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Preface

Optimization is a field with a long history and much past research. Our focus here is
on a very specific sub-area, that of derivative-free optimization of expensive black-
box functions. While much of the optimization world involves efficient algorithms
that make use of gradient information, we operate in an environment where gradient
information is typically not available. The application area we are most familiar
with is that of deterministic computer simulation experiments, where complex
computer code attempts to model a real-world phenomenon. The code can be run
for any inputs, but it only returns output values, and does not provide any gradient
information for those outputs. Also, running the code for the same input will always
return the same output. The code can be expensive to run, requiring significant
computing power and time. Thus, there is a need for efficient optimization routines
that do not rely on information about derivatives of the function. That is the focus
of this book.

Moreover, there are few books that are devoted to either the topic of Bayesian
optimization or computer experiments, and even fewer devoted solely to both.
The term “Bayesian optimization” comes from the machine learning literature and
has become a very hot topic among the machine learning community due to its
highly successful application in the optimization of tuning parameters for machine
learning models. Much work has also been done in the realms of applied math,
statistics, and engineering, sometimes under different names. The mixing of these
disciplines has led to useful insights and new research directions. And although the
roots of Bayesian optimization can be traced back to early optimization problems in
computer experiments, the application of Bayesian optimization is still in its nascent
phase within the field of computer experiments as compared to in machine learning.

This book is intended to provide a quick introduction to the topic of Bayesian
optimization, with aim to introduce the reader to Bayesian optimization, highlight
advances in Bayesian optimization, and showcase its success in being applied to
computer experiments. Additional references are included for people looking to
dive deeper into topics. As a SpringerBrief, we are not attempting to cover all of the
topics in this area, but have selected just a few as primary examples of the existing
methodology. We hope that this book will be useful for people in a wide variety
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viii Preface

of fields, including those that study optimization, but also people in fields who use
optimization to solve problems in their own disciplines. We have tried to provide
sufficient background for statistical, machine learning, and numerical concepts, so
that this book can be applicable for people who want to apply these methods to real
problems. The book will serve as a useful companion to anyone working in any field
that uses computer experiments and computer modeling. Potentially unaware of the
topic of Bayesian optimization, practitioners in the field of computer experiments
will find Chaps. 3 and 4 of most interest, providing them an introduction to these
modern optimization approaches. As computer experiments are increasingly used
across a wide range of disciplinary applications, many practitioners have a need
for improved optimization methods. Additionally, readers with a background in
machine learning, but little to no background in computer experiments, should find
the book an interesting case study of the applicability of Bayesian optimization
outside of the realm of machine learning.

The book is broken down into four main chapters. Each chapter could stand alone
on its own as the topic of an entire book; however, each chapter is built such that the
flow of the chapter builds upon the previous one. Chapter 1 introduces the reader
to the topic of computer experiments with an abundant variety of examples across
many professional industries. Chapter 2 focuses on the task of surrogate model
building and contains a mix of several different surrogate models that are used in the
computer modeling community, machine learning community, or both. Chapter 3
introduces the core concepts of Bayesian optimization and focuses on the more
common case of unconstrained optimization. Chapter 4 finishes the with harder
case of constrained optimization and showcases some of the most novel Bayesian
optimization methods that currently exist.

Primarily, the book focuses on establishing the essential ideas for both computer
experiments and Bayesian optimization such that a reader with limited knowledge
of either should be able to pick up the book and start applying its methodology.
Stylistically, we prefer to not to distract the reader with code embedded in the body
of text in the chapters and instead use the chapters to focus on the foundational ideas
and strategies needed to apply the methods. We provide R code as supplementary
material for most examples in the book so that the methods mentioned in the book
are understandable, reproducible, and transparent. The R code can be found at
https://github.com/tpourmohamad/BayesianOptimizationBook.

We are grateful for everyone who has enabled and supported us in this work.
The fantastic staff at Springer, especially Editor Laura Briskman, helped bring the
idea of this book to fruition. People who provided early stimulating discussions and
inspired us to work in this area include Bobby Gramacy, Genetha Gray, and Stefan
Wild, with a special thank you to Bobby Gramacy for reviewing a draft of the book
and providing many useful comments and suggestions. Finally, we appreciate the
support and forbearance of our families as we worked on this book.

South San Francisco, CA, USA Tony Pourmohamad
Santa Cruz, CA, USA Herbert K. H. Lee
June 2021
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Chapter 1
Computer Experiments

1.1 Introduction

A computer model (also referred to as computer code or a computer simulator)
is a mathematical model that simulates the complex phenomena, or system, under
study via a computer program. Controlled experiments, considered to be the gold
standard in statistics, are not a viable means for studying complex phenomena
when the systems under study are either too expensive, too time consuming, or
physical experimentation is simply not possible. For example, weather phenomena,
such as hurricanes or global warming, are not reproducible physical experiments,
therefore, computer models based on climatology are used to study these events.
Another example is the design of a rocket booster and understanding its behavior
as it re-enters the atmosphere. It would be prohibitively expensive to build multiple
rocket boosters just to study their aerodynamic properties on re-entry, so design is
done with computers and re-entry is simulated with a computer model (Gramacy
and Lee 2008). Thus, researchers hoping to better understand and model complex
phenomena should consider computer modeling as a possible solution.

Computer models have enjoyed a wide range of use, spanning disciplines such
as physics, astrophysics, climatology, chemistry, biology, and engineering. At its
simplest, a computer model is a mathematical model of the form

y = f (x1, . . . , xd) = f (x), x = (x1, . . . , xd)T ∈ X, (1.1)

where x is an input variable to the computer model, y is a (possibly multivariate)
output from the computer model, and X is the domain of the input variable. Here,
f may or may not have a known analytical representation, and thus the computer
model describing the complex system under study may itself also be very complex.
Therefore, understanding the computer model can be as challenging of a task as
understanding the original physical system it represents. Although possibly stochas-

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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2 1 Computer Experiments

tic, the focus of this book will be on the case of deterministic computer models
where running the computer model for the same input yields the same output always.
Other books are available for readers interested in stochastic computer models such
as Kleijnen (2015). Much like the design of controlled experiments, one can also
construct designed experiments in order to better understand computer models.
These experiments, or computer experiments, consist of running the computer
model at different input configurations in order to build up an understanding of the
possible outcomes of the computer model. Here the design of computer experiments
can differ substantially from physical experiments and will be elaborated upon in
Sect. 1.3.

A common feature of computer models is that they tend to be computationally
expensive. Computer models can be extremely complex mathematical programs,
and the evaluation of different input configurations may take minutes, hours or even
days to calculate a single output. This computational expense makes it prohibitive
to try to run the computer experiment at every possible input configuration in order
to understand the system. In higher-dimensional input spaces, it will not even be
feasible to evaluate the model over a reasonable grid. Thus, a common theme of
computer experiments is to try to find an appropriate “cheap-to-compute" model, or
surrogate model, that resembles the true computer model very closely but is much
faster to run. The focus of Chap. 2 is surrogate models, and so we simply mention
here that Gaussian processes (Stein 1999) have been used as the typical modeling
choice for building statistical surrogate models, and this is due to their flexibility,
well-calibrated uncertainty, and analytic properties (Gramacy 2020).

Another typical trait of computer models is that they are often treated as black-
box functions. Here, a black-box computer model is a computer model where
evaluation requires running computer code that reveals little information about
the functional form of the underlying mathematical function, f . The black-box
assumption arises due to the fact that f may be extremely complex, analytically
intractable, or that access to the internal workings of the computer model are
restricted, say, for such reasons as being proprietary software.

One aspect that varies among computer models is whether a function evaluation
can be accompanied by derivative (or gradient) information. Some models will
provide both an output and derivative information at that point. Other models
only provide the output, and cannot provide any derivative information. Classical
optimization techniques tend to rely heavily upon derivatives. The focus of this
book is on those computer models that do not provide derivative information, which
makes optimization more challenging.

Computer models can be built and used to develop methods for computer model
emulation (prediction), uncertainty quantification, and calibration, however, the
main focus of this book is dealing with computer models for optimization. Computer
models are often built with the goal of understanding some physical system of
interest, and with that goal usually comes the need to optimize some output of
interest from the computer model. For example, in hydrology the minimization of
contaminants in rivers and soils is of interest and so computer models representing
pump-and-treat remediation plans are often used in order to optimize objectives,
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such as the associated costs of running pumps for pump-and-treat remediation,
while also ensuring that contaminants do not spread (Pourmohamad and Lee 2020).
Recalling that most computer models are computationally expensive to run, the
need for efficient sequential optimization algorithms (also known as Bayesian
optimization (Sect. 3.1)) that do not require many functional evaluations is high,
which is why the focus of this book is placed on efficient optimization. More
specifically, this book will present solutions to problems of the following form:

min
x

{f (x) : x ∈ X} (1.2)

or

min
x

{f (x) : c(x) ≤ 0, x ∈ X} (1.3)

where X ⊂ R
d is a known, bounded region such that f : X → R denotes a

scalar-valued objective function and c : X → R
m denotes a vector of m constraint

functions. The unconstrained optimization case in (1.2) will be the subject of
Chap. 3, while the constrained optimization in (1.3) will be explored in Chap. 4.
Extensions to multivariate objectives are possible. In some cases, the multiple
objectives can be collapsed into a joint scalar objective function, such as by taking
a linear combination of them. In other cases, the objectives are not comparable, and
one is interested in the Pareto frontier of possible points that trade off optimizing the
various objectives (Svenson and Santner 2016, for example); these multi-objective
problems are beyond the scope of this book.

1.2 Examples of Computer Experiments

The use of computer models spans a vast array of subject areas and each area
could potentially be the focus of its own book. In this section, we present a few
examples where computer models are used. Our examples are aimed at highlighting
the whole gamut of scales at which computer models can be applied, spanning the
infinitesimally small to the tremendously large, and a few things in between.

A practical issue with computer models is that there is a dearth of real-world
computer models that are freely available and/or accessible to practitioners. This
issue arises for a number of reasons, many of which are the same as why most
computer models are treated as black-box functions, i.e., the computer model may
simply be very complex, analytically intractable, or the software proprietary. When
applicable, we try to point out how the examples of computer models can be
downloaded and accessed for use.
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1.2.1 Groundwater Remediation

Groundwater contamination is one of the most common, and most difficult, envi-
ronmental problems (Quevauviller 2007). Groundwater is essentially water present
below the ground surface, often in underground layers of water-bearing permeable
rock, rock fractures, or unconsolidated materials known as aquifers. Groundwater
contamination occurs when man-made products such as gasoline, oil, road salts and
chemicals get into the groundwater and cause it to become unsafe and unfit for
human use. Groundwater remediation is the process that treats polluted groundwater
by removing the pollutants and/or converting them into harmless products. The
goal of remediation is to make groundwater safe for humans and to minimize
the negative impact contaminants have on the environment. To clean polluted
groundwater, a variety of physical remediation technologies (e.g., pump-and-treat)
have been developed and applied. To better understand how these remediation
technologies may work in practice, computer models have been deployed to emulate
the physical processes under study. Here we highlight two popular computer models
for groundwater remediation.

MODFLOW Originating in the 1980s, the U.S. Geological Survey three-
dimensional finite-difference flow model, known as MODFLOW (McDonald and
Harbaugh 2003), is a computer model that solves the groundwater flow equation,
i.e.,

∂

∂x

(
Kxx

∂h

∂x

)
+ ∂

∂y

(
Kyy

∂h

∂y

)
+ ∂

∂z

(
Kzz

∂h

∂z

)
+ W = SS

∂h

∂t
(1.4)

where Kxx,Kyy, and Kzz are the values of hydraulic conductivity along the x,
y, and z coordinate axes, h is the potentiometric head, W is a volumetric flux
per unit volume, Ss is the specific storage of the porous material, and t is time.
MODFLOW constructs a finite-difference form of (1.4) in order to solve the partial
differential equation. The groundwater flow equation equation describes the flow of
groundwater through an aquifer, and so MODFLOW can emulate this groundwater
flow process and more. For example, MODFLOW can be used to emulate the flow of
groundwater through areas with relatively large hydraulic gradients, such as around
the shoreline of a lake, near pumping wells, and along a stream (Fig. 1.1).

MODFLOW is built upon free software that is created and hosted by the U.S.
Geological Survey. Many versions of the MODFLOW software exists (MODFLOW
6 is the current core version) and can be downloaded freely at https://www.usgs.gov/
software/software-modflow.

MODFLOW can be used to build more complex computer models that depend
on the groundwater flow equation. For example, the hydraulic capture problem from
the community problems (Mayer et al. 2002) involves a groundwater contamination
scenario based on the U.S. Geological Survey computer model MODFLOW. The
hydraulic capture computer model is used to help understand how to contain a

https://www.usgs.gov/software/software-modflow
https://www.usgs.gov/software/software-modflow
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Fig. 1.1 The figure contains a triangular grid in which the size of the triangular cells is reduced in
areas with relatively large hydraulic gradients, such as around the shoreline of a lake, near pumping
wells, and along a stream. The figure is taken fromMODFLOW 6 which is the newest core version

plume of contaminated groundwater by installing up to four wells to control the
direction of groundwater movement, and to do so at minimal cost. Analyzed in
Lee et al. (2011), Lindberg and Lee (2015), and Pourmohamad and Lee (2016), the
hydraulic capture computer model mimics the physical process where the inputs to
the computer model are the coordinates of a well and its pumping rate.

Computer modeling is helpful here, because we would not want to run physical
experiments to see which configurations contain the contamination and which ones
do not, as a failed run would result in further pollution of the area. It is important
to do the modeling first via simulation, then only implement a real-world strategy
that is likely to be successful in containing the plume of contaminants. While the
equations that determine the flow behavior are known and deterministic, the model
is treated as a black-box because the equations do not have an analytical solution and
so the solution can only be found using numerical approximation. The community
problems are an example of constrained optimization, where the objective is to
minimize cost subject to the constraint that no pollution escapes the plume. This
optimization problem is challenging because the objective function is nonlinear and
the constraint function is irregular, with multiple disconnected regions where the
constraint is satisfied.

Lockwood Introduced in Matott et al. (2011), the pump-and-treat hydrology
problem involves a groundwater contamination scenario based on the Lockwood
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Fig. 1.2 Lockwood site via map (left) and plume diagram (right)

Solvent Groundwater Plume Site located near Billings, Montana. Years of industrial
practices in the area have led to the formation of two plumes of chlorinated
contaminants, and these two contaminated plumes are slowly, and dangerously,
migrating towards the Yellowstone river (Fig. 1.2). To combat the spread of the
contaminants, a pump-and-treat remediation plan is proposed, in which pump-and-
treat wells are placed at the site of the plumes in order to pump out contaminated
water from the soil, purify it, and then return the treated water to the soil. If either
of the two plumes reach the Yellowstone river, then the safety of the local water
supplies would be compromised, and so preventing both plumes from reaching the
Yellowstone river is of critical importance. Thus, the need to deal with the existing
problem, and to prevent future problems, led to the creation of the Lockwood
computer model.

Like with the MODFLOW problem, the system can be described with determin-
istic equations, but the solutions are not analytic and require numerical techniques.
Computer modeling is critical because a failed experiment would result in contami-
nation of the local water supply.

This computer model was designed to model six pump-and-treat wells at the site
of the plumes (two pump-and-treat wells in plume A and four in plume B). The
simulator allows modeling of either a simplified problem of fixed well locations and
varied pumping rates, or the full problem of variable locations and pumping rates
for each of the six wells. The examples in the literature tend to focus on the simpler
problem of optimizing pumping rates, which is still a difficult problem. In that case,
the goal is to determine the pumping rates at which to set the individual pump-and-
treat wells. Thus, the inputs to the computer model are the pumping rates that can
be set for the six pump-and-treat wells, i.e., x = (x1, x2, . . . , x6)

T ∈ X. Given an
input of six pumping rates, x, the output of the computer model is the cost associated
with running the pump-and-treat wells, f (x) ∝ ∑

i xi , and how much containment
escaped each of the plumes, c1, c2. Thus, working with the Lockwood computer
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model can be viewed as an exercise in constrained optimization where the objective
of the pump-and-treat hydrology problem is to minimize the cost of running the
pump-and-treat wells while containing both plumes. Formally, the objective can be
written as:

min
x

{f (x) =
6∑

i=1

xi : c1(x) = 0, c2(x) = 0, x ∈ X}. (1.5)

While the objective function is actually known in this case, the constraints are non-
linear and complex, so computer modeling is needed to understand the constraints.

The code for Lockwood computer model can be downloaded at https://bobby.
gramacy.com/surrogates/. See Gramacy (2020) for further details on building the
computer model from the code. A number of optimization approaches have been
demonstrated on the Lockwood problem (Gramacy et al. 2016; Audet et al. 2018;
Pourmohamad and Lee 2020; Gramacy 2020; Pourmohamad and Lee 2021).

1.2.2 Cosmology

Computer models are a powerful and important tool for understanding the cosmos.
Computer models play a significant role in cosmology as they provide a means for
understanding processes that occur over very long time scales (such as billions of
years) and allow for experiments to verify theories, such as, the origin and evolution
of the universe (Fig. 1.3).

In order to understand how the universe evolved into what we see today, one
needs to follow the non-linear evolution of the cosmos using numerical methods
which are typically based on computer simulations. The usual approach, known
as the n-body simulation (Fitzpatrick 2012), is to simulate a dynamical system of
starting particles usually under the influence of physical forces such as gravity. Thus
the process of cosmological simulation starts with some initial conditions according
to the dynamics of the particles one wishes to investigate, and then the evolution of
these particles is simulated by following the trajectories of each particle under their
mutual gravity. The end product is a final particle distribution that can be checked
against observations of the universe today. Depending on the number of particles,
numerical methods that try to solve the problem directly can become prohibitive or
impossible to do without a computer model.

Some of the earliest appearances of computer models in cosmology were for
the simulation of star clusters (Aarseth and Hoyle 1963) that used particles in the
range of 25–100. Jump ahead roughly 20 years, as computing power and resources
increased, cosmological simulations using more than 20,000 starting particles began
to appear (Efstathiou and Eastwood 1981). As of today, the Bolshoi simulation
(Klypin et al. 2011) is the most accurate cosmological simulation of the evolution of
the large-scale structure of the universe. The Bolshoi simulation is a cube roughly 1

https://bobby.gramacy.com/surrogates/
https://bobby.gramacy.com/surrogates/
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Fig. 1.3 Computer models are used to simulate the evolution of the universe starting with, say, the
Big Bang and its expansion

Fig. 1.4 The evolution of the large-scale structures of the universe based on the Bolshoi
simulation. Simulations were performed at the National Center for Supercomputer Applications by
Andrey Kravtsov (The University of Chicago) and Anatoly Klypin (New Mexico State University)

billion light-years on each side (Fig. 1.4) and is a simulation based on 8,589,934,592
particles, each of which represents about 200 million solar masses.

Increasing the number of particles plays a critical role in helping build better
detailed, and often more accurate, simulations of the universe, however, the more
particles used the more computer time a simulation consumes. Even with the
largest supercomputers nowadays it is only possible to use some million particles if
results are to be finished in a reasonable time (say, couple of weeks). The Bolshoi
simulation was run on the Pleiades supercomputer, at NASAAmes Research Center,
and used 13,824 processor cores, 13 TB of memory, and took 6 million cpu hours
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to run. Clearly cosmological simulations are extremely computationally expensive
and would benefit from a fast surrogate model.

