734 0.665 0.647 0.595 0.533 0.563

MONITOR 0.791 0.792 0.843 0.817 0.758 0.734 0.746 0.740

Castillo 0.652 0.698 0.665 0.681 0.681 0.651 0.566 0.606

Wu 0.668 0.71 0.678 0.693 0.694 0.663 0.593 0.627

SVM Textual 0.74 0.729 0.834 0.779 0.658 0.657 0.44 0.528

Image 0.693 0.69 0.775 0.73 0.595 0.618 0.125 0.208

MONITOR 0.794 0.767 0.881 0.82 0.704 0.623 0.716 0.667

Castillo 0.702 0.761 0.716 0.737 0.629 0.687 0.259 0.377

Wu 0.725 0.763 0.73 0.746 0.642 0.625 0.394 0.484

Random forest Textual 0.747 0.717 0.879 0.789 0.778 0.726 0.768 0.747

Image 0.652 0.646 0.771 0.703 0.652 0.646 0.771 0.703

MONITOR 0.962 0.965 0.966 0.965 0.889 0.914 0.864 0.889

Castillo 0.702 0.727 0.723 0.725 0.714 0.669 0.67 0.67

Wu 0.728 0.752 0.748 0.75 0.736 0.699 0.682 0.691

other three algorithms achieve an accuracy gain between 5% and 9% on Medi-
aEval and between 5% and 6% on FakeNewsNet. Compared to the 40 additional
textual features, all classification algorithms generate a lower accuracy when
using image features only.

While image features play a crucial role in rumor verification, we must not
ignore the effectiveness of textual features. The role of image and textual features
is complementary. When the two sets of features are combined, performance is
significantly boosted.

Illustration by Example. To more clearly show this complementarity, we
compare the results reported by MONITOR and single modality approaches
(textual and image). The fake rumor messages from Fig. 1 are correctly detected
as false by MONITOR, while using either only textual or only image modalities
yields a true result.

In the tweet from Fig. 1(a), the text content solely describes the attached
image without giving any signs about the veracity of the tweet. This is how the
textual modality identified this tweet as real. It is the attached image that looks
quite suspicious. By merging the textual and image contents, MONITOR can

84 A. Azri et al.

identify the veracity of the tweet with a high score, exploiting some clues from
the image to get the right classification.

The tweet from Fig. 1(b) is an example of a rumor correctly classified by
MONITOR, but incorrectly classified when only using the visual modality. The
image seems normal and the complex semantic content of the image is very diffi-
cult to capture by the image modality. However, the words with strong emotions
in the text indicate that it might be a suspicious message. By combining the
textual and image modalities, MONITOR can classify the tweet with a high
confidence score.

4.4 Feature Analysis

The advantage of our approach is that we can achieve some elements of inter-
pretability. Thus, we conduct an analysis to illustrate the importance of each
feature set. We depict the first most 15 important features achieved by the ran-
dom forest. Figure 5 shows that, for both datasets, visual characteristics are in
the top five features. The remaining features are a mix of text content and social
context features. These results validate the effectiveness of the IQA image fea-
tures issued, as well as the importance of fusing several modalities in the process
of rumor verification.

Fig. 5. Distribution of true and false classes for top-15 important features

To illustrate the discriminating capacity of these features, we deploy box plots
for each of the 15 top variables on both datasets. Figure 6 shows that several
features exhibit a significant difference between the fake and real classes, which
explains our good results.

MONITOR: Assessing Message Veracity in Social Networks 85

Fig. 6. Distribution of true and false classes for top-15 important features

5 Conclusion and Perspectives

To assess the veracity of messages posted on social networks, most machine
learning techniques ignore the visual content. In this paper, to improve the per-
formance of the message verification, we propose a multimodal fusion framework
called MONITOR that uses features extracted from the textual content of the
message, the social context, and also image features have not been considered
until now. Extensive experiments conducted on the MediaEval benchmark and
FakeNewsNet dataset demonstrated that: 1) the image features that we introduce
play a key role in message veracity assessment; and 2) no single homogeneous
feature set can generate the best results alone.

Our future research includes two directions. First, we currently fuse modal-
ities into a single vector, which is called early fusion. By combining classifiers
instead, we also plan to investigate so-called late fusion. Second, we plan to use
deep learning models capable to learn latent representations of both text and
images. However, we would like to compare their performance with MONITOR’s
to study the tradeoff between classification accuracy, computing complexity, and
explainability.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. JMLR 3(Jan),
993–1022 (2003)

2. Boididou, C., et al.: Verifying multimedia use at mediaeval 2015. In: MediaEval
(2015)

3. Boididou, C., Papadopoulos, S., Zampoglou, M., Apostolidis, L., Papadopoulou,
O., Kompatsiaris, Y.: Detection and visualization of misleading content on twitter.
IJMIR 7(1), 71–86 (2018)

4. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on Twitter. In: 20th
WWW, pp. 675–684. ACM (2011)

5. Goodfellow, I., et al.: Generative adversarial nets. In: ANIPS, pp. 2672–2680 (2014)
6. Gupta, A., Lamba, H., Kumaraguru, P., Joshi, A.: Faking sandy: characterizing

and identifying fake images on Twitter during hurricane sandy. In: WWW 2013,
pp. 729–736. ACM (2013)

86 A. Azri et al.

7. Gupta, M., Zhao, P., Han, J.: Evaluating event credibility on Twitter. In: Proceed-
ings of the 2012 SIAM DM, pp. 153–164. SIAM (2012)

8. Jin, Z., Cao, J., Zhang, Y., Zhou, J., Tian, Q.: Novel visual and statistical image
features for microblogs news verification. IEEE Trans. Multimedia 19(3), 598–608
(2017)

9. Karegowda, A.G., Manjunath, A., Jayaram, M.: Comparative study of attribute
selection using gain ratio and correlation based feature selection. Int. J. Inf. Tech-
nol. Knowl. Manage. 2(2), 271–277 (2010)

10. Kincaid, J.P., Fishburne Jr., R.P., Rogers, R.L., Chissom, B.S.: Derivation of new
readability formulas (automated readability index, fog count and flesch reading
ease formula) for navy enlisted personnel (1975)

11. Kwon, S., Cha, M., Jung, K.: Rumor detection over varying time windows. PloS
ONE 12(1), e0168344 (2017)

12. Kwon, S., Cha, M., Jung, K., Chen, W., Wang, Y.: Prominent features of rumor
propagation in online social media. In: 2013 IEEE 13th DM, pp. 1103–1108. IEEE
(2013)

13. Li, J., Li, X., Yang, B., Sun, X.: Segmentation-based image copy-move forgery
detection scheme. IEEE Trans. IFS 10(3), 507–518 (2014)

14. Mâıtre, H.: From Photon to Pixel: The Digital Camera Handbook. Wiley (2017)
15. Martin, N., Comm, B.: Information verification in the age of digital journalism.

In: SLAA Conference, pp. 8–10 (2014)
16. Mittal, A., Moorthy, A.K., Bovik, A.C.: Blind/referenceless image spatial quality

evaluator. In: 2011 ASILOMAR, pp. 723–727. IEEE (2011)
17. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind” image

quality analyzer. IEEE SPL 20(3), 209–212 (2012)
18. Morris, M.R., Counts, S., Roseway, A., Hoff, A., Schwarz, J.: Tweeting is believing?:

understanding microblog credibility perceptions. In: ACM 2012 CSCW, pp. 441–
450. ACM (2012)

19. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. JMLR 12, 2825–
2830 (2011)

20. Pérez-Rosas, V., Kleinberg, B., Lefevre, A., Mihalcea, R.: Automatic detection of
fake news. In: Proceedings of the 27th ICCL. pp. 3391–3401. ACL, Santa Fe, New
Mexico, USA, August 2018. https://www.aclweb.org/anthology/C18-1287

21. Ruchansky, N., Seo, S., Liu, Y.: CSI: a hybrid deep model for fake news detection.
In: ACM on CIKM, pp. 797–806. ACM (2017)

22. Shu, K., Mahudeswaran, D., Wang, S., Lee, D., Liu, H.: FakeNewsNet: a data
repository with news content, social context and dynamic information for studying
fake news on social media. arXiv preprint arXiv:1809.01286 (2018)

23. Shu, K., Wang, S., Liu, H.: Understanding user profiles on social media for fake
news detection. In: 2018 IEEE MIPR, pp. 430–435. IEEE (2018)

24. Silverman, C.: Verification Handbook: An Ultimate Guideline on Digital Age
Sourcing for Emergency Coverage. EJC (2014)

25. Venkatanath, N., Praneeth, D., Bh, M.C., Channappayya, S.S., Medasani, S.S.:
Blind image quality evaluation using perception based features. In: 2015 NCC, pp.
1–6. IEEE (2015)

26. Volkova, S., Jang, J.Y.: Misleading or falsification: inferring deceptive strategies
and types in online news and social media. In: Proceedings WC2018, pp. 575–583.
IWWWeb CSC (2018)

27. Wang, Y., et al.: EANN: event adversarial neural networks for multi-modal fake
news detection. In: 24th ACM SIGKDD, pp. 849–857. ACM (2018)

https://www.aclweb.org/anthology/C18-1287
http://arxiv.org/abs/1809.01286

MONITOR: Assessing Message Veracity in Social Networks 87

28. Wu, K., Yang, S., Zhu, K.Q.: False rumors detection on Sina Weibo by propagation
structures. In: 2015 IEEE 31st DE, pp. 651–662. IEEE (2015)

29. Wu, L., Liu, H.: Tracing fake-news footprints: characterizing social media messages
by how they propagate. In: 11th ACM WSDM, pp. 637–645. ACM (2018)

30. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: 2017 IEEE ICCV (2017)

Joint Management and Analysis
of Textual Documents and Tabular Data

Within the AUDAL Data Lake

Pegdwendé N. Sawadogo1(B), Jérôme Darmont1, and Camille Noûs2

1 Université de Lyon, Lyon 2, UR ERIC 5 avenue Pierre Mendès France,
69676 Bron Cedex, France

{pegdwende.sawadogo,jerome.darmont}@univ-lyon2.fr
2 Université de Lyon, Lyon 2, Laboratoire Cogitamus, Bron, France

camille.nous@cogitamus.fr

Abstract. In 2010, the concept of data lake emerged as an alterna-
tive to data warehouses for big data management. Data lakes follow a
schema-on-read approach to provide rich and flexible analyses. However,
although trendy in both the industry and academia, the concept of data
lake is still maturing, and there are still few methodological approaches
to data lake design. Thus, we introduce a new approach to design a
data lake and propose an extensive metadata system to activate richer
features than those usually supported in data lake approaches. We imple-
ment our approach in the AUDAL data lake, where we jointly exploit
both textual documents and tabular data, in contrast with structured
and/or semi-structured data typically processed in data lakes from the
literature. Furthermore, we also innovate by leveraging metadata to acti-
vate both data retrieval and content analysis, including Text-OLAP and
SQL querying. Finally, we show the feasibility of our approach using a
real-word use case on the one hand, and a benchmark on the other hand.

Keywords: Data lakes · Data lake architectures · Metadata
management · Textual documents · Tabular data

1 Introduction

Over the past two decades, we have witnessed a tremendous growth of the amount
of data produced in the world. These so-called big data come from diverse sources
and in various formats, from social media, open data, sensor data, the Internet of
things, etc. Big data induce great opportunities for organizations to get valuable
insights through analytics. However, this presupposes storing and organizing data
in an effective manner, which involves great challenges.

Thus, the concept of data lake was proposed to tackle the challenges related to
the variety and velocity characteristics of big data [10]. A data lake can be defined
as a very large data storage, management and analysis system that handles any
data format. Data lakes use a schema-on-read approach, i.e., no schema is fixed
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 88–101, 2021.
https://doi.org/10.1007/978-3-030-82472-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-82472-3_8

Data Management and Analysis Within the AUDAL Data Lake 89

until data are analyzed [12], which provides more flexibility and richer analyses
than traditional storage systems such as data warehouses, which are based on a
schema-on-write approach [20]. Yet, in the absence of a fixed schema, analyses
in a data lake heavily depend on metadata [16]. Thus, metadata management
plays a vital role.

Although quite popular in both the industry and academia, the concept of
data lake is still maturing. Thence, there is a lack of methodological proposals
for data lakes implementations for certain use cases. Existing works on data
lakes indeed mostly focus on structured and/or semi-structured data [15,17,
23,26], with little research on managing unstructured data. Yet, unstructured
data represent up to 80% of the data available to organizations [9]. Therefore,
managing texts, images or videos in a data lake is an open research issue.

Furthermore, most of data lake proposals (about 75%) refer to Apache
Hadoop for data storage [31]. However, using Hadoop requires technical human
resources that small and medium-sized enterprises (SMEs) may not have.
Thence, alternatives are needed. Last but not least, data lake usage is commonly
reserved to data scientists [12,20,24]. Yet, business users represent a valuable
expertise while analyzing data. Consequently, opening data lakes to such users
is also a challenge to address.

To meet these issues, we contribute to the literature on data lakes through
a new approach to build and exploit a data lake. We implement our approach
in AUDAL (the AURA-PMI1 Data Lake). AUDAL exploits an extensive meta-
data system to activate richer features than common data lake proposals. More
concretely, our contribution is threefold. First, we introduce a new methodolog-
ical approach to integrate both structured (tabular) and unstructured (textual)
data in a lake. Our proposal opens a wider range of analyses than common data
lake proposals, which goes from data retrieval to data content analysis. Second,
AUDAL also innovates through an architecture leading to an “inclusive data
lake”, i.e., usable by data scientists as well as business users. Third, we propose
an alternative to Hadoop for data and metadata storage in data lakes.

The remainder of this paper is organized as follows. In Sect. 2, we focus on our
metadata management approach. In Sect. 3, we detail AUDAL’s architecture and
the analyses it allows. In Sect. 4, we demonstrate the feasibility of our approach
through performance measures. In Sect. 5, we review and discuss the related
works from the literature. Finally, in Sect. 6, we conclude the paper and hint at
future research.

2 Metadata Management in AUDAL

The most critical component in a data lake is presumably the metadata man-
agement system. In the absence of a fixed schema, accessing and analyzing the
lake’s data indeed depend on metadata [15,23,35]. Thence, we particularly focus
in this section on how metadata are managed in AUDAL.
1 AURA-PMI is a multidisciplinary project in Management and Computer Sciences,
aiming at studying the digital transformation, servicization and business model
mutation of industrial SMEs in the French Auvergne-Rhône-Alpes (AURA) Region.

90 P. N. Sawadogo et al.

First and foremost, let us precise what we consider as metadata. We adopt
the definition: “structured information that describes, explains, locates, or oth-
erwise makes it easier to retrieve, use, or manage information resources” [37].
This definition highlights that metadata are not limited to simple atomic data
descriptions, but may be more complex.

AUDAL’s metadata management system is based on MEDAL [33], a meta-
data model for data lakes. We adopt MEDAL because it is extensive enough to
allow both data exploration and data content analysis by business users. In line
with MEDAL, our metadata system implements data polymorphism, i.e., the
simultaneous management of multiple raw and/or preprocessed representations
of the same data [33]. Our motivation is that different analyses may require the
same data, but in various, specific formats. Thus, pregenerating several formats
for data would lead to readily available and faster analyses [2,22].

Still in line with MEDAL, we use the term “object” as our lower-granularity
data item, i.e., either a tabular or textual document. We also exploit three types
of metadata that are detailed in the following sections. Section 2.1 is dedicated
to intra-object metadata management; Sect. 2.2 focuses on inter-object metadata
management; and Sect. 2.3 details global metadata management.

2.1 Intra-object Metadata

Definition and Generation. Intra-object metadata are atomic or more com-
plex information associated with a specific object. We classify them in two cat-
egories.

Metadata properties are information that describe an object. They often take
the form of simple key-value pairs, e.g., author name, file path, creation date, etc.
However, they may sometimes be more complex. Particularly, the description of
the columns of a table can be viewed as a complex form of metadata properties.

Metadata properties are mostly provided by the file system. However, espe-
cially when dealing with textual documents, we use Apache Tika [36] to auto-
matically extract metadata such as the author, language, creation timestamp,
mime-type and even the program used to edit the document.

Refined representations are more complex. When an object is transformed,
the result may be considered as both data and metadata. This is in line with the
definition we adopt for metadata, since such transformed data make easier the
use of the original object. In AUDAL, refined representations of textual docu-
ments are either bag-of-word vectors [30] or document embedding vectors [21].
Bag-of-words can easily be aggregated to extract top keywords from a set of
documents. However, they do not suit distance calculation, due to their high
dimensionality. By contrast, embedding vectors do not bear this disadvantage,
while allowing the extraction of top keywords. Refined representations of tab-
ular data are plain and simply relational tables. Eventually, let us note that
AUDAL’s metadata system may be extended with additional types of refined
representations, if needed.

To generate bag-of-word representations, we perform for each document a
classical process: tokenizing, stopword removal, lemmatization and finally word

Data Management and Analysis Within the AUDAL Data Lake 91

count. To generate embedding representations, we project documents in an
embedding space with the help of the Doc2Vec model [21]. Each document is
thus transformed into a reduced vector of only a few tens of coordinates. Even-
tually, we use a custom process to generate refined representations from tables.
Each tabular document is read in a Python dataframe and then transformed
into a relational table.

Modeling and Storage. Still using MEDAL [33], we follow a graph approach
to model the interactions between data and metadata. Therefore, AUDAL’s
metadata system is centered on Neo4J [29]. We exploit four types of nodes to
manage intra-object metadata.

Object nodes represent raw objects. They contain atomic metadata, i.e.,
metadata properties, in particular the path to the raw file. As Neo4J does not
support non-atomic data inside nodes, we define Column nodes to store column
descriptions. Column nodes are thus associated to Object nodes only in the case
of tabular documents.

Each Object node is also associated with Refined nodes that reference refined
representations stored in other DBMSs. Refined representations of textual doc-
uments, i.e., embedding and bag-of-word vectors, are indeed stored in Mon-
goDB [27]. Similarly, refined representations of tabular documents are stored in
the form of SQLite tables [34]. Refined nodes stored in Neo4J actually contain
references to their storage location.

Figure 1 illustrates the organization of intra-object metadata.

Fig. 1. Organization of intra-object metadata in AUDAL

92 P. N. Sawadogo et al.

2.2 Inter-object Metadata

Definition and Generation. Inter-object metadata are information that
reflect relationships between objects. We manage two types of inter-object meta-
data.

Data groupings are organized tag systems that allow to categorize objects
into groups, i.e., collections. Each data grouping induces several groups, i.e.,
collections. Then, data retrieval can be achieved through simple intersections
and/or unions of groups. Data groupings are particularly interesting as they are
not data type-dependent. For example, a grouping based on data source can serve
to retrieve tabular data as well as textual documents, indistinctly (Fig. 2A).

Fig. 2. Organization of inter-object metadata in AUDAL

Data groupings are usually generated on the basis of categorical properties.
Starting from the property of interest, we first identify possible groups. Then,
each object is associated to the group it belongs to.

Similarity links are information on relatedness between objects. These meta-
data are obtained applying a suitable similarity measure between couple of tex-
tual documents. In our case, we use the cosine similarity that is classically used
in information retrieval to compare document vector-space representations [1].
As the number of potential links increases exponentially with the number of
documents, we simply retain the links of each document to its ten closest. When
dealing with tabular data, we use primary key/foreign key relationships to link
columns and thus connect tables. We deduce primary key/foreign key relation-
ships from raw data with the help of the PowerPivot method [7], which is casually
used in structured data lakes [14].

Modeling and Storage. To set up data groupings, we introduce two types of
nodes in AUDAL’s metadata catalogue: Grouping and Group. A Grouping node

Data Management and Analysis Within the AUDAL Data Lake 93

represents the root of a partition of objects. Each Grouping node is associated
with several Group nodes that represent the resulting parts of such a partition.
For example, a partition on data source could lead to a Group node for “account-
ing department”, another for “human resources” and so on (Figure 2A). Object
nodes are then associated with Group nodes with respect to the group they
belong to. A data grouping organization may thus be seen as a three-layer tree
graph where the root node represents the grouping instance, intermediate nodes
groups, and leaf nodes objects.

More simply, similarity measures in AUDAL are edges linking nodes. Such
edges potentially carry information that indicates the strength of the link, how
it was measured, its orientation, etc. More concretely, textual similarity is repre-
sented by edges of type Document Similarity between Neo4J Object nodes. We
model tabular data similarity with Coulumn Joinability edges between Column
nodes to connect primary key/foreign key column pairs that appear to be join-
able. Figure 2B depicts an instance of Column Joinability edge that connects
two tables through columns.

2.3 Global Metadata

Definition and Generation. Global metadata are data structures that are
built and continuously enriched to facilitate and optimize analyses in the lake.
AUDAL includes two types of global metadata.

Semantic resources are knowledge bases (thesauri, dictionaries, etc.) that
help improve both metadata generation and data retrieval. Dictionaries allow
filtering on specific terms and building vector representations of documents.
Similarly, AUDAL uses a thesaurus to automatically expand term-based queries
with synonyms. Such semantic resources are ingested and enriched by lake users.

Indexes are also exploited in AUDAL. An inverted index is notably a data
structure that establishes a correspondence between keywords and objects from
the lake. Such an index is particularly needed to support and, above all, speed-
up term-based queries. There are two indexes in AUDAL: document index and
table index. The first handles the entire content of each textual document, while
the latter collects all string values in tabular documents

Modeling and Storage. As global metadata are not directly linked to objects,
we do not focus on their modeling, but on their storage, instead. In AUDAL,
we manage indexes with ElasticSearch [11], an open-source indexing service that
enforces scalability. We define in ElasticSearch an alias to allow simultaneous
querying on the two indexes. Eventually, we store semantic resources, i.e., the-
sauri and dictionaries, in a MongoDB collection. Each is thus a MongoDB doc-
ument that can be updated and queried.

3 AUDAL’s Architecture and Analysis Features

In this section, we highlight how AUDAL’s components are organized (Sect. 3.1)
and the range of possible analyses (Sect. 3.2).

94 P. N. Sawadogo et al.

3.1 AUDAL Architecture

AUDAL’s functional architecture is made of three main layers: a storage layer,
a metadata management layer and a data querying layer (Fig. 3).

Fig. 3. Architecture of AUDAL

The storage layer is in charge of storing raw and processed data, as well as
metadata, through a combination of storage systems, each adapted to a specific
storage need. In AUDAL, we use a simple file system for raw data storage, a
graph DBMS to store links across data entities, a document-oriented DBMS to
store refined representations and a relational DBMS for table storage.

The metadata management layer is made of a set of processes dedicated
to data polymorphism management. More concretely, this layer is in charge of
generating metadata, notably refined representations from raw data, as well as
links. It allows future analyses and avoids a data swamp, i.e., a data lake whose
data cannot be accessed [35]. The data swamp syndrome is indeed often caused
by a lack of efficient metadata management system.

Finally, the data querying layer is an interface that consumes data from
the lake. Its main component is a representational state transfer application pro-
gramming interface (REST API) from which raw data and some ready-to-use
analyses are accessible to data scientists. However, a REST API is not accessible
to business users who, unlike data scientists, do not have enough skills to trans-
form raw data into useful information on their own. In addition, business users
are not familiar with API querying. Thence, we also provide a graphical analysis
platform for them in AUDAL. This platform features the same functions as the
REST API, but in a graphical way. Thus, each type of user can access the lake
with respect to its needs, which makes AUDAL “inclusive”, unlike the common
vision of data lakes that excludes business users [12,20,24].

Data Management and Analysis Within the AUDAL Data Lake 95

Overall, AUDAL’s architecture looks a lot like a multistore system, i.e., a
collection of heterogeneous storage systems with a uniform query language [22].
AUDAL indeed offers a single REST API to query data and metadata across
different systems (Neo4J, MongoDB, ElasticSearch, and SQLite). However,
AUDAL also features an extensive metadata management layer that goes beyond
what multistore systems do, i.e., multistores handle only intra-object metadata.

3.2 AUDAL’s Analysis Features

Data Retrieval. Data retrieval consists in filtering data from the lake. The
techniques we propose for data retrieval are suitable for both textual and tabular
documents.

Term-based querying allows to filter data with respect to a set of keywords It
includes a fuzzy search feature that allows to expand queries with syntactically
similar terms.

Navigation exploits groupings, i.e., organized sets of tags that allow data
filtering by intersecting several groups. For example, we can retrieve documents
edited by a given author on a specific year, who is associated with a department
via the intersection of three groups, e.g., “Scott”, 2010 and “Human resources”.

Finding related data consists retrieving the objects that are the closest of
a given object. Closeness is obtained from similarity links. For example, in the
case of tabular data, we use Column Joinability links.

Document Content Analysis. Content analyses provide insights from one
or several objects, while taking their intrinsic characteristics into account. The
techniques we propose are specific to each data type. In the case of textual
documents, AUDAL allows OLAP-like analyses [8]. Groupings may indeed serve
as dimensions and thus allow data filtering in multiple manners. Thus, the lake’s
data can quickly and intuitively be reduced to a subset by intersecting groups,
which is comparable to OLAP Slice & Dice operations.

Once documents are filtered, they can be aggregated to obtain valuable
insights. Aggregated results can be compared across different subsets of doc-
uments using suitable visualizations.

Top keywords summarize documents through a list of most frequent key-
words, by aggregating a bag-of-word representation of documents. Thanks to
the principle of data polymorphism, different top keyword extraction strategies
can coexist. For instance, one can be based on a predefined vocabulary, while an
other is based on a free vocabulary. We graphically display top keywords using
bar charts or word clouds.

Scoring numerically evaluates the relatedness of a set of documents to a set of
query terms with the help of a scoring algorithm that takes into account, amongst
others, the appearances of query terms in each document. Due to the wide
number of documents, the scores per document may not be readable. Thence,
we propose instead an aggregated score per group.

96 P. N. Sawadogo et al.

Highlights display text snippets where a set of terms appear. In other words,
it can be viewed as a document summary centered on given terms. This is also
commonly called a concordance.

Group comparison exploits embedding representations to show together
groups of documents using a similar vocabulary. This is done in two steps.
First, we average the embedding vectors of all documents per group. Then,
we exploit the resulting mean embedding vectors to extract group likeness using
KMeans clustering [19] or principal component analysis (PCA) [38]. KMeans
analysis identifies strongly similar groups into a user-defined number of clusters,
while PCA provides a simple two-dimensional visualization where the proximity
between groups reflects their similarity.

Tabular Content Analysis. We propose several ways to analyze tabular data.
SQL querying helps users extract or join tabular data. SQL queries actually

run on the refined representations of tabular data. As such refined representa-
tions are in the form of classical relational tables, all SQL features are supported,
including joins and aggregations.

Column correlation evaluates the links between a couple of table columns. We
use a suitable statistical measure with respect to columns types. For example, a
Jaccard similarity measure can serve to compare categorical columns, while the
Kolmogorov-Smirnov statistic is suitable for numerical columns [5].

Tuple comparison consists in running a KMeans clustering or a PCA on a
set of tuples, by taking only numeric values into account. Tuples to compare are
extracted through a SQL query, potentially including joins and/or aggregations.

4 Quantitative Assessment of AUDAL

The goal of the experiments we propose in this section is to show the feasibility
and adaptability of our approach. For this purpose, we implement AUDAL with
two different datasets. AUDAL’s source code is available online2.

4.1 Datasets and Query Workload

The first dataset we use comes from the AURA-PMI project. It is composed of
8,122 textual documents and 6 tabular documents, for a total size of 6.2 GB.
As the AURA-PMI dataset is quite small, we also create an artificial dataset by
extracting 50,000 scientific articles from the French open archive HAL. To these
textual documents, we add 5,000 tabular documents coming from an existing
benchmark [28], for a total volume of 62.7 GB.

To compare how AUDAL works on our two datasets, we define a set of
15 queries that reflect AUDAL’s main features (Table 1). Then, we measure
the response time of our workload to assess whether our approach is realistic.
In Table 1, the terms document, table and object refer to textual document,
relational table and one or the other indistinctly, respectively.
2 https://github.com/Pegdwende44/AUDAL.

https://github.com/Pegdwende44/AUDAL

Data Management and Analysis Within the AUDAL Data Lake 97

Table 1. Query workload

Data retrieval queries

1 Retrieve documents written in English and edited in December

2 Retrieve objects (tables or documents) containing the terms “big” and “data”

3 Retrieve objects with terms “big”, “data”, “document” and “article”

4 Retrieve 3 tables, joinable to any table.

5 Retrieve 5 most similar documents to a given document

Textual content analysis

6 Calculate document scores w.r.t. the terms “big”, “data”, “article” and “document”

7 Extract a concordance from documents using the terms “data” and “ai”

8 Extract a concordance from documents using the terms “data”, “ai” “article” and
“paper”

9 Find top 10 keywords from all documents

10 Run a 3-cluster KMeans clustering on documents grouped by month

11 Run a PCA analysis on documents grouped by month.

Tabular content analysis

12 Run a join query between two tables

13 Run a join query between two tables while averaging all numerical values and
aggregating by any categorical column.

14 Run a 3-cluster KMeans clustering on the result of query 12

15 Run a PCA on the result of query 12

4.2 Experimental Setup and Results

Both instances of AUDAL are implemented on a cluster of three VMware virtual
machines (VMs). The first VM has a 7-core Intel-Xeon 2.20 GHz processor and
24 GB of RAM. It runs the API. Both other VMs have a mono-core Intel-
Xeon 2.20 GHz processor and 24 GB of RAM. Each hosts a Neo4J instance, an
ElasticSearch instance and a MongoDB instance to store AUDAL’s metadata.
The execution times we report in Table 2 are the average of ten runs of each
query, expressed in milliseconds.

Our experimental results show that AUDAL does support almost all its query
and analysis features in a reasonable time. We also see that AUDAL scales quite
well with respect to data volume. All data retrieval and tabular content analyses
indeed run very fast on both the AURA-PMI dataset (174 ms on average) and
the larger, artificial dataset (183 ms on average). Admittedly, half of textual
content queries, i.e., queries #9, #10 and #11, take longer to complete: 5, 2 and
2 s on average, respectively, on the AURA-PMI dataset; and 188, 27 and 27 s on
average, respectively, on the artificial dataset. However, we note that without our
approach, such tasks would be definitely impossible for business users. Moreover,
the situation can certainly be improved by increasing CPU resources. Thus, we
consider our results promising.

However, AUDAL’s features are achieved at the cost of an extensive metadata
system. Table 3 indeed shows that the size of metadata represents up to half

98 P. N. Sawadogo et al.

Table 2. Query response time (ms)

Query AURA-PMI Artificial

dataset dataset

Data retrieval queries

Query 1 194 653

Query 2 108 207

Query 3 143 305

Query 4 59 81

Query 5 51 79

Textual content analysis

Query 6 85 117

Query 7 169 198

Query 8 62 92

Query 9 4,629 188,199

Query 10 1,930 26,969

Query 11 1,961 26,871

Tabular content analysis

Query 12 71 37

Query 13 61 12

Query 14 174 144

Query 15 670 520

Table 3. Raw data vs. metadata size (GB)

System AURA-PMI Artificial

dataset dataset

Raw data

– 6.2 62.7

Metadata

Neo4J 0.9 2.0

SQLite 0.003 1.7

MongoDB 0.28 3.4

ElasticSearch 1.6 27.6

Total 2.8 34.7

of raw data. Yet we deem this acceptable given the benefits. Moreover, it is
acknowledged that metadata can be larger than the original data, especially in
the context of data lakes, where metadata are so important [18].

5 Related Works

The research we present in this paper relates to many systems from the data
lake literature. Some of them address data retrieval issues, while others mostly
focus on data content analysis. We discuss them with respect of our structured
and unstructured data context.

5.1 Data Retrieval from Data Lakes

A great part of the literature considers data lakes as a playground dedicated to
data scientists. Related research focuses on data retrieval, since content analyses
are assigned to expert users. We identify three main approaches for data retrieval
in data lakes, namely navigation, finding related data and term-based search.
A first retrieval-by-navigation model exploits tags to easily and quickly find
the target object [28]. A similar approach is implemented in several data lakes
[3,17,26]. However, all these models are set in the context of structured data
only.

Data Management and Analysis Within the AUDAL Data Lake 99

A second data retrieval approach exploits data relatedness, i.e., finding a
significant similarity between objects or their components [5]. Several techniques
help detect relatedness between tabular data through column joinability and
unionability [5,13,14,23]. To the best of our knowledge, only one proposal [9] is
relevant to unstructured data.

Finally, term-based querying is particularly useful for textual data. Thus,
in previous work, we used an indexing system to allow textual documents data
retrieval [32]. This technique, i.e., inverted indexes, is also implemented with
structured data in Google’s data lake [17] and CoreKG [4].

5.2 Data Content Analysis from Data Lakes

An alternative vision of data lakes considers that business users, i.e., not data
scientists, can also consume data from a lake. Thus, content querying is required
and methods must be used to ease the users’ work. In the structured data world,
fuzzy SQL querying can be used in data lakes [25]. Similarly, a custom query
rewriting system is exploited to analyse data from the Constance lake [16]. There
is also a way to personalize table querying by taking user profile into account [3].
Although very few, some approaches propose content analysis for semi-structured
[15] and unstructured data [32]. The latter exploits text and graph mining tech-
niques to enable document aggregation.

5.3 Discussion

As stated above, most data lake approaches focus either on data retrieval or data
content analyses. Therefore, they present a partial vision of data lakes, in our
opinion. In contrast, there exists a system that frees itself from this cleavage [3].
However, it does not support unstructured data. More generally, unstructured
data are very rarely supported in data lakes. Our own CODAL data lake [32]
does manage textual documents management, but only textual documents. It is
therefore limited. In contrast, AUDAL goes beyond these limitations by featuring
both data retrieval as well as content analyses. In addition, AUDAL supports
both tabular documents and, above all, textual documents whose inclusion in
data lakes still challenging.

6 Conclusion and Future Works

In this paper, we present AUDAL, presumably the first methodological approach
to manage both textual and tabular documents in a data lake. AUDAL includes
an extensive metadata system to allow querying and analyzing the data lake and
supports more features than state-of-the-art data lake implementations. In terms
of queries, AUDAL indeed supports both data retrieval and data content anal-
yses, including Text-OLAP and SQL querying. Moreover, AUDAL also allows
the exploitation of a data lake not only by data scientists, but also by business
users. All these makes AUDAL an “inclusive” data lake.

100 P. N. Sawadogo et al.

In our near-future research, we plan a deeper validation of AUDAL on two
aspects. First, we will work on that complexity and time cost of metadata gen-
eration algorithms. Second, we will study how AUDAL’s analysis interface is
useful to and usable by business users, e.g., using the widely used SUS (Sys-
tem Usability Scale) protocol [6]. Another perspective is data lineage tracking
to allow AUDAL support version management. This is particularly important
for tabular documents that are often merged or altered. Such a lineage could be
implemented by extending AUDAL’s refined representations. Finally, we envis-
age to include more unstructured data types into a lake, i.e., images, videos
and/or sounds, and manage their particular metadata for retrieval and analysis.

Acknowledgments. P. N. Sawadogo’s Ph.D. is funded by the Auvergne-Rhône-Alpes
Region through the AURA-PMI project.

References

1. Allan, J., Lavrenko, V., Malin, D., Swan, R.: Detections, bounds, and timelines:
UMass and TDT-3. In: Proceedings of TDT-3, pp. 167–174 (2000)

2. Armbrust, M., Ghodsi, A., Xin, R., Zaharia, M.: Lakehouse: a new generation of
open platforms that unify data warehousing and advanced analytics. In: Proceed-
ings of CIDR (2021)

3. Bagozi, A., Bianchini, D., Antonellis, V.D., Garda, M., Melchiori, M.: Personalised
exploration graphs on semantic data lakes. In: Proceedings of OTM, pp. 22–39
(2019)

4. Beheshti, A., Benatallah, B., Nouri, R., Tabebordbar, A.: CoreKG: a knowledge
lake service. In: PVLDB, vol. 11, no. 12, pp. 1942–1945 (2018)

5. Bogatu, A., Fernandes, A., Paton, N., Konstantinou, N.: Dataset discovery in data
lakes. In: Proceedings of ICDE (2020)

6. Brooke, J.: SUS: a quick and dirty usability scale. Usability Eval. Ind. 189, 4–7
(1996)

7. Chen, Z., Narasayya, V., Chaudhuri, S.: Fast foreign-key detection in Microsoft
SQL server PowerPivot for excel. In: PVLDB, vol. 7, no. 13, pp. 1417–1428 (2014)

8. Codd, E., Codd, S., Salley, C.: Providing OLAP (on-line analytical processing) to
user-analysts, an IT mandate. E. F. Codd and Associates (1993)

9. Diamantini, C., Giudice, P.L., Musarella, L., Potena, D., Storti, E., Ursino, D.:
A new metadata model to uniformly handle heterogeneous data lake sources. In:
Benczúr, A., et al. (eds.) ADBIS 2018. CCIS, vol. 909, pp. 165–177. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00063-9 17

10. Dixon, J.: Pentaho, hadoop, and data lakes (2010). https://jamesdixon.wordpress.
com/2010/10/14/pentaho-hadoop-and-data-lakes/

11. Elastic: Elasticsearch (2020). https://www.elastic.co
12. Fang, H.: Managing data lakes in big data era. In: Proceedings of CYBER, pp.

820–824 (2015)
13. Farrugia, A., Claxton, R., Thompson, S.: Towards social network analytics for

understanding and managing enterprise data lakes. In: Proceedings of ASONAM,
pp. 1213–1220 (2016)

14. Fernandez, R.C., Abedjan, Z., Koko, F., Yuan, G., Madden, S., Stonebraker, M.:
Aurum: a data discovery system. In: Proceedings of ICDE, pp. 1001–1012 (2018)

https://doi.org/10.1007/978-3-030-00063-9_17
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://jamesdixon.wordpress.com/2010/10/14/pentaho-hadoop-and-data-lakes/
https://www.elastic.co

Data Management and Analysis Within the AUDAL Data Lake 101

15. Hai, R., Geisler, S., Quix, C.: Constance: an intelligent data lake system. In: Pro-
ceedings of SIGMOD, pp. 2097–2100 (2016)

16. Hai, R., Quix, C., Zhou, C.: Query rewriting for heterogeneous data lakes. In:
Benczúr, A., Thalheim, B., Horváth, T. (eds.) ADBIS 2018. LNCS, vol. 11019, pp.
35–49. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98398-1 3

17. Halevy, A., et al.: Managing google’s data lake: an overview of the GOODS system.
In: Proceedings of SIGMOD, pp. 795–806 (2016)

18. Hellerstein, J.M., et al.: Ground: a data context service. In: Proceedings of CIDR
(2017)

19. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8),
651–666 (2010)

20. Khine, P.P., Wang, Z.S.: Data lake: a new ideology in big data era. In: Proceedings
of WCSN. ITM Web of Conferences, vol. 17, pp. 1–6 (2017)

21. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
Proceedings of ICML, pp. 1188–1196 (2014)

22. Leclercq, E., Savonnet, M.: A tensor based data model for polystore: an application
to social networks data. In: Proceedings of IDEAS, pp. 110–118 (2018)

23. Maccioni, A., Torlone, R.: KAYAK: a framework for just-in-time data preparation
in a data lake. In: Proceedings of CAiSE, pp. 474–489 (2018)

24. Madera, C., Laurent, A.: The next information architecture evolution: the data
lake wave. In: Proceedings of MEDES, pp. 174–180 (2016)

25. Malysiak-Mrozek, B., Stabla, M., Mrozek, D.: Soft and declarative fishing of infor-
mation in big data lake. IEEE Trans. Fuzzy Syst. 26(5), 2732–2747 (2018)

26. Mehmood, H., et al.: Implementing big data lake for heterogeneous data sources.
In: Proceedings of ICDEW, pp. 37–44 (2019)

27. MongoDB-Inc.: The database for modern applications (2020). https://www.
mongodb.com/

28. Nargesian, F., Zhu, E., Pu, K.Q., Miller, R.J.: Table union search on open data.
In: PVLDB, vol. 11, pp. 813–825 (2018)

29. Neo4J Inc.: The Neo4j graph platform (2018). https://neo4j.com
30. Pu, W., Liu, N., Yan, S., Yan, J., Xie, K., Chen, Z.: Local word bag model for text

categorization. In: Proceedings of ICDM, pp. 625–630 (2007)
31. Russom, P.: Data lakes purposes. Patterns, and platforms. TDWI Research, Prac-

tices (2017)
32. Sawadogo, P.N., Kibata, T., Darmont, J.: Metadata management for textual doc-

uments in data lakes. In: Proceedings of ICEIS, pp. 72–83 (2019)
33. Sawadogo, P.N., Scholly, É., Favre, C., Ferey, É., Loudcher, S., Darmont, J.: Meta-

data systems for data lakes: models and features. In: Welzer, T., et al. (eds.)
ADBIS 2019. CCIS, vol. 1064, pp. 440–451. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-30278-8 43

34. SQLite-Consortium: What is SQLite? (2020). https://www.sqlite.org/
35. Suriarachchi, I., Plale, B.: Crossing analytics systems: a case for integrated prove-

nance in data lakes. In: Proceedings of e-Science, pp. 349–354 (2016)
36. The Apache Software Foundation: Apache Tika - a content analysis toolkit (2018).

https://tika.apache.org/
37. Visengeriyeva, L., Abedjan, Z.: Anatomy of metadata for data curation. J. Data

Inf. Qual. 12(3), 1–3 (2020)
38. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr.

Intell. Lab. Syst. 2(1), 37–52 (1987)

https://doi.org/10.1007/978-3-319-98398-1_3
https://www.mongodb.com/
https://www.mongodb.com/
https://neo4j.com
https://doi.org/10.1007/978-3-030-30278-8_43
https://doi.org/10.1007/978-3-030-30278-8_43
https://www.sqlite.org/
https://tika.apache.org/

Aggregation and Summarization
of Thematically Similar Twitter

Microblog Messages

Markus Endres1(B), Lena Rudenko2, and Dominik Gröninger2

1 University of Passau, Innstr. 43, 94032 Passau, Germany
markus.endres@uni-passau.de

2 University of Augsburg, Universitätsstr. 6a, 86159 Augsburg, Germany
lena.rudenko@informatik.uni-augsburg.de, dominik.groeninger@t-online.de

http://fim.uni-passau.de/dke/

Abstract. Information is one of the most important resources in our
modern lifestyle and society. Users on social network platforms, like Twit-
ter, produce thousands of tweets every second in a continuous stream.
However, not all written data are important for a follower, i.e., not nec-
essary relevant information. That means, trawling through uncountable
tweets is a time-consuming and depressing task, even if most of the mes-
sages are useless and do not contain news. This paper describes an app-
roach for aggregation and summarization of short messages like tweets.
Useless messages will be filtered out, whereas the most important informa-
tion will be aggregated into a summarized output. Our experiments show
the advantages of our promising approach, which can also be applied for
similar problems.

Keywords: Twitter · Microblog · Summarization · Aggregation

1 Introduction

Twitter1 is a micro-blogging and social networking service where users post and
interact with messages known as tweets (280 Unicode character short messages).
Individuals, organizations, companies and mass media use Twitter as a platform
for distributing their content on the web.

To follow a particular user’s account makes sense if you have a constant
interest in the content published there and want to be up-to-date. But there
exist millions of other tweets, and not all of them are valuable. Twitter allows
to browse posted tweets using keywords or hashtags (topics on Twitter written
with a # symbol, e.g., #WorldCup2018). Users can also use search terms, term
combinations or more complex queries to get tweets related to these terms.

1 Twitter: https://twitter.com.

c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 102–117, 2021.
https://doi.org/10.1007/978-3-030-82472-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_9&domain=pdf
https://twitter.com
https://doi.org/10.1007/978-3-030-82472-3_9

Microblog Summarization 103

However, Twitter reports about 330 million monthly active users, who send
over 500 million tweets daily, which means 6 thousand messages per second2.
Therefore, it is very difficult to navigate through this data, which, moreover, is
constantly increasing. Processing big data and searching for interesting and rele-
vant information in large data sets is a highly important topic in both, academia
and business. In general, users want to get personalized results, which are filtered
out from the ever-growing amount of data according to user’s preferences, cp.
[8]. However, due to the nature of Twitter, even the reduced information could
be too large on the one hand and have a lot of duplicates and incomplete infor-
mation snippets on the other hand. Thus, it is extremely important to present
the result in a way that it can be easily consumed. Hardly anyone enjoys skim-
ming through reams of tweets in order to find the most valuable information.
The objective of this paper is to aggregate a thread of text messages in order to
provide a short summarization of the most important information content.

Example 1. Assume we want to find some facts about the soccer team Germany
at the World Cup 2018 in Russia. The search on Twitter may contain the hash-
tags #Germany and #WorldCup2018 and yields to the following set of tweets.

1. It’s a sad day for all of #Germany and the World Cup �.
2. After a loss against South Korea, team Germany leaves the World Cup.

3. 0:2 defeat in the last group match and team Germany leaves the World

Cup in Russia.

4. RT @UserXyz It’s a sad day for all of #Germany and the World Cup �.

Each of these tweets reports about the same event: “soccer team Germany leaves
the World Cup after group stage”. The first message describes some user’s emo-
tions and is less important for someone looking for factual information. The fol-
lowing two posts provide (incomplete) facts. The last one is a retweet (a Twitter
form of quoting) of the first message with no additional information at all. An
aggregated form and summarization of this set of tweets could be:

‘‘Team Germany loses its last group match against South Korea 0:2

and leaves the World Cup in Russia.’’

A summarization of micro-blog posts, such as tweets, has different challenges,
goals, and tasks in comparison to large text documents, which must be consid-
ered, e.g., emojies, abbreviations, grammar, spelling mistakes, etc. A summary
should not contain duplicates and should provide as complete information as
possible. Some aggregation methods apply Neural Networks to solve this task.
However, this requires a huge amount of (reliable) training data. Our approach
does not rely on training data, is easy to understand and to implement, suitable
for (near) real-time analytics, and based on the following steps: (1) data prepro-
cessing, (2) data clustering and (3) data aggregation, which will be described in
detail below.

2 Tweets per second, last visited 2021/03/01: www.internetlivestats.com/twitter-
statistics/.

www.internetlivestats.com/twitter-statistics/
www.internetlivestats.com/twitter-statistics/

104 M. Endres et al.

The rest of this paper is organized as follows: Sect. 2 discusses related work.
Afterwards we introduce the general concept of our approach in Sect. 3. Section 4
contains details about data preprocessing. The clustering task is discussed in
Sect. 5, and the aggregation and summarization process in Sect. 6. A comprehen-
sive evaluation can be found in Sect. 7, and a conclusion in Sect. 8.

2 Related Work

The most related papers to ours are [4] and [12]. In the first approach, the
summary is a kind of label or keyword sequence for a cluster of terms, which
titles the topic of every message in the group. Such kind of summary is very
short and does not provide much information. The second approach is to choose
only one text message as representative. This search is called “budgeted median
problem” and considers the summary as good if every message in the document
cluster is assigned to a selected one and can be inferred from the latter. This
approach gives the user more details, but some information is still lost.

Related to Twitter, content analysis is also often in the focus, cp. [1,2,11]. In
[9] the authors try to build a news processing system based on Twitter. Tweets
are analyzed to determine if it is news or not, and thereafter clustered into news
topics. In [5] the authors describe an event notification system that monitors
and delivers semantically relevant tweets if these meet the user’s information
needs. As an example they construct an earthquake prediction system targeting
Japanese tweets. For their system they use keywords, the number of words, and
the context of an event. The problem addressing in [7] is to determine the pop-
ularity of social events (concerts, festivals, sport events, conferences, etc.) based
on their presence in Twitter in order to improve infrastructure organization. In
[6] the authors describe a system to detect events from tweets. This is based on
the textual and temporal characteristics.

We want to provide a solution for tweet summarization producing a short
aggregated message, rather than a general meaningless headline. The objective
was not to get involved with Neural Networks, because they require a huge
amount of training data, which is often not available for real-time analytics.

3 Background and General Concept

The aim of this paper is to provide an automatically created summary of Twitter
posts related to a certain topic. The idea of our approach is based on [10],
where the Phrase Reinforcement (PR) algorithm was developed to display words
from text messages as nodes in a graph structure to handle the problem of
summarizing microblogs. Walking through the paths of this graph, it is possible
to restore text messages. Some of these paths are selected, converted back into a
human readable format and presented to the user. However, this approach only
relies on the original phrases and does not apply further processing of the data.

As an extension, we perform a comprehensive data preprocessing (1) step to
clean the data from unwanted characters and phrases. Afterwards, in order to

Microblog Summarization 105

gather as much information from the posts as possible, we apply a data clus-
tering (2) step to find the most common phrases and terms. Using a clustering
approach, we also overcome the disadvantages of previous methods, cp. [4,12].
Finally, our data aggregation (3) approach can generate a summarized message.
In contrast to [10], we use more than one path to generate the final message.
The main idea of the algorithm is to find the most commonly used phrases in a
graph. These phrases can then be used as a summarization of tweets.

The algorithm was inspired from the observations that users often use the
same words when describing a key idea. Furthermore, users often retweet the
most relevant content for a topic. These two patterns create highly overlapping
sequences of words when considering a large number of posts for a single topic.

In our preprocessing step,we remove irrelevant sources (e.g., stopwords, hyper-
links, duplicates) from the tweets. This is important to focus the algorithm on the
most relevant content. Afterwards we cluster all terms in order to find the most
common sequences of words. Based on this clustering result our algorithm builds
a tweet graph representing the common sequences of words (i.e., phrases). The
main idea behind that is to represent words from phrases as nodes in a graph. These
nodes have certain weights, depending on how often they appear in the text col-
lection. The paths with the highest weights can then be used as a summarization.

Fig. 1. Example Phrase Reinforcement graph.

Example 2. Using the sample sentences from the introductory Example 1, our
algorithm would generate a graph similar to the one in Fig. 1 (after preprocessing
and clustering). The nodes are weighted according to their occurrence in the text
collection.

The most common word (or word sequence) serves as root node, here Germany.
World Cup also can be found 3 times, but it follows after the word leaves twice
and comes right after Germany once. Together with the word team that is located
directly before Germany, the most important key information from our collection
is: team Germany leaves World Cup. The path after loss against South Korea team
Germany leaves World Cup Russia has a weight of 14, 0:2 defeat last group match
team Germany leaves World Cup Russia comes up to 15, and so on.

In the original Phrase Reinforcement algorithm the authors only consider the
highest weight, which obviously is not enough for summarizing complex tweet
posts. Our first idea was to consider all paths having a weight above a given
threshold. However, this leads to very similar sentences and therefore we decided

106 M. Endres et al.

to use another approach: We start with the path having the highest weight and
then continue using the paths that differ the most from the used paths so far.
This leads to a great diversity among the selected information and serves as a
summarization at the end.

4 Data Preprocessing

Tweets often include abbreviations, errors (intentional or accidental), internet
slang, emojis, URLs, etc. Therefore, preprocessing of tweets is a very important
step in order to get a reliable summarization of text messages. The main goal of
our preprocessing step is to transform the tweets into a normalized, generalized
form and therefore are mainly aimed to eliminate “unwanted” components. This
takes into account special characters (e.g., links and emojis, user references and
hashtags). In this section we describe our preprocessing steps:

Algorithm: Data Preprocessing

Input: A set of tweets
Step 1: Substitute retweets by its original message.
Step 2: Transformation of upper case letters to lower case.
Step 3: Translation of any existing HTML entities3 into “standard” entities.
Step 4: Normalization with compatible decomposition: Special characters are
separated into their components.4 This prevents misunderstanding of unfor-
matted HTML remnants as words and treatment of special characters differ-
ent from their normal counterparts. E.g., Señor will be normalized to sen˜or.
Step 5: Removal of URLs and e-mail addresses: URLs and email addresses
that are less common in tweets, are removed, otherwise they will appear as
annoying elements in the clustering step.
Step 6: Removal of “unwanted” characters (e.g., � ‘ ’ , . ! ˜ ‘ ’): All spe-
cial characters that may negatively affect the clustering process and are not
important for the content of a tweet are removed. Characters that have an
added value with regard to the information content remain in the text. This
includes arabic numerals, spaces and apostrophes, as well as +, −, ., :, ,, if
they appear in connection with numbers (e.g., in −2.100, 55). The glyphs for
ampersand (&), paragraph (§), percent (%) and for common currencies (dol-
lar, euro, pound, etc.) are also preserved. hash (#) and at (@) also play a
special role. They serve as a marker for hashtags (#...) and references to user
accounts (@...).
Step 7: Lemmatization of the remaining text elements: Words are reduced to
their stems. Lemmatization provides linguistically correct expressions. This
is done by using linguistic analyses and a large vocabulary, cp. [3]. Hashtags
and user references remain unchanged, but their identifiers (# or @) are
separated. This way it is ensured that the “simple” hashtags (e.g., #usa) are
matched with the same terms not marked as hashtags during the clustering
process.

3 HTML entities: https://en.wikipedia.org/?title=HTML entity.
4 Unicode normalization: https://en.wikipedia.org/wiki/Unicode equivalence.

https://en.wikipedia.org/?title=HTML_entity
https://en.wikipedia.org/wiki/Unicode_equivalence

Microblog Summarization 107

Step 8: Tokenisation of lemmatized messages: All lemmatized tweets are
tokenized: each term forms a separate token.
Step 9: Removal of stop words (e.g., “of, the, in, by, and, its, be, a”): Stop
words are not relevant w.r.t. the content. Therefore, they are removed from
the token sequences. However, they are important for the comprehensibility of
a sentence, hence stored in background in order to produce a human readable
summarization.
Step 10: Building of N -grams: The final preprocessing step is the genera-
tion of N -grams. These consist of N successive tokens each and are used to
compare the tweets. As default value N = 3 is recommended. In addition,
lexicographic sorting of the tokens within an N -gram is performed. N -grams,
which are similar in content, but differ due to the sequence of tokens, are
considered identical in the clustering process.
Output: A set of N -grams describing the posts

Example 3. Consider the first Twitter message from Example 1 as input: After
the first steps, e.g., upper case to lower case, URL and special character removal,
lemmatization, our post is as follows after Step 7:

it′s a sad day for all of # germany and the world cup

Finally, we end up with the following N -grams after tokenization and stop word
removal: {(germany day sad), (day germany world) (cup germany world)}.

5 Data Clustering

Our goal is to summarize short messages that fit together in terms of content.
Therefore, we perform a clustering and collect the tweets describing the same
topic or event in the same group. Afterwards, the messages in each group can
be summarized using our approach described in the next section.

Our clustering approach is based on the k most common N -grams as cluster
centroids. Phrases having the same N -grams are simply assigned to the same
cluster. That means that we have a large set of clusters after the first round,
some of them are exactly the same (but with different N -grams as centroids),
others overlap to a certain degree. This will be resolved by merging clusters that
are “similar” w.r.t. a threshold (certain percentage).

Using this kind of clustering, only one data iteration is necessary. No sim-
ilarity between the tweets is calculated, because the affiliation to a cluster is
determined with the help of the N -gram centroids. This makes this cluster app-
roach quite efficient, e.g., for real-time Twitter stream processing, which still was
an open issue in [10]. Our approach is as follows:

108 M. Endres et al.

Algorithm: Data Clustering

Input: A set of N -grams for each tweet after data preprocessing (cp. Sect. 4)
Step 1: Build a cluster for each N -gram, sort the tweets and eliminate dupli-
cates. All N -grams generated during the preprocessing step are used as cluster
centroids. N -grams (and their text phrase, resp.), for which a cluster already
exists, are assigned to existing clusters. This approach allows us a clustering
process in linear time. Since each cluster is a set, they are duplicate free. At
the end, each cluster contains only phrases and their corresponding centroid
(or one of the unsorted permutations of the N−gram).
Step 2: Combining of overlapping clusters: Clusters overlapping to a certain
percentage p are merged. For the parameter p we suggest a value between 0.6
and 0.7 (or 60% − 70%), based on our experience. Two clusters C1 and C2

are merged if the following condition holds: |C1∩C2|
min(|C1|,|C2|) ≥ p

Step 3: Discarding small clusters. The resulting clusters are now either larger
clusters, which were constructed by merging, or smaller clusters, which could
not be merged. Based on a given minimum cluster size s, some clusters can
be classified as negligible.
Output: The k largest clusters.

Example 4. Table 1 represents our sample input tokens (abbrv. with letters) and
the set of N = 3-grams (after the preprocessing step). For example, (a b c d e f
g e) represents input tokens and (a b c), (b c d), (c d e), ... (e f g) the N -grams.
We want to determine the k = 2 largest clusters.

Table 1. Input tweets with the corresponding 3-grams.

ID Text (tokens) Set of N-gramms

11 (a b c d e f g e) (a b c), (b c d), (c d e), (d e f), (e f g), (e f g)

12 (a b c d e f h g) (a b c), (b c d), (c d e), (d e f), (e f h), (f g h)

13 (a b c d e f g h) (a b c), (b c d), (c d e), (d e f), (e f g), (f g h)

14 (b c d e f g h) (b c d), (c d e), (d e f), (e f g), (f g h)

15 (l m n o p q r s) (l m n), (m n o), (n o p), (o p q), (p q r), (q r s)

16 (u v w x y z a b) (u v w), (v w x), (w x y), (x y z), (a y z), (a b z)

17 (u v w x y z a) (u v w), (v w x), (w x y), (x y z), (a y z)

18 (w x y z a x y z) (w x y), (x y z), (a y z), (a x z), (a x y), (x y z)

For each 3-gram we build a cluster having the N -gram as centroid (blue), cp.
Table 2. For example, for (a b c) we have the tweets with ID 11, 12, and 13 as
cluster objects. Clusters are duplicate free, hence we remove ID 11 in (e f g).

Microblog Summarization 109

Table 2. Cluster centroids and 3−grams.

