
Chapter 4
Constrained Optimization

4.1 Constrained Bayesian Optimization

Constrained optimization is just the extension of unconstrained optimization to the
case of having constraints. A constraint is a condition, equality, or inequality that
must be satisfied in order for the solution to be valid. We can write the constrained
optimization problem as

x∗ = argmin
x∈X

f (x) subject to c(x) ≤ 0, (4.1)

where f : X → R denotes a scalar-valued objective function for X ⊂ R
d and

c : X→ R
m denotes a vector of m constraint functions. These constraints could be

in the form of inequalities, cj (x) ≤ 0, equalities, cj (x) = 0, or binary constraints
represented with an indicator function, cj (x) = 1{x∈Xcj

}(x) = 0.
Constrained optimization problems are typically more difficult than uncon-

strained problems because the constraints often operate at odds with the objective
function, so trying to meet the constraint will drive the solution away from the
global optimum. In simple cases, the optimum is not along a constraint boundary,
in which case the problem is essentially an unconstrained problem. But in most
cases, the optimum is on a boundary, with the unconstrained solution lying in a
region that does not meet all the constraints. We refer to the subset of X that
satisfies the constraints as the valid region. So one needs to be able to search for
the best solution in the valid region, with the constraints taking first priority, and the
objective function being second priority. More complex problems will have non-
convex constraint boundaries, or even disconnected valid regions, both of which
make searching quite difficult.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
T. Pourmohamad, H. K. H. Lee, Bayesian Optimization with Application
to Computer Experiments, SpringerBriefs in Statistics,
https://doi.org/10.1007/978-3-030-82458-7_4

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82458-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-82458-7_4


70 4 Constrained Optimization

Thus Bayesian optimization in the constrained case needs to learn both the
objective function and the valid region. For both the objective and the constraints,
exploitation needs to be balanced with exploration, although the interplay between
the objective and the constraints needs to be taken into account. Exploration of the
objective only needs to occur in the valid region, and exploration of the valid region
only needs to occur for more optimal values of the objective. An efficient algorithm
will be able to quickly hone in on the most promising parts of the space.

Again, constrained optimization is usually difficult because at least one of
the constraints operates in opposition to the objective function, that is, they are
negatively correlated. When the outputs are known or suspected to be correlated, it
is common practice to use latent processes to induce a correlation structure between
them (Sammel et al. 1997; Moustaki and Knott 2000, for example), however, this
modeling choice comes at the cost of increased model complexity. Likewise, there
is an increase in the time and computational burden of joint modeling as compared
to independent modeling of the objective and constraint functions, however, as
seen in Pourmohamad and Lee (2016), there can be significant gains in predictive
accuracy and statistical coverage by the use of joint modeling when the objective
and constraint functions are indeed correlated. Moreover, when the objective and
constraint function are correlated, the shared information in modeling the functions
jointly can lead to better model fits and prediction, which should lead to far fewer
function evaluations of the expensive computer model in converging to the global
solution to the optimization problem.

So why not simply use a joint model, such as a joint Gaussian process model
(Wackernagel 2003), to model the objective and constraint functions jointly? After
all, a joint Gaussian process model for the objective and constraint function will
theoretically perform at least as well as using independent Gaussian processes
models for each. The answer is two-fold. First off, if the objective and constraint
function are not strongly correlated, then the added overhead and complexity in
fitting the joint Gaussian process does not justify its use when, given the expensive
nature of the computer model, computational speed of the BO algorithm is of
utmost importance. Little is to be gained when there is not strong information to
share across the models. Secondly, and quite frankly, independent Gaussian process
surrogate models typically just work. Even without exploiting the joint information
that exists for correlated outputs, independent Gaussian process surrogate models
often do a fantastic job of predicting the objective and constraint functions well,
and in a fraction of the time as compared to joint models. In the context of BO, it
usually makes practical sense to use independent surrogate models for the objective
and constraint functions.

With all of this in mind, generalizing the unconstrained BO algorithm (Algo-
rithm 1 of Sect. 3.1) to the constrained case requires only a few additional pieces.
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Here we describe the general formulation for constrained BO via the following
algorithm:

Algorithm 2: The general constrained BO algorithm
Initialization:

Start with an initial data set D0
for n = 1, . . . , N do

Fit surrogate models for the objective and constraint functions;
Select xn = argmaxx∈X an−1(x);
Evaluate f and c at xn to obtain yn;
Augment data Dn = Dn−1 ∪ {(xn, yn)};

end
Return:

x∗ = argminx∈X f (x)

Note that, in general, the only difference between the BO algorithm in the
constrained case versus the unconstrained case is that a (either joint or independent)
model must be specified for the constraint function, c(x), as well as the objective
function, f (x). Otherwise, all other steps proceed similarly to the unconstrained
case, i.e., start with an initial sample chosen from a space-filling design, and fit
appropriate surrogate models that can be used to maximize an acquisition function
for choosing the best next input at which to evaluate the computer model. This
iterative algorithm repeats, updating the observed data after every iteration, until
all computational budget has been exhausted. Different acquisition functions are
needed in the presence of constraints, and that is the topic of the next section.

4.2 Choice of Acquisition Function

Just like the case of unconstrained Bayesian optimization, the acquisition function is
the key to constrained Bayesian optimization. We introduce three different ways to
think about the choice of an acquisition function here, although there are additional
possibilities. These three are: (1) joint exploration of the objective function and
the constraint functions, (2) focusing on staying inside the valid region, and (3)
combining statistical modeling with numerical methods for effective exploration
and exploitation. These approaches can overlap, and some examples of methods we
present here are examples of more than one of these approaches.

