Internet of Things

Carlos E. Palau - Giancarlo Fortino -
Miguel Montesinos - George Exarchakos -
Pablo Giménez - Garik Markarian - Valér
Flavio Fuart - Wiestaw Pawtowski
Alessandro Bassi - Frans Gevers -

Gema |bafiez-Sanchez - Ignacio Huet Edi’i‘ors\

Interoperability
of Heterogeneous
loT Platforms

A Layered Approach

@ Springer

Internet of Things

Technology, Communications and Computing

Series Editors
Giancarlo Fortino, Rende (CS), Italy

Antonio Liotta, Edinburgh Napier University, School of Computing, Edinburgh,
UK

The series Internet of Things - Technologies, Communications and Computing
publishes new developments and advances in the various areas of the different
facets of the Internet of Things.

The intent is to cover technology (smart devices, wireless sensors, systems),
communications (networks and protocols) and computing (theory, middleware and
applications) of the Internet of Things, as embedded in the fields of engineering,
computer science, life sciences, as well as the methodologies behind them. The
series contains monographs, lecture notes and edited volumes in the Internet of
Things research and development area, spanning the areas of wireless sensor
networks, autonomic networking, network protocol, agent-based computing,
artificial intelligence, self organizing systems, multi-sensor data fusion, smart
objects, and hybrid intelligent systems.

** Indexing: Internet of Things is covered by Scopus and Ei-Compendex **

More information about this series at https://link.springer.com/bookseries/11636

https://springerlink.bibliotecabuap.elogim.com/bookseries/11636

Carlos E. Palau - Giancarlo Fortino -
Miguel Montesinos - George Exarchakos -
Pablo Giménez - Garik Markarian - Valérie Castay -
Flavio Fuart - Wiestaw Pawtowski -
Marina Mortara - Alessandro Bassi - Frans Gevers -
Gema Ibafiez-Sanchez - Ignacio Huet
Editors

Interoperability
of Heterogeneous IoT
Platforms

A Layered Approach

@ Springer

Editors

Carlos E. Palau

School of Telecommunications Engineering
Universitat Politécnica de Valéncia
Valencia, Spain

Miguel Montesinos
Prodevelop, S.L.
Valencia, Spain

Pablo Giménez
Sede APV
Valencia, Spain

Valérie Castay
AFT
Paris, France

Wiestaw Pawlowski

Faculty of Mathematics, Physics
and Informatics

University of Gdarisk

Gdarnsk, Poland

Alessandro Bassi
ABC
Prague, Czech Republic

Gema Ibafiez-Sanchez

Instituto ITACA

Universitat Politécnica de Valencia
Valencia, Spain

ISSN 2199-1073

Internet of Things

ISBN 978-3-030-82445-7
https://doi.org/10.1007/978-3-030-82446-4

© Springer Nature Switzerland AG 2021

Giancarlo Fortino
DIMES, University of Calabria
Rende (CS), Italy

George Exarchakos

Department of Electrical Engineering
Eindhoven University of Technology
Eindhoven, The Netherlands

Garik Markarian
Riverway House
Rinicom Ltd.
Lancaster, UK

Flavio Fuart
XLAB doo
Ljubljana, Slovenia

Marina Mortara

Dipartimento di Prevenzione, ASL TO5
Struttura Complessa Igiene degli Aliment
Nichelino, Torino, Italy

Frans Gevers
Neways Technologies B.V.
EP Son, The Netherlands

Ignacio Huet
CSP Spain
Valencia, Spain

ISSN 2199-1081 (electronic)

ISBN 978-3-030-82446-4 (eBook)

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-82446-4

Preface

In recent years, due to a great interest of both Industry and Academy in researching
and developing IoT technology, many solutions at different levels (from the IoT
device-level to full-fledged IoT platforms) have been implemented. However, there
is no reference standard for IoT platform technology, and we do not foresee
one in the near future. Hence, IoT scenarios will be characterized by a high
degree of heterogeneity at all levels (device, networking, middleware, application
service, data/semantics), preventing interoperability of [oT solutions. Although many
research actions and projects have dealt and/or are dealing with developing IoT
architectures in diversified application domains, not many of them have addressed
interoperability/integration issues. Furthermore, no proposals (to date) have been
put forward to deliver a general, application domain agnostic, fully reusable and
systematic approach to solve multiple interoperability problems existing in the IoT
platforms technology.

Lack of interoperability causes major technological and business issues such as
impossibility to plug non-interoperable IoT devices into heterogeneous IoT plat-
forms, impossibility to develop IoT applications exploiting multiple platforms in
homogeneous and/or cross domains, slowness of IoT technology introduction at a
large-scale, discouragement in adopting IoT technology, increase of costs, scarce
reusability of technical solutions, user dissatisfaction. In contrast, interoperability
among platforms will provide numerous benefits such as new market opportuni-
ties, the disappearance of vertical silos, and vertically oriented closed systems,
architectures and application areas, to move towards open systems and platforms.
Comprehensively addressing lack of interoperability in the IoT realm by proposing a
full-fledged approach facilitating “voluntary interoperability” at any level of IoT
platforms and across any IoT application domain, thus guaranteeing a seamless
integration of heterogeneous IoT technology.