Centroid Tweets

(size) ID Text (tokens)

a b c (3)

11 (a b c d e f g e)

12 (a b c d e f g h)

13 (a b c d e f g h)

b c d (4)

11 (a b c d e f g e)

12 (a b c d e f h g)

13 (a b c d e f g h)

14 (b c d e f g h)a

c d e (4)

11 (a b c d e f g e)

12 (a b c d e f h g)

13 (a b c d e f g h)

14 (b c d e f g h)a

d e f (4)

11 (a b c d e f g e)

12 (a b c d e f h g)

13 (a b c d e f g h)

14 (b c d e f g h)a

e f g (3)

11 (a b c d e f g e)

13 (a b c d e f g h)

14 (b c d e f g h) a

11 (a b c d e f g e)

e f h (1) 12 (a b c d e f h g)

f g h (3)

12 (a b c d e f h g)

13 (a b c d e f g h)

14 (b c d e f g h)a

Centroid (size) Tweets

ID Text (tokens)

l m n (1) 15 (l m n o p q r s)

m n o (1) 15 (l m n o p q r s)

n o p (1) 15 (l m n o p q r s)

o p q (1) 15 (l m n o p q r s)

p q r (1) 15 (l m n o p q r s)

q r s (1) 15 (l m n o p q r s)

u v w (2)
16 (u v w x y z a b)

17 (u v w x y z a)2

v w x (2)
16 (u v w x y z a b)

17 (u v w x y z a)

w x y (3)

16 (u v w x y z a b)

17 (u v w x y z a) 2

18 (w x y z x y z)

x y z (3)

16 (u v w x y z a b)

17 (u v w x y z a) 2

18 (w x y z a x y z)

18 (w x y z a x y z)

a y z (3)

16 (u v w x y z a b)

17 (u v w x y z a) 2

18 (w x a y z x y z)

a b z (1) 16 (u v w x y z a b)

a x z (1) 18 (w x y a x z y z)

a x y (1) 18 (w x y z a x y z)

In the next step we merge the overlapping clusters. Considering the clusters
in Table 2 we identify some “similarity”, e.g., the clusters with centroids (b c d),
(c d e), and (d e f) are identical, whereas (b c d), (a b c), (e f g), (f g h), (e f h)
are similar to a certain percentage. Similar cluster values are included in larger
clusters, e.g., (m n o), (n o p), etc. are combined to (l m n), cp. Table 3.

Table 3. Merging.

Centroid Tweets

(size) ID Text (tokens)

b c d (4)

11 (a b c d e f g e)

12 (a b c d e f h g)

13 (a b c d e f g h)

14 (b c d e f g ha)

w x y (3)

16 (u v w x y z a b)

17 (u v w x y z a) 2

18 (w x y z a x y z)

l m n (1) 15 (l m n o p q r s)

Table 4. Discarding.

Centroid (size) Tweets

ID Text (tokens)

b c d (4)

11 (a b c d e f g e)

12 (a b c d e f h g)

13 (a b c d e f g h)

14 (b c d e f g h) a

w x y (3)

16 (u v w x y z a b)

17 (u v w x y z a) 2

18 (w x y z a x y z)

l m n (1) 15 (l m n o p q r s)

110 M. Endres et al.

Finally, all smaller clusters can be classified as unimportant and therefore
are not used for summarization. E.g., if we use a minimum cluster size of s = 3,
then (l m n) will be removed, cp. Table 4. At the end, the remaining k = 2 larger
clusters are used for further processing.

6 Data Aggregation

Our approach for data aggregation in order to produce the final summarization
is an extension of [10], cp. Sect. 3. In comparison to the original version, we trace
several paths for the final message construction, and not only the path with the
highest weight. In addition, the weights of the paths are calculated without stop
words and weakly weighted nodes in order to produce more reliable results.

Algorithm: Data Aggregation

Input: One of the k largest clusters, cp. Sect. 5.
Step 1: Build tweet graphs. Each tweet is represented as a separate graph.
Tokens are nodes and connected by directed edges according to the reading
direction. Stop words are removed, tokens representing the cluster centre are
combined to one node. If a cluster contains tweets that do not contain the
centroid (or its permutation), they are not considered. Each node gets an
initial weight of 1.
Step 2: Merge the tweet graphs into a common cluster graph. All tweet graphs
are connected via the centroid as a common intersection. This is done by
“superimposing”. The combined centroid is assigned a new weight according
to the number of combined tweets. Likewise, all identical sub-paths that begin
or end at the centroid are superimposed and weighted.
If a tweet contains the centroid of its cluster n times, this tweet is also included
n times in the combined cluster graph. If this results in an overlap with other
nodes, their weight will be increased, if it was not already incremented before
while one of the other n − 1 centroid’s occurrence of the current tweet was
processed. This ensures that all centroid occurrences in a tweet are treated
equally, but the weight of the node in the tweet graph is not incremented
repeatedly by a single tweet.
Step 3: Reduce the cluster graph. We reduce the cluster graph to its essence.
Strong weighted nodes are considered important and weakly weighted nodes
are considered insignificant. The centroid, which always has the maximum
weight, represents the core content of the cluster while nodes that still have
their initial weight of 1 are regarded as marginal information and can be
removed.
Step 4: Select m paths for the summarization. In order to generate a sum-
mary having a maximum of information, several suitable paths are deter-
mined. For this, we start with the path having the highest weight (main
path). Instead of using the paths with the next highest total weights after-
wards, paths that differ the most from those used so far are selected. The path
that has the least overlap or, in case of a tie, the higher weight, is selected as

Microblog Summarization 111

next sentence. The reason for this is that paths differing less have very sim-
ilar content. In this way, the greatest possible diversity among the selected
information can be achieved. If there are still unused paths afterwards, the
procedure is repeated for each further sentence until a maximum of m paths
is reached.
Step 5: Build the final message After selecting m paths, they are transformed
into a human readable format. Each path is a concatenation of tokens, and
hence replaced by one of the tweets whose paragraph they represent (e.g., by
the last one that leads to an increasing node weight). The substitution is done
using the lemmatized token sequences, which were saved during preprocess-
ing and still contain stop words. This variant produces clearly better results
concerning readability and comprehensibility of the message.
Output: Microblog summarization

Example 5. Assume a cluster (d e f) as one of the k largest clusters after the data
clustering step as shown in Fig. 2 (not related to previous examples). Tweets are
shown as sequences of their tokens, tokens are simplified as letters. Centroids
are marked blue, tweets not containing a centroid are highlighted red):

Fig. 2. Input cluster. Fig. 3. Tweet graphs.

Based on the input data, we build tweet graphs (Step 1), cp. Fig. 3. ID 60
is not considered, because it does not contain the centroid. Each node gets a
initial weight of 1. Afterwards we merge all tweet graphs into the cluster graph
by superimposing (Step 2), cp. Fig. 4 (including the white nodes). The combined
centroid gets a weight of 19. Also all sub-paths are superimposed and weighted.
Removing all nodes with an initial weight of 1 leads to the reduced graph (Step
3, Fig. 4 without white nodes).

112 M. Endres et al.

Fig. 4. Complete and reduced cluster graph (reduced nodes are white).

In Step 4 we select the paths for the m = 4 final messages, cp. Table 5. The
most appropriate path in each phase is marked green. The main path has the
highest total weight (top left table, (m n c ...)) and is added to the set of selected
paths, cp. Table 6. The second path correspond the path with the smallest overlap
(ovl.) in order to add the most valuable information. The third path correspond
to the smallest overlap to all already selected paths, therefore we add (a b c ...)
and (v b c ...) from the next table. Furthermore, we add (v b c d e f g d) as 4.
path to the selected paths. Table 6 shows all selected paths after the complete
aggregation process from which our final message is generated (inserting white
token sequences from Fig. 4 (orange phrases)).

Table 5. Determine m paths for final message.

Possible paths – 1. path

path (weight) ovl. to M

x (m n c d e f g h i) - (61) 0

(m n c d e f s t u) - (59) 0

(a b c d e f g h i) - (59) 0

... ...

Possible paths – 3. path

path (weight) ovl. to M

(a b c d e f h g) - (48) 2/6 ≈ 0.33

(v b c d e f h g) - (47) 2/6 ≈ 0.33

x (a b c d e f g d) - (53) 3/6 = 0.5

x (v b c d e f g d) - (52) 3/6 = 0.5

... ...

Possible paths – 2. path

path (weight) ovl. to M

(a b c d e f h g) - (48) 2/6 ≈ 0.33

(r u x d e f h g) - (31) 1/6 ≈ 0.17

(a b c d e f s t u) - (57) 2/7 ≈ 0.29

x (r u x d e f s t u) - (40) 1/7 ≈ 0.14

... ...

Possible paths – 4. path

path (weight) ovl. to M

(v b c d e f h g) - (47) 5/6 ≈ 0.83

x (v b c d e f g d) - (52) 4/6 ≈ 0.67

(v b c d e f g h i) - (58) 6/7 ≈ 0.86

... ...

Microblog Summarization 113

Table 6. Creating summarization and final sentences.

Selected paths (M)

nr. path (weight)

1 (m n c d e f g h i) - (61)

2 (r u x d e f s t u) - (40)

3 (a b c d e f h g) - (48)

4 (v b c d e f g d) - (52)

→ L m n c d e f g h i.

→ R u x d e f s t u v.

→ A b c d e f h g.

→ V b c d e f g d e f.

7 Experiments

Twitter provides a public API, which allows us to evaluate or summarization
approach on real data. We implemented our technology in Java on an Intel Xeon
“Skylake”, 2.10 GHz, 192 GB DDR4, 2x 4 TB SATA3-HDD, Ubuntu Linux.

7.1 Data Analysis and Runtime

In this section we analyze the performance behavior of our approach. We mea-
sured the time from reading the tweet (stored in a file for repeatable exper-
iments) til presenting the summarized messages. This process is repeated 12
times, whereby the best and the worst result is discarded and the average from
the remaining ten values is calculated.

For our performance measurement we used “standard parameters”: N -grams
of size 3, clusters comprising less than 0.05% of the total number of all clustered
tweets as well as those clusters that overlap by at least 60% are discarded. The 10
largest clusters are aggregated. In the reduction phase all nodes having ≤1.5% of
the centroid weights are removed. Finally, a summarization having a maximum
of m = 4 sentences each is generated.

We run our experiments on 16 disjoint files, each containing between 27 000
and 4 300 000 English tweets. Table 7 shows our results on the average runtime
for the summarization process. The table shows the number of tweets per file
(total) as well as the file size in Mebibyte. Clustering correspond to the number
of clustered tweets.

Noteworthy are the results for thematically pre-filtered tweets (grey lines).
The corresponding messages were selected by a filter according to certain key-
words, e.g., covid-19 or black lives matter. Having about more than 0.2 ms dif-
ference per tweet, they are clearly higher than the values of their unfiltered
counterparts. In addition, these files have also the highest percentage (over 95%)
of tweets passing the data preprocessing step and therefore must be clustered
afterwards. The average value for other files is less than 87%, cp. Table 8.

This is justified by longer text messages. Table 8 also shows the percentage
of tweets participating in the clustering step, the percentage of retweets, and the

114 M. Endres et al.

Table 7. Runtime performance with standard parameters.

File size Tweets number Average runtime

File MiB Total Clustering s min ms/tweet

f1 158 27 268 27 041 5.89160 0.09819 0.21606

f2 410 74 033 63 113 11.52620 0.19210 0.15569

f3 926 165 822 143 175 25.42840 0.42381 0.15335

f4 1 061 166 382 160 776 28.62940 0.47716 0.17207

f5 919 172 507 170 575 36.98610 0.61644 0.21440

f6 981 173 358 147 577 26.47640 0.44127 0.15273

f7 986 179 608 177 294 37.28290 0.62138 0.20758

f8 1 127 182 426 174 611 32.24990 0.53750 0.17678

f9 1 554 277 741 241 272 41.54850 0.69248 0.14959

f10 2 348 408 521 352 172 61.15850 1.01931 0.14971

f11 4 348 799 004 682 682 109.06230 1.81771 0.13650

f12 5 422 962 521 821 616 135.03500 2.25058 0.14029

f13 6 634 1 160 599 1 000 558 169.80960 2.83016 0.14631

f14 18 567 3 281 852 2 788 772 461.83120 7.69719 0.14072

f15 21 338 3 721 695 3 174 048 538.39320 8.97322 0.14466

f16 24 691 4 253 183 3 628 391 609.02560 10.15043 0.14319

Table 8. Analysis of the underlying tweets.

File size Number of Duration Tweet percentages Text length

File MiB tweets ms/tweet Clustering Retweets Extended Char/tweet

f1 158 27 268 0.21606 99.17% 68.56% 58.71% 188.50

f2 410 74 033 0.15569 85.25% 58.31% 32.91% 120.23

f3 926 165 822 0.15335 86.34% 60.59% 33.22% 121.93

f4 1 061 166 382 0.17207 96.63% 85.18% 58.40% 175.79

f5 919 172 507 0.21440 98.88% 68.93% 66.31% 187.45

f6 981 173 358 0.15273 85.13% 60.03% 32.54% 120.86

f7 986 179 608 0.20758 98.71% 68.51% 62.69% 182.37

f8 1 127 182 426 0.17678 95.72% 79.43% 47.76% 156.62

f9 1 554 277 741 0.14959 86.87% 59.09% 34.18% 123.39

f10 2 348 408 521 0.14971 86.21% 62.09% 32.58% 123.12

f11 4 348 799 004 0.13650 85.44% 57.09% 30.69% 116.55

f12 5 422 962 521 0.14029 85.36% 59.50% 30.63% 118.53

f13 6 634 1 160 599 0.14631 86.21% 60.10% 32.86% 122.25

f14 18 567 3 281 852 0.14072 84.98% 60.65% 28.71% 114.86

f15 21 338 3 721 695 0.14466 85.29% 60.00% 30.05% 116.96

f16 24 691 4 253 183 0.14319 85.31% 61.20% 29.98% 117.42

Average of the unfiltered files: 85.67% 59.88% 31.67% 119.65

Average of the filtered files: 97.82% 74.12% 58.77% 178.15

percentage of extended messages, i.e., posts having more than 140 characters.
The last column (text length) shows the average tweet length per file. In conclu-
sion, thematically pre-filtered phrases (grey lines) have above-average values in
all criteria above and therefore lead to a higher runtime.

Microblog Summarization 115

7.2 Aggregation and Summarization

In this section we describe the results of an assessment of tweets’ aggregation.
These results were obtained with a user study to identify the quality of the
summarization. Since only a small number of people (10) took part in the survey,
the results serve more as an orientation, rather than a representative study.

The study was split into two parts: In the first part, all users were asked
to read all produced tweet clusters (five clusters between 45 and 80 tweets per
topic) and write a short summary for each by hand. The clusters were selected
to simulate the query result, but at the same time not to overwhelm the partic-
ipants. The first cluster deals with the COVID-19 disease of the British Prime
Minister Boris Johnson (45 tweets). The second cluster of 80 tweets deals with
the death and the memory of the Swedish actor Max von Sydow, who died in
March 2020. The 70 text messages of the third cluster, entitled First day of
summer, is about the beginning of summer. The fourth cluster, Warren drops
out, is about the departure of Senator Elizabeth Warren from the Democratic
primaries for the US presidential election 2020 (75 tweets). The last cluster of
the survey is entitled Separating children and contains 65 tweets dealing with
the separation of children and their parents who are illegally in the US.

In the second part, our automatically generated summarization was presented
to the users. With the help of five questions each, these were to be evaluated in
terms of their comprehensibility and content.

Fig. 5. Survey results on the quality of aggregation.

116 M. Endres et al.

Figure 5 shows our results: All users agreed that our approach contains the
most important information in the final aggregated message, cp. Fig. 5a. The
lowest value in average was 3.1 for the 5th cluster (Separating children). However,
the score received for this cluster also shows that the most important content
was (at least partially) retrieved and the aggregation is acceptable.

We also asked for missing content (in comparison to the handwritten sum-
mary). Figure 5b shows that no mandatory information is missing (in particular
cluster C2 and C4 with an average score of 1.7 and 1.8, resp.). The users were
less positive about the automatic summaries of cluster C1 and C3. This is inter-
esting for the aggregation of the first cluster (Corona Boris Johnson), as in the
previous question the participants answered that this cluster contains the most
important information. The opinion on the fifth cluster is again in line with the
evaluation regarding the question about the most important contents. For this
cluster the participants were most likely to identify shortcomings beforehand, so
the tendency at this point is that more information has to be included. Overall,
the question of missing essential content was answered negative in four out of
five cases.

Apart from the content aspects, automatic summaries are required to be easy
to read and understand by people. Figure 5c shows the result on comprehensibil-
ity : Four aggregations were rated with an average value of 3.0 or higher, which
can be interpreted as rather good. Only one aggregation is below 3 and therefore
has a moderate assessment w.r.t. comprehensibility. This can be explained by
the fact that many words are reduced to their basic form.

In the final survey question, the users were asked to assess the automatically
created aggregations in direct comparison to their self-written counterparts, cp.
Fig. 5d. Most of the answers were rated round about the average value of 2.5.
Only two are worse. The aggregation of the second cluster (Max von Sydow) was
the most likely to reach the level of a hand-written summary with an average
score of 2.9. The aggregation of cluster C1 received the worst average general
assessment.

8 Summary and Conclusion

Stream data processing and analyzing social networks is a highly relevant topic
nowadays. We focused on Twitter data, in particular on the aggregation of tweets
in order to summarize numerous text messages, which often contain retweets,
duplicates and other useless content, to a single short message including the most
important information of a Twitter channel. For this, we presented an algorithm
based on clustering N-grams and aggregating them using an extension of the
PR algorithm. Our experiments show that our method is a promising approach
to reach the claimed goal in reasonable time, e.g., for real time data analytics.
However, an open issue is the readability of the final message, which should be
improved in future work.

Microblog Summarization 117

References

1. Ayers, J.W., et al.: Why do people use electronic nicotine delivery systems (elec-
tronic cigarettes)? A content analysis of Twitter, 2012–2015. PLoS ONE 12(3),
1–8 (2017)

2. Cavazos-Rehg, P., et al.: A content analysis of depression-related tweets. Comput.
Hum. Behav. 54, 351–357 (2016)

3. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge, April 2009. Online edition

4. O’Connor, B., Krieger, M., Ahn, D.: TweetMotif: exploratory search and topic
summarization for Twitter. In: Proceedings of the International AAAI Conference
on Weblogs and Social Media, Washington, DC, USA (2010)

5. Okazaki, M., Matsuo, Y.: Semantic Twitter: analyzing tweets for real-time event
notification. In: Breslin, J.G., Burg, T.N., Kim, H.-G., Raftery, T., Schmidt,
J.-H. (eds.) BlogTalk 2008-2009. LNCS, vol. 6045, pp. 63–74. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16581-8 7

6. Parikh, R., Karlapalem, K.: ET: events from tweets. In: WWW (Companion Vol-
ume), pp. 613–620. ACM (2013)

7. Railean, C., Moraru, A.: Discovering popular events from tweets. In: Conference
on Data Mining and Data Warehouses (SiKDD), October 2013

8. Rudenko, L., Haas, C., Endres, M.: Analyzing Twitter data with preferences. In:
Darmont, J., Novikov, B., Wrembel, R. (eds.) ADBIS 2020. CCIS, vol. 1259, pp.
177–188. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54623-6 16

9. Sankaranarayanan, J., Samet, H., Teitler, B.E., Lieberman, M.D., Sperling, J.:
TwitterStand: news in tweets. In: ACM 2009, pp. 42–51 (2009)

10. Sharifi, B.P., Inouye, D.I., Kalita, J.K.: Summarization of Twitter microblogs.
Comput. J. 57(3), 378–402 (2014)

11. Sutton, J., et al.: Lung cancer messages on Twitter: content analysis and evalua-
tion. J. Am. Coll. Radiol. 15, 210–217 (2017)

12. Takamura, H., Okumura, M.: Text summarization model based on the budgeted
median problem. In: Proceedings of the 18th ACM Conference on Information and
Knowledge Management (CIKM 2009), Hong Kong, China, pp. 1589–1592 (2009)

https://doi.org/10.1007/978-3-642-16581-8_7
https://doi.org/10.1007/978-3-030-54623-6_16

Indexes, Queries and Constraints

Inserting Keys into the Robust
Content-and-Structure (RCAS) Index

Kevin Wellenzohn, Luka Popovic, Michael Böhlen, and Sven Helmer(B)

Department of Informatics, University of Zurich, Binzmühlestrasse 14,
8050 Zurich, Switzerland

{wellenzohn,boehlen,helmer}@ifi.uzh.ch, luka.popovic@uzh.ch

Abstract. Semi-structured data is prevalent and typically stored in for-
mats like XML and JSON. The most common type of queries on such
data are Content-and-Structure (CAS) queries, and a number of CAS
indexes have been developed to speed up these queries. The state-of-the-
art is the RCAS index, which properly interleaves content and structure,
but does not support insertions of single keys. We propose several inser-
tion techniques that explore the trade-off between insertion and query
performance. Our exhaustive experimental evaluation shows that the
techniques are efficient and preserve RCAS’s good query performance.

Keywords: Indexing · Index updates · Semi-structured data

1 Introduction

A large part of real-world data does not follow the rigid structure of tables found
in relational database management systems (RDBMSs). Instead, a substantial
amount of data is semi-structured, e.g., annotated and marked-up data stored
in formats such as XML and JSON. Since mark-up elements can be nested, this
leads to a hierarchical structure. A typical example of semi-structured data are
bills of materials (BOMs), which contain the specification of every component
required to manufacture end products. Figure 1 shows an example of a hierarchi-
cal representation of three products, with their components organized under a
node bom. Nodes in a BOM can have attributes, e.g., in Fig. 1 attribute @weight
denotes the weight of a component in grams.

Semi-structured hierarchical data is usually queried via content-and-structure
(CAS) queries [9] that combine a value predicate on the content of some attribute
and a path predicate on the location of this attribute in the hierarchical struc-
ture. An example query for the BOM depicted in Fig. 1 that selects all car parts
with a weight between 1000 and 3000 g has the form: Q (/bom/item/car//,
[1000, 3000]), with “//” matching a node and all its descendants. To speed up
this type of query, the Robust Content-and-Structure (RCAS) index has been
proposed [17]. RCAS is based on a new interleaving scheme, called dynamic
interleaving, that adapts to the distribution of the data and interleaves path
and value dimension at their discriminative bytes.
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 121–135, 2021.
https://doi.org/10.1007/978-3-030-82472-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-82472-3_10

122 K. Wellenzohn et al.

Fig. 1. Example of a bill of materials (BOM).

So far, the RCAS index supports bulk-loading but it cannot be updated incre-
mentally. We present efficient methods to insert new keys into RCAS without
having to bulk-load the index again. We make the following contributions:

– We develop two different strategies for inserting keys into an RCAS index:
strict and lazy restructuring.

– With the help of an auxiliary index, we mitigate the effects of having to
restructure large parts of the index during an insertion. We propose techniques
to merge the auxiliary index back into the main index if it grows too big.

– Extensive experiments demonstrate that combining lazy restructuring with
the auxiliary index provides the most efficient solution.

2 Background

RCAS is an in-memory index that stores composite keys k consisting of two
components: a path dimension P and a value dimension V that are accessed
by k.P and k.V , respectively. An example of a key (representing an entity from
Fig. 1) is (/bom/item/car/bumper$, 00 00 0A 8C), where the blue part is
the key’s path and the red part is the key’s value (in hexadecimal). Table 1
shows the keys of all entities from Fig. 1; the example key is k7.

The RCAS index interleaves the two-dimensional keys at their discriminative
path and value bytes. The discriminative byte dsc(K,D) of a set of keys K in
a given dimension D is the position of the first byte for which the keys differ.
That is, the discriminative byte is the first byte after the keys’ longest common
prefix in dimension D. For example, the discriminative path byte dsc(K1..7, P)
of the set of keys K1..7 from Table 1 is the 13th byte. All paths up to the 13th
byte share the prefix /bom/item/ca and for the 13th byte, key k1 has value
n, while keys k2, . . . , k7 have value r. The dynamic interleaving is obtained by
interleaving the keys alternatingly at their discriminative path and value bytes.

The dynamic interleaving adapts to the data: when interleaving at a discrim-
inative byte, we divide keys into different partitions. If we instead use a byte that
is part of the common prefix, all keys will end up in the same partition, which
means that during a search we cannot filter keys efficiently. Our scheme guaran-
tees that in each interleaving step we narrow down the set of keys to a smaller
set of keys that have the same value for the discriminative byte. Eventually, the

Inserting Keys into the Robust Content-and-Structure (RCAS) Index 123

Table 1. Set K1..7 = {k1, . . . , k7} of composite keys.

set is narrowed down to a single key and its dynamic interleaving is complete.
Switching between discriminative path and value bytes gives us a robust query
performance since it allows us to evaluate the path and value predicates of CAS
queries step by step in round-robin fashion.

Fig. 2. The RCAS index for the keys in K1..7.

We embed the dynamically interleaved keys K1..7 from Table 1 into a trie
data structure as shown in Fig. 2, building the final RCAS index. Each node n
stores a path substring sP (blue), a value substring sV (red), and a dimension D.
sP and sV contain the longest common prefixes in the respective dimensions of
all the nodes in the subtree rooted at n. Dimension D determines the dimension
that is used for partitioning the keys contained in the subtree rooted in n; D is
either P or V for an inner node and ⊥ for a leaf node. Leaf nodes store a set
of references that point to nodes in the hierarchical document. In Fig. 2 node
n9 stores the longest common prefixes sP = r/battery$ and sV = 03D3.
n9.D = V , which means the children of n9 are distinguished according to their
value at the discriminative value byte (e.g., 5A for n10 and B0 for n11). For
more details on dynamic interleaving, building an RCAS index, and querying it
efficiently, see [17]. Here we focus on inserting new keys into RCAS indexes.

124 K. Wellenzohn et al.

3 Insertion of New Keys

We distinguish three insertion cases for which the effort varies greatly:

Case 1. The inserted key is a duplicate, i.e., there is already an entry in the
index for the same key. Thus, we add a reference to the set of references in the
appropriate leaf node. For instance, if we insert a new key k′

3 that is identical to
k3, we only add the reference r′3 to the set of references of node n10 (see Fig. 2).

Case 2. The key to be inserted deviates from the keys in the index, but it
does so at the very end of the trie structure. In this case, we add one new leaf
node and a branch just above the leaf level. In Fig. 3 we illustrate RCAS after
inserting key (/bom/item/car/bench$, 00 00 19 64) with reference r9. We
create a new leaf node n12 and add a new branch to its parent node n4.

Fig. 3. Inserting a new key just above leaf level.

Case 3. This is the most complex case. If the path and/or the value of the
new key results in a mismatch with the path and/or value of a node in the index,
the index must be restructured. This is because position of a discriminative byte
shifts, making it necessary to recompute the dynamic interleaving of a potentially
substantial number of keys in the index. For example, if we want to insert key
(/bom/item/cassette$, 0000AB12) with reference r10, due to its value 00
at the discriminative value byte (the second byte), it has to be inserted into the
subtree rooted at node n2 (see Fig. 3). Note that the discriminative path byte
has decreased by one position since the first s in cassette differs from r in
the path substring n2.sP . This invalidates the current dynamic interleaving of
the keys in the subtree rooted at n2. Consequently, the whole subtree has to be
restructured. As this is the most complicated case and there is no straightforward
answer on how to handle it, we look at it in Sect. 4.

Insertion Algorithm. Algorithm 1 inserts a key into RCAS. The input param-
eters are the root node n of the trie, the key k to insert, and a reference r to the
indexed element in the hierarchical document. The algorithm descends to the
insertion point of k in the trie. Starting from the root node n, we compare the

Inserting Keys into the Robust Content-and-Structure (RCAS) Index 125

Algorithm 1: Insert(n, k, r)
1 while true do
2 Compare n.sP to relevant part of k.P
3 Compare n.sV to relevant part of k.V
4 if k.P and k.V have completely matched n.sP and n.sV then // Case 1
5 Add reference r to node n
6 return
7 else if mismatch between k.P and n.sP or k.V and n.sV then // Case 3
8 // detailed description later
9 Insert k into restructured subtree rooted at n

10 return

11 Let np = n
12 Let n be the child of n with the matching discriminative byte
13 if n = Nil then // Case 2
14 Let n = new leaf node
15 Initialize n.sP and n.sV with remainder of k.P and k.V
16 Set n.D to ⊥
17 Insert r into n
18 Insert n into list of children of np

19 return

current node’s path and value substring with the relevant part in k’s path and
value (lines 2–3). As long as these strings coincide we proceed. Depending on the
current node’s dimension, we follow the edge that contains k’s next path or value
byte. The descent stops once we reach one of the three cases from above. In Case
1, we reached a leaf node and add r to the current node’s set of references (lines
4–6). In Case 2, we could not find the next node to traverse, thus we create it
(lines 13–19). The new leaf’s substrings sP and sV are set to the still unmatched
bytes in k.P and k.V , respectively, and its dimension is set to ⊥. In Case 3 we
discovered a mismatch between k and the current node’s substrings (lines 7–10).

4 Index Restructuring During Insertion

4.1 Strict Restructuring

The shifting of discriminative bytes in Case 3 invalidates the current dynamic
interleaving and if we want to preserve it we need to recompute it. An app-
roach that achieves this collects all keys rooted in the node where the mismatch
occurred (in the example shown above, the mismatch occurred in node n2), adds
the new key to it, and then applies the bulk-loading algorithm to this set of keys.
This creates a new dynamic interleaving that is embedded in a trie and replaces
the old subtree. We call this method strict restructuring. It guarantees a strictly
alternating interleaving in the index, but the insertion operation is expensive if
a large subtree is replaced. Figure 4 shows the RCAS index after inserting the
key (/bom/item/cassette$, 0000AB12).

Strict restructuring (Algorithm 2) takes four input parameters: the root node
n of the subtree where the mismatch occurred, its parent node np (which is equal
to Nil if n is the root), the new key k, and a reference r to the indexed element
in the hierarchical document. See Sect. 6 for a complexity analysis.

126 K. Wellenzohn et al.

Fig. 4. Inserting a key with the strict restructuring method.

Algorithm 2: StrictRestructuring(n, np, k, r)
1 Let c = the set of all keys and their references rooted in n
2 Let c = c ∪ {(k, r)}
3 Let D = n.D // dimension used for starting interleaving
4 Let n′ = bulkload(c, D)
5 if np = Nil then replace original trie with n′ // n is root node
6 else replace n with n′ in np

4.2 Lazy Restructuring

Giving up the guarantee of a strictly alternating interleaving allows us to insert
new keys more quickly. The basic idea is to add an intermediate node n′

p that
is able to successfully distinguish its children: node n, where the mismatch hap-
pened and a new sibling nk that represents the new key k. The new intermediate
node n′

p will contain all path and value bytes that are common to node n and key
k. Consequently, path and value substrings of n and nk contain all bytes that are
not moved to n′

p. Node n is no longer a child of its original parent np, this place
is taken by n′

p. We call this method lazy restructuring. While it does not guaran-
tee a strictly alternating interleaving, it is much faster than strict restructuring,
as we can resolve a mismatch by inserting just two nodes: n′

p and nk. Figure 5
shows RCAS after inserting the key (/bom/item/cassette$, 0000AB12)
lazily. Node n13 and its child n2 partition the data both in the path dimension
(n.D = P) and therefore violate the strictly alternating pattern.

Inserting a key with lazy interleaving introduces small irregularities that are
limited to the dynamic interleaving of the keys in node n’s subtree. These irreg-
ularities slowly separate (rather than interleave) paths and values if insertions
repeatedly force the algorithm to split the same subtree in the same dimension.
On the other hand, lazy restructuring can also repair itself when an insertion
forces the algorithm to split in the opposite dimension. We show experimentally
in Sect. 7 that lazy restructuring is fast and offers good query performance.

Algorithm 3 shows the pseudocode for lazy restructuring, it takes the same
parameters as Algorithm 2. First, we create a new inner node n′

p and then
determine which dimension to use for partitioning. If only a path mismatch

Inserting Keys into the Robust Content-and-Structure (RCAS) Index 127

Fig. 5. Inserting a new key with lazy restructuring.

occurred between n and k, we have to use P . In case of a value mismatch, we
have to use V . If we have mismatches in both dimensions, then we take the
opposite dimension of parent node np to keep up an alternating interleaving as
long as possible. The remainder of the algorithm initializes sP and sV with the
longest common prefixes of n and k and creates two partitions: one containing
the original content of node n and the other containing the new key k. The
partition containing k is stored in a new leaf node nk. We also have to adjust
the prefixes in the nodes n and nk. Finally, n and nk are inserted as children of
n′
p, and n′

p replaces n in np. See Sect. 6 for a complexity analysis.

Algorithm 3: LazyRestructuring(n, np, k, r)
1 Let n′

p = new inner node
2 Let n′

p.D = determineDimension()
3 Let n′

p.sP = longest common path prefix of n and k

4 Let n′
p.sV = longest common value prefix of n and k

5 Let nk = new leaf node
6 Insert n and nk as children of n′

p

7 Adjust sP and sV in n and nk

8 Insert r into nk

9 if np = Nil then replace original trie with n′
p // n is root node

10 else replace n with n′
p in np

5 Utilizing an Auxiliary Index

Using differential files to keep track of changes in a data collection is a well-
established method (e.g., LSM-trees [12]). Instead of updating an index in-place,
the updates are done out-of-place in auxiliary indexes and later merged according

128 K. Wellenzohn et al.

to a specific policy. We use the general idea of auxiliary indexes to speed up the
insertion of new keys into an RCAS index. However, we apply this method
slightly differently: we insert new keys falling under Case 1 and Case 2 directly
into the main RCAS index, since these insertions can be executed efficiently.
Only the keys in Case 3 are inserted into an auxiliary RCAS index. As the
auxiliary index is much smaller than the main index, the strict restructuring
method can be processed more efficiently on the auxiliary index. Sometimes a
Case 3 insertion into the main index even turns into a Case 1/2 insertion into the
auxiliary index, as it contains a different set of keys. For an even faster insertions
we can use lazy restructuring in the auxiliary index.

There is a price to pay for using an auxiliary index: queries now have to
traverse two indexes. However, this looks worse than it actually is, since the
total number of keys stored in both indexes is the same. We investigate the
trade-offs of using an auxiliary index and different insertion strategies in Sect. 7.

Using an auxiliary index only makes sense if the expensive insertion opera-
tions (Case 3) can be executed much more quickly on the auxiliary index. To
achieve this, we have to merge the auxiliary index into the main index from time
to time. This is more efficient than individually inserting new keys into the main
index, though, as the restructuring of a subtree in the main index during the
merge operation usually covers multiple new keys in one go rather than restruc-
turing a subtree for every individual insertion. We consider two different merge
strategies. The simplest, but also most time-consuming, method is to collect all
keys from the main and auxiliary index and to bulk-load them into a new index.

Fig. 6. A more sophisticated method merges only subtrees that differ.

A more sophisticated method traverses the main and auxiliary index in par-
allel and only if the path and/or value substrings of two corresponding nodes do
not match, we restructure this subtree, bulk-load the keys into it, and insert it
into the main index. Figure 6 illustrates this method. Since root nodes n1 and
n′
1 match, the algorithm proceeds to its children. For child n′

2 we cannot find a
corresponding child in the main index, hence we relocate n′

2 to the main index.
For child n′

3 we find child n9 in the main index and since they differ in the value

Inserting Keys into the Robust Content-and-Structure (RCAS) Index 129

Algorithm 4: Merge(nm, na)
1 if na �= Nil then
2 if nodes nm and na match then
3 foreach child ca of na do
4 Find corresponding child cm of nm

5 if cm does not exist then relocate ca to nm

6 else merge(cm, ca)

7 else
8 Let K = all keys in subtrees nm and na

9 Let n′
m = bulkload(K)

10 Replace nm with n′
m in main index

substring, the subtrees rooted in these two trees are merged. Notice that child
n2 in the main index is not affected by the merging. Algorithm 4 depicts the
pseudocode. It is called with the root of the main index nm and the root of
the auxiliary index na. If nm’s and na’s values of substrings sP , sV and dimen-
sion D match, we recursively merge the corresponding children of nm and na.
Otherwise, we collect all keys rooted in nm and na and bulk-load a new subtree.

6 Analysis

We first look at the complexity of Case 1 and 2 insertions, which require no
restructuring (see Sect. 3). Inserting keys that require no restructuring takes
O(h) time, where h is the height of RCAS, since Algorithm 1 descends the tree
in O(h) time and in Case 1 the algorithm adds a reference in O(1) time, while in
Case 2 the algorithm adds one leaf in O(1) time. The complexity of Case 3, which
requires restructuring, depends on whether we use lazy or strict restructuring.

Lemma 1. Inserting a key into RCAS with lazy restructuring takes O(h) time.

Proof. The insertion algorithm descends the tree to the position where a path or
value mismatch occurs in O(h) time. To insert the key, lazy restructuring adds
two new nodes in O(1) time.

Lemma 2. Inserting a key into RCAS with strict restructuring takes O(l · N)
time, where l is the length of the longest key and N is the number of keys.

Proof. Descending the tree to the insertion position takes O(h) time. In the worst
case, the insertion position is the root node, which means strict restructuring
collects all keys in RCAS in O(N) time, and bulk-loads a new index in O(l · N)
time using the bulk-loading algorithm from [17].

The complexity of Case 3 insertions into the auxiliary index (if it is
enabled) depends on the insertion technique and is O(h) with lazy restructuring
(Lemma 1) and O(l · N) with strict restructuring (Lemma 2). In practice, inser-
tions into the auxiliary index are faster because it is smaller. This requires that
the auxiliary index is merged back into the main index when it grows too big.

130 K. Wellenzohn et al.

Lemma 3. Merging an RCAS index with its auxiliary RCAS index using
Algorithm 4 takes O(l · N) time.

Proof. In the worst case, the root nodes of the RCAS index and its auxiliary
RCAS index mismatch, which means all keys in both indexes are collected and
a new RCAS index is bulk-loaded in O(l · N) time [17].

7 Experimental Evaluation

Setup. We use a virtual Ubuntu server with 8GB of main memory and an AMD
EPCY 7702 CPU with 1MB L2 cache. All algorithms are implemented in C++
and compiled with g++ (version 10.2.0). The reported runtime measurements
represent the average time of 1000 experiment runs.

Dataset. We use the ServerFarm dataset from [17] that contains information
about the files on a fleet of 100 Linux servers. The path and value of a composite
key denote the full path of a file and its size in bytes, respectively. We eliminate
duplicate keys because they trigger insertion Case 1, which does not change the
structure of the index (see Sect. 3). Without duplicates, the ServerFarm dataset
contains 9.3 million keys.

Reproducibility. The code, dataset, and instructions how to reproduce our
experiments is available at: https://github.com/k13n/rcas_update.

7.1 Runtime of Strict and Lazy Restructuring

We begin by comparing the runtime of lazy restructuring (LR) and strict restruc-
turing (SR) either applied on the main index directly, or applied on the combi-
nation of main and auxiliary index (Main+Aux). When the auxiliary index is
used, insertion Cases 1 and 2 are performed on the main index, while Case 3 is
performed on the auxiliary index with LR or SR. In this experiment we bulk-
load 60% of the dataset (5 60 7400 keys) and insert the remaining 40% (3 738 268
keys) one-by-one. Bulk-loading RCAS with 5.6M keys takes 12 s, which means
2.15 µs per key. Figure 7a shows the average runtime (x̄) and the standard devi-
ation (σ) for the different insertion techniques. We first look at LR and SR

Fig. 7. Runtime of insertions.

https://github.com/k13n/rcas_update

Inserting Keys into the Robust Content-and-Structure (RCAS) Index 131

when they are applied to the main index only. LR is very fast with an average
runtime of merely 3 µs per key. This is expected since LR only needs to insert
two new nodes into the index. SR on the other hand, takes on average about
5 µs and is thus not significantly slower than LR, on average. The runtime of
SR depends greatly on the level in the index where the mismatch occurs. The
closer to the root the mismatch occurs, the bigger is the subtree this technique
needs to rebuild. Therefore, we expect that even if the average runtime is low,
the variance is higher. Indeed, the standard deviation of SR is 41 µs compared
to 4 µs for LR. This is confirmed by the histogram in Fig. 7b, where we report
the number of insertions that fall into a given runtime range (as a reference
point, we report for bulk-loading that all 5.6M keys have a runtime of 2.15
µs per key). While most insertions are quick for all methods, SR has a longer
tail and a significantly higher number of slow insertions (note the logarithmic
axes). Applying LR and SR to the auxiliary index slightly increases the average
runtime since two indexes must be traversed to find the insertion position, but
the standard deviation decreases since there are fewer expensive updates to the
auxiliary index, see Fig. 7b.

7.2 Query Runtime

We look at the query performance after updating RCAS with our proposed inser-
tion techniques. We simulate that RCAS is created for a large semi-structured
dataset that grows over time. For example, the Software Heritage archive [1,4],
which preserves publicly-available source code, grows ca. 35% to 40% a year
[15]. Therefore, we bulk-load RCAS with the at least 60% of our dataset and
insert the remaining keys one by one to simulate a year worth of insertions. We
expect SR to lead to better query performance than LR since it preserves the
dynamic interleaving, while LR can introduce small irregularities. Further, we
expect that enabling the auxiliary index does not significantly change the query
runtime since the main and auxiliary indexes, when put together, are of similar
size as the (main) RCAS index when no auxiliary index is used.

Fig. 8. Query performance.

In Fig. 8a we report the average runtime for the six CAS queries from
[17]. For example, the first query looks for all files nested arbitrarily deeply

132 K. Wellenzohn et al.

in the /usr/include directory that are at least 5KB large, expressed as
(/usr/include//, [5000,∞]). The results are surprising. First, SR in the
main index leads to the worst query runtime and the remaining three approaches
lead to faster query runtimes. To see why, let us first look at Fig. 8b that shows
the number of nodes traversed during query processing (if the auxiliary index is
enabled, we sum the number of nodes traversed in both indexes). The queries
perform better when the auxiliary index is enabled because fewer nodes are
traversed during query processing, which means subtrees were pruned earlier.

Figure 8b does not explain why LR leads to a better query performance than
SR since with both approaches the queries need to traverse almost the same
number of nodes. To find the reason for the better query runtime we turn to
Fig. 8c, which shows that query runtime and the CPU cache misses1 are highly
correlated. SR leads to the highest number of cache misses due to memory frag-
mentation. When the index is bulk-loaded its nodes are allocated in contiguous
regions of the main memory. The bulk-loading algorithm builds the tree depth-
first in pre-order and the queries follow the same depth-first approach (see [17]).
As a result, nodes that are traversed frequently together have a high locality of
reference and thus range queries typically access memory sequentially, which is
faster than accessing memory randomly [14]. Inserting additional keys fragments
the memory. Strict restructuring (SR) deletes and rebuilds entire subtrees, which
can leave big empty gaps between contiguous regions of memory and as a result
experiences more cache misses in the CPU during query processing. LR causes
fewer cache misses in the CPU than SR because it fragments the memory less.
This is because LR always inserts two new nodes whereas SR inserts and deletes
large subtrees, which can leave big gaps in memory.

The query runtime improves for all approaches as we bulk-load a larger frac-
tion of the dataset because the number of cache misses decreases. Consider the
strict restructuring method in the main index (green curve). By definition, SR
structures the index exactly as if the index was entirely bulk-loaded. This can
also be seen in Fig. 8b where the number of nodes traversed to answer the queries
is constant. Yet, the query runtime improves as we bulk-load more of the index
because the number of cache misses is reduced due to less memory fragmentation
(see explanation above). Therefore, it is best to rebuild the index from scratch
after inserting many new keys.

7.3 Merging of Auxiliary and Main Index

We compare two merging techniques: (a) the slow approach that takes all keys
from both indexes and replaces them with a bulk-loaded index, and (b) the fast
approach that descends both indexes in parallel and only merges subtrees that
differ. In the following experiment we bulk-load the main index with a fraction
of the dataset, insert the remaining keys into the auxiliary index, and merge

1 We measure the cache misses with the perf command on Linux, which relies on
the Performance Monitoring Unit (PMU) in modern processors to record hardware
events like cache accesses and misses in the CPU.

Inserting Keys into the Robust Content-and-Structure (RCAS) Index 133

the two indexes with one of the two methods. Figure 9a shows that fast merging
outperforms the slow technique by a factor of three. This is because the slow
merging needs to fully rebuild a new index from scratch, while the fast merging
only merges subtrees that have actually changed. In addition, if fast merging
finds a subtree in the auxiliary index that does not exist it the main index, it
can efficiently relocate that subtree to the main index.

Fig. 9. Merging and querying performance.

After merging the auxiliary index into the main index, we look at the query
runtime of the main index in Fig. 9b. Slow merging leads to a better query
performance than fast merging because slow merging produces a compact rep-
resentation of the index in memory (see discussion above), while fast merging
fragments the memory and leads to cache misses in the CPU (Fig. 9c).

7.4 Summary

Our experiments show that RCAS can be updated efficiently, but to guarantee
optimal query performance it is recommended to rebuild the index occasionally.
The best way to insert keys into the RCAS index is to use an auxiliary index with
lazy restructuring (LR). LR is faster and leads to better query performance than
strict restructuring since it causes fewer cache misses in the CPU during query
processing. When the auxiliary index becomes too large, it is best to merge it
back into the main RCAS index with the slow merging technique, i.e., the main
index is bulk-loaded from scratch including all the keys from the auxiliary index.

8 Related Work

Updating RCAS is difficult due to its dynamic interleaving scheme that adapts
to the data distribution [17]. Inserting or deleting keys can invalidate the position
of the discriminative bytes and change the dynamic interleaving of other keys.

Interleaving bits and bytes is a common technique to build multi-dimensional
indexes, e.g., the z-order curve [13] interleaves the dimensions bit-wise. These

134 K. Wellenzohn et al.

schemes are static since they interleave at pre-defined positions (e.g., one byte
from one dimension is interleaved with one byte from another dimension).
Because the interleaving is static, individual keys can be inserted and deleted
without affecting the interleaving of other keys. QUILTS [11] devises static inter-
leavings that optimize for a given query workload. However, Nishimura et al. [11]
do not discuss what happens if the query workload changes and with it the static
interleaving scheme, which affects the interleavings of all keys.

Existing trie-based indexes, e.g., PATRICIA [10], burst tries [5], B-tries [3],
and ART [7], solve insertion Case 3 by adding a new parent node to distinguish
between the node where the mismatch happened and its new sibling node. Lazy
restructuring is based on this technique, but we must decide in which dimension
the parent node partitions the data since we deal with two-dimensional keys.

Using auxiliary index structures to buffer updates is a common technique
[6,12,16]. Log-structured merge trees (LSM-trees [12]) have been developed to
ingest data arriving at high speed, see [8] for a recent survey. Instead of updating
an index in-place, i.e., overwriting old entries, the updates are done out-of-place,
i.e., values are stored in an auxiliary index and later merged back. We redirect
Case 3 insertions to a small auxiliary RCAS index that would otherwise require
an expensive restructuring of the main RCAS index.

The buffer tree [2] amortizes the cost of updates by buffering all updates
at inner nodes and propagating them one level down when the buffers overflow.
Instead, we apply the inexpensive Case 1 and 2 insertions immediately on the
main RCAS index and redirect Case 3 insertions to the auxiliary RCAS index.

9 Conclusion and Outlook

We looked at the problem of supporting insertions in the RCAS index [17], an
in-memory, trie-based index for semi-structured data. We showed that not every
insertion requires restructuring the index, but for the cases where the index must
be restructured we proposed two insertion techniques. The first method, called
strict restructuring, preserves RCAS’s alternating interleaving of the data’s con-
tent and structure, while the second method, lazy restructuring, optimizes for
insertion speed. In addition, we explore the idea of using an auxiliary index (sim-
ilar to LSM-trees [8]) for those insertion cases that would require restructuring
the original index. Redirecting the tough insertion cases to the auxiliary index
leaves the structure of the main index intact. We proposed techniques to merge
the auxiliary index back into the main index when the auxiliary index grows too
big. Our experiments show that these techniques can efficiently insert new keys
into RCAS and preserve its good query performance.

For future work we plan to support deletion. Three deletion cases can occur
that mirror the three insertion cases. Like for insertion, the first two cases are
simple and can be solved by deleting a reference from a leaf or the leaf itself if it
contains no more references. The third case occurs when the dynamic interleaving
is invalidated because the positions of the discriminative bytes shift. Deletion
algorithms exist that mirror our proposed insertion techniques for the third case.

Inserting Keys into the Robust Content-and-Structure (RCAS) Index 135

References

1. Abramatic, J., Cosmo, R.D., Zacchiroli, S.: Building the universal archive of source
code. Commun. ACM 61(10), 29–31 (2018). https://doi.org/10.1145/3183558

2. Arge, L.: The buffer tree: a technique for designing batched external data structures.
Algorithmica 37(1), 1–24 (2003). https://doi.org/10.1007/s00453-003-1021-x

3. Askitis, N., Zobel, J.: B-tries for disk-based string management. VLDB J. 18(1),
157–179 (2009). https://doi.org/10.1007/s00778-008-0094-1

4. Di Cosmo, R., Zacchiroli, S.: Software heritage: why and how to preserve software
source code. In: iPRES (2017)

5. Heinz, S., Zobel, J., Williams, H.E.: Burst tries: a fast, efficient data structure
for string keys. ACM Trans. Inf. Syst. 20(2), 192–223 (2002). https://doi.org/10.
1145/506309.506312

6. Jagadish, H.V., Narayan, P.P.S., Seshadri, S., Sudarshan, S., Kanneganti, R.: Incre-
mental organization for data recording and warehousing. In: VLDB, pp. 16–25
(1997)

7. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: artful indexing for
main-memory databases. In: ICDE, pp. 38–49 (2013). https://doi.org/10.1109/
ICDE.2013.6544812

8. Luo, C., Carey, M.J.: LSM-based storage techniques: a survey. VLDB J. 29(1),
393–418 (2019). https://doi.org/10.1007/s00778-019-00555-y

9. Mathis, C., Härder, T., Schmidt, K., Bächle, S.: XML indexing and storage: ful-
filling the wish list. Comput. Sci. Res. Dev. 30(1), 51–68 (2012). https://doi.org/
10.1007/s00450-012-0204-6

10. Morrison, D.R.: PATRICIA - practical algorithm to retrieve information coded
in alphanumeric. J. ACM 15(4), 514–534 (1968). https://doi.org/10.1145/321479.
321481

11. Nishimura, S., Yokota, H.: QUILTS: multidimensional data partitioning framework
based on query-aware and skew-tolerant space-filling curves. In: SIGMOD, pp.
1525–1537 (2017). https://doi.org/10.1145/3035918.3035934

12. O’Neil, P.E., Cheng, E., Gawlick, D., O’Neil, E.J.: The log-structured merge-
tree (LSM-tree). Acta Informatica 33(4), 351–385 (1996). https://doi.org/10.1007/
s002360050048

13. Orenstein, J.A., Merrett, T.H.: A class of data structures for associative searching.
In: PODS 1984, New York, NY, USA, pp. 181–190 (1984). https://doi.org/10.
1145/588011.588037

14. Piatov, D., Helmer, S., Dignös, A.: An interval join optimized for modern hardware.
In: ICDE, pp. 1098–1109 (2016). https://doi.org/10.1109/ICDE.2016.7498316

15. Rousseau, G., Di Cosmo, R., Zacchiroli, S.: Software provenance tracking at
the scale of public source code. Empirical Softw. Eng. 25(4), 2930–2959 (2020).
https://doi.org/10.1007/s10664-020-09828-5

16. Severance, D.G., Lohman, G.M.: Differential files: their application to the main-
tenance of large databases. ACM Trans. Database Syst. 1(3), 256–267 (1976).
https://doi.org/10.1145/320473.320484

17. Wellenzohn, K., Böhlen, M.H., Helmer, S.: Dynamic interleaving of content and
structure for robust indexing of semi-structured hierarchical data. In: PVLDB, vol.
13, no. 10, pp. 1641–1653 (2020). https://doi.org/10.14778/3401960.3401963

https://doi.org/10.1145/3183558
https://doi.org/10.1007/s00453-003-1021-x
https://doi.org/10.1007/s00778-008-0094-1
https://doi.org/10.1145/506309.506312
https://doi.org/10.1145/506309.506312
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1007/s00778-019-00555-y
https://doi.org/10.1007/s00450-012-0204-6
https://doi.org/10.1007/s00450-012-0204-6
https://doi.org/10.1145/321479.321481
https://doi.org/10.1145/321479.321481
https://doi.org/10.1145/3035918.3035934
https://doi.org/10.1007/s002360050048
https://doi.org/10.1007/s002360050048
https://doi.org/10.1145/588011.588037
https://doi.org/10.1145/588011.588037
https://doi.org/10.1109/ICDE.2016.7498316
https://doi.org/10.1007/s10664-020-09828-5
https://doi.org/10.1145/320473.320484
https://doi.org/10.14778/3401960.3401963

Optimizing Execution Plans
in a Multistore

Chiara Forresi , Matteo Francia , Enrico Gallinucci(B) ,
and Matteo Golfarelli

University of Bologna, Cesena, Italy
{chiara.forresi,m.francia,enrico.gallinucci,matteo.golfarelli}@unibo.it

Abstract. Multistores are data management systems that enable query
processing across different database management systems (DBMSs);
besides the distribution of data, complexity factors like schema hetero-
geneity and data replication must be resolved through integration and data
fusion activities. In a recent work [2], we have proposed a multistore solu-
tion that relies on a dataspace to provide the user with an integrated view
of the available data and enables the formulation and execution of GPSJ
(generalized projection, selection and join) queries. In this paper, we pro-
pose a technique to optimize the execution of GPSJ queries by finding the
most efficient execution plan on the multistore. In particular, we devise
three different strategies to carry out joins and data fusion, and we build a
cost model to enable the evaluation of different execution plans. Through
the experimental evaluation, we are able to profile the suitability of each
strategy to different multistore configurations, thus validating our multi-
strategy approach and motivating further research on this topic.

Keywords: Multistore · NoSQL · Join optimization · Cost model

1 Introduction

The decline of the one-size-fits-all paradigm has pushed researchers and prac-
titioners towards the idea of polyglot persistence [19], where a multitude of
database management systems (DBMSs) are employed to support data storage
and querying. The motivations are manifold, including the exploitation of the
strongest features of each system, the off-loading of historical data to cheaper
database systems, and the adoption of different storage solutions by different
branches of the same company. This trend has also influenced the discipline of
data science, as analysts are being steered away from traditional data ware-
housing and towards a more flexible and lightweight approach to data analysis.
Multistore contexts are characterized by 1) the replication of data across differ-
ent storage systems (i.e., there is no clean horizontal partitioning) with possibly
conflicting records (e.g., the same customer with a different country of residence
in different databases), and 2) a high level of schema heterogeneity: records of
the same real-world entity may be represented with different schema structures,
using different naming conventions for the same information and storing different
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 136–151, 2021.
https://doi.org/10.1007/978-3-030-82472-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_11&domain=pdf
http://orcid.org/0000-0001-5652-2455
http://orcid.org/0000-0002-0805-1051
http://orcid.org/0000-0002-0931-4255
http://orcid.org/0000-0002-0437-0725
https://doi.org/10.1007/978-3-030-82472-3_11

Optimizing Execution Plans in a Multistore 137

information in different databases. The large volume and the frequent evolution
of these data hinder the adoption of a traditional integration approach.

In a recent work [2] we have proposed a multistore solution that relies on
a dataspace to provide the user with an integrated view of the data. A datas-
pace is a lightweight integration approach providing basic query expressiveness
on a variety of data sources, bypassing the complexity of traditional integration
approaches and possibly returning best-effort or approximate answers [9]. The
dataspace is built in accordance with a pay-as-you-go philosophy, i.e., by apply-
ing simple matching rules to recognize relationships between data structures and
by letting the users progressively refine the dataspace as new relationships are
discovered [13]. Users exploit the dataspace to formulate GPSJ (generalized pro-
jection, selection and join [12]) queries, i.e., the most common class of queries in
OLAP applications. Queries are translated into execution plans that consist of
many local computations (to be demanded to the single DBMSs) and a global
computation (carried out by the middleware layer).

In this paper, we propose a technique to optimize the execution of GPSJ
queries by finding the most efficient execution plan on the multistore. The main
challenge lies in devising a cross-DBMS execution plan that couples data fusion
operations (to reconcile replicated data) with the resolution of schema hetero-
geneity and efficiently provides a correct result. In particular, the paper provides
the following contributions: (1) the extension of the multistore scenario presented
in [2] to consider replicated data across different databases; (2) the introduction
of three join strategies that define alternative query execution plans by relying
on different schema representations; (3) the presentation of a multi-DBMS cost
model to compare the complexity of execution plans in terms of disk I/O and
choose the most efficient one; (4) the evaluation of the proposed join strate-
gies on a representative example of two real-world entities (i.e., customers and
orders) modeled with different schemas in different databases and linked by a
many-to-one relationship.1

The paper is structured as follows. In Sect. 2 we introduce the background
knowledge on our multistore; in Sect. 3 we introduce the join strategies and in
Sect. 4 we present the cost model; the evaluation of the join strategies based on
the cost model is given in Sect. 5. Section 6 discusses related work, and Sect. 7
draws the conclusions.

2 Multistore Preliminaries

In this section we provide the preliminary concepts to understand the multistore
scenario; we refer the reader to [2] for further details. Figure 1 shows a func-
tional overview of our prototypical implementation. The user interacts with the
multistore by submitting GPSJ queries to the Query planner through a custom
API service; the planner translates these queries into execution plans, which are

1 Remarkably, many-to-one relationships are at the base of the multidimensional model
and GPSJ queries [12], as well as our dataspace-based approach [2].