One approach to constrained optimization is to choose an acquisition function
that drives simultaneous learning of both the objective function and the constraint
functions. By creating a good surrogate model for both f and c, one can find
the global minimum using the surrogate model. In practice, the surrogate model
for the objective function only needs to be accurate in the valid region, and the
surrogate model for the constraints only needs to be accurate in regions of relatively
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lower objective function values. Two examples discussed in more detail in this
chapter are Constrained Expected Improvement (Schonlau et al. 1998; Gardner
et al. 2014) (Sect. 4.2.1) and Augmented Lagrangian methods (Gramacy et al.
2016) (Sect. 4.2.3). Additional examples include integrated expected conditional
improvement (Gramacy and Lee 2011), expected volume minimization (Picheny
2014), and constrained BO for noisy experiments (Letham et al. 2019). As these
approaches are learning both f and c, they tend to sample a relatively larger number
of points near the constraint boundary but outside of the valid region, where f

may be more desirable and c is close to being satisfied. These observations can
help the search, although they will not ultimately be the optimum point because the
constraints are not all satisfied.

A second approach is to focus on staying inside the valid region. This approach
is motivated by interior point methods from numerical optimization, where the
acquisition function is chosen so that if you have a starting point inside the
valid region, the search attempts to remain inside the valid region, driving toward
the boundary without crossing it. A prime example would be Barrier Methods
(Pourmohamad and Lee 2021) (Sect. 4.2.4). Another approach to focusing on the
valid region is Asymmetric Entropy (Lindberg and Lee 2015) (Sect. 4.2.2). The
formulation of the constrained optimization problem in (4.1) basically assumes that
the objective function f and the constraint function c can be evaluated for all x ∈ X.
In some cases, the computer model might not return any value when x is not in the
valid region. For example, some inputs x might lead to trying to take the logarithm
of a negative number somewhere in the code, or a matrix may become numerically
singular in double precision and thus become not invertible. The problems may
occur deep in the calculations, and a significant amount of computing may be
necessary before discovering the issue. This situation is a case where the optimum
must be found within the domain for which the computer model is able to return
values. Outside of this valid region, the code fails to run and does not return a value.
Thus c is observable as a binary variable, and f is only observable when c = 0.
In the standard case of (4.1), every new observation provides some information
toward optimization. However, in the case of code that does not run outside the
valid region, information is only gained for runs inside the valid region. When the
computer model fails to complete a run, the time spent on that attempted run is
wasted. Thus it is much more important in this case to keep as many runs as possible
inside the valid region. This class of methods aims to find the constrained optimum
while limiting the number of observations with c > 0.

A third approach is based on hybrid optimization algorithms. These combine
direct numerical optimization methods with statistical surrogate modeling. The
idea is that the surrogate model contributes good exploration, and the numerical
method contributes good exploitation. The two methods are combined in a way
that balances exploration and exploitation, in order to efficiently find the global
constrained minimum. Augmented Lagrangian (Sect. 4.2.3) and Barrier Methods
(Sect. 4.2.4) are discussed in this chapter. Additional examples include the slack-
variable augmented Lagrangian (Picheny et al. 2016), the ADMM algorithm for
solving an augmented Lagrangian relaxation (Ariafar et al. 2019), Filter Methods
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(Pourmohamad and Lee 2020), and scalable constrained BO based on trust regions
(Eriksson and Poloczek 2021). Direct numerical optimization algorithms can be
very efficient at finding a local optimum, and thus work quite well when run with
a starting point in the domain of attraction of the global optimum, but can often
become stuck in a local mode when started elsewhere. Statistical surrogate models
can efficiently approximate the full surface. By using the surrogate model to guide
the numerical algorithm, the hybrid approach can efficiently identify promising
regions and find the local optimum of each, thus finding the global optimum as
the best of the local optima. Some hybrid approaches work by iterating between
the surrogate model and the numerical method. The ones we discuss in this chapter
combine the two approaches into a single acquisition function.

4.2.1 Constrained Expected Improvement

A natural extension of the unconstrained acquisition functions to the case of
constrained optimization is to impose some sort of restriction on where the
unconstrained acquisition function can search. A simple, and intuitive, way to
achieve this goal is to take an unconstrained acquisition function and weight its
function value by the probability that the input satisfies the constraint. Perhaps
the most well known use of this idea is that of constrained expected improvement
(Schonlau et al. 1998; Gardner et al. 2014). As the name suggests, the unconstrained
component of the acquisition function relies upon the EI acquisition function of
Sect. 3.3.2, and for a given input, its corresponding EI value is weighted by the
probability that the input satisfies the constraints. Thus, the constrained expected
improvement (CEI) acquisition function can be formulated as follows

aCEI(x) = E {I (x)} × Pr(c(x) ≤ 0), (4.2)

where Pr(c(x) ≤ 0) is the probability of satisfying the constraint. Here, the
improvement function, I (x), uses an f n

min defined over the region of the input
space where the constraint functions are satisfied since we are only concerned with
improving upon the current solution in the valid region of the input space.

Fortunately, the derivation of E {I (x)} in equation (3.9) still holds in the
constrained case. And so, all we are left to deal with is how to handle modeling
the probability of satisfying the constraint. There is no one universal model used
for calculating the probability, but rather, the choice of modeling strategy is usually
dependent upon the type of values the constraint function returns. The two type of
constraint functions that exists are those that return a continuous value and those that
return a binary value. In the case of a continuous constraint, the constraint function
provides a real-valued measure of constraint satisfaction. When the input does not
satisfy the constraint the value returned gives a sense of how far away the input is to
satisfying the constraint. For a continuous constraint function, it is simple enough
to take the same approach that we do for the objective function, and model the
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constraint function output using a Gaussian process. For a single constraint, one can
use the posterior predictive distribution of the Gaussian process in order to calculate
the Pr(c(x) ≤ 0), i.e.,

Pr(c(x) ≤ 0) =
∫ 0

−∞
N(Yc(x);μc(x), σc(x))dYc(x)

= �

(−μc(x)

σc(x)

)
(4.3)

where Yc(x) is the Gaussian process surrogate model for the constraint function,
and this integral reduces to the Gaussian cumulative distribution function �(·). In
the case of multiple constraints, if we assume that the constraints are conditionally
independent given x, then the probability of satisfying the constraints factorizes into

Pr(c1(x) ≤ 0, . . . , cm(x) ≤ 0) =
m∏

i=1

Pr(ci(x) ≤ 0), (4.4)

and everything proceeds as before in the case of the single constraint. In the case of
dependent constraints, the joint probability Pr(c1(x) ≤ 0, . . . , cm(x) ≤ 0) can be
computed using numerical methods (Cunningham et al. 2013).