Moreover, most cosmological simulations of the universe depend upon a finite
number of cosmological parameters of interest that need to be estimated from an
often intractable likelihood function. For example, estimating the parameters of
the matter power spectrum (Lawrence et al. 2017) or the 1D flux power spectrum
(Rogers et al. 2019). Estimation of these parameters can be carried out via optimiza-
tion of the intractable (i.e., black-box) likelihood functions. However, this parameter
optimization relies upon having data from the extremely computationally expensive
cosmological simulations. Thus, obtaining cosmological parameter estimates by
optimizing a much cheaper surrogate model of the black-box likelihood function
will be essential to reducing the amount of time that the cosmological models take
to run.

Computer models for cosmological simulations tend to be abundant, well
documented, and freely available for download from the web. A good starting
point for learning more about cosmological simulations is the cosmological n-body
simulator GADGET which can be downloaded at https://wwwmpa.mpa-garching.
mpg.de/gadget/.

1.2.3 Drug Discovery

Discovering new drugs is a complicated, expensive, and time consuming process.
Drug discovery is the process by which new candidate medications are discovered.
In principle, you can discover or design new drugs by evaluating the fit between a
potential drug and its target, via a computer model, in a process called molecular
docking (Meng et al. 2011) (Fig. 1.5). A computer model for molecular docking
starts out with a well established target protein and binding site, and then tries to fit
millions of different chemicals (ligands) into that site, and selects those that work
best for further development.

Conceptually, molecular docking can be thought of us as trying to fit two pieces
of a jigsaw puzzle together (Fig. 1.5) where, for a given protein puzzle piece,
one must investigate hundreds of thousands of ligand puzzle pieces for a potential
fit. Thus, molecular docking can be thought of as an optimization problem that
describes the “best-fit” orientation of a ligand that binds to a particular protein of
interest. However, optimizing molecular docking is a very difficult problem, given
the large search space of potential structures coupled with the fact that simulations
are almost always computationally expensive. One solution to this problem is to
apply Bayesian optimization (the subject of Chap. 3) in order to intelligently search
the space of potential chemical structures much faster by adaptively choosing the
sequence of molecular compounds to test in drug discovery (Negoescu et al. 2011).
Typically this is done by optimizing an objective function that measures how the
most probable position, orientation, and conformation with which a ligand can bind
to a protein. One example of such an objective function is the Vina scoring function

https://wwwmpa.mpa-garching.mpg.de/gadget/
https://wwwmpa.mpa-garching.mpg.de/gadget/
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Fig. 1.5 Schematic illustration of docking a small molecule ligand to a protein target producing a
stable complex. Potential candidate drugs can be developed from these stable complexes

(Quiroga and Villarreal 2016). The Vina scoring function is an empirical scoring
function that calculates the affinity (i.e., a measure of how well a drug binds to the
receptor) of protein-ligand binding by summing up the contributions of a number
of individual components. The Vina score can be calculated using the Autodock
Vina computer model (Trott and Olson 2010), where potential drug candidates with
low Vina scores are desirable. Thus, the aim is to minimize the Autodock Vina
computer model, where importance is placed on locating particularly low Vina
scores efficiently since the input space of potential drug candidates is large.

In general, the main advantage of using computer models for drug discovery
relies on the fact that screening of potential candidate drugs can be done much faster
on a computer than experimentally in the laboratory. A large number of potential
drug targets can be screened with computer models, in a high throughput manner, to
quickly identify a handful of effective lead candidates which can then be tested and
validated experimentally in a laboratory.

1.2.4 Garden Sprinkler

The garden sprinkler computer model is a multi-objective optimization problem that
first appeared in Bebber et al. (2010) and was later adapted to resemble a black-box
computer model that can be accessed through the CompModels (Pourmohamad
2020) package in R (R Core Team 2021). The computer model simulates the water
consumption associated with using a garden sprinkler, as well as simulating the
speed at which the garden sprinkler rotates and the range at which the garden
sprinkler can spray water. The aim of the multi-objective optimization problem
is to use the garden sprinkler computer model to minimize the sprinkler’s water
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consumption while simultaneously maximizing the speed and range of the sprinkler.
There are eight inputs to the computer model based on a set of mathematical
equations governing the underlying physics of the computer model. The eight
inputs to the computer model are (see Fig. 1.6 as a reference) the vertical (x1) and
tangential (x2) nozzle angle, the nozzle profile (x3), the diameter of the sprinkler
head (x4), the dynamic (x5) and static (x6) friction moment, the entrance pressure
(x7), and the diameter flow line (x8). The measurement unit and domain of each
computer model input is captured in Table 1.1.

To understand the interplay between the three competing objectives, one could
construct the Pareto frontier of all possible points that trade off optimizing the

Fig. 1.6 The physical representation of the sprinkler computer model

Table 1.1 Description of the units and domain of the computer model inputs

Attribute Parameter Domain Units

Vertical nozzle angle x1 [0, 90] ◦

Tangential nozzle angle x2 [0, 90] ◦

Nozzle profile x3 [2e-6, 4e-6] m2

Diameter of the sprinkler head x4 [0.1, 0.2] mm

Dynamic friction moment x5 [0.01, 0.02] Nm

Static friction moment x6 [0.01, 0.02] Nm/s

Entrance pressure x7 [1, 2] bar

Diameter flow line x8 [5, 10] mm
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Fig. 1.7 An approximation of the Pareto frontier for the sprinkler computer model

various objectives. Passing a large random sample of the input space to the computer
model should help us with approximating the Pareto frontier. Here, for example,
we evaluate a rather large random sample, n = 10, 000, of inputs and obtain the
following Pareto frontier approximation (Fig. 1.7). Increases in both the speed and
range tends to lead to an increase in water consumption which is in opposition to
the goal of the computer model.

Optimizing multi-objective computer models is a difficult task and is outside
the scope of this book. Instead, we focus on optimizing single objective functions
without regard to the other objective functions values, or subject to the constraint of
the other objective function values. For example, one could maximize the range
of the garden sprinkler without regards to the water consumption and speed of
the garden sprinkler, or one could maximize the range of the garden sprinkler
subject to, say, the joint constraints that the water consumption not exceed a
certain level and that the speed of the garden sprinkler stay above a certain
limit.

Furthermore, optimizing a single objective function (with or without constraints)
is a difficult task in its own right. As the dimensionality of the input space increases,
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Fig. 1.8 Pairwise contour plots for the objective function corresponding to the range of the garden
sprinkler. For each individual pair, two inputs are varied while the other six inputs are held constant
at the midpoint of their respective input range

so does the difficulty and complexity of understanding the interplay between
inputs and their effect on the objective function output. Exploratory data analysis
techniques may not even be feasible for expensive computer models, however, when
possible simple plots of the objective function as a function of the inputs may
help enhance our understanding of the computer model. For example, in an eight
dimensional problem like the garden sprinkler computer model, pairwise contour
plots of the objective function as a function of two inputs may yield findings that
help us understand which inputs are more influential, or have greater impact, on
the computer model output. Figure 1.8 gives an example of pairwise contour plots
for the range output of the garden sprinkler computer model. We can see that on
average, range tends to increase as nozzle profile (x3), diameter of head (x4), and
pressure (x7) increase, and as vertical angle (x1), tangential angle (x2), dynamic
friction moment (x5), and static friction moment (x6) decrease. Diameter of flow
line (x8) appears to have less impact on range, only slightly increasing range as it
increases.
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1.3 Space-Filling Designs

Computer experiments consist of running the computer model at different input
configurations in order to build up an understanding of the possible outcomes of
the computer model. Unlike the design and analysis of physical experiments, we
are not concerned with issues such as randomization, replication, or blocking (see
Joseph (2016) for a discussion) due to the deterministic nature of the computer
models. Running the computer model at the same set of inputs always yields
the same output, and the order of the runs does not matter. Rather, we should
concern ourselves with devising strategies for spreading points (inputs) out evenly
throughout the experimental region in order to help build up good surrogates for
the computer models. These strategies are commonly referred to as space-filling
designs.

Intuitively, space-filling designs should result in points that cover the input space
well. Likewise, coverage of the input space should become increasingly dense with
increasing number of inputs since the domain of the space, X, is bounded. One
way to achieve a good space-filling design is to use a Latin hypercube design
(LHD) (McKay et al. 1979). Conceptually, random samples taken from a LHD,
aptly called Latin hypercube samples (LHS), can be be thought of as a stratified
sample of the input space. Latin hypercube samples can be obtained by first dividing
the domain of each input variable into n intervals, which we denote 1, . . . , n. For
each input variable a random permutation of the numbers 1, . . . , n is chosen and
the combination of these d permutations form the design. For simplicity, it is often
easier to write the LHD with n runs and d input variable as an n × d matrix, LD , in
which each column is a random permutation of {1, . . . , n}. For example, for d = 2
and n = 4, one potential LHD is {1, 4, 3, 2}×{3, 1, 2, 4} or {4, 3, 2, 1}×{1, 2, 3, 4}
(see Fig. 1.9), i.e., the matrices

LD =

⎡
⎢⎢⎣
1 3
4 1
3 2
2 4

⎤
⎥⎥⎦ or LD =

⎡
⎢⎢⎣
4 1
3 2
2 3
1 4

⎤
⎥⎥⎦ . (1.6)

Visually, in two dimensions a LHD is akin to a Latin square in that there will be
only one sampled input in each row and column of the grid that is imposed by
dividing the domain of each input variable into n intervals (e.g., see Fig. 1.9). In
higher dimensions, a LHD becomes a generalisation of this concept to an arbitrary
number of dimensions, whereby each sample is the only one in each axis-aligned
hyperplane containing it.

Additionally, following the logic and algorithm provided in Fang et al. (2005),
if we rescale the domain of each input variable to the unit cube, i.e., define X =
[0, 1]d , then we can obtain a LHS by dividing the domain X into n strata of equal
marginal probability 1/n, and sample once from each stratum. This provides us with
an easy to follow algorithm for generating a LHS that looks like the following:
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Fig. 1.9 Two different Latin hypercube designs based on n = 4 runs and d = 2 input variables

Step 1: Independently take d permutations li1, . . . , lin of the integers 1, . . . , n for
i = 1, . . . , d.

Step 2: Take nd uniform variates uij ∼ U(0, 1), j = 1, . . . , n, i = 1, . . . , d ,
which are mutually independent. Let xj = (x1j , . . . , xdj ), where

xij = lij − uij

n
.

Subtracting random values, ui,j , from the uniform distribution ensures that the
points will be randomly distributed within their respective interval (e.g., Fig. 1.10).
The n × d matrix LS = {x1, . . . , xn} is a LHS. This two step algorithm is simple
to implement in a computer program which is why most statistical software have
built-in functions for generating LHS.

In this book, we shall use LHDs as our preferred method for constructing space-
filling designs, however, LHDs are by no means the only choice of space-filling
designs that exist. Based on the problem at hand, one type of space-filling design
may be preferable to another, and there is no shortage of choices. Alternative choices
to the LHD include uniform designs (Fang 1980), maximum entropy designs
(Shewry and Wynn 1987), integrated mean square error designs (Sacks et al. 1989),
minimax and maximin distance designs (Johnson et al. 1990), nested space-filling
designs (Qian et al. 2009), sliced space filling designs (Qian and Wu 2009), multi-
layer designs (Ba and Joseph 2011), minimum entropy designs (Joseph et al. 2015),
bridge designs (Jones et al. 2015), distance based designs (Zhang et al. 2021), and
more.

Lastly, you may ask yourself why not just use a simple random sample of
the input space? Although a perfectly valid strategy, simple random samples can
produce samples that tend to cluster around each other, leading to large gaps in the
input space (e.g., Fig. 1.11) and thus suboptimal space-filling designs.



16 1 Computer Experiments

0.0 0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

Latin Hypercube Sample

x1

x 2

Fig. 1.10 An example of a two dimensional LHS. Note that each row and column, defined by the
grid, contains only one input point
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Fig. 1.11 An example of a simple random sample of the input space in two dimensions
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However, it is worth noting that even good space-filling designs can lead to
poor samples in rare instances. For example, in two dimensions (and generalized
to higher dimensions) it is possible to generate a LHS where the points are sampled
along the diagonal of the grid (e.g., Fig. 1.9). A design such as this clearly has poor
space-filling characteristics which will ultimately impact the quality of the surrogate
model.



Chapter 2
Surrogate Models

2.1 Gaussian Processes

Traditionally, the canonical choice for modeling computer experiments has been the
Gaussian process (Sacks et al. 1989; Santner et al. 2003; Kleijnen 2015). Gaussian
processes were originally developed for geological applications, where a model
for spatially correlated data was needed, and one that could either interpolate or
smooth the data. The choice of Gaussian processes for deterministic computer
simulators was due to this combination of their spatial correlation and their ability to
interpolate, as deterministic computer simulators are observed without noise and are
generally assumed to have outputs that vary smoothly as a function of their inputs.
We will return to both of these assumptions after describing the basic model.

A Gaussian process is a model for a function, in that it is a distribution over
functions such that the joint distribution at any finite set of points is a multivariate
Gaussian distribution, i.e.,

Yn ∼ N(μn,�n) (2.1)

for points (x1, y1), . . . , (xn, yn) where X denotes a location or a set of inputs
and Y denotes a response or output. A Gaussian process can be thought of an
infinite-dimensional multivariate normal, with values at all points in the X domain.
Clearly it is not possible to work directly with an infinite number of points, so a
functional form is used instead. The fundamental characterization of a Gaussian
process thus requires the specification of a mean function, μ(·), and a covariance
function, C(·, ·), which is evaluated at the n points and represented in the covariance
matrix �n. Gaussian processes are commonly used in probabilistic modeling
when priors over functions are needed and reference to an underlying parametric
representation is undesirable. Many references are available for more details on

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
T. Pourmohamad, H. K. H. Lee, Bayesian Optimization with Application
to Computer Experiments, SpringerBriefs in Statistics,
https://doi.org/10.1007/978-3-030-82458-7_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82458-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-82458-7_2


20 2 Surrogate Models

Gaussian processes, such as Stein (1999), Rasmussen and Williams (2006), and
Gramacy (2020).

In practice, two simplifying assumptions are typically made. The first is stationar-
ity, which is a translation-invariance property: the joint distribution of a set of points
is the same after translating each of the points by a fixed amount. For a Gaussian
process, this implies that the mean function is constant and the covariance function
depends only on the difference vector between two points, not on their specific
locations. As many real-world functions have non-constant means, the standard
practice is to first subtract off a mean function and then to work with a zero-mean
Gaussian process. The second simplifying assumption is isotropy, which means that
the covariance between two points depends only on their distance and not on their
relative orientation, i.e., the covariance between points is the same in all directions.
In the context of computer models, normalizing the inputs so that they are all on the
same scale can help make this assumption more reasonable.

Denote the data as Dn = {(x1, y1), . . . , (xn, yn)}. Assuming we have subtracted
off any mean function, we work with a zero-mean Gaussian process and we
decompose the covariance function into a scale parameter τ and a correlation
function K(·, ·):

Yn ∼ N(0, τ 2Kn). (2.2)

There are several families of stationary correlation functions that are commonly
used, the two most common being the power exponential and the Matérn. The
power exponential correlation function, evaluated at two input locations x1 =
(x11, . . . , x1m) and x2 = (x21, . . . , x2m), looks like

K(x1, x2) = exp

⎧⎨
⎩−

m∑
j=1

(x1j − x2j )
p/θj

⎫⎬
⎭ (2.3)

where 0 < p ≤ 2 is the power and θ = (θ1, . . . , θm) is a vector of scale parameters.
In the isotropic case all of the scale parameters are the same, i.e., θi = θj for all i

and j . Figure 2.1a shows four realizations in one dimension (m = 1) with p = 2 and
θ = 1. The choice of p = 2 is called the squared exponential, or Gaussian, and it
produces infinitely differentiable surfaces which are very smooth. This is a common
choice for computer experiments. As p decreases, the surfaces become less smooth.
Figure 2.1b shows four realizations for p = 1 and θ = 1. The power parameter p

can be difficult to estimate, so it is usually fixed, and we take p = 2 for the rest of
this book.

The Matérn correlation function (Stein 1999) for m = 1 is

K(x1, x2) = 2

�(v)

(
x1 − x2

2θ

)ν

Bν

(
x1 − x2

θ

)
(2.4)
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Fig. 2.1 Realizations of Gaussian processes under three different correlation functions. Different
correlation functions can produce drastically different processes. (a) Squared exponential. (b)
Powered exponential. (c) Matérn

where Bν is a modified Bessel function of the second kind, ν is a smoothness
parameter, and θ is a scale parameter. Figure 2.1c shows four realizations for ν = 1
and θ = 1. ν is often fixed in this context, as it can be difficult to estimate. This
correlation function is generally preferred in the spatial statistics literature (Banerjee
et al. 2004).

When fit to data, the above formulation will interpolate, that is, it treats the
data as if there is no noise, which makes some intuitive sense for deterministic
computer experiments where running the code twice at the same inputs will always
produce the same output. However, there can be numerical stability issues, strong
dependence on assumptions being exactly correct, and a need to ensure adequate
sampling of the space in order for interpolation to work reliably. In practice, it is
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usually better to include a small amount of noise in the model, which is done via a
nugget (Gramacy and Lee 2012), which adds a small value, η, to the diagonal of the
correlation matrix K . While this means K is no longer a proper correlation matrix
(because the diagonal is larger than 1), we can still use it the same way in all of the
computations, and we will make this slight abuse of notation and continue to refer
to it as a correlation matrix. There is a reparametrization of the nugget model that is
equivalent to a model that observes Y with noise, but the nugget parameterization is
more common in the computer model literature.

Throughout this book, we work within the paradigm of Bayesian statistics, where
prior beliefs are updated with the data to get a posterior distribution representing the
full uncertainty of the estimates. Readers who need more background on Bayesian
statistics may find texts such as Hoff (2009) and Gill (2014) helpful. Thus to fit
the parameters of a Gaussian process, we first put priors on the parameters τ 2 and
ψ = (θ, η), p(τ 2) and p(ψ). We then update the priors with the likelihood in
Eq. 2.2, using Bayes’ Theorem, to get the posterior

p(τ 2, θ |Yn) ∝ |τ 2Kn|− 1
2 exp

(
− 1

2τ 2
YT

n K−1
n Yn

)
× p(τ 2)p(ψ). (2.5)

A typical choice of prior for τ 2 is the reference prior p(τ 2) ∝ 1/τ 2 (Berger et al.
2000).

The marginal predictive distribution, p(Y (x)|Dn, τ
2, ψ), for a new observation

at input x is a Student’s t-distribution with n degrees of freedom, and mean, μ(x),
and scale, σ 2(x), given by

μ(x) = kT
n (x)K−1

n Yn (2.6)

σ 2(x) = YT
n K−1

n Yn(K(x, x) − kT
n (x)K−1

n kn(x))

n
. (2.7)

As an example, Fig. 2.2 shows the result of fitting a Gaussian process with a
squared exponential correlation function to seven points sampled from the function

f (x) = exp(−1.4x) cos(7πx/2).