138 C. Forresi et al.

Fig. 1. Overview of our multistore.

Fig. 2. Overview of our case study and the related dataspace.

formulated onto the Execution framework (i.e., Apache Spark in our implementa-
tion). Execution plans are composed of one or more local plans (to be submitted
to the underlying DBMSs) and a global plan, that is run in the execution frame-
work; the results are finally returned to the user. The case study is shown in Fig.
2a: it is a Unibench-based [22] multi-cloud scenario, where two branches of the
same company store overlapping records of the same entities (i.e., customers,
orders, orderlines, and products) on different DBMSs. The first branch relies on
an RDBMS, the other on a document store and a wide-column store.

2.1 Basic Concepts

NoSQL DBMSs embrace a soft-schema approach that allows collections to con-
tain records with different schemas. In [2] we describe how the multistore is able
to manage schema heterogeneity; given that intra-collection schema heterogene-
ity does not affect execution plan optimization, we assume schema homogeneity
among the records of the same collection. Here, we introduce a schema definition
that provides a view of the records in first normal form by hiding the denormal-
ization due to the nesting of records and exposing the relationships between
schemas at different nesting levels.

Definition 1 (Schema). A schema S = {a1, . . . , a|S|} is a set of attributes
that applies to one or more records in a collection C. The attribute that uniquely

Optimizing Execution Plans in a Multistore 139

Fig. 3. A sample JSON document corresponding to two records.

identifies the records with schema S is the key, defined as key(S). We use Sμ

to denote the list of array attributes in C that must be unnested to unveil the
records of S (if any).

For the sake of simplicity, we assume all keys to be simple. Given a record r,
its schema (denoted with Sr) is the set of attributes directly available in r (i.e.,
those in the top level). If r is contained within the array attribute a of record r′,
then (i) Sr also includes key(Sr′) (this is necessary to maintain the relationship
between the schema of a nested record and the one of the parent record), and
(ii) Sμ

r is built by extending Sμ
r′ with a as the last attribute to be unnested.

Example 1. The JSON document in Fig. 3 is composed of two records, cust (in
blue) and ord (in green; this is nested in cust), with the following schemas (keys
are underlined): Scust = {cid, firstName, address.street, orders }, with Sμ

cust = [];
Sord = {cid, orders.oid, orders.date, orders.price }, with Sμ

ord = [orders].

2.2 Dataspace Modeling

The dataspace is defined by a set of abstract concepts named features and
entities: the former provides a unique representation of semantically equivalent
attributes, while the latter provides a representation of real-world entities. The
composition of features and entities fundamentally relies on the recognition of
relationships between attributes and schemas, which is done through mappings.

Definition 2 (Mapping). A mapping m is a pair m = (ai, aj) that expresses
a semantic equivalence between two primitive attributes ai and aj. The existence
of a mapping between ai and aj is indicated with ai ≡ aj.

Mappings are specified between attributes of different schemas and they
reveal the relationship between such schemas. Consider two schemas Si and
Sj . If key(Si) ≡ key(Sj), then we can infer a one-to-one relationship, rep-
resented as Si ↔ Sj . If ak ≡ key(Sj) : ak ∈ {Si\key(Si)}, then we can
infer a many-to-one relationship from Si to Sj , represented as Si

ak−→ Sj . If
ak ≡ al : ak ∈ {Si\key(Si)}, al ∈ {Sj\key(Sj)}, no direct relationship exists
between the two schemas; many-to-many relationships are not considered.

Example 2. Consider the following two schemas, S1 = {cid, firstName} mod-
eling records of customers, and S2 = {oid, orderDate, custId, custName} mod-
eling records of orders. Two mappings can be defined on such schemas, i.e.,

140 C. Forresi et al.

m1 = (cid, custId), and m2 = (firstName, custName). Since key(S1) is mapped to
a non-key attribute of S2, we can infer a many-to-one relationship between the
two schemas. Mapping m2 does not reveal any direct relationship, but it shows
that S2 is denormalized as it models customer information at the order level.

Mappings recognize that there is a semantic equivalence between two
attributes in different schemas, thus we need to address all of them through
a unique reference. This is the purpose of features.

Definition 3 (Feature). A feature represents either a single attribute or a
group of attributes mapped to each other. We define a feature as f = (a,M,�),
where a is the representative attribute of the feature; M is the set of mappings
that link all the feature’s attributes to the representative a; � : (vi, vj) → vk

is an associative and commutative function that resolves the possible conflicts
between the values of any two attributes (ai, aj) belonging to f and returns a
single value vk.

Let attr(f) be the set of attributes represented by f (i.e., the representative
attribute plus those derived from the mappings). Given a record r, the conflict
resolution function � can be applied to r[ai] and r[aj] if {ai, aj} ⊆ attr(f); we
refer the reader to [4] for an indication about different methods to define conflict
resolution functions. Also, we remark that an attribute is always represented by
one and only one feature; thus, for any two features fi and fj , it is attr(fi) ∩
attr(fj) = ∅. We use rep(f) to refer to the representative attribute of f , and
rep(a) as short for rep(feat(a)). As features are used to represent semantically
equivalent attributes, we introduce the concept of entity to represent real-world
entities (e.g. customers, orders).

Definition 4 (Entity). An entity E is a representation of a real-world entity.
It is identified by a feature that acts as a key in at least one schema; we refer to
such feature as key(E). Also, we use feat(E) to refer to the set features whose
attributes describe a property of E.

For simplicity, we assume that all instances of the same entity are represented
by same key feature. In particular, entities are obtained by detecting the features
that act as a key in at least one schema. We can infer a many-to-one relationship
from Ei to Ej based on a feature f if key(Ej) = f and f ∈ feat(Ei), f �=
key(Ei); we represent this as Ei

f−→ Ej . Ultimately, the dataspace simply consists
of the obtained entities and features. The dataspace corresponding to our case
study is shown in Fig. 2b.

The dataspace is built semi-automatically in accordance with a pay-as-you-go
philosophy: schemas are automatically extracted, while mappings are inferred by
applying simple matching rules. Mappings are then used to recognize relation-
ships between the schemas and to infer features and entities. At any time, the
users may refine the dataspace as new relationships are discovered. Ultimately,
the dataspace is exploited to formulate GPSJ queries, i.e., the most common class
of queries in OLAP applications; a typical OLAP query consists of a group-by

Optimizing Execution Plans in a Multistore 141

set (i.e., the features used to carry out an aggregation), one or more numerical
features to be aggregated by some function (e.g., sum, average), and (possibly)
some selection predicates. We refer the reader to [2] for details on the process to
obtain the dataspace and to translate a query formulated on the dataspace into
an execution plan.

2.3 Data Fusion Operations

Given the expressiveness of GPSJ queries, the execution plan of a query is for-
mulated in the Nested Relational Algebra (NRA). Here, we slightly extend NRA
to handle some operations required by our multistore scenario.

The most important addition to NRA is the extension of the join operator’s
semantics to handle data fusion. We do this by introducing an operator called
merge (�) , i.e., an adaptation to our scenario of the full outer join-merge opera-
tor introduced in [18] to address the extensional and intensional overlap between
schemas. In particular, the records belonging to the same entity (e.g., customers)
can be partially overlapped, both in terms of instances (e.g., the same customer
can be repeated across different schemas) and in terms of schemas (e.g., the name
of the customer can be an attribute of two different schemas). We aim to keep
as much information as possible when joining the records of two schemas, both
from the extensional and the intensional points of view. The merge operator (�)
answers this need by (i) avoiding any loss of records, (ii) resolving mappings by
providing output in terms of features instead of attributes, and (iii) resolving
conflicts whenever necessary. We define the merge operator as follows.

Definition 5 (Merge operation). Let Ri and Rj be the recordsets of two
schemas Si and Sj, and consider (ak, al) ∈ (Si, Sj) such that ak ≡ al, i.e.,
∃f : {ak, al} ⊆ attr(f). The merge of the two recordsets Ri �f Rj produces a
recordset Rij with schema Sij = S∗

i ∪ S∗
j ∪ S∩

ij such that:

– S∗
i = {a ∈ Si : � a′ ∈ Sj s.t. a ≡ a′}

– S∗
j = {a′ ∈ Sj : � a ∈ Si s.t. a ≡ a′}

– S∩
ij = {rep(a) : a ∈ Si,∃a′ ∈ Sj s.t. a ≡ a′}

Rij results in a full-outer join between Ri and Rj where the values of attributes
linked by a mapping are merged through function �. In particular, given a record
r ∈ Rij obtained by joining s ∈ Ri and t ∈ Rj (i.e., s[ai] = t[aj]), it is
r[rep(a)] = �(s[a], t[a′]) ∀ (a, a′) s.t. a ∈ Si, a

′ ∈ Sj , a ≡ a′.

Example 3. Let R1 �fid R2 , s ∈ R1 and t ∈ R2 two records with schema S1 and
S2 respectively, S1 = {a1, a3}, S2 = {a2, a4}, fid = {a1, a2}, fname = {a3, a4}.
Let s[a1] = t[a2], s[a3] = “Smith” and t[a4] = “Smiht”. The merge of s and t
produces a record r where r[a3] = �(s[a3], t[a4]) and � is the a conflict resolution
function that decides between “Smith” and “Smiht”.

The merge operation is defined between recordsets, thus it is also applicable
between the records of two arrays within the same collection. Consider a collec-
tion of customers with schema S = {cid, o1, o2}, where o1 and o1 are arrays of

142 C. Forresi et al.

Fig. 4. Three different schema representations of entities customer and orders.

orders. The merge operation is applicable between o1 and o2 to merge the records
of orders. In the context of our multistore, this operation is always carried out in
combination with the unnest of the merged array. Therefore, we introduce the
simultaneous unnest operator µ to carry out both operations, i.e., merging two
(or more) array attributes and unnesting the result.

Definition 6 (Simultaneous unnest operation). Let R1 be a recordset with
schema S1 = {ak, al, am} where ak is a primitive attribute, al and am are array
attributes; also, let R2 be the recordset in al with schema S2, R3 the recordset
in am with schema S3, key(S2) = key(S3) = f . The simultaneous unnest of al

and am, declared as µ[al,am](R1), is translated to µan
(R1) where an is the result

of R2 �f R3.

3 Query Plans and Optimization

In the multistore, the same real-world domain can be modeled in different ways
in different DBMSs. The relational model favors normalized schemas (NoS),
whereas non-relational models encourage different forms of denormalization,
mainly nested schemas (NeS) and flat schemas (FlS). Figure 4 shows an example
of these schema representations considering the relationship between customers
and orders from our case study.

To define an efficient query plan we must consider that (1) a common schema
representation must be chosen to join data, and (2) the query can either optimize
data fusion activities or the push-down of operations to the local DBMSs, but
not both of them. Indeed, data fusion is favored by normalizing all data (i.e., by
choosing NoS as the common representation), whereas pushing operations down
to the local DBMSs entails the transformation of data into NeS or FlS (as data
in NeS/FlS represent the result of a nest/join operation between data in NoS).
Therefore, the choice between the two optimizations is related to the choice of
the common representation, each of which produces a different execution plan.
The efficiency of the latter ultimately depends on the operations required by the
query and on the original schema representation of the data. For this reason, the

Optimizing Execution Plans in a Multistore 143

Table 1. Schema alignment operations.

From schema To schema Operations

NoS (CNX , CNY) FlS (CFl) (CNX) �� (CNY)

NeS (CNe) v((CNX) �� (CNY))

NeS (CNe) FlS (CFl) μ(CNe)

NoS (CNX) π(CNe)

NoS (CNY) μ(π(CNe))

FlS (CFl) NoS (CNX) γ(π(CFl))

NoS (CNY) π(CFl)

NeS (CNe) v(CFl)

Fig. 5. Execution plan skeleton for each join strategy

query planner produces all three execution plans (one for each common schema
representation that may be chosen) and later evaluates the most efficient one
through the proposed cost model. Execution plans are composed of two steps.

1. A schema alignment step, where the data in each DBMS is transformed on-
the-fly into the chosen reference schema representation.

2. A joining step to carry out the integration and merging of the data, including
the data fusion and conflict resolution operations where necessary.

Table 1 shows the NRA operations required to compute a transformation
from one schema representation to another (limited to two entities). These oper-
ations can be pushed down to the DBMSs if the latter support the former. Then,
the strategy to join the aligned data depends on the common schema representa-
tion that is chosen. Figure 5 describes the skeleton of the execution plans for each
strategy, considering two entities being stored on two DBMSs. Each plan may
present some variations depending on the actual need for data fusion between
the two entities. In particular, we outline three overlap scenarios: full (records of
both EY and EX may be replicated in different databases), partial (only records
of EY may be replicated in different databases), or absent.

Variations in the execution plans are represented by (i) alternative opera-
tions: / is used to indicate that simple union ∪ is adopted when data fusion
is not needed, merge otherwise (the same applies to ∪/µ); (ii) additional oper-

144 C. Forresi et al.

ations: the dotted edges represent paths to optional operations that are carried
out only when data fusion is needed. For each join strategy, we first discuss the
execution plan in the full overlap scenario and then discuss the variations for
the other scenarios.

Normalized Join (NoJ) Strategy. NoJ starts by separately merging the
records belonging to the same entity (i.e., CNX

1 with CNX
2 , and CNY

1 with
CNY

2) and then joins the obtained results. This strategy follows the footsteps
of a traditional integration approach, except that data fusion is carried out at
query time. In partial (and no) overlap scenarios, the execution plan is modified
by replacing the first merge operation on EY (and EX) with a simple union.

Nested Join (NeJ) Strategy. The two nested collections can be joined directly
by following a top-down approach. NeJ starts by merging the collections on the
key of EY (thus applying data fusion to the upper level of the nested collection);
this results in a new collection where the reconciled records of EY contain two
arrays, each storing EX ’s records for the original collections. The subsequent
step is to simultaneously unnest these arrays (see Definition 6), in order and
apply data fusion to the lower level as well. In the partial overlap scenario, the
final simultaneously unnest is replaced by a simple array union. Additionally, in
no overlap scenario, the initial merge is also replaced by a simple union.

Flat Join (FlJ) Strategy. Differently from previous strategies, the variations
in presence or absence of data fusion need are more significant. In full overlap
scenario, the execution plan requires to (i) separately aggregate both collections
to extract a normalized view over EY ; (ii) merge the obtained view to apply
data fusion, (iii) join the reconciled records of EY with the reconciled records
of EX . The partial overlap scenario differs in the fact that records of EX must
not be reconciled, thus the first merge operation (i.e., the one between CFl

1 and
CFl

2) is replaced by a union. In no overlap scenario, all the optional operations
in the execution plan (i.e., those necessary to reconcile EY ’s records) are not
necessary, and it suffices to union CFl

1 with CFl
2 .

Remarkably, the efficiency of each strategy depends on the multistore con-
figuration and the selected query. If the query involves data in a single schema
representation, the respective join strategy is most likely to be the cheapest, as
schema alignment is not necessary. Also, pushing operations (e.g., nest and join)
down to the underlying DBMSs favors the usage of statistics and optimization
the may not be available at the middleware level; however, by postponing the
data fusion operations, the complexity of the execution plan increases (especially
for FlJ, as seen above).

4 Cost Model

The identification of the most convenient join strategy to execute a query is
demanded to a novel cost model that estimates the cost of our cross-DBMS GPSJ
queries. In particular, it estimates the cost of every NRA operation (including
the newly defined ones) by measuring the amount of data read and written to

Optimizing Execution Plans in a Multistore 145

Table 2. Cost model parameters and basic functions

Parameter/function Description

NR(C) Number of records in C

NNR(C) If C is nested, number of nested records

Len(C) Average byte length of a record in C

DPS Size of a disk page

PT (C) Number of partitions into which records in C are organized

NB Number of memory buffers

NP (C) Number of disk pages occupied by C: �NR(C)·Len(C)
DPS �

Part(C, nPart) Number of disk pages occupied by one of nPart partitions of C

Table 3. Cost model for NRA operations and additional supporting operations

Operation Description Estimated cost Sup.

CA(C) Collection access NP (C) RMCS

π(C) Projection NP (C) RMCS

γ(C) Aggregation Sort(C) + NP (C) RM*S

v(C) Nest Sort(C) + NP (C) RM-S

μ(C) Unnest NP (C) RM-S

μ(C) Simult. unnest NR(C) · SM(Part(C, �NNR(C)
NR(C) �)) ---S

∪(C) Array union NP (C) RM-S

(C1) �� (C2) Join min(NLJ(C, C′), SMJ(C, C′), HJ(C, C′)) RM-S

(C1) � (C2) Merge min(NLJ(C, C′), SMJ(C, C′), HJ(C, C′)) RM-S

(C1) ∪ (C2) Union NP (C) + NP (C′) RM-S

Shf(C) Data shuffle 3 · NP (C) -M-S

SM(C) Sort-merge 2 · NP · (�logNB−1NP� + 1) RM-S

Sort(C) Data sort (central.) SM(C) RM--

Data sort (distrib.) Shf(R) + PT (C) · SM(Part(C, PT (C))) ---S

HJ(C, C′) Hybrid hash join 3 · (NP (C) + NP (C′)) R---

NLJ(C, C′) Nested loops join NP (C) + NR(C) · NP (C′) R---

NP (C) + NR(C) · NP (C′) + Unnest(C′′) -M--

SMJ(C, C′) Sort-merge join Sort(C) + Sort(C′) + NP (C) + NP (C′) R--S

disk (which is the slowest resource and is usually the bottleneck in typical GPSJ
queries, even in a distributed framework like Apache Spark [20]). Building a cus-
tom cost model is necessary due to the variety of technologies in the multistore:
although each execution engine adopts cost-based statistics to estimate query
execution times, they are not directly comparable (e.g., MongoDB estimates
execution times in milliseconds, while PostgreSQL uses arbitrary time units).

The cost model is focused on the technologies that we adopt in our imple-
mentation (see Sect. 2), i.e., RDBMSs in general, MongoDB, Apache Cassandra,
and Apache Spark (which is used at the middleware level). To obtain the for-
mulas we relied on existing literature on this subject (e.g., [7,17]) and on the
tools’ documentation. Table 2 shows the parameters required by the cost model,
while Table 3 shows the core part, including the estimated cost for each NRA
operation; the lower part of the latter introduces other supporting operations

146 C. Forresi et al.

that are directly or indirectly used in the cost estimate for NRA operations.
Table 3 also shows the support of each operation on the adopted technologies,
i.e., RDBMSs (R), MongoDB (M), Apache Cassandra (C), and Apache Spark (S);
symbol - indicates that the operation is not supported, while symbol * indicates
that the operation is partially supported. Table 3 voluntarily omits for space
reasons the formulas to estimate the number of records NR of the collection
returned by each operation.

Given a query q submitted by the user, the query planner determines an exe-
cution plan for each join strategy defined in Sect. 3. Let P be the query plan for q,
which can be decomposed into PR, PM, PC (i.e., the portions of P to be executed on
local DBMSs), and PS (i.e., the portion to be executed on the middleware). The
rationale of the decomposition is to push down to the local DBMSs as much com-
putation as possible. Given the complexity of a multistore configuration compris-
ing several technologies and concurrent computations in a distributed environ-
ment, we make a number of assumptions to simplify the calculation of Cost(P).
In particular, we assume that (i) global computations on the middleware begin
after each local computation have been carried out, (ii) each DBMS runs in a
non-distributed way on a separate machine, (iii) Apache Spark runs on a certain
number of machines nS,2 and (iv) data is uniformly distributed across Spark’s
machines. Then, we calculate Cost(P) = Cost(PS)/nS + maxi∈R,M,C Cost(Pi).

5 Evaluation

The three join strategies are evaluated on a wide range of multistore config-
urations modeling the representative domain EX → EY (where EY and EX

represent customers and orders, respectively) by running GPSJ queries that are
devised in accordance with a reference model comprising two group-by features,
one measure, and no selection predicates (e.g., the average price by product name
and customer gender). The configurations vary on the following parameters.

– The number of records for each entity: either 102 or 105 for EY , either NRY ·10
or NRY · 100 for EX .

– The ordering of records in each database: either ordered on key(Y) (i.e., the
customer key, which facilitates join and aggregation operations) or not.

– The overlap scenario (see Sect. 3): either absent, partial, or full; to estimate
the cardinality we consider an overlap rate of 5% (i.e., 5% of customers on
one collection overlap with the customers on the other).

The combination of these parameters determines 3072 physical configura-
tions, which are hard to deploy and evaluate empirically. Thus, the join strate-
gies are evaluated over all configurations by means of our cost model, while the
accuracy of the latter is measured by deploying 6 representative configurations

2 Although the level of parallelism in Spark is given in terms of CPU cores, we consider
the number of machines because the cost model is focused on disk IO rather than
on CPU computation.

Optimizing Execution Plans in a Multistore 147

Fig. 6. Estimated cost of schema alignment on different execution engines with col-
lections ordered (a) or not ordered (b) on the join attribute; estimated cost of join
strategies (c); number of experiments won by each join strategy (d).

(i.e., all overlap scenarios, either with a low or high gap between the number of
records of the two entities) consistently with the cost model assumptions (i.e.,
centralized DBMSs on separate machines, and Spark running on 4 machines).
The results show that, in 83% of the experiments, the cost model identifies the
strategy corresponding to the plan with the lowest execution time. With respect
to having an oracle that always finds the best execution plan, the choices of
our cost model cause an average overhead of 10%; conversely, always adopting
a single join strategy returns an average overhead between 77% and 127%.

Single Step Evaluation. The first question we aim to answer is “Given a cer-
tain execution engine and a certain schema representation for the collections of
EY and EX , what is the cost of aligning both collections to a certain schema
representation?”. From the results (shown in Figs. 6a and 6b) we learn that NeS
is generally the cheapest schema representation to move away from (as projec-
tions and unnest operation are the most simple ones) and the most expensive to
align to (as nest requires an expensive aggregation operation); conversely, FlS is
the most expensive to move away from, as it requires to carry out aggregations.
We remark that MongoDB suffers in those transformations that require collec-
tions to be joined, due to its limited join capabilities; also, some costs are not
estimated for Cassandra due to the lack of support to several operations.

The join strategies define operations that must be carried out in the mid-
dleware to consolidate the data obtained from the local DBMSs; therefore we
evaluate the costs only with reference to Apache Spark. The results are shown in
Fig. 6c. We observe that the cost for NoJ is quite stable over the different over-
lap scenarios, whereas the cost of NeJ and FlJ is more affected by the latter. As
expected, FlJ is the one suffering the most the need to carry out data fusion. An
interesting duality emerges by comparing these results with the above ones on

148 C. Forresi et al.

schema alignment: NeS appears as the most expensive one to transform into and
often the cheapest one to carry out the join, whereas FlS is exactly the opposite.
These considerations confirm that the identification of the best execution plan
will be significantly influenced by the characteristics of the dataset (in terms of
the adopted schema representations, cardinality, and overlap scenarios).

Full Execution Plan Evaluation. Figure 6d shows, for each overlap scenario,
the strategy that returns the minimum cost. The results indicate a clear distinc-
tion between the scenario with no overlap and the others. In the first case, FlJ
emerges as a clear winner (except for a few cases where the estimated cost is the
same for NeJ), indicating that DBMS locality can be fully exploited when there
is no need to carry data fusion activities. In the other cases, NeJ and NoJ share
an almost equal amount of wins, with NeJ slightly favoring the case of partial
overlap (consistently with previous single-step results) and NoJ favoring the case
where data fusion is needed for both entities (confirming the discussion made
in Sect. 3). The main variable that pushes towards one of the two strategies in
these configurations is the number of records in NeS and NoS: the higher the
imbalance of data towards a certain schema representation, the lower the cost
of the respective join strategy. Ultimately, these results validate the proposal of
multiple join strategies (as neither of them is optimal under every circumstance)
and motivate further research in this direction.

6 Related Work

The variety in terms of data models responds to different requirements of modern
data-intensive applications, but providing transparent querying mechanisms to
query large-scale collections on heterogeneous data stores is an active research
area [21]. While many proposals answer the need for supporting multiple data
models, there is a lack of solutions to address both schema heterogeneity and
data fusion in polyglot systems. Remarkably, neglecting these issues may lead
to incomplete and/or incorrect results.

A naive approach to solve the problem of querying several data models is to
transform all datasets into a reference data model—usually the relational one [8].
This kind of solution leads to the loss of the schemaless flexibility and requires
continuous maintenance to support schema evolution. A different approach is
proposed by multimodel systems, which directly support several data models
within the same platform (e.g., OrientDB, ArangoDB). Inter-data model query-
ing is enabled by a custom query language to support nested structures and
graph queries. An example is [3], which discusses a data warehousing approach
relying on a multimodel system. Differently from our approach, these systems do
not directly support the resolution of schema heterogeneity and data fusion—
thus requiring manual activities (or additional tools) to clean either the original
data or the query results.

In recent years, multistores and polystores have emerged to provide inte-
grated access and querying to several heterogeneous stores through a mediator
layer (middleware) [21]. The difference between multistores and polystores lies in

Optimizing Execution Plans in a Multistore 149

whether they offer a single or multiple querying interfaces, respectively. Among
the most notable are BIGDAWG [10], TATOOINE [6], and CloudMDsQL [14].
These systems vary in the functionalities they support (e.g., the available data
models and storage systems, the support to the ingestion process, the expres-
siveness of the querying language, the possibility to move data from one DBMS
to another). However, none of them supports data fusion.

Effectively supporting querying on a heterogeneous system with overlapping
records requires the adoption of data fusion techniques [5]. The literature on this
subject is very wide, thus we refer the reader to a recent survey [16]. Remark-
ably, related work in this area does not apply directly to a polyglot system. To
the best of our knowledge, the only proposal that considers a scenario requir-
ing data fusion in a polyglot system is QUEPA [15], where the authors present
a polystore-based approach to support query augmentation. The approach is
meant to complement other polystores that actually support cross-DBMS query-
ing, and record linkage techniques are only used to find related instances in dif-
ferent DBMSs, but not to solve conflicts. Another work that proposes on-the-fly
integration and schema heterogeneity resolution in an analytical context is [11];
however, the proposed approach is limited to document-oriented databases and
does not consider data fusion.

7 Conclusions

In this work, we have extended our multistore approach [2] with a cost-based
optimization of execution plans by devising and evaluating three join strategies
in presence of data replication. The results demonstrate that, depending on the
configuration of the multistore and the distribution of the data, different join
strategies may emerge as the most convenient to follow to structure the query
execution plan. This validates the multi-strategy approach and motivates further
research in this direction. In future work, the first step will be to apply the join
strategies on a wider domain including multiple entities. This step alone opens
to several challenges, as the variety of schema representations will considerably
increase and may impact significantly on the choice of the best strategy. The
cost model can be also improved from many perspectives, by (i) considering
the impact of distributed database implementations (other than the middleware
execution engine), (ii) adopting finer modeling of concurrent computations, and
(iii) integrating the cost model with the existing one for GPSJ queries on Apache
Spark [1]. We plan to further evaluate the join strategies over a broader selec-
tion of queries, including selection predicates with varying selectivity, which
will require additional statistics to be collected from the different DBMSs. Ulti-
mately, we will consider the addition of partial aggregation push-down to the
local databases to increase the efficiency of our multistore system.

150 C. Forresi et al.

References

1. Baldacci, L., Golfarelli, M.: A cost model for SPARK SQL. IEEE Trans. Knowl.
Data Eng. 31(5), 819–832 (2019)

2. Ben Hamadou, H., Gallinucci, E., Golfarelli, M.: Answering GPSJ queries in a
polystore: a dataspace-based approach. In: Laender, A.H.F., Pernici, B., Lim, E.-
P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 189–203. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-33223-5 16

3. Bimonte, S., Gallinucci, E., Marcel, P., Rizzi, S.: Data variety, come as you are in
multi-model data warehouses. Inf. Syst. 101734 (2021)

4. Bleiholder, J., Naumann, F.: Declarative data fusion – syntax, semantics, and
implementation. In: Eder, J., Haav, H.-M., Kalja, A., Penjam, J. (eds.) ADBIS
2005. LNCS, vol. 3631, pp. 58–73. Springer, Heidelberg (2005). https://doi.org/10.
1007/11547686 5

5. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. (CSUR) 41(1),
1–41 (2009)

6. Bonaque, R., et al.: Mixed-instance querying: a lightweight integration architecture
for data journalism. Proc. VLDB Endow. 9(13), 1513–1516 (2016)

7. DeWitt, D.J., et al.: Implementation techniques for main memory database sys-
tems. In: Proceedings of the 1984 SIGMOD Annual Meeting, pp. 1–8 (1984)

8. DiScala, M., Abadi, D.J.: Automatic generation of normalized relational schemas
from nested key-value data. In: 2016 ACM SIGMOD International Conference on
Management of Data, pp. 295–310. ACM (2016)

9. Franklin, M.J., Halevy, A.Y., Maier, D.: From databases to dataspaces: a new
abstraction for information management. SIGMOD Rec. 34(4), 27–33 (2005)

10. Gadepally, V., et al.: The BIGDAWG polystore system and architecture. In: 2016
IEEE High Performance Extreme Computing Conference, pp. 1–6. IEEE (2016)

11. Gallinucci, E., Golfarelli, M., Rizzi, S.: Approximate OLAP of document-oriented
databases: a variety-aware approach. Inf. Syst. 85, 114–130 (2019)

12. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual model
for data warehouses. Int. J. Coop. Inf. Syst. 7(2–3), 215–247 (1998)

13. Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-as-you-go user feedback for datas-
pace systems. In: 2008 ACM SIGMOD International Conference on Management
of Data, pp. 847–860. ACM (2008)

14. Kolev, B., et al.: CloudMDSQL: querying heterogeneous cloud data stores with a
common language. Distrib. Parallel Databases 34(4), 463–503 (2016)

15. Maccioni, A., Torlone, R.: Augmented access for querying and exploring a poly-
store. In: 34th IEEE International Conference on Data Engineering, ICDE 2018,
pp. 77–88. IEEE Computer Society (2018)

16. Mandreoli, F., Montangero, M.: Dealing with data heterogeneity in a data fusion
perspective: models, methodologies, and algorithms. In: Data Handling in Science
and Technology, vol. 31, pp. 235–270. Elsevier (2019)

17. Mishra, P., Eich, M.H.: Join processing in relational databases. ACM Comput.
Surv. 24(1), 63–113 (1992)

18. Naumann, F., Freytag, J.C., Leser, U.: Completeness of integrated information
sources. Inf. Syst. 29(7), 583–615 (2004)

19. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Pearson Education, London (2013)

20. Shi, J., et al.: Clash of the titans: mapreduce vs. spark for large scale data analytics.
Proc. VLDB Endow. 8(13), 2110–2121 (2015)

https://doi.org/10.1007/978-3-030-33223-5_16
https://doi.org/10.1007/11547686_5
https://doi.org/10.1007/11547686_5

Optimizing Execution Plans in a Multistore 151

21. Tan, R., Chirkova, R., Gadepally, V., Mattson, T.G.: Enabling query processing
across heterogeneous data models: a survey. In: 2017 IEEE International Confer-
ence on Big Data, pp. 3211–3220. IEEE Computer Society (2017)

22. Zhang, C., Lu, J., Xu, P., Chen, Y.: UniBench: a benchmark for multi-model
database management systems. In: Nambiar, R., Poess, M. (eds.) TPCTC 2018.
LNCS, vol. 11135, pp. 7–23. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-11404-6 2

https://doi.org/10.1007/978-3-030-11404-6_2
https://doi.org/10.1007/978-3-030-11404-6_2

Integrity Constraints for Microcontroller
Programming in Datalog

Stefan Brass(B) and Mario Wenzel

Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik,
Von-Seckendorff-Platz 1, 06099 Halle (Saale), Germany
{brass,mario.wenzel}@informatik.uni-halle.de

Abstract. We consider microcontroller-programming with a declara-
tive language based on the logic-programming language Datalog. Our
prototype implementation translates a Datalog dialect to C-code for the
Arduino IDE. In order to prove the correctness, one must ensure that the
very limited memory of the microcontroller is sufficient for the derived
facts. In this paper, we propose a class of constraints called “generalized
exclusion constraints” that can be used for this task. Moreover, they are
needed to exclude conflicting commands to the hardware, e.g. different
output values on a pin in the same state. This class of constraints also
generalizes keys and functional dependencies, therefore our results also
help to prove such constraints for derived predicates.

1 Introduction

A microcontroller is a small computer on a single chip. For instance, the Amtel
ATMega328P contains an 8-bit CPU, 32 KByte Flash Memory for the program,
2 KByte static RAM, 1 KByte EEPROM for persistent data, 23 general pur-
pose I/O pins, timers, analog/digital-converters, pulse-width modulators, and
support for serial interfaces. It costs less than 2 dollars and consumes little
energy. Microcontrollers are used in many electronic devices.

For hobbyists, schools, and the simple development of prototypes, the
Arduino platform is quite often used. It basically consists of a few variants of
boards with the microcontroller, fitting hardware extension boards (“shields”),
and an IDE with a programming language based on C.

The software for microcontrollers is often developed in Assembler or C.
Declarative programming is an interesting option even for such small devices
for the following reasons:

– Declarative programs are usually shorter than an equivalent program in a
procedural language. This enhances the productivity of the programmers.

– There can be no problems with uninitialized variables or dangling pointers.
– The language is relatively simple, therefore it can be used also by non-experts

(e.g., Arduino boards are a nice device to be used in school).
– The language has a mathematically precise semantics based on logic, which

makes programs easier to verify.
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 152–166, 2021.
https://doi.org/10.1007/978-3-030-82472-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-82472-3_12

Integrity Constraints for Microcontroller Programming in Datalog 153

– The simple semantics also permits powerful optimization, e.g. in [14], we
translate a subclass of programs to a finite automaton extended with a fixed
set of variables (i.e. we use “parameterized states”).

– Many programs become easier to understand and more flexible by a data-
driven architecture. E.g., the configuration data for a home-automation sys-
tem used as an example in [14] is basically a small database.

In [13,14], we proposed a language “Microlog” for programming Microcontrollers
like on the Arduino. The language is based on Datalog (simple logical rules).
More specifically, we were inspired by the language Dedalus [1]. One reason for
the current revival of Datalog is that it is used also for applications that are not
typical database applications, such as static analysis of program code [9], cloud
computing [10], and semantic web applications [3,5].

While classic Datalog is not turing-complete, we use it on an infinite sequence
of states (similar to the language Dedalus [1]). If one ignores technical restrictions
such as the restricted memory and the limited range of the clock, it would be
possible to simulate a turing machine. Therefore, using Datalog to specify the
input-output-behaviour of a microcontroller is not restricted to toy applications.

We have a prototype implementation that compiles our Datalog-based lan-
guage “Microlog” into C code for the Arduino IDE. In order to be sure that the
program will never stop working, one has to prove that the memory is sufficient
for storing all derived facts for the current and the next state. While restricted
memory is in principle a problem for many programs, the danger of insufficient
memory is quite real on this small hardware. The solution in our paper [14] is
fully automatic, but works only for a restricted set of programs. In this paper, we
follow a different path based on integrity constraints. They have to be specified
manually, but if the set is sufficiently complete, the method presented here can
prove that the constraints hold in all states.

We call the class of constraints studied in this paper “generalized exclu-
sion constraints” (GECs). Each instance expresses that two facts cannot occur
together in a model. This includes key constraints: There, different facts with the
same key value cannot both be true in the same state. Whereas keys are local to
one relation, GECs can be specified also for facts from different relations. Exclu-
sion constraints appear already in [4,8,11]. They require that projections of two
relations are disjoint: πAi1 ,...,Ain

(R) ∩ πBj1 ,...,Bjm
(S) = ∅. Of course, such con-

straints are a special case of the constraints studied here. Exclusion constraints
in PostgreSQL are keys with a user-defined comparison operator. Furthermore,
GECs are similar to “negative constraints” in [3,5], but GECs include keys/FDs.

Constraints can be used in every different ways. For instance, [8] modifies
specifications of operations in state oriented systems such that they cannot vio-
late constraints (invariants). This is a kind of active integrity enforcement. In [5]
constraints are used to ignore inconsistent data (violating the constraints) during
query answering. There is a large body of work to compute implied updates in
order to specialize integrity constraint checking for a given update, see, e.g., [2].
In our case, we try to prove that no state reachable by executing the Datalog
program can violate the constraints. This is a program verification task.

154 S. Brass and M. Wenzel

In Sect. 2, we define a rule-based language for programming microcontrollers
and its translation into pure Datalog. In Sect. 3, we define the type of constraints
that is investigated in this paper, and show how they can be used for the task
at hand. In Sect. 4, we give the tools to prove that the constraints are indeed
satisfied for a given program. While we focus in this paper on microcontroller
programming, the technique is applicable to any Datalog program. Therefore,
it is an interesting alternative to our previous work on computing functional
dependencies for derived predicates [6].

2 A Datalog-Variant for Microcontroller Systems

2.1 Standard Datalog

Let us first quickly repeat the definition of standard Datalog. The Datalog dialect
for Arduino microcontroller systems will be translated to a standard Datalog
program in order to define its semantics. Also the generalized exclusion con-
straints will be defined for standard Datalog, which makes them applicable for
all applications of Datalog, not only in microcontroller programming.

A Datalog program is a finite set of rules of the form A ← B1 ∧ · · · ∧ Bn,
where the head literal A and the body literals Bi are atomic formu-
las p(t1, . . . , tm) with a predicate p and terms t1, . . . , tm. Terms are constants
or variables. Rules must be range-restricted, i.e. all variables appearing in the
head A must also appear in at least one body literal Bi. This ensures that all
variables are bound to a value when the rule is applied. The requirement will
be slightly modified for rules with built-in predicates, see below. A fact is a rule
with an empty body, i.e. it has the form p(c1, . . . , cm) with constants ci.

In order to work with time, we need some built-in predicates for integers.
Whereas normal predicates are defined by rules (or facts) as above, built-in
predicates have a fixed semantics that is built into the system. They can only
appear in rule bodies and have additional requirements for the range-restriction
so that the rule body is evaluable at least in the sequence from left to right.

– succ(T,S): This returns the next point in time (state) S for a given state T.
Therefore, the variable T must appear in a literal to the left of this literal in
the rule body so that it is bound when this literal is executed. We use lN0 as
logical time, and succ(T,S) is true iff S = T + 1 ∧ T ≥ 0.

– t1 < t2, and the same with the other comparison operators =, �=, ≤, >, ≥. If
the terms t1 or t2 are variables, the variable must appear already in a body
literal to the left (and therefore be bound to a value).

– t1 + t2 < t3 which ensures that t3 is more than t2 time units (milliseconds)
after t1. Again variables must be bound to the left. The delay t2 must be ≥ 0.

– t1 + t2 ≥ t3 (t3 is not more than t2 milliseconds after t1, possibly before t1).

2.2 Datalog with States

The program on a microcontroller must act in time. It basically runs forever
(until the power is switched off), but the time-dependent inputs lead to some

Integrity Constraints for Microcontroller Programming in Datalog 155

state change, and outputs depend on the state and also change over time. We
do not assume knowledge about the outside world, but it is of course possible
that the outputs influence future inputs. So it is quite clear that a programming
language for microcontrollers must be able to define a sequence of states.

We borrow from Dedalus0 [1] the idea to add a time (or state) argument
to every predicate. Note that this is logical time, the numbers have no specific
meaning except being a linear order.

Every predicate that looks like having n arguments really has n + 1 argu-
ments with an additional “zeroth” time argument in front. For a literal A of the
form p(t1, . . . , tn) let Â be p(T, t1, . . . , tn) with a fixed special variable T that
cannot be used directly in the program. For a normal rule A ← B1 ∧ · · · ∧ Bm,
all time arguments are this same variable T, i.e. the rule describes a deduction
within a state. Thus, the rule is an abbreviation for the standard Datalog rule
Â ← B̂1 ∧ · · · ∧ B̂m.

In order to define the next state, we also permit rules with the special mark
“@next” in the head literal:

p(t1, . . . , tn)@next ← B1 ∧ · · · ∧ Bm.

This rule is internally replaced by:

p(S, t1, . . . , tn) ← B̂1 ∧ · · · ∧ B̂m ∧ succ(T,S).

Note that @next can only be applied in the head, i.e. we can transfer information
only forward in time. All conditions can only refer to the current point in time.

Facts can be marked with @start, in which case the constant 1 is inserted for
the time argument, i.e. p(c1, . . . , cn)@start is replaced by p(1, c1, . . . , cn). Since
sometimes setup settings must be done before the main program can start, we
also permit @init which uses the time constant 0. This pre-state is also necessary
because the results of calls are only available in the next state. For instance, we
will need the real-time as returned by millis() in every state. However, to be
available in the start state 1, the function must be called in state 0.

Facts without this mark hold in all states (they are time-independent). How-
ever, since all predicates have a time argument, and we want rules to be range-
restricted, we define a predicate always as

always@init. % always(0).
always@next ← always. % always(S) ← always(T) ∧ succ(T,S).

A fact p(c1, . . . , cm) is replaced by p(T, c1, . . . , cn) ← always(T). (A possible
optimization would be to compute time-independent predicates and remove the
time argument from them.)

The minimal model of such a program is usually infinite (at least with always
or similar predicates), therefore the iteration of the TP -operator to compute
derived facts does not stop. However, this is no real problem, since we actually
compute derived facts state by state. We forbid direct access to the succ-relation
and to the special variables T and S. Therefore, within a state, only finitely many

156 S. Brass and M. Wenzel

facts are derivable. After we reached a fixpoint, we apply the rules with @next in
the head to compute facts for the next state. When that is done, we can forget
the facts in the old state, and switch to the new state. Within that state, we can
again apply the normal rules to compute all facts true in that state.

2.3 Interface Predicates

A Datalog program for a Microcontroller must interface with the libraries for
querying input devices and performing actions on output devices. A few examples
of interface functions (from the Arduino.h header file) are:

#define HIGH 0x1 void pinMode(uint8_t pin, uint8_t mode);
#define LOW 0x0 void digitalWrite(uint8_t pin, uint8_t val);
#define INPUT 0x00 int digitalRead(uint8_t pin);
#define OUTPUT 0x01 unsigned long millis(void);

For each function f that can be called, there is a special predicate call f with
a reserved prefix “call ”. The predicate has the same arguments as the function
to be called and in addition the standard time argument. E.g. derived facts
about the predicate call digitalWrite(T,Port,Val) lead to the corresponding calls
of the interface faction digitalWrite in state T. The implementation ensures
that duplicate calls are eliminated, i.e. even if there are different ways to deduce
the fact, only one call is done.

The sequence of calls is undefined. If a specific sequence is required, one must
use multiple states. Conflicts between functions (where a different order of calls
has different effects) can be specified by means of our exclusion constraints.

If an interface function f returns a value, there is a second predicate ret f
that contains all parameters of the call and a parameter for the return value.
For instance, for the function digitalRead, there are two predicates:

– call digitalRead(T,Port), and
– ret digitalRead(S,Port,Val).

If the call is done in one state, the result value is available in the next state.
This ensures, e.g., that the occurrence of a call cannot depend on its own result.

Since calls of interface functions usually have side effects and cannot be taken
back, it is important to clearly define which calls are actually done. In contrast,
the evaluation sequence of literals in a rule body can be chosen by the opti-
mizer. Therefore the special call f predicate can be used only in rule heads. We
use the syntax f(t1, . . . , tn)@call, which is translated to call f(ti1 , . . . , tik

), where
i1 < i2 < · · · < ik are all arguments that are not the special marker?. For
instance, a rule that calls digitalRead is written as

digitalRead(Port, ?)@call ← . . .

It seems more consistent if the call and the result look like the same predi-
cate with the same number of arguments. Correspondingly, f(t1, . . . , tn)@ret is
replaced by ret f(t1, . . . , tn). It can only appear in rule bodies.

Integrity Constraints for Microcontroller Programming in Datalog 157

For calls that should occur in the initialization state, the suffixes @call@init
could be used together, but this does not look nice. We use @setup in this case.

Finally, we need also constants from the interface definition. If our Data-
log program contains e.g. #HIGH, this corresponds to the constant HIGH in the
generated C-code. We assume that different symbolic constants denote differ-
ent values (unification will fail for them). Thus, the programmer may not use
synonyms.

2.4 Real Time

So far, we have just a sequence of states. How much time it really takes from
one state to the next depends on the necessary deductions in the state and the
time needed for the interface function calls. Many control programs need real
time. This can be achieved with the interface function millis() that returns
the number of milliseconds since the program was started.

For common patterns of using real time information, we should define abbre-
viations. For instance, delaying a call to a predicate for a certain number of
milliseconds can be written as follows:

p(t1, . . . , tn)@after(Delay) ← A1, . . . , Am.

This is internally translated to the following rules:

delayed p(t1, . . . , tn,From,Delay)@next ←
A1 ∧ · · · ∧ Am ∧ millis@ret(From).

delayed p(X1, . . . , Xn,From,Delay)@next ←
delayed p(X1, . . . , Xn,From,Delay) ∧
millis@ret(Now) ∧ From + Delay < Now.

p(X1, . . . , Xn)@next ←
delayed p(X1, . . . , Xn,From,Delay) ∧
millis@ret(Now) ∧ From + Delay ≥ Now.

millis(?)@call.

The function millis() is called in every state so that there is always the
current time available. Since we do not exactly know how long the processing for
one state takes, we cannot be sure that we really get every milliseconds value.
Therefore, the comparisons are done with ≤ and > instead of = and �=.

Example 1. Most Arduino boards have an LED already connected to Port 13.
With the following program we can let this LED blink with 1000 ms on, then
1000 ms off, and so on. The similar program BinkWithoutDelay from the Arduino
tutorial has 16 lines of code.

pinMode(13,#OUTPUT)@setup.
turn on@start.

turn off@after(1000) ← turn on.
turn on@after(1000) ← turn off.

digitalWrite(13,#HIGH)@call ← turn on.
digitalWrite(13,#LOW)@call ← turn off.

https://www.arduino.cc/en/Tutorial/BlinkWithoutDelay

158 S. Brass and M. Wenzel

The internal Datalog version (with all abbreviations expanded) of the program
is shown in Fig. 1. 	

Fig. 1. Blink Program from Example 1 with all appreviations expanded

3 Generalized Exclusion Constraints

Obviously, it should be excluded that digitalWrite is called in the same state
and for the same port with two different values. Since no specific sequence is
defined for the calls, it is not clear whether the output will remain high or low
(the last call overwrites the value set by the previous call). What is needed
here is a key constraint. In this section, we consider only standard Datalog.
Therefore, we must look at the translated/internal version of the example. There,
the predicate is call digitalWrite(T,Port,Val), and we need that the first two
arguments are a key for all derivable facts. In logic programming and deductive

Integrity Constraints for Microcontroller Programming in Datalog 159

databases, constraints are often written as rule with an empty head (meaning
“false”). Thus, a constraint rule like the following should never be applicable:

← call digitalWrite(T,Port,Val1) ∧ call digitalWrite(T,Port,Val2) ∧ Val1 �= Val2.

If we look at the program, we see that a violation of this key could only happen
if turn on and turn off would both be true in the same state. Thus, we need also
this constraint:

← turn on(T) ∧ turn off(T).

The common pattern is that there are conflicts between two literals, such that
the existence of a fact that matches one literal excludes all instances of the other
literal. This leads to the following definition:

Definition 1 (Generalized Exclusion Constraint). A “Generalized Exclu-
sion Constraint” (GEC) is a formula of the form

← p(t1, . . . , tn) ∧ q(u1, . . . , um) ∧ ϕ

and ϕ is either true or a disjunction of inequalities tiν
�= ujν

for ν = 1, . . . , k.

The implicit head of the rule is false, so the constraint is satisfied in a Her-
brand interpretation I iff there is no ground substitution θ for the two body
literals such that p(t1, . . . , tn)θ ∈ I and q(u1, . . . , um)θ ∈ I and ϕ is true or
there is ν ∈ {1, . . . , k} with tiν

θ �= ujν
θ.

Instead of a disjunction of inequalities in the body, one could equivalently use
a conjunction of equalities in the head. However, in contrast to a normal deduc-
tive rule, a constraint cannot be used to derive new facts: Since the interpretation
of equality is given, such an integrity rule can only yield an inconsistency.

Example 2. The “generalized exclusion constraints” are really a generalization of
the exclusion constraints of [4,8,11]: For instance, consider relations r(A,B) and
s(A,B,C) and the exclusion constraint πA(r) ∩ πA(s) = ∅. In our formalism,
this would be expressed as ← r(A,) ∧ s(A, ,) ∧ true.

As in Prolog, every occurrence of “ ” denotes a new variable (a placeholder
for unused arguments). It is a violation of the constraint if the same value A
appears as first argument of r and as first argument of S. 	

In the following, when we say simply “exclusion constraint” or even “con-
straint”, we mean “generalized exclusion constraint”. We also allow to drop
“∧ true” in the constraint formula.

Example 3. We already illustrated with digitalWrite above that our constraints
can express keys. We can also express any functional dependency. For instance,
consider r(A,B,C) and the FD B −→ C. This is the same as the generalized
exclusion constraint ← r(, B,C1) ∧ r(, B,C2) ∧ C1 �= C2. 	

Example 4. For the original task, to check that memory is sufficient to represent
all facts in a single state, we need in particular the following constraint:

← delayed turn on(T,From1,Delay1) ∧ delayed turn on(T,From2,Delay2) ∧
(From1 �= From2 ∨ Delay1 �= Delay2).

160 S. Brass and M. Wenzel

This is actually a key constraint and means each state contains at most one
delayed turn on-fact. Of course, we need the same for delayed turn off. With that,
the potentially unbounded set of facts in a state already becomes quite small.
The implicit state argument is no problem, because we compute only facts for
the current state and for the next state. Also arguments filled with constants in
the program cannot lead to multiple facts in the state. Furthermore, function
calls have unique results, i.e. the functional property holds. E.g. constraints like
the following for the millis() function can be automatically generated:

← ret millis(T,Now1) ∧ ret millis(T,Now2) ∧ Now1 �= Now2.

With these constraints, we already know that a state for the Blink program can
contain at most one fact of each predicate. This certainly fits in memory.

The full set of constraints for the Blink program from Example 1 is shown in
Fig. 2. Five of the constraints are keys, but (C) to (H) state that no two of the
predicates turn on, turn off, delayed turn on, delayed turn off occur in the same
state. There should be an abbreviation for such a constraint set: “For every T,
at most one instance of turn on(T), turn off(T), delayed turn on(T,From,Delay),
delayed turn off(T,From,Delay) is true.” This includes also the keys (I) and (J).
The keys (A) and (B) could come from a library, and keys of type (K) should
be automatic for all ret f predicates. 	

Fig. 2. Constraints for the Blink Program

Integrity Constraints for Microcontroller Programming in Datalog 161

4 Refuting Violation Conditions

4.1 Violation Conditions

A “violation condition” describes the situation where two rule applications lead
to facts that violate a constraint. Our task will be to show that all violation con-
ditions themselves violate a constraint or are otherwise inconsistent or impossible
to occur. Basically, we get from a constraint rule to a violation condition if we
do an SLD resolution step (corresponding to unfolding) on each literal:

Definition 2 (Violation Condition). Let a Datalog program P and a gen-
eralized exclusion constraint ← A1 ∧ A2 ∧ ϕ be given. Let

– A′
1 ← B1 ∧ · · · ∧ Bm (m ≥ 0) be a variant with fresh variables of a rule in P ,

– A′
2 ← C1 ∧ · · · ∧ Cn (n ≥ 0) be a variant with fresh variables of a rule in P

(it might be the same or a different rule), such that
– (A1, A2) is unifiable with (A′

1, A
′
2). Let θ be a most general unifier.

Then the violation condition is:

(B1 ∧ · · · ∧ Bm ∧ C1 ∧ · · · ∧ Cn ∧ ϕ)θ.

The “fresh variables” requirement means that the variables are renamed so
that the constraint and the two rules have pairwise disjoint variables.

The disjunction ϕθ can be simplified by removing inequalities ti �= ui that
are certainly false, because ti and ui are the same variable or the same constant.
If the disjunction becomes empty in this way, it is false, and we do not have to
consider the violation condition further. If ti and ui are distinct constants for
some i, the inequality and thus the whole disjunction can be simplified to true.

Example 5. Consider constraint (A), the key constraint for call digitalWrite:

← call digitalWrite(T,Port,Val1) ∧ call digitalWrite(T,Port,Val2) ∧ Val1 �= Val2.

The two rules with matching head literals are rules (9) and (10):

call digitalWrite(T, 13,#HIGH) ← turn on(T).
call digitalWrite(T, 13,#LOW) ← turn off(T).

We rename the variables of the rules so that the constraint and the two rules
have pairwise disjoint variables (we start with index 3, since 1 and 2 appear in
the constraint):

call digitalWrite(T3, 13,#HIGH) ← turn on(T3).
call digitalWrite(T4, 13,#LOW) ← turn off(T4).

Now we do the unification of the head literals with the literals from the con-
straint. A possible most general unifier (MGU) is

{T3/T,T4/T,Port/13,Val1/#HIGH,Val2/#LOW}.

162 S. Brass and M. Wenzel

MGUs are unique modulo a variable renaming. Now the violation condition is

turn on(T) ∧ turn off(T) ∧ #HIGH �= #LOW.

Since #HIGH �= #LOW is true, the violation condition can be simplified to

turn on(T) ∧ turn off(T).

This is what we would expect: It should never happen that turn on and turn off
are true in the same state.

It would also be possible to match the two literals of the constraint with
different variants (with renamed variables) of the same rule, but in this example,
that would give conditions like #HIGH �= #HIGH, which are false. Such obviously
inconsistent violation conditions do not have to be considered. 	

Violation conditions express the conditions under which the result of a deriva-
tion step violates an exclusion constraint:

Theorem 1. TP (I) violates an exclusion constraint ← A1 ∧ A2 ∧ ϕ if and only
if there is a violation condition for P and ← A1 ∧ A2 ∧ ϕ which is true in I.

The TP operator, well known in logic programming, yields all facts that can
be derived by a single application of the rules in P , given the facts that are
true in the input interpretation. One starts with the empty set of facts I0 which
certainly satisfies all exclusion constraints. Then one iteratively applies the TP

operator, i.e. Ii+1 := TP (Ii), to get the minimal model Iω :=
⋃

i∈lN Ii, which is
the intended interpretation of P .

Theorem 2. Let P be a Datalog program, C be a set of generalized exclusion
constraints, and H be some set of Herbrand interpretations that includes at least
all interpretations that occur in the iterative computation of the minimal model.
If all violation conditions for P and constraints from C are false in all I ∈ H
that satisfy C, then the minimal Herbrand model Iω of P satisfies C.

Thus, we have to show that the violation conditions are unsatisfiable assum-
ing the constraints. However, it turns out that this does not work well in the
initialization state 0 and the start state 1. Therefore, the theorem permits to
throw in additional knowledge formalized as some set of Herbrand interpreta-
tions H that is a superset of the relevant interpretations. In the example, we need
that ret f-predicates cannot occur in state 0: This is obvious, because there is
no previous state that might contain a call. One could also precompute all pred-
icates that might occur in state 0 and 1 and use this knowledge to restrict H.

4.2 Proving Violation Conditions Inconsistent

The consistency check for the violation conditions is done by transforming the
task to a formula that can be checked by a constraint solver for linear arithmetic
constraints [7,12]. Since we assume that all constraints were satisfied before the
derivation step that is described by the violation condition, we can exclude any
match of two literals A1 and A2 from the violation condition with a constraint:

Integrity Constraints for Microcontroller Programming in Datalog 163

Definition 3 (Match Condition). Let two literals A1 and A2 and an exclu-
sion constraint ← C1 ∧ C2 ∧ γ be given. Let ← C ′

1 ∧ C ′
2 ∧ γ′ be a variant of

the constraint with fresh variables (not occurring in A1 and A2). If (A1, A2)
are unifiable with (C ′

1, C
′
2) there is a match condition for (A1, A2) and this con-

straint, computed as follows:

– Let θ be a most general unifier without variable-to-variable bindings from
variables of (A1, A2) to variables of (C ′

1, C
′
2) (since the direction of variable-

to-variable bindings is arbitrary, this is always possible).
– Let A1 be p(t1, . . . , tn) and A2 be q(u1, . . . , um).
– Then the match condition is

t1 = t1θ ∧ · · · ∧ tn = tnθ ∧ u1 = u1θ ∧ · · · ∧ um = umθ ∧ γ′θ.

The requirement on the direction of variable-to-variable bindings ensures that
the match condition contains only variables that also occur in A1 or A2.

Again, some parts of the condition can be immediately evaluated. The for-
mula basically corresponds to the unification (plus the formula from the con-
straint). Most conditions will have the form X = X and can be eliminated.
However, if the literals from the constraint contain constants or equal variables,
the condition becomes interesting. Note that we cannot simply apply the uni-
fication as in Definition 2, because we finally need to negate the condition: We
are interested in values for the variables that are possible without violating the
exclusion constraint.

Definition 4 (Violation Formula). Let a violation condition

A1 ∧ · · · ∧ Am ∧ B1 ∧ · · · ∧ Bn ∧ ϕ

be given, where A1, . . . , Am have user-defined predicates and B1, . . . , Bm have
built-in predicates. The violation formula for this violation condition is a con-
junction (∧) of the following parts:

– ϕ
– For each Bi its logical definition. If Bi has the form succ(t1, t2), the logical

definition is t2 = t1 + 1 ∧ t1 ≥ 0. For t1 + t2 ≥ t3 and t1 + t2 < t3, we take
that and add t2 ≥ 0. For other built-in predicates, it is Bi itself.

– For all possible match conditions μ of a constraint ← C1 ∧ C2 ∧ γ with two
literals Ai and Aj, the negation ¬μ.

Example 6. This example continues Example 5 with the violation condition:

turn on(T) ∧ turn off(T).