Most current existing sensor networks and IoT device deployments work as inde-
pendent entities of homogeneous elements that serve a specific purpose, and are
isolated from “the rest of the world”. In a few cases where heterogeneous elements
are integrated, this is done either at device or network level, and focused mostly
on unidirectional gathering of information. A multi-layered approach to integrating

vi Preface

heterogeneous [oT devices, networks, platforms, services and applications will allow
heterogeneous elements to cooperate seamlessly to share data, infrastructures and
services as in a homogeneous scenario.

INTER-IoT is a solution proposed to the above problem, and has aimed at the
design, implementation and experimentation of an open cross-layer framework, an
associated methodology and tools to enable voluntary interoperability among hetero-
geneous Internet of Things (IoT) platforms. INTER-IoT is the supporting envi-
ronment for this book. It has been conceived and created among other potential
solutions in the framework of IoT-EPI (IoT European Platforms Initiative), and has
allowed effective and efficient development of adaptive, smart loT applications and
services, atop different heterogeneous IoT platforms, spanning single and/or multiple
application domains, creating also its own ecosystem.

This book investigates on the multi-layered approach to achieve semantic inter-
operability, presenting innovative solutions for the architecture and the individual
layers so as management and the methodological approach. Readers are offered with
new issues and challenges in a continuously moving environment like IoT platform
interoperability. In particular, the book spans the following scenarios: (1) port trans-
portation and logistics; (2) mobile healthcare and (3) different application domains
related with the INTER-IoT ecosystem. All the areas covered by the interoperability
solution and its application correspond to ten authored chapters briefly introduced
below.

Chapter “Introduction to Interoperability for Heterogeneous IoT Platforms” by
Carlos E. Palau, et al., presents an overview of the needs, potential solutions and
advances regarding IoT platforms interoperability. The chapter in particular starts
reviewing the existing solutions and state of the art associated with platform inter-
operability and discuses the benefits of a multi-layered approach solution analysing
the layers selected for the INTER-IoT solution and the potential application to two
selected use cases, identifying the uniqueness of the provided approach.

Chapter “INTER-IoT Requirements” by Pablo Giménez, Miguel Llop, Regel
Gonzalez-Usach, and Miguel A. Llorente proposes the main requirements and the
process to gather them to achieve interoperability between IoT platforms. The chapter
considers the Volere methodology as the mechanism to define, gather, select and
prioritize the functional and non-functional requirements to develop an interoper-
able solution. Requirements are analysed following different approaches and can be
used as support for potential developers that may need to perform a similar analysis
for the same or different application domains.

Chapter “INTER-IoT Architecture for Platform Interoperability” by Alessandro
Bassi, Miguel A. Llorente, Miguel Montesinos, and Raffaele Gravina analyses the
need of a meta-architecture with a specific domain model to define the different
building blocks for an interoperable solution. The chapter illustrates the contribution
of INTER-IoT for the definition of a reference architecture, using IoT-A as a starting
point and the link with further developments related with the IoT community. The
chapter includes the software vision of the architecture and supports the multi-layered
approach which is the current approach required from the market.

Preface vii

Chapter “INTER-Layer: A Layered Approach for [oT Platform Interoperability”
by Andreu Belsa et al., describes the different solutions for each of the layers that
compose the architecture. The chapter starts with a detailed state-of-the-art analysis
and describes the different technologies that can be used to provide interoperability at
each layer of the architecture. The technical aspects of the developments and integra-
tion are based on the requirements gathered and described in Chapter “INTER-IoT
Requirements”. The cross-layer needs of the architecture are also analysed in the
chapter with a specific focus on security, privacy, reliability and management.

Chapter “Semantic Interoperability” by Maria Ganzha, et al., concerns modern
trends in IoT semantic interoperability, in particular the different methods to be used,
with a specific focus on semantic alignment. After an overview of current literature,
the chapter defines the different semantic interoperability patterns, a global ontology
(GOIoTP) for platform interoperability, that agnostically address any domain. The
chapter describes a key component of the architecture as the IoT Platform Semantic
Mediator (IPSM) that support semantic interoperability functions at any layer but
mainly at middleware and application and service layers.

Chapter “INTER-Framework: An Interoperability Framework to Support IoT
Platform Interoperability” by Clara I. Valero et al., considers the different tools
required to manage, secure and provide global access to the APIs of the architecture.
After a brief discussion on related work the chapter describes INTER-API and the
global API of the INTER-IoT architecture as a relevant contribution and innovation
in the area of IoT interoperability; the management functions that allow fast config-
uration of the interoperability parameters at any layer and the security measures in
order to achieve and guarantee interoperability highlighting scalability, flexibility
and sustainability.