On the other hand, a continuous Gaussian process does little good when the
constraint function only returns a binary outcome which specifies whether or not
the constraint was satisfied. In the case of binary constraints, the available modeling
choices become somewhat more interesting in that any classification model that
can calculate the probability of belonging to one of two classes can be used. Here,
in keeping with the spirit of BO, a natural choice might be to use a Gaussian
process classification model, although other popular choices include such things
as tree based classifiers like random forests (Breiman 2001) or Bayesian additive
regression trees (BART) (Chipman et al. 2010), to name a few. Readers interested
in learning more about Gaussian process classification models are encouraged to see
(Rasmussen and Williams 2006).

Example Consider the following two-dimensional constrained optimization prob-
lem

min f (x1, x2) = 4x2
1 − x1 − x2 − 2.5

s.t. c1(x1, x2) = −x2
2 + 1.5x2

1 − 2x1 + 1

c1(x1, x2) = 3x4
1 + x2

2 − 2x1 − 4.25

where −1.5 ≤ x1 ≤ 2.5, and −3 ≤ x2 ≤ 3. The optimal solution to the constrained
problem is f (x1, x2) = −4.6958, which occurs along the border of the valid region
at (x1, x2) = (0.1708, 2.1417) (see Fig. 4.1). Although the functional forms are
known in this example, we will treat the objective function, f (x), as if it were an
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Fig. 4.1 Contours of the objective function colored by the two constraints. The solid black line
denotes one constraint function, while the dashed black line denotes the other constraint function.
Contours that are red are areas where the constraints are not satisfied, while green contours indicate
areas where the constraints are satisfied. The blue point represents the global solution to the
problem

expensive black-box function, and similarly for the two constraint functions, c1(x)

and c2(x) so that we may solve it using constrained BO.

Following the general constrained BO algorithm outlined in Algorithm 2 of
Sect. 4.1, we start with an initial LHS sample of size n = 10, and sequentially select
50 more inputs to evaluate based on the CEI acquisition function. Here we choose
to model the objective and constraint functions using independent Gaussian process
surrogate models, i.e., Yf (x) for the objective function, and Yc1(x) and Yc2(x) for
the constraint functions. This modeling choice allows us to pick the next input to
evaluate by maximizing the following easy to evaluate CEI acquisition function

aCEI(x) = E {I (x)} × Pr(c(x) ≤ 0)

=
[
(f n

min − μf (x))�

(
f n
min − μf (x)

σf (x)

)
+ σn(x)φ

(
f n
min − μf (x)

σf (x)

)]

×
[

2∏
i=1

�

(
−μci

(x)

σci
(x)

)]
. (4.5)
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Fig. 4.2 A view of the performance of the BO algorithm using the constrained expected
improvement (CEI) acquisition function for a single run of a Monte Carlo experiment

Given the setup, we proceed to search for the global solution to constrained
optimization problem using the CEI acquisition function to choose the next 50
inputs to sequentially evaluate. Figure 4.2 shows the performance of the BO
algorithm using the constrained expected improvement (CEI) acquisition function
in order to give an idea of how the CEI acquisition searches the input space.
Constrained optimization in this problem is hard due to the fact that the valid regions
are small relative to the input space and disconnected. We see that with a starting
LHS of size n = 10, only two inputs are selected in the valid region and that of the
two disconnected valid regions, only one of them has any initial data. However, even
without starting knowledge of the second valid region, the CEI algorithm performs
quite well spending a lot of its effort searching near the global solution. Note that the
CEI acquisition is just expected improvement weighted by the probability of being
in the valid region, and so the CEI acquisition function can tend to explore invalid
regions often when the estimate of the probability is either poor, or simply because
the expected improvement is very high in the invalid region.

Obviously, the performance of the acquisition function for guiding the BO algo-
rithm is highly dependent upon the initial sample used to initialize the algorithm. To
get an idea of the performance, as well as the robustness, of the BO algorithm under
the CEI acquisition function, we rerun the BO algorithm within 30 Monte Carlo
experiments. The results of the 30 Monte Carlo experiments is captured in Fig. 4.3.
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Fig. 4.3 A view of the performance of the BO algorithm using the constrained expected
improvement (CEI) acquisition function for the 30 the Monte Carlo experiments. Here, each grey
line represents the best value found over the search by the BO algorithm during a single run of the
Monte Carlo experiment. The red average line starts when all of the 30 Monte Carlo experiments
have found a valid solution