We use constraint (C): ← turn on(T)∧ turn off(T). Formally, we have to rename
the variable in the constraint, e.g. to T1, and then compute the unifier T1/T
of the constraint literals with the literals in the violation condition. The match
condition is T = T ∧ T = T, which can be simplified to true. Since there is

164 S. Brass and M. Wenzel

no other matching constraint, the violation formula, which requires that the
violation condition does not violate the constraint, is ¬true, i.e. false. Therefore,
the violation condition cannot be satisfied. We can stop as soon as we know that
the violation formula is unsatisfiable. Thus, even if there were other matching
constraints, we would not have to consider them. 	

Example 7. For a more complex case, let us consider Constraint (J) which
ensures that there can be only one fact about delayed turn on in each state:

← delayed turn on(T,From1,Delay1) ∧ delayed turn on(T,From2,Delay2) ∧
(From1 �= From2 ∨ Delay1 �= Delay2).

In order to generate violation conditions, all possibilities for matching rule heads
with the two literals of the constraint must be considered. In this case, facts that
might violate the constraint can be derived by applying Rule (6) and Rule (7)
(see Fig. 1). For space reasons, we consider only the violation condition that
corresponds to the case that both constraint literals are derived with different
instances of Rule (6): We rename the variables once to S3,From3,T3 (i.e. the head
of Rule (6) becomes delayed turn on(S3,From3, 1000)) and once to S4,From4,T4.
An MGU is

{S3/T,From3/From1,Delay1/1000,S4/T,From4/From2,Delay2/1000}.

Thus, the resulting violation condition is:

turn off(T3) ∧ ret millis(T3,From1) ∧ succ(T3,T) ∧
turn off(T4) ∧ ret millis(T4,From2) ∧ succ(T4,T) ∧
(From1 �= From2 ∨ 1000 �= 1000)

Of course, 1000 �= 1000 is false and can be removed. Now we want to compute
the violation formula. The easy parts are:

– The formula part of the violation condition: From1 �= From2.
– The definition of the built-in succ-literals:

T = T3 + 1 ∧ T3 ≥ 0 ∧ T = T4 + 1 ∧ T4 ≥ 0.

Note that T3 = T4 can be derived from this.

Furthermore, we have to add the negation of all possible match conditions for
constraints matching two literals in the violation condition (we might stop early
as soon as we have detected the inconsistency). In this case, there is only one
possible constraint, namely (K). A variant with fresh variables is:

← ret millis(T5,Now5) ∧ ret millis(T5,Now6) ∧ (Now5 �= Now6)

An MGU with variable-to-variable bindings directed towards the violation con-
dition is {T5/T3,Now5/From1,T4/T3,Now6/From2}. This gives the following
match condition:

T3 = T3 ∧ From1 = From1 ∧ T4 = T3 ∧ From2 = From2 ∧ From1 �= From2.

Integrity Constraints for Microcontroller Programming in Datalog 165

With the trivial equalities removed, this is T4 = T3 ∧ From1 �= From2. The
negation is added to the violation formula. Thus the total violation formula is:

From1 �= From2 ∧
T = T3 + 1 ∧ T3 ≥ 0 ∧ T = T4 + 1 ∧ T4 ≥ 0 ∧
¬(T4 = T3 ∧ From1 �= From2).

This is easily discovered to be inconsistent. Thus, Constraint (J) cannot be
violated if both literals are derived with Rule (6). The other cases can be handled
in a similar way. 	

Theorem 3. Let A1 ∧ · · · ∧ Am ∧ B1 ∧ · · · ∧ Bm ∧ ϕ be a violation condition
and ψ be its violation formula with respect to constraints C. There is a variable
assignment A that makes ψ true in the standard interpretation of arithmetics if
and only if there is a Herbrand interpretation I satisfying C with the standard
interpretation of the built-in predicates such that the violation condition is true
in I for some extension of A (not all variables of the violation condition might
be in ψ).

5 Conclusions

We are investigating the programming of microcontrollers in Datalog. We have
discussed an interesting class of constraints which we called “generalized exclu-
sion constraints”. They contain keys, but can specify uniqueness of facts also
between different relations. In particular, the constraints can be used to ensure
that each state does not contain “too many” facts, e.g. more than what fits in
the restricted memory of a microcontroller. But they also can express conflicts
between different interface functions that cannot be called in the same state.

This class of constraints is also interesting, because for the most part, they are
able to reproduce themselves during deduction. We have introduced the notion
of a “violation condition” as a tool for checking this. Violation conditions can
be reduced to a “violation formula” that can be checked for consistency by a
constraint solver for linear arithmetics. If the violation formula should be con-
sistent, the violation condition can be shown to the user who might then add a
constraint to prove that the violation can never occur. A prototype implemen-
tation is available at: https://users.informatik.uni-halle.de/˜brass/micrologS/.

References

1. Alvaro, P., Marczak, W.R., Conway, N., Hellerstein, J.M., Maier, D., Sears, R.:
Dedalus: Datalog in time and space. In: de Moor, O., Gottlob, G., Furche, T.,
Sellers, A.J. (eds.) Datalog Reloaded – First International Workshop, Datalog 2010.
LNCS, vol. 6702, pp. 262–281. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24206-9 16, http://www.neilconway.org/docs/dedalus dl2.pdf

2. Bry, F., Manthey, R., Martens, B.: Integrity verification in knowledge bases. In:
Voronkov, A. (ed.) RCLP -1990. LNCS, vol. 592, pp. 114–139. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55460-2 9

https://users.informatik.uni-halle.de/~brass/micrologS/
https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.1007/978-3-642-24206-9_16
http://www.neilconway.org/docs/dedalus_dl2.pdf
https://doi.org/10.1007/3-540-55460-2_9

166 S. Brass and M. Wenzel

3. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework
for tractable query answering over ontologies. In: Proceedings of the 28th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS 2009), pp. 77–86. ACM (2009)

4. Casanova, M.A., Vidal, V.M.P.: Towards a sound view integration methodology.
In: Proceedings of the 2nd ACM SIGACT-SIGMOD Symposium on Principles of
Database Systems (PODS 1983), pp. 36–47 (1983)

5. Chabin, J., Halfeld-Ferrari, M., Markhoff, B., Nguyen, T.B.: Validating data from
semantic web providers. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J.,
Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 682–695. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-73117-9 48

6. Engels, C., Behrend, A., Brass, S.: A rule-based approach to analyzing database
schema objects with Datalog. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR
2017. LNCS, vol. 10855, pp. 20–36. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-94460-9 2

7. Imbert, J.-L., Cohen, J., Weeger, M.D.: An algorithm for linear constraint solving:
its incorporation in a Prolog meta-interpreter for CLP. J. Log. Program. 16, 235–
253 (1993). https://core.ac.uk/download/pdf/82420821.pdf

8. Schewe, K.D., Thalheim, B.: Towards a theory of consistency enforcement. Acta
Informatica 36, 97–141 (1999). https://doi.org/10.1007/s002360050155

9. Scholz, B., Jordan, H., Subotić, P., Westmann, T.: On fast large-scale program
analysis in Datalog. In: Proceedings of the 25th International Conference on Com-
piler Construction (CC 2016), pp. 196–206. ACM (2016)

10. Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie, T., Zaniolo, C.: Big data
analytics with Datalog queries on Spark. In: Proceedings of the 2016 International
Conference on Management of Data (SIGMOD 2016), pp. 1135–1149. ACM (2016).
http://yellowstone.cs.ucla.edu/∼yang/paper/sigmod2016-p958.pdf

11. Thalheim, B.: Dependencies in Relational Databases. Teubner, Germany (1991)
12. Van Hentenryck, P., Graf, T.: Standard forms for rational linear arithmetic in con-

straint logic programming. Ann. Math. Artif. Intell. 5(2), 303–319 (1992). https://
doi.org/10.1007/BF01543480

13. Wenzel, M., Brass, S.: Declarative programming for microcontrollers - Datalog
on Arduino. In: Hofstedt, P., Abreu, S., John, U., Kuchen, H., Seipel, D. (eds.)
INAP/WLP/WFLP -2019. LNCS (LNAI), vol. 12057, pp. 119–138. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-46714-2 9. https://arxiv.org/
abs/1909.00043

14. Wenzel, M., Brass, S.: Translation of interactive Datalog programs for microcon-
trollers to finite state machines. LOPSTR 2020. LNCS, vol. 12561, pp. 210–227.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68446-4 11

https://doi.org/10.1007/978-3-319-73117-9_48
https://doi.org/10.1007/978-3-319-94460-9_2
https://doi.org/10.1007/978-3-319-94460-9_2
https://core.ac.uk/download/pdf/82420821.pdf
https://doi.org/10.1007/s002360050155
http://yellowstone.cs.ucla.edu/~yang/paper/sigmod2016-p958.pdf
https://doi.org/10.1007/BF01543480
https://doi.org/10.1007/BF01543480
https://doi.org/10.1007/978-3-030-46714-2_9
https://arxiv.org/abs/1909.00043
https://arxiv.org/abs/1909.00043
https://doi.org/10.1007/978-3-030-68446-4_11

Chance Constraint as a Basis for
Probabilistic Query Model

Maksim Goman(B)

Johannes Kepler University, 4040 Linz, Austria
Maksim.Goman@jku.at

http://www.ie.jku.at

Abstract. We consider basic principles of probabilistic queries. Decom-
position of a generic probabilistic query with conditioning in SQL-like
syntax shows that data comparison operators are the only difference to
the deterministic case. Any relational algebra operators presume compar-
ison of attribute values. Probabilistic relational algebra operators are not
comparable to deterministic ones due to uncertainty factor – they pro-
cess distribution functions instead of unit values. We argue that chance
constraint is a useful principle to build the basic set of binary probabilis-
tic comparison operators (BPCO), the respective probabilistic relational
algebra operators and their query syntax for query language implemen-
tations.

We argue that these BPCO should be based on principles of probabil-
ity theory. We suggest generic expressions for the BPCO as counterparts
for deterministic ones. Comparison of two random variables and a ran-
dom variable to a scalar are considered. We give examples of BPCO
application to uniformly distributed random variables and show how to
build more complex probabilistic aggregation operators.

One of the main concerns is compatibility of uncertain query process-
ing with query processing in modern deterministic relational databases.
The advantage is knowledge continuity for developers and users of uncer-
tain relational databases. With our approach, only addition of a proba-
bilistic threshold to parameters of relational query operations is required
for implementation. We demonstrate that the BPCO based on chance
constraints maintain consistency of probabilistic query operators with
the syntax of deterministic query operators that are common in today’s
database industrial query languages like SQL.

Keywords: Uncertain databases · Probabilistic databases · Uncertain
comparison · Uncertain query · Binary order relation

1 Introduction

Research on uncertain data models for uncertain or probabilistic databases began
in 1980s. One example is Barbará et al. [1], where a data model and extended
relational algebra were made with probability theory. The work operates with
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 167–179, 2021.
https://doi.org/10.1007/978-3-030-82472-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-82472-3_13

168 M. Goman

discrete distributions, introduces comparison of probability distributions for con-
ditioning, defines comparison operations for that and uses the total variation
distance to compare a given distribution to a “standard” distribution.

Most of the existing studies on probabilistic databases focus on the discrete
probabilistic attributes, employing possible worlds semantics (PWS) [1–6], and
due to the problem complexity, heuristics and simplifications are used, such as
computation of a couple of the principal moments of resulting distributions [5].
Grouping probabilistic tuples is a challenging task, because tuples may belong
to many groups with different probabilities. In other words, using PWS for a
probabilistic query produces exponentially many deterministic data realizations,
each occurring with some probability, derived from marginal individual probabil-
ities of attributes or tuples. Uncertain attributes with continuous distributions
are considered a difficult problem because PWS is not applicable there. Unfortu-
nately, attributes with continuous distributions did not receive enough attention.

Uncertain attributes behave themselves differently in tuple existence proba-
bility (TEP) model where every value becomes inherently conditional on TEP.
Uncertain attributes and TEP form a joint event where the tuple exists with
probability p. Thus, even deterministic attributes become a Bernoulli variable
given TEP. This creates problems for processing queries, including the simplest
COUNT operation in relational algebra.

Uncertainty usually presents in data from imprecise measurements, ambigu-
ous observations, forecasts and estimations, inconsistent models and the like,
where noise, errors and incompleteness are considered essential properties.
Among applications of imprecise data can be found object geolocation problems
[14], event monitoring and sensor data processing systems (including stream data
processing) [7], uncertain scientific data arrays [6], industrial sensor networks [3],
text recognition, data indexing, expression of confidence in data correctness or
similarity [15] (an example of TEP), and others.

For example, consider missing values in data. This is a known issue in data
processing, management, and queries. It is possible to include such missing values
in data processing, if it were possible to represent them as uncertain values
based on certain knowledge of the nature of the data or its statistical properties,
information about possible errors, etc. Then, one could add more tuples with such
uncertain values into queries, where it may be useful. Another origin of uncertain
data is information (e.g. measurement) that may be imprecise or faulty. Finally,
data presuming errors with known distributions like estimations based on a priori
information of possible outcomes or interpolation (or extrapolation) with a given
(or assumed) bias. Thus, uncertain data might be included in queries.

Transformation to deterministic data is one possible way to design queries
on uncertain data [5,7]. This is done through substitution of averages instead
of distribution function (DF) or in similar manner. Another way to perform
probabilistic querying is to compute the resulting distributions explicitly, mainly
by means of simulations due to absence of analytical solutions for many DFs
and discrete distributions where PWS usually becomes a computational problem
[2,5,6]. Although it can be slow, the latter approach produces an accurate result.

Basics of Probabilistic Queries 169

However, algorithms and implementations must be fast enough to effectively
meet time constraints on software response time.

A threshold query is a fundamental query type which retrieves the objects
qualifying a set of predicates with certain threshold guarantees [8]. The threshold
query can be regarded as an essential tool for data analysis because predicates
can be specifically defined for various applications. We consider that the mean-
ing and value of the threshold in queries have been underestimated in uncertain
databases. We will consider the following statement in the paper: A probabilistic
threshold query (PTQ) should have an additional reliability threshold parame-
ter and should retrieve all the results satisfying the threshold requirements with
minimum given reliability. The reliability threshold has the meaning of a mini-
mum probability of assuring a satisfactory query result. Therefore, processing of
probabilistic queries must conform to norms of probability calculus. Moreover,
this alone allows to extend the usual semantics of various deterministic relational
queries (e.g., simple and conditional selection, joins, top-k, aggregations (SUM,
MAX), etc.) to probabilistic (uncertain) relational queries.

We consider queries involving conditioning (SELECT and GROUP BY) and
aggregation operations (e.g. SUM) on uncertain data in this paper. Reasonable
trade-off between sufficient precision, accuracy or uniqueness of the answer to the
query and tolerance to ambiguity and uncertainty of the answer is expressed by
the reliability threshold in PTQ. We assume that values of uncertain attributes
are independent random variables with known probability distributions. Gen-
eralization to dependent attributes should follow in later research. We aim at
maintaining SQL-like query semantics because it is familiar in the industry. As
a result, we will develop a simple and transparent relational query model on
the basis of chance constraint method [9,11,12]. We give a brief description of
chance constraints in Sect. 3.

Uncertain conditioning is the main topic of the paper. On the example of
SQL-like query, we will show that conditioning can be represented as a sequence
of chance constraints. While the approach is general and works with any DF of
uncertain attribute instances, we will assume continuous DF types. A discrete DF
is also possible and only DF type is different – probability mass function (PMF).
The only operations that are needed for that are binary probabilistic comparison
operators (BPCO) for uncertain data types. Usually, relational algebra operators
have parameters, e.g. constants, thresholds, etc. These parameters are used in
BPCO. Addition of only one extra query parameter – a reliability threshold – is
enough to produce any type of probabilistic relational queries. We derive these
operators in general form. This enables us to have simple semantic for uncertain
queries well supported by probability theory. Later, a formulation of uncertain
queries as optimization problems can be useful for higher level query processing
models. Several examples will demonstrate our approach to BPCO application
in uncertain relational queries with conditioning as well as construction of more
complex query operators.

The paper is organized as follows: after formulation of PTQ in Sect. 2 we give
the chance constraint model for the probabilistic query in Sect. 3. After that,

170 M. Goman

we define generic BPCO in Sect. 3. Then we discuss their operational aspects
in Sect. 4. Section 5 contains examples of application of the BPCO in a query.
Conclusion gives summary of the work.

Material in Sects. 2 through 5 is new and completely original. To the best
of our knowledge, this is the first research in relational probabilistic or uncer-
tain databases that use chance constraint method for conditioning on uncertain
attributes with continuous distributions. This work shows that the problem of
probabilistic conditioning is tractable with probability calculus. Moreover, this
approach is generalizable to attributes with discrete distributions and TEP.

2 Problem Formulation

An uncertain relation R in probabilistic data model (PDM) [1] contains tuples
(t1, t2, ..., tn) that conform to the schema Ad ∪ Ap. Attributes in the set Ad are
deterministic attributes and in Ap are uncertain attributes modeled as random
variables with given probability density function (PDF). We consider continuous
PDFs in this paper, but it is generalizable to discrete ones. Thus, each tuple has
k continuous uncertain attributes in the set Ap. The uncertainty is represented
by the PDFs fXi

(x) of random attribute variables Xi, i = 1, . . . , k in this tuple.
According to mathematical traditions, we use capital letters to denote ran-

dom variables, constants, parameters and attribute names with uncertain data
type (e.g. C). All deterministic variables, parameters and constants will be writ-
ten in lower case as well as names of attributes that have deterministic data
types (e.g. a). We use lower case characters for reserved words in SQL-like syn-
tax, e.g. “select”, “sum”, “from”, “where”, etc., but the key keywords are upper
case letters in the text, e.g. “SELECT”, “SUM”, “FROM”, “WHERE”, etc.
Query parameters are put in angular brackets 〈〉, i.e. values that are supplied
into the query as parameters. The same uppercase name (e.g. Y) can be used
in formulas and text with the meaning of attribute value instance from a tuple
as well as in the sense of attribute names of uncertain data type like in SQL-
like templates. Because we consider uncertain data in the terms of probability
theory, all terms with the words like “probabilistic” and “uncertain” have the
same meaning of uncertainty model, e.g. probabilistic attribute and uncertain
attribute are synonyms in the paper.

TEP is an independent random variable from other attributes Ap in this
model. It expresses tuple-level uncertainty. Bernoulli or discrete TEP also trans-
forms deterministic attributes Ad of the tuple to discrete random variables. We
are not going to consider the discrete case of TEP in details, but our approach
is the same for the discrete case. TEP random variable Yi with PMF φYi

(y)
generates a new random variable Zi = XiYi, i.e. a product of the attribute ran-
dom variable and TEP. The joint mixed PDF of Z of two independent random
variables X and Y is fZ(x, y) = fX(x)φY (y). Without loss of generality, we will
drop possible TEP for tuples in the rest of the paper.

Basics of Probabilistic Queries 171

A PTQ query is represented as an SQL query template of the following type:

(Q) : select id, Y, sum(X) from 〈R〉 where (X ≤ 〈a〉) and (X > 〈C〉) group by
id, Y having (Y ≤ 〈b〉) or (Y > 〈B〉) order by sum(X),

where
id is a deterministic key attribute;
a and b are deterministic constant parameters;
R is a relation parameter (table name);
X,Y,B,C represent independent random variables, including
X,Y are attributes with uncertain data type, and
B,C are given probabilistic constant parameter.

We will refer to the PTQ query prototype above as (Q). The SELECT-
WHERE, GROUP-BY and HAVING operators above represent conditioning.
Hence, one needs comparison operators to compare random variables (and their
distributions). So, we need to define these comparison operators and then to
apply them to parameters of query operators. The works [1,10] represented some
probabilistic conditional operators for a discrete case. We generalize the approach
to continuous random variables and formulate conventional conditional opera-
tors for common query languages. Now, after introduction of problem model, we
will show that because of probability properties, measuring closeness of prob-
ability distributions does not need any other metric, but probability, and we
suggest additional reliability threshold in order to measure how much the ran-
dom variables (distributions) are different.

A conditioning in a deterministic query presumes that every tuple belongs to
only one group with probability 1. This is because conventional order relations
for deterministic data types (e.g. real numbers) assure the only binary outcome
of operations “more than” (>), “less than” (<) and “equal to” (=). We con-
sider that the equality operator = is equivalent to approximate equality ≈ for
uncertain values, so we will continue with this sign in the paper. However, there
is no such one-to-one order relation for random variables. Because uncertainty
of attribute variables, every tuple in probabilistic query can belong to many
groups at the same time. Similarly, each attribute value can participate in many
aggregations, e.g. sum(X > 2) and sum(X < 2).

The binary maximization operator for two real numbers is naturally based
on conventional order relation of real numbers, and the result of this operation is
selection of one of them, namely the larger number. On the contrary, the binary
operation of maximizing two random variables can only assure that one of the
variables is larger than the other with certain probability distribution, because
comparison of random variables is only possible for their distributions. We can
not simply select one of the two random variables based on that: they can be
both larger than another one to some extent at the same time (due to possi-
ble DF overlap) unless we consider samples from their marginal distributions.
Operationally, we compare them by creating a new (third) random variable as a
difference of the old ones and with the help of this third random variable we can

172 M. Goman

conclude something about order relation of the old two. Fortunately, if we add
a probabilistic threshold to the uncertain comparison operator, we can employ
chance constraint approach and return one of the variables as the larger with
the required reliability level.

We consider two uniformly distributed independent uncertain attribute val-
ues U(a, b) with given bounds in the examples because they are naturally very
useful for many real-life problems as they model cases of the largest uncertainty.
Two or more dimensional random variables should be processed according to
principles of probability calculus, because the only difference is their DF.

3 Chance Constraint Model and Probabilistic
Comparison Operators

A chance constraint for (Q) is the following inequality [9,11,12]:

Pr{X ≤ β} ≥ α, (1)

where
X is a random variable;
β is a parameter, i.e. a deterministic scalar or a random variable;
α ∈ [0, 1] is a threshold (reliability level).

Chance constraint is interpreted like this: probability, that X is less or equal
to the given value β must be greater than the reliability level (threshold) α.

We will use the following notation in uncertain queries in order to express
the threshold α for a chance constraint in relational operators in our SQL-like
notation: operator α. Unlike traditional notation from relational algebra, where
operators are expressed with Latin letters, English names will be used in capitals
here. This is because we have a lot of mathematical notations from probability
theory that use Latin letters. For instance, sign σ denotes standard deviation
in probability theory and the same letter means SELECT in relational algebra.
Nevertheless, probabilistic relational algebra operators can be built in the same
manner with our BPCO. The work is to be done in future.

Then, the uncertain query (Q) is represented as follows:

(Q′) : select〈α1〉 id, Y, sum〈α2〉(X) from 〈R〉 where (X ≤ 〈a〉) and (X > 〈C〉)
group by〈α3〉 id, Y having〈α4〉(Y ≤ 〈b〉) or (Y > 〈B〉) order by〈α5〉 sum(X).

Coefficients αi, i = 1, . . . , 5 can be all different or the same. In case of only
one α for all operators, it can be given with the main SELECT keyword. In order
to build such uncertain queries we need to begin with BPCO <α , ≈ε,α , >α to
compare random attribute values of tuples.

Comparison of a Random Variable to a Scalar. For a random variable X with
PDF fX(x), cumulative distribution function (CDF) FX(x), reliability threshold
α ∈ [0, 1] and a scalar c ∈ R we denote:

Basics of Probabilistic Queries 173

– Operator “<α”: Pr(X < c) > α ⇔ FX(c) > α ⇒ X < c;
– Operator “>α”: Pr(X > c) > α ⇔ 1 − FX(c) > α ⇒ X > c;
– Operator “≈ε,α”: We allow some small distinction between X and c, i.e.

∀ε > 0, |X − c| < ε. This is equivalent to
Pr((X > c − ε) ∩ (X < c + ε)) > α ⇔ FX(c + ε) − FX(c − ε) > α ⇒ X ≈ c.

Comparison of Two Random Variables. For random variables X with PDF
fX(x) and CDF FX(x), Y with PDF fY (y) and CDF FY (y), and reliability
threshold α ∈ [0, 1], there is a new random variable Z = X − Y with CDF
FZ(X,Y). Usually, we should derive CDF of the new variable as a convolution
of the old ones: FZ = X ∗ (−Y). Then we denote:

– Operator “<α”: Pr(X < Y) > α ⇔ FZ(0) > α ⇒ X < Y ;
– Operator “>α”: Pr(X > Y) > α ⇔ 1 − FZ(0) > α ⇒ X > Y ;
– Operator “≈ε,α”: We allow some small distinction between X and Y , i.e.

∀ε > 0, |Z| < ε. Thus,
Pr((Z > −ε) ∩ (Z < ε)) > α ⇔ FZ(ε) − FZ(−ε) > α ⇒ X ≈ Y.

Derivation of DF of the Difference of Random Variables. In case of comparison
of two random variables, the CDF of their difference Z = X−Y should be known
or derived. The difference of two independent normally distributed variables is
another random variable Z with normal distribution. However, other DFs and
their combinations should be considered for every practical application accord-
ingly. We consider the case of two independent uniformly distributed random
variables in examples in Sect. 5. The same is true for discrete distributions and
this is a way to reconsider current PWS view on discrete random attributes. It
is worth to note that addition of TEP is nothing else as generation of a new
random attribute where the new random variable is a product of the respective
TEP and the attribute’s random variable.

4 Conditioning as Application of Chance Constraints

Relational operators return new relations, i.e. sets or bags of tuples. According
to our model, uncertain relational algebra or SQL operators should return sets of
tuples that satisfy chance constraints on certain attributes with given reliability.
In the most general case, once filtering, grouping or aggregation operators have
identified tuples whose attributes satisfy the probabilistic condition (expressed as
a chance constraint), we can return the tuples unchanged for further processing.
We call the approach probabilistic conditioning.

There are other approaches, e.g. given in [2,5], where conditional opera-
tors truncate original distributions. Although we find it arguable, it can be
application-dependent. They return only parts of the distribution of random
variables (truncated distributions) after conditioning and we call the approach
truncating conditioning. However, even if truncated distributions are meant as
the result of conditioning operators, we still can employ our BPCO for that.

174 M. Goman

Obviously, the chance constraint satisfies the criterion for a hash function: it
must depend on the grouping attributes only. In conformance with the threshold,
tuples that likely belong to the same group will get in the same bucket.

We consider, that the number of groups can be larger in probabilistic case
because it depends on interpretation of uncertainty in the problem to which the
data belong. We believe that there are at least two possibilities how to treat
group identifiers. The first one is when an identifier of every group is a union
of uncertain values of probabilistically equal attribute values forming the group
and the number of groups can grow enormously in this case obtained with the
operation ≈ε,α.

The second one is when the number of groups is the same as in determinis-
tic case. Each value of the uncertain attribute vector (excluding duplicates) is
assumed to be the group identifier. In both the cases, depending on the setup
of probabilistic equality operator, the number of values in any group can be
larger than in deterministic case. When grouping attribute is probabilistic and
no grouping parameters are given, the number of groups can be determined after
exhaustive cross pair-wise comparison of all tuples in the query in the worst case.

All in all, group membership is determined using probabilistic equality oper-
ator as a probabilistic similarity operator applied to distributions of attribute
values and using conditioning parameters. As a result, every uncertain value can
belong to many groups (to all in the worst case) and following aggregations can
be very different from deterministic ones. Evidently, the probabilistic model is
very relaxed and requirements for memory and processing power are larger for
probabilistic databases in general.

Grouping probabilistic tuples is considered hard in the literature because
tuples may belong to many groups with different probabilities. However, apply-
ing our chance constraint approach, grouping and aggregation in a query is
conceptually done in the same way as for deterministic queries (e.g. see one-pass
algorithm for unary, full-relation operations in [8]). GROUP BY operator can
be seen as repeated selections with a different condition per group (group iden-
tifier) with given reliability threshold α. The only difference from conventional
deterministic case is that we need the threshold α (the same for all groups or
different). Let id be a deterministic attribute with the meaning of batch iden-
tifier, DEFECT FREE – an uncertain attribute with the meaning of estimated
number of high-quality items in the batch and PRODUCTION is an uncertain
attribute meaning estimation of a total number of items in the batch. All the
attributes are numerical. In this way, probabilistic counterpart to deterministic
grouping algorithm is as follows:

Step 1. Select all rows that satisfy the condition specified in the WHERE clause.
This presumes application of the chance constraint to the values of the uncertain
attribute of tuples and use of BPCO to compare attribute random values to the
given conditioning parameter, e.g. for query template (Q′):

select〈α1〉 id, DEFECT FREE, sum〈α2〉(PRODUCTION) from 〈R〉 where
(PRODUCTION ≤ 100) and (PRODUCTION > C ∼ U(50, 55))

Basics of Probabilistic Queries 175

is equivalent to applying the following chance constraint to the uncertain
attribute PRODUCTION:

(
Pr(PRODUCTION ≤ 100) > α1

) ∩ (
Pr(PRODUCTION > C) > α1

)
.

Step 2. Form groups from the rows obtained in step 1 according to the GROUP
BY clause for the uncertain attribute: group by〈α3〉 DEFECT FREE. Again, this
means application of chance constraint and grouping criterion (identifier) to the
value of the respective attribute DEFECT FREE of each tuple t:

t.DEFECT FREE ≈ε,α3 group DEFECT FREE id.

The required chance constraint can be constructed and resolved using our prob-
abilistic equality comparison operator.

Step 3. Discard all groups that do not satisfy the condition in the HAVING
clause. This implies application of chance constraint to the set of uncertain
tuples produced on the previous step 2, i.e.:

having〈α4〉 DEFECT FREE ≤ 5 ⇔ Pr(DEFECT FREE ≤ 5) > α4

Step 4. Apply aggregation functions to each group. An uncertain aggregation
function produces a single uncertain value, some information about resulting
distribution or full distribution as the output. Aggregation functions MIN, MAX
need the reliability threshold as a parameter; SUM and AVG do not need it
because of their nature: these functions account for full distributions of operands
including TEP were TEP is given (AVG needs COUNT indirectly). Based on the
meaning of the uncertain operator COUNT in a specific application problem, the
reliability threshold may be needed as a parameter. However, issues of uncertain
aggregations are outside of the scope of the current paper.

Step 5. Application of probabilistic ordering to the output relation is possible
to accomplish with BPCO <α, ≈ε,α and >α. In fact,

order by〈α5〉 sum(PRODUCTION)

is nothing else as building precedence order (group i) ≺ (group j) for output
groups of tuples based on comparison of aggregation SUM(PRODUCTION) for
each group:

sum(PRODUCTION ∈ group i) <α5 sum(PRODUCTION ∈ group j),

∀ group i, group j ∈ G, i �= j, where G is the set of all groups.

Step 6. Retrieve values or relations for the columns and aggregations listed in
the SELECT clause.

176 M. Goman

5 Examples

We illustrate the simplicity of any conditioning operators based on application
of BPCO derived in Sect. 3 to attribute values in query model (Q′).

Let R be a relation, and A1 and A2 be two values from different tuples of
an uncertain attribute A from the set of all uncertain attributes Ap of R. The
two uncertain instances of the attribute will have uniform distributions in the
example, but with different parameters: A1 ∼ U(a1, b1), A2 ∼ U(a2, b2). We
need to derive the PDF and CDF for the difference Z = A1 − A2. After that,
we can use the BPCO with the expression for FZ(z) for the case of A1 and A2:
Z = A1 + A′

2.
A sum of two uniformly distributed random variables has a triangular distri-

bution and for a uniformly distributed X and ∀ k, l ∈ R, a new random variable
Y = kX + l is possible. For the current study, we have only the coefficient
k = −1 < 0. Thus, PDF and CDF are reversed, e.g. fY (x) = 1 − fX(x). It
means the change of end points a2 and b2 of the uniform distribution A2(a2, b2):
a′
2 = −a2, b

′
2 = −b2. Because initially b2 ≥ a2, it follows that a′

2 ≥ b′
2 and we

obtain the convolution of the original A1 and A′
2 ∼ U(b′

2, a
′
2).

Using the approach from [13], we obtain the expression for fZ(z) for the case
of difference of uniform distributions with lower bound strictly equal to zero, i.e.
Y1 ∼ U(0, c1) and Y2 ∼ U(0, c2):

fZ(z) =
1

c1c2(n − 1)!
(
z − (z − c1)+ − (z − c1)+ + (z − c1 − c2)+

)
, (2)

where 0 ≤ z ≤ c1 + c2, z ∈ R and x+ = max(0, x)∀x ∈ R.
After introduction of a new variable ci = bi − ai, i = 1, 2, we obtain a new

respective random variable Yi ∼ U(0, ci) = Ai − ai, i = 1, 2. This is a shift of
the first and the second distribution by a constant a1 or b′

2 respectively. Original
values are obtained by the reverse transformation: Ai = Yi + ai i = 1, 2. It is
possible to process the random parts of Yi with known PDFs and then apply
correction to the result by adding a1 + b′

2. CDF FZ(Z) =
∫ u

l
fZ(z)dz, where l

is the known lower bound and u is the known upper bound.
Now, as we know the CDF FZ(z), depending on a1, b1, a2, b2:

– Operator “<α”: Pr(A1 < A2) > α ⇔ FZ(0) > α ⇒ A1 < A2.
– Operator “>α”: Pr(A1 > A2) > α ⇔ 1 − FZ(0) > α ⇒ A1 > A2;
– Operator “≈ε,α”: Pr(A1 = A2) > α ⇔ FZ (ε) − FZ (−ε) > α ⇒ A1 ≈ A2.

Example 1. For a uniformly distributed value A1 ∼ U(2, 6) and c = 3 ∈ R the
following operators return FALSE and the tuple with the value A1 is not added
to the result set of conditioning in both cases below (α = 0.8, ε = 2):

A1 <0.8 3 ⇔ Pr(X < 3) > 0.8 ⇔ FA1(A1 < 3) = 0.25 < 0.8 ⇒ FALSE

A1 ≈2,0.8 3 ⇔ Pr(X − 3 < 2) ∩ Pr(A1 − 3 > −2) > 0.8 ⇔
⇔ FA1(5) − FA1(1) = 0.75 − 0 = 0.75 < 0.8 ⇒ FALSE

Basics of Probabilistic Queries 177

Example 2. For two independent uniformly distributed values A1 ∼
U(2, 5), A2 ∼ U(3, 8) the comparison operators return FALSE and the tuple
with the value A1 is not added to the result set of conditioning in both cases
below (α = 0.9, ε = 1).

A1 <0.9 A2 ⇔ Pr(A1 < A2) > α ⇔ FZ(0) = 0.87 < 0.9 ⇒ FALSE

A1 ≈1,0.9 A2 ⇔ Pr(A1 − A2 < 1) ∩ Pr(A1 − A2 > −1) > 0.9 ⇔
⇔ FZ(1) − FZ(−1) = 0.27 < 0.9 ⇒ FALSE

Example 3. Other relational algebra operations are easy to implement with our
approach. For instance, the conditioning operator IN that needs a boolean con-
ditioning result of the following type in SQL-like notation is of the form:

select〈α〉 * from 〈Measures〉 t where VAL in〈ε〉 (1, 2, 3)

is equivalent to:

(t.V AL ≈ε,α 1) || (t.V AL ≈ε,α 2) || (t.V AL ≈ε,α 3),

where t denotes a table and VAL is its uncertain attribute. The comparison
operators in this model use the threshold α from the related parent statement,
e.g. operator IN uses the threshold α from operator SELECT. Parameter ε can
have a default predefined value for a data type (and therefore, optional in the IN
operator) or directly supplied with the IM operator for each query. The chance
constraint is applied to each tuple in t and tuples with attribute VAL satisfying
it are selected for output.

6 Conclusion

In this paper, we focused on probabilistic query model, and suggested BPCO for
it. We have presented basic principles for building probabilistic relational algebra
and query language implementation. To the best of our knowledge, this is the
first approach enabling comprehensible, generalizable and effective grouping on
uncertain attributes. We believe that the major advantages of our model are
generality, simplicity and strong mathematical support. Probability naturally
expresses uncertainty in most of practical situations and provides well established
mathematical tools to process uncertain data.

We introduced chance constraint model for probabilistic query operators,
defined BPCO, gave SQL-like query templates and discussed operational aspects
for their implementation. It turns out that chance constraint approach makes
the query model transparent and opens possibilities to adjust the quality of
relational query to the special aspects of the practical problem with reliability
coefficients α. This makes probabilistic conditioning easier to model and imple-
ment. In this way, any known relational (especially conditional) operators are
possible to formulate for probabilistic data.

We suggested principles and expressions of the BPCO based on probabilis-
tic order relations as counterparts for deterministic ones. Any relational algebra

178 M. Goman

operators presume comparison of attribute values. We argue that probability cal-
culus and chance constraints are enough to compare distributions of probabilistic
data values, and the reliability threshold α is the only extra parameter required.
Thus, probabilistic queries are always threshold queries. Cases of comparison of
two random variables and a random variable to a scalar were considered.

Examples were given that show the usage of our BPCO in the query con-
text for uniformly distributed uncertain data. Construction of more complex
probabilistic relational operators (e.g. aggregations) was shown as well.

The described approach opens ways to creation of detailed probabilistic rela-
tional algebra. Much work is required in the context of probabilistic data models
in order to assure effective implementations. Other issues like null values, concept
of missing probability, multivariate distributions and TEP are easier to model
with chance constraints, yet are waiting for further research.

Finally, our probabilistic approach maintains consistency in semantics with
existing deterministic relational algebra operators that are common in today’s
database query languages like SQL. Polymorphism makes it possible to have the
same query operations for probabilistic data types. Our approach enables preser-
vation of the modern conventional SQL syntax that is important for iterative
knowledge development.

The future work includes implementation and verification of the proposed
approach in a prototype, and comparison performance with different DF types.
Specific attention will be given to discrete distributions and comparison to PWS
model. We already have early experience with implementation of certain parts
of the approach in a data stream processing framework PipeFabric [16].

Initially, the implementation of the proposed concept as a data query tool,
its performance evaluation, and validation of the probabilistic query model can
be done on the basis of a general purpose framework. At the same time, we
know already from our experience, that required data structures are to be criti-
cally analyzed during the implementation in the chosen framework, and specific
perspective ones should be selected for the experimental system to assure good
performance of the conditioning operations.

Another direction of the future work is development of the basics of proba-
bilistic relational algebra and full range of prototypes of SQL-like operators for
it using the concepts of the current work.

References

1. Barbará, D., Garcia-Molina, H., Porter, D.: The management of probabilistic data.
IEEE Trans. Knowl. Data Eng. 4(5), 487–502 (1992). https://doi.org/10.1109/69.
166990

2. Tran, T.L.T., McGregor, A., Diao, Y., Peng, L., Liu, A.: Conditioning and aggre-
gating uncertain data streams: going beyond expectations. PVLDB 3(1), 1302–
1313 (2010). https://doi.org/10.14778/1920841.1921001

3. Wang, Y., Li, X., Li, X., Wang, Y.: A survey of queries over uncertain data. Knowl.
Inf. Syst. 37(3), 485–530 (2013). https://doi.org/10.1007/s10115-013-0638-6

https://doi.org/10.1109/69.166990
https://doi.org/10.1109/69.166990
https://doi.org/10.14778/1920841.1921001
https://doi.org/10.1007/s10115-013-0638-6

Basics of Probabilistic Queries 179

4. Van den Broeck, G., Suciu, D.: Query processing on probabilistic data: a sur-
vey. Found. Trends Databases 7(3–4), 197–341 (2017). https://doi.org/10.1561/
1900000052

5. Tran, T.L.T., Peng, L., Diao, Y., McGregor, A., Liu, A.: CLARO: modeling and
processing uncertain data streams. VLDB J. 21(5), 651–676 (2012). https://doi.
org/10.1007/s00778-011-0261-7

6. Ge, T., Zdonik, S.: Handling uncertain data in array database systems. In: Alonso,
G., Blakeley, J. A., Chen, A.L.P. (eds.) ICDE 2008, pp. 1140–1149. IEEE Computer
Society (2008). https://doi.org/10.1109/ICDE.2008.4497523

7. Dezfuli, M.G., Haghjoo, M.S.: Xtream: a system for continuous querying over
uncertain data streams. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.)
SUM 2012. LNCS (LNAI), vol. 7520, pp. 1–15. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33362-0 1

8. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems - The Complete
Book. 2nd edn. Pearson Education (2009)

9. Henrion, R.: Chance constrained problems. https://www.stoprog.org/sites/
default/files/tutorials/SP10/Henrion.pdf. Accessed 21 May 2021

10. Fuhr, N.: A probabilistic framework for vague queries and imprecise information
in databases. In: McLeod, D., Sacks-Davis, R., Schek, H.J. (eds.) VLDB 1990, pp.
696–707. Morgan Kaufmann (1990). http://www.vldb.org/conf/1990/P696.PDF

11. Geletu, A., Klöppel, M., Zhang, H., Li, P.: Advances and applications of chance-
constrained approaches to systems optimisation under uncertainty. Int. J. Syst.
Sci. 44(7), 1209–1232 (2013). https://doi.org/10.1080/00207721.2012.670310

12. Prékopa, A.: Stochastic Programming. Springer, Dordrecht (2011). https://doi.
org/10.1007/978-94-017-3087-7

13. Sadooghi-Alvandi, S.M., Nematollahi, A.R., Habib, R.: On the distribution of the
sum of independent uniform random variables. Stat. Papers 50(1), 171–175 (2007).
https://doi.org/10.1007/s00362-007-0049-4

14. Cheng, R., Kalashnikov, D.V., Prabhakar, S.: Querying imprecise data in moving
object environments. IEEE Trans. Knowl. Data Eng. 16(9), 1112–1127 (2004).
https://doi.org/10.1109/TKDE.2004.46

15. Fuhr, N., Thomas Rölleke, T.: A probabilistic relational algebra for the integration
of information retrieval and database systems. ACM Trans. Inf. Syst. 15(1), 32–66
(1997). https://doi.org/10.1145/239041.239045

16. Goman, M.: Efficient aggregation methods for probabilistic data streams. In:
Shishkov, B. (ed.) BMSD 2018. LNBIP, vol. 319, pp. 116–132. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94214-8 8

https://doi.org/10.1561/1900000052
https://doi.org/10.1561/1900000052
https://doi.org/10.1007/s00778-011-0261-7
https://doi.org/10.1007/s00778-011-0261-7
https://doi.org/10.1109/ICDE.2008.4497523
https://doi.org/10.1007/978-3-642-33362-0_1
https://www.stoprog.org/sites/default/files/tutorials/SP10/Henrion.pdf
https://www.stoprog.org/sites/default/files/tutorials/SP10/Henrion.pdf
http://www.vldb.org/conf/1990/P696.PDF
https://doi.org/10.1080/00207721.2012.670310
https://doi.org/10.1007/978-94-017-3087-7
https://doi.org/10.1007/978-94-017-3087-7
https://doi.org/10.1007/s00362-007-0049-4
https://doi.org/10.1109/TKDE.2004.46
https://doi.org/10.1145/239041.239045
https://doi.org/10.1007/978-3-319-94214-8_8

High-Dimensional Data and Data
Streams

Unsupervised Feature Selection for
Efficient Exploration of High Dimensional

Data

Arnab Chakrabarti1(B), Abhijeet Das1, Michael Cochez2,
and Christoph Quix3,4

1 RWTH Aachen University, Aachen, Germany
chakrabarti@dbis.rwth-aachen.de, abhijeet.das@rwth-aachen.de

2 Vrije Universiteit Amsterdam, Amsterdam, Netherlands
m.cochez@vu.nl

3 Hochschule Niederrhein, University of Applied Sciences, Krefeld, Germany
christoph.quix@hs-niederrhein.de

4 Fraunhofer Institute for Applied Information Technology FIT,
Sankt Augustin, Germany

Abstract. The exponential growth in the ability to generate, capture,
and store high dimensional data has driven sophisticated machine learn-
ing applications. However, high dimensionality often poses a challenge
for analysts to effectively identify and extract relevant features from
datasets. Though many feature selection methods have shown good
results in supervised learning, the major challenge lies in the area of
unsupervised feature selection. For example, in the domain of data visual-
ization, high-dimensional data is difficult to visualize and interpret due to
the limitations of the screen, resulting in visual clutter. Visualizations are
more interpretable when visualized in a low dimensional feature space.
To mitigate these challenges, we present an approach to perform unsu-
pervised feature clustering and selection using our novel graph clustering
algorithm based on Clique-Cover Theory. We implemented our approach
in an interactive data exploration tool which facilitates the exploration of
relationships between features and generates interpretable visualizations.

1 Introduction

The ability to collect and generate a wide variety of complex, high-dimensional
datasets continues to grow in the era of Big Data. Increasing dimensionality and
the growing volume of data pose a challenge to the current data exploration sys-
tems to unfold hidden information in high dimensional data. For example, in the
field of data visualization human cognition limits the number of data dimensions
that can be visually interpreted. The potential amount of overlapping data points
projected on to a two-dimensional display hinders the interpretation of mean-
ingful patterns in the data. Though dimensionality reduction has proved to be a
promising solution to this problem, there exists the risk of discarding interesting

c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 183–197, 2021.
https://doi.org/10.1007/978-3-030-82472-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-82472-3_14

184 A. Chakrabarti et al.

properties of the data. There are two prominent approaches for dimensionality
reduction: Feature Extraction and Feature Selection. Feature extraction strate-
gies such as Principle Component Analysis (PCA), Linear Discriminant Analysis
(LDA), or Multidimensional Scaling (MDS), try to mitigate the effect by pro-
jecting a high-dimensional feature space into a lower dimensional space which in
turn results in information loss due to the transformation of the locally relevant
dimensions. Hence, these methods are often not suitable for data exploration
tasks, especially when the user is interested to explore the local structure of the
data. On the other hand, feature selection focuses on finding meaningful dimen-
sions, thereby removing irrelevant and redundant features [13], while maintaining
the underlying structure. Feature selection methods can be classified as super-
vised and unsupervised; the latter has gained popularity in recent years.

In this paper, we propose a novel graph clustering approach for unsupervised
feature selection using the concept of “Clique-Cover” as an underlying founda-
tion. A clique, for an undirected graph, is a subgraph where any two vertices of
the subgraph are adjacent to each other. To enumerate such a graph in order to
find the largest clique (a clique with most vertices) is termed as the maximal-
clique problem in graph theory. The maximal-clique model has been studied
extensively to detect clusters in large graphs and has found its application in
varied domains such as information retrieval [4] or pattern recognition [15].

The contributions of this paper are (i) the integration of Clique-Cover the-
ory in an advanced feature selection pipeline, and (ii) a detailed evaluation of
the approach with various experiments using real-world datasets. In our app-
roach, we transform the problem space into a complete graph where the features
are nodes and the edge weights denote the degree of correlation between the
features. Then, we apply our proposed maximal-clique based algorithm for non-
overlapping cluster detection. Finally, we select highly relevant features from
the detected clusters using graph-centrality measures. The algorithm is embed-
ded in a novel Feature Selection Pipeline to select features from datasets lacking
class labels. This main contribution of the paper is presented in Sect. 3, after
we introduced the basics of Clique-Cover theory and discussed related work in
Sect. 2.

To verify the efficiency of our approach, we performed experiments to com-
pare our results with that of the existing approaches using real-world datasets.
Our experiments presented in Sect. 4 demonstrate that the proposed method per-
forms better than baseline approaches in terms of clustering and classification
accuracy. Furthermore, by evaluating our model in terms of computational effi-
ciency and robustness we report the scalability of our model towards increasing
dimensionality.

2 Background and Related Work

Clique-Cover is a graph clustering approach based on the underlying notion
of maximal cliques [8]. A Clique for an undirected graph G = (V,E) is defined
as the set of vertices C such that each of the distinct pair of vertices in C is

Unsupervised Feature Selection for High Dimensional Data 185

adjacent (i.e., there exists an edge connecting the pairs). A Clique, which is not
a subset of a larger clique, is known as a maximal clique. Thus, given a graph G,
a subgraph H of a graph G is a maximal clique if H is isomorphic to a complete
graph, and there is no vertex v ∈ V (G) such that v is adjacent to each vertex
of H. In other words, a subgraph H of a graph G is a maximal clique if H is a
clique, and there is no vertex in G that sends an edge to every vertex of H. In
this work, we have extended the concept of maximal cliques to the edge-weighted
cliques. A maximal clique having the maximum sum of edge-weights highlights
the notion of a cluster. The recursive process of determining such cliques leads
to the generation of clusters of different sizes. In terms of graph theory, a cluster
can be termed as a cover on the respective nodes of the graph such that the
subset of nodes is strongly connected within the cover. Thus a Clique-Cover is
formally defined as follows: LetG be a graph. A clique of a graphG is a nonempty
subset S of V (G) where S is a complete graph. A set ϑ of cliques in G is a clique
cover of G if for every u ∈ V (G) there exists S ∈ ϑ such that u ∈ S.

Feature Clustering algorithms localize the search for relevant features and
attempt to find clusters that exist in multiple overlapping subspaces. There are
two major branches of feature clustering: (i) The bottom-up algorithms find
dense regions in low dimensional spaces and combine them to form clusters.
(ii) The top-down algorithms start with the full set of dimensions as the initial
cluster and evaluate the subspaces of each cluster, iteratively improving the
results. Clustering in Quest(CLIQUE) [2] is a bottom-up approach that uses a
static grid size to determine the clusters within the subspace of the dataset. It
combines density and grid-based clustering and uses an a-priori-style technique
to identify clusters in subspaces. Tuning the parameters for grid size and the
density threshold is difficult in CLIQUE. PROjected CLUstering(PROCLUS) [1]
is a top-down algorithm, which samples the data, selects a set of k medoids and
iteratively improves the clustering. Although we can achieve an enhanced cluster
quality, it depends on parameters like the number of clusters and the size of the
subspaces, which are difficult to determine in advance.

Unsupervised Feature Selection can be broadly classified into three main
approaches: Filter, Wrapper, and Hybrid. Filter methods select the most rele-
vant features from the data itself without using any clustering algorithm. How-
ever, they are unable to model feature dependencies and yield better results
mostly with supervised data. Relief [16], Laplacian Score [10], Spectral feature
selection [23] are some of the filter methods. Wrapper methods, on the other
hand, use the results of a specific clustering algorithm to evaluate feature sub-
sets. Although they can model feature dependencies, the main disadvantage of
wrapper approaches is that they have a high computational cost and are prone
to overfitting. Hybrid methods combine filter and wrapper models and aim at
achieving a compromise between efficiency and effectiveness (significance of the
feature subsets) by using feature ranking metrics and learning algorithms. As
highlighted in [18], the limitation of these models is that they require the spec-
ification of the hyper-parameters in advance. Moreover, most of the traditional
methods are designed to handle only numerical data, whereas the data gener-

186 A. Chakrabarti et al.

Fig. 1. Feature selection pipeline

ated in real-world applications is a combination of numerical and non-numerical
features. In the next section we present our proposed graph clustering algorithm
based on the Clique-Cover theory. A weighted feature graph is constructed where
the nodes represent the feature set and the edges represent the feature correlation
measures.

3 Unsupervised Feature Selection with Clique Covers

Our approach is unsupervised as it does not require class label information.
The main idea is to model the dependency between features by clustering them.
Interpretability of features is retained as features are not transformed but only
selected. To prove the effectiveness of our approach in the domain of data visu-
alization, we provide an interface to visualize the Representative Features. The
interface allows the user to explore the intermediate results, visualize feature
graphs, and visually inspect the data of the resulting feature sets.

We depict the complete workflow of our feature selection pipeline in Fig. 1.
As a first step, we create a Complete Feature Graph from the dataset. Next,
we assign weights to the feature graph using feature correlation measures. These
weights are stored in the Feature Matrix which acts as the internal data struc-
ture for our Feature Correlation Graph. In the next step, we apply our
graph pruning algorithm to detect and remove weakly connected edges from the
complete Feature Correlation Graph and generate the Feature Dependency
Graph. As a next step, we iteratively apply our Clique-Cover algorithm to the
Feature Dependency Graph to identify the clique-covers. From these clusters, we
now apply our algorithm for Representative Feature Selection, using eigen-vector
centrality measures, to construct the Representative Feature Vector, which
gives us the dimensionality-reduced feature space. In the following subsections,
we describe each of the steps in detail.

Data Model and Preprocessing. We assume the data to be in tabular format,
where the columns represent the features and the rows represent the data points.
After the data is cleaned and pre-processed, we split the features in categorical
and numerical features. For data pre-processing, we perform the following steps:
1. Data Cleaning for the removal of empty and duplicate columns, 2. Data Nor-
malization for standardizing both numerical and the categorical data, 3. Data

Unsupervised Feature Selection for High Dimensional Data 187

Imputation for dealing with missing values by using the principle of predictive
mean matching [21], and 4. Data Segregation for identifying numerical and cat-
egorical features. The reason to segregate is that we apply the most suitable
correlation measures in the respective groups in order to capture the maximum
trends of association. As discussed in the following section, a single correlation
measure cannot work well with both groups. A selection of appropriate measures
is required for the proper construction of the feature graph.

Construction of the Feature Correlation Graph. First, we need to deter-
mine the pairwise feature correlations. In the feature graph, the nodes are the fea-
tures, and the edge-weights are the correlation or association coefficients between
the features. As described above, we construct two feature correlation graphs,
one for numerical and one for categorical features. To calculate the weights of the
edges for these graphs we use the following correlation measures: (i) The Chi-
square test of association followed by Cramer’s V for categorical feature groups.
(ii) Maximal Information Coefficient (MIC) for numerical feature groups. The
Chi-square test is used to determine the correlation between categorical vari-
ables. While it is advantageous because it is symmetric in nature and invariant
with respect to the order of the categories, it suffers from certain weaknesses.
For example, it fails to specify the strength of the association between the vari-
ables and it is sensitive to the sample size. To address this challenge we use a
further test known as the Cramer’s V. This is an essential test that we con-
duct in order to determine feature correlation as it is immune to the sample size
and provides a normalized value, where 0 implies no association and 1 implies
a strong association between the attributes. We use MIC to capture non-linear
trends between variables of numerical feature groups by using the concept of
Information Entropy. However, in high-dimensional space this method becomes
computationally expensive [19]. To overcome this, we calculate MIC using the
normalized Mutual Information. A square matrix is created using the MIC pairs
that represents the correlations between the numerical feature groups.

At the end of this step, we get two weighted square Feature Matrices for each
feature correlation graphs. Both feature groups were handled independently and
they undergo identical processes in the feature selection pipeline. In the rest
of the paper, for the purpose of explainability, we describe a common feature
selection process (as in Fig. 1). This represents the overall workflow for feature
selection using our proposed approach.

Feature Pruning. The complete feature graph obtained from the previous step
may contain weakly connected edges between the nodes. We identify a weak-edge
as those edges whose weights are below the Threshold Coefficient. The Thresh-
old Coefficients are determined using the concepts of K-Nearest Neighbors [3].
The KNN method is a common approach in graph algorithms to determine the
proximity of nodes [14]. The reason for using the KNN algorithm is that it does
not require any assumptions or training steps to build the model. Moreover, it
is easy to implement and robust to noisy data as well. The value of K is set as
K =

√
N , where N is the number of features in each of the feature sets.

188 A. Chakrabarti et al.

Algorithm 1: Identifying Threshold Coefficient
Procedure : makeAffinity
Input: corrMat (MIC and/or Cramer) and K;
Output: affinitymatrix(affMat);
totalNodes ← length(corrMat);
if K > totalNodes then

affMat ← corrMat;
end
else

/* Determine strong connections for every feature node */
foreach i-th feature in totalNodes do

strongConnections ← sort(corrMat[i,], decreasing = TRUE)[1 : K];
/* Make the affinity matrix symmetric in nature */
foreach s-th feature in strongConnections do

j ← position(corrMat[i,] == s); affMat[i, j] ← corrMat[i, j];
affMat[j, i] ← corrMat[i, j];

end
end

end
return affMat;

After determining the threshold coefficients, the K strongest connections for
each feature are retained and the others are pruned, resulting in the Feature
Dependency Graph. We store the Feature Dependency Graph in the form of an
affinity matrix which is symmetric in nature. The steps of this process are shown
in Algorithm 1, which takes the correlation matrix (corrMat) and K (described
above) as inputs and gives the affinity matrix (affMat) as the output. The
correlation matrices (MIC and Cramer) are square weighted adjacency matrices
obtained by applying correlation measures on the Feature Correlation Graphs.

Feature Clustering. To identify relevant clusters in our Feature Dependency
Graph, we have used the “Clique Cover Theory” [8]. For our approach of identi-
fying the maximal cliques with respect to the maximum sum of the edge-weights
from the undirected edge-weighted Feature Dependency Graphs, we evaluate
the sub-graphs satisfying the following properties: (i) Internal homogeneity: Ele-
ments belonging to a group have high associations with each other. (ii) Max-
imality: A maximal clique cannot be further extended by introducing external
elements. These properties emphasize the notion of a cluster. Such a cluster is
termed as Clique-Cover in graph theory which partitions an undirected graph
into cliques of various sizes. To explain the use of this approach for constructing
our proposed algorithm of finding feature clusters, let us consider the example
of a Feature Dependency Graph as shown in Fig. 2.