For this example, the length scale parameter is θ = 0.05 and a nugget of 1e-6 is
used. The dark line shows the true function f and the dashed line shows the fitted
mean from Eq. (2.7), although it is difficult to distinguish the two lines because they
are nearly identical for most of the plotted area. The lighter gray lines are 100 draws
from the predictive distribution, showing that the predictive variability increases
away from observed data locations and shrinks to the nugget at the data locations.
On the left side, where it is predicting beyond the range of the data, the variability
rapidly increases outside the range of the data.
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Fig. 2.2 Gaussian process fit and 100 draws from the predictive distribution

A two-dimensional example is given in Fig. 2.3 for the function

f (x1, x2) = −(cos((x1 − 0.1)x2))
2 − x1 sin(3x1 + x2).

Because the sampled locations do not fully cover the region, the fitted mean function
is close to the truth but shows some discrepancies that would diminish as more
locations are sampled. The predictive variability is again larger for locations farther
from sampled locations.

In the context of optimization, we are not necessarily focused on marginal predic-
tions, because we are typically using the Gaussian process inside of a subroutine. In
that setting, we more frequently are interested in posterior distributions and posterior
predictive distributions conditional on the values of some of the parameters. We may
fit the values of τ 2 and ψ = (θ, η) within the subroutine, and then be interested
in the predictive mean and predictive variance conditional on τ 2 and ψ . In that
case, the conditional predictive distribution is a Gaussian distribution. Figure 2.4
shows 100 draws from this conditional predictive distribution. Compared to Fig. 2.2,
the conditional distribution has a little less variability, which can be seen in the
decreased spread of the gray lines.
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Fig. 2.3 2-d example of a Gaussian process fit to the true function in the left plot. The middle and
right plots show the fitted mean and predictive standard deviation functions

2.2 Treed Gaussian Processes

Gaussian processes have become popular in computer modeling because they are
both fairly flexible and fairly tractable, and they have worked well in a wide
variety of applications. However, there are some simulators where the modeling
assumption of stationarity is not a good assumption, and so the standard Gaussian
process may not work as well. While there is an increasing literature on fully
nonstationary Gaussian processes, most computer simulators don’t require complete
nonstationarity, often just a little bit will suffice. This may be because of a small
number of discontinuities, or differing behavior in a couple of important regions of
the space. A relatively straightforward extension of a Gaussian process is a treed
Gaussian process (Gramacy and Lee 2008). The basic idea is to partition the input
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Fig. 2.4 Gaussian process fit and 100 draws from the conditional predictive distribution

space into a relatively small number of regions and to fit independent stationary
Gaussian processes in each region. When done within the Bayesian framework,
the partitions can be inferred, and the resulting predictive function can be averaged
across the posterior for the partitioning, allowing for a smooth posterior predictive
function when the truth is smooth, and allowing for a discontinuous predictive
function when the truth is discontinuous.

Partitioning is based on the approach from the tree models of Chipman et al.
(1998) and Chipman et al. (2002), which defines a recursive binary tree-generating
prior, where each node has an independent probability of splitting into two
partitions, with the splitting probability decreasing with the depth of the node. The
default prior splitting probability is (1 + q)−2/2, where q is the depth of the node.
This prior tends to produce relatively small trees, which are all that are needed
when combined with the flexibility of Gaussian processes. Posterior inference is
done with Markov chain Monte Carlo, inferring both the tree structure and the
component Gaussian processes simultaneously. Implementation details are available
in Gramacy and Lee (2008), and a good implementation is the R package tgp
(Gramacy 2007; Gramacy and Taddy 2010).

Fitting a treed Gaussian process to the data in Fig. 2.4 should lead to essentially
the same fit as a standard Gaussian process, because a stationary model works well
on this dataset, so the treed model doesn’t partition and just fits a single Gaussian
process to all of the data. Using the tgp R package, and fixing the nugget to the
same 1e-6 as before, and using a prior that puts the length scale parameter close
to the previous 0.05, Fig. 2.5 shows the treed Gaussian process fit and pointwise
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Fig. 2.5 Treed Gaussian process fit and 100 pointwise draws from the predictive distribution

draws from the conditional posterior predictive distribution. Notice that the mean
function is pretty much the same as with the standard Gaussian process. Because
of how the tgp R package is configured, it defaults to producing pointwise draws
from the posterior predictive distribution, rather than drawing full realizations, so
the predictive draws should be viewed as a spread rather than lines like in Fig. 2.4.
What is important to see is that the spread of the predictive draws is essentially the
same in Figs. 2.4 and 2.5.

To show the power of treed Gaussian processes, the above example is augmented
with a linear function for 1 ≤ x ≤ 2:

f (x) = exp(−1.4x) cos(7πx/2)1{0≤x<1}(x) + (x − 1)1{1≤x≤2}(x).

Here, 1{·}(x) is the indicator function that takes value 1 when its argument is true
and 0 when it is false. A total of 24 points are used, to provide enough information
for the treed Gaussian process to be able to find the partition. This increase in the
number of points reduces the uncertainty, so in Fig. 2.6, the predictive draws are
mostly indistinguishable from the mean, with the two areas of visibility being on the
left where it is outside the range of the data, and in the middle, where the partitioning
creates some additional uncertainty. In this case, the model partitions the data around
the changepoint at 1.0, fitting a more wiggly Gaussian process on the left side, with
a length scale parameter around 0.02, and a more smooth Gaussian process on the
right side, with a larger length scale parameter somewhere around 1.0, and thus all
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Fig. 2.6 Treed Gaussian process fit and 100 pointwise draws from the predictive distribution for
a piecewise true function

the data points in [1, 2] are highly correlated with each other, which makes sense
for a linear fit.

In Fig. 2.6, the treed Gaussian process fits the continuous true function well,
even though there is a partition. Bayesian model averaging creates smoothness at
the partition when the truth is smooth. To give a different example, consider the
discontinuous function:

f (x) = exp(−1.4x) cos(7πx/2)1{0≤x<1}(x) + cos(2πx)1{1≤x≤2}(x).

In this case, there is a discontinuity at 1. While many computer simulators are
well-behaved and produce continuous response surfaces, other simulators may
have discontinuities because of changes in physical regimes or the occurrence
of natural boundaries of various sorts. For example, in modeling groundwater
contamination, as in Sect. 1.2.1, there may be points at which the groundwater flows
change abruptly due to subsurface geological features. Treed Gaussian processes
can accommodate such discontinuities. Figure 2.7 shows a treed Gaussian process
fit to this discontinuous function. The model shows a large amount of uncertainty
in the region between the datapoints where the discontinuity occurs, but is able
to fit the abrupt change, and to fit each half of the data well. Treed Gaussian
processes generalize to higher dimensions, but it becomes increasingly difficult to
make informative plots, so we stick with one-dimensional examples in this section.
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Fig. 2.7 Treed Gaussian process fit and 100 pointwise draws from the predictive distribution for
a discontinuous true function

2.3 Radial Basis Functions

Although Gaussian processes have become the canonical choice for modeling
computer experiments, they are by no means the only modeling choice available.
Here we describe one more potential surrogate model that has substantial roots in
the machine learning literature (see Chapter 5 of Bishop (1995)). Given the deter-
ministic nature of computer models, another potential choice of exact interpolating
models is the radial basis function (RBF) regression model. Tracing its roots back
to early works such as Hardy (1971), radial basis function regression creates an
interpolating model through a linear combination of radial functions. A radial basis
function is defined as any real-valued function ϕ : Rd → R for which its function
value only depends on the magnitude of its argument, i.e.,

ϕ(x) = ϕ(||x − a||) (2.8)

where a is some fixed point called a center. Setting a = 0 produces a function that
is radial around its origin. Moreover, any function ϕ(x) that satisfies the property
ϕ(x) = ϕ(||x||) is called a radial function. Typically, ||x|| is taken to be Euclidean
distance, however, other metrics may be used.

Now, in the context of computer experiments, recall that we have data Dn =
{(x1, y1), . . . , (xn, yn)}, where yi = f (xi) is the i-th output of running the computer
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model at the i-th input for i = 1, . . . , n. Given the deterministic nature of the
computer model, our goal is to find an interpolating function s(x) such that s(xi) =
f (xi). The radial basis function regression model constructs the linear interpolation
function, s(x), through a linear combination of radial basis functions, i.e.,

s(x) =
n∑

i=1

λiϕ(||x − xi ||), (2.9)

where λi ∈ R is a weight and x ∈ R
d . Given the condition that the model must

interpolate at observed data, i.e., s(xi) = f (xi), we can rewrite (2.9) in matrix
notation as

⎡
⎢⎢⎢⎣

ϕ(||x1 − x1||) ϕ(||x1 − x2||) . . . ϕ(||xn − x1||)
ϕ(||x1 − x2||) ϕ(||x2 − x2||) . . . ϕ(||xn − x2||)

...
...

. . .
...

ϕ(||x1 − xn||) ϕ(||x1 − xn||) . . . ϕ(||xn − xn||)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�n×n

⎡
⎢⎢⎢⎣

λ1

λ2
...

λn

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�n×1

=

⎡
⎢⎢⎢⎣

f (x1)

f (x2)
...

f (xn)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Fn×1

, (2.10)

or more compactly in matrix form as

�� = F. (2.11)

It is obvious that the n × n matrix � is symmetric, and that for (2.11) to have a
unique solution, we require that � be non-singular so that � = �−1F . Solving for
� is straightforward, however, there are no explicit instructions for specifying the
form of the radial basis function ϕ. Subject matter expertise and prior knowledge
may be used to help inform the type of radial basis function specified based on
knowledge of, say, smoothness properties, differentiability, or decay of the function
f . Table 2.1 lists some of the commonly used types of radial basis functions.

Most radial basis functions contain parameters, e.g., c, that can be used to adjust
the shape of the radial basis functions. For example, Fig. 2.8 demonstrates a few of
the common radial basis function choices for varying values of parameter c.

Note that the Gaussian radial basis function is related to the power exponential
correlation function (Sect. 2.1) when the power p = 2, and thus shares the
same properties such as infinitely differentiable surfaces. Furthermore, although not
discussed in this book, radial basis functions share a rich history with Gaussian
processes as well as they can be used to specify the kernel of the convolution in
process convolution Gaussian process models (Higdon 1998, 2002).

Revisiting the one dimensional example in Sects. 2.1 and 2.2, consider the
function

f (x) = exp(−1.4x) cos(7πx/2)
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Table 2.1 Some common radial basis functions

Radial basis function ϕ(r) Parameter

Gaussian e−(cr)2 c > 0

Multiquadric
√

r2 + c2 c > 0

Inverse quadratic 1
r2+c2

c > 0

Inverse multiquadric 1√
r2+c2

c > 0

Polyharmonic spline rc c = 1, 3, 5, . . .

rc ln(r) c = 2, 4, 6, . . .

Thin plate spline r2 ln(r) –

Bump function

⎧⎨
⎩
exp

(
1

1−(cr)2

)
if r < 1

c

0 otherwise
c > 0
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Fig. 2.8 Examples of different radial basis functions and the effect of varying the shape parameter
c. (a) Gaussian basis functions. (b) Multiquadric basis functions. (c) Inverse multiquadric basis
functions. (d) Polyharmonic splines
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Fig. 2.9 Examples of prediction from a radial basis function regression model under three
different radial basis function specifications with varying values of parameter c. (a) Gaussian RBF.
(b) Multiquadratic RBF. (c) Polyharmonic splines RBF

over the input space X ∈ [0, 1]. In this example, we evaluate the function f at a
smaller number of inputs (here we have chosen five points from a LHS) in order
to highlight the effect of varying the parameter c on the interpolation of the radial
basis function regression model. With the exception of the polyharmonic spline RBF
with c = 1 (i.e., a piecewise linear interpolator), all of the following examples of
interpolation under the chosen RBFs would have looked near identical for as few as
seven or more data points. Now, for sake of example, we show the surrogate model
prediction under the Gaussian, multiquadratic, and polyharmonic spline RBF for
varying values of c (Fig. 2.9).
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As we should expect, all predicted (dashed) lines interpolate exactly at observed
data points, and for different values of c there is a wide range of behaviors between
surrogate models. What we tend to see visually is that the parameter c plays a similar
role to the length scale parameter in a Gaussian process correlation function in that it
dictates “how close” two data points have to be to influence each other significantly.



Chapter 3
Unconstrained Optimization

3.1 Bayesian Optimization

A method that dates back to Mockus et al. (1978), Bayesian optimization (BO)
is a sequential design strategy for efficiently optimizing black-box functions, in
few steps, that does not require gradient information (Brochu et al. 2010). More
specifically, BO seeks to solve optimization problems of the form

x∗ = argmin
x∈X

f (x). (3.1)

The minimization problem in (3.1) is solved by iteratively developing a statistical
surrogate model of the unknown objective function f , and at each step of this
iterative process, using predictions from the statistical surrogate model to maximize
an acquisition (or utility) function, a(x), that measures how promising each location
in the input space, x ∈ X ⊂ R

d , is if it were to be the next chosen point to
evaluate. Thus, the role of the acquisition function, a(x), is to guide the search
for the solution to (3.1). We defer further discussions of acquisition functions to
Sect. 3.2, but conceptually it is clear that different choices of acquisition functions
should lead to different measures of belief of the search algorithm when searching
for the best next input to evaluate. Gaussian processes have been the typical choice
of statistical surrogate model for the objective function f in BO, and this is due to
their flexibility, well-calibrated uncertainty, and analytic properties (Gramacy 2020).

Practically, what does this all mean? Recalling the idea of groundwater reme-
diation (Sect. 1.2), let us consider a simple toy example where the objective is
to drill down into the earth to locate the largest plume of chemical contaminants
possible. Why would this be important to do? Well, if we can hypothetically only
place one pump-and-treat well in the area of interest then we may want to place
it at the site of the area with the largest amount of contaminants in the earth. In
practice we would not know the true distribution of the contaminants but, for sake
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Fig. 3.1 The objective function f (x) to maximize for the ground contaminant example. Here, the
global maximum (the red point) is obtained at x = 4.42124

of example, let us suppose that the distribution of log concentration of contaminants
f (x) looks something like the following (Fig. 3.1). For now, let us not worry about
the interpretation of the units on the x and y axes. Although relatively smooth, the
function has multiple local maxima, and sharp variation in the output axis, which
makes the function hard to optimize.

Initially, we have no idea about what the distribution of the contaminants looks
like. We can learn about the distribution of the contaminants by drilling in the
earth at different locations. However, this drilling will be costly. Thus, we want
to minimize the number of drillings required while still finding the location of the
maximum amount of soil contaminants. Now, drilling can continue to be done over
the entire domain, X, so that we can we can learn the true function, f , very well,
but that seems rather wasteful given that drilling is expensive. Furthermore, we are
primarily interested in locating the maximum amount of contaminants, and so we
are not actually interested in learning what the true function looks like in areas where
contaminants are low and so we should not spend a significant amount of resources
in those areas if we do not need to. Instead, based on our current knowledge of the
true function, we should try to balance investigating and drilling in uncertain regions
which might unexpectedly have high levels of contaminants (exploration), versus
focusing on regions we already know have higher contaminant levels (exploitation).
This is the fundamental concept of Bayesian optimization; how to choose the next
point to evaluate in order to balance exploration—improving the surrogate model
in the less explored parts of the search space, and exploitation—favoring parts the
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surrogate model predicts as promising. Again, we defer this discussion to Sect. 3.2,
but it will be shown that maximization of a well-chosen acquisition function can
be used within BO to guide the search. Lastly, we summarize here the general
characteristics of BO and relate the drilling example to those characteristics:

General characteristics of BO Characteristics of the drilling example

The domain of f is simple The domain is a simple box constraint, i.e.,
0 ≤ x ≤ 10

f is continuous but lacks special structure f is neither a convex nor concave function which
results in many local maxima

f is expensive to evaluate Drilling into the earth is costly

Evaluations of f are derivative free Drilling into the earth provides no gradient
information

Now there is no reason why BO could not be applied to the actual physical
experiment of drilling and searching for the contaminants, however, the process is
expensive and so running the physical experiment would be very costly. Instead, it
would be useful to construct a computer model of the physical process based on the
physics of the environmental system under study and subject matter expertise. BO
could then be used to optimize the output of the computer model which would likely
result in savings of both money and time for those who are doing the drilling. Once
the best solution to the BO problem has been found, the solution can be verified by
running the actual physical experiment of drilling. At this point, you may be asking
yourself what happens if the solution from the BO does not match the reality of the
physical experiment? Well that is not a problem with the BO algorithm, but rather
a problem with the accuracy of the computer model at matching reality. Remember
that computer models are constructed and used when physical experimentation is
not feasible due to a variety of constraints (Sect. 1.1), and so our reliance on the
computer model is to treat it as the true state of reality when optimizing it. Of course
we should not ignore the discrepancies between the computer model and reality, and
again this is not a problem of optimization but rather a problem in what is known
as computer model calibration (Kennedy and O’Hagan 2001). In simplest terms,
computer model calibration is a technique that models a discrepancy term between
the output of the computer model and reality, which can then be used to make better
(i.e., calibrated) predictions of reality. Although computer model calibration is an
important topic (entire chapters have been devoted to it, e.g., Santner et al. (2003,
Chapter 8) and Gramacy (2020, Chapter 8)), it is outside the scope of this book and
so we assume that the computer models that we deal with in this book are either
well calibrated or are the only means of experimentation that we have access to.
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Describing BO as a simple algorithm, we present the following general formula-
tion for solving problems of the form (3.1):

Algorithm 1: The general BO algorithm
Initialization:

Start with an initial data set D0
for n = 1, . . . , N do

Fit a Gaussian process surrogate model to Dn−1, i.e., Y (x)|Dn−1 ∼ GP;
Select xn = argmaxx∈X an−1(x);
Evaluate f at xn to obtain yn;
Augment data Dn = Dn−1 ∪ {(xn, yn)};

end
Return:

x∗ = argminx∈X f (x)

Following the algorithm, we initialize the BO algorithm by collecting a set of
outputs evaluated at a small set of inputs. Here, small is defined by the problem at
hand and the computational budget. As the number of input dimensions increases,
it is common to also increase the starting sample size. Recalling Sect. 1.3, we
recommend collecting an initial data set based on a space-filling design. Our default
space-filling design recommendation for BO is the Latin hypercube design. After
initialization, the algorithm proceeds in an iterative fashion selecting new inputs to
evaluate based on maximizing a prespecified acquisition function that encapsulates
our beliefs in how the input space should be searched. A key step in the algorithm,
a Gaussian process surrogate model is constructed to model the objective function
f , and the predictions that come out of this Gaussian process surrogate model are
then used in the maximization of the acquisition function. Based on the acquisition
function, we then evaluate the objective function at the best next point and update
our current data to include this evaluation. The procedure continues based upon
computational budget (such as time, resources, money, etc.) and terminates once all
such budget is exhausted.

At this point, you may be wondering where is the Bayesian in Bayesian
optimization? While not all BO algorithms are actually Bayesian, the term comes
from the Bayesian updating of the Gaussian process in the original formulation,
which is what we are using here. At each iteration, the computer model is run
and a new input-output pair is observed. The Gaussian process surrogate model is
then updated with the new observation, leading to a new posterior distribution and
posterior predictive distribution. This posterior predictive distribution is then used
in the acquisition functions that follow.