Chapter “INTER-Meth: A Methodological Approach for the Integration
of Heterogeneous IoT Systems” by Giancarlo Fortino et al., provides support for
the integration of heterogeneous IoT platforms from the analysis to the maintenance
phase, something that is required due to the lack of proper interoperability standards.
The chapter provides a description using software engineering of a methodolog-
ical approach to achieve and manage interoperability among IoT platforms avoiding
dependency on the application domain. The proposed methodology is supported
by software tools that help the different actors, following their different profile in
configuring every required enabler and component.

Chapter “Interoperability Application in e-Health” by Gema Ibafiez-Sdnchez,
Alvaro Fides-Valero, Jose-Luis Bayo-Monton, Margherita Gulino, and Pasquale Pace
is a chapter where the different proposals of the previous chapters, from requirements
elicitation till interoperability achievement, are analysed and deployed in the appli-
cation domain of mobile health. INTER-HEALTH provides a solution that allows
health experts to prevent and reduce obesity, which is one of the main causes of
chronic diseases. Through INTER-IoT, two different platforms (i.e. UniversAAL
and BodyCloud) are able to interoperate to exchange information and so, to provide
aggregated information to health experts. The results show a clear improvement in
the health of the participants compared to those not using it.

viii Preface

Chapter “INTER-LogP: INTER-IoT for Smart Port Transportation” by Pablo
Giménez, Miguel Llop, Joan Meseguer, Fernando Martin, and Antonio Broseta
explores the application of the methodology, including requirements gathering and
implementation of the different components in a complex environment like a port.
The chapter considers the interaction of several IoT platforms with the goal of sharing
data and services, provided by the port authority of Valencia, the NOATUM container
terminal and other IoT platforms provided by third parties. With the data provided,
three different scenarios were defined, and showed the benefits of sharing data in the
port and the logistic sector: access control and traffic, dynamic lighting and wind
gusts detection.

Chapter “IoT Ecosystem Building” by Regel Gonzalez-Usach, Carlos E. Palau,
Miguel A. Llorente, Roel Vossen, Rafael Vano, and Joao Pita analyses the mechanism
to extend the developments of an IoT Open Source project. The chapter describes the
methodology and new actors associated with the interoperability framework defined
in the previous chapters. A detailed description of different projects is associated
with INTER-IoT that validated different enablers, components and methods of the
proposed interoperability approach with the aim of sustainability and extendibility.

Our gratitude is for all chapter contributors, the reviewers, and for the Editorial
Board from Springer for their support and work during the publication process.

Valencia, Spain Carlos E. Palau
Rende (CS), Italy Giancarlo Fortino
Valencia, Spain Miguel Montesinos
Eindhoven, The Netherlands George Exarchakos
Valencia, Spain Pablo Giménez
Lancaster, UK Garik Markarian
Paris, France Valérie Castay
Ljubljana, Slovenia Flavio Fuart
Gdansk, Poland Wiestaw Pawlowski
Nichelino, Italy Marina Mortara
Prague, Czech Republic Alessandro Bassi
EP Son, The Netherlands Frans Gevers
Valencia, Spain Gema Ibafiez-Séanchez

Valencia, Spain Ignacio Huet

Contents

Introduction to Interoperability for Heterogeneous IoT Platforms
Carlos E. Palau, Giancarlo Fortino, Miguel Montesinos,

Pablo Giménez, Garik Markarian, Valérie Castay, Flavio Fuart,
Wiestaw Pawtowski, Marina Mortara, Alessandro Bassi, Frans Gevers,
Gema Ibafiez-Sanchez, Ignacio Huet, and George Exarchakos

INTER-IoT Requirements,
Pablo Giménez, Miguel Llop, Regel Gonzalez-Usach,
and Miguel A. Llorente

INTER-IoT Architecture for Platform Interoperability
Alessandro Bassi, Miguel A. Llorente, Miguel Montesinos,
and Raffaele Gravina

INTER-Layer: A Layered Approach for IoT Platform
Interoperability
Andreu Belsa, Alejandro Fornes-Leal, Clara 1. Valero, Eneko Olivares,
Jara Suérez de Puga, Fernando Boronat, and Flavio Fuart

Semantic Interoperability
Maria Ganzha, Marcin Paprzycki, Wiestaw Pawlowski,

Barttomiej Solarz-Niestuchowski, Pawet Szmeja,

and Katarzyna Wasielewska

INTER-Framework: An Interoperability Framework to Support
IoT Platform Interoperability
Clara I. Valero, Andreu Belsa, Alejandro Fornes-Leal,