The example has seven nodes, representing the features of the dataset, and
the edge-weight corresponds to the correlation coefficient between the feature
pairs. The algorithm initially determines the cliques from the graph and further
determines the maximal cliques. It then proceeds to incorporate the edge-weights

Unsupervised Feature Selection for High Dimensional Data 189

Fig. 2. Identification of cliques covers on a feature dependency graph

of the maximal cliques. The maximal clique with respect to the maximum sum
of edge-weight is identified as a cluster. In the graph from Fig. 2 we can see that
there exists many cliques such as {3, 6}, {1, 7},{5, 6},{3, 5, 6}. However only
five maximal cliques can be identified namely, {3, 4, 6}, {1, 4}, {2, 3, 7}, {3,
5, 6} and {1, 7}. We assign the weight of the maximal clique to be equal to
the sum of the weights of the edges in that clique. So the corresponding weight
of the 5 maximal cliques is 1.82, 0.65, 1.90, 1.42, and 0.60, respectively. In this
case, {2, 3, 7} is the maximal clique with respect to the maximum weight of
1.90. This clique satisfies the properties of “internal homogeneity” and “max-
imality”, because it has strong interconnections and is maximal. This can be
termed as the first cluster or the Clique Cover. We now remove the clustered
nodes and edges from the existing graph by dynamically truncating the affinity
matrix and updating the dimensions. Then, the new feature dependency graph
contains the remaining four nodes with features F1, F4, F5, F6 respectively.
The cluster identification is applied recursively on the remaining subgraph, and
it outputs two more clusters {1, 4} and {5, 6}. Therefore, the Clique Cover graph
clustering algorithm generates three clusters {2, 3, 7}, {1, 4} and {5, 6} of sizes
3, 2 and 2 respectively. It can be seen that, the Clique Cover always creates
non-overlapping/exclusive clusters, which is evident from the fact that none of
the features can be present in more than one cluster. Moreover, the approach
does not require a prior estimation of the number of clusters. The number of
clusters and the size of each cluster is determined dynamically from the intrinsic
properties of the graph.

Algorithm 2 presents our feature clustering approach. As an input to the
algorithm we give the weighted adjacency matrix obtained from the Feature
Correlation step. It initializes two output lists; one for storing the cluster node
IDs and the other for storing the cluster node labels. Initially, the remaining
dimensions are set to the total dimensions of the feature graph. The algorithm
proceeds by identifying the threshold coefficient for each node and generates a
feature dependency graph. Next, the algorithm determines the cliques, maximal
cliques, and the total number of maximal cliques in the Feature Dependency
Graph. It then iterates through all of the maximal cliques and identifies the
maximal clique having the maximal weight by summing up the edge-weights in

190 A. Chakrabarti et al.

Algorithm 2: Unsupervised Feature Clustering w. Clique Cover Theory
Procedure : FeatureClustering;
Input : Weighted Adjacency Matrix obtained from Feature Correlation
Output : ClusterNodeIds and ClusterNodeLabels
Initialize: ClusterNodeIds ← (); ClusterNodeLabels ← (); remainDim ←
totalDim;

Step 1: Identify threshold coefficient
Step 2: Generate a feature dependency graph
Step 3: Determine Cliques Q, Maximal Cliques Qi and # of Maximal Cliques
Step 4: Determine the weight of all the Maximal Cliques
Step 5: Determine the Maximal Clique with maximum weight and set it as the
first cluster or the Clique Cover

Step 6: Update the output with the cluster node Ids and labels
Step 7: Remove the clustered nodes and edges from the feature graph
Step 8: Update the feature graph with remaining dimensions
Step 9: Recursive call to FeatureClustering procedure
Step 10: If there is one feature node present, then update the output with the
last node

the maximal clique. This maximal clique is the first cluster or Clique Cover.
It updates the output list with the corresponding node Ids and labels of the
first cluster. The algorithm then removes the clustered nodes and edges and
updates the feature graph with the remaining dimensions. It recursively calls
the FeatureClustering procedure to generate more clusters. This way, the algo-
rithm recursively reduces the size of the remaining dimensions and assigns the
feature nodes as part of some clusters. The terminating condition for the recur-
sive process is reached when there is a single node. It terminates by updating
the output list with node Ids and labels of the last node.

Feature Mapping. In the last step, we map the features from the high dimen-
sional feature space to the representative features in the low dimensional space.
These features are selected from each of the generated feature clusters. The selec-
tion is made using the concepts of graph centrality. Centrality in social networks
is an important measure of the influence of a node in the network [7]. In our
approach, we have used Eigenvector Centrality to determine the importance of a
node in a cluster. It is a globally based centrality measure based on the principle
that a node is important if it is linked by other important nodes. Bonacich, in his
work [5] has shown that Eigenvector Centrality gives better results when clusters
are formed by the determination of maximal cliques. In our approach, the pro-
cess of determining the Eigenvector Centrality score is carried out for all nodes
within each cluster. The maximum score corresponds to the node, which is the
most central node in the cluster. The central node is termed as the representative
feature.

Unsupervised Feature Selection for High Dimensional Data 191

4 Evaluation

We have evaluated our approach over ten datasets and compared with five of the
most prominent unsupervised feature selection methods. We demonstrate that
our approach discovers more meaningful feature clusters from complex datasets
and gives good results in terms of clustering and classification accuracy. From
visualization perspective, we show that by using our approach the visualizations
render much less clutter and in turn making high dimensional data much easier
and intuitive to explore.

Experimental Setting. We have conducted our experiments in a server run-
ning Ubuntu 14.04, with two Intel Xeon X5647@2.93GHz CPUs (8 logical
cores/CPU) and 16G RAM.

Datasets.1 For the evaluation, we have considered high-dimensional datasets
from various categories. The datasets also have different aspects like binary class,
multi-class, missing values, and skewed classes. This enables us to perform a
stress test in order to compare with existing approaches. For the quantitative
evaluation, supervised datasets are selected because the class labels are needed to
evaluate the classification and clustering accuracy, and also for the cost-sensitive
analysis. Since our approach is unsupervised, we conducted the following steps:
1. we have removed the class labels from the selected datasets, 2. we run our
algorithms for feature selection on the unsupervised datasets, 3. the class labels
are then appended to the results obtained from each of the feature selection
approaches, and 4. the supervised reduced feature sets obtained are then used
for quantitative evaluation. Table 1 shows the list of the selected datasets used
for evaluation along with the time taken to construct the reduced feature set
using our proposed feature selection pipeline.

4.1 Baseline Algorithms

We compare the performance of our proposed Clique-Cover based Unsupervised
Feature Selection against the following five baseline algorithms. (1) Laplacian
Score for Feature Selection [10], (2) Spectral Feature Selection for Supervised
and Unsupervised Learning [23], (3) l2, 1-Norm Regularized Discriminative Fea-
ture Selection for Unsupervised Learning (UDFS) [22], (4) Unsupervised Feature
Selection Using Nonnegative Spectral Analysis (NDFS) [11]., (5) Unsupervised
feature selection for multi-cluster data (MCFS) [6].

Evaluation Metrics. The reduced feature sets obtained from each approach
are quantitatively evaluated using these metrics:

– Evaluation using Classification Accuracy - The accuracy of the reduced
feature sets are evaluated using classifiers: Naive Bayes, Support Vector
Machine (SVM), Random Forests and Logistic Regression. K-fold cross vali-
dation is used to evaluate the classifiers.

1 Data Repository: https://figshare.com/s/1807247ef2165735465c.

https://figshare.com/s/1807247ef2165735465c

192 A. Chakrabarti et al.

Table 1. Experimental results for selected datasets. Dimensions are the total number
of features in the dataset and #Features are the final set of selected features after the
application of our feature selection algorithm.

Dataset Dimensions Time (in seconds) #Features

Automobile 25 0.10 9
QSAR Biodegradation 41 0.16 12
Emotions 78 0.97 17
Robot failure 91 1.08 27
Yeast 116 2.42 20
Musk 168 11.61 32
Arrhythmia 280 22.52 44
AirlineTicketPrice 417 43.59 37
GAMETES Genome 1000 111.50 70
Colon 2000 576.27 115

– Evaluation using Clustering Accuracy - The accuracy of the reduced fea-
ture sets are evaluated using two clustering algorithms: K-means and Expec-
tation Maximization clustering approaches. The Clustering Accuracy metric
is used for assessing the clustering quality. The number of clusters is set to
the number of classes present in the respective datasets.

– Evaluation in terms of the redundancy of the Selected Features
- We have used “Representation Entropy” [13] as a metric to evaluate the
redundancy of the selected features. Let the eigenvalues of the d×d covariance
matrix of a feature set of size d be λj , where j = 1...d and λ̃j = λj∑d

j=1 λj
where

0 ≤ λ̃j ≤ 1, then we define Representation Entropy as: HR =
∑d

j=1 λ̃j logλ̃j

The Representation Entropy (HR) measures of the amount of information
compression achieved by dimensionality reduction. This is equivalent to the
amount of redundancy present in the reduced feature set. The goal of our
approach is to have a low value of HR for the individual clusters but a high
HR for the final reduced feature set, which in turn would indicate that the
representative feature set has low information redundancy.

– Evaluation using ROC Curves for cost-sensitive analysis: ROC curve
is used to check the performance of a classification model. We have used
this metric for cost-sensitive analysis. The higher AUC signifies the better
performance of the classifier corresponding to relevant features in the dataset.
We have considered all the classifiers mentioned above and plotted the ROC
curve for each of the reduced feature sets obtained from different approaches.

Because of limited space, we describe the evaluation result only from one experi-
ment. However, the extensive evaluation report using the remaining nine datasets
can be found here (https://figshare.com/s/01d10e873bd0896fa30a). Below, we
show the performance of our model and the comparisons with the baseline

https://figshare.com/s/01d10e873bd0896fa30a

Unsupervised Feature Selection for High Dimensional Data 193

Fig. 3. Classification and clustering accuracy with the Colon Tumor dataset

approaches using the ‘Colon Tumor’ dataset2 as it has the highest number of
features (2000 features).

The classification and the clustering accuracy are depicted in Fig. 3. From the
results, we can conclude that the classification accuracy of the reduced feature
space from our proposed approach has shown relatively better results in all
the four selected classifiers in comparison with the baseline methods. Regarding
clustering accuracy, although the overall clustering accuracy is low as compared
to the classification accuracy, the relative performance of our approach is good.
The low accuracy is because the number of clusters in the data are different from
what we have assigned. As seen in Fig. 3, we have determined the clustering and
the classification accuracy using the Full Feature Set in order to estimate the
relative accuracy of our proposed method.

In Fig. 4, we plot the ROC curves of the reduced feature sets measured using
different classifiers which shows that our approach outperforms the selected
methods. Whereas, Fig. 5 gives the Representation Entropy (HR) obtained from
the reduced feature sets of our approach along with the corresponding values
obtained from the baseline methods. The resulting Representation Entropy of
our proposed approach is higher, which indicates that the features selected by
our method have a relatively low information redundancy rate.

4.2 Performance Measure

The computational complexity is regarded starting after the ingestion and the
feature correlation phase. We have determined the computational complexity
from the construction of the Complete Feature Graph until we obtain the Rep-
resentative Feature Vector. The recursive process of determining the feature clus-
ters mainly depends on three steps: identifying the threshold coefficient using
K-NN method, maximal clique determination, and finding the weight of each

2 Colon Tumor Data: http://csse.szu.edu.cn/staff/zhuzx/Datasets.html.

http://csse.szu.edu.cn/staff/zhuzx/Datasets.html

194 A. Chakrabarti et al.

Fig. 4. ROC plots using the Colon Tumor dataset

Fig. 5. Representation entropy (Colon Tumor dataset)

maximal clique. In our case, the complexity of identifying the threshold coef-
ficient depends on the number of nodes in the complete feature graph(n) and
the value of k (k is the number of nearest neighbors). The complexity is given
as O(kn). It has already been proved that the complexity of maximal clique
determination is equal to O(2n/3), where n is the number of nodes [20]. The
complexity of finding the weights of each of the maximal clique depends on the
number of edges(e), and is equivalent to O(e). After the feature clusters are
determined, the algorithm identifies representative features from each cluster
based on the Eigenvector Centrality measure. The complexity of determining
Eigenvector Centrality is O(qE), where q is the number of iterations needed
before convergence, and E is the number of edges in each cluster. The combined
computational complexity for feature clustering and selection can be written as:
[O(kn) +O(2n/3) + (p × O(e))] +O(qE) where n is the total number of features
in the feature graph, k is the number of nearest neighbors, p is the number of
intermediate maximal cliques obtained, e is the number of edges in each maximal
clique, q is the number of iterations required to determine Eigenvector Centrality
and E is the number of edges in the cluster. The core complexity of this step
is represented by the exponential function to determine maximal cliques in the

Unsupervised Feature Selection for High Dimensional Data 195

graph. This indicates that the time complexity to determine maximal cliques
increases exponentially with the number of features. To investigate the practical
consequences, we have calculated the time taken to process the feature graph to
determine the Representative Features. As seen in the Table 1, the time taken
increases exponentially with respect to the number of features in the dataset.
On analyzing the time taken for processing the features, the run time of the
algorithm is found to be t = 1.38n.

We would like to mention that the enumeration of maximal cliques has
been proven as an NP-hard combinatorial optimization problem. Over the past
decade, several algorithms have been designed to address this issue. However,
most of these heuristic algorithms fail for massive graphs. Lately, pruning based
exact and parameterized algorithms have been proposed which are able to
achieve linear runtime scaling for massive graphs [9,12,17]. For the purpose of
determining the maximal cliques in our proposed feature selection pipeline, we
have used the Parallel Maximum Clique Solver3 which have implemented the
algorithms presented in the work of Rossi et al. [17].

5 Conclusion

In this work, we have presented a novel graph-based clustering algorithm based
on the Clique Cover Theory. The number of clusters along with their size is deter-
mined dynamically using the intrinsic properties of the data without any prior
estimation from the user. The approach was also evaluated on several datasets
having a varying number of features and properties. The results indicate that
our proposed approach can be used in an effective way for selecting important
features in an unsupervised manner, thus proving to be an efficient strategy for
dimensionality reduction.

To identify meaningful features from high dimensional data sets and to visu-
alize them efficiently we have tested the implementation of our approach with
an interactive data exploration tool4. Our visualization tool provides two main
functionalities: 1. Explore Data Features and 2. Visualize data in the reduced
feature space. With the help of this tool, the features are visualized using fea-
ture graphs like cluster feature graphs and representative feature graphs. The
correlation between features is explored using correlation heatmaps. The data
points in the reduced feature space are visualized using standard methods. The
reduced dimensional space allows many visualization techniques to demonstrate
various characteristics of the data.

With this tool, we have presented an interface for the efficient exploration
of large multidimensional data. One limitation of our approach is that we have
segregated the datasets into numerical and categorical feature groups and the
feature clusters are determined separately for these individual groups. In the
future, we plan to extend our approach so that the resulting clusters are a mix of
3 https://github.com/ryanrossi/pmc.
4 VizExploreTool: http://dbis.rwth-aachen.de/cms/staff/chakrabarti/unsupervised-

feature-selection/eval/view.

https://github.com/ryanrossi/pmc
http://dbis.rwth-aachen.de/cms/staff/chakrabarti/unsupervised-feature-selection/eval/view
http://dbis.rwth-aachen.de/cms/staff/chakrabarti/unsupervised-feature-selection/eval/view

196 A. Chakrabarti et al.

both the feature groups. We are currently investigating techniques to determine
clusters by incorporating correlation measures that determine the relationship
between numerical and categorical features. Another interesting direction would
be to extend the feature selection to deal with skewed clusters. For example,
suppose a dataset has 24 features, and in the clustering phase, 20 features become
a part of the first cluster, and the remaining four features are part of the second
cluster. Since there are only two clusters, there will be two representative features
from each cluster. Thus, the resulting feature set can have very low accuracy.
Instead, more than one representative feature for the skewed clusters could be
considered.

Acknowledgment. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy – EXC-
2023 Internet of Production – 390621612.

References

1. Aggarwal, C.C., Wolf, J.L., Yu, P.S., Procopiuc, C., Park, J.S.: Fast algorithms for
projected clustering. ACM SIGMOD Rec. 28(2), 61–72 (1999)

2. Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P.: Automatic subspace clus-
tering of high dimensional data for data mining applications. In: Proceedings ACM
SIGMOD Conference, pp. 94–105 (1998)

3. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric
regression. Am. Stat. 46(3), 175–185 (1992)

4. Augustson, J.G., Minker, J.: An analysis of some graph theoretical cluster tech-
niques. J. ACM (JACM) 17(4), 571–588 (1970)

5. Bonacich, P.: Some unique properties of eigenvector centrality. Soc. Netw., 555–564
(2007)

6. Cai, D., Zhang, C., He, X.: Unsupervised feature selection for multi-cluster data.
In: Proceedings ACM SIGKDD, pp. 333–342 (2010)

7. Elgazzar, H., Elmaghraby, A.: Evolutionary centrality and maximal cliques in
mobile social networks. Int. J. Comput. Sci. Inf. Tech. 10 (2018)

8. Erdös, P., Goodman, A.W., Pósa, L.: The representation of a graph by set inter-
sections. Can. J. Math. 18, 106–112 (1966)

9. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Data reduction and exact algo-
rithms for clique cover. J. Exp. Algorithmics (JEA) 13, 2 (2009)

10. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: Advances in
Neural Information Processing Systems, pp. 507–514 (2006)

11. Li, Z., Yang, Y., Liu, J., Zhou, X., Lu, H.: Unsupervised feature selection using
nonnegative spectral analysis. In: Proceedings 26th AAAI Conference (2012)

12. Lu, C., Yu, J.X., Wei, H., Zhang, Y.: Finding the maximum clique in massive
graphs. PVLDB 10(11), 1538–1549 (2017)

13. Mitra, P., Murthy, C., Pal, S.K.: Unsupervised feature selection using feature sim-
ilarity. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 301–312 (2002)

14. Paredes, R., Chávez, E.: Using the k -nearest neighbor graph for proximity searching
in metric spaces. In: Consens, M., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772,
pp. 127–138. Springer, Heidelberg (2005). https://doi.org/10.1007/11575832_14

https://doi.org/10.1007/11575832_14

Unsupervised Feature Selection for High Dimensional Data 197

15. Pavan, M., Pelillo, M.: A new graph-theoretic approach to clustering and segmen-
tation. In: Proceedings IEEE Conference Computer Vision & Pattern Recognition
(2003)

16. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of ReliefF
and RReliefF. Mach. Learn. 53(1–2), 23–69 (2003)

17. Rossi, R.A., Gleich, D.F., Gebremedhin, A.H., Patwary, M.M.A.: Fast maximum
clique algorithms for large graphs. In: Proceedings WWW, pp. 365–366 (2014)

18. Solorio-Fernández, S., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F.: A review of
unsupervised feature selection methods. Artif. Intell. Rev. 53(2), 907–948 (2019).
https://doi.org/10.1007/s10462-019-09682-y

19. Speed, T.: A correlation for the 21st century. Science 334(6062), 1502–1503 (2011)
20. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM J.

Comput. 6(3), 537–546 (1977)
21. Wright, M.N., Ziegler, A.: ranger: A fast implementation of random forests for high

dimensional data in C++ and R. arXiv preprint arXiv:1508.04409 (2015)
22. Yang, Y., Shen, H.T., Ma, Z., Huang, Z., Zhou, X.: L2, 1-norm regularized dis-

criminative feature selection for unsupervised. In: Proceedings IJCAI (2011)
23. Zhao, Z., Liu, H.: Spectral feature selection for supervised and unsupervised learn-

ing. In: Proceedings International Conference on Machine Learning, pp. 1151–1157.
ACM (2007)

https://doi.org/10.1007/s10462-019-09682-y
http://arxiv.org/abs/1508.04409

MuLOT: Multi-level Optimization
of the Canonical Polyadic Tensor
Decomposition at Large-Scale

Annabelle Gillet(B), Éric Leclercq, and Nadine Cullot

LIB EA 7534 Univ. Bourgogne Franche Comté, Dijon, France
annabelle.gillet@depinfo.u-bourgogne.fr,

{eric.leclercq,nadine.cullot}@u-bourgogne.fr

Abstract. Tensors are used in a wide range of analytics tools and as
intermediary data structures in machine learning pipelines. Implementa-
tions of tensor decompositions at large-scale often select only a specific
type of optimization, and neglect the possibility of combining different
types of optimizations. Therefore, they do not include all the improve-
ments available, and are less effective than what they could be. We
propose an algorithm that uses both dense and sparse data structures
and that leverages coarse and fine grained optimizations in addition to
incremental computations in order to achieve large scale CP (CANDE-
COMP/PARAFAC) tensor decomposition. We also provide an imple-
mentation in Scala using Spark, MuLOT, that outperforms the baseline
of large-scale CP decomposition libraries by several orders of magnitude,
and run experiments to show its large-scale capability. We also study a
typical use case of CP decomposition on social network data.

Keywords: Tensor decomposition · Data mining · Multi-dimensional
analytics

1 Introduction

Tensors are powerful mathematical objects, which bring capabilities to model
multi-dimensional data [8]. They are used in multiple analytics frameworks, such
as Tensorflow [1], PyTorch [23], Theano [3], TensorLy [18], where their ability
to represent various models is a great advantage. Furthermore, associated with
powerful decompositions, they can be used to discover the hidden value of Big
Data. Tensor decompositions are used for various purposes such as dimensional-
ity reduction, noise elimination, identification of latent factors, pattern discov-
ery, ranking, recommendation and data completion. They are applied in a wide
range of applications, including genomics [14], analysis of health records [29],
graph mining [28] and complex networks analysis [4,19]. Papalexakis et al. in
[21] review major usages of tensor decompositions in data mining applications.

Most of tensor libraries that include decompositions work with tensors of
limited size, and do not consider the large-scale challenge. However, as tensors
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 198–212, 2021.
https://doi.org/10.1007/978-3-030-82472-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-82472-3_15

MuLOT: Multi-level Optimization of the CP Decomposition at Large-Scale 199

model multi-dimensional data, their global size varies exponentially depending
on the number and size of their dimensions, making them sensitive to large-scale
issues. Some intermediate structures needed in the algorithms result in data
explosion, such as the Khatri-Rao product in the canonical polyadic decomposi-
tion [15]. Thus, analyzing Big Data with tensors requires optimization techniques
and suitable implementations, able to scale up. These optimizations are directed
toward different computational aspects, such as the memory consumption, the
execution time or the scaling capabilities, and can follow different principles,
such as coarse grained optimizations, fine grained optimizations or incremental
computations.

In this article we focus on the canonical polyadic decomposition (also known
as CANDECOMP/PARAFAC or CP decomposition) that allows to factorize a
tensor into smaller and more usable sets of vectors [17], and which is largely
adopted in exploratory analyzes. Our contribution is twofold: 1) we propose an
optimized algorithm to achieve large scale CP decomposition, that uses dense or
sparse data structures depending on what suits best each step, and that lever-
ages incremental computation, coarse and fine grained optimizations to improve
every computation in the algorithm; and 2) we provide an implementation in
Scala using Spark that outperforms the state of the art of large-scale tensor
CP decomposition libraries. The implementation is open source and available on
Github1, along with experimental evaluations to validate its efficiency especially
at large scale.

The rest of the article is organized as follows: Sect. 2 presents an overview
of tensors including the CP decomposition, Sect. 3 introduces a state of the art
of tensor manipulation libraries, Sect. 4 describes our scalable and optimized
algorithm, Sect. 5 details the experiments we ran to compare our algorithm to
other large-scale CP decomposition libraries, Sect. 6 presents a study on real
data performed with our algorithm and finally Sect. 7 concludes.

2 Overview of Tensors and CP Decomposition

Tensors are general abstract mathematical objects which can be considered
according to various points of view such as a multi-linear application, or as
the generalization of matrices to multiple dimensions. We will use the definition
of a tensor as an element of the set of the functions from the product of N sets
Ij , j = 1, . . . , N to IR : X ∈ IRI1×I2×···×IN , where N is the number of dimensions
of the tensor or its order or its mode. Table 1 summarizes the notations used in
this article.

Tensor operations, by analogy with operations on matrices and vectors, are
multiplications, transpositions, unfolding or matricizations and factorizations
(also named decompositions) [8,17]. The reader can consult these references
for an overview of the major operators. We only highlight the most significant
operators on tensors which are used in our algorithm. The mode-n matricization
of a tensor X ∈ IRI1×I2×···×IN noted X(n) produces a matrix M ∈ IRIn×Πj �=nIj .

1 https://github.com/AnnabelleGillet/MuLOT.

https://github.com/AnnabelleGillet/MuLOT

200 A. Gillet et al.

The Hadamard product of two matrices having the same size (i.e., I × J) noted
A ⊛ B is the elementwise matrix product. The Kronecker product between a
matrix A ∈ IRI×J and a matrix B ∈ IRK×L noted A ⊗ B gives a matrix
C ∈ IR(IK)×(JL), where each element of A is multiplied by B. The Khatri-
Rao product of two matrices having the same number of columns noted A � B
is a columnwise Kronecker product.

Table 1. Symbols and operators used

Symbol Definition Symbol Definition

X A tensor ◦ Outer product

X(n) Matricization of a tensor X
on mode-n

⊗ Kronecker product

⊛ Hadamard product

a A scalar � Hadamard division

v A column vector � Khatri-Rao product

M A matrix † Pseudo inverse

The canonical polyadic decomposition allows to factorize a tensor into
smaller and more exploitable sets of vectors [13,25]. Given a N-order tensor
X ∈ IRI1×I2×···×IN and a rank R ∈ IN, the CP decomposition factorizes the ten-
sor X into N column-normalized factor matrices A(i) ∈ IRIi×R for i = 1, . . . , N
with their scaling factors λ ∈ IRR as follows:

X � [[λ,A(1),A(2), . . . ,A(N)]] =
R∑

r=1

λra
(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r

where a
(i)
r are columns of A(i).

Algorithm 1. CP-ALS
Require: Tensor X ∈ IRI1×I2×···×IN and target rank R
1: Initialize A(1), . . . ,A(N), with A(n) ∈ IRIn×R

2: repeat
3: for n = 1, . . . , N do
4: V ← A(1)TA(1)

⊛ · · · ⊛A(n−1)TA(n−1)
⊛A(n+1)TA(n+1)

⊛ · · · ⊛A(N)TA(N)

5: A(n) ← X(n)(A
(N) � · · · � A(n+1) � A(n−1) � · · · � A(1))V†

6: normalize columns of A(n)

7: λ ← norms of A(n)

8: end for
9: until < convergence >

Several algorithms have been proposed to compute the CP decomposi-
tion [26], we focus on the alternating least squares (ALS) one, described above
in Algorithm 1. The Matricized Tensor Times Khatri-Rao Product (MTTKRP,

MuLOT: Multi-level Optimization of the CP Decomposition at Large-Scale 201

line 5 of the Algorithm 1) is often the target of optimizations, because it involves
the tensor matricized of size IRIn×J , with J = Πj �=nIj , as well as the result of
the Khatri-Rao product of size IRJ×R. It is thus computationally demanding
and uses a lot of memory to store the dense temporary matrix resulting of the
Khatri-Rao product [24].

3 State of the Art

Several tensor libraries have been proposed. They can be classified according to
their capability of handling large tensors or not.

rTensor (http://jamesyili.github.io/rTensor/) provides users with standard
operators to manipulate tensors in R language including tensor decomposi-
tions, but does not support sparse tensors. Tensor Algebra Compiler (TACO)
provides optimized tensor operators in C++ [16]. High-Performance Tensor
Transpose [27] is a C++ library only for tensor transpositions, thus it lacks
lots of useful operators. Tensor libraries for MATLAB, such as TensorToolbox
(https://www.tensortoolbox.org/) or MATLAB Tensor Tools (MTT, https://
github.com/andrewssobral/mtt), usually focus on operators including tensor
decompositions with optimization on CPU or GPU. TensorLy [18], written in
Python, allows to switch between tensor libraries back-ends such as TensorFlow
or PyTorch. All of these libraries do not take into account large tensors, which
cannot fit in memory.

On the other hand, some implementations focus on performing decomposi-
tions on large-scale tensors in a distributed setting. HaTen2 [15] is a Hadoop
implementation of the CP and Tucker decompositions using the map-reduce
paradigm. It was later improved with BigTensor [22]. SamBaTen [12] proposes
an incremental CP decomposition for evolving tensors. The authors developed a
Matlab and a Spark implementations. Gudibanda et al. in [11] developed a CP
decomposition for coupled tensors using Spark (i.e., different tensors having a
dimension in common). ParCube [20] is a parallel Matlab implementation of the
CP decomposition. CSTF [5] is based on Spark and proposes a distributed CP
decomposition.

As a conclusion, the study of the state of the art shows some limitations of
the proposed solutions. A majority of frameworks are limited to 3 or 4 dimen-
sions which is a drawback for analyzing large-scale, real and complex data. They
focus on a specific type of optimization, and use only sparse structures to sat-
isfy the sparsity of large tensors. This is a bottleneck to performance, as they
do not consider all the characteristics of the algorithm (i.e., the factor matrices
are dense). Furthermore, they are not really data centric, as they need an input
only with integer indexes, for dimensions and for values of dimensions. Thus it
reduces greatly the user-friendliness as the mapping between real values (e.g.,
user name or timestamp) and indexes has to be supported by the user. The
Hadoop implementations need a particular input format, thus necessitate data
transformations to execute the decomposition and to interpret the results, lead-
ing to laborious prerequisites and increasing the risk of mistakes when working

http://jamesyili.github.io/rTensor/
https://www.tensortoolbox.org/
https://github.com/andrewssobral/mtt
https://github.com/andrewssobral/mtt

202 A. Gillet et al.

with the results. Moreover, not all of the implementations are open-source, some
only give the binary code.

4 Distributed, Scalable and Optimized ALS for Apache
Spark

Optimizing the CP ALS tensor decomposition induces several technical chal-
lenges, that gain importance proportionally to the size of the data. Thus, to
compute the decomposition at large scale, several issues have to be resolved.

First, the data explosion of the MTTKRP is a serious computational
bottleneck (line 5 of Algorithm 1), that can overflow memory, and prevent to
work with large tensors, even if they are extremely sparse. Indeed, the matrix
produced by the Khatri-Rao has J × R non-zero elements, with J = Πj �=nIj ,
for an input tensor of size IRI1×I2×···×IN . We propose to reorder carefully this
operation, in order to avoid the data explosion and to improve significantly the
execution time (see Algorithm 3).

The main operations in the ALS algorithm, i.e., the update of the factor
matrices, are not themselves parallelizable (lines 4 and 5 of Algorithm 1).
In such a situation, it is profitable to think of other methods to take advantage
of parallelism, that could be applied on fine grained operations. For example,
leveraging parallelism for matrices multiplication is an optimization that can
be applied in many situations. This also eases the reuse of such optimizations,
without expecting specific characteristics from the algorithm (see Sect. 4.2).

The nature of data structures used in the CP decomposition are
mixed: tensors are often sparse, while factor matrices are dense. Their needs to
be efficiently implemented diverge, so rather than sticking globally to sparse data
structures to match the sparsity of tensors, each structure should take advantage
of their particularities to improve the whole execution (see Sect. 4.1). To the best
of our knowledge, this strategy has not been explored by others.

The stopping criterion can also be a bottleneck. In distributed implemen-
tations of the CP ALS, the main solutions used to stop the algorithm are to
wait for a fixed number of iterations, or to compute the Frobenius norm on
the difference between the input tensor and the tensor reconstructed from the
factor matrices. The first solution severely lacks in precision, and the second is
computationally demanding as it involves outer products between all the factor
matrices. However, an other option is available to check the convergence, and
consists in measuring the similarity of the factor matrices between two itera-
tions, evoked in [8,17]. It is a very efficient solution at large-scale, as it merges
precision and light computations (see Sect. 4.3).

Finally, the implementation should facilitate the data loading, and avoid
data transformations only needed to fit the expected input of the algorithm. It
should also produce easily interpretable results, and minimize the risk of errors
induced by laborious data manipulations (see Sect. 4.4). The study of the state of
the art of tensor libraries shows that tensors are often used as multi dimensional
arrays, that are manipulated through their indexes, even if they represent real

MuLOT: Multi-level Optimization of the CP Decomposition at Large-Scale 203

world data. The mapping between indexes and values is delegated to the user,
although being an error-prone step. As it is a common task, it should be handled
by the library.

To tackle these challenges, we leverage three optimization principles to
develop an efficient decomposition: coarse grained optimization, fine grained
optimization, and incremental computation. The coarse grained one relies on
specific data structures and capabilities of Spark to efficiently distribute oper-
ations. The incremental computation is used to avoid to compute the whole
Hadamard product at each iteration. The fine grained optimization is applied
on the MTTKRP to reduce the storage of large amount of data and costly
computations. For this, we have extended Spark’s matrices with the operations
needed for the CP decomposition. In addition, we choose to use an adapted
converging criteria, efficient at large-scale. For the implementation of the algo-
rithm, we take a data centric point of view to facilitate the loading of data and
the interpretation of the results. Our CP decomposition implementation is thus
able to process tensors with billions of elements (i.e., non zero entries) on a
mid-range workstation, and small and medium size tensors can be processed in
a short time on a low-end personal computer.

4.1 Distributed and Scalable Matrix Data Structures

A simple but efficient sparse matrix storage structure is COO (COOrdi-
nate storage) [2,10]. The CoordinateMatrix, available in the mllib package of
Spark [6], is one of those structures, that stores only the coordinates and the
value of each existing element in a RDD (Resilient Distributed Datasets). It is
well suited to process sparse matrices.

X

Fig. 1. Blocks mapping for a multiplication between two BlockMatrix

Another useful structure is the BlockMatrix. It is composed of multiple
blocks containing each a fragment of the global matrix. Operations can be par-
allelized by executing it on each sub-matrix. For binary operations such as multi-
plication, only blocks from each BlockMatrix that will be associated are sent to
each other, and the result is then aggregated if needed (see Fig. 1). It is thus an
efficient structure for dense matrices, and allows distributed computations
to process all blocks.

Unfortunately, only some basic operations are available for BlockMatrix,
such as multiplication or addition. The more complex ones, such as the

204 A. Gillet et al.

Hadamard and Khatri-Rao products, are missing. We have extended Spark
BlockMatrix with more advanced operations, that keep the coarse grained opti-
mization logic of the multiplication. We also added new operations, that involve
BlockMatrix and CoordinateMatrix to take advantage of the both structures
for our optimized MTTKRP (see below).

4.2 Mixing Three Principles of Optimization

Tensors have generally a high level of sparsity. In the CP decomposition, they
only appear under their matricized form, thus they are naturally manipulated
as CoordinateMatrix in our implementation. On the other hand, the factor
matrices A of the CP decomposition are dense, because they hold information
for each value of each dimension. They greatly benefit from the capabilities of
the extended BlockMatrix we developed. By using the most suitable structure
for each part of the algorithm, we leverage specific optimizations that can speed
up the whole algorithm.

Algorithm 2. CP-ALS adapted to Spark
Require: Tensor X ∈ IRI1×I2×···×IN and target rank R
1: Initialize A(1), . . . ,A(N), with A(n) ∈ IRIn×R

2: V ← A(1)TA(1)
⊛ · · · ⊛A(N)TA(N)

3: repeat
4: for n = 1, . . . , N do
5: V ← V � A(n)TA(n)

6: A(n) ← MTTKRP (X(n), (A
(N), . . . ,A(n+1),A(n−1), . . . ,A(1)))V†

7: V ← V ⊛A(n)TA(n)

8: normalize columns of A(n)

9: λ ← norms of A(n)

10: end for
11: until < convergence >

Besides to using and improving Spark’s matrices according to the specifici-
ties of data, we also have introduced fine grained optimization and incremental
computing into the algorithm to avoid costly operations in terms of memory
and execution time. Those improvements are synthesized in Algorithm 2 and
explained below.

First, to avoid computing V completely at each iteration for each dimension,
we propose to do it incrementally. Before iterating, we calculate the Hadamard
product for all A (line 2 of the Algorithm 2). At the beginning of the iteration,
A(n)T A(n) is element-wise divided from V, giving the expected result at this
step (line 5 of the Algorithm 2). At the end of the iteration, the Hadamard
product between the new A(n)T A(n) and V prepares V for the next iteration
(line 7 of the Algorithm 2).

The MTTKRP part (line 6 of the Algorithm 2) is sensitive to improvement, as
stated in Sect. 2. Indeed, by focusing on the result rather than on the operation,

MuLOT: Multi-level Optimization of the CP Decomposition at Large-Scale 205

it can be easily reordered. For example, if we multiply a 3-order tensor matricized
on dimension 1 with the result of A(3) � A(2), we can notice that in the result,
the indexes of the dimensions in the tensor X correspond directly to those in
the matrices A(3) and A(2). This behaviour is represented below—with notation
shortcut Bi = A(2)(i, 1) and Ci = A(3)(i, 1)—in an example simplified with only
one rank:

[
a1b1c1 a1b2c1 a1b1c2 a1b2c2
a2b1c1 a2b2c1 a2b1c2 a2b2c2

]
×

⎡

⎢⎢⎣

B1C1

B2C1

B1C2

B2C2

⎤

⎥⎥⎦

=
[
a1b1c1.B1C1 + a1b2c1.B2C1 + a1b1c2.B1C2 + a1b2c2.B2C2

a2b1c1.B1C1 + a2b2c1.B2C1 + a2b1c2.B1C2 + a2b2c2.B2C2

]

Thus, rather than computing the full Khatri-Rao product and performing
the multiplication with the matricized tensor, we apply a fine grained optimiza-
tion that takes advantage of the mapping of indexes, and that anticipates the
construction of the final matrix. For each entry of the CoordinateMatrix of the
matricized tensor (i.e., all non-zero values), we find in each factor matrix A which
element will be used, and compute elements of the final matrix (Algorithm 3).

Algorithm 3. Detail of the MTTKRP
Require: The index of the factor matrix n, the matricized tensor X(n) ∈ IRIn×J with

J = Πj �=nIj and A(1), . . . ,A(n−1),A(n+1), . . . ,A(N), with A(i) ∈ IRIi×R

1: Initialize A(n) at 0, with A(n) ∈ IRIn×R

2: for each (x, y, v) in X(n) with x, y the coordinates and v the value do
3: for r = 1, . . . , R do
4: value ← v
5: for each A(i) with i �= n do
6: c ← extract A(i) coordinate from y
7: value ← value × A(i)(c, r)
8: end for
9: A(n)(x, r) ← A(n)(x, r) + value

10: end for
11: end for

4.3 Stopping Criterion

To evaluate the convergence of the algorithm and when it can be stopped, a
majority of CP decomposition implementations uses the Frobenius norm on
the difference between the original tensor and the reconstructed tensor from
the factor matrices. However, at large-scale the reconstruction of the tensor
from the factor matrices is an expensive computation, even more than the naive
MTTKRP. Waiting for a predetermined number of iterations is not very effective

206 A. Gillet et al.

to avoid unnecessary iterations. Thus, other stopping criteria such as the evalua-
tion of the difference between the factor matrices with those of the previous iter-
ation [8,17] are much more interesting, as they work on smaller chunks of data.
To this end, we use the Factor Match Score (FMS) [7] to measure the difference
between factor matrices of the current iteration ([[λ,A(1),A(2), . . . ,A(N)]]) and

those of the previous iteration ([[λ̂, Â
(1)

, Â
(2)

, . . . , Â
(N)

]]). The FMS is defined
as follows:

FMS =
1
R

R∑

r=1

(
1 − ξ − ξ̂

max(ξ, ξ̂)

)
N∏

n=1

a
(n)T
r â

(n)
r

‖a
(n)
r ‖.‖â

(n)
r ‖

where ξ = λr

∏N
n=1 ‖a

(n)
r ‖ and ξ̂ = λ̂r

∏N
n=1 ‖â

(n)
r ‖.

4.4 Data Centric Implementation

Our implementation of the CP decomposition, in addition to being able to run
with any number of dimensions, is data centric: it takes a Spark DataFrame
as input to execute the CP directly on real data. Thus, it benefits from Spark
capabilities to retrieve data directly from various datasources.

A specific column of the DataFrame contains the values of the tensor and
all the other columns contain the values for each dimension. The CP opera-
tors returns a map associating the original names of the dimensions to a new
DataFrame with three columns for each dimension: the dimension’s values, the
rank, and the value computed by the CP decomposition. By using DataFrame
as input, we allow the use of any type as dimensions’ values. For example, users
could create a DataFrame with four columns: username, hashtag, time and value,
with username and hashtag being of type String in order to easily interpret the
decomposition result. This avoids having to handle an intermediate data struc-
ture containing the mapping between indexes and real values, and thus reduces
the risk of mistakes when transforming data.

5 Experiments

To validate our algorithm, we have run experiments on tensors produced by
varying the size of dimensions and the sparsity, on a Dell PowerEdge R740
server (Intel(R) Xeon(R) Silver 4210 CPU @ 2.20 GHz, 20 cores, 256 GB RAM).
We compare our execution time to those of the baseline of distributed CP tensor
decomposition libraries available: HaTen2 [15], BigTensor [22], SamBaTen [12]
and CSTF [5]. Hadoop 2.6.0 was used to execute HaTen and BigTensor. We also
study the scalability of MuLOT by varying the number of cores used by Spark.

MuLOT: Multi-level Optimization of the CP Decomposition at Large-Scale 207

Fig. 2. Execution time for tensors with 3 dimensions of size 100 (top-left), 1 000 (top-
right), 10 000 (bottom-left) and 100 000 (bottom-right). CSTF produces an Out Of
Memory exception for tensors with 1B elements

Tensors were created randomly with 3 dimensions of the same size, from 100
to 100k. The sparsity ranges from 10−1 to 10−9, and tensors were created only
if the number of non-zero elements is superior to 3 × size and inferior or equal
to 1B (with dimensions of size 100 and 1 000, tensors can only have respectively
106 and 109 non-zero elements at most, with a sparsity up to 10−1 they cannot
reach 1B elements, but respectively 105 and 108 non-zero elements). We have
run the CP decomposition for 5 iterations, and have measured the execution
time. Results are shown in Fig. 2. The source code of the experiments and the
tool used to create tensors are available at https://github.com/AnnabelleGillet/
MuLOT/tree/main/experiments.

Our implementation clearly outperforms the state of the art, with speed-up
reaching several order of magnitude. CSTF keeps up concerning the execution
time of small tensors, but is no match for large tensors, and cannot compute
the decomposition for tensors with 1B elements. Execution times of MuLOT
are nearly linear following the number of non-zero elements. The optimization
techniques applied show efficient results even for very large tensors of billion
elements, with a maximum execution time for a 3-order tensor with dimensions
of size 100k of 62 min, while the closest, BigTensor, takes 547 min. It also does
not induce a high overhead for small tensors, as the decomposition on those with
dimensions of size 100 takes less than 10 s.

We also studied the scalability of our algorithm (Fig. 3). We measured the
speed-up depending on the number of cores used by Spark. Our algorithm shows
a sub-linear scalability, but without a big gap. The scalability is an important
property for large-scale computations.

https://github.com/AnnabelleGillet/MuLOT/tree/main/experiments
https://github.com/AnnabelleGillet/MuLOT/tree/main/experiments

208 A. Gillet et al.

Fig. 3. Near-linear scalability of our algorithm

6 Real Data Study

We have experimented our decomposition in the context of Cocktail2, an inter-
disciplinary research project aiming to study trends and weak signals in dis-
courses about food and health on Twitter. In order to test our decomposition on
real data, we focus on french tweets revolving around COVID-19 vaccines, har-
vested with Hydre, a high performance plateforme to collect, store and analyze
tweets [9]. The corpus contains 9 millions of tweets from the period of November
18th 2020 to January 26th 2021.

We would like to study the communication patterns in our corpus. To this
end, we have built a 3-order tensor, with a dimension representing the users,
another the hashtags and the last one the time (with a week granularity). For
each user, we kept only the hashtags that he had used at least five times on the
whole period. The size of the tensor is 10340 × 5469 × 80, with 135k non-zero
elements. We have run the CP decomposition with 20 ranks.

This decomposition allowed us to discover meaningful insights on our data,
some of the most interesting ranks have been represented in Fig. 4 (the accounts
have been anonymised). We have a background discourse talking about lock-
down and curfew, with some hashtags related to media and the French Prime
Minister. It corresponds to the major actuality subjects being discussed around
the vaccines.

It also reveals more subject-oriented patterns, with one being anti-Blanquer
(the French Minister of Education), where accounts that seem to belong to high-
school teachers use strong hashtags against the Minister (the translation of some
of the hashtags are: Blanquer lies, Blanquer quits, ghost protocol, the protocol
refers to the health protocol in french schools). We can identify in this pattern
a strong movement of disagreement, with teachers and parents worrying about
the efficiency and the applicability of the measures took to allow schools to stay
open during the pandemic.

Another pattern appears to be anti-government, with some signs of conspir-
acy. They use hashtags such as health dictatorship, great reset, deep state cor-
ruption, wake up, we are the people, disobey, etc. Indeed, the pandemic inspired

2 https://projet-cocktail.fr/.

https://projet-cocktail.fr/

MuLOT: Multi-level Optimization of the CP Decomposition at Large-Scale 209

Fig. 4. Communication patterns in the vaccine corpus (from top to bottom): the anti-
Blanquer, the conspirators/anti-government, the background speech, and a bot to mea-
sure conspiracy score of tweets

210 A. Gillet et al.

a rise in doubt and opposition to some decisions of the government to handle
the situation, that sometimes lead to conspiracy theories.

It is interesting to see that the CP decomposition is able to highlight some
isolated patterns. With this capability, we identify a bot in our corpus, that
quotes tweets that it judges as conspiracy-oriented, and gives them a score to
measure the degree of conspiracy.

The CP decomposition is well-suited to real case studies. It is a great tool
for our project, as it shows promising capabilities to detect patterns in data
along tensor dimensions, with a good execution time. The results given by the
decomposition can be easily interpreted and visualized: they can be shared with
researchers in social science to specify the meaning of each rank, and thus giving
valuable insights on the corpus.

7 Conclusion

We have proposed an optimized algorithm for the CP decomposition at large-
scale. We have validated this algorithm with a Spark implementation, and shows
that it outperforms the state of the art by several orders of magnitude. We
also put data at the core of tensors, by taking care of the mapping between
indexes and values without involving the user, thus allowing to focus on data
and analyses. Through experiments, we proved that our library is well-suited for
small to large-scale tensors, and that it can be used to run the CP decomposition
on low-end computers for small and medium tensors, hence making possible a
wide range of use cases.

We plan to continue our work on tensor decompositions by 1) exploring their
use in social networks analyzes; 2) developing other tensor decompositions such
as Tucker, HOSVD or DEDICOM; and 3) studying the impact of the choice of
the norm for the scaling of the factor matrices.

Acknowledgments. This work is supported by ISITE-BFC (ANR-15-IDEX-0003)
coordinated by G. Brachotte, CIMEOS Laboratory (EA 4177), University of Burgundy.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation, pp. 265–
283 (2016)

2. Ahmed, N., Mateev, N., Pingali, K., Stodghill, P.: A framework for sparse
matrix code synthesis from high-level specifications. In: Proceedings of the 2000
ACM/IEEE Conference on Supercomputing, SC 2000, pp. 58–58. IEEE (2000)

3. Al-Rfou, R., et al.: Theano: a Python framework for fast computation of mathe-
matical expressions. arXiv:1605.02688 (2016)

4. Araujo, M., et al.: Com2: fast automatic discovery of temporal (‘Comet’) com-
munities. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.)
PAKDD 2014. LNCS (LNAI), vol. 8444, pp. 271–283. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06605-9 23

http://arxiv.org/abs/1605.02688
https://doi.org/10.1007/978-3-319-06605-9_23

MuLOT: Multi-level Optimization of the CP Decomposition at Large-Scale 211

5. Blanco, Z., Liu, B., Dehnavi, M.M.: CSTF: large-scale sparse tensor factorizations
on distributed platforms. In: Proceedings of the 47th International Conference on
Parallel Processing, pp. 1–10 (2018)

6. Bosagh Zadeh, R., et al.: Matrix computations and optimization in apache spark.
In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 31–38 (2016)

7. Chi, E.C., Kolda, T.G.: On tensors, sparsity, and nonnegative factorizations. SIAM
J. Matrix Anal. Appl. 33(4), 1272–1299 (2012)

8. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.: Nonnegative Matrix and Tensor
Factorizations: Applications to Exploratory Multi-way Data Analysis and Blind
Source Separation. Wiley (2009)

9. Gillet, A., Leclercq, É., Cullot, N.: Lambda+, the renewal of the lambda architec-
ture: category theory to the rescue (to be published). In: Conference on Advanced
Information Systems Engineering (CAiSE), pp. 1–15 (2021)

10. Goharian, N., Jain, A., Sun, Q.: Comparative analysis of sparse matrix algorithms
for information retrieval. Computer 2, 0–4 (2003)

11. Gudibanda, A., Henretty, T., Baskaran, M., Ezick, J., Lethin, R.: All-at-once
decomposition of coupled billion-scale tensors in apache spark. In: High Perfor-
mance Extreme Computing Conference, pp. 1–8. IEEE (2018)

12. Gujral, E., Pasricha, R., Papalexakis, E.E.: SamBaTen: sampling-based batch
incremental tensor decomposition. In: International Conference on Data Mining,
pp. 387–395. SIAM (2018)

13. Harshman, R.A., et al.: Foundations of the PARAFAC procedure: models and
conditions for an “explanatory” multimodal factor analysis (1970)

14. Hore, V., et al.: Tensor decomposition for multiple-tissue gene expression experi-
ments. Nat. Genet. 48(9), 1094–1100 (2016)

15. Jeon, I., Papalexakis, E.E., Kang, U., Faloutsos, C.: Haten2: billion-scale tensor
decompositions. In: International Conference on Data Engineering, pp. 1047–1058.
IEEE (2015)

16. Kjolstad, F., Kamil, S., Chou, S., Lugato, D., Amarasinghe, S.: The tensor algebra
compiler. In: OOPSLA, pp. 1–29 (2017)

17. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev.
51(3), 455–500 (2009)

18. Kossaifi, J., Panagakis, Y., Anandkumar, A., Pantic, M.: TensorLy: tensor learning
in Python. J. Mach. Learn. Res. 20(1), 925–930 (2019)

19. Papalexakis, E.E., Akoglu, L., Ience, D.: Do more views of a graph help? Com-
munity detection and clustering in multi-graphs. In: International Conference on
Information Fusion, pp. 899–905. IEEE (2013)

20. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: ParCube: sparse paralleliz-
able CANDECOMP-PARAFAC tensor decomposition. ACM Trans. Knowl. Dis-
cov. From Data (TKDD) 10(1), 1–25 (2015)

21. Papalexakis, E.E., Faloutsos, C., Sidiropoulos, N.D.: Tensors for data mining and
data fusion: Models, applications, and scalable algorithms. Trans. Intell. Syst. Tech-
nol. (TIST) 8(2), 16 (2016)

22. Park, N., Jeon, B., Lee, J., Kang, U.: BIGtensor: mining billion-scale tensor made
easy. In: ACM International on Conference on Information and Knowledge Man-
agement, pp. 2457–2460 (2016)

23. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, pp. 8024–8035
(2019)

212 A. Gillet et al.

24. Phan, A.H., Tichavskỳ, P., Cichocki, A.: Fast alternating LS algorithms for
high order CANDECOMP/PARAFAC tensor factorizations. Trans. Sig. Process.
61(19), 4834–4846 (2013)

25. Rabanser, S., Shchur, O., Günnemann, S.: Introduction to tensor decompositions
and their applications in machine learning. arXiv preprint arXiv:1711.10781 (2017)

26. Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Falout-
sos, C.: Tensor decomposition for signal processing and machine learning. Trans.
Sig. Process. 65(13), 3551–3582 (2017)

27. Springer, P., Su, T., Bientinesi, P.: HPTT: a high-performance tensor transposition
C++ library. In: ACM SIGPLAN International Workshop on Libraries, Languages,
and Compilers for Array Programming, pp. 56–62 (2017)

28. Sun, J., Tao, D., Faloutsos, C.: Beyond streams and graphs: dynamic tensor analy-
sis. In: ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 374–383. ACM (2006)

29. Yang, K., et al.: TaGiTeD: predictive task guided tensor decomposition for repre-
sentation learning from electronic health records. In: Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence (2017)

http://arxiv.org/abs/1711.10781

From Large Time Series to Patterns
Movies: Application to Airbus

Helicopters Flight Data

Benjamin Chazelle1, Pierre-Loic Maisonneuve2, Ammar Mechouche2,
Jean-Marc Petit1, and Vasile-Marian Scuturici1(B)

1 Univ Lyon, INSA Lyon, LIRIS (UMR 5205 CNRS), Villeurbanne, France
{jean-marc.petit,marian.scuturici}@liris.cnrs.fr

2 Airbus Helicopters, Marignane, France
{pierre-loic.maisonneuve,ammar.mechouche}@airbus.com

Abstract. Huge amount of multivariate time series (TS) data are
recorded by helicopters in operation, such as oil temperature, oil pres-
sure, altitude, rotor speed to mention a few. Despite the effort deployed
by Airbus Helicopters towards an effective use of those TS data, getting
meaningful and intuitive representations of them is a never ending pro-
cess, especially for domain experts who have a limited time budget to
get the main insights delivered by data scientists.

In this paper, we introduce a simple yet powerful and scalable tech-
nique for visualizing large amount of TS data through patterns movies.
We borrow the co-occurrence matrix concept from image processing, to
create 2D pictures, seen as patterns, from any multivariate TS accord-
ing to two dimensions over a given period of time. The cascade of such
patterns over time produces so-called patterns movies, offering in a few
seconds a visualisation of helicopter’ parameters in operation over a long
period of time, typically one year.

We have implemented and conducted experiments on Airbus Heli-
copters flight data. First outcomes of domain experts on patterns movies
are presented.

Keywords: Data visualization · Data streams · Database applications

1 Introduction

For safety and maintenance reasons, many physical sensors have been installed
on operating helicopters. From a data perspective, the Flight Data Continu-
ous Recorder (FDCR) collects Time Series (TS) from physical sensors of the
machine, usually at a frequency of 2 hertz (Hz). Over the last decade, Airbus
Helicopters have gathered data on hundreds of thousands flight hours, over hun-
dreds of helicopters operated by different customers worldwide, on many different
types of missions. To face with such huge amount of TS data, a Big Data plat-
form has been deployed to enable the storing and processing capabilities, offering

c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 213–226, 2021.
https://doi.org/10.1007/978-3-030-82472-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-82472-3_16

214 B. Chazelle et al.

new opportunities to domain experts, especially for troubleshooting and predic-
tive maintenance [7]. Time series analysis is still an active research domain, see
for example [1,2] or [3,10] for a survey. Despite the effort deployed by Airbus
Helicopters towards an effective use of those TS data, getting meaningful and
intuitive representations of them remains a never ending process.

In the past, data were mainly used for troubleshooting purposes, for instance
to understand the conditions triggering an unexpected incident. The process was
limited to the exploitation of data from the flight where the incident occurred
or the flight before, analyzed using classical TS visualization softwares such as
Grafana1, Kibana2 or in-house dedicated tools.

For years, data collected from helicopters are also used to better understand
the real usage spectrum of the different helicopters sub-systems (such as lubrica-
tion system, starter generator, hydraulic pump, landing gear...). Understanding
the behaviour of these sub-systems in different contexts allows us to optimize
their future (re)-design.

Now, more and more efforts are made to develop predictive maintenance
capabilities for helicopters systems, based on the whole in-service data made
available. However, this is a more challenging topic which requires a strong
involvement of System Design Responsible (SDR) experts who have a deep
knowledge of their respective systems.

Moreover, SDR do not have time – neither necessarily the required data
science skills – to mine, quickly and autonomously, massive collected TS data.
Thus, it is quite important to provide them with relevant and adequate artefacts
that allow them to get a simplified access and analysis of their TS data.

Predictive maintenance algorithms consist in general of monitoring “quanti-
ties” that should respect some conditions which can be considered as the nor-
mal operating behaviour of the monitored system. Then when this quantity no
longer respects the conditions, an alert is raised. Also, often, such conditions
come from hypothesis formulated by SDR, and consist in general of correla-
tions that should be preserved over time between certain flight parameters under
certain flight conditions, such as time between pilot actions and systems reac-
tions, correlations between systems temperatures and pressures etc. Quick test-
ing/verification/validation of SDR hypothesis is then very important for their effi-
cient involvement in the predictive maintenance development. Nevertheless, turn-
ing large TS into useful knowledge for domain experts is clearly not an easy task
at all.

In this paper, we introduce a simple yet powerful and scalable technique for
visualizing large TS data through patterns movies. An overview of our approach
is given in Fig. 1. The basic idea relies on the visualization of correlations between
two (flight) parameters over a large period of time. This large period is split
into non-overlapping time windows. For each time window we build one image
(or pattern), corresponding to the co-occurrence matrix of the two parameters,
aggregating the TS information from this time window. By assembling successive
images, one for each time window, we obtain a so-called “patterns movie”.

1 https://grafana.com/.
2 https://www.elastic.co/fr/kibana.

https://grafana.com/
https://www.elastic.co/fr/kibana

From Large Time Series to Patterns Movies 215

Fig. 1. Sketch of patterns movie construction

The resulting movie points out how patterns slowly evolve over time. Domain
experts have the opportunity to visualize in a short period of time – typically
less than a minute – millions of records and observe trends related to helicopter
usage.

We have implemented and conducted experiments on Airbus Helicopters
flight data. First outcomes of domain experts on patterns movies are presented.

To the best of our knowledge, the use of co-occurrence matrix for aggregating
large TS data and their visualization with patterns movies is a new contribution
which has many advantages:

– Pattern movies are very convenient for domain experts to better understand
their TS data

– The proposed process turns out to be scalable, almost linear in the size of the
TS data.

2 From TS Data to Patterns Videos

Let (T1, T2) be two numerical TS variables over the same period of time T and
w1, w2, . . . , wn a succession of non-overlapping time windows of the same size,
with wi << T for each i ∈ {1, . . . , n}.

We denote by T̂1 and T̂2 a discretization of these TS. Many techniques
could be applied such as equal-width discretization or equal-frequency discretiza-
tion. Furthermore, external knowledge provided by experts should be taken into
account. Details are omitted.

For a time window w, we denote by Tw
1 , Tw

2 the part of (T1, T2) that fall
into w.