Note that, unlike the Monte Carlo progress plots in Chap. 3, the best valid average
solution over the 30 Monte Carlo experiments need not be calculable for all of the
black-box evaluations. This is due to the fact that each Monte Carlo experiment
will potentially find its first valid objective function evaluation at a different point
in time in the sequential evaluation process. For example, it is clear to see that the
individual trajectories of the best valid solution (i.e., grey lines) all do not start at
the same time and point. In fact, at least one of the 30 Monte Carlo initial LHSs
is composed entirely of inputs selected in the invalid region, and so clearly the BO
algorithm may even start with no knowledge of the valid regions. As we can see
from Fig. 4.3, the worst of the 30 Monte Carlo experiments does not begin selecting
inputs from the valid region until about the thirtieth input evaluation (the start of
the red average solution curve). Thus, being able to locate or hone in on the valid
region of the input space is critical to the success of the BO algorithm. We note that
many publications in the literature assume knowledge of at least one point in the
valid region, for example, by discarding an initial LHS without any valid points and
generating new ones until a sample is obtained with at least one valid point. Such an
approach leads to prettier plots, but it hides the computational expense of generating
the additional LHSs.
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4.2.2 Asymmetric Entropy

As discussed in Sect. 4.2, sometimes it is important to try to keep as many runs
as possible inside the valid region while searching for the optimum. At the same
time, the minimum may be expected to be along the constraint boundary, because
the constraints are operating in opposition to the objective function. A well-studied
approach for focusing on a boundary is to use entropy as a utility function.

Consider the problem of finding the constraint boundary by estimating the
probability an input x will be inside the valid region, i.e.,

p(x) = Pr(c(x) ≤ 0). (4.6)

We can estimate the boundary by finding x such that p(x) = 0.5. It turns out that
we can recast the boundary-finding problem as an unconstrained BO problem. We
can create a surrogate model for p, such as a classification Gaussian process or any
other classifier. A common utility function for this search would be the Shannon
entropy:

S(x) = −p(x) × log(p(x)) − (1 − p(x)) × log(1 − p(x)). (4.7)

Using the expected value of S(x) under the surrogate as the acquisition function
leads to a BO algorithm for finding the boundary.

Our actual problem of interest is constrained optimization, which here is focused
on finding an optimum along a boundary. Thus we may want to include entropy as
part of an acquisition function, such as taking a product of EI and entropy. We might
want to more heavily weight either EI or entropy, and thus a family of acquisition
functions is

a(x) = EI(x)ω1 × S(x)ω2 , (4.8)

where ω1 and ω1 act as weights for EI and entropy, respectively. As this acquisition
function combines EI and entropy, it will tend to explore the promising space just
beyond the boundary, primarily in the invalid region, where EI will be larger. The
entropy term pulls it closer to the boundary, but not enough to pull it into the
valid region. To address this imbalance, Lindberg and Lee (2015) introduced an
acquisition function based on asymmetric entropy, which can focus the search inside
the valid region. Asymmetric entropy was originally created by Marcellin et al.
(2006) in the context of fitting decision trees when one class is relatively uncommon
and thus can benefit from being favored in the tree growth algorithm. Asymmetric
entropy is given by

Sa(x) = 2p(x)(1 − p(x))

p(x) − 2wp(x) + w2 , (4.9)
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where w is a mode location parameter. Maximum asymmetric entropy is achieved at
p = w instead of the usual p = 0.5. Thus selecting w > 0.5 will push exploration
more toward the valid region. Lindberg and Lee (2015) recommend w = 2/3.
Substituting asymmetric entropy into the acquisition function, we now have

aAE(x) = EI(x)ω1 × Sa(x)ω2 .

Lindberg and Lee (2015) recommend ω1 = 1 and ω2 = 5, giving the acquisition
function

aAE(x) = EI(x) × Sa(x)5. (4.10)

This formulation can be effective at solving the constrained optimization problem
while searching points primarily inside the valid region.

Example Returning to the two-dimensional constrained optimization example in
Sect. 4.2.1, consider solving again the following problem

min f (x1, x2) = 4x2
1 − x1 − x2 − 2.5

s.t. c1(x1, x2) = −x2
2 + 1.5x2

1 − 2x1 + 1

c1(x1, x2) = 3x4
1 + x2

2 − 2x1 − 4.25

where −1.5 ≤ x1 ≤ 2.5, and −3 ≤ x2 ≤ 3. Proceeding as before, we start with an
initial LHS sample of size n = 10, and sequentially select 50 more inputs to evaluate
based on the AE acquisition function. Given that both constraint functions return a
continuous value, we choose to model the constraints using independent Gaussian
process surrogate models, Yc1(x) and Yc2(x), and their respective predictive means
and variances to calculate the probability p(x) as

p(x) = Pr(c(x) ≤ 0) = �

(
−μc1(x)

σc1(x)

)
× �

(
−μc2(x)

σc2(x)

)
. (4.11)

We then can calculate the asymmetric entropy by plugging p(x) into Sa(x) and
setting w = 2/3. Likewise, we follow the recommendation set forth in Lindberg and
Lee (2015) and set ω1 = 1, and ω2 = 5 to finish the specification of the acquisition
function.

Running the BO algorithm under these settings, Fig. 4.4 shows the performance
of the BO algorithm using the AE acquisition function. Recall that when w > 0.5,
asymmetric entropy will push the search towards the inside of the boundary of the
valid region. What we see in Fig. 4.4 is exactly that. When searching within the
valid regions, the AE acquisition function pushes the search towards the boundaries
of the valid regions when exploring.
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Fig. 4.4 A view of the performance of the BO algorithm using the asymmetric entropy (AE)
acquisition function for a single run of a Monte Carlo experiment

To get an idea of the overall performance of the BO algorithm using the AE
acquisition function, we run 30 Monte Carlo experiments of the BO algorithm.
Figure 4.5 shows the individual and average performance of the BO algorithm over
the 30 Monte Carlo experiments. It is not until after the twentieth input evaluation
that the worst of the Monte Carlo experiments has found an input in a valid region;
however, every single solution search path seems to hone in on the global solution
very quickly. By about the twenty fifth iteration of the algorithm, all of the Monte
Carlo runs have converged to the global minimum of the problem. Clearly, using
the AE acquisition function is advantageous when the solution to the constrained
optimization problem lies along the boundary of the input space since the natural
behavior of the acquisition function is to want to search for the boundary and explore
along it.