Fernando Boronat, Miguel A. Llorente, and Miguel Montesinos

INTER-Meth: A Methodological Approach for the Integration
of Heterogeneous IoT Systems
Giancarlo Fortino, Raffaele Gravina, Wilma Russo, Claudio Savaglio,
Katarzyna Wasielewska, Maria Ganzha, Marcin Paprzycki,

Wiestaw Pawlowski, Pawet Szmeja, and Rafat Tkaczyk

X Contents

Interoperability Applicationine-Health 231
Gema Ibaiiez-Sanchez, Alvaro Fides-Valero, Jose-Luis Bayo-Monton,
Margherita Gulino, and Pasquale Pace

INTER-LogP: INTER-IoT for Smart Port Transportation 257
Pablo Giménez, Miguel Llop, Joan Meseguer, Fernando Martin,
and Antonio Broseta

IoT Ecosystem Building 279
Regel Gonzalez-Usach, Carlos E. Palau, Miguel A. Llorente,
Roel Vossen, Rafael Vafio, and Joao Pita

Introduction to Interoperability for)
Heterogeneous IoT Platforms e

Carlos E. Palau, Giancarlo Fortino, Miguel Montesinos, Pablo Giménez,
Garik Markarian, Valérie Castay, Flavio Fuart, Wiestaw Pawlowski,
Marina Mortara, Alessandro Bassi, Frans Gevers, Gema Ibafiez-Sanchez,
Ignacio Huet, and George Exarchakos

C. E. Palau (X)
DCOM, Universitat Politecnica de Valéncia, Camino de Vera, 46022 Valencia, Spain
e-mail: cpalau@dcom.upv.es

G. Fortino
DIMES, Universita della Calabria, Via Pietro Bucci, 87036 Arcavacata, Rende CS, Italy

M. Montesinos
PRODEVELOP S.L., Carrer del Cronista Carreres, 13, Valencia, Spain

P. Giménez
Fundacién Valenciaport, Avinguda Moll del Turia, s/n, 46024 Valencia, Spain

G. Markarian
RINICOM Ltd, Morecambe Road, Lancaster LA1 2RX, UK

V. Castay
Département des Etudes et Projets, AFT-DEV, 82 rue Cardinet, 75845 Paris, France

F. Fuart
XLAB doo, Pot za Brdom 100, SI-1000 Ljubljana, Slovenia

W. Pawlowski
Faculty of Mathematics, Physics and Informatics, University of Gdarisk, Gdansk, Poland
e-mail: wieslaw.pawlowski@ug.edu.pl

M. Mortara
Dipartimento di Prevenzione, ASL TOS, Via San Francesco d’Assisi, 35., 10042 Nichelino (TO),
Italy

A. Bassi
ABC, Ruska 50, 101 00 Prague, Czech Republic

F. Gevers
Neways Technologies B.V., Science Park Eindhoven 5709, The Netherlands

G. Ibéafiez-Sanchez
ITACA, Universitat Politecnica de Valéncia, Camino de Vera, 46022 Valencia, Spain

1. Huet
CSP Spain, C/ Menorca, 19 - Edificio Aqua, 46023 Valencia, Spain

G. Exarchakos
Department of Electrical Engineering, Eindhoven University of Technology, 5600 MB
Eindhoven, The Netherlands

© Springer Nature Switzerland AG 2021 1
C. E. Palau (eds.), Interoperability of Heterogeneous loT Platforms, Internet of Things,
https://doi.org/10.1007/978-3-030-82446-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82446-4_1&domain=pdf
mailto:cpalau@dcom.upv.es
mailto:wieslaw.pawlowski@ug.edu.pl
https://doi.org/10.1007/978-3-030-82446-4_1

2 C. E. Palau et al.

Abstract INTER-IoT presents a novel layer-oriented solution for interoperability,
to provide interoperability at any layer and across layers among different [oT systems
and platforms. Contrary to a more general global approach, the INTER-IoT layered
approach has a higher potential in order to provide interoperability. It facilitates a
tight bidirectional integration, higher performance, complete modularity, high adapt-
ability and flexibility, and presents increased reliability. This layer-oriented solution
is achieved through INTER-LAYER, several interoperability solutions dedicated to
specific layers. Each interoperability infrastructure layer has a strong coupling with
adjacent layers and provides an interface. Interfaces will be controlled by a meta-level
framework to provide global interoperability. Every interoperability mechanism can
be accessed through an API. The interoperability infrastructure layers can commu-
nicate and interoperate through the interfaces. This cross-layering allows to achieve
a deeper and more complete integration.

1 Introduction

The connection of intelligent devices, equipped with a growing number of electronic
sensors and/or actuators, via the Internet, is known as the Internet of Things (IoT).
With the 10T, every physical and virtual object can be connected to other objects and
to the Internet, creating a fabric of connectivity between things and between humans
and things [1, 2]. The IoT is now widely recognised as the next step of disruptive
digital innovation.