216 B. Chazelle et al.

The proposed process applied on every time window w is as follows:

1. Discretize Tw
1 and Tw

2 into T̂w
1 and T̂w

2

2. Count the number of occurrences of any pairs of values from (T̂w
1 , T̂w

2).
3. Build the co-occurrence matrix M̂w

4. Generate a picture associated to M̂w

5. Integrate the picture into an MPEG file, i.e. the movie file is composed by
successive frames, one frame for each time window w1, . . . , wn

We reuse classical notions of co-occurrence matrix from image processing,
useful in texture analysis of 2D images [4]. In our case, we consider that each co-
occurrence matrix is a simple image which captures useful information (patterns)
about the process of interest. The co-occurrence matrix can be seen also as a
multidimensional frequency histogram. The cascade of such patterns over time
produces so-called patterns movies, offering in a few seconds a visualisation of
helicopter’ parameters in operation over a long period of time, typically one year.

It is worth noting that the time dimension is lost on each time window w,
making it possible to aggregate the studied parameters and to erase the local
specificities. Each generated picture turns out to deliver a time-agnostic pattern,
while the time dimension is still present in the “patterns movies”. In other words,
a patterns movie can be seen as a sequence of time-agnostic patterns, allowing
to visualize how patterns slowly evolve over time.

A Running Example
In the sequel, we consider a running example to explain how a picture is built
from two TS variables over one time window only, i.e. w = T . The five steps
described previously are exemplified on data depicted in Table 1(a).

Step 1 (Discretization): We consider here a simple discretization, the round-
ing function D(x) = �x�. For sake of readability, each pair of values in T̂1 and
T̂2 has got a particular colour, as shown in Table 1(b)

Step 2 (Counting): A new dimension is added to count how many times a
given pair of values appears in (T̂w

1 , T̂w
2), depicted in Table 1(c).

Step 3 (Co-occurrence matrix): A co-occurrence matrix is built. Rows refers
to T̂1 values, i.e. 〈5, 6, 7, 8, 9〉, and columns to T̂2 values, i.e. 〈1, 2, 3, 4〉. A pair of
values (u, v) refers to the counting associated to that pair in the time window
w (cf step 3). The co-occurrence matrix obtained is depicted in Table 1(d). This
representation plays the role of a two-dimensional histogram, where the time
dimension is lost.

Step 4 (Picture generation): From the previous co-occurrence matrix of size
n × m, we sketch how pictures of size n × m can be generated. The main idea
is that the larger the value of a matrix at (i, j), the darker the (i, j) pixel in the
2D-picture. In order to protect the observer from possible bias of reading and
consequently of interpretation, we have adopted a normalization by distribution
intervals to better reflect the real data density, i.e. the number of data per unit
area [11].

From Large Time Series to Patterns Movies 217

Table 1. Running example

(a)

Tw
1 5,3 4,7 5,5 5,8 6,1 7 8,2 8 8,3 8,6

Tw
2 1,9 1,5 3 3,4 4 3,1 3,6 3,9 4,2 0,5

⇓ (b)

̂Tw
1 5 5 6 6 6 7 8 8 8 9

̂Tw
2 2 2 3 3 4 3 4 4 4 1

⇓ (c)

T̂w
1 5 6 6 7 8 9

T̂w
2 2 3 4 3 4 1

Count 2 2 1 1 3 1

⇓ (d)

M̂w

T̂w
2 values

1 2 3 4

T̂w
1 values

5
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 2 0 0

0 0 2 1

0 0 1 0

0 0 0 3

1 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

6

7

8

9

A typical 2D-picture is given in Fig. 2, which corresponds to a pattern on
two variables: the oil pressure and the oil temperature observed in the main gear
box. The discretization is produced by partitioning the values of each attribute
in K = 100 equal length intervals.

Step 5 (Pattern movie generation): This step is simple as it consists to gen-
erate such pictures over different time windows in order to produce a movie. The
time dimension is taken into account here at a coarser granularity, allowing to
study the global trends of different parameters. An example is shown in Fig. 3.

In Fig. 3, we display some frames from a patterns movie built from data
corresponding to only one aircraft. The studied TS variables are “Oil tempera-
ture” (x-axis) and “Oil pressure” (y-axis). The middle frame from the last row
corresponds to a time window where an operating incident was reported.

Computational Considerations
Generating patterns movies scales well over very large TS since each transfor-
mation has a complexity linear or quasi linear in the size of the input. Moreover
parallelisation can be applied. Details are omitted.

218 B. Chazelle et al.

Fig. 2. Co-occurrence matrix 100 × 100, all in-flight data from aircraft A, “Oil tem-
perature” vs “Oil pressure”

3 Implementation and Experimentations

The implementation has been done with Python 3.6.7 with libraries Pandas
0.24.1 for tabular data, NumPy 1.16.2 for math operations, and Matplotlib
3.0.3 for dataviz. Animated renderings use the FFmpeg encoder3 for the gen-
eration of MPEG-4 video files4.

Experiments were executed on an Intel(R) Core(TM) i7-8750H CPU @ 2.20
GHz with 16 Go RAM.

We studied several datasets, two of them are described below. The first one
comes from a unique helicopter with over 45 days in operation, resulting in 76
flight hours and 550,000 records obtained at a frequency 2 Hz. 24 parameters
were recorded into attributes such as oil pressure, oil temperature or altitude.
The second one was bigger with more than 118 million records, corresponding
to 16,000 flight hours of 33 helicopters, recorded over a period of 20 months. On
average we had 500 flight hours per aircraft.

The first dataset allowed an initial exploration by generating co-occurrence
matrices between all possible pairs of attributes in a few minutes. For example,
Fig. 2 shows a relationship between the oil temperature and its pressure, with
an equal-width dicretization of 100 bins in each dimension.

Similarly, Fig. 4 shows a correlation between attributes playing a role in the
mechanics of the helicopter. These first results were expected by business experts,
and judged as promising to visualize TS data.

3 Bellard, F, FFmpeg, ffmpeg.org, 2019.
4 The Moving Picture Experts Group, M. MPEG-4 mpeg.chiariglione.org/standards/

mpeg-4/mpeg-4.htm, 1998.

https://mpeg.chiariglione.org/standards/mpeg-4/mpeg-4.htm
https://mpeg.chiariglione.org/standards/mpeg-4/mpeg-4.htm

From Large Time Series to Patterns Movies 219

Fig. 3. Snapshot of a patterns movie at different points in time

New visualizations of static and animated co-occurrence matrices were then
regenerated on the new dataset. Two main observations can be drawn. First, on
each device a global normality appears on the kernels of the representations, i.e.
the region with the most frequent co-occurrences. We observe a great similarity
of the most frequent data in Fig. 5 (a) and (b) (the darkest part).

Second, data at the periphery of the kernel, ie the less frequent data, ranging
from white to gray, do not follow the same distribution from one device to
another, and represent a large region of the co-occurrence matrix. On the other
side, the kernel part of this representation seems to be invariant.

220 B. Chazelle et al.

Fig. 4. Co-occurrence matrix 100 × 100, all in-flight data from aircraft A, “Motor
torque” vs “Rotor level”

Experts found this approach easy to use, giving them convenient and intu-
itive visualization of very large TS data. These results were useful in verifying
hypotheses about the system behaviour, quite complementary of existing propo-
sitions [5,6,8].

The prototype is intended to be used by SDR experts as a decision sup-
port system: It allows them to quickly comfort or invalidate their “implicit”
hypothesis. Then, in case of comforted hypothesis, a more complex analysis and
investigation are required in order to either precisely identify a root cause of an
incident or tune a predictive maintenance indicator for the studied system.

4 Evolution in Time of the Centroid of Co-occurrence
Matrices

Splitting temporal data using time windows generates a multitude of successive
ordered co-occurrence matrices. One of our goals is to better understand the
evolution of these matrices with respect to the time dimension. The most intu-
itive way to do this is to compare the different matrices with each other. To do
so, we look for a numerical measure between these matrices.

After exploring some classical distances adapted to matrices, like Jaccard or
Manhattan, an euclidean distance based on matrix centroids has been chosen by
domain experts for its simplicity of interpretation and visualization potential.

From Large Time Series to Patterns Movies 221

Fig. 5. Co-occurrence matrix 50 × 50, “Oil temperature” vs “Oil pressure”, all in-flight
data from aircraft B (a) and from aircraft C (b).

Let C ∈ R
w×h be a matrix. The point (x, y) is the centroid of C if:

x =

∑w
i=1 i ×

∑h
j=1 C(i, j)

∑w
i=1

∑h
j=1 C(i, j)

y =

∑h
j=1 j ×

∑w
i=1 C(i, j)

∑h
j=1

∑w
i=1 C(i, j)

For example, for the matrix:
⎡

⎣
10 0 0
0 5 0
0 15 30

⎤

⎦

the corresponding centroid is:

x =
1 × 10 + 2 × 5 + 3 × (15 + 30)

10 + 5 + 15 + 30
=

155
60

y =
1 × 10 + 2 × (5 + 15) + 3 × 30)

10 + 5 + 15 + 30
=

140
60

Let A,B ∈ R
w×h and (xA, yA) and (xB , yB) their corresponding centroids.

We define the distance between A and B as the normalized euclidean distance
between the corresponding centroids:

dist(A,B) =
1√

w2 + h2
×

√
(xA − xB)2 + (yA − yB)2

222 B. Chazelle et al.

The idea is to visualize the path followed by the centroids of co-occurrence
matrices to get an idea of their movements over time. Centroids can be visualized
statically by displaying all of them in order to have an idea of their os-called
transit zone. They can also be visualized dynamically to show how they evolve
over time.

More than providing information on the distances travelled by centroids,
such visualizations also provide information on their direction and transit area.
Transit zones can be used to represent normality and highlight centroids moving
away from it.

Fig. 6. Centroids for co-occurrence matrix 50 × 50, all in-flight data from aircraft A,
“Oil temperature” vs “Oil pressure”, window size of 30 min

The path followed by centroids before and after maintenance operations has
been analyzed in order to detect trends and patterns with respect to the studied
maintenance intervention (see Figs. 6, 7, 8, 9).

Figure 6 shows the path of the centroids around a given n-th maintenance
operation. The path of the centroids before the maintenance operation n (inter-
vention on the dial) is drawn in red. The previous operation n− 1 concerned an
intervention on the gearbox. The operation n + 1 concerns also an intervention
on the dial, and the centroid path between n and n+1 is displayed in blue. Cen-
troids are calculated on 50 × 50 oil temperature and pressure matrices, within a
window size of 30 min. We observe a variation of the transit zone taken by the
centroids over time.

From Large Time Series to Patterns Movies 223

Fig. 7. Centroids for co-occurrence matrix 50 × 50, all in-flight data from aircraft B,
“Oil temperature” vs “Oil pressure”, window size of 30min

Fig. 8. Centroids for co-occurrence matrix 50 × 50, all in-flight data from aircraft C,
“Oil temperature” vs “Oil pressure”, window size of 30min

224 B. Chazelle et al.

Fig. 9. Centroids for co-occurrence matrix 50 × 50, all in-flight data from aircraft D,
“Oil temperature” vs “Oil pressure”, window size of 3 min

The downside of the visualisation based on centroids is that it requires a
lot of data to be relevant. If maintenance operations are too close in time, the
small number of centroids tracing the path may not be sufficient to obtain a
sufficiently precise idea of the transit zones they use.

Figure 7 and Fig. 8 show the path of centroids around a maintenance oper-
ation on the gearbox lubrication of two different aircrafts. In red is the path
before the operation, in blue, the path followed by the centroid after operation.
We observe a similar displacement of the transit zone of the centroids towards
a zone where the temperature is lower and the pressure higher. In this case the
path followed by the centroid is a good indicator for an human expert to validate
the maintenance operation.

Some external factors are also influencing the centroid path. For example, the
effect of an oil change operation may vary depending on the type of the used oil.
Even if an operation was only to tighten a bolt on the device, the bolt could be
tightened in many different ways. Nevertheless, we observe similar maintenance
operations in our experiments.

The duration of the time windows has an impact on the visualization gener-
ated. Although the general trends for the transit zones used by centroids remain
the same, the number of centroids and their local behaviors are affected by a
change in the frequency of windowing. Too high a frequency would aggregate a
lot of data and would result in a low number of centroids, perhaps too low to
capture an evolution. Conversely, too fine a granularity would increase the num-
ber of centroids, which firstly lengthens the computation time, and can cause

From Large Time Series to Patterns Movies 225

the appearance of artefacts. Figure 9 illustrates this phenomenon. It represents
all the centroids of the 50 × 50 co-occurrence matrices, relating to the tempera-
ture of the oil and its pressure, obtained from a windowing with a frequency of
3 min. We observe the appearance of vertical line explained by the fact that the
variability of the data on the oil pressure attribute becomes locally in time so
small, that the horizontal position of the centroid is forced to fix on an integer
value (the sensor precision is at 1 unit).

5 Conclusion

We introduced a technique for visualizing large TS data as patterns movies.
On the basis of a division of the TS into time windows, co-occurrence matrices
are built, allowing to display a representation of the underlying data distribu-
tion. The time dimension is lost locally at each matrix, but is kept globally
throughout the windowing, in the produced pattern movie. Many experiments
were conducted with TS data from Airbus Helicopters, from which we presented
and discussed the main outcomes. In addition, we were able to aggregate further
the visualization by focusing on centroids of co-occurrence matrix only. Such an
abstraction turned out to be very useful to study the normal behavior of the
studied phenomenon with transit zone of centroids.

To sum up, this approach proposes to capture the evolution of trends
observed over time windows in TS. Therefore, the main perspective is to be able
to detect deviations with respect to the normal behavior of operating helicopters.
Whenever these changes are detected, an alert could be raised to anticipate and
better organize maintenance actions. The overall objective is to improve safety in
order to avoid potential incidents, and allow customers to increase the availabil-
ity of their helicopters. Experts found this approach very promising, intuitive,
easy to use, allowing rapid testing of hypotheses on large collections of TS.

Many perspectives remain to be addressed: first, human perception of those
pattern movies could be evaluated more thoroughly to define new visual quality
metrics [9]. Second, patterns movies could be used to anomaly detection, not
by experts’ eyes, but with automatic techniques on the co-occurrence matrices.
Third, more research also deserves to be done to help domain experts to find
appropriate tradeoffs to get meaningful pattern movies, for example to select the
two parameters for the 2D visualization, to define an appropriate time window
and also to discretize the data. Finally, co-occurence matrix can be extended to
a set of dimensions for the x-axis and to another set of dimensions for the y-axis,
instead of a single dimension for both axis as we do.

Acknowledgements. Part of this work has been funded by the Datavalor initiative
of the LIRIS laboratory.

226 B. Chazelle et al.

References

1. Boniol, P., Palpanas, T.: Series2Graph: graph-based subsequence anomaly detec-
tion for time series. Proc. VLDB Endow. 13(11), 1821–1834 (2020)

2. Dang, X., Shah, S.Y., Zerfos, P.: Seq2Graph: discovering dynamic non-linear depen-
dencies from multivariate time series. In: 2019 IEEE International Conference on
Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019, pp. 1774–1783.
IEEE (2019)

3. Esling, P., Agón, C.: Time-series data mining. ACM Comput. Surv. 45(1), 12:1–
12:34 (2012)

4. Haralick, R.M., Shanmugam, K.S., Dinstein, I.: Textural features for image classi-
fication. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973)

5. Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual ana-
lytics: scope and challenges. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.)
Visual Data Mining. LNCS, vol. 4404, pp. 76–90. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71080-6 6

6. Kumar, N., Lolla, V.N., Keogh, E.J., Lonardi, S., Ratanamahatana, C.A.: Time-
series bitmaps: a practical visualization tool for working with large time series
databases. In: Kargupta, H., Srivastava, J., Kamath, C., Goodman, A. (eds.) Pro-
ceedings of the 2005 SIAM International Conference on Data Mining, SDM 2005,
Newport Beach, CA, USA, 21–23 April 2005, pp. 531–535. SIAM (2005)

7. Mechouche, A., Daouayry, N., Cameini, V.: Helicopter big data processing and
preditive analytics: feedback and perspectives. In: European Rotorcraft Forum,
Warsaw, Poland, September 2019, p. 6 (2019)

8. Peng, R.: A method for visualizing multivariate time series data. J. Stat. Softw.
Code Snippets 25(1), 1–17 (2008)

9. Tatu, A., Bak, P., Bertini, E., Keim, D.A., Schneidewind, J.: Visual quality metrics
and human perception: an initial study on 2D projections of large multidimen-
sional data. In: Santucci, G. (ed.) Proceedings of the International Conference on
Advanced Visual Interfaces, AVI 2010, Roma, Italy, 26–28 May 2010, pp. 49–56.
ACM Press (2010)

10. Torkamani, S., Lohweg, V.: Survey on time series motif discovery. Wiley Interdiscip.
Rev. Data Min. Knowl. Discov. 7(2), e1199 (2017)

11. Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press (1992)

https://doi.org/10.1007/978-3-540-71080-6_6

Data Integration

Experimental Evaluation Among
Reblocking Techniques Applied

to the Entity Resolution

Láıs Soares Caldeira1(B) , Guilherme Dal Bianco2 ,
and Anderson A. Ferreira1

1 Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
lais.caldeira@aluna.ufop.edu.br, anderson.ferreira@ufop.edu.br

2 Universidade Federal da Fronteira Sul, Chapecó, Santa Catarina, Brazil
guilherme.dalbianco@uffs.edu.br

Abstract. Entity Resolution (ER) is an essential task in the data inte-
gration process, by identifying records that refer to the same object in
the real world. In a naive approach, ER needs to compare all pairs of
records in a dataset. This process has a high cost, especially for large-
scale datasets. Several techniques have been proposed in the literature
to restrict the comparison among records grouped in the same blocks to
mitigate such a cost. In order to further reduce the number of compar-
isons, some approaches, named reblocking, focus on blocking reprocess-
ing. The reblocking techniques include two major groups: meta-blocking
and filtering. Meta-blocking reduces the number of comparisons based on
blocks shared by the records. On the other hand, filtering focuses on pro-
viding pairs of records for comparison based on the degree of similarity
between them. Although both approaches have the same goal, as far as
we know, no work in the literature experimentally compares the reblock-
ing techniques. Filling this gap, in this research, we present a qualitative
and comparative analysis of techniques in the state-of-the-art of reblock-
ing approaches. With this analysis, we provide different characteristics
to assess issues of effectiveness and efficiency of the techniques. Finally,
we specify appropriate scenarios for each evaluated technique.

Keywords: Entity resolution · Blocking · Blocking reprocessing ·
Filtering techniques · Meta-blocking techniques

1 Introduction

The continuous growth in the volume of data generated and shared by infor-
mation systems (e.g., social media, management systems, and Web systems),

The authors thank CAPES, CNPq, FAPEMIG and the Federal University of Ouro
Preto (UFOP) for supporting this work. This study was partially funded by CAPES -
Brazil - Finance Code 001.

c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 229–243, 2021.
https://doi.org/10.1007/978-3-030-82472-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_17&domain=pdf
http://orcid.org/0000-0001-7665-3559
http://orcid.org/0000-0001-8753-765X
http://orcid.org/0000-0002-2487-6600
https://doi.org/10.1007/978-3-030-82472-3_17

230 L. S. Caldeira et al.

the diversity of representation structures, and the different descriptions of infor-
mation are challenges faced in the data integration process [7]. This process
is essential for achieving a unified view of heterogeneous data from different
sources [8]. However, many datasets contain erroneous, missing, or duplicate
values, making them difficult to use. With the popularization of data-dependent
activities, it is necessary to increase the importance of the quality and integrity
of the information available.

Entity Resolution (ER) is a central task in the data integration process, and
has important practical implications in a wide variety of commercial, scientific,
governmental, medical, criminal, and security domains [4]. ER identifies records
that refer to the same object in the real world [6]. In a naive approach, ER
compares all records from one or more datasets to identify matching pairs, that
is, pairs of records belonging to the same entity. Thus, it results in a quadratic
number of comparisons in relation to the number of records. This exhaustive
approach is very costly, especially when applied to large volume of data. One
of the main challenges in ER is to identify all (or almost all) matching pairs,
avoiding the quadratic computational cost [15].

Several techniques have been proposed to restrict the comparison between
records by grouping similar records in blocks, called Blocking. Only records
within the same block are compared, reducing the computational cost substan-
tially. Traditionally, the blocks are constructed with some indexing strategies
with low computational cost (e.g., the inverted index strategy and tree-based
indexing). Those blocks may be, optionally, reprocessed for decreasing even more
the number of comparisons. This stage, called Reblocking, aims at removing the
unnecessary comparisons improving the computational effectiveness. Reblocking
has stood out in recent years with competitive techniques, most of them focused
on two approaches: Meta-blocking and Filtering. In relevant papers on meta-
blocking and filtering techniques, better results were identified compared with
traditional block construction techniques, successfully alleviating the problem of
quadratic growth of comparisons when the data increase in size [11,16].

Meta-blocking techniques [2,14,19] are based on the principle of sharing
blocks between pairs of records as evidence of correspondence. The meta-blocking
approach aims to reduce redundant comparisons (same records compared sev-
eral times) and superfluous comparisons (between records belonging to different
entities) [12]. On the other hand, the filtering techniques [23,25] select match-
ing candidate pairs based on the degree of similarity. For example, by sharing
rare tokens1, record size, the position of tokens in prefixes or suffixes of records,
among others. Thus, such techniques address the problem in different ways but
have the same goal, which is to reduce the number of comparisons between
records.

The comparative analysis of techniques can be done in a qualitative way
(analyzing strengths, weaknesses, differences and similarity of the techniques),
in a quantitative way (carrying out experiments and comparing the results)
or both. In [5,16], the authors compare qualitatively and quantitatively block-

1 Token corresponds to a substring/term from a record attribute value.

Experimental Evaluation Among Reblocking Techniques Applied to the ER 231

ing and meta-blocking techniques. In [10], Köpcke et al. compare blocking and
filtering techniques. And, in [9,11], the authors compare qualitatively and quan-
titatively filtering techniques. It is worth mentioning that several other works
propose new methods and compare them with existing techniques. However, the
works mentioned above that comprise reblocking, do not describe new propos-
als and only compare techniques that already exist in the literature. Attempt to
address the gap that encompasses comparisons between meta-blocking and filter-
ing techniques, in [15], the authors compare qualitatively such approaches, with-
out delving into experimental comparisons. As far as we know, meta-blocking
and filtering techniques, besides having the same goal, have not yet been com-
pared experimentally, demonstrating which approach is more promising.

Our work aims to fill this gap by presenting a quantitative and qualita-
tive comparison between relevant unsupervised techniques of meta-blocking and
filtering applied to reblocking. We analyze experimentally seven recent state-of-
the-art approaches, named PPJoin [25], PPJoin+ [25], AdaptJoin [23], Recipro-
cal WNP [14], Reciprocal CNP [14], PBBRT [2] and BLAST [19]. By comparing
meta-blocking and filtering, we aim at providing new insights into the strengths
and weaknesses of reblocking techniques that can guide professionals in selecting
appropriate techniques for various scenarios.

The rest of this paper is structured as follows: Sect. 2 describes some impor-
tant concepts. Section 3 reviews related work. Section 4 describes the reblocking
techniques evaluated in this work. Section 5 discusses our experimental evalua-
tion, presents the results and analyzes them in a quantitative and qualitative
way. Finally, Sect. 6 concludes the paper and present possible future works.

2 Preliminaries

2.1 Entity Resolution

The entity resolution task aims to identify all matching pairs of records in one
or more datasets [6]. More formally, let R = {r1, r2, · · · , rn} be a dataset with
n records. Two records, ri and rj with i �= j, are considered corresponding
(matching) if both represent to the same real entity (ri ≡ rj).

Fig. 1. Workflow for entity resolution

Figure 1 illustrates the entity resolution processes. ER receives a set of records
as input and returns as output a set of pairs of records that ideally correspond

232 L. S. Caldeira et al.

to the same entity, called duplicates. ER can be split into two steps [15]: (1)
the candidate selection step, and (2) the candidate matching step, i.e., match-
ing. The latter step compares records for determining which ones represent the
same entities, dominating the overall cost of ER [6,7]. ER usually becomes effi-
cient and scalable through the first step, which selects the pairs of records most
likely to refer to the same entity [15]. This step eliminates less promising can-
didate pairs, preventing them from being compared. Several works address the
strategy of selecting candidate pairs using different techniques that belong to
two main stages, usually called blocking and reblocking (see Fig. 1). Initially,
a blocking technique groups candidate records to belong to the same entity,
and later a reblocking technique may optionally decrease the pairs of candidate
records generated in such groups.

2.2 Blocking

As previously mentioned, blocking techniques group records into blocks that
have some evidences of representing similar information [4]. Several blocking
techniques have been proposed in the literature to support heterogeneous data,
with noise and without structure [5]. Applying blocking techniques, comparisons
between records carried out at the ER matching step only occur inside the
blocks. It reduces the number of comparisons substantially compared with the
exhaustive approach. However, blocking may still result in a high amount of
unnecessary comparisons when applied to large datasets [14]. A second stage,
known as reblocking, aims to discard unnecessary comparisons.

2.3 ReBlocking

The blocks produced by the blocking stage may be refined by reblocking tech-
niques. It is designed to decrease the number of unnecessary comparisons
between candidate pairs, becoming indispensable for a good balance between
the effectiveness and efficiency of the ER task [15,16]. In Fig. 1, we expand
reblocking in meta-blocking and filtering to show in which stage of the ER task
both techniques fit into, not limiting the reblocking to them. Meta-blocking and
filtering are the main focus of this work.

Meta-Blocking. Meta-blocking attempts to eliminate redundant and superflu-
ous comparisons between pairs of records in the ER task. It focuses on maintain
candidate pairs with a higher probability of matching based on the amount of
blocks shared by pair of records [12,20]. Meta-blocking appears as one of the
most promising approaches concerning to efficiency [14].

Several Meta-blocking techniques have been proposed by more recent works
[2,14,19]. Most of them run in main memory and are based on graph repre-
sentation to redefine the blocks. A vertex represents a record. An edge connects
vertices if their corresponding records share blocks in common. A weighting func-
tion captures the likelihood of matching records for labeling the edges. A pruning

Experimental Evaluation Among Reblocking Techniques Applied to the ER 233

strategy removes light edges from the graph. Meta-blocking weighting and prun-
ing strategies considerably eliminate unnecessary comparisons between records.
The remaining edges indicates the set of candidate pairs, whose corresponding
records need to be compared with.

Filtering. Filtering has been described in the literature as similarity join tech-
niques [11]. Its assumption is that records referring to the same real-world object
are highly similar each other [15]. Techniques filtering [9,23,25] may use several
types of filters to reduce the candidate pairs by following a pipeline model.
For example, a technique may filter out a pair of records if its prefixes do not
have tokens in common. In general, filters use similarity functions along with a
threshold to quantify the similarity between two records. In this work, we focus
on filtering techniques that use token-based similarity functions (e.g. Jaccard
and Cosine [11]).

It is worth to notice that the filtering approaches are usually applied to
pairs of records that have already been generated by an indexing/blocking tech-
nique [11]. As Fig. 1 shows, the blocking output feeds the filtering approach.
Besides that, the filtering approach performs both steps: candidate generation
and matching step (Step 1 and 2 of Fig. 1). However, in this work, we only focus
on generating a set of candidate pairs of filtering techniques to produce a fair
comparison with other approaches.

3 Related Work

Some works [5,9,11,16] compare techniques that focus on reducing the number of
candidate pairs belonging to the same entity. Such works provide theoretical and
experimental surveys on several techniques, highlighting their characteristics,
strengths, weaknesses, complexity, performance and scalability. However, those
works describe experimental evaluations between blocking and meta-blocking
techniques [5,16], between blocking and filtering techniques [10], or only between
filtering techniques [9,11]. None of them experimentally evaluate meta-blocking
and filtering techniques.

Few works present new blocking techniques and compare them experimen-
tally with filtering techniques [21,22]. However, such works do not take account
meta-blocking techniques in their experimental evaluation. There also exist some
works that qualitatively relate the filtering techniques in the same context as the
blocking/meta-blocking techniques, but without delving into experimental com-
parisons [6,15]. Thus, our work differs from the above mentioned by evaluating
experimentally both, quantitatively and qualitatively, meta-blocking and filter-
ing techniques as reblocking.

4 Inside the Techniques

In this section, we describe in detail the unsupervised reblocking techniques
necessary to properly understand our experimental analyses. Such techniques

234 L. S. Caldeira et al.

have been cited as state-of-the-art approaches in recent works and are generally
used as a basis for experimental evaluations [9,11,18–20,24].

4.1 Filtering Techniques

The PPJoin (PPJ) [25], PPJoin+ (PPJ+) [25], and AdaptJoin (ADP) [23] tech-
niques eliminate candidate pairs with low probability to be a duplicate. Their
filters are based on both similarity function (tuned by thresholds provided by the
user) and tokens frequency. Two records are considered similar whether they have
overlaps that exceed the threshold (e.g., Jaccard or Cosine). A pre-processing
step is necessary to employ the filters. For instance, based on the global token
frequency, in each record, its tokens are sorted. This strategy makes the less
frequent tokens, considered rare tokens, stay in the prefixes of the records, being
a prerequisite for processing some of the filters.

When blocking is performed, very frequent tokens generate blocks with many
records, which results in a significant overload when processed. Prefix Filtering of
PPJ algorithm addresses this problem by indexing only the less frequent tokens
of each record, i.e., the less frequent tokens and the most informative [25]. The
produced candidate pairs are sent to the next filters, Length Filtering and Posi-
tional Filtering. Length Filtering removes candidate pairs when the difference
in the size of the token set between records is above a defined threshold. Posi-
tional Filtering assesses whether the distance from the common token between
the candidate pair respects an inferred limit.

PPJ+ is an extension of PPJ with addition of the Suffix Filtering [25]. The
suffix filter is a generalization of the Positional Filtering for the tokens of the
suffixes of the records, in order to further filter the candidate pairs that sur-
vive the previous filters. All tokens that have not been classified as prefixes are
considered a record suffix. The suffix of each record is recursively partitioned
into two similar parts and PPJ+ calculates the number of tokens in common in
each corresponding partitions between two records, until the pair candidate is
filtered using an inferred threshold value. ADP [23] extends the Prefix Filtering
by dynamically calculating the prefix size. The intuition behind it is that the
adaptive prefix size can be more flexible to prune non-matching pairs.

4.2 Meta-Blocking Techniques

As stated in Subsect. 2.3, meta-blocking techniques are conceptually based on
graphs, where vertices represent the records and edges connect vertices of two
records that appear in the same block. Each edge has a weight that reflects
the probability of matching the records represented by its connected vertices.
Low-weight edges are removed from the graph. The edge weights are based on
information obtained from the blocks. For instance, by capturing the intuition
that the amount of blocks two records share can indicates matching probability.
Pruning schemes eliminate edges with low values.

Reciprocal Weighted Node Pruning (RecWNP) [14] considers the neighbor-
hood of a given vertex (i.e., pairs of candidate records), weights the edges that

Experimental Evaluation Among Reblocking Techniques Applied to the ER 235

interconnect the vertices and prunes the edges below an inferred local threshold.
Kept edges that connect vertices that represent pairs of non-redundant records
are also discarded. Redundant candidate pairs are treated as a strong indication
of being a pair of records with high chances of matching. Reciprocal Cardinality
Node Pruning (RecCNP) [14] differs in the strategy of ordering all neighboring
edges of a given vertex in decreasing weight and maintaining the top − k.

In [19] is proposed a strategy based on LSH (Locality-Sensitive Hashing),
called BLAST, to collect statistical information directly from the data in a scal-
able way. First, the attributes are grouped according to their similarity, and then
the blocking is performed by exploring the attributes partitioning. Thus, only
records whose tokens belong to attributes on the same partition will be consid-
ered candidate pairs in blocking. BLAST measures an attribute’s information
content using entropy [17], which identifies the most informative attributes and
improves the edges’ weight when reblocking.

Before representing the records in a graph, RecWNP, RecCNP and BLAST,
specifically, employ two steps before reblocking: Block Purging and Block Fil-
tering. Block Purging discards large blocks, i.e., blocks that exceed a maximum
number of records per block. Block Filtering aims to restructure the set of blocks
by eliminating unnecessary records in the blocks, e.g., records that are contained
in many blocks. Block Filtering uses a filtering rate (r), defined in the interval
[0; 1], as a parameter to eliminate such records. The survived set of restructured
blocks are the meta-blocking input. The application of such pre-processing tech-
niques, as well as those used in filtering techniques, can lead to better results,
since they reduce the number of candidate pairs [14,19].

Blocking Process Based on Relevance of Terms (PBBRT) [2] removes blocks
based on token entropies [17]. Tokens with high entropies are more relevant to
matching, that is, when a token becomes more frequent, its amount of informa-
tion decreases. Using this intuition, PBBRT removes blocks whose token entropy
is below the average of all token entropy values, reducing the number of blocks.
For reblocking, blocks obtained using tokens with low frequency (i.e., the token
can be highly informative) may provide pair of records as strong matching can-
didates. This way, the edge that connects the vertices representing this pair of
records can receive a greater weight so that the pruning scheme maintains the
edge. PBBRT is a meta-blocking technique that has not yet been compared with
other reblocking techniques.

5 Experimental Evaluation

In this section, we discuss the experimental results and analyses. We begin with
the description of the datasets and metrics used to evaluate the results. Next,
we detail the experimental setup. Finally, we discuss the outcomes, and compar-
atively analyze the performance of the techniques evaluated.

236 L. S. Caldeira et al.

5.1 Datasets

We use seven semi-structured datasets, four real datasets (R1, R2, R3 and R4)
and three synthetic datasets (S1, S2 and S3), which vary in size, domain, and
characteristics. The datasets are publicly available2. Table 1 shows the charac-
teristics of these datasets.

Table 1. Characteristics about the datasets: number of records (|R|), total number
of matching pairs (|D(R)|), total number of attribute-value pairs (|AV(R)|), average
number of attribute-value pairs per records (|AVR(R)|) and number of comparisons
performed by the brute force approach (|BF(R)|).

Real Datasets Synthetic Datasets

R1 R2 R3 R4 S1 S2 S3

|R| 4, 910 63, 869 50, 797 3, 354, 773 10, 000 100, 000 1, 000, 000

|D(R)| 2, 224 2, 308 22, 863 892, 579 8, 705 85, 497 857, 538

|AV(R)| 19, 626 208, 065 971, 445 19, 064, 747 106, 108 1, 061, 421 10, 617, 729

|AVR(R)| 4.0 3.3 19.1 15.5 10.6 10.6 10.6

|BF(R)| 1.21 · 107 2.04 · 109 1.29 · 109 5.63 · 1012 5.00 · 107 5.00 · 109 5.00 · 1011

About the real datasets, R1 contains data from DBLP and the ACM digital
library. R2 contains records from DBLP and Google Scholar. R3 contains records
about films from IMDB and DBPedia. R4 contains records from two different
snapshots from English Wikipedia. The synthetic datasets were generated creat-
ing original records, without duplicates, based on a real-world vocabularies that
includes person names and address, for instance. Those original records are ran-
domly modified (e.g., excluding words and inserting characters) to produce their
corresponding record pairs (i.e., duplicates). The synthetic datasets contain 60%
and 40% of original and duplicate records, respectively, with up to nine matches
per original record. The ground truth is known for all datasets.

The R4 and S3 datasets have the largest number of data, which allows us
to evaluate the techniques in terms of scalability. All datasets have been widely
used to evaluate meta-blocking and filtering approaches [1,11,14,16,20,25].

5.2 Evaluation Metrics

We may evaluate the quality of blocking and reblocking by the Pair Completeness
(PC), Pair Quality (PQ) and F metrics [1,5,14,19]. Blocking and reblocking
techniques generate the set C of candidate pairs to be duplicates from the R
input record set. Let |C| be the total number of candidate pairs, |D(C)| the
number of duplicates in C, and |D(R)| the total number of correct duplicates in
R, Thus, we have:

– Pairs Completeness (PC) is similar to recall and measures the ratio of
detectable duplicates in relation to existing ones, PC = |D(C)|

|D(R)| .

2 https://sourceforge.net/projects/erframework/files/DirtyERDatasets/.

https://sourceforge.net/projects/erframework/files/DirtyERDatasets/

Experimental Evaluation Among Reblocking Techniques Applied to the ER 237

– Pairs Quality (PQ) is similar to precision and measures the ratio of candidate
pairs that correspond to real duplicates, PQ = |D(C)|

|C| .
– Fβ-measure (F-measure) is the harmonic mean of PQ and PC, Fβ = (1+β2)·

PQ·PC
(β2·PQ)+PC . We may weigh PQ and PC in F-measure, giving us flexibility
to use in different contexts. Two commonly used values for β are 2, which
weighs PC twice as much as PQ, and 0.5, which weighs PC with half as
important as PQ. If PQ e PC have the same weight for the final measure,
use β = 1 [3]. F-measure takes values in the range [0, 1].

The total number of candidate matching pairs |C| will be used as metric to
measure the computational cost for duplicate detection, i.e., the amount of com-
parisons in the ER task. The objective is to maximize PC and PQ and, thus,
minimizes |C| and maximize the number of detected duplicates |D(C)|. However,
high number of candidate pairs usually leads to detect more duplicates, increas-
ing PC, but reducing PQ [5]. Therefore, blocking and reblocking techniques are
successful whether they achieve a good balance between PC and PQ.

5.3 Experimental Setup

Our experimental evaluation aims to compare relevant techniques applied to
reblocking. The autors of RecWNP [14], RecCNP [14], PBBRT [2], BLAST [19],
PPJ [25] and PPJ+ [25] provided to us the source code, and for ADP [23], we
obtained the source code by the authors of [11]. Meta-blocking techniques were
implemented in Java 8 and filtering techniques in C++3.

We performed Token Blocking [13] for all evaluated techniques in the blocking
stage. We chose Token Blocking because the high degree of redundancy produced
prevents some errors in the records (e.g., typographical errors, missing fields and
attributes inversions) may impact the blocking quality [1]. We represent each
record by a set of its tokens.

For experimental analysis, we follow other works and compare the techniques
by their Effectiveness and Efficiency [14,15]. Effectiveness refers to how many
duplicates are detected, estimated by the PC. Effective techniques must have
their PC values at least equals to 0.95. Efficiency refers to the computational
cost to detect duplicates - usually estimated by the number of candidate pairs |C|
and by PQ. More formally, the goal of an efficient technique is to maximize PQ
having its PC value equals at least to 0.80 [14]. Fβ-measure makes it possible to
assess whether the techniques have a good balance between effectiveness (PC)
and efficiency (PQ). To give greater weight to effectiveness, we define β = 2,
and to assign greater weight to efficiency, we define β = 0.5 [3].

Thus, we split the reblocking techniques into techniques favorable to the
effectiveness and efficiency of the ER:

3 All experimental results were obtained using an Intel Xeon (R) computer E5-2660
v2 2.20 GHz × 40 with 378 GB of RAM, running CentOS Linux 7.

238 L. S. Caldeira et al.

– RecCNP and PBBRT are considered by their authors as good techniques
for applications where efficiency is required, as it minimizes the number of
candidate pairs generated in most cases.

– RecWNP is a good choice for applications that aim for effectiveness, as it
maximizes the number of duplicates found.

– BLAST can adapt to both efficiency and effectiveness contexts, according to
its authors.

– PPJ, PPJ+, and ADP adapt to efficiency and effectiveness contexts by varing
their similarity thresholds.

The techniques that fit in both effectiveness and efficiency are differentiated
by the input parameter used.

Table 2. The hyperparameter analysis for each reblocking technique (r to meta-
blocking and t to filtering) in all datasets.

Datasets

R1 R2 R3 R4 S1 S2 S3

Meta-blocking ETS RecWNP r = 0.8 r = 0.8 r = 0.8 r = 0.8 r = 0.95 r = 0.95 r = 0.95

BLAST r = 0.8 r = 0.8 r = 0.8 r = 0.8 r = 0.95 r = 0.95 r = 0.95

ECY BLAST r = 0.8 r = 0.8 r = 0.8 r = 0.8 r = 0.8 r = 0.8 r = 0.8

RecCNP r = 0.8 r = 0.8 r = 0.8 r = 0.8 r = 0.8 r = 0.8 r = 0.8

PBBRT – – – – – – –

Filtering ETS PPJ t = 0.7 t = 0.6 t = 0.2 t = 0.3 t = 0.4 t = 0.4 t = 0.5

PPJ+ t = 0.6 t = 0.4 t = 0.1 t = 0.3 t = 0.3 t = 0.3 t = 0.3

ADP t = 0.4 t = 0.2 t = 0.1 t = 0.3 t = 0.3 t = 0.3 t = 0.3

ECY PPJ t = 0.8 t = 0.7 t = 0.3 t = 0.7 t = 0.5 t = 0.6 t = 0.6

PPJ+ t = 0.7 t = 0.6 t = 0.2 t = 0.6 t = 0.4 t = 0.4 t = 0.5

ADP t = 0.6 t = 0.4 t = 0.1 t = 0.5 t = 0.5 t = 0.5 t = 0.5

Table 2 shows optimum hyperparameters configuration used by reblocking
techniques for the EffecTivenesS (ETS) and EffiCiencY (ECY) in all datasets.
RecWNP, RecCNP and BLAST filter out records specifying the r value, that is
a filtering rate to eliminate such records. We varied the r value and, for r = 0.80,
we obtained the satisfactory results in the real datasets for both effectiveness and
efficiency techniques. In synthetic datasets, we found r = 0.95 for effectiveness
techniques and r = 0.80 for efficiency techniques. For filtering techniques, we
report the results by using cosine similarity function. We also experiment Jaccard
coefficient but the results were similar. About the similarity threshold t, we range
from 0.1 to 0.9 and report the best results. PBBRT infers its threshold values
directly from the data, without the need for input parameters.

5.4 Performance of Techniques

We first examine the techniques that favor effectiveness and then the techniques
for the ER task’s efficiency. In Tables 3 and 4, the up arrow (↑) indicates that

Experimental Evaluation Among Reblocking Techniques Applied to the ER 239

PC met the restriction and the down arrow (↓) indicates that it did not meet
restriction. For the techniques that the constraint has been met, we consider
the best value of the Fβ metric (in bold) to identify the best technique for each
dataset. We use real datasets to perform a deeper analysis on each technique
and the synthetic datasets with a focus on scalability analysis.

Effectiveness. Table 3 shows the experimental results of the effectiveness tech-
niques (RecWNP, BLAST, PPJ, PPJ+, ADP) in the real datasets. Analyzing
the results of the Fβ for techniques that meet the effectiveness constraint, it is
possible to observe that RecWNP achieves better results than the others in two
datasets (R2 and R4). On the other hand, RecWNP does not meet the restric-
tion of effectiveness in R3. It can be explained because R3 is composed of more
dirty data (records highly similar that are non-matching and pairs of records
with little similarity refers to matching), which leads to a reduction in the value
of PC. PPJ achieves the best Fβ in R3 with a drawback of large number of
candidate pairs (i.e., 5× greater than RecWNP). In the end, BLAST has the
best Fβ performance in R1. However, it shows an unstable effectiveness in the
other datasets (i.e., it does not meet the PC effectiveness restriction).

Table 3. The performance of effectiveness techniques applied to real datasets. The
best results of the Fβ metric are highlighted.

Effectiveness

RecWNP BLAST PPJ PPJ+ ADP

|C| 2.91 · 104 9.33 · 103 2.76 · 104 1.57 · 104 8.59 · 104

R1 PC 0.98 ↑ 0.98 ↑ 0.95 ↑ 0.95 ↑ 0.97 ↑
PQ 8.18 · 10−2 2.34 · 10−1 7.57 · 10−2 1.34 · 10−1 2.52 · 10−2

Fβ 0.3065 0.5994 0.2871 0.4281 0.1140

|C| 2.30 · 106 1.22 · 106 2.99 · 106 6.28 · 106 1.17 · 108

R2 PC 0.95 ↑ 0.93 ↓ 0.96 ↑ 0.98 ↑ 0.98 ↑
PQ 1.32 · 10−3 1.76 · 10−3 7.39 · 10−4 3.59 · 10−4 1.93 · 10−5

Fβ 0.0066 0.0087 0.0037 0.0018 0.0001

|C| 1.90 · 107 4.79 · 105 9.82 · 107 1.58 · 108 9.10 · 107

R3 PC 0.92 ↓ 0.81 ↓ 0.95 ↑ 0.97 ↑ 0.85 ↓
PQ 1.88 · 10−3 3.86 · 10−2 2.20 · 10−4 1.41 · 10−4 2.15 · 10−4

Fβ 0.0093 0.1621 0.0011 0.0007 0.0011

|C| 7.55 · 109 1.81 · 109 1.37 · 1011 9.63 · 1010 8.79 · 109

R4 PC 0.97 ↑ 0.93 ↓ 0.98 ↑ 0.96 ↑ 0.95 ↑
PQ 5.71 · 10−4 4.56 · 10−4 6.39 · 10−6 8.94 · 10−6 9.66 · 10−5

Fβ 0.0028 0.0023 0.00003 0.0004 0.0005

240 L. S. Caldeira et al.

The PC of the techniques, in general, present values above 95%. On the
other hand, ADP and BLAST did not achieve good results for PC in R3. It can
be explained because R3 has more attribute-value pairs per record (|AV R(R)|)
than other datasets. In BLAST, it impacts when similar attributes are grouped
and in ADP when defining the prefix length value. In both cases, the number
of candidate pairs is decreased, and consequently, duplicates pairs are missed,
which leads to a decrease in the value of PC.

Qualitatively, we can analyze that, despite the good performance of the fil-
tering techniques (i.e., PPJ and PPJ+) for some datasets, there are scenarios
that limit the power of discarding candidate pairs. More homogeneous datasets
(i.e., datasets whose records share many tokens and have many similar record
pairs) result in a few pairs of records discarded. For example, Length Filtering
loses its effectiveness when the records in a dataset have slight variation in size
(e.g., the synthetic datasets), causing multiple pairs of records to be considered
candidates, often not being matched. In other words, if the filters fail, many
candidate pairs will be accepted at the end of the algorithm’s execution. It can
be considered a weak point, explaining the low efficiency in the sets with long
records and a lot of data (e.g., R3).

To analyze the techniques’ scalability, we performed experiments on three
sets of synthetic data ranging the size. Figure 2(a) shows the results for the
effectiveness techniques. We can see better scalability of the RecWNP meta-
blocking technique regarding the filtering techniques (PPJ, PPJ+, and ADP).
BLAST was not plotted on the chart because it does not meet the PC restriction
for effectiveness in all synthetic datasets.

Fig. 2. Scalability in synthetic data for (a) effectiveness and (b) efficiency techniques.

In short, meta-blocking techniques (e.g., RecWNP) achieves the best results
in the datasets analyzed. RecWNP, in addition to being scalable for the large
datasets, performs among the best in Fβ metrics. On the other hand, filtering
techniques (e.g., PPJ and PPJ+) are competitive with meta-blocking in datasets
with small dataset sizes, achieving a good trade-off between the number of can-
didate and matching pairs.

Experimental Evaluation Among Reblocking Techniques Applied to the ER 241

Table 4. The performance of efficiency techniques applied to real datasets. The best
results of the Fβ metric are highlighted.

Efficiency

RecCNP BLAST PBBRT PPJ PPJ+ ADP

|C| 1.19 · 104 9.33 · 103 1.12 · 104 8.93 · 103 4.93 · 103 1.06 · 104

R1 PC 0.96 ↑ 0.98 ↑ 0.96 ↑ 0.80 ↑ 0.83 ↑ 0.83 ↑
PQ 1.81 · 10−1 2.34 · 10−1 1.91 · 10−1 1.99 · 10−1 3.74 · 10−1 1.73 · 10−1

Fβ 0.2163 0.2762 0.2280 0.2342 0.4197 0.2055

|C| 1.18 · 105 1.22 · 106 8.32 · 104 8.46 · 105 3.34 · 105 3.35 · 106

R2 PC 0.84 ↑ 0.93 ↑ 0.85 ↑ 0.88 ↑ 0.81 ↑ 0.80 ↑
PQ 1.69 · 10−2 1.76 · 10−3 2.35 · 10−2 2.39 · 10−3 5.60 · 10−3 5.48 · 10−4

Fβ 0.0210 0.0022 0.0291 0.0030 0.0070 0.0007

|C| 2.89 · 105 4.79 · 105 2.24 · 105 4.76 · 107 6.92 · 107 9.10 · 107

R3 PC 0.64 ↓ 0.81 ↑ 0.75 ↓ 0.81 ↑ 0.91 ↑ 0.85 ↑
PQ 5.55 · 10−2 3.86 · 10−2 7.60 · 10−2 3.90 · 10−4 3.00 · 10−4 2.15 · 10−4

Fβ 0.0680 0.0477 0.0926 0.0005 0.0004 0.0003

|C| 8.06 · 106 1.81 · 109 4.73 · 106 1.44 · 109 2.23 · 109 2.78 · 109

R4 PC 0.89 ↑ 0.93 ↑ 0.94 ↑ 0.82 ↑ 0.83 ↑ 0.84 ↑
PQ 9.99 · 10−2 4.56 · 10−4 1.78 · 10−1 5.07 · 10−4 3.34 · 10−4 2.70 · 10−4

Fβ 0.1215 0.0006 0.2120 0.0006 0.0004 0.0003

Efficiency. Table 4 shows the experimental results of the efficiency techniques
(RecCNP, BLAST, PBBRT, PPJ, PPJ+, ADP) in the real datasets. Consid-
ering the Fβ metric, PBBRT is the technique that stands out with the best
performance in two datasets (R2 and R4), followed by RecWNP. The PBBRT
shows a Fβ improvement compared to RecWNP in 38.6% and 74.5% in R2 and
R4 datasets, respectively. PPJ+ has the best result in R1. It confirms the earlier
conclusions about filtering techniques performing satisfactorily in datasets with
a smaller amount of data and more homogeneous. The meta-blocking techniques
RecWNP and PBBRT do not meet the restriction from PC to R3 (PC ≥ 0.8). It
can be explained because R3 is made up of dirtier data (as stated earlier). This
can lead to the underweight of the corresponding record pairs, which causes the
missing of matching pairs. BLAST achieves the best performance for R3. In this
case, the BLAST attribute similarity analysis may have contributed to finding a
more significant number of matching pairs. The Meta-blocking efficiency can be
explained by the easy extraction of valuable information, directly from the data
and the graph, about the relationship of the records to identify those with the
most potential for correspondence. PBBRT obtains the best results among the
analyzed techniques mainly because of the efficient strategy of choosing tokens
to be used in the blocking and reblocking stage. Also, PBBRT does not require
the user-defined parameter, which is a strong point concerning other techniques.

242 L. S. Caldeira et al.

Figure 2(b) shows the scalability focus on efficiency techniques in synthetic
datasets. PBBRT and RecCNP have the best scalability concerning the others
when the datasets’ size increases. It is explained by using the efficient strategies
used to improve the pruning process of candidate pairs. ADP increase in the
number of candidate pairs is because adaptive prefix produce more candidate
pairs when the data increases.

In short, meta-blocking techniques excel in the analysis of efficiency, with
PBBRT obtaining the best performance in Fβ , in addition to being scalable for
the large datasets tested. The PPJ and PPJ+ filtering techniques are positioned
competitively with meta-blocking techniques in the smaller datasets evaluated.

6 Conclusions

This paper presents a comparative analysis of reblocking stage involving meta-
blocking and filtering techniques. Reblocking stage aims at reducing the number
of comparisons of the ER task. Meta-blocking focuses on reducing the number of
comparisons based on the blocks shared by the records. On the other hand, filter-
ing techniques reduce the number of comparisons based on the records’ degree of
similarity. These techniques were analyzed in the context of applications for the
effectiveness and efficiency of ER in real and synthetic datasets. The results show
that the filtering techniques are competitive with the meta-blocking techniques
in smaller datasets, achieving good results. However, the filtering techniques did
not adjust well to the large datasets evaluated. On the other hand, meta-blocking
techniques maintained good performance in most of the evaluated datasets.

We believe that scalability remains an open challenge for the filtering app-
roach techniques. Also, there is room for effectiveness and efficiency improve-
ments in the meta-blocking techniques. For future work, we intend to explore
reblocking in a real-time ER context, which aims to identify matching pairs in
the shortest time.

References

1. Bianco, G.D., Goncalves, M.A., Duarte, D.: Bloss: effective meta-blocking with
almost no effort. Inf. Syst. 75, 75–89 (2018)

2. Caldeira, L.S., Ferreira, A.A.: Improvements in the blocking process for entity res-
olution based on the term relevance. In: SBBD, pp. 61–72 (2018). (in Portuguese)

3. Chinchor, N., Sundheim, B.M.: MUC-5 evaluation metrics. In: Proceedings of the
Fifth Message Understanding Conference (MUC-5), pp. 22–29 (1993)

4. Christen, P.: Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31164-2

5. Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-
plication. TKDE 24(9), 1537–1555 (2012)

6. Christophides, V., Efthymiou, V., Stefanidis, K.: Entity Resolution in the Web of
Data. Morgan & Claypool Publishers, San Rafael (2015)

https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2

Experimental Evaluation Among Reblocking Techniques Applied to the ER 243

7. Dong, X.L., Srivastava, D.: Big Data Integration. Morgan & Claypool Publishers,
San Rafael (2015)

8. Golshan, B., Halevy, A., Mihaila, G., Tan, W.C.: Data integration: after the teenage
years. In: PODS, pp. 101–106 (2017)

9. Jiang, Y., Li, G., Feng, J., Li, W.S.: String similarity joins: an experimental eval-
uation. PVLDB 7(8), 625–636 (2014)

10. Köpcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on
real-world match problems. PVLDB 3(1–2), 484–493 (2010)

11. Mann, W., Augsten, N., Bouros, P.: An empirical evaluation of set similarity join
techniques. PVLDB 9(9), 636–647 (2016)

12. O’Hare, K., Jurek-Loughrey, A., Campos, C.: A review of unsupervised and semi-
supervised blocking methods for record linkage. In: P, D., Jurek-Loughrey, A.
(eds.) Linking and Mining Heterogeneous and Multi-view Data. USL, pp. 79–105.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-01872-6 4

13. Papadakis, G., Ioannou, E., Niederée, C., Fankhauser, P.: Efficient entity resolution
for large heterogeneous information spaces. In: WSDM, pp. 535–544 (2011)

14. Papadakis, G., Papastefanatos, G., Palpanas, T., Koubarakis, M.: Scaling entity
resolution to large, heterogeneous data with enhanced meta-blocking. In: EDBT,
pp. 221–232 (2016)

15. Papadakis, G., Skoutas, D., Thanos, E., Palpanas, T.: Blocking and filtering tech-
niques for entity resolution: a survey. CSUR 53(2), 1–42 (2020)

16. Papadakis, G., Svirsky, J., Gal, A., Palpanas, T.: Comparative analysis of approx-
imate blocking techniques for entity resolution. PVLDB 9(9), 684–695 (2016)

17. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE
Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

18. Silva, L.F., Canalle, G.K., Salgado, A.C., Lóscio, B.F., Moro, M.M.: An experi-
mental analysis of the impact of attribute selection on entity resolution processes.
In: SBBD, pp. 37–48 (2019). (in Portuguese)

19. Simonini, G., Bergamaschi, S., Jagadish, H.: Blast: a loosely schema-aware meta-
blocking approach for entity resolution. PVLDB 9(12), 1173–1184 (2016)

20. Simonini, G., Gagliardelli, L., Bergamaschi, S., Jagadish, H.: Scaling entity reso-
lution: a loosely schema-aware approach. Inf. Syst. 83, 145–165 (2019)

21. Song, D., Heflin, J.: Automatically generating data linkages using a domain-
independent candidate selection approach. In: Aroyo, L., et al. (eds.) ISWC 2011.
LNCS, vol. 7031, pp. 649–664. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-25073-6 41

22. Song, D., Luo, Y., Heflin, J.: Linking heterogeneous data in the semantic web
using scalable and domain-independent candidate selection. TKDE 29(1), 143–
156 (2017)

23. Wang, J., Li, G., Feng, J.: Can we beat the prefix filtering? an adaptive framework
for similarity join and search. In: SIGMOD, pp. 85–96 (2012)

24. Wang, X., Qin, L., Lin, X., Zhang, Y., Chang, L.: Leveraging set relations in exact
and dynamic set similarity join. VLDB J. 28(2), 267–292 (2018). https://doi.org/
10.1007/s00778-018-0529-2

25. Xiao, C., Wang, W., Lin, X., Yu, J.X., Wang, G.: Efficient similarity joins for
near-duplicate detection. TODS 36(3), 1–41 (2011)

https://doi.org/10.1007/978-3-030-01872-6_4
https://doi.org/10.1007/978-3-642-25073-6_41
https://doi.org/10.1007/978-3-642-25073-6_41
https://doi.org/10.1007/s00778-018-0529-2
https://doi.org/10.1007/s00778-018-0529-2

FiLiPo: A Sample Driven Approach for
Finding Linkage Points Between RDF

Data and APIs

Tobias Zeimetz(B) and Ralf Schenkel

Trier University, 54286 Trier, Germany
{zeimetz,schenkel}@uni-trier.de

Abstract. Data integration is an important task in order to create com-
prehensive RDF knowledge bases. Many data sources are used to extend a
given dataset or to correct errors. Since several data providers make their
data publicly available only via Web APIs they also must be included
in the integration process. However, APIs often come with limitations
in terms of access frequencies and speed due to latencies and other con-
straints. On the other hand, APIs always provide access to the latest
data. So far, integrating APIs has been mainly a manual task due to
the heterogeneity of API responses. To tackle this problem we present
in this paper the FiLiPo (Finding Linkage Points) system which auto-
matically finds connections (i.e., linkage points) between data provided
by APIs and local knowledge bases. FiLiPo is an open source sample-
driven schema matching system that models API services as parameter-
ized queries. Furthermore, our approach is able to find valid input values
for APIs automatically (e.g. IDs) and can determine valid alignments
between KBs and APIs. Our results on ten pairs of KBs and APIs show
that FiLiPo performs well in terms of precision and recall and outper-
forms the current state-of-the-art system.