4.2.3 Augmented Lagrangian

Augmented Lagrangian methods (Bertsekas 1982; Nocedal and Wright 2006) are
a class of methods based on using a penalty function to combine constraint
satisfaction with objective function optimization into a new single scalar acquisition
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Fig. 4.5 A view of the performance of the BO algorithm using the asymmetric entropy (AE)
acquisition function for the 30 the Monte Carlo experiments. Here, each grey line represents the
best value found over the search by the BO algorithm during a single run of the Monte Carlo
experiment. The red average line starts when all of the 30 Monte Carlo experiments have found a
valid solution

function, which can then be solved as a sequence of unconstrained optimization
problems. The Augmented Lagrangian approach combines the original objective
function with a penalty parameter multiplied by the constraint function, plus a
Lagrangian term, and seeks to minimize that combination. We work here with the
negative of that term as the acquisition function that we maximize:

aAL(x; λ, ρ) = −f (x) − λT c(x) − 1

2ρ

m∑
j=1

max(0, cj (x))2, (4.12)

where f is the objective function, c is the vector of constraint functions, ρ > 0 is
the penalty parameter, and λ ∈ R

m+ is the Lagrange multiplier. As we search the
space, for given values of λ and ρ, we choose the next point x∗ as

x∗ = argmax
x∈X

aAL(x; λ, ρ). (4.13)

If we were to fix λ and ρ, this approach would convert the constrained optimization
problem into an unconstrained optimization problem, typically simplifying the
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problem. In practice, we use a sequence of values for λ and ρ, and so we have
converted a constrained problem to a sequence of unconstrained problems.

The augmented Lagrangian approach has good theoretical convergence prop-
erties when ρ → 0. However, as ρ → 0, the problem becomes increasingly
ill-conditioned, and difficult to solve numerically. Thus real-world algorithms use a
sequence of values for ρ whose limit is 0. As ρ is updated, λ is updated at iteration
k as a typical Lagrange multiplier

λk
j = max

(
0, λk−1

j + 1

ρk−1
cj (x

k)

)
. (4.14)

Augmented Lagrangian methods were developed as numerical methods,
designed for direct numerical optimization. Gramacy et al. (2016) adapted the
augmented Lagrangian approach for Bayesian optimization by incorporating
Gaussian process surrogate modeling into the algorithm. An independent Gaussian
process is used to approximate f and each constraint cj , for a total of m + 1
Gaussian process models. In particular, Yf is a Gaussian process surrogate for f

and Ycj
is a Gaussian process surrogate for cj . These surrogates are important

because (4.13) requires the selection of the next point, x∗, based on the unknown
f and c. The Gaussian process surrogates are used to guide this choice of x∗. The
acquisition function is thus approximated with:

−Yf (x) − λT Yc(x) − 1

2ρ

m∑
j=1

max(0, Ycj
(x))2. (4.15)

Given this approximation, how does one choose the next x∗ in a BO routine?
As we update our Gaussian process surrogate, Y will have a distribution derived
from the posterior distributions of each of the Gaussian processes, and so Y is not
a scalar function that can be directly minimized. Gramacy et al. (2016) suggest
several methods for guiding this choice, stemming from two conceptual approaches:
following the predictive mean, or expected improvement.

The first approach for choosing the point, x∗, that maximizes (4.12) based on
the approximation (4.15) is to choose the x∗ that maximizes the posterior predictive
mean of (4.15). At any point x, Yf (x) will have a posterior predictive mean that is
Gaussian with mean μf (x) and variance σ 2

f (x). Similarly, each Ycj
(x) will have a

Gaussian posterior predictive mean with mean μcj
(X) and variance σ 2

cj
(x). So we

can now write

E [aAL(x)] ≈ −E
[
Yf (x)

]− λT
E [Yc(x)] − 1

2ρ

m∑
j=1

E

[
max(0, Ycj

(x))2
]

= −μf (x) − λT μc(x) − 1

2ρ

m∑
j=1

E

[
max(0, Ycj

(x))2
]
. (4.16)
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Gramacy et al. (2016) provide an expansion of that last expectation as

E

[
max(0, Ycj

(x))2
]

= σ 2
cj

(x)

⎧⎨
⎩
⎛
⎝1 +

(
μcj

(x)

σcj
(x)

)2
⎞
⎠�

(
μcj

(x)

σcj
(x)

)
+ φ

(
μcj

(x)

σcj
(x)

)⎫⎬
⎭ ,

(4.17)

where � and φ are the cumulative distribution function and probability density
function for the standard Gaussian distribution, respectively.

The second approach is based on expected improvement, choosing the x∗ that
has the largest expected improvement in Y . Because this EI is not available in
closed form, Gramacy et al. (2016) suggest a Monte Carlo approximation. Draw
T Monte Carlo samples y

(t)
f (x), y

(t)
c1 (x), . . . , y

(t)
cm

(x) from Gaussian distributions

N
(
μf (x), σ 2

f (x)
)
and N

(
μcj

(x), σ 2
cj

(x)
)
, for t = 1, . . . , T . The approximation

is

E [1Y (x)] ≈ 1

T

T∑
t=1

max

⎧⎨
⎩0, ymin−

⎡
⎣y

(t)
f (x)+λT y(t)

c (x)+ 1

2ρ

m∑
j=1

max
(
0, y(t)

cj
(x)
)2
⎤
⎦
⎫⎬
⎭

(4.18)

where ymin is the smallest value of (4.15) that has been observed across all previous
iterations.