The International Communications Union (ITU) and the European Research Clus-
ter on the Internet of Things (IERC) provide the following definition: IoT is a dynamic
global network infrastructure, with self-configuring capabilities based on standard
and interoperable communication protocols, where physical and virtual things have
identities, physical attributes and virtual personalities and use intelligent interfaces.
All of them seamlessly integrated into the information network [3].

The design of the Internet and specifically the extension of the Internet to the IoT,
rely on the convergence of the infrastructure with software and services. A common
practice is required to think/design cross solutions between software and infrastruc-
ture in order to provide integrated solutions for some of the complex problems in
the current and future systems. In the IoT environment this convergence is evident,
and the continuous evolution generates more and more smart connected objects and
platforms that are embedded with sensors and their respective associated services,
in some cases considering virtualization.

IoT is the network or overlay associations between smart connected objects (phys-
ical and virtual), that are able to exchange information by using an agreed method
(including protocols) and a data schema. IoT deployments are increasing, the same
applies to standards, alliances and interest for homogenization. All of this is giving a
strong push to the IoT domain to be considered as one of the most promising emerg-
ing technologies. As an example, Gartner (one of the world’s leading information
technology research and advisory company) estimates the number of web-connected

Introduction to Interoperability for Heterogeneous IoT Platforms 3

devices will reach 25 billion by 2020. In other words, more devices, appliances, cars,
artefacts, and accessories will be connected and will communicate with each other,
and with other objects, thus bringing amplified connectivity and better supply chain
visibility. The applications of the IoT are numerous i.e. every object could be trans-
formed into a smart object that sends several valuable information to other devices.
As an example, in the port industry IoT could be applied to shipping containers, the
equipment that handles them, the trucks that carry them and, even, the ships that
move them around the globe [4].

According to the European Commission (EC) the IoT represents the next step
towards the digitisation of our society and economy, where objects and people are
interconnected through communication networks, and report about their status and/or
the surrounding environment. Furthermore, IoT can also benefit the European econ-
omy generating economic growth and employment; according to a recent European
Commission study revenues in the EU28 will increase from more than €307 billion
in 2013 to more than €1,181 billion in 2020 [3, 4].

IoT is an emerging area that not only requires development of infrastructure but
also deployment of new services capable of supporting multiple, scalable and inter-
operable applications. The focus is today associated with cloud deployments, virtu-
alizations and the elimination of silos avoiding the existence of application domain
specific developments, AIOTI and EC are pressing in this line. IoT has evolved from
sensor networks and wireless sensor networks to a most clear description and def-
inition referring to objects and the virtual representations of these objects on the
Internet and associated infrastructures. It defines how the physical things and virtual
objects will be connected through the Internet and their interaction, and how they
communicate with other systems and platforms, in order to expose their capabil-
ities and functionalities in terms of services and accessibility through open APIs
and frameworks. IoT is not only linking connected devices by the Internet; it is
also web-enabled data exchange in order to enable systems with more capacities to
become smart and accessible, creating webs of objects and allowing integration of
data, services and components [5].

There are several challenges associated with IoT and its evolution, but one major
issue is related with interoperability [6—8]. IoT is mainly supported by continu-
ous progress in wireless sensor and actuator networks and by manufacturing low
cost and energy efficient hardware for sensor and device communications. However,
heterogeneity of underlying devices and communication technologies and interoper-
ability in different layers, from communication and seamless integration of devices
to interoperability of data generated by the IoT resources, is a challenge for expand-
ing generic IoT solutions to a global scale, with the further aim of avoiding silos
and provide solutions that are application domain agnostic, like those proposed in
INTER-IoT and that will be reflected in the rest of the book [9].

4 C. E. Palau et al.

2 INTER-IoT at a Glance

Achieving interoperability is one of the main objectives of the IoT. It is all about con-
necting things and make them easily accessible just like the Internet today. Broadly
speaking, interoperability can be defined as a measure of the degree to which diverse
systems, organizations, and/or individuals are able to work together to achieve a
common goal” [6]. However, interoperability is a complex thing and there are many
aspects to it. In literature, there exists quite a lot of different classifications of these
aspects of interoperability, often also called levels of interoperability. One of the
most important classification of levels of interoperability for technical systems is
called Levels of Conceptual Interoperability Model (LCIM). It defines six levels
of interoperability: technical, syntactic, semantic, pragmatic, dynamic and concep-
tual interoperability. INTER-IoT follows a similar layered structure, however the
approach has been different in terms of identification of the layers.