Now of course, BO is not the only way to solve optimization problems like those
in (3.1). Conventional local optimization methods like the Nelder-Mead method
(Nelder and Mead 1965) or the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm (Broyden 1970; Fletcher 1970; Goldfarb 1970; Shanno 1970), and the alike,
can be used to solve optimization problems of the same form. However, local
optimization methods suffer from the distinct problem that they tend to get trapped
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in local modes of the objective function. Local optimization methods typically only
guarantee local solutions rather than global ones, and so being able to escape local
modes of the objective function is of little importance to the search algorithm. On the
other hand, BO algorithms are capable of taking both a local and global perspective
to the optimization problem, and so this issue of getting trapped in local modes is
less of a problem for BO.

3.2 The Role of the Acquisition Function

At the heart of all Bayesian optimization algorithms is an acquisition function, a(x),
for effectively guiding the search. The acquisition function serves as a tool for
encapsulating our beliefs about how to best choose the potential candidate inputs
to evaluate the objective function at. Often regarded as an “inner” optimization
problem since it is embedded within the optimization problem in (3.1), we can
select candidate inputs for minimizing f (x) by finding the input that maximizes
the acquisition function, i.e.,

xn = argmax
x∈X

an−1(x). (3.2)

Typically, the acquisition function is thought of as a utility function and so finding
the input that maximizes the acquisition function can be regarded as evaluating
the utility of one input over another for minimizing f (x). For example, one could
consider an acquisition function based solely on the predictive mean of the Gaussian
process surrogate model, i.e.,

a(x) = −μn(x). (3.3)

Choosing the input that maximizes this acquisition function is the same as picking
the lowest point on the mean predictive surface under the Gaussian process. Thus,
an acquisition function such as this would place high utility on inputs where the
Gaussian process model predicts as promising. Although this may work in instances
when the Gaussian process model does well at predicting the objective function
across the entire input space, it turns out that this is a poor strategy in general as the
acquisition will tend to get stuck searching in areas it thinks are promising rather
than exploring the input space globally. Acquisition functions such as these are
referred to as greedy algorithms and suffer from the poor behavior of getting trapped
in local optima. It turns out that a better solution is to use acquisition functions
that balance exploration (improving the model in the less explored parts of the
search space) and exploitation (favoring parts the model predicts as promising).
This exploration-exploitation trade-off helps to ensure that the acquisition function
values candidate points both locally and globally.
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Now, different acquisition functions can lead to different ways of assigning utility
to candidate inputs. And unfortunately, there is no one size fits all acquisition
function for every type of objective function. However, there are several good
choices of acquisition functions that exist in the literature, of which some of we
shall expand upon in Sect. 3.3.

3.3 Choice of Acquisition Function

A large body of active research in the BO community is devoted to the development
of novel acquisition functions. In this section we present some of the most
commonly used acquisition functions in the BO literature. Each acquisition function
will rely on the fact that the underlying black-box function, f (x), is being modeled
by a Gaussian process Y (x). Recall that although the black-box functions we seek
to optimize are deterministic, it is typically advantageous in practice to use a small
nugget term, η (see Sect. 2.1), when modeling the black-box functions (Gramacy
and Lee 2012). This noise term η will lead to models that do not exactly interpolate
at observed inputs, and so a large nugget term does not make much sense to use
when the black-box functions are deterministic. Practically speaking, there are two
ways to ensure that a small nugget term is used. One is to place a prior on the nugget
parameter η that restricts the nugget to small values, or the other option is to simply
fix the nugget at a reasonably small value based on the scale of the data. In the
implementation of the analyses that follow, we take the latter approach.

Lastly, while not explored in this book, the following acquisition functions
presented in the chapter will need modifications when the objective function is a
stochastic black-box function. Readers interested in BO of stochastic black-box
functions are encouraged to see Picheny et al. (2013), Picheny and Ginsbourger
(2014), Jalali et al. (2017), and Baker et al. (2021), for example.

3.3.1 Probability of Improvement

Perhaps the simplest, and most intuitive, of all the the acquisition functions is the
probability of improvement (PI) acquisition function (Kushner 1964). Conceptually,
as its name suggests, the PI acquisition function chooses the best next point to
evaluate by picking the point that has the highest probability of improving upon the
current best solution. Here, the current best solution, at the nth iteration of the search,
is defined to be f n

min = min{f (x1), . . . , f (xn)}, i.e., the minimum value of all
the evaluated outputs. In order to make probabilistic statements about some output
f (x) being lower than fmin we need to assume a distribution for the underlying
function f . Recall that we can model the black-box function, f (x), by a Gaussian
process Y (x) where, conditional on all of the data Dn evaluated at the nth iteration,
the predictive distribution of Y (x)|Dn is a normal distribution with with mean and
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standard deviation, μn(x) and σn(x), respectively. Thus, the PI acquisition function
can be defined as

aPI(x) = Pr(Y (x) ≤ f n
min)

=
∫ f n

min

−∞
N(Y (x);μn(x), σn(x))dY (x)

= �

(
f n
min − μn(x)

σn(x)

)
(3.4)

where �(·) is the standard normal cumulative distribution function (cdf).
Optimization of the objective function can proceed sequentially by maximizing

aPI(x) and using the argument that maximizes that function as the next input to
evaluate. Perhaps not obvious yet, it turns out that aPI(x) tends to be a “greedy”
acquisition function in that it favors exploring the input space where variability is
low and promising solutions are high. Although quick to converge to a solution of
the optimization problem, this greedy nature can lead to the unfavorable quality of
getting stuck in local optima.

Example To better understand idea and implementation of the PI acquisition
function, consider the following example of a simple one dimensional objective
function from Chap. 2:

f (x) = exp(−1.4x) cos(7πx/2),

where x ∈ [0, 1]. Of course in practice we would likely not know the functional
form of our computer model f , as well the function would be expensive to evaluate,
but for sake of example we do. Now imagine that we have completed the sixth
iteration of the BO algorithm (i.e., we have run the computer model 6 times) and
want to decide where to choose the seventh input. The left panel in Fig. 3.2 shows
the current predictive surface in terms of mean and approximate 95% predictive
intervals. The predictive mean surface contains two minima, roughly at x = 0.25
and x = 0.78, with one of the two minima predicted to be much lower than the
other. The right panel in Fig. 3.2 recapitulates the message taken from the predictive
mean where we see there are two bumps at x = 0.25 and x = 0.78. The PI
acquisition places much higher probability at x = 0.25 as should be expected given
the predictive surface. Thus, at the seventh iteration of the algorithm the point at
x = 0.25 would be selected as being the best next input to evaluate.

Perhaps computational budget still remains and we have decided to choose an
eighth input to evaluate. Having just evaluated x = 0.25 in the last round of
iterations, we see that the predictive surface and probability of improvement changes
quite a bit (Fig. 3.3). Given the location of the seventh data point, the uncertainty
in the region has shrunk substantially, while the uncertainty around the other local
minimum remains high. The greedy nature of the PI acquisition function makes
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Fig. 3.2 An illustration of the aPI(x) acquisition function at work. The corresponding predictive
surface (left) and PI surface (right) given 6 data points
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Fig. 3.3 The corresponding predictive surface (left) and PI surface (right) given 7 data points

the BO algorithm favor exploiting the fact that it is very certain it is near the
global solution to the problem which is why the probability of improvement further
concentrates in the region near x = 0.25. Continuing to run the BO algorithm until
its budget is exhausted would continue to yield evaluations in the already exploited
region.

Example To give an example from start to finish, let us return to the drilling
for contaminants problem of Sect. 3.1. Here, we wish to maximize the objective
function since we wish to locate the area of maximum contaminants, and so to be
consistent with our formulation of our problems as minimizations, we shall instead
minimize the negative objective function in order to find the input that maximizes
it. To initialize the BO algorithm, the size of the initial set of inputs must first be
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determined. In practice, there is no rule for selecting the size of this initial data set,
but rather it should be based on the complexity of the objective function, as well as
the dimension of the input space. Objective functions that are smooth, well behaved,
or with few local minima (i.e., low complexity) typically require fewer starting
inputs than a more complex function. Likewise, with increasing dimensionality of
the input space comes the need to have a larger set of starting inputs. However, given
the black-box nature of the objective function, it may not always be feasible to know
exactly how complex the underlying problem is. Subject matter expertise may need
to be elicited from those in the field in which the computer model is developed in,
however, sometimes a best guess at a reasonable starting sample size is the best that
can be done.

For now, let us consider the case where we have little to no available information
about the complexity of the underlying function for contamination. Given the low
dimensionality of the input space (i.e., one dimension), we select an initial set of
n = 10 inputs based on a LHD. Next, we fit our Gaussian process model to the
ten input-output data pairs in order to obtain estimates of the mean and variances
of the predictive surface over the entire input space (Fig. 3.4). These estimates
can then be plugged into (3.4) in order to select the input that maximizes the PI
acquisition function. The true underlying objective function is in black in Fig. 3.4
while the predictive surface is in red. What we can see is that with only ten points,
our Gaussian process model is not able to capture the wiggliness of the objective
function well which results in our PI acquisition function placing high probability
of improvement at one of the local minima.

Given the greedy nature of the PI acquisition function, the BO algorithm will
tend to be limited in its exploration of the input space. After initialization, the PI
acquisition function will tend to get trapped in the area of whichever minima (local
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Fig. 3.4 The corresponding predictive surface (left) and PI surface (right) given 10 data points for
the drilling example
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Fig. 3.5 The corresponding predictive surface (left) and PI surface (right) given 13 data points for
the drilling example

or global) has a data point close to it, and is the lowest objective value observed.
Here in Fig. 3.4, the blue point corresponds to the output of evaluating the input
that maximizes the PI acquisition function. The point is within the valley of a local
minima, and so unfortunately the BO algorithm will get stuck greedily choosing
points around that local minima. As we can see in Fig. 3.5, the next three inputs
selected by the PI acquisition function are all within the area of the same local
minimum. The probability of improvement over the entire input space does indeed
change, but not enough to have a meaningful impact on the escaping the local
minimum.

Moreover, something even worse can occur within the BO algorithm. As we
accumulate more and more data within the area of the local minimum, the estimation
of the parameters of the correlation matrix of the Gaussian process can also suffer.
For example, after initialization of the BO algorithm the next five inputs selected are
all very close to one in another, being positioned around a local minimum (Fig. 3.6).
As more and more inputs are evaluated within close proximity of each other, what
happens in this particular example is that the estimation of the length scale parameter
is inadequate for capturing the global shape of the acquisition function, which in
turn leads to a very poor predictive surface and poor uncertainty quantification. The
fitted length scale in Fig. 3.6 has become small, resulting in a predicted curve that is
mostly at the mean of zero with local excursions where non-zero outputs have been
observed. Without being able to predict the true underlying objective function well,
the BO algorithm has little chance of being able to find the global optimum of the
problem unless the initial inputs start near it.

In practice, we often get only one shot at running the BO algorithm, because of
a limited computing budget on the expensive simulator. So it is usually the case that
we do not know if the BO algorithm was able to find the global solution. As we
develop methodology for BO, we typically work with simpler examples that can be
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Fig. 3.6 The corresponding predictive surface (left) and PI surface (right) given 15 data points for
the drilling example
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Fig. 3.7 The results of running 30Monte Carlo experiments with random starting input sets drawn
from a LHD of size n = 10

run quickly and repeatedly, and thus we can run experiments with multiple different
initial starting inputs to see how well the BO algorithm performs, and how robust
the solution to the problem is. A typical visual summary of multiple runs of the
BO algorithm is to plot the best objective value found as a function of the number
of input evaluations for each run. For example, Fig. 3.7 shows the trajectories of
the best objective values found (grey lines) for 30 Monte Carlo experiments (i.e.,
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Fig. 3.8 The results of
running 30 Monte Carlo
experiments with random
starting input sets drawn from
a LHD of size n = 15
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rerunning the BO algorithm with different initial input sets of size n = 10). The
average trajectory over the 30 Monte Carlo experiments is shown in black, and
we can see that on average the PI acquisition function does not find the global
solution to the problem. Some of the individual trajectories from the 30Monte Carlo
experiments do find the global solution, however, these are instances where the
initial input sets contain a point close to the global solution. This figure demonstrates
the large amount of variability that can result from using the PI acquisition function,
even on a relatively simple one-dimensional problem.

In the case of the drilling problem, it turns out that choosing an initial set of inputs
from a LHD of size n = 15 leads to far better solutions to the problem (Fig. 3.8).
The reasoning for this is twofold. First, selecting a slightly larger initial LHS leads
to better space-filling which in turn gives a higher likelihood of starting with a point
near the global minimum. Second, the addition of slightly more points also leads
to better prediction of the true underlying contamination function by our Gaussian
process.

So why choose to use the PI acquisition function?Well it turns out it is not a good
choice of acquisition function when the objective function has lots of local minima,
however, when the objective function is relatively smooth, or with few local minima,
the PI acquisition can be very fast to locate the global solution to the optimization
problem. This good performance is typically tied to how well the Gaussian process
model does at actually predicting the objective function.

Lastly, recall that in Sect. 3.2 that an acquisition function can be thought of as the
maximization of a utility function. It turns out that some acquisition functions can be
interpreted in the framework of Bayesian decision theory (Berger 1985), where we
evaluate the expected utility associated with evaluating f at input x. From a decision
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theoretic point-of-view, we should select the input that yields the highest expected
utility. It turns out that the probability of improvement can also be motivated in this
way. Consider the following utility function

u(x) =
{
1 if Y (x) ≤ f n

min

0 otherwise
. (3.5)

Now, under the given utility function u(x), we can derive our acquisition function
as a function of the expected utility gain for choosing input x, i.e.,

aPI(x) = E{u(x)|x,Dn}

= 1 ×
∫ f n

min

−∞
N(Y (x);μn(x), σn(x))dY (x)

+ 0 ×
∫ ∞

f n
min

N(Y (x);μn(x), σn(x))dY (x) (3.6)

= �

(
f n
min − μn(x)

σn(x)

)

where, again, μn(x) and σn(x) are the mean and standard deviation of the predictive
distribution of Y (x), and �(·) is the standard normal cdf. Thus, the input with the
highest probability of improvement is the same as the input with the maximum
expected utility.

3.3.2 Expected Improvement

Originally introduced in the computer modeling literature (Jones et al. 1998),
the expected improvement (EI) acquisition function has become one of the most
famous, and probably most used, acquisition functions in BO. Jones et al. (1998)
defined the improvement statistic at a proposed input x to be I (x) = maxx{0, f n

min−
Y (x)} where, after n runs of the computer model, f n

min = min{f (x1), . . . , f (xn)}
is the current minimum value observed. Since the proposed input x has not yet
been observed, Y (x) is unknown and can be thought of as a random variable where,
conditional on the observed inputs x1, . . . , xn, it can be modeled using a Gaussian
process. Similarly, I (x) will also be a random variable.

Intuitively, this improvement function makes a lot of sense. If the value of Y (x)

is greater than the current minimum value observed, f n
min, then we have not found

a better solution and the improvement at that input should be zero. On the other
hand, if Y (x) is less than f n

min, then the improvement in our solution is equal to the
amount that we have decreased the current observed minimum value. Put a different
way, the improvement function, I (x), tells us the utility of choosing input x as the



46 3 Unconstrained Optimization

next point to evaluate. Thus, we can think of I (x) as a utility function, and from
a Bayesian decision theoretic point-of-view we can maximize this utility function
in order to select the input that gives us the maximum expected utility gain. In the
notation of decision theory, let us rewrite I (x) as the utility function u(x) where we
define u(x) as follows

u(x) =
{

f n
min − Y (x) if Y (x) ≤ f n

min

0 otherwise
. (3.7)

From the decision theoretic point-of-view, the EI acquisition function can be
derived as the expectation of the utility function. Calculating the expectation is
not hard, but it does require a bit of calculus. Let z ∼ N(0, 1) be a standard
normal random variable, and define v = (f n

min − μn(x))/σn(x). Again, since we
treat Y (x) as coming from a Gaussian process then, conditional on a particular
parameterization of the Gaussian process, the EI acquisition function is available
in closed form as

aEI(x) = E{u(x)|x,Dn}
= E{(f n

min − Y (x))1{Y (x)<f n
min}(x)}

=
∫ ∞

−∞
(f n

min − Y (x))1{Y (x)<f n
min}(x) × N(Y (x);μn(x), σn(x))dY (x)

=
∫ f n

min

−∞
(f n

min − Y (x)) × N(Y (x);μn(x), σn(x))dY (x)

=
∫ v

−∞
(f n

min − (μn(x) + σn(x)z)) × N(z; 0, 1)dz

=
∫ v

−∞
(f n

min − μn(x) − σn(x)z) × N(z; 0, 1)dz

= (f n
min − μn(x))

∫ v

−∞
N(z; 0, 1)dz − σn(x)

∫ v

−∞
z × N(z; 0, 1)dz

= (f n
min − μn(x))�

(
f n
min − μn(x)

σn(x)

)
+ σn(x)φ

(
f n
min − μn(x)

σn(x)

)

(3.8)

where 1{·} is the usual 0-1 indicator function, and μn(x) and σn(x) are the mean
and standard deviation of the predictive distribution of Y (x), and �(·) and φ(·)
are the standard normal cdf and pdf, respectively. Notice that �(·) term in (3.8)
is actually the PI acquisition function weighted by the amount that the predictive
mean, μn(x), is below the current observed minimum value f n

min. When μn(x) is
far below f n

min the EI acquisition will tend to place high weight on exploitation (i.e.,
local search). The other term in the EI acquisition function, φ(·), is weighted by the
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predictive variance and controls the level of global search of the algorithm. Inputs
with high predictive variance will place higher value on searching globally. And
so, the acquisition function in (3.8) naturally provides a combined measure of how
promising a candidate point is, that trades off between local search (μn(x) below
fmin) and global search (large σn(x)).

Now recall again the improvement function I (x) = maxx{0, f n
min − Y (x)}.

Without the notion of Bayesian decision theory, the EI acquisition function arises
somewhat organically from the notion that it just makes sense to choose new
inputs to evaluate that have the highest expected improvement over other inputs.
Statisticians tend to think about things in terms of averages, and so, an input that
improves upon the current best solution is great, but an input that on average
improves upon the current best solution is even better. Thus, it just feels natural
to take the expected value of the improvement statistic, which again, yields

E[I (x)] = (f n
min − μn(x))�

(
f n
min − μn(x)

σn(x)

)
+ σn(x)φ

(
f n
min − μn(x)

σn(x)

)
.

(3.9)

Figure 3.9 provides a graphical display of the components of EI. The green
Gaussian curve shows the predictive density at one possible point, x1, and the blue
Gaussian curve shows the predictive density at a second point, x2. The height of the

density curves at f n
min is φ

(
f n
min−μn(x1)

σn(x1)

)
and φ

(
f n
min−μn(x2)

σn(x2)

)
. The shaded regions

Fig. 3.9 An example of the components of Expected Improvement
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represent �
(

f n
min−μn(x1)

σn(x1)

)
and �

(
f n
min−μn(x2)

σn(x2)

)
, which is also the PI acquisition

function. Point x1 is favored by the first term, as it has a higher probability of
positive improvement. Point x2 will get more weight from the second term, as
σn(x2) > σn(x1).