Keywords: Data integration · Schema mapping · Relation alignment

1 Introduction

RDF knowledge bases (KBs) are used in many domains, e.g. bibliographic, med-
ical, and biological data. Most knowledge bases face the problem that they are
potentially incomplete, incorrect or outdated. Considering how much new data
is generated daily it is highly desirable to integrate missing data provided by
external sources. Thus, data integration approaches [3,7,8,11,13] are used to
expand KBs and correct erroneous data. The usual process of data integration
is to download data dumps and align the schemas of a local KB and these
dumps. “Aligning” describes the process by which relations and classes from the
local KB are mapped to relations and entities of external sources, thus creating
a mapping between the local and the external data schemas. Afterwards, the
integration process can be done and the data of the KB is expanded or updated.
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 244–259, 2021.
https://doi.org/10.1007/978-3-030-82472-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_18&domain=pdf
http://orcid.org/0000-0002-5436-637X
http://orcid.org/0000-0001-5379-5191
https://doi.org/10.1007/978-3-030-82472-3_18

A Sample Driven Approach for Finding Linkage Points 245

However, data dumps are often updated only infrequently. Using live data
through APIs instead of dumps [7,8] allows access to more recent data. In addi-
tion, the number of potential data sources becomes much larger when using APIs
since most data providers share their data not via dumps, but via APIs. Accord-
ing to Koutraki et al. [8], APIs seem to be a sweet-spot between making data
openly accessible and protecting it. The problems of data integration, i.e. how
two different schemas can be mapped, remain. In the worst case, the schema
of an external source has a completely different structure than the local KB.
Hence, data integration remained a manual task for most parts [8].

Motivation. Connecting KBs with data behind APIs can significantly improve
existing intelligent applications. As a motivating example, we consider dblp1, a
bibliographic database of computer science publications. It accommodates dif-
ferent meta data about publications, e.g., titles, publisher names, and author
names and can be represented as an RDF KB. Data from dblp is often used
for reviewer, venue or paper recommendation, and extending dblp with informa-
tion from APIs like CrossRef, or SciGraph, for example titles or abstracts, can
improve these applications. Missing information about authors like ORCIDs (an
ORCID is a code to uniquely identify scientific authors) can be supplemented by
these APIs and help to disambiguate author profiles. Furthermore, such infor-
mation is also useful for a user querying dblp for authors or publications, where
missing information can be completed using external data sources. Therefore it
is important that multiple APIs can be used and missing data can be integrated
from many different sources. Additionally, the determined alignments can be
used to identify erroneous data and correct it if necessary.

Contributions. We present FiLiPo (Finding Linkage Points)2, a system to
automatically discover alignments between KBs and APIs, focusing on detecting
property/path alignments. We omit aligning classes because classes and types
(in terms of semantic classes, e.g. URLs) do not exist in typical API responses.
FiLiPo is designed to work with single record response APIs, i.e. APIs that return
only a single record as response and not a list of most similar search results, and
works for datasets of arbitrary domains. In contrast to other systems [13], users
of FiLiPo only require knowledge about a local KB (e.g. class names) but no
prior knowledge about the APIs’ data structure. To the best of our knowledge,
FiLiPo is the first aligning system that automatically detects what information
from a KB has to be used as input of an API to retrieve responses. Thus end users
do not have to determine the best input, significantly reducing manual effort. In
contrast to other state-of-the-art systems [8], FiLiPo uses fifteen different string
similarity metrics to find an alignment between the schema of a KB and that
of an API. A single string similarity method is not suited to compare different
kinds of data, for example both ORCIDs (requiring exact matches), ISBNs (with
some variation) and abbreviated names. A user only needs to specify the number
of requests sent to the API in order to keep the approach simple.

1 https://dblp.uni-trier.de/.
2 Code available at https://github.com/dbis-trier-university/FiLiPo.

https://dblp.uni-trier.de/
https://github.com/dbis-trier-university/FiLiPo

246 T. Zeimetz and R. Schenkel

2 Problem Statement

This paper addresses five challenges when aligning local KBs with APIs. The first
challenge is to determine which input values (e.g. DOI, etc.) have to be sent to
the API to retrieve a valid response. A valid response is a response that contains
information about the requested entity. In contrast, invalid responses contain
information about similar entities (e.g. a list of most similar search results) or
an error message. Note that the user has to specify the URL and the parameter
of an API (e.g. www.example.com/api?q=). When a resource is requested that
is unknown to the API, it can respond in several ways. The classic case is that it
returns an HTTP status code (e.g. 404). The more complicated case is a JSON
response that contains an error message or returns information on a “similar”
resource (e.g., with a similar DOI). This cannot be easily distinguished from a
“real” response which contains data about the requested resource.

An alignment between the schemata of an API and a KB are determined by
collecting several responses from an API and comparing these information with
the one stored in a KB. Semantically equal data values between API responses
and KB entities are denoted as (sample) matches (e.g. the match of a DOI
value). In order to determine such matches, the second challenge is that the
same value may be represented slightly differently in the KB than in the API
(e.g., names with and without abbreviated first names), hence the comparison
needs to apply string similarity methods. The various existing similarity methods
have different strengths and weaknesses. For example, Levenshtein distance is
good for comparing the titles of a paper or movie, but performs poorly when
comparing names of authors or actors because names are often abbreviated and
first and last names may be in different order. Hence, a suitable similarity method
needs to be determined automatically for each type of data.

A special case of this challenge is comparing identifiers, e.g. ISBNs. Identifiers
need to be equal in order to yield as match. However, the ISBN of a book can be
written in different forms (e.g. without hyphens) but should be considered equal.
For this reason a simple check for equality is not sufficient, otherwise possible
alignments are lost. Note that such identifiers (e.g. IBANs, tax numbers and
others) also exist in other domains.

Finding a match between the information of KBs and APIs can be partic-
ularly problematic if APIs respond with records similar to the requested one.
For example, a request for a book with title “Some example Title” may lead
to an API response of a book with title “Some Title”. The information of the
API and the KB may overlap, especially for values that appear in many enti-
ties (e.g. year). Thus, the fourth challenge is to check if APIs respond with the
requested information. Koutraki et al. [8] state that if KBs and APIs share the
same domain, it is likely that the data of their entities overlap. This means
that if the information of the API and the KB overlaps sufficiently, the API has
probably responded with the requested record.

The last challenge is that some data values are contained in an API response
several times, e.g. year values. In this case, they may represent a different piece
of information, e.g. some bibliographic APIs respond with data containing refer-

A Sample Driven Approach for Finding Linkage Points 247

ences and citations of a paper, which often include author names and publication
years. During the matching process, care must be taken as to which information
is matched. Just because the values match, they do not form a valid match (e.g.
matching a papers author names with the author names of the papers refer-
ences). Hence the semantics and structure of the paths should be considered but
API responses do not always have a clear or a directly resulting semantics.

3 Related Work

Web Data Alignment. Next to FiLiPo (which was already presented in a
demonstration [17]), DORIS [8,9] is the only system that has dealt with the
alignment of KBs and APIs so far. DORIS builds upon the schema of an existing
KB and during the alignment process, it sends several requests to an API. Users
only have to specify the input class for the API and a request limit. The input
class specifies which form of entities the API responds to (e.g. publications).
Then the label information of instances is used as input for APIs, which is often
not the appropriate input for an API (e.g. some APIs expect DOIs, etc.). In
contrast, FiLiPo is able to detect automatically appropriate input values.

A key assumption of DORIS is that it is more likely to find information
about popular entities (e.g. famous actors) via API calls. From this follows the
assumption that KBs contain more facts of well-known entities and hence it
ranks entities by descending number of facts. These entities will then be used for
the alignment. This approach has major drawbacks, e.g. the number of facts for
a publication stored by a bibliographic KB is often determined by the meta data
of that publication, not by its popularity (unless citations etc. are stored). To
compare data values during the alignment DORIS uses equality (ignoring punc-
tuation and case). This limitation becomes clear when examining, for example,
author names. They are often abbreviated and DORIS’ matching approach will
fail since it performs exact match on normalised names. In contrast, FiLiPo uses
a set of similarity methods and picks randomly chosen entities of a KB.

Wrapper Inference. The problem of aligning KBs and APIs shares similarities
with various other fields [3,8,14] like schema alignment, query discovery and
wrapper inference approaches. Wrapper inference approaches [12,15] face simi-
lar problems as alignment systems from other fields. Senellart et al. [15] present
an approach which uses domain knowledge (concept names and instance data) in
order to identify the input of form fields. They assume that there are no specif-
ically required fields in the form. However, this does not apply to the majority
of APIs, since most have a mandatory parameter. Afterwards the structure of
the data behind the form fields is aligned with concept names by exploiting the
semantics of form fields and web tables (e.g. labels, table headers, etc.). Since
paths in API responses do not always have a clear or any semantic at all, FiLiPo
does not use path semantics. Derouiche et al. [12] also use domain knowledge
to extract data from Web sources. Additionally, they use for every concept (e.g.
date) a form of regular expression. Since users have to specify these expressions,
this approach significantly raises the manual effort and the needed knowledge.

248 T. Zeimetz and R. Schenkel

Schema/Ontology Alignment. Aligning data of KBs and APIs has simi-
lar problems as schema/ontology alignment. The major difference is that API
responses often do not have explicit semantics or any semantics at all, and the
data schema of the API is often not directly accessible to external parties. In
addition, names of the paths are often ambiguous. Semantics in form of rules
(as with RDF/OWL) does not exist in API responses. Also, responses usually
do not provide information about classes/relations that can be used for the
alignment process. When using APIs, only instance information is available and
hence classical schema/ontology approaches are not suitable. Additionally, Mad-
havan et al. [10] state that KBs often contain multiple schemas to materialise
similar concepts and hence build variations in entities and their relations. This
makes schema-based matching inaccurate, which must therefore be supported
by evidence in form of instances.

Instance-Based Alignment. Instance-based alignment systems use the informa-
tion bound to instances in KBs in order to find shared relations and classes
between two KBs. These approaches can be divided into instance-based class
alignment approaches and instance-based relation alignment approaches. The
main difference between class and relation alignment lies in the fact that rela-
tions have a domain and range. Even if relations share the same value, they can
have different semantics (e.g. editor and author).

A lot of works [4,6,10,13] focus on instance-based relation alignment between
KBs. Most of them focus on finding 1:1 matches, e.g. matching publicationYear
to year. The iMAP system [4] semi-automatically determines 1:1 matches, but
also considers 1:n matches. iMAP consists of a set of search modules, called
searchers. Each of the searchers handles specific types of attribute combinations
(e.g. a text searcher). FiLiPo follows a similar approach. Instead of searchers,
FiLiPo only distinguishes between the type of information (numeric, string, or
is it a key). Then, in case of strings, a number of different similarity methods
are considered, and the best method is automatically determined and used.

Similar to iMAP, MWeaver [13] also needs user assistance. MWeaver
realises a sample-driven schema mapping approach which automatically con-
structs schema mappings from sample target instances given by the user. The
idea of this system is to allow the user to implicitly specify mappings by pro-
viding sample data. However, this approach needs significant manual effort. The
user must be familiar with the target schema in order to provide samples. In
contrast to this approach, FiLiPo draws the sample data randomly from the KB
and thus tries to cover a wide range of information.

SOFYA [6] is an instance-based on-the-fly approach for relation alignment
between two KBs. The approach works with data samples from both KBs in
order to identify matching relations. The core aspect of SOFYA is that the
standard relation “sameAs” is used to find identical entities in two different
KBs. However, this mechanism cannot be used for the alignment of KBs and
APIs, because APIs do not contain standardised “sameAs” links.

The Cupid system [11] is used to discover an alignment between KBs based
on the names of the schema elements, data types, constraints and structure. It

A Sample Driven Approach for Finding Linkage Points 249

combines a broad set of techniques of various categories (e.g. instance-based,
schema alignment, etc.). The system uses a linguistic and structural approach in
order to find a valid alignment. Furthermore, Cupid leverages a corpus of schemas
and mappings to improve the robustness of the schema matching algorithms.
Unfortunately, this approach cannot be used when aligning KBs and APIs, since
often there is no formally defined schema for an API.

4 Preliminaries

Knowledge Bases. An RDF KB can be represented as graph with labelled
nodes and edges. A KB consists of triples of the form (s, p, o) which represent a
fact in the KB. The subject (start node) s describes the entity the fact is about,
e.g. a paper entity. An entity is represented by an URI, which is an identifier of
a real-world entity such as a paper or an abstract concept (e.g. a conference).
The predicate p describes the relation between the subject and the object, e.g.
title. The object (target node) o describes an entity, e.g. an author, or is a
literal, e.g. the title of a publication. A class in a KB is an entity that represents
a group of entities. Entities assigned to a class are instances of that class. In
Fig. 1b, the entity PaperEntity is an instance of the class Publication.

Relations. Since this paper focuses on aligning relations, we introduce a formal
definition for relation (paths). Given a KB K, if (s, r, o) ∈ K, we say that s and
o are in relation r, or formally r(s, o); in other words, there is a path from s to
o with label r. Also, we write r1.r2.....rn(s, o) to denote that there exists a path
of relations r1, r2, ..., rn in K from subject s to object o visiting every node only
once. For example, in Fig. 1b the relation year(PaperEntity,"2020") describes
the path from the entity PaperEntity to the value "2020". In the following we
will refer to r1.r2.....rn(s, o) as relation-value path.

Identifier Relations. Some KBs contain globally standardised identifiers such
as DOIs, IBANs (International Bank Account Numbers), tax numbers and oth-
ers. Identifiers are only bound to a single entity and should be unique. Therefore,
relations r that model identifier relations have the constraint that their inverse
relations (r−1) are “quasi-functions”, i.e., their inverse relations have a high func-
tionality. Many works [5,8,16] have used the following definition for determining
the functionality of relations:

fun(r) :=
|{x : ∃y : r(x, y)}|
|{(x, y) : r(x, y)}|

Since real world KBs are designed by humans identifier relations are often
error-prone which is why some identifier values may appear more than once.
Hence, we consider every relation r contained in K with fun(r−1) ≥ θid, where
θid ∈ [0, 1] is a threshold, as identifier relation. From now on we denote Rid

K as
the set of all identifier relations (e.g., doi, isbn, etc.) contained in a KB K. Note
that we ignore identifier relations that are composed of several relations.

250 T. Zeimetz and R. Schenkel

Fig. 1. Record of a KB and the corresponding API response.

Web API. A Web service can provide one or multiple APIs to access data.
APIs are called via parameterised URLs (see Fig. 1a). As shown in Fig. 1a the
response of an API can be represented as an unordered and labelled tree. Inner
nodes in the tree represent an object (similar to an entity in a KB) or an array,
leaf nodes represent values. The path to a node represents a relation between an
instance (similar to an entity in a KB) and another instance or value. To avoid
confusion we will describe these relations in a response only as paths.

Path-Value-Pairs. In order to find valid alignments between KBs and APIs
the information in the API responses has to be compared with the values of the
corresponding entities in a KB. Since comparing objects and arrays from the API
response with entities from the KB to determine alignments is not promising,
only paths to leafs (literals) have to be considered. Given an API response res
we will write p1.p2.....pn(o) to denote that there is a path p1, p2, ..., pn in res from
the root of the response to the leaf o with these labels. For example, in Fig. 1a
the path label("Some example Title") describes the path from the root of
the API response to the leaf "Some example Title" via the path label.

Branching Points. A branching point in an API response indicates that there
are several outgoing edges from one node, labelled by numeric index values 0 to
n. These branching points represent arrays. In the example in Fig. 1a, the path
authors.0.name("Tobias Zeimetz") contains a branching point. To indicate a
branching point, we will use the symbol * instead of the numeric index in paths;
in the example, we will write authors.*.name("Tobias Zeimetz"). Using the
same logic, a relation in a KB that points to a set of entities is considered to
be a branching point (e.g. creatorList in Fig. 1b). Additionally, we write P∗
to indicate a path P ∗ p that has P as prefix and p as suffix, with a branching
point separating the two parts.

5 Schema Matching and Mapping

FiLiPo operates in two phases. First (probing phase), FiLiPo sends various infor-
mation (e.g. DOIs, titles, etc.) to an API to determine which information the

A Sample Driven Approach for Finding Linkage Points 251

API responds to. Afterwards (aligning phase), the information returned is used
to guess the API’s schema and to determine an alignment between the local
and external data. The input of the aligning process is the URL of the API (see
Fig. 1a) and the corresponding input classes in the KB. An input class is a class
of entities that will be used to request the API. An extended version of this
paper with a detailed description of the algorithm can be found at arXiv3.

5.1 Probing Phase

The probing phase is used to find the set Rin of relations of the input class that
point to values which can be used to request the API successfully (e.g., a DOI
relation). Note that we only consider APIs with one input parameter (API tokens
and similar do not count as input parameter since they are constants), otherwise
the runtime will increase extremely, because of the combination possibilities. To
illustrate the probing with an example, we assume that the input class of the
API whose result is shown in Fig. 1a is Publication. The illustrated fragment
in Fig. 1b has five relations to describe the metadata of a publication but the
API only responds to DOIs. First, all relations that are not connected to literals
(e.g. type) are ignored. This is done because almost all APIs expect a literal as
input value (e.g. DOI, title, etc.) and not classes encoded as URL entities.

In addition, values that occur more than once in the KB (e.g. year numbers
such as 2021, ambiguous titles such as “Editorial” and names) are not used as
input values because more than one record can be returned and possibly a not
matching one is returned. Afterwards np initial requests are sent to the API for
each remaining relation of the input class (i.e. title and doi). The created URL
to request the API is a concatenation of the API URL specified by the user (see
Fig. 1a and values for the corresponding input relations, e.g. for doi an example
call URL is www.example.com/api?q=10.1145/3340531.3417438.

The input values for each relation are picked uniformly at random from
entities of the input class in the KB. This is done to prevent the entities from
being very similar to each other and thus increase the probability of an response.
For example, assuming that an API only responds to entities with a specific
publisher, e.g. Springer. If entities are selected in any non-random way, e.g.
according to the amount of facts, it is possible that no entities with publisher
Springer are included, and the API cannot respond and no aligning can be done.

After requesting an API it can respond in several ways, i.e. with the HTTP
status code 200 OK or with an HTTP error code. Relations r ∈ Rin that lead to
responses are considered as valid input relations. All other relations will no longer
be considered as input relations and hence, unnecessary requests are prevented.
Next, the alignment phase begins, considering only the set Rin of relations that
led to valid answers. The aligning phase itself is divided into two parts: (1)
determining candidate alignments and (2) determining the final alignments.

3 Link to the extended paper version: https://arxiv.org/abs/2103.06253.

http://www.example.com/api?q=10.1145/3340531.3417438
https://arxiv.org/abs/2103.06253

252 T. Zeimetz and R. Schenkel

Fig. 2. Fragment of a KB Record and an API Response

5.2 Aligning Phase: Candidate Alignment

This phase takes as input the set of valid input relations Rin, a KB K and the
corresponding identifier relations Rid

K . For each input relation rin ∈ Rin, the
algorithm sends nr further requests to the API. For each request, it chooses a
random entity e from the input class. It then calls the API with values vreq
of the input relation rin of e and stores the response in res (see Fig. 2, middle
part; note that, for the sake of simplicity, not the full KB and API paths are
shown in Fig. 2). Next, FiLiPo retrieves the set rec of all facts that K contains
for e in form of relation-value paths r(e, l) (see Fig. 2, left side). Note that r can
be a path of multiple relations, e.g. r1.r2...rn(e, l). Like Koutraki et al. [8] we
take only facts into account up to depth three, because all other facts usually
do not make statements about the entity e. To exclude the case that entities are
connected in only one direction, inverse relations are also considered.

The next step is to find all relation matches R between rec and res (see
Fig. 2, right side). The set res encodes information from the response as path-
value pairs of the form p(v) where p is the path in the response from the root to
the value v. Note that p can be a path of multiple components, e.g. p1.p1...pn(v).
All values l of rec must be compared with all values v of res. Figure 2 presents an
example for the title relation. The coloured lines represent comparisons between
the values, red lines denote invalid matches and the green line represents a valid
match. For each pair (r(e, l), p(v)), a suitable similarity method is determined.
If l or v is an IRI, it is important that they are compared with equals as IRIs
are identifiers and hence only the same if they are identical. The same holds for
numerical values. In all other cases FiLiPo uses a set Msim of fifteen different
similarity methods4 with several variants since one string similarity method is
not sufficient to compare several data types. The method m ∈ Msim returning
the largest similarity of l and v is considered (temporarily) to be a suitable
method to compare both values and is stored for the later process.

We used the string similarity library developed by Baltes et al. [2] since it
contains all major similarity methods, divided into three categories: equal, edit
and set based. Since fuzzy methods are not appropriate for identifier relations
and comparing them for equality would be too strict, identifier relations in Rid

K

are therefore compared with a gradient boosting classifier working on Flair [1]
embeddings. We use Flair embeddings since this framework is character-based

4 All used similarity methods are listed in our manual at https://github.com/dbis-
trier-university/FiLiPo/blob/master/README.md.

https://github.com/dbis-trier-university/FiLiPo/blob/master/README.md
https://github.com/dbis-trier-university/FiLiPo/blob/master/README.md

A Sample Driven Approach for Finding Linkage Points 253

and therefore suits better for the comparison of identifier values. Once the best
similarity method has been determined, and if it yields a similarity of at least
θstr, the triple (r, p,m) is created and added to the set of record matches R.

If enough matches are found, it is assumed that the input entity e and the API
response overlap in their information (the overlapping information is highlighted
in Fig. 2 in blue) and that the API has responded with information about the
requested entity. We compute the overlap by dividing the number of matches
|R| by the number of entries of the smallest record rec or res. If the overlap is
greater than a threshold θrec, the overlap is considered sufficient and the matches
R will be added to Arin (an example of overlapping values/paths is presented in
blue in Fig. 2 and an example of Arin is presented in Fig. 3). This set represents
matches found for the input relation rin. If not enough matches are found, it is
assumed that the API has responded with information of a different entity; in
this case, any matches found between the records must be ignored.

5.3 Aligning Phase: Final Alignment

Afterwards Arin is used to determine the final alignment. For each relation in
Arin the best path match on the API side is searched (if existing). It is easy
to match relations and paths without branching points, e.g. label or title in
Fig. 2 (see (1)). However, for matches with a branching point path (see (2)), we
need to decide if all entries of the corresponding array provide the same type
of information or different types. In the first case, e.g. an array specifying the
authors of a paper, we need to match all paths that are equal (index values omit-
ted) of the API response with the same relation. This is the case in the example
in Fig. 1a for the path authors.*.name. In the last case, where every entry of
the array has a different type, each different index value at the branching point
should be mapped to one specific relation, possibly different relations for the dif-
ferent index values. In the example, facets.0.value("2020") always denotes
the year of the publication, whereas facets.1.value("Computer Science")
denotes the genre of the publication. Therefore, matching either the year or the
genre relation of K to facets.*.value is incorrect and should be prevented.

In order to solve these problems, FiLiPo distinguishes two cases: fixed path
matches (FPM) and branching point matches (BPM). First, for every relation
r for which at least one tuple (r, p,m) exists in Arin we determine the path P∗
(index values are replaced by the wild card symbol) that was matched most often
in Arin , regardless of which similarity method m was used.

Next it is determined if (r, P∗) ∈ Arin is a BPM or FPM. Hence, it is checked
if the path P∗ that was matched to r in Arin only had one index value at the
branching point or multiple different ones (see Arin in Fig. 3, blue highlighted
lines). An example of a fixed path is facets.0.value in the set Arin in Fig. 3.
To indicate the year, always the same path is used in the API response. The
first entry of the array facets always describes the year of a publication. If only
one index value is found, it is considered as FPM. To ensure that it is a valid
FPM, a confidence score for this match is determined. If a path was found only
a few times, a match is not convincing. Hence, we calculate a confidence score

254 T. Zeimetz and R. Schenkel

Fig. 3. Example Fragment of Arin with abbreviated names for readability.

for the matching by dividing the number of valid matches for r by the number of
responses. This confidence must be greater than the confidence threshold θrec.
We reuse θrec based on the assumption that the overlapping of records is also
reflected in the overlapping of relations. In the example in Fig. 3 (right side) it
is shown that for facet.0.value and year 85 matches (using Equal) are found.
Assuming that 100 requests are sent to the API and all are answered, this results
in a confidence of 85

100 = 0.85. If the score is greater than or equal to θrec, it will
yield as valid FPM and the relation-path match is added to the final alignment
set. Note that another example for a FPM is the match of title and label.

Some relations and paths are dependent on the previous entity. For exam-
ple, to match the name path for an author we have to include the whole
author array of the API response because matching only one specific path (e.g.
authors.0.name) excludes information of other authors. Hence, if more than
one index value was found for P∗ it is possible that (r, P∗) is a BPM. A match
of r and a branching point path P∗ is considered valid if the following two con-
ditions are satisfied: (1) if the relation r has led to a match often enough, i.e. the
previously computed confidence value is ≥ θrec, and (2) if the matched (r, P∗)
occurs frequently enough in all matches Arin . If both conditions are met, the
match (r, P∗) is considered a BPM and added to the final alignment set.

For the sake of simplicity, one aspect has yet not been considered in detail.
Some relations can potentially be matched with multiple paths in the API
response. For example, the relation for the publication year could be incorrectly
matched with the path to the publication years of the article’s references. As
already indicated in the problem statement, just because the values match, it
does not mean that it is a valid match. Hence the semantics of the paths should
be considered but API responses do not always have a clear or a directly result-
ing semantics. To mitigate this, a reciprocal discount is used, i.e. the number n
of matches found for a possibly incorrect path p and a relation r is discounted
by the length difference of the paths to n/|(len(r) − len(p))|. Thus paths with
the same length (and potentially same structure) as the KB are preferred. In
this way, the structure of the data is taken into account, but there is no depen-
dence on the paths having unambiguous and clear semantics. At the end the
final alignment set contains all valid matches found for the input relation rin.

A Sample Driven Approach for Finding Linkage Points 255

6 Evaluation

Many systems [4,13] in Sect. 3 work semi-automatically with user assistance and
are mostly designed for data of the same format. Some of the systems exploit
schema information, use semantics or “sameAs” relations to find alignments.
However, schema information exists rarely on the API side and using semantics
or relations is difficult since API responses do not always have clear semantics.
Furthermore, “sameAs” predicates are a concept of RDF and not present in
classical API responses. Thus, we only use DORIS as a baseline system.

Datasets. We evaluated DORIS and FiLiPo on three KBs, seven bibliographic
and two movie APIs. One KB is an RDF version of dblp5. The other KBs are
Linked Movie DB6 and a self-created RDF version of IMDB. The used APIs are
SciGraph, CrossRef, Elsevier, ArXiv, two APIs provided by Semantic Scholar
(one with DOIs and one with ArXiv keys as input parameters) and the COCI
API of Open Citations. All of these APIs respond with metadata about scientific
articles. To align the movie KBs we used the APIs of the Open Movie Database
(OMDB) and The Movie Database (TMDB). They respond with metadata about
movies, e.g. movie director and movie genres.

As a gold standard7, we manually determined the correct path alignments for
each suitable combination of KB and API. Alignments were ignored that could
not be determined based on the data, but for which a human may have been
able to draw a connection. For example sameAs relations, in most cases, cannot
be determined automatically since the URLs may differ completely.

FiLiPo Evaluation. In order to find a suitable configuration (sample size and
similarity thresholds) that works for most APIs, we performed several experi-
ments. FiLiPo works with two different thresholds: the string similarity θstr and
the record overlap θrec. To identify a combination that provides good alignment
results, we tested several combinations of values for both thresholds (steps of
0.1) and calculated precision, recall and F1 score. The found alignments had a
very high precision for θstr between 1.0 and 0.5; recall was significantly better
at 0.5. This is mainly due to the fact that data which are slightly different (e.g.
names) can still be matched. For large values of θrec, many alignments are lost,
because the data of a KB and an API overlap only slightly in the worst case.
Here, a value of 0.1 to 0.2 was already sufficient to prevent erroneous matching.
Hence, we used θstr = 0.5 and θrec = 0.1 in the experiments. Regarding the
sample size we determined that 25 probing and 75 additional requests (sample
size of 100) is suitable for most APIs. However, since some KBs and APIs have
little data in common, the sample size may need to be adjusted.

We assume that users have no in-depth knowledge of used APIs, but are
familiar with the structure of the KB, and that users have domain knowledge
and hence understand common data structures from the genre of the KB (e.g.

5 Provided by dblp: https://basilika.uni-trier.de/nextcloud/s/A92AbECHzmHiJRF.
6 http://www.cs.toronto.edu/∼oktie/linkedmdb/linkedmdb-18-05-2009-dump.nt.
7 Code and gold standard can be found at https://zenodo.org/record/4778531.

https://basilika.uni-trier.de/nextcloud/s/A92AbECHzmHiJRF
http://www.cs.toronto.edu/~oktie/linkedmdb/linkedmdb-18-05-2009-dump.nt
https://zenodo.org/record/4778531

256 T. Zeimetz and R. Schenkel

Table 1. Probing Time (PT), Alignment Time (AT), (Average) Alignments (A),
(Mean) Precision (P), (Mean) Recall (R), (Mean) F1 Score (F1)

Data Sets FiLiPo DORIS

Requests PT AT A P R F1 A P R F1

dblp ↔ CrossRef 25/75 18.0 4.0 18 0.97 0.78 0.91 9 0.89 0.36 0.51

dblp ↔ SciGraph 25/75 14.5 2.5 18 0.96 0.78 0.86 11 1.00 0.38 0.55

dblp ↔ S2 (DOI) 25/75 24.5 8.0 15 0.89 0.87 0.88 12 0.83 0.47 0.60

dblp ↔ S2 (ArXiv) 25/75 24.5 9.0 7 1.00 0.88 0.94 6 0.83 0.33 0.47

dblp ↔ COCI 25/75 23.0 19.0 16 1.00 0.78 0.88 9 1.00 0.33 0.50

dblp ↔ Elsevier 25/375 17.5 5.5 13 0.92 0.92 0.92 – – – –

LMDB ↔ TMDB 25/75 4.5 2.0 6 0.94 1.00 0.97 7 0.57 0.80 0.67

dblp ↔ ArXiv 25/75 11.5 3.5 8 0.83 0.86 0.85 5 1.00 0.43 0.60

LMDB ↔ OMDB 25/75 36.5 3.5 14 0.93 0.95 0.94 11 0.55 0.56 0.55

IMDB ↔ OMDB 25/75 4.0 14.5 9 0.73 0.66 0.69 9 1.00 0.90 0.95

bibliographic meta data). Additionally, users can make further settings (e.g.,
changing the sample size) to fine-tune FiLiPo. All APIs were executed with
default settings, i.e. 25 probing with 75 additional requests (in total 100 requests)
are made for every valid input relation. There are two exceptions: Since dblp
contains relatively few publications by Elsevier, we set the number of additional
requests to 375. For IMDB, we use a record overlap threshold of 0.3 since IMDB
contains several relations with low functionality (e.g. movieLanguage) and hence
incorrect matches would be tolerated. In contrast, DORIS excludes all relations
with a low functionality from the alignment process. Hence, it prevents the result
for erroneous matches but also loses some matches.

Since FiLiPo pulls random records from a KB and uses them to request an
API, the alignments found may differ slightly between different runs. Hence,
the evaluation was performed three times for each combination of KB and API.
The average runtime was approx. 25 min. If input relations are known, as is the
case with DORIS, then the system usually needs no longer than a few minutes
because the probing phase can be skipped. The probing phase is expensive in
runtime because an API is requested a significant number of times (see Table 1).

FiLiPo was able to identify all correct input relations for almost all APIs.
The only exception is the combination of IMDB and OMDB: IMDB contains a
relation (alternativeVersion) to specify an alternative version of a movie (e.g.
a directors cut is an alternative version of a movie) which is a valid input for
OMDB. Of four possible input relations, it was able to identify all (alternative)
title relations (title, label and alternativeTitle) as input relation in all
runs, but only determined in 60% of the runs the alternativeVersion as input.
The reason for this is that especially the alternative version of lesser-known
movies are unknown to OMDB. It can be summarised that in all cases a valid
input was found but only in 9 of 10 cases all valid input relations were found.

For the evaluation we used the metrics precision, recall and F1 Score. FiLiPo
was able to achieve a precision between 0.73 to 1.00 and a recall between 0.66

A Sample Driven Approach for Finding Linkage Points 257

to 1.00. Values close to 1.0 are achieved mainly because there are only a few
possible alignments. The F1 scores for FiLiPo are between 0.69 and 0.95.

Baseline Evaluation. We re-implemented DORIS for our evaluation. It uses
label information of instances as its predefined input relation for APIs. Since
this is not always the appropriate input parameter for an API (e.g. some APIs
expect DOIs as input) we modified DORIS such that the input relation can be
specified by the user. Compared to FiLiPo, DORIS has an advantage in the
evaluation, since it does not have to determine valid input relations for the used
APIs. In contrast to FiLiPo, these input relations must be specified by the user
and hence the runtime is shorter and there is no risk of alignment with wrong
input relations. DORIS uses two different confidence metrics to determine an
alignment: the overlap and PCA confidence. We assessed that the PCA con-
fidence delivers better results for the alignment and hence DORIS is able to
match journal-related relations. Since most of the entities in dblp are conference
papers, journal specific relations are lost when using the overlap confidence. The
downside is that a path that was found only once in the responses only needs
to match once to achieve a high confidence. In such cases it is risky to trust the
match and hence a re-probing is performed which increases the runtime consid-
erably, since entities that share the matched relation are subsequently searched
and ranked. DORIS has been configured in order to send 100 requests to the
APIs. The threshold for the PCA confidence has been set to 0.1 based on a cali-
bration experiment similarly to FiLiPo testing several threshold values between
0.1 and 1.0 (in steps of 0.1). With threshold 0.1, no erroneous alignments were
made; recall was significantly larger at 0.1 than with larger values.

FiLiPooutperforms DORIS in terms of precision in most cases and clearly in
terms of recall and F1. This is mainly caused by the two disadvantages of DORIS
discussed before: First, aligning with entities with most facts often misses rare
features of entities (e.g. a specific publisher like Elsevier). As a result, it is not
possible to determine an alignment for Elsevier’s API (see Table 1). However,
in order to be able to evaluate the alignment process, we restricted DORIS in
the case of Elsevier to only use journals published by Elsevier which resulted
in an F1 score of 0.85. Second, using only one similarity method results in a
relatively high precision, but is also too rigid to recognise slightly different data
(e.g. abbreviations of author names), thus leading to low recall. Only with IMDB,
DORIS was able to achieve better results, mainly because DORIS excludes all
relations with a very low functionality from the alignment process. This is also
the reason why DORIS was significantly worse in terms of recall in the other
alignment tests. However, since OMDB responds with only a small amount of
information, in which no information with a high functionality was included,
this limitation does not have a negative effect but rather a positive one.

258 T. Zeimetz and R. Schenkel

7 Conclusion

We presented FiLiPo, a system to automatically discover alignments between
KBs and APIs. A user only needs knowledge about a KB but no prior knowledge
about an APIs data schema. In contrast to the DORIS system, our system is
additionally able to determine valid input relations for APIs which significantly
reduces manual effort by the user. In all cases a valid input relation was found by
FiLiPo but only in 9 of 10 cases all input relations were found. Our evaluation
showed that FiLiPo outperformed DORIS and delivered better alignment results
in all but one case. In contrast to DORIS, it determined an alignment in all cases.

References

1. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence
labeling. In: COLING, pp. 1638–1649 (2018)

2. Baltes, S., Dumani, L., Treude, C., Diehl, S.: SOTorrent: reconstructing and ana-
lyzing the evolution of stack overflow posts. In: MSR, pp. 319–330. ACM (2018)

3. Bernstein, P.A., Madhavan, J., Rahm, E.: Generic schema matching, ten years
later. Proc. VLDB Endow. 4(11), 695–701 (2011)

4. Dhamankar, R., Lee, Y., Doan, A., Halevy, A.Y., Domingos, P.M.: iMAP: discov-
ering complex mappings between database schemas. In: SIGMOD, pp. 383–394.
ACM (2004). https://doi.org/10.1145/1007568.1007612

5. Hogan, A., Polleres, A., Umbrich, J., Zimmermann, A.: Some entities are more
equal than others: statistical methods to consolidate linked data. In: 4th Workshop
on New Forms of Reasoning for the Semantic Web: Scalable & Dynamic (2010)

6. Koutraki, M., Preda, N., Vodislav, D.: SOFYA: semantic on-the-fly relation align-
ment. In: EDBT, pp. 690–691 (2016). https://doi.org/10.5441/002/edbt.2016.89

7. Koutraki, M., Preda, N., Vodislav, D.: Online relation alignment for linked
datasets. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler,
P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 152–168. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-58068-5 10

8. Koutraki, M., Vodislav, D., Preda, N.: Deriving intensional descriptions for web
services. In: CIKM, pp. 971–980. ACM (2015). https://doi.org/10.1145/2806416.
2806447

9. Koutraki, M., Vodislav, D., Preda, N.: DORIS: discovering ontological relations in
services. In: ISWC. CEUR Workshop Proceedings, vol. 1486 (2015)

10. Madhavan, J., Bernstein, P.A., Doan, A., Halevy, A.Y.: Corpus-based schema
matching. In: ICDE, pp. 57–68 (2005). https://doi.org/10.1109/ICDE.2005.39

11. Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In: VLDB, pp. 49–58. Morgan Kaufmann (2001)

12. Derouiche, N., Cautis, B., Abdessalem, T.: Automatic extraction of structured web
data with domain knowledge. In: ICDE. IEEE Computer Society (2012). https://
doi.org/10.1109/ICDE.2012.90

13. Qian, L., Cafarella, M.J., Jagadish, H.V.: Sample-driven schema mapping. In: SIG-
MOD, pp. 73–84. ACM (2012). https://doi.org/10.1145/2213836.2213846

14. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001). https://doi.org/10.1007/s007780100057

https://doi.org/10.1145/1007568.1007612
https://doi.org/10.5441/002/edbt.2016.89
https://doi.org/10.1007/978-3-319-58068-5_10
https://doi.org/10.1145/2806416.2806447
https://doi.org/10.1145/2806416.2806447
https://doi.org/10.1109/ICDE.2005.39
https://doi.org/10.1109/ICDE.2012.90
https://doi.org/10.1109/ICDE.2012.90
https://doi.org/10.1145/2213836.2213846
https://doi.org/10.1007/s007780100057

A Sample Driven Approach for Finding Linkage Points 259

15. Senellart, P., Mittal, A., Muschick, D., Gilleron, R., Tommasi, M.: Automatic
wrapper induction from hidden-web sources with domain knowledge. In: WIDM.
ACM (2008). https://doi.org/10.1145/1458502.1458505

16. Suchanek, F.M., Abiteboul, S., Senellart, P.: PARIS: probabilistic alignment of
relations, instances, and schema. Proc. VLDB Endow. 5(3), 157–168 (2011).
https://doi.org/10.14778/2078331.2078332

17. Zeimetz, T., Schenkel, R.: Sample driven data mapping for linked data and web
apis. In: CIKM, pp. 3481–3484. ACM (2020). https://doi.org/10.1145/3340531.
3417438

https://doi.org/10.1145/1458502.1458505
https://doi.org/10.14778/2078331.2078332
https://doi.org/10.1145/3340531.3417438
https://doi.org/10.1145/3340531.3417438

SMAT: An Attention-Based Deep
Learning Solution to the Automation

of Schema Matching

Jing Zhang1(B), Bonggun Shin2, Jinho D. Choi1, and Joyce C. Ho1

1 Emory University, Atlanta, GA 30329, USA
{jing.zhang2,jinho.choi,joyce.c.ho}@emory.edu

2 Deargen Inc., Seoul, South Korea
bonggun.shin@deargen.me

Abstract. Schema matching aims to identify the correspondences
among attributes of database schemas. It is frequently considered as
the most challenging and decisive stage existing in many contemporary
web semantics and database systems. Low-quality algorithmic match-
ers fail to provide improvement while manually annotation consumes
extensive human efforts. Further complications arise from data privacy
in certain domains such as healthcare, where only schema-level match-
ing should be used to prevent data leakage. For this problem, we pro-
pose SMAT, a new deep learning model based on state-of-the-art natural
language processing techniques to obtain semantic mappings between
source and target schemas using only the attribute name and descrip-
tion. SMAT avoids directly encoding domain knowledge about the source
and target systems, which allows it to be more easily deployed across
different sites. We also introduce a new benchmark dataset, OMAP, based
on real-world schema-level mappings from the healthcare domain. Our
extensive evaluation of various benchmark datasets demonstrates the
potential of SMAT to help automate schema-level matching tasks.

Keywords: Schema-level matching · Natural language processing ·
Attention over attention

1 Introduction

The tremendous growth and availability of data can benefit a broad range of
applications such as healthcare, energy, transportation, and smart buildings.
Unfortunately, across many domains, data is collected using a wide variety of
database systems with customized schemas developed for each company or pur-
pose. The customized databases can hinder data exchange, data integration, and
large-scale analytics. Schema matching aims to establish the correspondence
between the fields of a source and target database schema – a decisive initial
step in the standardization of different databases. Automation of the schema
matching task has received steady attention in the database and AI communi-
ties over the years. It has also been adopted as a practical and principled tool
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 260–274, 2021.
https://doi.org/10.1007/978-3-030-82472-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-82472-3_19

SMAT 261

to improve the modeling and implementation of data exchange and data inte-
gration [2,21,26]. Yet, this problem remains largely unsolved and still requires
significant manual labor.

Given the importance of schema matching and the time-intensive nature of
the task, it is crucial to develop new methods to help expedite the process.
Several automated schema matching methods have been proposed, including
constraint-based approaches [5,13,33] and linguistic-based approaches [18,20,
23,38]. While the existing methods have achieved high performance in different
domains, they suffer from several limitations. The constraint-based approaches
analyze the element contents, which is not always guaranteed to be the same
across the two schemas. Moreover, it assumes the data on both sides can be
queried, which can violate privacy constraints. For the linguistic approaches,
the relations are hand-coded between the two schemas or may not properly
capture the similarity between the field descriptions. Numerous matching tools
(matchers) can generate correspondences between pairs of schemas [6,13]. Yet
they rely on heuristic techniques. Recently, a deep neural network (DNN)-based
model, ADnEV, was proposed to utilize similarity from existing matchers and
post-process the results to work across domains [35]. However, ADnEV is limited
by the capability of existing matchers and may not generalize to all domains.

Given the rising importance of schema integration involving sensitive data,
such as in healthcare, we focus on schema-level matching rather than instance-
level or hybrid schema matching. This paper posits that the schema matching
process (i.e., source schema elements to target schema elements and its attributes
matching) can be viewed as inferring the relatedness (or similarity) between the
source and target fields. We propose SMAT, a DNN-based model with attention
that extends recent advances in natural language processing and sentiment anal-
ysis. SMAT captures the semantic correlation from the source schema attributes to
the target schema attributes based on the name and descriptions. Moreover, our
model can be used to automatically generate the matching between the source
and target schemas without encoding domain knowledge. We also introduce a
new publicly available dataset that annotates several source to target conver-
sions in the healthcare domain. We perform extensive evaluations of SMAT on
a variety of datasets.

2 Related Work

This section describes the existing works related to schema-level matching that
only considers schema information and not instance data. For a detailed survey
on schema matching, we refer the reader to [33]. Table 1 provides a brief com-
parison of some related works and our model along four categories (i.e., whether
it is schema-level matching, what the match cardinality is, whether it captures
rich text, and whether it utilizes deep-learning framework).

One line of schema matching work is the constraint-based approach. Most
schemas contain constraints to define the attributes such as data types and
value ranges, uniqueness, optionality, relationship types and cardinalities [33].

262 J. Zhang et al.

Table 1. Comparison between different approaches on various categories.

Approach Schema-level Cardinality Rich text Deep learning

Constraint-based [3] No 1:n No No

Linguistic content-based [23] Yes n:1 No No

ADnEV [35] Yes n:1 No Yes

DITTO [26] No n:1 Yes Yes

SMAT Yes n:1 Yes Yes

Similarity can be measured by data types and domains, key characteristics (e.g.,
unique, primary, foreign), and relationship cardinality [1,14,28]. Recently, [3]
proposes a hybrid of the constraint-based approach using key characteristics and
the instance itself to create the meta-schema. Unfortunately, such approaches
cannot readily handle the n:1 scenario that can be found in schema matching.
For example, if the source schema contains “starttime” and “endtime” and the
target schema contains “Duration”, the meta-schema mapping can not generate
and convert the two attributes into the single target.

An alternative method is the linguistic content-based approach, which utilizes
names and text to explore semantically similar schema elements. There are two
primary linguistic data mapping techniques: name matching and description
matching. The idea behind these techniques is to calculate similarity based on
either the name of the fields or the description of the fields, respectively. In
name matching, the similarity of names can be defined and measured through
equality of names, equality of synonyms, similarity of names based on common
substrings and user-provided name matches. However, consulting a synonym
lexicon has limitations since it is common to use abbreviations for attribute
names (e.g., DOB for date of birth, SSN for Social Security number, etc.) and
may not identify the relationships.

Description matching is based on the idea that schemas usually contain ele-
ment and attribute names in natural language to express the intended semantics
of schema elements. The process involves the identification of two semi-related
data objects and the creation of mappings between them. In a recent work [23],
the authors utilized the UMBC EBIQUITY-CORE technique [19] to obtain the
similarity of the comments of schemas. Yet, it may not capture the similarity
between the descriptions. For example, the similarity score between “the com-
ment of the book” and “the review of the article” is 0.39 (1 is the same and 0 is
dissimilar). Another work used word embeddings to link datasets [15]; however
it only embeds the table name which may not yield sufficient information.

With the development of DL techniques, entity matching [4,26], ontology
alignment [24], and instance-level schema-matching [25] can utilize rich tex-
tual information to provide better solutions. However, both entity matching and
instance-level schema matching assume the data can be queried on both sides,
which can violate data privacy constraints. For schema-level matching, [30] pro-
posed a probabilistic graphical model and achieved a good score on precision and

SMAT 263

recall. Recently, ADnEV was proposed to utilize a DL technique to post-process
the matching results from other matchers and outperformed existing models.
However, the quality of the matchers limits the potential of the model.

3 SMAT: A DNN Model

3.1 Problem Statement

Given two table descriptions STS and STT , two attributes names NF1 and
NF2, and their descriptions SF1 and SF2 from the source and target schema
respectively, we construct two sets of sentences. The source sentence set SS =
{NF1, STS + SF1} = {w1, w2, ..., wn} consists of n words, and the target sen-
tence set ST = {NF2, STT + SF2} = {w1, w2, ..., wn′} consists of n′ words. For
the training data, there is an annotated label L(SS , ST) where 0 denotes two
fields are not related (i.e., not mapped to each other), and 1 denotes two sen-
tences are related (i.e., corresponding attribute-to-attribute matching). Table 2
provides an example of the sentence pair. Thus the task objective is to classify
the semantic relation of each sentence pair to reveal the attribute-to-attribute
matching.

3.2 Overview

The task of determining the relatedness between two attributes descriptions can
be viewed as inferring the similarity of two sentence pairs in NLP tasks. Since
DNNs can be trained end-to-end without any prior knowledge (i.e., no need
to implement feature engineering), they have been utilized for text similarity
tasks. For sentiment classification, InferSent introduced an end-to-end DNN and
achieved a higher performance than existing sentiment analysis models [8]. Yet
there are two major limitations to adopting such models for the schema matching
task. First, the element and attribute description may not contain sufficient
information to distinguish it from others. Second, the descriptions may have
abbreviations or words that have unknown word representations.

To address the above limitations, SMAT consists of 4 major modules (shown
in Fig. 1). First, the input embedding of the sentences utilizes a hybrid encoding
to deal with large vocabularies for any input text. Second, bidirectional Long
short term memory (BiLSTM) networks are used to capture the hidden seman-
tics of the words in the description and the column name separately. Third, the
attention over attention (AOA) mechanism [9] is adopted to model the correla-
tion between the column name and its description to obtain a better sentence
representation.

The final prediction layer uses the sentence representations to make an accu-
rate classification. We also introduce data augmentation and controlled batch
sample ratios (CBSR) to deal with the class imbalance problem that is present
in schema matching tasks.

264 J. Zhang et al.

Fig. 1. Illustration of SMAT’s structure

3.3 Input Embedding and BiLSTM

Existing word embedding models such as GloVe [32] are limited by vocabulary
size or the frequency of word occurrences. As a result, rare words like ICD-
9 result in unknown tokens. Byte-Pair Encoding (BPE) is a hybrid between
character- and word-level representations which can deal with the large vocabu-
laries common in natural language corpora [34]. Instead of full words, BPE learns
sub-words units to tokenize any input text without introducing any “unknown”
tokens.

Thus, SMAT uses BPE to tokenize the input text. Each word/sub-word wi in
the sentence S1 = {w1, w2, ..., wn} is then mapped to a high-dimensional vector
ei, using GloVe embeddings. While we use GloVe due to its popularity, any word
embedding representation can be used.

To capture the contextual nature of the text, a BiLSTM network is utilized
to capture the hidden semantics. Compared with the standard LSTM, BiLSTM
can utilize both the past and the future information to yield better sentence
representations. Thus, after the word embedding is obtained for each set of
words (i.e., attribute name or attribute description), the embeddings are fed to
a BiLSTM network.

SMAT 265

3.4 Attention-over-Attention (AOA)

The output of the BiLSTM is dealt with using two approaches. All the informa-
tion in the sequence is captured using the max-pooling operator to compress the
sequence into a single unified vector. However, one limitation of this representa-
tion is the inability to capture interactions between the attribute name and its
description. The second approach uses an attention over attention (AOA) mod-
ule to model this interaction. AOA was first proposed for the question answering
task [9]. Since calculating the dot product and difference of two sentence rep-
resentations fail to capture fine-grained relations on the word level, the AOA
module introduces mutual attention to simultaneously capture the relationships
between attribute name to description and description to attribute name.

Our AOA module captures the correlations between the attribute names and
the text using two mechanisms. Let hc ∈ Rm×2h denote the attribute name
representation, where m is the attribute name length (i.e., number of words in
the attribute name) and h is the hidden dimension. Let hs ∈ Rn×2h denote the
element-attribute description representation, where n is the description length
and h is the hidden dimension. The module first calculates the pair-wise interac-
tion matrix I = hs · hT

c , where the value of each entry represents the correlation
of each word pair between the description and attribute name. A column-wise
softmax and row-wise softmax is applied to the interaction matrix I, to obtain
the attribute name to description attention, α, and description to attribute name
attention, β, respectively. Thus for the tth attribute word and kth text descrip-
tion, the associated attentions are:

α(t) = softmax(I(1, t), I(2, t), · · · , I(m, t)) (1)
β(k) = softmax(I(k, 1), I(k, 2), · · · , I(k, n)) (2)

Then, the attribute name-level attention β̄ is calculated using a column-wise
averaging of β. This attention indicates the important words in the attribute
name. Finally, the sentence-level attention γ ∈ Rn can be obtained by a weighted
sum of each individual attribute name to description attention α. By considering
the contribution of each word explicitly, the AOA module learns the important
weights for each word in the sentence.

αij =
exp(Iij)∑
i exp(Iij)

βij =
exp(Iij)∑
j exp(Iij)

β̄ =
1
n

∑

i

βij

γ = α · β̄T

The two sets of final description level attentions for the source and target, γs
and γt, are concatenated along with the difference between the two max-pooled
attribute description representations. The new vector representation, P , is sent

266 J. Zhang et al.

Table 2. An example entry from the OMAP dataset.

CDM schema Source schema CDM description

(Des 1)

Source description

(Des 2)

Label

person-person id beneficiary

summary-

desynpuf id

the person domain contains

records that uniquely

identify each patient in the

source data who is time

at-risk to have clinical

observations recorded

within the source systems.a

unique identifier for each

person

beneficiarysummary pertains

to a synthetic medicare

beneficiary. beneficiary code

1

to the final classification layer which consists of several fully-connected layers
and a softmax layer to predict whether or not two sentences are related.

3.5 Data Augmentation and Controlled Batch Sample Ratio

As attribute-to-attribute mapping generally results in a skewed distribution,
SMAT uses data augmentation and controlled batch sample ratio (CBSR) to
achieve better predictive performance. Data augmentation occurs on two lev-
els. First is to generate new positive samples using synonyms for different words
in the descriptors. For example, an augmented sample may replace the word
“uniquely” with “unambiguously” and “identify” with “describe”. However,
since the number of synonyms is limited, we utilize a second technique to improve
the attribute name description. We use the part-of-speech (POS) tags for the
descriptions and concatenate the identified nouns to enlarge the dataset safely.

Since SMAT uses batch SGD to learn the parameters, a batch can contain no
positive samples and thus only properly learn the representation for negative
samples. Thus, we controlled the ratio of positive samples in each batch size
to ensure that our model learns from a few positive examples for each batch
[12]. Note that since the positive samples are small, they are likely to be chosen
repeatedly, while there is diversity in the negative samples.

4 OMAP: A New Benchmark Dataset

Since existing matching datasets only spans purchase orders, web forms, and
bibliographic references, we created OMAP, a new benchmark schema-level match-
ing dataset that annotates several source-to-target mappings in the healthcare
domain. Healthcare data is collected worldwide using a wide variety of coding
systems. To draw conclusions with statistical power and avoid systematic biases,
a large number of samples should be analyzed across disparate data sources
and patient populations. Such broad analyses requires data harmonization to a
common data standard (e.g., the Observational Medical Outcomes Partnership
(OMOP) Common Data Model (CDM) standard) to facilitate evidence gather-
ing and informed decision making [31]. Since patient data cannot be queried due

SMAT 267

Table 3. Summary statistics of each conversion captured in OMAP.

Data source # elements # attributes # Positive labels # sentence pairs

MIMIC 25 240 129 64080

Synthea 12 111 105 29637

CMS 5 96 196 25632

Table 4. Summary statistics of the additional benchmark datasets used.

Data source # elements # related # pairs # Domains

Purchase order [11] 50–400 659 63933 1

OAEIa 80–100 9494 825021 1

Web-forms [16] 10–30 5548 201769 18
aThe OAEI competitions can be found at http://oaei.
ontologymatching.org/2011/benchmarks/

to privacy concerns, schema-level matching is of great importance. OMAP maps
between three different healthcare databases and the OMOP CDM standard.

1. MIMIC-III [22]: A publicly available intensive care unit (ICU) relational
database from the Beth Israel Deaconess Medical Center.

2. Synthea [37]: An open-source dataset that captures the medical history of
over one million Massachusetts synthetic patients.

3. CMS DE-SynPUF [7]: A set of realistic claims data generated from 5% of
Medicare beneficiaries in 2008.

For each dataset, the element table name with its descriptions and attribute
column name with its descriptions are used to construct a sentence. The label
is based on the final ETL design. If the table-column in the source schema was
mapped to a table-column in the OMOP CDM the label is 1, otherwise it is 0.
Table 2 provides one example from the OMAP dataset.

OMAP currently contains 121,689 matching pairs from three different datasets
and is available publicly on Github1. The summary statistics for each of the
three conversions are captured in Table 3.

Note that the dataset does not contain any patient information, only
attributes and their descriptions.

5 Experiments

We designed the experiments to answer three key questions: (1) How accurate
is SMAT in automating the schema matching? (2) How sensitive is SMAT to the
training size? (3) How important are the different components of SMAT?

1 https://github.com/JZCS2018/SMAT.

http://oaei.ontologymatching.org/2011/benchmarks/
http://oaei.ontologymatching.org/2011/benchmarks/
https://github.com/JZCS2018/SMAT

268 J. Zhang et al.

5.1 Dataset

We use the OMAP dataset to evaluate our proposed model (see Table 3 and Sect. 4).
We also used three popular schema matching benchmark datasets as shown
in Table 4. Reference matches in these datasets were manually constructed by
domain experts and considered as ground truth for our purposes. Experiments
are performed per dataset consistent with existing schema matching papers
[17,30,36]. For each dataset, 80% was used to train the initial prediction model,
the 10% used to further tune the weights, and the remaining 10% used to eval-
uate the experiments.

5.2 Baseline Models

SMAT is evaluated against five baseline models. For data sensitivity purposes,
we focused only on schema-level matching. The entity matching solutions that
involve semantic relatedness technique are chosen to represent the existing
schema matching or entity matching work.

– ADnEV [35]. A schema matching model that utilizes DNN to post-process
results from state-of-the-art (SOTA) matchers in an iterative manner.

– InferSent [8]. A SOTA sentence embedding model that classifies the sen-
timent between two sentences. The last layer is modified to tackle a binary
classification task. GloVe embeddings [32] are used for the input sentences.

– DeepMatcher [29]. An entity matching solution that customizes the Recur-
rent Neural Network (RNN) architecture to aggregate the attribute values
then compares the aggregated representations of attribute values.

– DITTO [26]. A SOTA entity matching model that cast the problem as
a sequence-pair classification and fine-tunes RoBERTa [27], a pre-trained
Transformer-based language model.

– BERT [10]. Bidirectional Encoder Representations from Transformers
(BERT) has achieved SOTA results in many natural language understand-
ing tasks. We fine-tuned the pre-trained BERT-base-uncased model on our
datasets.

5.3 Experimental Setup

We implemented SMAT and the baseline models in Python 3.6 using PyTorch.
Our code is made publicly available on Github2. Performances were measured
on the Google Cloud Platform with Intel Xeon E5 v3 CPU @ 2.30 Ghz, and a
Nvidia Tesla K80 with 12 GB Video Memory.