INTER-IoT as a whole has been the result of a Research and Innovation Action
under H2020 EC Framework Programme. The project has designed, implemented
and experimented with an open cross-layer framework, an associated methodol-
ogy and tools to enable voluntary interoperability among heterogeneous Internet of
Things (IoT) platforms (all these components will be reflected in the next chap-
ters of this book) [10]. The proposal has allowed effective and efficient develop-
ment of adaptive, smart IoT applications and services, atop different heterogeneous
IoT platforms, spanning single and/or multiple application domains. The project
will be tested in two application domains: transport and logistics in a port environ-
ment and mobile health, additionally it will be validated in a cross-domain use case
supported by the integration in the project of twelve third parties. The INTER-IoT
approach is general-purpose and may be applied to any application domain and across
domains, in which there is a need to interconnect IoT systems already deployed or
add new ones. Additionally, INTER-IoT is one of the seven RIAs and two CSA
composing IoT-EPI, supporting the creation of a European common space for IoT
interoperability [11-13].

INTER-IoT is based on three main building blocks, with different subcomponents
that have been identified and classified in different exploitable products adequate to
the needs of the different stakeholders involved in the project and also addressing
the main needs of the potential customers of the entities participating in INTER-
IoT. This three main building blocks, that will be further explained in the following
chapters of the book are:

e INTER-LAYER: methods and tools for providing interoperability among and
across each layer (virtual gateways/devices, network, middleware, application
services, data and semantics) of IoT platforms. Specifically, we will explore
real/virtual gateways, for device-to-device communication, virtual switches based
on SDN for network-to-network interconnection, super middleware for
middleware-to-middleware integration, service broker for the orchestration of the
service layer and a semantics mediator for data and semantics interoperability [11].

Introduction to Interoperability for Heterogeneous IoT Platforms 5

e INTER-FW: a global framework (based on an interoperable meta-architecture and
meta-data model) for programming and managing interoperable IoT platforms,
including an API to access INTER-LAYER components and allow the creation
of an ecosystem of IoT applications and services. INTER-FW will provide man-
agement functions specifically devoted to the interconnection between layers. The
provided API includes security and privacy features and will support the creation
of a community of users and developers [14].

e INTER-METH: an engineering methodology based on CASE (Computer Aided
Software Engineering) tool for systematically driving the integration and inter-
connection of heterogeneous non-interoperable IoT platforms [15, 16].

INTER-IoT provides an interoperable mediation component (i.e. INTER-LAYER
to enable the discovery and sharing of connected devices across existing and future
IoT platforms for rapid development of cross-platform IoT applications. INTER-
IoT allows flexible and voluntary interoperability at different layers. This layered
approach can be achieved by introducing an incremental deployment of INTER-IoT
functionality across the platform’s space, which will in effect influence the level of
platform collaboration and cooperation with other platforms. INTER-IoT does not
pretend to create a new 1oT platform but an interoperability structure to interconnect
different IoT platforms, devices, applications and other IoT artifacts [11, 17].

Syntactic and semantic interoperability represent the essential interoperability
mechanisms in the future INTER-IoT ecosystem, while organizational/enterprise
interoperability has different structures/layers to enable platform providers to choose
an adequate interoperability model for their business needs. It will be supported by
INTER-FW that may allow the development of new applications and services atop
INTER-LAYER and INTER-METH, to provide a methodology in order to coordinate
interoperability supported by the definition of different interoperability patterns and
a CASE tool [16] (Fig. 1).

INTER-LAYER, which will be addressed in detail in Chap.4, is composed by
five layers, supported by cross-layer components as needed for the interaction of the
different layers:

e Device layer (D2D): At the device level, D2D solution will allow the seamless
inclusion of novel IoT devices and their interoperation with already existing ones.
D2D solution is a modular gateway that supports a vast range of protocols as well
as raw forwarding. It is composed on a physical part that only handles network
access and communication protocols, and a virtual part that handles all other
gateway operations and services (gw virtualization). When connection is lost, the
virtual part remains functional and is capable to answer the API and Middleware
requests. The gateway follows a modular approach to allow the addition of optional
service blocks to adapt to the specific case, allowing a fast growth of smart objects
ecosystems [18, 19].

e Network layer (N2N): N2N solution enables seamless Network-to-Network inter-
operability, allowing transparent smart object mobility, and information routing
support. It will also allow offloading and roaming, what implies the interconnec-
tion of gateways and platforms through the network. Interoperability is achieved

http://dx.doi.org/10.1007/978-3-030-82446-4_4

6 C. E. Palau et al.

Interoperable loT Framework
INTER-FW

e — — —

4——— Intra-layer Integration &
Interoperability

[i))

laT Platform loT Platform

A B
Cross-layer Integration
e >

& Interoperability

Data Data

|
|
|
|
& + & | G Interoperable Layer
Semantics P Semantics | Interfaces
" I | Integration Design &
+ AS2AS b i
|
|
|
||

v

Services \\r/, | Services Implementation
% © Layer Interoperability
Infrasiructure

| |
|
| | |
Networking I * Networking D: Device-to-Device
I | NZN Networking-to-Networking
| | | | AS2AS: AppService-to-AppService
peice +(@B2BL)—! | | i > Device | |DS2DS: Sala&Sem-to-DatadSem
I [| | |
——— |
R Integration Methodology e i |
INTER-METH ——