Example To better understand what the EI acquisition function is doing in practice,
let us consider the following one-dimensional example. Treating the objective
function like a black-box function, we wish to minimize the following objective
function

f (x) = −(1.4 − 3x) sin(18x)

where the input x ∈ [0, 1.2]. The global solution to the problem is at x = 0.96609.
Now imagine that you start with a LHS of ten inputs to initialize the BO algorithm,
and that your Gaussian process surrogate model leads to the following predictive
surface in Fig. 3.10. The choice of the next input to evaluate depends upon the
EI acquisition function, and so we choose the input that maximizes the EI surface
in Fig. 3.10. Clearly one side of the input space (roughly 0 ≤ x ≤ 0.15) has a
higher chance for expected improvement, however, there is a small blip of expected
improvement around x = 0.9. The reasoning for the shape of the EI surface is
simple. Given the locations of the evaluated data (Fig. 3.11), one data point falls
extremely close to a very low local minimum, while two data points straddle the
global minimum. The point near the local minimum is judged to be the best current
solution and so points around it are given high expected improvement. On the other
hand, the distance between the two points straddling the global minimum is just far
enough to give the predictive surface high variability in that area. Remember that the
EI acquisition function naturally balances the exploitation versus exploration trade-
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Fig. 3.10 The corresponding predictive surface (left) and EI surface (right) given 10 data points
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Fig. 3.11 The objective function f (x) = −(1.4 − 3x) sin(18x) with 10 evaluated inputs
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Fig. 3.12 The corresponding predictive surface (left) and EI surface (right) given 11 data points

off, and so areas with low predicted mean values or areas with high uncertainty are
viable options for the BO algorithm to want to search.

Based on the EI surface, the best next input to evaluate is at the edge of the left
side of the input space. Although this is the correct choice of input given the current
shape of the EI surface, it turns out to be a poor choice, as we can see in Fig. 3.12,
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Fig. 3.13 The corresponding predictive surface (left) and EI surface (right) after evaluating 20
inputs

since the evaluated point is much higher than the current observed minimum value.
We do not gain a better observed minimum value, but we do gain knowledge about
the shape of the true underlying objective function. This is reflected in both the
increase in accuracy of the predictive surface, as well as the updated EI surface.
Now the large peak in the EI surface in Fig. 3.12 has decreased substantially, and the
peak that once was once a small blip has grown. Again, the EI acquisition function
balances exploring the input space versus exploiting it, and so areas of promise or
high uncertainty are reflected in the EI surface.

If we were to continue to evaluate nine more inputs sequentially, then the BO
algorithm would end up favoring jumping between the promising local minimum
and the area of the global minimum. As we can see from Fig. 3.13, by the twentieth
data point, the BO algorithm has effectively only evaluated points at the local
and global minimum, but now that the area around the global minimum has been
evaluated, the EI surface is drastically different than when we started. The EI surface
now favors the right side of the input space, and smaller expected improvement
blips in the EI surface appear on the left side of the input space where variability
is still high. Continuing to run the BO algorithm on this problem, the search would
continue in similar fashion where the EI acquisition function would guide the search
to areas of high uncertainty eventually.

Example One-dimensional illustrations are useful for their ease of understanding,
but let us now turn our attention to a slightly more complicated two-dimensional
example. We wish to minimize the following objective function

f (x1, x2) = −(cos((x1 − 0.1)x2))
2 − x1 sin(3x1 + x2),
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Fig. 3.14 The objective function f (x1, x2) = −(cos((x1−0.1)x2))2−x1 sin(3x1+x2). The input
space contains many local minima, but there is only one global minimum at the edge of the input
space (blue point)

Fig. 3.15 A view of the objective function surface, and the predictive mean, μn(x), and standard
deviation, σn(x), surfaces after ten input evaluations. Here the inputs evaluated are shown as black
points

where −2.25 ≤ x1 ≤ 2.5 and −2.25 ≤ x2 ≤ 1.75. The objective function is a
smooth non-linear surface (Fig. 3.14) with a global minimum at the edge of the
input space at x1 = 2.50, x2 = 0.063. Searching for the global solution is tough
because there are several local minima to get trapped in, and moreover, many of the
local minima have objective function values close the value of the global minimum.

Now, let us assume that we initialize the BO algorithm a LHS of size n = 10.
Recall that both the PI and EI acquisition functions heavily depend upon both the
predictive mean, μn(x), and variance, σ 2

n (x), estimates from our Gaussian process
surrogate model. Figure 3.15 gives us an idea of how well the Gaussian process
model is doing at emulating the true objective function surface. With only ten points,
the predictive mean surface captures some of the features of the objective function,
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and overall is not a terrible first approximation to the objective function. Remember
that as the search for the global solution progresses, our knowledge of the objective
function (i.e., evaluated inputs) will continuously be updated and in turn so will
our estimate of the predictive mean surface. Likewise, as expected, our uncertainty
around observed inputs should be low while areas of the input space less explored
should still contain high amounts of uncertainty, which is exactly what we see in the
plot of the standard deviation surface.

Both the PI and EI acquisition function use the exact same predictive mean,
μn(x), and variance, σ 2

n (x), estimates, however, clearly the two acquisition func-
tions do not need to be in agreement with the choice of best next input to evaluate.
In fact, the two acquisition functions may yield surfaces that are entirely dissimilar,
or surfaces that look similar but that still place higher importance in different
regions of the input space. For example, in Fig. 3.16 the surfaces under the PI and
EI acquisition functions look resoundingly similar, however, the two acquisition
functions clearly choose two very different best next inputs to evaluate (green and
light blue point, respectively). As mentioned before, the PI acquisition function
tends to lead to a greedy BO algorithm and so in this example the PI acquisition
functions picks the green point very close to the global solution simply because there
is an observed input close to there. On the other hand, the EI acquisition function
favors searching in an area that has both a promising predictive mean value (i.e.,
potentially lower than the best current observed value f n

min) and a substantial amount
of uncertainty around it. Again this is a key feature of the EI acquisition function;
balancing exploitation and exploration by appropriately weighting the decision to
search either locally or globally.

Example Let us revisit the drilling for contaminants problem of Sect. 3.1. In
Sect. 3.3.1, we observed less than desirable behavior of the PI acquisition function.
The PI acquisition function was quick to get stuck in areas of local minima if there
was no data point reasonably close to the global minimum. Given the ability of
the EI acquisition function to trade off between local and global search, it seems
reasonable that a BO algorithm using this acquisition function should be able to

Fig. 3.16 The best next inputs (green and light blue points) to be evaluated under the PI and EI
acquisition functions
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Fig. 3.17 The corresponding predictive surface (left) and EI surface (right) given 10 data points
for the drilling example. The blue point corresponds to the next input to evaluate based on the EI
surface
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Fig. 3.18 The corresponding predictive surface (left) and EI surface (right) given 13 data points
for the drilling example. The blue point corresponds to the next input to evaluate based on the EI
surface

avoid this type of greedy behavior. To test this hypothesis, we start with the same
10 inputs from the contaminants example in Sect. 3.3.1, and similarly, sequentially
choose five more inputs based on the EI acquisition function. The EI surface
(Fig. 3.17) looks somewhat similar to the PI surface (Fig. 3.4), and so the next input
selected is around the same location in the local mode. However, where the EI and
PI acquisition functions diverge is in their selection of the next inputs.

After an additional three inputs have been sequentially chosen and evaluated,
we see that the EI acquisition function (Fig. 3.18) is able to avoid getting stuck
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Fig. 3.19 The corresponding predictive surface (left) and EI surface (right) given 15 data points
for the drilling example. The blue point corresponds to the next input to evaluate based on the EI
surface

in the local minimum of the function that it initially began to explore, which
was not the case for the PI acquisition function (Fig. 3.5). In the case of the PI
acquisition function, the PI surface remained extremely peaked in the area of the
local minimum. In contrast, the EI surface is multi-modal, with all of the peaks
of the EI surface centered over areas where the predictive mean is either lower than
fmin or where the predictive variance is very high. The contribution of the predictive
variance to the EI acquisition function is what allows it to be able to escape local
minima.

At the fifteenth iteration of the algorithm, the EI surface becomes increasingly
peaked in the location of the global solution (Fig. 3.19). However, the predictive
uncertainty in areas less explored will always creep back up in the EI surface.
Areas of the input space with small expected improvement will naturally increase
in relative EI as the predictive variance in those regions remains large as compared
to areas that have been frequently more explored.

To finish the comparison, we run 30Monto Carlo experiments where we initialize
the BO algorithm with a LHS of size n = 10, and another 30 Monto Carlo
experiments where initialize with a LHS of size n = 15. In both cases, we record the
trajectories of the best objective values found (grey lines in Fig. 3.20) from each of
the Monte Carlo experiments. As expected, the EI acquisition function does a better
job as compared to the PI acquisition function, although even the EI acquisition
function is not perfect at finding the global solution of such a wiggly function.
Again, we see the behavior that an increase in initial sample size (from 10 to 15)
can benefit the acquisition function.
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Fig. 3.20 The results of running 30 Monte Carlo experiments with random starting input sets
drawn from a LHD of size n = 10 or n = 15

3.3.3 Lower Confidence Bound

Not all acquisition functions can be interpreted as the derivation of an expected util-
ity function under the Bayesian decision theoretic framework. Instead, sometimes
acquisition functions are simply functions that that have been cleverly constructed
to balance the exploration-exploitation trade-off while searching for the global
solution to the optimization problem. One such way is the confidence bound
criteria introduced in Cox and John (1997), and later adapted by Srinivas et al.
(2010), known as the lower confidence bound (LCB) acquisition function. The LCB
acquisition function is a simple linear combination of the predictive mean, μn(x)

and variance, σn(x), of the surrogate model, and can be expressed as follows:

aLCB(x;β) = −μn(x) + βσn(x) (3.10)

where β ≥ 0 is a tuning parameter. The exploration-exploitation trade-off is
naturally balanced by the acquisition function in (3.10) since it favors both inputs,
x, where the objective function is uncertain (large σn(x)) and inputs where the
minimum is promising (optimal μn(x)).

Recall that we think of the inner optimization problem within the BO algorithm
as a maximization step since we view the acquisition function as a utility function.
If we forgo this notion for a moment, and instead think of the acquisition function as
a minimization problem, then it makes sense to write the LCB acquisition function
as

LCB(x;β) = μn(x) − βσn(x). (3.11)
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Here we drop the a(·) notation to stress the fact we are not maximizing an
acquisition function. The appeal of viewing the acquisition function in this way is
that it is clear to see what the underlying form of the function is. What the acquisition
function suggests is that we should choose points that minimize the lower quantiles
of the predictive distribution of Y (x). In fact, for appropriate choices of β, this
can be viewed as choosing the lowest lower bound on the (1 − α)% probability
(or credible) interval for μn(x). And so, use of the LCB acquisition function can
proceed by either maximizing (3.10) or minimizing (3.11). Although the focus
of this book is on minimization of the objective function, it is worth mentioning
that there exists the analogous upper confidence bound acquisition function for
maximizing the objective function, i.e.,

aUCB(x;β) = μn(x) + βσn(x). (3.12)

Returning to the LCB aquisition function in (3.10), the tuning parameter β is left
as a free parameter set at the user’s discretion. However, a typical thing to do is to
allow β to change over time such that, at every iteration of the of the BO algorithm,
we choose the input that maximizes the LCB acquisition function

aLCB(x;βn) = −μn(x) + βnσn(x). (3.13)

As the optimization progresses, this sequence of tuning parameters, βn, also helps to
further the balance between local and global search. Larger βn lead to more global
searches, while small βn favor more local searches. In fact, setting βn = 0 reduces to
simply minimizing the predictive mean surface as if it were known exactly without
uncertainty, i.e., greedily selecting xn such that

xn = argmin
x∈X

μn−1(x). (3.14)

Strong theoretical results exists for the LCB acquisition function under different
parameterizations of βn. For example, under certain conditions (Srinivas et al.
2010), a lower-bound on the convergence rate for the optimization can be derived.
However, as pointed out in Gramacy (2020), in practice such theoretically automatic
selections for βn remain difficult and unwieldy for practitioners.

Example Let us revisit the example from the previous section where we wish to
minimize the following objective function

f (x) = −(1.4 − 3x) sin(18x)

over the input space x ∈ [0, 1.2]. Here the focus of this example is to try to
understand the behavior of the LCB acquisition function. As mentioned previously,
we find that working with the form of the function in (3.11) is more intuitive
visually, and so here we focus on minimizing the function LCB(x;β) rather than
maximizing the acquisition function aLCB(x;β). Again, assume we start with a
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Fig. 3.21 The predictive surface and LCB function given 10 data points. The blue point is the best
next input that would be evaluated by the BO algorithm

LHS of size n = 10 to initialize the BO algorithm. Now unlike the PI and EI
acquisition functions, proceeding to use the LCB function requires some thought
about specifying the tuning parameter β. Small values of β will promote local
search, while large values of β will make the BO algorithm favor exploring globally
in areas with high uncertainty, however, note that small and large are terms we use
loosely as what is considered small and large in one problem may not be the same
in another. In practice, a schedule of values for β as the BO algorithm progresses
is generally preferred, however, here for the sake of example we simply set β = 3.
Figure 3.21 highlights the relationship between components μn(x) and σn(x), and
how they affect the LCB function. The LCB function mimics the shape of the
lower limit of the 95% probability interval for the mean prediction and is a scaled
version of it. Here, β plays the role of the scaling factor where large β increases the
distance between the lower limit of the 95% probability interval (red dashed line)
and the LCB function (blue solid line). Conversely, small values of β shrink the
LCB function surface towards the predictive mean surface. Similar to the results of
the EI acquisition function in the previous section, the best next input (blue point)
to be selected by the BO algorithm is at the far left side of the input space where the
predictive mean is low and the uncertainty around the mean is also high.

After we have evaluated the next input we see that the uncertainty at the edge
of the input space has reduced greatly (Fig. 3.22). At this point, it should be more
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Fig. 3.22 The predictive surface and LCB function given 11 data points. The blue point is the best
next input that would be evaluated by the BO algorithm

apparent that the LCB function naturally balances exploration versus exploitation as
well. The best next input to be chosen is selected in a region of the input space where
the predictive mean is nowhere near as low or promising as other regions, however,
the the large amount of uncertainty in the region leads the LCB function to believe
that it is a promising area to explore in. It is worth noting that areas of either high
uncertainty or low predicted mean values are both given some importance to search
at by the LCB function, which again helps to balance local versus global search.

As the BO algorithm search progresses, the LCB function surface becomes
highly multimodal (Fig. 3.23). This multimodal feature is a consequence of using
the Gaussian process model as our surrogate model. At observed inputs, the
predictive uncertainty shrinks towards zero (or is exactly zero in the case where
a nugget is not used; see Sect. 2.1) and so the corresponding probability interval
reflects this fact in its ballooning shape. Since the LCB function is a weighted
version of the lower limit of the probability interval, this feature will also be reflected
in the LCB function surface.

Lastly, the choice of the value of β = 3 was completely arbitrary in this
example, however, in practice careful consideration should be given to selecting
the appropriate value, or values, of β in the acquisition function. Different values
of β can greatly influence the performance of the BO algorithm. For example, let
us consider re-running the BO algorithm on this objective function with varying
values of β. Here we can let β equal either 0, 0.5, 1, 2, or 4, and repeat solving
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Fig. 3.23 The predictive surface and LCB function given 20 data points. The blue point is the best
next input that would be evaluated by the BO algorithm

this minimization problem using 30 different Monte Carlo experiments. Here we
will initialize the BO algorithm with a LHS of n = 10, and sequentially select
20 more inputs for a total budget of 30 input evaluations. The trajectories of the
average best solution over the 30 Monte Carlo experiments for each β are plotted
in Fig. 3.24. It is clear that the average performance of the BO algorithm is directly
tied to the choice of β. Set β too small, and the BO algorithm will get stuck in local
modes, while setting β too large can result in over exploration of the input space,
and consequently a BO algorithm that is slower to converge to the global solution.

Example We revisit one last time the drilling for contaminants problem of
Sect. 3.1. Having previously explored the BO algorithm for this problem under
the PI and EI acquisition functions, we shall solve it once again but this time
using the LCB function in (3.11). We start again with the same 10 inputs from
the contaminants example in Sect. 3.2, and similarly, sequentially choose five more
inputs based on the LCB function with β = 3. Unlike the PI and EI acquisition
functions, the LCB function predicts that the next best input is at the far edge of
the input space (Fig. 3.25). This choice makes a lot of sense given the nature of the
probability intervals associated with Gaussian process prediction. At the edges of
the input space, the uncertainty associated with our Gaussian process prediction is
high until a point has been evaluated along the edge, and the LCB function favors
picking points where the lower limit of the quantiles of the predictive distribution of
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Fig. 3.24 The results of running 30 Monte Carlo experiments using the LCB function for various
values of β
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Fig. 3.25 The corresponding predictive surface (left) and LCB surface (right) given 10 data points
for the drilling example

Y (x) are at their lowest. The LCB function surface (Fig. 3.25) also reflects this fact
given that the LCB function places high importance on both ends of the input space
(i.e., low LCB(x;β) values), as well as high importance searching around where
the lowest observed input is.
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Fig. 3.26 The corresponding predictive surface (left) and LCB surface (right) given 13 data points
for the drilling example
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Fig. 3.27 The corresponding predictive surface (left) and LCB surface (right) given 15 data points
for the drilling example

After an additional three inputs have been selected sequentially, we see that the
uncertainty in our predictive distribution starts to diminish (Fig. 3.26) and so the
lowest quantile values of the predictive distribution appear around where the global
solution is. However, as no further input evaluations have occurred at the right side
of the input space, the LCB function still views it as a somewhat promising location
to search in.

By the fifteenth input evaluation, the uncertainty at the right side of the input
space dwarfs all other uncertainty (Fig. 3.27) and so the LCB function selects
the best next input to evaluate over there since its corresponding quantile of the
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Fig. 3.28 The results of running 30 Monte Carlo experiments with random starting input sets
drawn from a LHD of size n = 10

predictive distribution is also lowest. Note that at this point, the BO algorithm has
not got stuck searching in a local mode as was the case when using the PI acquisition
function. Like the EI acquisition function, the LCB function is capable of balancing
exploration versus exploitation. At this point, we can see that the BO algorithm has
not yet honed in on the global solution, but it is clear to see that it is well on its way
to finding it.

To finish the comparison, we run 30Monto Carlo experiments where we initialize
the BO algorithm with a LHS of size n = 10. Here, we record the trajectories of the
best objective values found (grey lines in Fig. 3.28) from each of the Monte Carlo
experiments. Again, given no hypothetical access to any subject matter expertise
about drilling for contaminants, we choose to fix β = 3. Somewhat surprisingly,
the average solution to the problem, under the LCB function, is much faster to
converge to the global solution of the problem as compared to the PI (Fig. 3.7)
and EI (Fig. 3.20) acquisition functions at an initial input sample size of 10.
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3.3.4 Other Acquisition Functions

At this point, we have explored three different acquisition functions (PI, EI, and
LCB) for guiding the BO algorithm, however, they are by no means the only
acquisition functions that exist. Each of these three acquisition functions come with
their own lists of pros and cons, yet quite frankly, no one of these three acquisition
functions uniformly dominates the other ones. The success (and failure) of a given
acquisition function is highly driven by the attributes of the objective function
at hand. Not surprisingly, more and more acquisition functions are continuously
being created given the increasing complexity and nature of optimizing black-box
functions. In what follows, we briefly mention a few more well known acquisition
functions for unconstrained BO.