For both approaches, full optimization would be impractical, and x∗ can be
chosen by drawing a random sample of candidates and choosing the x∗ which is
the best among the candidates evaluated. Gramacy et al. (2016) provide additional
discussion on generating improved candidate sets. They also discuss variations on
these two approaches that approximate the acquisition functions by removing the
max operator, which leads to simplified expressions that can be written in closed
form in certain cases.

Example Using the AL acquisition function, let us again solve the following two-
dimensional constrained optimization problem

min f (x1, x2) = 4x2
1 − x1 − x2 − 2.5

s.t. c1(x1, x2) = −x2
2 + 1.5x2

1 − 2x1 + 1

c1(x1, x2) = 3x4
1 + x2

2 − 2x1 − 4.25

where −1.5 ≤ x1 ≤ 2.5, and −3 ≤ x2 ≤ 3. Starting with an initial LHS of size
n = 10, we run the BO algorithm using the AL acquisition function to sequentially
choose the next 50 inputs to evaluate. Figure 4.6 shows the performance of the BO
algorithm over a single Monte Carlo run. The AL acquisition function performs
quite well in this example, spending most of its time exploring input space of one of
the valid regions. Unlike the AE acquisition function, the AL acquisition function
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Fig. 4.6 A view of the performance of the BO algorithm using the augmented Lagrangian (AL)
acquisition function for a single run of a Monte Carlo experiment

does not have a preference for solely trying to search the boundary of the input space
and so it takes a more exploratory approach to searching the valid region.

Similar to the CEI acquisition function, it takes about 30 input evaluations before
all of the 30 Monte Carlo experiments find a valid input (Fig. 4.7). However, the AL
acquisition function still does a quite good job at converging, on average, to the
global solution of the problem.

4.2.4 Barrier Methods

Barrier methods (Nocedal and Wright 2006), also known as interior point methods,
are a natural strategy for solving black-box constrained optimization problems as
they try to decrease the objective function as much as possible while ensuring
that the boundary of the constraint space is never crossed. In order to ensure that
the boundary of the constraint space is never crossed, barrier methods replace the
inequality constraints in the constrained optimization problem in (4.1) with an extra
term in the objective function that can be viewed as a penalty for approaching the
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Fig. 4.7 A view of the performance of the BO algorithm using the augmented Lagrangian (AL)
acquisition function for the 30 the Monte Carlo experiments. Here, each grey line represents the
best value found over the search by the BO algorithm during a single run of the Monte Carlo
experiment. The red average line starts when all of the 30 Monte Carlo experiments have found a
valid solution

boundary. Here, the constrained optimization problem in (4.1) can be re-written as
the following unconstrained optimization problem

min
x

{
f (x) +

m∑
i=1

B{ci (x)≤0}(x)

}
, (4.19)

where B{ci (x)≤0}(x) = 0 if ci(x) ≤ 0 and ∞ otherwise. Although mathematically
equivalent, the introduction of B{ci (x)≤0}(x) in the reformulation of the original
constrained optimization problem is not particularly useful as it introduces an abrupt
discontinuity when ci(x) > 0. This discontinuity eliminates the use of calculus
to minimize (4.19). To remedy this issue, the discontinuous function in (4.19) can
be replaced with a continuous approximation, ξ(x), that is ∞ when ci(x) > 0
but is finite for ci(x) ≤ 0. This continuous approximation, ξ(x), is referred to as
the barrier function as it will create a “barrier" to exiting the valid region for the
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Fig. 4.8 As γ approaches ∞, the log barrier function, ξ(x), becomes a better approximation to
B{ci (x)≤0}(x) (i.e., the dashed line)

search algorithm. Many barrier functions exists, however, a popular choice of barrier
function is the log barrier function which is defined as

ξ(x) = −
(
1

γ

) m∑
i=1

log(−ci(x)) (4.20)

for γ > 0. Note that the log barrier function, ξ(x), is a smooth approximation of∑m
i=1 B{ci (x)≤0}(x)when ci(x) < 0, and that this approximation improves as γ goes

to ∞ (see Fig. 4.8). Now, replacing B{ci (x)≤0}(x) with the log barrier function, ξ(x),
we can approximate the problem in (4.19) as

min
x

{B(x; γ )} = min
x

{
f (x) −

(
1

γ

) m∑
i=1

log(−ci(x))

}
. (4.21)

Solving the minimization problem in (4.21) becomes a much more manageable and
tractable problem as compared to the minimization problem in (4.19).

Recognizing the attractive qualities of barrier methods for constrained optimiza-
tion, Pourmohamad and Lee (2021) extended barrier methods to the BO framework
by modeling the quantity B(x; γ ) in (4.21), using independent Gaussian process
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surrogates Yf (x) and Yc(x) = (Yc1(x), . . . , Ycm(x)) for the objective and constraint
functions, i.e.

Y (x) = Yf (x) −
(
1

γ

) m∑
i=1

log(−Yci
(x)). (4.22)

Pourmohamad and Lee (2021) suggests that optimization can then proceed by
minimizing the predictive mean surface of Y (x). At first glance, this may sound
like a poor idea since minimizing the expectation of a Gaussian process typically
leads to a greedy search algorithm (i.e., think back to the discussion in Sect. 3.2
about minimizing the predictive mean of the Gaussian process, μn(x)). However, as
will be shown, in this case minimizing the predictive mean surface of Y (x) leads to
an acquisition function that searches the space both locally and globally. The result
of minimizing the predictive mean surface of Y (x) results in:

min
x

E(Y (x)) ≈ min
x

μf (x) −
(
1

γ

) m∑
i=1

(
log(−μci

(x)) + σ 2
ci
(x)

2μ2
ci
(x)

)
(4.23)

The details of the derivation of the expectation in (4.23) can be found in Pour-
mohamad and Lee (2021). To finally recast this in the language of BO, we instead
pivot to maximizing the negative value of this equation and thus establish the barrier
method (BM) acquisition function, i.e.,

aBM(x) = −μf (x) +
(
1

γ

) m∑
i=1

(
log(−μci

(x)) + σ 2
ci
(x)