Fig. 1 INTER-IoT concept and vision

through the creation of a virtual network, using SDN and NFV paradigms, with
the support of the N2N API. The N2N solution will allow the design and imple-
mentation of fully interconnected ecosystems, and solve the smart object mobility
problem [20].

e Middleware layer MW2MW): At the middleware level INTER-IoT solution will
enable seamless resource discovery and management system for the IoT devices in
heterogeneous IoT platforms. Interoperability at the middleware layer is achieved
through the establishment of an abstraction layer and the attachment of IoT plat-
forms to it. Different modules included at this level provide services to manage
the virtual representation of the objects, creating the abstraction layer to access
all their features and information. Those services are accessible through a general
API. Interoperability at this layer will allow a global exploitation of smart objects
in large scale multi-platform IoT systems [21].

e Application and Services layer (AS2AS): INTER-IoT will enable the use of het-
erogeneous services among different IoT platforms. Our approach will allow the
discovery, catalogue, use and even composition of services from different plat-
forms. AS2AS will also provide an API as an integration toolbox to facilitate
the development of new applications that integrate existing heterogeneous IoT
services [22].

e Data and Semantics level (DS2DS): INTER-IoT guarantees a common interpre-
tation of data and information among different IoT platforms and heterogeneous
data sources that typically employ different data formats and ontologies, and are
unable to directly share information among them. INTER-IoT DS2DS approach

Introduction to Interoperability for Heterogeneous IoT Platforms 7

is the first solution that provides universal semantic and syntactic interoperability
among heterogeneous [oT platforms. It is based on a novel approach, a seman-
tic translation of IoT platforms’ ontologies to/from a common Central Ontology
that INTER-IoT employs, instead of direct platform-to-platform translations. This
technique reduces dramatically the number of potential combinations of semantic
translations required for universal semantic interoperability. INTER-IoT seman-
tic interoperability tools work with any vocabulary, or ontology. INTER-IoT own
modular Central Ontology, called GOIoTP, for all IoT platforms, devices and ser-
vices, is available at http://docs.inter-iot.eu/ontology. Also, syntactic translators
allow interoperability between different data formats, such as JSON, XML, and
others. Although the pilot deployments of INTER-IoT realize the Core Informa-
tion Model with Extensions approach to semantic interoperability, INTER-IoT
supports any solutions between its pilot approach and Core Information Model
[23, 24].

e Cross-Layer: INTER-IoT also guarantees non-functional aspects that must be
present across all layers: trust, security, privacy, and quality of service (QoS). As
well, INTER-IoT provides a virtualized version of the solution for each layer, to
offer the possibility of a quick and easy deployment. Security is guaranteed inside
each individual layer, and the external API access is securitized through encrypted
communication, authentication and security tokens. INTER-IoT accomplishes the
new European Data Privacy Law, and in the specific case of e-Health, in which
information is highly sensitive, the Medical Device Regulation law [11, 25].

And INTER-FW which provides the wrapping environment for INTER-LAYER
component coordination and new services development using INTER-API. Open
interoperability delivers on the promise of enabling vendors and developers to inter-
act and interoperate, without interfering with anyone’s ability to compete by deliv-
ering a superior product and experience. In the absence of global IoT standards, the
INTER-IoT project will support and make it easy for any company to design [oT
devices, smart objects, or services and get them to market quickly, and create new
IoT interoperable ecosystems. INTER-IoT may provide a solution to any potential
interoperability problem within the IoT landscape [13] (Fig. 2).

3 INTER-IoT Use Case-Driven

The INTER-IoT approach is use case-driven, implemented and tested in three realistic
large-scale pilots: (i) Port of Valencia transportation and logistics involving hetero-
geneous platforms with 400 smart objects; (ii) an Italian National Health Center for
m-health involving 200 patients, equipped with body sensor networks with wear-
able sensors and mobile smart devices and (iii) a cross domain pilot involving IoT
platforms from different application domains and enlarged by the collaboration of
the solutions associated to the different layers and sublayers from the third parties
that have attended the open call. The use cases are:

http://docs.inter-iot.eu/ontology

8 C. E. Palau et al.

DATA & SEMANTICS

APPLICATION

HIAVT-SSOYD

HL3IN-Y3LNI

Fig. 2 INTER-IoT layered approach

e INTER-LogP: The use of IoT platforms in the ports of the future will enable locat-
ing, monitoring, and handling different transport and cargo equipment and stor-
age areas. This use case will address the need to seamlessly handle IoT platforms
interoperation within port premises: container terminal, transportation companies,
warehouses, road hauliers, port authorities, customs, and outside the port [26].