Random Search

The development of novel acquisition functions is an increasing area of interest
within the BO community. The goal of developing novel acquisition functions
is to generate better functions for guiding the BO algorithm in search of the
optimum. Here, better is defined by characteristics and metrics that improve the
performance of the BO algorithm, such as speed (i.e., reducing computational time)
of the BO algorithm or reducing the number of black-box evaluations to reach the
global solution, to name a few. However, one of the most important, and often
neglected, performance metrics that should be checked during acquisition function
development is whether or not the proposed acquisition function provides a BO
algorithm that returns a solution that is better than a random search. Here we define
random search by the following acquisition function

aRS(x) = c, (3.15)

where c ∈ R is a constant. Any input x ∈ Xmaximizes this acquisition function, and
so the BO algorithm can proceed to sequentially search for the global solution to the
minimization problem by simply picking a sequence of random inputs x to evaluate.
In other words, if your total computational budget is N input evaluations, then take
a random sample of size N from the input space to evaluate the objective function
at, and then return the minimum objective function value as the best solution found.
Remarkably, this random search concept can work quite well in low dimensional
problems with even modest computational budgets. Now, this simple to implement
and fast random search acquisition function may seem crude in nature, however it is
a very useful acquisition function in that it serves as a sort of minimum benchmark
that must be beat by other acquisition functions. Otherwise, why use them?
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Thompson Sampling

Originally developed in Thompson (1933), Thompson sampling is a stochastic
search algorithm that selects inputs to evaluate by maximizing the expected reward
(or utility) at input x with respect to a randomly drawn sample from a posterior
distribution of interest.

In our context of Bayesian optimization, Thompson sampling can be formulated
as maximizing the following acquisition function:

aTS(x) = −yf (x) (3.16)

where yf (x) is a draw from the posterior predictive distribution of the Gaussian
process for the objective function f . As pointed out in Gramacy (2020), the
TS acquisition function feels a lot like choosing the input that maximizes the
negative predictive mean, −μn(x), of the Gaussian process, but with the added
twist of a sense of uncertainty incorporation in the maximization step since we are
sequentially maximizing an independent random draw of the predictive distribution
at each iteration of the BO algorithm. Readers interested in learning more about
Thompson sampling in the context of Bayesian optimization are advised to see
Shahriari et al. (2016) and the sources within it.

Entropy Search

Introduced in Henning and Schuler (2012), the entropy search acquisition function
guides the BO algorithm by choosing inputs to evaluate that would cause the
largest average decrease in differential entropy. Here, for a random variable Z with
probability density function g, whose support is the set Z, the differential entropy
H(Z) is defined as

H(Z) = −
∫
Z

g(z) log g(z)dz. (3.17)

Here, smaller differential entropy indicates less uncertainty in our random variable.
Casting this problem in the notation of utility functions, we can write the decrease
in differential entropy for having evaluated input x as

u(x) = H(x∗|Dn) − H(x∗|Dn, x, Y (x)) (3.18)

where x∗ = argminx∈X f (x). With this understanding, H(x∗|Dn) represents the
entropy associated with the posterior predictive distribution of the Gaussian process
at iteration n, while H(x∗|Dn, x, Y (x)) represents the entropy associated with the
posterior predictive distribution of the Gaussian process at iteration n+1 if we were
to evaluate input x. As we saw with previous acquisition functions in Sects. 3.3.1–
3.3.2, we can use Bayesian decision theory to derive the acquisition function under
the given utility function by evaluating the expected utility, i.e.,
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aES(x) = E{u(x)|x,Dn}
= H(x∗|Dn) − E{H [x∗|Dn, x, Y (x))}. (3.19)

Here, the expectation is taken with respect to Y (x). Unfortunately, evaluating this
acquisition function is non-trivial as no closed form solution exists. Rather, a series
of challenging approximation steps is required to maximize the entropy search
acquisition function. Readers interested in a slightly less challenging to evaluate
entropy based acquisition function are encouraged to see the work on the predictive
entropy search acquisition function in Hernández-Lobato et al. (2014).

3.4 Sprinkler Computer Model

Up until now, all of the examples in this chapter have relied upon optimizing a
known objective function that we artificially treated as a black-box function. To give
an illustration of the performance of the acquisition functions on a real-world black-
box computer experiment, we turn our attention to the sprinkler computer model
introduced in Sect. 1.2.4. One of the objectives of the sprinkler computer model is
to maximize the range at which the garden sprinkler can spray water given the eight
different physical parameters (x1, . . . , x8) of the garden sprinkler (Fig. 1.6). Here,
x = (x1, . . . , x8)

T ∈ X constitutes the eight dimensional input space (Table 1.1)
over which we wish to maximize the black-box objective function. In this chapter,
we focus only on maximizing the range of the garden sprinkler irrespective of
whatever the implied values of the water consumption and speed of the sprinkler
rotation may be. In the next chapter, we consider the problem of maximizing the
range of the garden sprinkler subject to the constraint that the water consumption
does not exceed a specified value. Yet, another possibility would be to treat this
problem as a multi-objective optimization problem, where one attempts to jointly
optimize all three outputs; however, multi-objective problems are beyond the scope
of this book. Like with the contaminant drilling problem in Sect. 3.1, we want to
find a global maximum, so in the formulation of this book, we instead minimize the
negative objective function in order to find the input that maximizes it.

Now, we shall solve for the minimum negative value of the range of the
garden sprinkler using the probability of improvement (PI), expected improvement
(EI), and lower confidence bound (LCB) acquisition functions, and shall compare
and contrast their performances. Likewise, as a benchmark, we will solve the
optimization problem using the random search acquisition function (Sect. 3.3) as
well. For each acquisition function, we initialize the BO algorithm with the same
starting LHS of size n = 10 inputs. We plan for a total computational budget of
100 input evaluations and so we will sequentially select an additional 90 inputs,
based on the respective acquisition functions, to evaluate. In order to assess the
robustness of the solutions of the BO algorithm, under the different acquisition
functions, we shall repeat solving this optimization problem several times under
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Fig. 3.29 A view of the performance of the BO algorithm, using the four different acquisition
functions, for the 30 the Monte Carlo experiments. Here, each line represents the best value found
over the search by the BO algorithm during a single run of the Monte Carlo experiment

different starting LHS. Here we shall set the number of Monte Carlo experiments to
be 30. Figure 3.29 shows the results of the 30 Monte Carlo experiments for a given
acquisition function.

Visually, it looks like the PI, EI, and LCB acquisition functions all have similar
performance, and all three acquisition functions clearly outperform random search
in general. For each acquisition function, taking the average of the solutions over the
30 Monte Carlo experiments reveals that the LCB acquisition function performed
marginally better than the other acquisition functions (Fig. 3.30). Not surprisingly,
the PI acquisition performed the worst at the beginning when compared to EI and
LCB, which makes sense given the PI acquisition function’s penchant for greedy
search. Table 3.1 gives a numerical summary of the performance of the four acqui-
sition functions. With the exception of random search, each acquisition function
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Fig. 3.30 The results of running 30 Monte Carlo experiments for each acquisition function. The
plot shows the average best objective function values found over 100 black-box iterations

Table 3.1 The average, best, and worst solution found at the end of the 30 Monte Carlo
experiments by each acquisition function

Acquisition function Average final Best final Worst final

solution solution solution

Random search −10.32 −13.89 −7.54

Probability of improvement −16.98 −19.66 −11.09

Expected improvement −17.26 −19.68 −9.32

Lower confidence bound −17.94 −19.68 −10.80

performed slightly better for a different metric of performance. For example, the
LCB acquisition function has the lowest average final solution, however, PI had the
least worst final solution amongst all of the acquisition functions.

Although not usually feasible in practice, this simulator is fast enough that we
are able to evaluate a very large random sample of inputs. Evaluating a LHS of
size n = 1, 000, 000 and n = 10, 000, 000 inputs results in global solutions of
−16.86 and −17.68, respectively. It is striking that each of PI, EI, and LCB did
better on average with 100 function evaluations than a LHS with 1,000,000 function
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evaluations. Increasing the size of the already rather large LHS by a factor of 10
only reduces the solution of −16.86 to −17.68. Quite amazingly, even with this
extremely large (and impractical) LHS, random search did not find as low of a
solution as any of the PI, EI, and LCB acquisition functions did using far fewer
function evaluations. This result underscores the importance and usefulness of BO
for efficiently searching the input space.



Chapter 4
Constrained Optimization

4.1 Constrained Bayesian Optimization

Constrained optimization is just the extension of unconstrained optimization to the
case of having constraints. A constraint is a condition, equality, or inequality that
must be satisfied in order for the solution to be valid. We can write the constrained
optimization problem as

x∗ = argmin
x∈X

f (x) subject to c(x) ≤ 0, (4.1)

where f : X → R denotes a scalar-valued objective function for X ⊂ R
d and

c : X→ R
m denotes a vector of m constraint functions. These constraints could be

in the form of inequalities, cj (x) ≤ 0, equalities, cj (x) = 0, or binary constraints
represented with an indicator function, cj (x) = 1{x∈Xcj

}(x) = 0.
Constrained optimization problems are typically more difficult than uncon-

strained problems because the constraints often operate at odds with the objective
function, so trying to meet the constraint will drive the solution away from the
global optimum. In simple cases, the optimum is not along a constraint boundary,
in which case the problem is essentially an unconstrained problem. But in most
cases, the optimum is on a boundary, with the unconstrained solution lying in a
region that does not meet all the constraints. We refer to the subset of X that
satisfies the constraints as the valid region. So one needs to be able to search for
the best solution in the valid region, with the constraints taking first priority, and the
objective function being second priority. More complex problems will have non-
convex constraint boundaries, or even disconnected valid regions, both of which
make searching quite difficult.
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Thus Bayesian optimization in the constrained case needs to learn both the
objective function and the valid region. For both the objective and the constraints,
exploitation needs to be balanced with exploration, although the interplay between
the objective and the constraints needs to be taken into account. Exploration of the
objective only needs to occur in the valid region, and exploration of the valid region
only needs to occur for more optimal values of the objective. An efficient algorithm
will be able to quickly hone in on the most promising parts of the space.

Again, constrained optimization is usually difficult because at least one of
the constraints operates in opposition to the objective function, that is, they are
negatively correlated. When the outputs are known or suspected to be correlated, it
is common practice to use latent processes to induce a correlation structure between
them (Sammel et al. 1997; Moustaki and Knott 2000, for example), however, this
modeling choice comes at the cost of increased model complexity. Likewise, there
is an increase in the time and computational burden of joint modeling as compared
to independent modeling of the objective and constraint functions, however, as
seen in Pourmohamad and Lee (2016), there can be significant gains in predictive
accuracy and statistical coverage by the use of joint modeling when the objective
and constraint functions are indeed correlated. Moreover, when the objective and
constraint function are correlated, the shared information in modeling the functions
jointly can lead to better model fits and prediction, which should lead to far fewer
function evaluations of the expensive computer model in converging to the global
solution to the optimization problem.

So why not simply use a joint model, such as a joint Gaussian process model
(Wackernagel 2003), to model the objective and constraint functions jointly? After
all, a joint Gaussian process model for the objective and constraint function will
theoretically perform at least as well as using independent Gaussian processes
models for each. The answer is two-fold. First off, if the objective and constraint
function are not strongly correlated, then the added overhead and complexity in
fitting the joint Gaussian process does not justify its use when, given the expensive
nature of the computer model, computational speed of the BO algorithm is of
utmost importance. Little is to be gained when there is not strong information to
share across the models. Secondly, and quite frankly, independent Gaussian process
surrogate models typically just work. Even without exploiting the joint information
that exists for correlated outputs, independent Gaussian process surrogate models
often do a fantastic job of predicting the objective and constraint functions well,
and in a fraction of the time as compared to joint models. In the context of BO, it
usually makes practical sense to use independent surrogate models for the objective
and constraint functions.

With all of this in mind, generalizing the unconstrained BO algorithm (Algo-
rithm 1 of Sect. 3.1) to the constrained case requires only a few additional pieces.
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Here we describe the general formulation for constrained BO via the following
algorithm:

Algorithm 2: The general constrained BO algorithm
Initialization:

Start with an initial data set D0
for n = 1, . . . , N do

Fit surrogate models for the objective and constraint functions;
Select xn = argmaxx∈X an−1(x);
Evaluate f and c at xn to obtain yn;
Augment data Dn = Dn−1 ∪ {(xn, yn)};

end
Return:

x∗ = argminx∈X f (x)

Note that, in general, the only difference between the BO algorithm in the
constrained case versus the unconstrained case is that a (either joint or independent)
model must be specified for the constraint function, c(x), as well as the objective
function, f (x). Otherwise, all other steps proceed similarly to the unconstrained
case, i.e., start with an initial sample chosen from a space-filling design, and fit
appropriate surrogate models that can be used to maximize an acquisition function
for choosing the best next input at which to evaluate the computer model. This
iterative algorithm repeats, updating the observed data after every iteration, until
all computational budget has been exhausted. Different acquisition functions are
needed in the presence of constraints, and that is the topic of the next section.

4.2 Choice of Acquisition Function

Just like the case of unconstrained Bayesian optimization, the acquisition function is
the key to constrained Bayesian optimization. We introduce three different ways to
think about the choice of an acquisition function here, although there are additional
possibilities. These three are: (1) joint exploration of the objective function and
the constraint functions, (2) focusing on staying inside the valid region, and (3)
combining statistical modeling with numerical methods for effective exploration
and exploitation. These approaches can overlap, and some examples of methods we
present here are examples of more than one of these approaches.

One approach to constrained optimization is to choose an acquisition function
that drives simultaneous learning of both the objective function and the constraint
functions. By creating a good surrogate model for both f and c, one can find
the global minimum using the surrogate model. In practice, the surrogate model
for the objective function only needs to be accurate in the valid region, and the
surrogate model for the constraints only needs to be accurate in regions of relatively
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lower objective function values. Two examples discussed in more detail in this
chapter are Constrained Expected Improvement (Schonlau et al. 1998; Gardner
et al. 2014) (Sect. 4.2.1) and Augmented Lagrangian methods (Gramacy et al.
2016) (Sect. 4.2.3). Additional examples include integrated expected conditional
improvement (Gramacy and Lee 2011), expected volume minimization (Picheny
2014), and constrained BO for noisy experiments (Letham et al. 2019). As these
approaches are learning both f and c, they tend to sample a relatively larger number
of points near the constraint boundary but outside of the valid region, where f

may be more desirable and c is close to being satisfied. These observations can
help the search, although they will not ultimately be the optimum point because the
constraints are not all satisfied.

A second approach is to focus on staying inside the valid region. This approach
is motivated by interior point methods from numerical optimization, where the
acquisition function is chosen so that if you have a starting point inside the
valid region, the search attempts to remain inside the valid region, driving toward
the boundary without crossing it. A prime example would be Barrier Methods
(Pourmohamad and Lee 2021) (Sect. 4.2.4). Another approach to focusing on the
valid region is Asymmetric Entropy (Lindberg and Lee 2015) (Sect. 4.2.2). The
formulation of the constrained optimization problem in (4.1) basically assumes that
the objective function f and the constraint function c can be evaluated for all x ∈ X.
In some cases, the computer model might not return any value when x is not in the
valid region. For example, some inputs x might lead to trying to take the logarithm
of a negative number somewhere in the code, or a matrix may become numerically
singular in double precision and thus become not invertible. The problems may
occur deep in the calculations, and a significant amount of computing may be
necessary before discovering the issue. This situation is a case where the optimum
must be found within the domain for which the computer model is able to return
values. Outside of this valid region, the code fails to run and does not return a value.
Thus c is observable as a binary variable, and f is only observable when c = 0.
In the standard case of (4.1), every new observation provides some information
toward optimization. However, in the case of code that does not run outside the
valid region, information is only gained for runs inside the valid region. When the
computer model fails to complete a run, the time spent on that attempted run is
wasted. Thus it is much more important in this case to keep as many runs as possible
inside the valid region. This class of methods aims to find the constrained optimum
while limiting the number of observations with c > 0.

A third approach is based on hybrid optimization algorithms. These combine
direct numerical optimization methods with statistical surrogate modeling. The
idea is that the surrogate model contributes good exploration, and the numerical
method contributes good exploitation. The two methods are combined in a way
that balances exploration and exploitation, in order to efficiently find the global
constrained minimum. Augmented Lagrangian (Sect. 4.2.3) and Barrier Methods
(Sect. 4.2.4) are discussed in this chapter. Additional examples include the slack-
variable augmented Lagrangian (Picheny et al. 2016), the ADMM algorithm for
solving an augmented Lagrangian relaxation (Ariafar et al. 2019), Filter Methods
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(Pourmohamad and Lee 2020), and scalable constrained BO based on trust regions
(Eriksson and Poloczek 2021). Direct numerical optimization algorithms can be
very efficient at finding a local optimum, and thus work quite well when run with
a starting point in the domain of attraction of the global optimum, but can often
become stuck in a local mode when started elsewhere. Statistical surrogate models
can efficiently approximate the full surface. By using the surrogate model to guide
the numerical algorithm, the hybrid approach can efficiently identify promising
regions and find the local optimum of each, thus finding the global optimum as
the best of the local optima. Some hybrid approaches work by iterating between
the surrogate model and the numerical method. The ones we discuss in this chapter
combine the two approaches into a single acquisition function.

4.2.1 Constrained Expected Improvement

A natural extension of the unconstrained acquisition functions to the case of
constrained optimization is to impose some sort of restriction on where the
unconstrained acquisition function can search. A simple, and intuitive, way to
achieve this goal is to take an unconstrained acquisition function and weight its
function value by the probability that the input satisfies the constraint. Perhaps
the most well known use of this idea is that of constrained expected improvement
(Schonlau et al. 1998; Gardner et al. 2014). As the name suggests, the unconstrained
component of the acquisition function relies upon the EI acquisition function of
Sect. 3.3.2, and for a given input, its corresponding EI value is weighted by the
probability that the input satisfies the constraints. Thus, the constrained expected
improvement (CEI) acquisition function can be formulated as follows

aCEI(x) = E {I (x)} × Pr(c(x) ≤ 0), (4.2)

where Pr(c(x) ≤ 0) is the probability of satisfying the constraint. Here, the
improvement function, I (x), uses an f n

min defined over the region of the input
space where the constraint functions are satisfied since we are only concerned with
improving upon the current solution in the valid region of the input space.