2μ2
ci
(x)

)
. (4.24)

Two problems arise from this acquisition function. The first problem is that there
is no explicit rule, in the context of BO, on how to set γ . In the mathematical
programming literature (e.g., Nocedal and Wright (2006)), it is common practice
to have the value of γ → ∞ such that, at iteration k + 1 of the barrier method,
γk+1 > γk . In effect, this leads to steadily decreasing the penalty for approaching
the boundary of the valid region throughout the optimization. However, much like
the LCB acquisition function of Sect. 3.3.3, γ is still a tuning parameter left to
user’s discretion. The second problem is that (4.24) contains no variability term
associated with the objective function, but rather only with the constraints, i.e.,
σ 2

ci
(x). Without a term like σ 2

f (x) in (4.24) to measure the prediction uncertainty
for the objective function, the acquisition function will tend to favor exploitation,
rather than exploration, as it will assume that it is predicting the objective function at
untried inputs without error. Solving both of these problems at once, Pourmohamad
and Lee (2021) recommended setting γ = 1/σ 2

f (x), where σ 2
f (x) is the predictive
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variance associated with the Gaussian process surrogate model for the objective
function f . This leads to the revised acquisition function

aBM(x) = −μf (x) + σ 2
f (x)

m∑
i=1

(
log(−μci

(x)) + σ 2
ci
(x)

2μ2
ci
(x)

)
, (4.25)

which (1) gives a rule for setting γ based on the current level of uncertainty in the
predictions, and (2) injects an uncertainty term for the objective function into the
acquisition function.

A second approach was also proposed in Pourmohamad and Lee (2021) which
was to replace the surrogate model for the objective function, Yf (x), with the
improvement function −I (x) in (4.22), i.e.,

min
x

E

(
−I (x)−

(
1

γ

) m∑
i=1

log(−ci(x))

)
= min

x
−E(I (x))−

(
1

γ

) m∑
i=1

(
log(−μci

)+ σ 2
ci

2μ2
ci

)
.

(4.26)

The idea here being that if you instead take the expectation of the improvement
function in (4.26), that you would incur all of the benefits of the expected
improvement acquisition function, i.e., a variance term for the objective function
and the natural exploration-exploitation search characteristics. Note that since we
are minimizing in (4.23) we will need to use the negative improvement function.
The minimization problem in (4.26) leads to the following acquisition function

aBM(x) = (f n
min − μf (x))�

(
f n
min − μf (x)

σf (x)

)
+ σf (x)φ

(
f n
min − μf (x)

σf (x)

)

+
(
1

γ

) m∑
i=1

(
log(−μci

) + σ 2
ci
(x)

2μ2
ci
(x)

)
, (4.27)

where again, Pourmohamad and Lee (2021) suggest setting γ = 1/σ 2
f (x).

Example Using the BM acquisition function, we solve one last time the following
two-dimensional constrained optimization problem

min f (x1, x2) = 4x2
1 − x1 − x2 − 2.5

s.t. c1(x1, x2) = −x2
2 + 1.5x2

1 − 2x1 + 1

c1(x1, x2) = 3x4
1 + x2

2 − 2x1 − 4.25

where −1.5 ≤ x1 ≤ 2.5, and −3 ≤ x2 ≤ 3. Once again, we start with an initial
LHS of size n = 10, and sequentially pick 50 additional inputs to evaluate based
on the BM acquisition function. For illustration here, we shall use the form of the
acquisition function in (4.25). The performance of the BM acquisition function
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Fig. 4.9 A view of the performance of the BO algorithm using the barrier method (BM)
acquisition function for a single run of a Monte Carlo experiment

for guiding the BO algorithm can be seen in Fig. 4.9. As opposed to the CEI,
AE, and AL acquisition functions, the BM acquisition places higher importance
on trying to stay within the valid region, and so exploring the invalid regions far
less. This characteristic can be both desirable and undesirable. Staying within the
valid region makes a lot of sense since we are concerned with finding a valid
solution to the problem and, based on how computationally expensive the computer
model is, searching in the invalid region can be viewed as wasteful since those
inputs will not be the solution to the optimization problem and their evaluation is
costly. On the other hand, as seen in Sects. 4.2.2 and 4.2.3, evaluating inputs in the
invalid region is beneficial with helping the Gaussian process surrogate models learn
both the objective and constraint function surfaces better, which ultimately leads to
better prediction and uncertainty reduction, both of which are important components
of a good acquisition function. Much like the AE acquisition function, the BM
acquisition as well has a tendency to explore the boundary of the valid regions.
Note though that while the original barrier methods were designed to never cross the
border of the valid region, the BM acquisition function explores along the boundary,
sometimes crossing it, since the location of the boundary is being estimated, and
the Gaussian process surrogate model learns the boundary by sometimes going just
beyond it.
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Fig. 4.10 A view of the performance of the BO algorithm using the barrier method (BM)
acquisition function for the 30 the Monte Carlo experiments. Here, each grey line represents the
best value found over the search by the BO algorithm during a single run of the Monte Carlo
experiment. The red average line starts when all of the 30 Monte Carlo experiments have found a
valid solution

Figure 4.10 captures the behavior of 30 Monte Carlo experiments for running
the BO algorithm using the BM acquisition function. Overall, the performance of
the BM acquisition function is quite good, with all of the 30 different Monte Carlo
runs obtaining a valid input by about the twentieth input evaluation. After the initial
LHS, the BM acquisition steadily guides the BO algorithm to the global solution of
the problem on average.