For experiments in this paper, the embedding dimension is 300. The number
of hidden units of BiLSTM is 1024 for InferSent and 300 for SMAT. For the
classification model, we apply a fully connected layer with one hidden layer of
512 hidden units. Stochastic gradient descent is chosen as the optimize algorithm
with a batch size of 64. The learning rate and weight decay are 0.1 and 0.99 for
2 https://github.com/JZCS2018/SMAT.

https://github.com/JZCS2018/SMAT

SMAT 269

Table 5. Comparison of precision (P), recall (R), and F1 (F) on the datasets.

Dataset ADnEV InferSent DeepMatcher DITTO BERT SMAT

P R F P R F P R F P R F P R F P R F

MIMIC 0.08 34 0.16 9.8 76.9 17.4 0.04 38.1 0.09 0.3 46.2 0.6 0.4 84.6 0.7 11.5 84.6 20.2

CMS 0.49 44 0.97 20.8 80.0 32.9 0.31 60.7 0.62 2.4 40 4.5 2.4 55.0 4.5 33.9 95.0 50.0

Synthea 0.14 21 0.28 19.2 90.9 31.7 0.06 48.8 0.13 0.7 63.6 1.3 0.9 100 1.8 24.4 90.9 38.5

Purchase order 80 77 78 14.3 59.6 23.1 48.9 80.2 60.8 54.5 98.6 70.2 54.0 98.2 69.7 57.9 99.5 73.2

OAEI 78 76 76 84.5 99.9 91.5 56.1 62.9 59.3 80.5 99.9 89.2 78.3 99.8 87.8 87.8 99.9 93.5

Web-forms 81 69 72 68.4 99.8 81.2 48.2 74.5 58.5 68.8 95.5 80 63.5 96.3 76.5 79.1 99.3 88.1

Average 34.3 49.9 32.5 33.6 78.2 43.3 22.0 56.8 25.8 29.7 69.4 35.4 28.6 88.8 34.7 45.7 87.0 56.3

InferSent and 0.001 and 0.99 for SMAT. For AdnEV, DeepMatcher, DITTO, and
fine-tuning BERT model, Adam is chosen as the optimization algorithm with
a learning rate of 0.001, 0.001, 3e–5, 2e–5, respectively, and the batch size as
64, 64, 64, and 32 respectively. These parameters were obtained from initial
experiments on a subset of the training data as they provided the most robust
performance across multiple runs.

6 Results

6.1 Predictive Performance

Evaluation of SMAT with Existing Baseline Models. Table 5 summarizes
the results of the six models tested on the six datasets. We observe that the
precision and recall varies depending on the dataset suggesting differences in the
semantic content of their attribute names and descriptions. The results demon-
strate that SMAT does not require additional hand-coding due to the overall
strong performance. It achieves the best performance across all three metrics in
3 of the datasets (OAEI, MIMIC, CMS). It also yields the best F1 score for all
but the Purchase Order dataset. Thus, our proposed model is fairly versatile.

ADnEV achieves a higher precision on Purchase Orders and Webforms and
a better F1 score on Purchase Orders than others. Yet, SMAT outperforms the
ADnEV model on OAEI and Web-forms in terms of F1 score by 12.4% and 16.1%
respectively. Moreover, the results on the OMAP datasets illustrate the pitfall of
ADnEV. Since ADnEV leverages other matchers, it is limited by the capability of
the matchers. Thus, ADnEV may not be suitable for all domains. Furthermore,
comparisons of the DNN-based models (InferSent, Fine-tuned BERT, and SMAT)
and ADnEV in terms of F1 and recall also illustrate the power of end-to-end
training without requiring additional feature engineering.

For the OMAP dataset, SMAT achieves a higher precision and recall score sug-
gesting that the prediction capability of SMAT is better than the other mod-
els. However the precision across these four datasets are noticeably lower than
those of Purchase Order, OAEI and Web-forms. This may be a result of the
more complex textual information in the healthcare domain. Moreover, there
are many abbreviations which can prevent the general model from achieving a
higher score. This highlights the importance of benchmarking the models across
various applications and supports the development of OMAP.

270 J. Zhang et al.

Fig. 2. Comparison by domain between ADnEV and SMAT

The results also capture the difference that arises from schema-level match-
ing. Even though DITTO and DeepMatcher perform well in the entity matching
task, they do not offer comparable performance across the different datasets.
This may be due to the inconsistencies across the datasets present in the textual
information. Moreover, InferSent seems to provide better F1 scores compared to
the more complex transformer models outside of the Purchase Dataset. This sug-
gests that the Bi-LSTM based sentence modeling approach shared by InferSent
and SMAT may offer better predictive power compared to the more complex
transformer-based models. In comparing InferSent and SMAT, the results suggest
that SMAT’s attention mechanism and representation can help capture the ele-
ments and attributes in source schema and target schema differences better than
the other models regardless of whether the textual information is rich (OMAP) or
not (Purchase Order, OAEI and Web forms).

Analysis on Web-form, A Cross-domain Schema Matching. The Web-
forms dataset contains 18 domains to represent the cross-domain matching
task. Figure 2 analyzes the match quality per domain and compares the results
between SMAT and ADnEV since ADnEV achieves the best precision. From the
results, we observe that SMAT outperforms ADnEV across all the domains in
terms of recall. Moreover, for the majority of the domains, SMAT offers better
precision and F1 score over ADnEV. For example, the Webmail, Finance, and
News domains are difficult for the ADnEV model. For example, existing match-
ers fail to identify the mappings Measures the price performance of a stock in
comparison to all other stocks (12month Relative Strength) ↔ YTD total return
and Mailbox ↔ @gmail.com (Email). However, SMAT can capture the semantic
meaning of these pairs. The results also demonstrate that ADnEV performs bet-
ter on the domain Forums and Hotels than SMAT. This is because SMAT excludes
the number and type constraints in the element and attribute.

SMAT 271

Fig. 3. F1 score (left) and running time (right) per epoch when varying (%) of training
data

6.2 Training Size Sensitivity and Scalability

We assessed the robustness of SMAT to the size of the training data. We varied
the amount of data used to fit SMAT and evaluate its impact on the test dataset
performance. Figure 3 illustrates the results on the six different datasets in terms
of F1 score and running time. From the results, we notice that SMAT achieves
a decent F1 score with only about 20% training data (the lone exception is
Purchase Orders) and can save 30% of the training time. We also notice that
the running time per epoch is fairly linear suggesting that SMAT is scalable.

6.3 Ablation Study

To gain further insights of the various components in SMAT, we examined the
effectiveness and contributions of the attribute name input, the AOA module,
and the two different class imbalance approaches.

– SMAT w/o AOA: The AOA module is removed and instead the outputs of the
attribute name BiLSTM and description BiLSTM are max-pooled together
and concatenated with the difference of the two descriptions.

– SMAT w/o column: The attribute name is omitted and only the description is
fed into the AOA module to calculate the mutual information with itself.

– SMAT w/o DA: The data augmentation with additional positive samples and
concatenation of nouns to the column name is omitted.

– SMAT w/o CBSR: The batch size is randomly sampled without ensuring pos-
itive samples are present in each batch.

The results of the ablation study are shown in Table 6. It can be seen that
the SMAT model outperforms the rest of four models on F1 and most precision.
In particular, comparing the result with SMAT w/o AOA illustrates the impor-
tance of the AOA module. The module captures the interaction between the
attribute description and the correlated attribute name better than max-pooling
the outputs from BiLSTM. The same conclusion can also be drawn by compar-
ing SMAT w/o AOA and SMAT w/o column, the precision of the former is lower

272 J. Zhang et al.

Table 6. Results for ablation experiments on Precision (P), Recall (R), and F1 (F).

Dataset SMAT w/o AOA w/o column w/o DA w/o CBSR

P R F P R F P R F P R F P R F

MIMIC 11.5 84.6 20.2 10.3 84.6 18.3 10.2 84.6 18.2 10.7 69.2 18.6 0 0 0

CMS 33.9 95.0 50.0 23.5 80.0 36.3 25.4 80.0 38.6 25.8 80.0 39.0 0.13 15.6 0.25

Synthea 24.4 90.9 38.5 15.3 90.0 26.1 20.0 100 33.3 36.4 36.4 36.4 0 0 0

Purchase order 57.9 99.5 73.2 17.7 50.0 26.2 26.9 30.3 28.5 42.1 98.2 58.9 10.7 38.2 16.7

OAEI 87.8 99.9 93.5 83.0 99.9 90.7 83.8 99.9 91.2 85.9 99.9 92.4 35.9 72.5 48.0

Web-forms 79.1 99.3 88.1 75.7 96.7 84.9 76.4 93.5 84.1 70.0 99.8 82.3 32.5 68.4 44.1

than the latter. Even without the attribute name feature and the associated data
augmentation, the AOA module can still generate more useful features.

The ablation results also highlights two benefits of the model. First, the
attribute name is important as there is a noticeable drop in precision across all
the datasets when comparing SMAT w/o column with SMAT and SMAT w/o D/A.
Second, the two techniques for dealing with class imbalance play a crucial role
towards improving the predictive power of the model. The results of SMAT w/o
DA and SMAT w/o CBSR shows that CBSR is more effective toward combating
the skewed data than data augmentation method due to the higher precision
values of the former model.

7 Conclusion

This paper proposes an automated schema-level matching model based on the
semantic meaning of the descriptions. This is particularly beneficial for schema
integration involving sensitive data, such as healthcare domain. The extensive
experiments on a variety of datasets illustrate that SMAT serves as the SOTA
solution for the schema-level matching task. This paper also introduces a new
benchmark dataset, OMAP, that captures three different dataset conversions from
the healthcare domain. As shown in the experiments, OMAP can help assess the
generalizability of schema-level matching models.

Although the empirical results of SMAT are not yet high enough to be put
into practice, this work illustrate the potential of automating schema matching.
Future directions include collecting more data to improve the sentence embed-
ding quality, exploring other DNN architectures to tackle the class imbalance
problem, and incorporating instance-level features to obtain a robust hybrid
schema-level and instance-level model.

Acknowledgements. This work was supported by the National Science Foundation
award IIS-#1838200, National Institute of Health award 1K01LM012924, and Google
Cloud Platform research credits.

SMAT 273

References

1. Alexe, B., Hernández, M., Popa, L., Tan, W.C.: Mapmerge: correlating independent
schema mappings. Proc. VLDB Endow. 3(1–2), 81–92 (2010)

2. Arenas, M., Barceló, P., Libkin, L., Murlak, F.: Foundations of Data Exchange.
Cambridge University Press, Cambridge (2014)

3. Atzeni, P., Bellomarini, L., Papotti, P., Torlone, R.: Meta-mappings for schema
mapping reuse. Proc. VLDB Endow. 12(5), 557–569 (2019). https://doi.org/10.
14778/3303753.3303761

4. Cappuzzo, R., Papotti, P., Thirumuruganathan, S.: Creating embeddings of hetero-
geneous relational datasets for data integration tasks. In: Proceedings of SIGMOD,
pp. 1335–1349 (2020)

5. Ten Cate, B., Kolaitis, P.G., Qian, K., Tan, W.C.: Active learning of GAV schema
mappings. In: Proceedings of SIGMOD/PODS, pp. 355–368 (2018)

6. Chen, C., Golshan, B., Halevy, A.Y., Tan, W.C., Doan, A.: Biggorilla: an open-
source ecosystem for data preparation and integration. IEEE Data Eng. Bull.
41(2), 10–22 (2018)

7. Centers for medicare & medicaid services (cms). https://www.cms.gov/
OpenPayments/Explore-the-Data/Data-Overview.html

8. Conneau, A., Kiela, D., Schwenk, H., Barrault, L., Bordes, A.: Supervised learning
of universal sentence representations from natural language inference data. In:
Proceedings of EMNLP, pp. 670–680 (2017)

9. Cui, Y., Chen, Z., Wei, S., Wang, S., Liu, T., Hu, G.: Attention-over-attention
neural networks for reading comprehension. In: Proceedings of ACL (2017)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of of NAACL-
HLT, pp. 4171–4186 (2019)

11. Do, H.H., Rahm, E.: Coma–a system for flexible combination of schema matching
approaches. In: Proceedings of VLDB, pp. 610–621 (2002)

12. Dong, Q., Gong, S., Zhu, X.: Imbalanced deep learning by minority class incre-
mental rectification. IEEE Trans. Pattern Analy. Mach. Intell. 41(6), 1367–1381
(2019). https://doi.org/10.1109/TPAMI.2018.2832629

13. Fagin, R., Haas, L.M., Hernández, M., Miller, R.J., Popa, L., Velegrakis, Y.: Clio:
schema mapping creation and data exchange. In: Borgida, A.T., Chaudhri, V.K.,
Giorgini, P., Yu, E.S. (eds.) Conceptual Modeling: Foundations and Applications.
LNCS, vol. 5600, pp. 198–236. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-02463-4 12

14. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Schema mapping evolution through
composition and inversion. In: Schema Matching and Mapping, pp. 191–222.
Springer (2011)

15. Fernandez, R.C., et al.: Seeping semantics: linking datasets using word embeddings
for data discovery. In: Proceedings of ICDE, pp. 989–1000 (2018)

16. Gal, A.: Uncertain schema matching. Synth. Lect. Data Manag. 3(1), 1–97 (2011)
17. Gal, A., Roitman, H., Shraga, R.: Learning to rerank schema matches. IEEE Trans.

Knowl. Data Eng. (2019)
18. Halevy, A., Nemes, E., Dong, X., Madhavan, J., Zhang, J.: Similarity search for

web services. In: Proceedings of the 30th VLDB Conference, pp. 372–383 (2004)
19. Han, L., Kashyap, A.L., Finin, T., Mayfield, J., Weese, J.: Umbc ebiquity-core:

semantic textual similarity systems. In: Second Joint Conference on Lexical and
Computational Semantics (* SEM), Volume 1: Proceedings of the Main Conference
and the Shared Task: Semantic Textual Similarity, pp. 44–52 (2013)

https://doi.org/10.14778/3303753.3303761
https://doi.org/10.14778/3303753.3303761
https://www.cms.gov/OpenPayments/Explore-the-Data/Data-Overview.html
https://www.cms.gov/OpenPayments/Explore-the-Data/Data-Overview.html
https://doi.org/10.1109/TPAMI.2018.2832629
https://doi.org/10.1007/978-3-642-02463-4_12
https://doi.org/10.1007/978-3-642-02463-4_12

274 J. Zhang et al.

20. He, B., Chang, K.C.C.: Statistical schema matching across web query interfaces.
In: Proceedings of SIGMOD, pp. 217–228 (2003)

21. Hernandez, M., Ho, H., Naumann, F., Popa, L.: Clio: a schema mapping tool for
information integration. In: 8th International Symposium on Parallel Architec-
tures, Algorithms and Networks (ISPAN 2005), p. 1. IEEE (2005)

22. Johnson, A.E., et al.: Mimic-iii, a freely accessible critical care database. Sci. Data
3, 160035 (2016)

23. Kettouch, M.S., Luca, C., Hobbs, M., Dascalu, S.: Using semantic similarity for
schema matching of semi-structured and linked data. In: 2017 Internet Technologies
and Applications (ITA), pp. 128–133. IEEE (2017)

24. Kolyvakis, P., Kalousis, A., Kiritsis, D.: Deepalignment: unsupervised ontology
matching with refined word vectors. In: Proceedings of NAACL-HLT, pp. 787–798
(2018)

25. Koutras, C., Fragkoulis, M., Katsifodimos, A., Lofi, C.: Rema: graph embeddings-
based relational schema matching. In: EDBT/ICDT Workshops (2020)

26. Li, Y., Li, J., Suhara, Y., Doan, A., Tan, W.C.: Deep entity matching with pre-
trained language models. arXiv preprint arXiv:2004.00584 (2020)

27. Liu, Y., et al.: Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692 (2019)

28. Mecca, G., Papotti, P., Santoro, D.: Schema mappings: from data translation to
data cleaning. In: Flesca, S., Greco, S., Masciari, E., Saccà, D. (eds.) A Compre-
hensive Guide Through the Italian Database Research Over the Last 25 Years.
SBD, vol. 31, pp. 203–217. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-61893-7 12

29. Mudgal, S., Kumar, S.: Deep learning for entity matching: A design space explo-
ration. Tech. rep. (2018)

30. Nguyen, Q.V.H., Weidlich, M., Nguyen, T.T., Miklós, Z., Aberer, K., Gal, A.:
Reconciling matching networks of conceptual models. Tech. rep. (2019)

31. Observational Health Data Sciences and Informatics: The book of OHDSI. Inde-
pendently published (2019)

32. Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word represen-
tation. In: Proceedings of EMNLP, pp. 1532–1543 (2014)

33. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching.
VLDB J. 10(4), 334–350 (2001)

34. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909 (2015)

35. Shraga, R., Gal, A., Roitman, H.: Adnev: cross-domain schema matching using
deep similarity matrix adjustment and evaluation. Proc. VLDB 13(9), 1401–1415
(2020)

36. Toan, N.T., Cong, P.T., Thang, D.C., Hung, N.Q.V., Stantic, B.: Bootstrapping
uncertainty in schema covering. In: Wang, J., Cong, G., Chen, J., Qi, J. (eds.)
ADC 2018. LNCS, vol. 10837, pp. 336–342. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-92013-9 29

37. Walonoski, J., et al.: Synthea: An approach, method, and software mechanism for
generating synthetic patients and the synthetic electronic health care record. J.
Am. Med. Inform. Assoc. 25(3), 230–238 (2017)

38. Wu, W., Yu, C., Doan, A., Meng, W.: An interactive clustering-based approach to
integrating source query interfaces on the deep web. In: Proceedings of SIGMOD,
pp. 95–106 (2004)

http://arxiv.org/abs/2004.00584
http://arxiv.org/abs/1907.11692
https://doi.org/10.1007/978-3-319-61893-7_12
https://doi.org/10.1007/978-3-319-61893-7_12
http://arxiv.org/abs/1508.07909
https://doi.org/10.1007/978-3-319-92013-9_29
https://doi.org/10.1007/978-3-319-92013-9_29

Towards a Cloud-WSDL Metamodel: A
New Extension of WSDL for Cloud

Service Description

Souad Ghazouani1, Anis Tissaoui2(B), and Richard Chbeir3

1 LISI Laboratory of Computer Science for Industrial Systems, Carthage University,
Tunis, Tunisia

2 VPNC Laboratory, FSJEG, University of Jendouba, Avenue Union Maghreb
Arabe, 8189 Jendouba, Tunisia
anis.tissaoui@fsjegj.rnu.tn

3 Univ. Pau & Pays Adour, E2S UPPA, LIUPPA, 64600 Anglet, France
rchbeir@acm.org

Abstract. Several approaches have been proposed to describe ser-
vices in a rich and generic manner (such as WSDL, OWL-S, WSMO,
and SAWSDL). However, current approaches remain inappropriate for
cloud computing since: 1) they lack in a way or another semantic or
business aspect, 2) they cannot fully cope with non-functional prop-
erties and cloud characteristics, 3) they are unable to cover all kinds
of services (such as SaaS, PaaS, IaaS). Despite the existence of sev-
eral attempts which have tried to extent existing studies, the problem
remains open. In this paper, we propose Cloud-WSDL, a new descrip-
tion model aligned with WSDL language, the most popular language,
to make it more suitable for describing cloud services. The idea is to
enhance WSDL description with our ontological Generic Cloud Service
Description called GCSD to cope with many aspects (technical, opera-
tional, business, semantic and contextual) to ensure a high interoperabil-
ity between services belonging to multiple heterogeneous clouds, and to
support all the kinds of cloud services (SaaS, PaaS, and IaaS).

Keywords: Cloud service · Generic Cloud Service Description ·
WSDL · OWL-S ontology · Cloud computing

1 Introduction

Service description consists in defining an interface describing the operations
carried out by the service and linking each operation to its realization. It ensures
the communication between the consumer and the provider.

The service description should be defined in a readable and interpretable
language for both humans and machines in order to enhance the service discov-
ery and composition. Although commonly adopted, Web Services Description
Language or WSDL cannot ensure this since it is syntactic oriented. Semantic
c© Springer Nature Switzerland AG 2021
L. Bellatreche et al. (Eds.): ADBIS 2021, LNCS 12843, pp. 275–288, 2021.
https://doi.org/10.1007/978-3-030-82472-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82472-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-82472-3_20

276 S. Ghazouani et al.

oriented service description is needed to ensure that, where the capabilities of
each service are associated with semantic concepts to enhance both discovery
and selection processes.

In this context, several semantic oriented approaches [1–8] have been pro-
posed in the literature to offer a detailed service description and overcome WSDL
limitations. However, the major limitations of these approaches are related to
the fact that they don’t cover the semantic level, the non-functional properties
and the contextual information.

In cloud computing, most of services are described as Web services using
different languages such as WSDL, OWL-S, and WSMO. However, the existing
languages are destined to the Web and not for cloud computing domain. That is
why, several attempts [11–14] have emerged recently to provide a richer service
description to support SaaS, PaaS, and IaaS services.

The proposed approaches to describe cloud services have, also, some limita-
tions. They are intended to be used for specific tasks only (service description
task, service discovery task, service composition task, etc.). Also, they do not
cover all cloud concepts (pricing, legal, SLA, etc.). Besides, they focus on spec-
ifying some dedicated aspects (for example the technical aspect only) and they
fail to cover all aspects (technical, operational, business, and semantic). For
instance, WSDL covers only technical aspect and does not cover business and
semantic ones.

Furthermore, service providers have used various techniques such as models
[10,21], taxonomy [22], languages [13,23–25], ontologies [26–28], and template
[29,30] to describe their cloud services. The diversity of techniques leads to the
vendor lock-in problem and thus the interoperability issue.

Several challenges are to be met when describing cloud services, mainly:

– How to represent the functional properties of cloud services?
– How to specify the non-functional properties of cloud services?
– How to specify the cloud characteristics?
– How to describe all cloud services (SaaS, PaaS, IaaS)?

In a previous work [9], we proposed a Generic Cloud Service Description
(GCSD) and showed its expressive power and genericity. In essence, GCSD covers
functional, non-functional, business, and contextual properties unlike existing
alternatives. In this paper, we provide Cloud-WSDL, an extension of WSDL
using GCSD.

Hence, Cloud-WSDL is a description devoted to cloud computing and derived
from the famous language WSDL. It makes WSDL able to cover several aspects:
technical (functional properties), operational (functional properties), business
(non-functional properties) and semantic. Besides, Cloud-WSDL takes into
account the contextual aspect to support the context adaptation.

The rest of this paper is structured as follows. In Sect. 2, we give an overview
of WSDL and its extensions by citing several research works. Section 3 presents
our new Cloud-WSDL metamodel based on WSDL and GCSD. In Sect. 4, we
compare the proposed extension with the existing services descriptions (WSDL,

Towards a Cloud-WSDL Metamodel 277

OWL-S, WSMO, etc.). Section 5 concludes this study and provides several per-
spectives.

2 Background and Related Work

In this section, we give an overview on WSDL and present the main alternatives
for its extensions.

2.1 WSDL

WSDL language is a W3C standard that describes a service through an interface
presenting a set of operations and their respective input and output parameters
in the form of an XML document. The WSDL interface describes the functional-
ity accomplished by the service (what the service does), but it does not describe
how to accomplish this functionality (how the service does it). As shown in Fig. 1,
the WSDL document contains 5 kinds of XML elements: <types>, <message>,
<portType>, <binding> and <service>.

Fig. 1. Metamodel of WSDL

The information contained in WSDL essentially corresponds to the description of
the functional profile of the service. With WSDL, the client can invoke the service
by referring to the information in its WSDL file, providing information on its
abstract description (available methods, input and output parameters, etc.) and

278 S. Ghazouani et al.

its concrete description (description of communication protocols, service access
points, etc.). The main problem with WSDL is its limitation to characterize the
semantics of the functionality accomplished by the service. To overcome the lack
of semantics of WSDL, several approaches have been proposed to add a layer
on top of WSDL supplementing the syntactic description by semantic precision.
We detail the best known approaches and show their limitations.

2.2 Semantic Extensions

To overcome the semantic limitation of WSDL, several researchers have been
provided in the literature.

On one hand, some of them adopted semantic annotations. These consist
in enriching and completing the description of a service by establishing corre-
spondences between elements of the WSDL description and concepts of a set
of reference ontologies (OWL-S [19], WSMO [20], etc.). In [1], the authors have
proposed WSDL-S. It consists in annotating the WSDL specification by onto-
logical concepts. Its meta-model allows the addition of 3 elements: <category>,
<precondition>, <effect> and 2 attributes modelReference and schemaMap-
ping. In [2], the authors have proposed SAWSDL, which is also an extension of
WSDL to cover the semantic aspect. The specification annotates a WSDL 2.0
document with the following attributes: modelReference, liftingSchemaMapping,
and loweringSchemaMapping. In particular, it annotates the elements: opera-
tions, input, output, type schemas, and interfaces.

On the other hand, several studies have adopted OWL-S language. The
authors of [3] have converted WSDL to OWL-S. They have proposed a ser-
vice annotation framework. The idea is to annotate WSDL service descriptions
with metadata from OWL-S ontology. The solution starts by aligning concepts of
WSDL with OWL. It converts each of them to a common representation (called
schema Graph). After the schema graphs are created, the matching algorithms
are executed on the graphs to determine similarities. So, once the concepts of
the schema graph are matched, the concept having the highest matching score
is chosen. Likewise for the work presented in [15]. Other researchers aimed at
proposing an automatic mapping of WSDL to OWL-S such as [7,8,18]. In [7],
Paolucci et al. have proposed a tool called WSDL2OWL-S, which allows a tran-
sition between WSDL and OWL-S. In this attempt, all XSD complex types of
WSDL are converted to generate concepts and properties for each type. In this
approach, the conversion of XSD types to concepts is done without any relation-
ships between these concepts. This manner of conversion leads to use a lot of
concepts and missing semantic web meaning. Another interesting work is pre-
sented in [8] where a mapping tool called ASSAM (Automated Semantic Service
Annotation with Machine Learning) is proposed. ASSAM helps to convert the
WSDL file into OWL-S file. It suffers from some limitations: ASSAM cannot
provide an organization for the used ontologies, which provides a great num-
ber of returned concepts. The list of concepts is found based on the text search
and not on the meaning. Also, the concepts provided to users are not ranked by
importance. Sagayara et al. [18] have worked on the automatic transformation of

Towards a Cloud-WSDL Metamodel 279

complex type WSDL to OWL-S. They have proposed an WO framework which
helps to extract the elements from WSDL document and place them, by using
OWL-parser, in OWL-S. However, the proposed framework does not modify the
concepts after their conversion.

2.3 Non-functional Properties Extensions

Other attempts to enrich WSDL files not only by considering the semantic level
in the description of services but also by taking into account the non-functional
aspect, like WS-Policy standard [4]. In [5], D’Ambrogio et al. have proposed an
extension called P-WSDL (Performance-enabled WSDL) which enriches WSDL
with several performance properties of Web services. They have followed MDA
principle and proposed a metamodel transformation. El Bitar et al. [6] have
proposed a semantic description model aligned with standards for the automatic
discovery of Web services. They rely on WSDL 2.0 standard and WS-Policy.
Also, the work of [16] has proposed an extension, called Q-WSDL, to describe
QoS characteristics of a Web service. The authors have followed the principle
of MDA for Q-WSDL according to a meta-model transformation. Chabeb et al.
[17] have proposed YASA4WSDL (Yet Another Semantic Annotation for WSDL)
which is an extension of SAWSDL that uses two types of ontologies: (i) Technical
Ontology which contains concepts defining semantics of services, their QoS.; and,
(ii) Domain Ontology which contains the concepts defining the semantics of the
business domain. However, these approaches have addressed, most of the time,
some non-functional properties namely response time, availability, cost and they
dismiss the other ones (reputations, risk evaluation, actors, usage license, etc.)
which help users to select the suitable service.

2.4 Discussion

As mentioned previously, various extensions of WSDL have been proposed. As
depicted in Table 1, most of them have tried to enhance the description from the
technical and operational aspects (functional properties) [1–3,5–8,15–18]. While,
others have added the non-functional properties [4–6,16,17] and the semantic
aspect [1–3,6–8,15,17,18]. However, all these approaches are still inappropri-
ate to cloud computing domain. Indeed, they don’t cover cloud characteristics
such as: delivery model (SaaS, PaaS, IaaS), deployment model (public, private,
hybrid, and community), cloud provider, used resources (RAM size, CPU brand,
virtual machine type, etc.), etc. Besides, they don’t take into account the con-
textual information.

Therefore, we aim to enhance WSDL in order to propose a new service
description suitable for cloud computing and which is able to support technical,
operational, business, semantic and contextual aspects.

280 S. Ghazouani et al.

Table 1. Comparison between studied approaches.

Approaches (1) (2) (3) (4) (5)

[1] � �
[2] � �
[3] � �
[4] �
[5] � �
[6] � � �
[7] � �
[8] � �
[15] � �
[16] � �
[17] � � �
[18] � �

(1) Functional properties / (2) Non-
functional properties / (3) Cloud
characteristics / (4) Semantic aspect
/ (5) Contextual information

3 Our Proposal: Cloud-WSDL Metamodel

In this section, we will present Cloud-WSDL, our extension for WSDL to cope
with Cloud Service Description. We will start by giving an overview of GCSD,
the core of Cloud-WSDL before detailing our proposal.

3.1 Overview of GCSD

We have proposed in a previous work [9] GCSD, a Generic Cloud Service
Description, which is based on USDL language [10]. The proposed description
has been designed in the form of an OWL ontology to cover the semantic aspect.
Besides, it supports the technical, operational and business properties, which
offer more expressiveness compared to WSDL, OWL-S and WSMO languages.
Thus, this universal description resolves the interoperability problem.

We recall, in Fig. 2, the metamodel of GCSD in the form of UML class dia-
gram. This metamodel shows the characteristics related to cloud computing such
as delivery model, deployment model, etc., etc. Besides, it includes information
about the context of service usage (time of service availability, service location,
agents participating in the service lifecycle, resources used to create and consume
the service, etc.). Furthermore, it covers multiple non-functional properties (Pri-
cePlan, reputation, risk, security, etc.).

Towards a Cloud-WSDL Metamodel 281

Fig. 2. Metamodel of GCSD [9].

3.2 Adopted Methodology

As mentioned previously, WSDL provides information on how to interact with a
service in a functional and technical manner such as operations, inputs, out-
puts and default parameters. However, it cannot support the semantics nor
describe the non-functional properties (service QoS). Besides, WSDL cannot
allow the notation of goals, precondition and postcondition. To cope with these
issues, we propose a new extension of WSDL that enriches it with the OWL
cloud ontology. We rely on SAWSDL (Semantic Annotations for WSDL), which
annotates a WSDL 2.0 document by using three attributes modelReference,
liftingSchemaMapping and loweringSchemaMapping. modelReference allows to
annotate interface, operation, fault elements of WSDL 2.0. The annotation is in
the form: sawsdl:modelReference = “OntologyNameConcept”.

In this work, we follow two steps to enhance WSDL with GCSD: (i) Step
1: annotating the elements of WSDL by concepts of the cloud ontology GCSD
when a matching exists between them; and, (ii) Step 2: adding new elements to
WSDL with concepts and attributes of the cloud ontology.

Step 1: Annotating WSDL Document by GCSD
The idea, here, is to find and align the WSDL elements corresponding to the
GCSD concepts according to Table 2. GCSD is in the form of an OWL ontology.

282 S. Ghazouani et al.

Table 2. Correspondences between WSDL and GCSD.

WSDL Cloud ontology (GCSD)

Types –

Operation Function

Input of the operation InputParameter

Output of the operation OutputParameter

PortType/Interface FunctionalModule

Binding AccessProfile

Service Service

Port/Endpoint urlService

Operation, Input, Output
In the cloud ontology, the functional aspect is represented by the concepts Func-
tion, InputParameter and OutputParameter, which are equivalent in WSDL to
Operation, input, output elements. Therefore, we annotate:

– Operation element with Function concept (see Fig. 3, line 24),
– input element by InputParameter concept (see Fig. 3, line 25), and
– output element by OutputParameter concept (see Fig. 3, line 26).

Fig. 3. Annotation of WSDL document by the cloud ontology (GCSD).

Towards a Cloud-WSDL Metamodel 283

Interface/PortType
The functionalities of a service are defined through a set of operations which are
regrouped into an element named “Interface” or “PortType” without specifying
the means (the protocol) for exchanging messages. That is why, we consider
the concept FunctionalModule of the GCSD ontology equivalent to “Interface/
PortType”. Thus, we annotate the element Interface/PortType by the concept
FunctionalModule (see Fig. 3, line 23).

Binding
The concept Protocol covers information about technologies used in the commu-
nication with the service (transport protocols, messaging protocols, etc.), which
is equivalent to Binding element of WSDL. So, we annotate the element Binding
by the concept AccessProfile (see Fig. 3, line 32).

Step 2: Adding New Elements to WSDL Document
Figure 4 shows the metamodel of WSDL after extension where all the impor-
tant concepts have been added: actors (blue color), contextual information (pink
color), pricing information (green color), legal aspect (orange color), SLA (pur-
ple color), cloud-specific information (delivery models (red color), deployment
models (red color), service evaluation (yellow color), etc.).

Fig. 4. New metamodel of WSDL after enhancement.

284 S. Ghazouani et al.

We can categorize the new WSDL metamodel, introduced in Fig. 4, into:

– Functional properties: Service, Definition, Import, Types, Operation,
Input, Output, Precondition, Postconditon, Goal, Port, Binding, PortType,
Fault, CompositeService, ServiceBundle, Resource.

– Non-functional properties:
• DeploymentModel (Public, Private, Hybrid, Community),
• DeliveryModel (SaaS, PaaS, IaaS),
• PricePlan (PriceComponent, PriceLevel, ProportionalPriceLevel, Abso-

lutePriceLevel, PriceFence, PriceMetric),
• ServiceLevelProfile (ServiceLevel, GuaranteedAction, GuaranteedState),
• License (Requirement, Reward, Attribution, UsageRight, Restriction,

TimeRestriction, ContentRestriction, SpatialRestiction),
• ServiceEvaluation (Trust, Risk, Reputation),

– Contextual properties: Context, Agent, Resource, Location, Time, etc.

Resource is considered also as a functional property, because, in the case of an
IaaS service, a user looks for a service which has storage size equal to “500 GB”,
RAM equal to “4 GB” and CPU kind is “Intel Xeon”.

In the following, we explain each new added element.

A. Functional Properties
The goal, precondition and postcondition elements deemed essential for the ser-
vice discovery. These three elements complete the description of each operation,
while remaining compliant with the WSDL standard. Thus, we add to Operation
element of WSDL some sub-elements “precondition”, “postcondition”, “Goal”
and we annotate them by the concepts “PreCondition”, “PostCondition” and
“UserGoal” from the cloud ontology (see Fig. 3 lines 27, 28 and 29 and Fig. 4).

Precondition
The concept Precondition indicates the conditions to be checked in order to
execute the operation as expected.

Postcondition
The concept Postcondition allows users to define conditions on the expected
results of the requested operation. Its value must be true after the execution of
an operation of the service description.

Goal
Goal represents the consumer purpose which enhances the discovery process to
find the appropriate service whenever two services have the same inputs and
outputs.

B. Non-functional Properties
Since WSDL cannot describe the non-functional properties (price, evaluation,
legal aspect, SLA, etc.), we added to WSDL metamodel information about con-
sumption pricing, legal aspect, SLA, reputation, trust, risk, etc. The new infor-
mation enhances the service discovery process, and thus, meets the user request
easily. All these properties are explained in a detailed manner in our previous
work [9].

Towards a Cloud-WSDL Metamodel 285

Pricing: PricePlan includes one or more PriceComponent associated with dif-
ferent capabilities related to various pricing aspects. PriceComponent has mon-
etary value specified via PriceLevel which can be fixed per measure (Abso-
lutePriceLevel) or proportional to a some base (RelativePriceLevel). PriceLevel
has PriceMetric as a measurement on which pricing is defined. The dynamic
variations of Pricing (such as rewards statutes of consumer, bundled deals, and
other accepted negotiations with consumer) are supported through PriceFence.

Service Evaluation: ServiceEvaluation includes Reputation, Trust and Risk.
Reputation helps to measure the reputation after service usage from the feedback
of users. Risk helps to measure the risk produced by the service.

Legal: Each service should be licensed (License). The license includes Usage-
Right which is composed of UsageType. This latter puts a well-defined manner
of how to use a service (such as the right to distribute). All these properties help
users to easily select the suitable services.

C. Contextual Information
A service exists in a context (Context). For that, a connection between Ser-
vice and Context should be established. However, the context includes services,
agents, resources, location, and time.

Resource concept represents different real-world objects types such as appli-
cation, system, tool used to perform a service. These resources may be, in cloud
computing, storage, CPU, RAM, etc. Location covers both physical and virtual
addresses (for example, a location of service availability or a valid area for a spe-
cific price). Time provides means to express (for example, a service availability
or a period of prices validity, etc.). The precision of time of service usage or the
service location helps to precise the research space of services. Thus, we can say
that the contextual information enhances the result of the service discovery.

WSDL is poor from information about context. Therefore, we add these
missing information to WSDL metamodel in a detailed manner as depicted in
Fig. 4.

4 Comparison Between Cloud-WSDL and Other
Description Languages

Based on the literature, we present in Table 3 a comparison between WSDL,
OWL-S, WSMO and our proposed extension Cloud-WSDL according to some
criteria (functional properties, non-functional properties, semantic aspect, cloud
computing, contextual information, etc.).

We notice that Cloud-WSDL can handle in a better way cloud computing.
Unlike the other existing descriptions languages (WSDL, OWL-S and WSMO), it
takes into consideration several criteria: (i) functional and non-functional proper-
ties such as input, output, precondition, postcondition, effect, assumption, actor;
(iii) cloud characteristics (deployment model, delivery model, SLA, license, etc.);
(iii) semantic aspect; and, (iv) contextual aspect.

286 S. Ghazouani et al.

Table 3. Comparison between WSDL, OWL-s, WSMO and Cloud-WSDL.

Criteria WSDL OWL-S WSMO Cloud-WSDL

(1) Operation AtomicProcess Choreogaphy Function

Input Input InputParameter

Output Output OutputParameter

Precondition Precondition Precondition

PostCondition PostCondition

Result Effect Effect

Assumption Assumption

CompositeService Orchestration CompositeService

Fault Fault Fault

(2) Participant,

Provider, Consumer,

physicalAddress,

email, phone, fax,

WebURL

Owner, Creator Provider, Creator,

Owner, Consumer,

Role, Agent, Person,

Organization,

PricePlan,

ServiceLevelProfile,

License,

ServiceEvaluation

(3) Resource (OS, CPU,

RAM, Storage),

DeploymentModel

(Public, Private,

Hybrid, Community),

DeliveryModel (SaaS,

PaaS, IaaS)

(4) Context, Agent,

Resource, Location,

Time, etc.

(5) � � �
(1) Functional properties / (2) Non-functional properties / (3) Cloud

characteristics / (4) Contextual information / (5) Semantic aspect

5 Conclusion

WSDL is the popular language used to describe Web services. However, it cov-
ers only the functional properties of services and lacks semantic aspect. Also, it
can’t cover the non-functional properties and the contextual information. Fur-
thermore, WSDL isn’t dedicated to cloud computing not support its charac-
teristics. To overcome these shortages, we enhance, in this paper, WSDL with
our Generic Cloud Service Description (GCSD). The new extension supports
functional and non-functional properties, contextual information, cloud charac-
teristics and the semantic aspect. The proposed WSDL extension ensures a high
interoperability and improves the result of service discovery. In our future work,
we aim to propose a transformation rules based on our current work. Also, we
aim to propose, based on our generic cloud services description, two new exten-
sions by enhancing OWL-S and WSMO and make them appropriate for cloud
computing domain.

References

1. Akkiraju, R., Farrell, J., Miller, J.: Web Service Semantics - WSDL-S. A joint
UGA-IBM Technical Note, version 1.0, Technical report, UGA-IBM, April 2005

Towards a Cloud-WSDL Metamodel 287

2. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema, W3C
recommendation (2007). http://www.w3.org/TR/sawsdl/

3. Patil, A.A., Oundhakar, S.A., Sheth, A.P.: Meteor-s web service annotation frame-
work. In: 13th International Conference on World Wide Web, pp. 553–562 (2004)

4. Vedamuthu, A., Orchard, D., Hirsch, F.: Web Services policy 1.5 - Framework,
W3C recommendation (2007). http://www.w3.org/TR/ws-policy/

5. D’Ambrogio, A.: A WSDL extension for performance-enabled description of web
services. In: Yolum, I., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005.
LNCS, vol. 3733, pp. 371–381. Springer, Heidelberg (2005). https://doi.org/10.
1007/11569596 40

6. El Bitar, I., Belouadha, F-Z, Roudies, O.: Towards a semantic description model
aligned with W3C standards for WS automatic discovery. In: 2014 International
Conference on Multimedia Computing and Systems (ICMCS), 14–16 April 2014,
Marrakech, Morocco. IEEE (2014)

7. Paolucci, M., Srinivasan, N., Sycara, K.: Towards a semantic choreography of web
services: from WSDL to DAML-S. In: The International Conference on Web Ser-
vices, pp. 22–26. IEEE (2003)

8. Heß, A., Johnston, E., Kushmerick, N.: ASSAM: a tool for semi-automatically
annotating semantic web services. In: The 12th International Conference of Web
Technologies, pp. 470–475 (2008)

9. Ghazouani, S., Slimani, Y.: Towards a standardized cloud service description based
on USDL. J. Syst. Softw. 132, 1–20 (2017)

10. Barros, A., Oberle, D.: Handbook of Service Description: USDL and Its Methods.
Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1864-1

11. Liu, D., Zic, J.: Cloud#: a specification language for modeling cloud. In: 2011
IEEE International Conference on Cloud Computing (CLOUD), Washington, DC,
4–9 July, pp. 533–540. IEEE (2011)

12. Hamdaqa, M., Livogiannis, T., Tahvildari, L.: A reference model for developing
cloud applications. In: 1st International Conference on Cloud Computing and Ser-
vices Science, pp. 98–103. SciTePress (2011)

13. Sun, L., Ma, J., Wang, H.: Cloud service description model: an extension of USDL
for cloud services. IEEE Trans. Serv. Comput. 11(2), 354–368 (2015)

14. Galan, F., Sampaio, A., Rodero-Merino, L.: Service specification in Cloud environ-
ments based on extensions to open standards. In: 4th International ICST Confer-
ence on COMmunication System softWAre and middlewaRE (COMSWARE 2009),
New York, USA, no. 19, pp. 1–12. ACM (2009)

15. Le, D., Nguyen, V., Goh, A.: Matching WSDL and OWL-S web services. In:
IEEE International Conference on Semantic Computing, Berkeley, CA, pp. 197–
202 (2009)

16. D’Ambrogio, A.: A model-driven WSDL extension for describing the QoS of web
services. In: IEEE International Conference on Web Services, pp. 789–796 (2006)

17. Chabeb, Y., Tata, S.: Yet another semantic annotation for WSDL. In: IADIS Inter-
national Conference, Freiburg, Germany, pp. 437–441 (2008)

18. Sagayaraj, S., Santhoshkumar, M.: Transformation of complex type WSDL into
OWL-S for facilitating SWS discovery. Int. J. Inf. Technol. 11(1), 5–12 (2018).
https://doi.org/10.1007/s41870-018-0249-2

19. Martin, D., et al.: Bringing semantics to web services: the OWL-S approach. In:
Cardoso, Jorge, Sheth, Amit (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 26–42.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30581-1 4

http://www.w3.org/TR/sawsdl/
http://www.w3.org/TR/ws-policy/
https://doi.org/10.1007/11569596_40
https://doi.org/10.1007/11569596_40
https://doi.org/10.1007/978-1-4614-1864-1
https://doi.org/10.1007/s41870-018-0249-2
https://doi.org/10.1007/978-3-540-30581-1_4

288 S. Ghazouani et al.

20. Roman, D., et al.: WWW: WSMO, WSML, and WSMX in a nutshell. In:
Mizoguchi, Riichiro, Shi, Zhongzhi, Giunchiglia, Fausto (eds.) ASWC 2006. LNCS,
vol. 4185, pp. 516–522. Springer, Heidelberg (2006). https://doi.org/10.1007/
11836025 49

21. Gudenkauf, S., Josefiok, M., Göring, A.: A reference architecture for Cloud service
offers. In: 2013 17th IEEE International Enterprise Distributed Object Computing
Conference (EDOC), 9–13 September, Vancouver, BC, pp. 227–236. IEEE (2013)

22. Hoefer, C.N., Karagiannis, G.: Taxonomy of cloud computing services. In: 2010
IEEE Globecom Workshops, 6–10 December 2010, pp. 1345–1350. IEEE (2010)

23. Hoberg, P., Wollersheim, J., Krcmar, H.: Service descriptions for cloud services-the
customers perspective. In: ConLife Academic Conference (2012)

24. Charfi, A., Schmeling, B., Novelli, F.: An overview of the unified service description
language. In: 2010 IEEE 8th European Conference on Web Services (ECOWS),
Ayia Napa, 1–3 December, pp. 173–180. IEEE (2010)

25. Shetty, J., D’Mello, D.A.: An XML based data representation model to discover
infrastructure services. 2015 International Conference on Smart Technologies and
Management for Computing, Communication, Controls, Energy and Materials
(ICSTM), Chennai, India, 6–8 May, pp. 119–125. IEEE (2015)

26. Nagireddi, V.S.K., Mishra, S.: An ontology based cloud service generic search
engine. In: 2013 8th International Conference on Computer Science & Education
(ICCSE), Colombo, 26–28 April, pp. 335–340. IEEE (2013)

27. Tahamtan, A., Beheshti, S.A., Anjomshoaa, A.: A cloud repository and discovery
framework based on a unified business and cloud service ontology. In: 2012 IEEE
8th World Congress on Services, Honolulu, Hawäı, 24–29 June, pp. 203–210. IEEE
(2012)

28. Alfazi, A., Sheng, Q.Z., Qin, Y.: Ontology-based automatic cloud service catego-
rization for enhancing cloud service discovery. In: 2015 IEEE 19th International
on Enterprise Distributed Object Computing Conference (EDOC), Adelaide, Aus-
tralia, 21–25 September, pp. 151–158. IEEE (2015)

29. Nguyen, D.K., Lelli, F., Papazoglou, M.P.: Blueprinting approach in support of
cloud computing. In: Future Internet 2012, 21 March 2012, vol. 4, no. 1, pp. 322–
346. Molecular Diversity Preservation International (2012)

30. Nguyen, D.K., Lelli, F., Taher, Y., Parkin, M., Papazoglou, M.P., van den
Heuvel, W.-J.: Blueprint template support for engineering cloud-based services. In:
Abramowicz, W., Llorente, I.M., Surridge, M., Zisman, A., Vayssière, J. (eds.) Ser-
viceWave 2011. LNCS, vol. 6994, pp. 26–37. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-24755-2 3

https://doi.org/10.1007/11836025_49
https://doi.org/10.1007/11836025_49
https://doi.org/10.1007/978-3-642-24755-2_3
https://doi.org/10.1007/978-3-642-24755-2_3

Author Index

Andrzejewski, Witold 15
Azri, Abderrazek 73

Bianco, Guilherme Dal 229
Böhlen, Michael 121
Boinski, Paweł 15
Brass, Stefan 152

Caldeira, Laís Soares 229
Chakrabarti, Arnab 183
Chawla, Sanjay 3
Chazelle, Benjamin 213
Chbeir, Richard 57, 275
Choi, Jinho D. 260
Cochez, Michael 183
Cullot, Nadine 198

Darmont, Jérôme 73, 88
Das, Abhijeet 183
Draheim, Dirk 7

Endres, Markus 102

Favre, Cécile 73
Ferreira, Anderson A. 229
Forresi, Chiara 136
Francia, Matteo 136

Gallinucci, Enrico 136
Getahun, Fekade 57
Ghazouani, Souad 275
Gillet, Annabelle 198
Golfarelli, Matteo 136
Goman, Maksim 167
Gröninger, Dominik 102

Hara, Takahiro 43
Harbi, Nouria 73

Helmer, Sven 121
Ho, Joyce C. 260

Laurent, Anne 30
Leclercq, Éric 198

Maisonneuve, Pierre-Loic 213
Mechouche, Ammar 213
Mohammed, Siraj 57

Noûs, Camille 73, 88

Owuor, Dickson Odhiambo 30

Petit, Jean-Marc 213
Popovic, Luka 121

Quix, Christoph 183

Rudenko, Lena 102

Sawadogo, Pegdwendé N. 88
Schenkel, Ralf 244
Scuturici, Vasile-Marian 213
Shin, Bonggun 260
Shirakawa, Masumi 43

Tissaoui, Anis 275

Wellenzohn, Kevin 121
Wenzel, Mario 152

Zeimetz, Tobias 244
Zhang, Jing 260
Zhang, Yihong 43

	Preface
	Organization
	ADBIS’2021 Keynotes
	Towards High-Quality Big Data: A Focus on Time
	A Perspective on Prescriptive Learning
	Data Exchange for Digital Government: Where Are We Heading?
	Contents
	Keynotes Talks
	A Perspective on Prescriptive Learning ADBIS'2021 Keynote
	1 Introduction
	2 Prescriptive Learning
	3 Reinforcement Learning
	4 Policy Gradient Optimization
	5 Join Ordering for Query Optimization
	6 Conclusion
	References

	Data Exchange for Digital Government: Where Are We Heading? ADBIS�2021 Keynote
	1 The Data Exchange Platform X-Road
	2 A Digital Government Archtitecture Framework
	References

	Patterns and Events
	Maximal Mixed-Drove Co-Occurrence Patterns
	1 Introduction
	2 Related Work
	3 Definitions
	4 MAXMDCOP-Miner
	5 Experiments
	6 Summary and Future Work
	References

	Efficiently Mining Large Gradual Patterns Using Chunked Storage Layout
	1 Introduction
	2 Preliminary Definitions
	3 State of the Art
	4 Proposed Chunking Approach
	4.1 Mapping Matrices into Chunked Layout
	4.2 GRAD-L Algorithm
	4.3 Computational Complexity

	5 Experiments
	5.1 Source Code
	5.2 Data Set Description
	5.3 Experiement Resultts

	6 Conclusion and Future Works
	References

	A General Method for Event Detection on Social Media
	1 Introduction
	2 Related Work
	3 Generalized Representation of Temporal Social Media Text
	4 Generalized Multi-dimension Event Detection in Time Series
	5 Experimental Evaluation
	5.1 Evaluation Task
	5.2 Social Media Discussion Dataset
	5.3 Ground Truth Generation
	5.4 Recommending Newsworthy Words from Detected Events
	5.5 Baseline Methods
	5.6 Evaluation Results

	6 Conclusion
	References

	5W1H Aware Framework for Representing and Detecting Real Events from Multimedia Digital Ecosystem
	1 Introduction
	2 Motivation
	3 Event Characteristics, Challenges, Opportunities and Approaches
	4 Related Work
	5 Preliminaries and Problem Definition
	5.1 Basic Definition
	5.2 Multimedia Object Dimensions Definition and Representation

	6 Proposed Framework
	6.1 Multimedia Object Extraction and Representation
	6.2 Cluster-Based Real Event Detection

	7 Similarity Measures and Cluster Comparison Strategies
	7.1 Similarity Measures
	7.2 Cluster Comparison Strategies

	8 Experimental Settings and Results
	9 Conclusion and Further Research
	References

	Social Media and Text Mining
	MONITOR: A Multimodal Fusion Framework to Assess Message Veracity in Social Networks
	1 Introduction
	2 Related Works
	2.1 Non-image Features
	2.2 Image Features

	3 MONITOR
	3.1 Multimodal Fusion Overview
	3.2 Feature Extraction and Selection
	3.3 Model Training

	4 Experiments
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Classification Results
	4.4 Feature Analysis

	5 Conclusion and Perspectives
	References

	Joint Management and Analysis of Textual Documents and Tabular Data Within the AUDAL Data Lake
	1 Introduction
	2 Metadata Management in AUDAL
	2.1 Intra-object Metadata
	2.2 Inter-object Metadata
	2.3 Global Metadata

	3 AUDAL's Architecture and Analysis Features
	3.1 AUDAL Architecture
	3.2 AUDAL's Analysis Features

	4 Quantitative Assessment of AUDAL
	4.1 Datasets and Query Workload
	4.2 Experimental Setup and Results

	5 Related Works
	5.1 Data Retrieval from Data Lakes
	5.2 Data Content Analysis from Data Lakes
	5.3 Discussion

	6 Conclusion and Future Works
	References

	Aggregation and Summarization of Thematically Similar Twitter Microblog Messages
	1 Introduction
	2 Related Work
	3 Background and General Concept
	4 Data Preprocessing
	5 Data Clustering
	6 Data Aggregation
	7 Experiments
	7.1 Data Analysis and Runtime
	7.2 Aggregation and Summarization

	8 Summary and Conclusion
	References

	Indexes, Queries and Constraints
	Inserting Keys into the Robust Content-and-Structure (RCAS) Index
	1 Introduction
	2 Background
	3 Insertion of New Keys
	4 Index Restructuring During Insertion
	4.1 Strict Restructuring
	4.2 Lazy Restructuring

	5 Utilizing an Auxiliary Index
	6 Analysis
	7 Experimental Evaluation
	7.1 Runtime of Strict and Lazy Restructuring
	7.2 Query Runtime
	7.3 Merging of Auxiliary and Main Index
	7.4 Summary

	8 Related Work
	9 Conclusion and Outlook
	References

	Optimizing Execution Plans in a Multistore
	1 Introduction
	2 Multistore Preliminaries
	2.1 Basic Concepts
	2.2 Dataspace Modeling
	2.3 Data Fusion Operations

	3 Query Plans and Optimization
	4 Cost Model
	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	Integrity Constraints for Microcontroller Programming in Datalog
	1 Introduction
	2 A Datalog-Variant for Microcontroller Systems
	2.1 Standard Datalog
	2.2 Datalog with States
	2.3 Interface Predicates
	2.4 Real Time

	3 Generalized Exclusion Constraints
	4 Refuting Violation Conditions
	4.1 Violation Conditions
	4.2 Proving Violation Conditions Inconsistent

	5 Conclusions
	References

	Chance Constraint as a Basis for Probabilistic Query Model
	1 Introduction
	2 Problem Formulation
	3 Chance Constraint Model and Probabilistic Comparison Operators
	4 Conditioning as Application of Chance Constraints
	5 Examples
	6 Conclusion
	References

	High-Dimensional Data and Data Streams
	Unsupervised Feature Selection for Efficient Exploration of High Dimensional Data
	1 Introduction
	2 Background and Related Work
	3 Unsupervised Feature Selection with Clique Covers
	4 Evaluation
	4.1 Baseline Algorithms
	4.2 Performance Measure

	5 Conclusion
	References

	MuLOT: Multi-level Optimization of the Canonical Polyadic Tensor Decomposition at Large-Scale
	1 Introduction
	2 Overview of Tensors and CP Decomposition
	3 State of the Art
	4 Distributed, Scalable and Optimized ALS for Apache Spark
	4.1 Distributed and Scalable Matrix Data Structures
	4.2 Mixing Three Principles of Optimization
	4.3 Stopping Criterion
	4.4 Data Centric Implementation

	5 Experiments
	6 Real Data Study
	7 Conclusion
	References

	From Large Time Series to Patterns Movies: Application to Airbus Helicopters Flight Data
	1 Introduction
	2 From TS Data to Patterns Videos
	3 Implementation and Experimentations
	4 Evolution in Time of the Centroid of Co-occurrence Matrices
	5 Conclusion
	References

	Data Integration
	Experimental Evaluation Among Reblocking Techniques Applied to the Entity Resolution
	1 Introduction
	2 Preliminaries
	2.1 Entity Resolution
	2.2 Blocking
	2.3 ReBlocking

	3 Related Work
	4 Inside the Techniques
	4.1 Filtering Techniques
	4.2 Meta-Blocking Techniques

	5 Experimental Evaluation
	5.1 Datasets
	5.2 Evaluation Metrics
	5.3 Experimental Setup
	5.4 Performance of Techniques

	6 Conclusions
	References

	FiLiPo: A Sample Driven Approach for Finding Linkage Points Between RDF Data and APIs
	1 Introduction
	2 Problem Statement
	3 Related Work
	4 Preliminaries
	5 Schema Matching and Mapping
	5.1 Probing Phase
	5.2 Aligning Phase: Candidate Alignment
	5.3 Aligning Phase: Final Alignment

	6 Evaluation
	7 Conclusion
	References

	SMAT: An Attention-Based Deep Learning Solution to the Automation of Schema Matching
	1 Introduction
	2 Related Work
	3 SMAT: A DNN Model
	3.1 Problem Statement
	3.2 Overview
	3.3 Input Embedding and BiLSTM
	3.4 Attention-over-Attention (AOA)
	3.5 Data Augmentation and Controlled Batch Sample Ratio

	4 OMAP: A New Benchmark Dataset
	5 Experiments
	5.1 Dataset
	5.2 Baseline Models
	5.3 Experimental Setup

	6 Results
	6.1 Predictive Performance
	6.2 Training Size Sensitivity and Scalability
	6.3 Ablation Study

	7 Conclusion
	References

	Towards a Cloud-WSDL Metamodel: A New Extension of WSDL for Cloud Service Description
	1 Introduction
	2 Background and Related Work
	2.1 WSDL
	2.2 Semantic Extensions
	2.3 Non-functional Properties Extensions
	2.4 Discussion

	3 Our Proposal: Cloud-WSDL Metamodel
	3.1 Overview of GCSD
	3.2 Adopted Methodology

	4 Comparison Between Cloud-WSDL and Other Description Languages
	5 Conclusion
	References

	Author Index