Fortunately, the derivation of E {I (x)} in equation (3.9) still holds in the
constrained case. And so, all we are left to deal with is how to handle modeling
the probability of satisfying the constraint. There is no one universal model used
for calculating the probability, but rather, the choice of modeling strategy is usually
dependent upon the type of values the constraint function returns. The two type of
constraint functions that exists are those that return a continuous value and those that
return a binary value. In the case of a continuous constraint, the constraint function
provides a real-valued measure of constraint satisfaction. When the input does not
satisfy the constraint the value returned gives a sense of how far away the input is to
satisfying the constraint. For a continuous constraint function, it is simple enough
to take the same approach that we do for the objective function, and model the
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constraint function output using a Gaussian process. For a single constraint, one can
use the posterior predictive distribution of the Gaussian process in order to calculate
the Pr(c(x) ≤ 0), i.e.,

Pr(c(x) ≤ 0) =
∫ 0

−∞
N(Yc(x);μc(x), σc(x))dYc(x)

= �

(−μc(x)

σc(x)

)
(4.3)

where Yc(x) is the Gaussian process surrogate model for the constraint function,
and this integral reduces to the Gaussian cumulative distribution function �(·). In
the case of multiple constraints, if we assume that the constraints are conditionally
independent given x, then the probability of satisfying the constraints factorizes into

Pr(c1(x) ≤ 0, . . . , cm(x) ≤ 0) =
m∏

i=1

Pr(ci(x) ≤ 0), (4.4)

and everything proceeds as before in the case of the single constraint. In the case of
dependent constraints, the joint probability Pr(c1(x) ≤ 0, . . . , cm(x) ≤ 0) can be
computed using numerical methods (Cunningham et al. 2013).

On the other hand, a continuous Gaussian process does little good when the
constraint function only returns a binary outcome which specifies whether or not
the constraint was satisfied. In the case of binary constraints, the available modeling
choices become somewhat more interesting in that any classification model that
can calculate the probability of belonging to one of two classes can be used. Here,
in keeping with the spirit of BO, a natural choice might be to use a Gaussian
process classification model, although other popular choices include such things
as tree based classifiers like random forests (Breiman 2001) or Bayesian additive
regression trees (BART) (Chipman et al. 2010), to name a few. Readers interested
in learning more about Gaussian process classification models are encouraged to see
(Rasmussen and Williams 2006).

Example Consider the following two-dimensional constrained optimization prob-
lem

min f (x1, x2) = 4x2
1 − x1 − x2 − 2.5

s.t. c1(x1, x2) = −x2
2 + 1.5x2

1 − 2x1 + 1

c1(x1, x2) = 3x4
1 + x2

2 − 2x1 − 4.25

where −1.5 ≤ x1 ≤ 2.5, and −3 ≤ x2 ≤ 3. The optimal solution to the constrained
problem is f (x1, x2) = −4.6958, which occurs along the border of the valid region
at (x1, x2) = (0.1708, 2.1417) (see Fig. 4.1). Although the functional forms are
known in this example, we will treat the objective function, f (x), as if it were an
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Fig. 4.1 Contours of the objective function colored by the two constraints. The solid black line
denotes one constraint function, while the dashed black line denotes the other constraint function.
Contours that are red are areas where the constraints are not satisfied, while green contours indicate
areas where the constraints are satisfied. The blue point represents the global solution to the
problem

expensive black-box function, and similarly for the two constraint functions, c1(x)

and c2(x) so that we may solve it using constrained BO.

Following the general constrained BO algorithm outlined in Algorithm 2 of
Sect. 4.1, we start with an initial LHS sample of size n = 10, and sequentially select
50 more inputs to evaluate based on the CEI acquisition function. Here we choose
to model the objective and constraint functions using independent Gaussian process
surrogate models, i.e., Yf (x) for the objective function, and Yc1(x) and Yc2(x) for
the constraint functions. This modeling choice allows us to pick the next input to
evaluate by maximizing the following easy to evaluate CEI acquisition function

aCEI(x) = E {I (x)} × Pr(c(x) ≤ 0)

=
[
(f n

min − μf (x))�

(
f n
min − μf (x)

σf (x)

)
+ σn(x)φ

(
f n
min − μf (x)

σf (x)

)]

×
[

2∏
i=1

�

(
−μci

(x)

σci
(x)

)]
. (4.5)
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Fig. 4.2 A view of the performance of the BO algorithm using the constrained expected
improvement (CEI) acquisition function for a single run of a Monte Carlo experiment

Given the setup, we proceed to search for the global solution to constrained
optimization problem using the CEI acquisition function to choose the next 50
inputs to sequentially evaluate. Figure 4.2 shows the performance of the BO
algorithm using the constrained expected improvement (CEI) acquisition function
in order to give an idea of how the CEI acquisition searches the input space.
Constrained optimization in this problem is hard due to the fact that the valid regions
are small relative to the input space and disconnected. We see that with a starting
LHS of size n = 10, only two inputs are selected in the valid region and that of the
two disconnected valid regions, only one of them has any initial data. However, even
without starting knowledge of the second valid region, the CEI algorithm performs
quite well spending a lot of its effort searching near the global solution. Note that the
CEI acquisition is just expected improvement weighted by the probability of being
in the valid region, and so the CEI acquisition function can tend to explore invalid
regions often when the estimate of the probability is either poor, or simply because
the expected improvement is very high in the invalid region.

Obviously, the performance of the acquisition function for guiding the BO algo-
rithm is highly dependent upon the initial sample used to initialize the algorithm. To
get an idea of the performance, as well as the robustness, of the BO algorithm under
the CEI acquisition function, we rerun the BO algorithm within 30 Monte Carlo
experiments. The results of the 30 Monte Carlo experiments is captured in Fig. 4.3.
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Fig. 4.3 A view of the performance of the BO algorithm using the constrained expected
improvement (CEI) acquisition function for the 30 the Monte Carlo experiments. Here, each grey
line represents the best value found over the search by the BO algorithm during a single run of the
Monte Carlo experiment. The red average line starts when all of the 30 Monte Carlo experiments
have found a valid solution

Note that, unlike the Monte Carlo progress plots in Chap. 3, the best valid average
solution over the 30 Monte Carlo experiments need not be calculable for all of the
black-box evaluations. This is due to the fact that each Monte Carlo experiment
will potentially find its first valid objective function evaluation at a different point
in time in the sequential evaluation process. For example, it is clear to see that the
individual trajectories of the best valid solution (i.e., grey lines) all do not start at
the same time and point. In fact, at least one of the 30 Monte Carlo initial LHSs
is composed entirely of inputs selected in the invalid region, and so clearly the BO
algorithm may even start with no knowledge of the valid regions. As we can see
from Fig. 4.3, the worst of the 30 Monte Carlo experiments does not begin selecting
inputs from the valid region until about the thirtieth input evaluation (the start of
the red average solution curve). Thus, being able to locate or hone in on the valid
region of the input space is critical to the success of the BO algorithm. We note that
many publications in the literature assume knowledge of at least one point in the
valid region, for example, by discarding an initial LHS without any valid points and
generating new ones until a sample is obtained with at least one valid point. Such an
approach leads to prettier plots, but it hides the computational expense of generating
the additional LHSs.
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4.2.2 Asymmetric Entropy

As discussed in Sect. 4.2, sometimes it is important to try to keep as many runs
as possible inside the valid region while searching for the optimum. At the same
time, the minimum may be expected to be along the constraint boundary, because
the constraints are operating in opposition to the objective function. A well-studied
approach for focusing on a boundary is to use entropy as a utility function.

Consider the problem of finding the constraint boundary by estimating the
probability an input x will be inside the valid region, i.e.,

p(x) = Pr(c(x) ≤ 0). (4.6)

We can estimate the boundary by finding x such that p(x) = 0.5. It turns out that
we can recast the boundary-finding problem as an unconstrained BO problem. We
can create a surrogate model for p, such as a classification Gaussian process or any
other classifier. A common utility function for this search would be the Shannon
entropy:

S(x) = −p(x) × log(p(x)) − (1 − p(x)) × log(1 − p(x)). (4.7)

Using the expected value of S(x) under the surrogate as the acquisition function
leads to a BO algorithm for finding the boundary.

Our actual problem of interest is constrained optimization, which here is focused
on finding an optimum along a boundary. Thus we may want to include entropy as
part of an acquisition function, such as taking a product of EI and entropy. We might
want to more heavily weight either EI or entropy, and thus a family of acquisition
functions is

a(x) = EI(x)ω1 × S(x)ω2 , (4.8)

where ω1 and ω1 act as weights for EI and entropy, respectively. As this acquisition
function combines EI and entropy, it will tend to explore the promising space just
beyond the boundary, primarily in the invalid region, where EI will be larger. The
entropy term pulls it closer to the boundary, but not enough to pull it into the
valid region. To address this imbalance, Lindberg and Lee (2015) introduced an
acquisition function based on asymmetric entropy, which can focus the search inside
the valid region. Asymmetric entropy was originally created by Marcellin et al.
(2006) in the context of fitting decision trees when one class is relatively uncommon
and thus can benefit from being favored in the tree growth algorithm. Asymmetric
entropy is given by

Sa(x) = 2p(x)(1 − p(x))

p(x) − 2wp(x) + w2 , (4.9)
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where w is a mode location parameter. Maximum asymmetric entropy is achieved at
p = w instead of the usual p = 0.5. Thus selecting w > 0.5 will push exploration
more toward the valid region. Lindberg and Lee (2015) recommend w = 2/3.
Substituting asymmetric entropy into the acquisition function, we now have

aAE(x) = EI(x)ω1 × Sa(x)ω2 .

Lindberg and Lee (2015) recommend ω1 = 1 and ω2 = 5, giving the acquisition
function

aAE(x) = EI(x) × Sa(x)5. (4.10)

This formulation can be effective at solving the constrained optimization problem
while searching points primarily inside the valid region.

Example Returning to the two-dimensional constrained optimization example in
Sect. 4.2.1, consider solving again the following problem

min f (x1, x2) = 4x2
1 − x1 − x2 − 2.5

s.t. c1(x1, x2) = −x2
2 + 1.5x2

1 − 2x1 + 1

c1(x1, x2) = 3x4
1 + x2

2 − 2x1 − 4.25

where −1.5 ≤ x1 ≤ 2.5, and −3 ≤ x2 ≤ 3. Proceeding as before, we start with an
initial LHS sample of size n = 10, and sequentially select 50 more inputs to evaluate
based on the AE acquisition function. Given that both constraint functions return a
continuous value, we choose to model the constraints using independent Gaussian
process surrogate models, Yc1(x) and Yc2(x), and their respective predictive means
and variances to calculate the probability p(x) as

p(x) = Pr(c(x) ≤ 0) = �

(
−μc1(x)

σc1(x)

)
× �

(
−μc2(x)

σc2(x)

)
. (4.11)

We then can calculate the asymmetric entropy by plugging p(x) into Sa(x) and
setting w = 2/3. Likewise, we follow the recommendation set forth in Lindberg and
Lee (2015) and set ω1 = 1, and ω2 = 5 to finish the specification of the acquisition
function.

Running the BO algorithm under these settings, Fig. 4.4 shows the performance
of the BO algorithm using the AE acquisition function. Recall that when w > 0.5,
asymmetric entropy will push the search towards the inside of the boundary of the
valid region. What we see in Fig. 4.4 is exactly that. When searching within the
valid regions, the AE acquisition function pushes the search towards the boundaries
of the valid regions when exploring.
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Fig. 4.4 A view of the performance of the BO algorithm using the asymmetric entropy (AE)
acquisition function for a single run of a Monte Carlo experiment

To get an idea of the overall performance of the BO algorithm using the AE
acquisition function, we run 30 Monte Carlo experiments of the BO algorithm.
Figure 4.5 shows the individual and average performance of the BO algorithm over
the 30 Monte Carlo experiments. It is not until after the twentieth input evaluation
that the worst of the Monte Carlo experiments has found an input in a valid region;
however, every single solution search path seems to hone in on the global solution
very quickly. By about the twenty fifth iteration of the algorithm, all of the Monte
Carlo runs have converged to the global minimum of the problem. Clearly, using
the AE acquisition function is advantageous when the solution to the constrained
optimization problem lies along the boundary of the input space since the natural
behavior of the acquisition function is to want to search for the boundary and explore
along it.

4.2.3 Augmented Lagrangian

Augmented Lagrangian methods (Bertsekas 1982; Nocedal and Wright 2006) are
a class of methods based on using a penalty function to combine constraint
satisfaction with objective function optimization into a new single scalar acquisition
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Fig. 4.5 A view of the performance of the BO algorithm using the asymmetric entropy (AE)
acquisition function for the 30 the Monte Carlo experiments. Here, each grey line represents the
best value found over the search by the BO algorithm during a single run of the Monte Carlo
experiment. The red average line starts when all of the 30 Monte Carlo experiments have found a
valid solution

function, which can then be solved as a sequence of unconstrained optimization
problems. The Augmented Lagrangian approach combines the original objective
function with a penalty parameter multiplied by the constraint function, plus a
Lagrangian term, and seeks to minimize that combination. We work here with the
negative of that term as the acquisition function that we maximize:

aAL(x; λ, ρ) = −f (x) − λT c(x) − 1

2ρ

m∑
j=1

max(0, cj (x))2, (4.12)

where f is the objective function, c is the vector of constraint functions, ρ > 0 is
the penalty parameter, and λ ∈ R

m+ is the Lagrange multiplier. As we search the
space, for given values of λ and ρ, we choose the next point x∗ as

x∗ = argmax
x∈X

aAL(x; λ, ρ). (4.13)

If we were to fix λ and ρ, this approach would convert the constrained optimization
problem into an unconstrained optimization problem, typically simplifying the
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problem. In practice, we use a sequence of values for λ and ρ, and so we have
converted a constrained problem to a sequence of unconstrained problems.

The augmented Lagrangian approach has good theoretical convergence prop-
erties when ρ → 0. However, as ρ → 0, the problem becomes increasingly
ill-conditioned, and difficult to solve numerically. Thus real-world algorithms use a
sequence of values for ρ whose limit is 0. As ρ is updated, λ is updated at iteration
k as a typical Lagrange multiplier

λk
j = max

(
0, λk−1

j + 1

ρk−1
cj (x

k)

)
. (4.14)

Augmented Lagrangian methods were developed as numerical methods,
designed for direct numerical optimization. Gramacy et al. (2016) adapted the
augmented Lagrangian approach for Bayesian optimization by incorporating
Gaussian process surrogate modeling into the algorithm. An independent Gaussian
process is used to approximate f and each constraint cj , for a total of m + 1
Gaussian process models. In particular, Yf is a Gaussian process surrogate for f

and Ycj
is a Gaussian process surrogate for cj . These surrogates are important

because (4.13) requires the selection of the next point, x∗, based on the unknown
f and c. The Gaussian process surrogates are used to guide this choice of x∗. The
acquisition function is thus approximated with:

−Yf (x) − λT Yc(x) − 1

2ρ

m∑
j=1

max(0, Ycj
(x))2. (4.15)

Given this approximation, how does one choose the next x∗ in a BO routine?
As we update our Gaussian process surrogate, Y will have a distribution derived
from the posterior distributions of each of the Gaussian processes, and so Y is not
a scalar function that can be directly minimized. Gramacy et al. (2016) suggest
several methods for guiding this choice, stemming from two conceptual approaches:
following the predictive mean, or expected improvement.

The first approach for choosing the point, x∗, that maximizes (4.12) based on
the approximation (4.15) is to choose the x∗ that maximizes the posterior predictive
mean of (4.15). At any point x, Yf (x) will have a posterior predictive mean that is
Gaussian with mean μf (x) and variance σ 2

f (x). Similarly, each Ycj
(x) will have a

Gaussian posterior predictive mean with mean μcj
(X) and variance σ 2

cj
(x). So we

can now write

E [aAL(x)] ≈ −E
[
Yf (x)

] − λT
E [Yc(x)] − 1

2ρ

m∑
j=1

E

[
max(0, Ycj

(x))2
]

= −μf (x) − λT μc(x) − 1

2ρ

m∑
j=1

E

[
max(0, Ycj

(x))2
]
. (4.16)
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Gramacy et al. (2016) provide an expansion of that last expectation as

E

[
max(0, Ycj

(x))2
]

= σ 2
cj

(x)

⎧⎨
⎩

⎛
⎝1 +

(
μcj

(x)

σcj
(x)

)2
⎞
⎠�

(
μcj

(x)

σcj
(x)

)
+ φ

(
μcj

(x)

σcj
(x)

)⎫⎬
⎭ ,

(4.17)

where � and φ are the cumulative distribution function and probability density
function for the standard Gaussian distribution, respectively.

The second approach is based on expected improvement, choosing the x∗ that
has the largest expected improvement in Y . Because this EI is not available in
closed form, Gramacy et al. (2016) suggest a Monte Carlo approximation. Draw
T Monte Carlo samples y

(t)
f (x), y

(t)
c1 (x), . . . , y

(t)
cm

(x) from Gaussian distributions

N
(
μf (x), σ 2

f (x)
)
and N

(
μcj

(x), σ 2
cj

(x)
)
, for t = 1, . . . , T . The approximation

is

E [1Y (x)] ≈ 1

T

T∑
t=1

max

⎧⎨
⎩0, ymin−

⎡
⎣y

(t)
f (x)+λT y(t)

c (x)+ 1

2ρ

m∑
j=1

max
(
0, y(t)

cj
(x)

)2⎤⎦
⎫⎬
⎭

(4.18)

where ymin is the smallest value of (4.15) that has been observed across all previous
iterations.

For both approaches, full optimization would be impractical, and x∗ can be
chosen by drawing a random sample of candidates and choosing the x∗ which is
the best among the candidates evaluated. Gramacy et al. (2016) provide additional
discussion on generating improved candidate sets. They also discuss variations on
these two approaches that approximate the acquisition functions by removing the
max operator, which leads to simplified expressions that can be written in closed
form in certain cases.

Example Using the AL acquisition function, let us again solve the following two-
dimensional constrained optimization problem

min f (x1, x2) = 4x2
1 − x1 − x2 − 2.5

s.t. c1(x1, x2) = −x2
2 + 1.5x2

1 − 2x1 + 1

c1(x1, x2) = 3x4
1 + x2

2 − 2x1 − 4.25

where −1.5 ≤ x1 ≤ 2.5, and −3 ≤ x2 ≤ 3. Starting with an initial LHS of size
n = 10, we run the BO algorithm using the AL acquisition function to sequentially
choose the next 50 inputs to evaluate. Figure 4.6 shows the performance of the BO
algorithm over a single Monte Carlo run. The AL acquisition function performs
quite well in this example, spending most of its time exploring input space of one of
the valid regions. Unlike the AE acquisition function, the AL acquisition function
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Fig. 4.6 A view of the performance of the BO algorithm using the augmented Lagrangian (AL)
acquisition function for a single run of a Monte Carlo experiment

does not have a preference for solely trying to search the boundary of the input space
and so it takes a more exploratory approach to searching the valid region.

Similar to the CEI acquisition function, it takes about 30 input evaluations before
all of the 30 Monte Carlo experiments find a valid input (Fig. 4.7). However, the AL
acquisition function still does a quite good job at converging, on average, to the
global solution of the problem.