For sake of comparison, we plot the average performance of the CEI, AE, AL,
and BM algorithms over their respective 30 Monte Carlo experiments (Fig. 4.11).
Here, the initial 30 LHSs, across the Monte Carlo experiments, are the same starting
inputs for each acquisition function. What we see from Fig. 4.11 is vastly different
average performance of the BO algorithm under the four different acquisition
functions. Here, BM and AE are much better at finding valid inputs earlier on which
is due to their tendencies to approach, or stay within, the boundaries of the valid
region. CEI and AL are slower to find valid inputs due to the fact that they will
allow for more exploration of the invalid region as compared to the AE and BM
acquisition functions, i.e., there is no heavy penalty for exiting the valid region or
need to search out the boundary of the valid region. Although the CEI and AL
acquisition functions are slower to find valid starting inputs, they still perform as
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Fig. 4.11 The average performance of the CEI, AE, AL, and BM acquisition functions over the
30 Monte Carlo experiments

well as the BM acquisition function in this example. On the other hand, the AE
acquisition function clearly dominates the other three acquisition functions with
regards to the number of function evaluations needed to converge to the global
solution of the problem. This superior performance is due in part to the fact that
the global solution lies exactly on the border of the valid region which is exactly
where the AE acquisition function wants to search. We emphasize that this a single
example, and that on other examples, a different one of these methods may perform
best.

4.3 Constrained Sprinkler Computer Model

Recall that in Sect. 3.4 we maximized the range of the garden sprinkler via an
unconstrained optimization problem. Given that the garden sprinkler computer
model returns a multi-objective output, we can now optimize one of the objective
function outputs subject to the constraint that either one or both of the other objective
function values is above (or below) a certain value. For sake of example, let us
assume that still want to maximize the range of the garden sprinkler but now subject
to the constraint that the water consumption must not be greater than five. Here
we will assume that constraining the speed of the garden sprinkler (i.e., the third
output of the garden sprinkler computer model) is not of concern. Casting the
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garden sprinkler computer model in the framework of a constrained optimization,
we formulate the problem as follows:

x∗ = argmin
x∈X

{−f (x)} subject to c(x) − 5 ≤ 0, (4.28)

Here the objective function, f (x), describes the range at which the garden sprinkler
can spray water, while the constraint function, c(x), determines whether an accept-
able amount of water is used. Note that since we wish to maximize the range of the
garden sprinkler, we shall instead minimize the negative objective function in order
to find the input that maximizes it. The inputs x = (x1, . . . , x8)

T ∈ X represent
the eight physical attributes of the garden sprinkler (see Fig. 1.6 and Table 1.1) that
can be set within the computer model. The computer model is essentially a black-
box function since, for any input configuration evaluated by the model, the only
information that is returned is that of the objective and constraint values.

Now, we shall solve for the maximum value of the range of the garden sprin-
kler, subject to the water consumption constraint, using the constrained expected
improvement (CEI), asymmetric entropy (AE), augmented Lagrangian (AL), and
barrier method (BM) acquisition functions, and shall compare and contrast their
performances. We will initialize the BO algorithm using a LHS of size n = 10,
and sequentially evaluate an addition 90 inputs for a total computational budget
of 100 input evaluations. In order to assess the robustness of the solutions of the
BO algorithm, under the four different acquisition functions, we repeat solving this
constrained optimization problem using 30 Monte Carlo experiments. Figure 4.12
shows the results of the 30 Monte Carlo experiments for a given acquisition
function.

Visually, it looks like the CEI, AL, and BM acquisition functions all have similar
performance, while the AE acquisition perhaps has a few better runs of the Monte
Carlo experiments (i.e., lower best valid objective values) as well as fewer worst
solutions. For each acquisition function, taking the average of the solutions over
the 30 Monte Carlo experiments reveals that the AE acquisition function indeed
performed better than the other acquisition functions (Fig. 4.13). Although it took
much longer, on average, for the AE acquisition to start evaluating valid inputs,
it still was capable of finding a significantly better solution than the other three
acquisition functions. On the other hand, the average performance of the CEI, AL,
and BM acquisition functions was very similar with perhaps the exception of the
BM acquisition function doing slightly better (i.e., lower average values) through
several stretches of black-box iterations.

Table 4.1 gives a numerical summary of the performance of the four acquisition
functions. Besides being better on average, the AE acquisition function also did the
best with regards to both the best and worst final solutions found over the 30 Monte
Carlo experiments as compared to the CEI, AL, and BM acquisition functions.
The observed differences in worst and final solutions between the CEI, AL, and
BM acquisition functions, over the 30 Monte Carlo experiments, were negligible,
reaffirming the overall comparable performance of the three acquisition functions.
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Fig. 4.12 A view of the performance of the BO algorithm, using the four different acquisition
functions, for the 30 the Monte Carlo experiments. Here, each line represents the best value found
over the search by the BO algorithm during a single run of the Monte Carlo experiment

Lastly, evaluating a LHS of size n = 1, 000, 000 inputs results in a global
solution of −9.46. In this case, it is clear that the four acquisition functions have
not yet converged to the global solution of the problem. This is consistent with the
fact that in Fig. 4.13, all of the progress lines are still trending downward. Practically
speaking, this means that the total budget for input evaluations needs to be increased
past 100, and that the constrained BO algorithmmay benefit from increasing the size
of the initial LHS.
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Fig. 4.13 The results of running 30 Monte Carlo experiments for each acquisition function. The
plot shows the average best objective function values found over 100 black-box iterations

Table 4.1 The average, best, and worst solution found at the end of the 30 Monte Carlo
experiments by each acquisition function

Average final Best final Worst final

Acquisition function solution solution solution

Constrained expected improvement −5.14 −7.01 −3.17

Asymmetric entropy −5.85 −8.22 −4.82

Augmented lagrangian −5.00 −7.17 −3.36

Barrier method −5.05 −7.16 −3.25
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