4.2.4 Barrier Methods

Barrier methods (Nocedal and Wright 2006), also known as interior point methods,
are a natural strategy for solving black-box constrained optimization problems as
they try to decrease the objective function as much as possible while ensuring
that the boundary of the constraint space is never crossed. In order to ensure that
the boundary of the constraint space is never crossed, barrier methods replace the
inequality constraints in the constrained optimization problem in (4.1) with an extra
term in the objective function that can be viewed as a penalty for approaching the
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Fig. 4.7 A view of the performance of the BO algorithm using the augmented Lagrangian (AL)
acquisition function for the 30 the Monte Carlo experiments. Here, each grey line represents the
best value found over the search by the BO algorithm during a single run of the Monte Carlo
experiment. The red average line starts when all of the 30 Monte Carlo experiments have found a
valid solution

boundary. Here, the constrained optimization problem in (4.1) can be re-written as
the following unconstrained optimization problem

min
x

{
f (x) +

m∑
i=1

B{ci (x)≤0}(x)

}
, (4.19)

where B{ci (x)≤0}(x) = 0 if ci(x) ≤ 0 and ∞ otherwise. Although mathematically
equivalent, the introduction of B{ci (x)≤0}(x) in the reformulation of the original
constrained optimization problem is not particularly useful as it introduces an abrupt
discontinuity when ci(x) > 0. This discontinuity eliminates the use of calculus
to minimize (4.19). To remedy this issue, the discontinuous function in (4.19) can
be replaced with a continuous approximation, ξ(x), that is ∞ when ci(x) > 0
but is finite for ci(x) ≤ 0. This continuous approximation, ξ(x), is referred to as
the barrier function as it will create a “barrier" to exiting the valid region for the
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Fig. 4.8 As γ approaches ∞, the log barrier function, ξ(x), becomes a better approximation to
B{ci (x)≤0}(x) (i.e., the dashed line)

search algorithm. Many barrier functions exists, however, a popular choice of barrier
function is the log barrier function which is defined as

ξ(x) = −
(
1

γ

) m∑
i=1

log(−ci(x)) (4.20)

for γ > 0. Note that the log barrier function, ξ(x), is a smooth approximation of∑m
i=1 B{ci (x)≤0}(x)when ci(x) < 0, and that this approximation improves as γ goes

to ∞ (see Fig. 4.8). Now, replacing B{ci (x)≤0}(x) with the log barrier function, ξ(x),
we can approximate the problem in (4.19) as

min
x

{B(x; γ )} = min
x

{
f (x) −

(
1

γ

) m∑
i=1

log(−ci(x))

}
. (4.21)

Solving the minimization problem in (4.21) becomes a much more manageable and
tractable problem as compared to the minimization problem in (4.19).

Recognizing the attractive qualities of barrier methods for constrained optimiza-
tion, Pourmohamad and Lee (2021) extended barrier methods to the BO framework
by modeling the quantity B(x; γ ) in (4.21), using independent Gaussian process
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surrogates Yf (x) and Yc(x) = (Yc1(x), . . . , Ycm(x)) for the objective and constraint
functions, i.e.

Y (x) = Yf (x) −
(
1

γ

) m∑
i=1

log(−Yci
(x)). (4.22)

Pourmohamad and Lee (2021) suggests that optimization can then proceed by
minimizing the predictive mean surface of Y (x). At first glance, this may sound
like a poor idea since minimizing the expectation of a Gaussian process typically
leads to a greedy search algorithm (i.e., think back to the discussion in Sect. 3.2
about minimizing the predictive mean of the Gaussian process, μn(x)). However, as
will be shown, in this case minimizing the predictive mean surface of Y (x) leads to
an acquisition function that searches the space both locally and globally. The result
of minimizing the predictive mean surface of Y (x) results in:

min
x

E(Y (x)) ≈ min
x

μf (x) −
(
1

γ

) m∑
i=1

(
log(−μci

(x)) + σ 2
ci
(x)

2μ2
ci
(x)

)
(4.23)

The details of the derivation of the expectation in (4.23) can be found in Pour-
mohamad and Lee (2021). To finally recast this in the language of BO, we instead
pivot to maximizing the negative value of this equation and thus establish the barrier
method (BM) acquisition function, i.e.,

aBM(x) = −μf (x) +
(
1

γ

) m∑
i=1

(
log(−μci

(x)) + σ 2
ci
(x)

2μ2
ci
(x)

)
. (4.24)

Two problems arise from this acquisition function. The first problem is that there
is no explicit rule, in the context of BO, on how to set γ . In the mathematical
programming literature (e.g., Nocedal and Wright (2006)), it is common practice
to have the value of γ → ∞ such that, at iteration k + 1 of the barrier method,
γk+1 > γk . In effect, this leads to steadily decreasing the penalty for approaching
the boundary of the valid region throughout the optimization. However, much like
the LCB acquisition function of Sect. 3.3.3, γ is still a tuning parameter left to
user’s discretion. The second problem is that (4.24) contains no variability term
associated with the objective function, but rather only with the constraints, i.e.,
σ 2

ci
(x). Without a term like σ 2

f (x) in (4.24) to measure the prediction uncertainty
for the objective function, the acquisition function will tend to favor exploitation,
rather than exploration, as it will assume that it is predicting the objective function at
untried inputs without error. Solving both of these problems at once, Pourmohamad
and Lee (2021) recommended setting γ = 1/σ 2

f (x), where σ 2
f (x) is the predictive
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variance associated with the Gaussian process surrogate model for the objective
function f . This leads to the revised acquisition function

aBM(x) = −μf (x) + σ 2
f (x)

m∑
i=1

(
log(−μci

(x)) + σ 2
ci
(x)

2μ2
ci
(x)

)
, (4.25)

which (1) gives a rule for setting γ based on the current level of uncertainty in the
predictions, and (2) injects an uncertainty term for the objective function into the
acquisition function.

A second approach was also proposed in Pourmohamad and Lee (2021) which
was to replace the surrogate model for the objective function, Yf (x), with the
improvement function −I (x) in (4.22), i.e.,

min
x

E

(
−I (x)−

(
1

γ

) m∑
i=1

log(−ci(x))

)
= min

x
−E(I (x))−

(
1

γ

) m∑
i=1

(
log(−μci

)+ σ 2
ci

2μ2
ci

)
.

(4.26)

The idea here being that if you instead take the expectation of the improvement
function in (4.26), that you would incur all of the benefits of the expected
improvement acquisition function, i.e., a variance term for the objective function
and the natural exploration-exploitation search characteristics. Note that since we
are minimizing in (4.23) we will need to use the negative improvement function.
The minimization problem in (4.26) leads to the following acquisition function

aBM(x) = (f n
min − μf (x))�

(
f n
min − μf (x)

σf (x)

)
+ σf (x)φ

(
f n
min − μf (x)

σf (x)

)

+
(
1

γ

) m∑
i=1

(
log(−μci

) + σ 2
ci
(x)

2μ2
ci
(x)

)
, (4.27)

where again, Pourmohamad and Lee (2021) suggest setting γ = 1/σ 2
f (x).

Example Using the BM acquisition function, we solve one last time the following
two-dimensional constrained optimization problem

min f (x1, x2) = 4x2
1 − x1 − x2 − 2.5

s.t. c1(x1, x2) = −x2
2 + 1.5x2

1 − 2x1 + 1

c1(x1, x2) = 3x4
1 + x2

2 − 2x1 − 4.25

where −1.5 ≤ x1 ≤ 2.5, and −3 ≤ x2 ≤ 3. Once again, we start with an initial
LHS of size n = 10, and sequentially pick 50 additional inputs to evaluate based
on the BM acquisition function. For illustration here, we shall use the form of the
acquisition function in (4.25). The performance of the BM acquisition function
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Fig. 4.9 A view of the performance of the BO algorithm using the barrier method (BM)
acquisition function for a single run of a Monte Carlo experiment

for guiding the BO algorithm can be seen in Fig. 4.9. As opposed to the CEI,
AE, and AL acquisition functions, the BM acquisition places higher importance
on trying to stay within the valid region, and so exploring the invalid regions far
less. This characteristic can be both desirable and undesirable. Staying within the
valid region makes a lot of sense since we are concerned with finding a valid
solution to the problem and, based on how computationally expensive the computer
model is, searching in the invalid region can be viewed as wasteful since those
inputs will not be the solution to the optimization problem and their evaluation is
costly. On the other hand, as seen in Sects. 4.2.2 and 4.2.3, evaluating inputs in the
invalid region is beneficial with helping the Gaussian process surrogate models learn
both the objective and constraint function surfaces better, which ultimately leads to
better prediction and uncertainty reduction, both of which are important components
of a good acquisition function. Much like the AE acquisition function, the BM
acquisition as well has a tendency to explore the boundary of the valid regions.
Note though that while the original barrier methods were designed to never cross the
border of the valid region, the BM acquisition function explores along the boundary,
sometimes crossing it, since the location of the boundary is being estimated, and
the Gaussian process surrogate model learns the boundary by sometimes going just
beyond it.
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Fig. 4.10 A view of the performance of the BO algorithm using the barrier method (BM)
acquisition function for the 30 the Monte Carlo experiments. Here, each grey line represents the
best value found over the search by the BO algorithm during a single run of the Monte Carlo
experiment. The red average line starts when all of the 30 Monte Carlo experiments have found a
valid solution

Figure 4.10 captures the behavior of 30 Monte Carlo experiments for running
the BO algorithm using the BM acquisition function. Overall, the performance of
the BM acquisition function is quite good, with all of the 30 different Monte Carlo
runs obtaining a valid input by about the twentieth input evaluation. After the initial
LHS, the BM acquisition steadily guides the BO algorithm to the global solution of
the problem on average.

For sake of comparison, we plot the average performance of the CEI, AE, AL,
and BM algorithms over their respective 30 Monte Carlo experiments (Fig. 4.11).
Here, the initial 30 LHSs, across the Monte Carlo experiments, are the same starting
inputs for each acquisition function. What we see from Fig. 4.11 is vastly different
average performance of the BO algorithm under the four different acquisition
functions. Here, BM and AE are much better at finding valid inputs earlier on which
is due to their tendencies to approach, or stay within, the boundaries of the valid
region. CEI and AL are slower to find valid inputs due to the fact that they will
allow for more exploration of the invalid region as compared to the AE and BM
acquisition functions, i.e., there is no heavy penalty for exiting the valid region or
need to search out the boundary of the valid region. Although the CEI and AL
acquisition functions are slower to find valid starting inputs, they still perform as
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Fig. 4.11 The average performance of the CEI, AE, AL, and BM acquisition functions over the
30 Monte Carlo experiments

well as the BM acquisition function in this example. On the other hand, the AE
acquisition function clearly dominates the other three acquisition functions with
regards to the number of function evaluations needed to converge to the global
solution of the problem. This superior performance is due in part to the fact that
the global solution lies exactly on the border of the valid region which is exactly
where the AE acquisition function wants to search. We emphasize that this a single
example, and that on other examples, a different one of these methods may perform
best.

4.3 Constrained Sprinkler Computer Model

Recall that in Sect. 3.4 we maximized the range of the garden sprinkler via an
unconstrained optimization problem. Given that the garden sprinkler computer
model returns a multi-objective output, we can now optimize one of the objective
function outputs subject to the constraint that either one or both of the other objective
function values is above (or below) a certain value. For sake of example, let us
assume that still want to maximize the range of the garden sprinkler but now subject
to the constraint that the water consumption must not be greater than five. Here
we will assume that constraining the speed of the garden sprinkler (i.e., the third
output of the garden sprinkler computer model) is not of concern. Casting the
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garden sprinkler computer model in the framework of a constrained optimization,
we formulate the problem as follows:

x∗ = argmin
x∈X

{−f (x)} subject to c(x) − 5 ≤ 0, (4.28)

Here the objective function, f (x), describes the range at which the garden sprinkler
can spray water, while the constraint function, c(x), determines whether an accept-
able amount of water is used. Note that since we wish to maximize the range of the
garden sprinkler, we shall instead minimize the negative objective function in order
to find the input that maximizes it. The inputs x = (x1, . . . , x8)

T ∈ X represent
the eight physical attributes of the garden sprinkler (see Fig. 1.6 and Table 1.1) that
can be set within the computer model. The computer model is essentially a black-
box function since, for any input configuration evaluated by the model, the only
information that is returned is that of the objective and constraint values.

Now, we shall solve for the maximum value of the range of the garden sprin-
kler, subject to the water consumption constraint, using the constrained expected
improvement (CEI), asymmetric entropy (AE), augmented Lagrangian (AL), and
barrier method (BM) acquisition functions, and shall compare and contrast their
performances. We will initialize the BO algorithm using a LHS of size n = 10,
and sequentially evaluate an addition 90 inputs for a total computational budget
of 100 input evaluations. In order to assess the robustness of the solutions of the
BO algorithm, under the four different acquisition functions, we repeat solving this
constrained optimization problem using 30 Monte Carlo experiments. Figure 4.12
shows the results of the 30 Monte Carlo experiments for a given acquisition
function.

Visually, it looks like the CEI, AL, and BM acquisition functions all have similar
performance, while the AE acquisition perhaps has a few better runs of the Monte
Carlo experiments (i.e., lower best valid objective values) as well as fewer worst
solutions. For each acquisition function, taking the average of the solutions over
the 30 Monte Carlo experiments reveals that the AE acquisition function indeed
performed better than the other acquisition functions (Fig. 4.13). Although it took
much longer, on average, for the AE acquisition to start evaluating valid inputs,
it still was capable of finding a significantly better solution than the other three
acquisition functions. On the other hand, the average performance of the CEI, AL,
and BM acquisition functions was very similar with perhaps the exception of the
BM acquisition function doing slightly better (i.e., lower average values) through
several stretches of black-box iterations.

Table 4.1 gives a numerical summary of the performance of the four acquisition
functions. Besides being better on average, the AE acquisition function also did the
best with regards to both the best and worst final solutions found over the 30 Monte
Carlo experiments as compared to the CEI, AL, and BM acquisition functions.
The observed differences in worst and final solutions between the CEI, AL, and
BM acquisition functions, over the 30 Monte Carlo experiments, were negligible,
reaffirming the overall comparable performance of the three acquisition functions.
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Fig. 4.12 A view of the performance of the BO algorithm, using the four different acquisition
functions, for the 30 the Monte Carlo experiments. Here, each line represents the best value found
over the search by the BO algorithm during a single run of the Monte Carlo experiment

Lastly, evaluating a LHS of size n = 1, 000, 000 inputs results in a global
solution of −9.46. In this case, it is clear that the four acquisition functions have
not yet converged to the global solution of the problem. This is consistent with the
fact that in Fig. 4.13, all of the progress lines are still trending downward. Practically
speaking, this means that the total budget for input evaluations needs to be increased
past 100, and that the constrained BO algorithmmay benefit from increasing the size
of the initial LHS.
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Fig. 4.13 The results of running 30 Monte Carlo experiments for each acquisition function. The
plot shows the average best objective function values found over 100 black-box iterations

Table 4.1 The average, best, and worst solution found at the end of the 30 Monte Carlo
experiments by each acquisition function

Average final Best final Worst final

Acquisition function solution solution solution

Constrained expected improvement −5.14 −7.01 −3.17

Asymmetric entropy −5.85 −8.22 −4.82

Augmented lagrangian −5.00 −7.17 −3.36

Barrier method −5.05 −7.16 −3.25



Chapter 5
Conclusions

This short book provided an introduction to the topic of Bayesian Optimization,
including several examples of acquisition functions for each of unconstrained and
constrained optimization. We emphasize that these are just a few choices among
the many that have been created. And this is a vibrant field, with more new work
continually emerging.

For both unconstrained and constrained optimization, we have selected some
examples of acquisition functions that we have found to work well, and we
also present one or two comparators that are less effective. For unconstrained
optimization, random search is a baseline that all algorithms should be able to
significantly outperform. Probability of Improvement is a reasonable concept, but
it is not as effective as other more sophisticated methods. Both the Expected
Improvement and the Lower Confidence Bound have been found to perform well.
Neither method routinely outperforms the other; one can find different examples
where each of them performs better.

Analogously for constrained optimization, Constrained Expected Improvement
is a solid approach and a good baseline, but it is generally less effective than the
other three methods. Among Asymmetric Entropy, Augmented Lagrangian, and
Barrier Methods, none routinely outperform each other. While Asymmetric Entropy
happened to have the best results in the two examples presented here, one of the
other two methods might prevail on other examples.

Bayesian optimization is a very fast moving field within the machine learning
community, with lots of evolving topics. Although not presented in this book,
it would be remiss not to mention some of the current hot topics in Bayesian
optimization. As of the writing of the book, two of the hottest growing topics in
Bayesian optimization are batch BO and BO for high input dimensions. All of the
work in this book revolved around BO approaches that explored the input space by
sequential evaluation. On the other hand, batch BO recommends proposing batches
of input values to explore simultaneously. Batch BO is especially advantageous
when parallel computing can be employed. Readers interested in learning more
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about batch BO are recommended to read the following works: Gonzalez et al.
(2016), Hernández-Lobato et al. (2017), Kandasamy et al. (2018), Wang et al.
(2018), Eriksson et al. (2019), and Mathesen et al. (2021), for example. With regards
to BO for high input dimensions, the BO methods presented in this book have
typically been applied to input dimensions, usually at most, of around 15 within
the BO literature. BO for high input dimensions seeks to extend BO algorithms to
the much higher dimensional settings, and in most cases, where the input evaluation
budget is still relatively small. A lot of recent work has been done in this direction,
and interested readers are encouraged to see the works of Binois et al. (2015), Wang
et al. (2016), Eriksson et al. (2018), Mutny and Krause (2018), Oh et al. (2018),
Rolland et al. (2018), Kirschner et al. (2019), Nayebi et al. (2019), Binois et al.
(2020), and Letham et al. (2020), to a name a few.



Appendix A
R Code

A.1 Getting Started

R code for the book has been provided as online supplementary material and can be
accessed at https://github.com/tpourmohamad/BayesianOptimizationBook. In order
to be able to run the R code in the online supplement, a handful of packages from
the Comprehensive R Archive Network (CRAN: https://cran.r-project.org/) must be
first installed and then loaded. Keep in mind that, as of the writing of this book,
thousands of packages exist on CRAN and so these are certainly not the only R
packages that can be used for Gaussian process regression or Bayesian optimization,
but rather are the packages that we prefer to work with for one reason or another.

To get started, R packages can be installed by use of the install.
packages() command, where the name of the desired package is placed inside
the function in quotes. For example, install.packages("tgp") installs the
treed Gaussian process (tgp) package. Once installed, the library() command
can then be used to load the package. The following is a list of R packages that we
recommend you load before proceeding to any other code examples.

We aimed at making all examples and figures in the book as reproducible as
possible. However, even when setting seeds and using the same R version, one can
get different random number streams on different architectures. Thus, we refrained
from setting seeds in the R code with set.seed(). When running the R code you
will invariably get different results than what are presented in the book, however, the
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results should either be close to the original solutions and figures, or interpretable
in a similar fashion.

By no means is R the only software language that exists for conducting Bayesian
optimization. In fact, a significant amount of effort for developing Bayesian opti-
mization software has been undertaken by the Python programming community. For
example, the Python BoTorch software (Balandat et al. 2020) provides users with
an out-of-the-box software for implementing Bayesian optimization with minimal
effort.

Lastly, we note that all calculations and analyses in the book were carried out
using R version 4.0.5 (2021-03-31)--“Shake and Throw”.
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