e INTER-Health: The Decentralized and Mobile Monitoring of Assisted Livings’
Lifestyle use case, aims to develop an integrated IoT system for monitoring
humans’ lifestyle in a decentralized mobile way to prevent chronic diseases.
The aforementioned monitoring process can be decentralized from the health-
care center to the monitored subjects’ homes, and supported in mobility by using
on-body physical activity monitors [27].

o INTER-DOMAIN, composed by IoT platforms from the two application domain
oriented pilots and the IoT platforms and the specific layer-oriented solutions from
different application domains selected in the open call. SENSINACT and OM2M
platforms with Smart Cities orientation have been selected, and contributions from
the different layers may complement INTER-IoT [28, 29].

The project has analyzed requirements provided by the stakeholders of the project
and usability of the provided solutions from the perspective of IoT platform creators,

Introduction to Interoperability for Heterogeneous IoT Platforms 9

IoT platform owners, IoT application programmers and users investigating business
perspectives and creating new business models. These results have allowed to start
INTER-IoT ecosystem and new features and components: methodologies, tools,
protocols and API. The variety and cross availability of the results could be used to
build and integrate services and platforms at different layers according to the needs of
the stakeholders and developers. The availability of more and new data will stimulate
the creation of new opportunities and products.

3.1 INTER-LogP: Interoperability for Transport and
Logistics in a Port Environment

In the ports of the future, port users, equipment and infrastructures will achieve a
zero distance interaction offering more sustainable transport solutions. The use of
IoT platforms will enable locating, monitoring, and handling different transport and
cargo equipment and storage areas. The requirements for a better management of
equipment and resources and the huge complexity of interactions involving large
quantity of simultaneous transport movements around big logistics nodes (e.g., con-
tainer terminals, ports, warehouses and dry ports) originates the need to introduce
IoT platforms with multiple sensors in all logistics elements to control and monitor
the several operations like energy consumption, gas emissions, or machine status.
With these platforms, logistics service providers will be able to monitor and control
in real time all the operations and movements of freight, equipment, vehicles and
drivers on logistics nodes.

The Port of Valencia premises extend for several square kilometres. It is the
largest Mediterranean port in terms of container handling. The port contains five
container terminals (e.g., NOATUM and MSC), and several other facilities (e.g.,
train freight station, warehouses, and parking spaces). The port includes several
kilometres of road within the premises. The Port Authority has several deployed IoT
platforms connected to different HMI and SCADA with different goals (e.g., traffic
management, security, safety and environmental protection, or vessels identification).
Some of these platforms provide selected data to the Port Community System (PCS)
like tamper proof RFID tags and e-seals that are installed on trucks and semi-trailers.
In particular, A Port Community System is an electronic platform that connects
the multiple systems operated by a variety of organisations that make up a seaport,
airport or inland port community. It is shared in the sense that it is set up, organised
and used by firms in the same sector—in this case, a port community. There is an
increasing need that trucks, vehicles and drivers seamlessly interoperate with the
port infrastructures and vice versa. All deployed IoT platforms do not interoperate
as they are based on different standards, and remain isolated with a clear lack of
interoperability at all layers.

NOATUM Container Terminal is one of the biggest container terminals in the
Mediterranean located at the port of Valencia. It is the fifth largest European port in

10 C. E. Palau et al.

container handling, i.e. it deals with more than 50,000 movements per day, produced
by more than 200 container handling units (e.g., cranes, forklifts, RTGs, internally
owned tractors and trailers, etc.); more than 4,000 trucks and other vehicles visit
terminal premises; with more than 10,000 containers involved in these movements.
These values show the complexity of this environment and the opportunities that
the information compiled by the sensors installed on the equipment, trucks and
containers; and the [oT interconnected architectures can bring to the terminal (e.g.,
in terms of optimization in the operations, safety, security or cost and energy savings).
Container terminals like the one managed by the NOATUM have a huge number of
sensors, CPS (Cyber Physical Systems) and smart objects; fixed and mobile deployed
and exchanging information within one or between several platforms deployed in
their premises. The sensors from the internal equipment (i.e., container terminal IoT
ecosystem), constitute 5% of total vehicles moving daily within terminal premises,
and they generate more than 8,000 data units per second. The other 95% of the
vehicles are external trucks and other vehicles, with sensors belonging to other IoT
ecosystems, currently unable to interact with the terminal IoT solution. Additionally,
containers (mainly used to transport controlled temperature cargoes) have their own
IoT architecture, which cannot be accessed by the terminal, when the container
is stored in the yard or moved across it. This lack of interoperability of outdoor
ambulatory IoT things based on heterogeneous architectures represents a big barrier
that INTER-IoT aims at removing.

This use case illustrates the need to seamlessly IoT platforms interoperation within
port premises, e.g., container terminal, transportation companies, warehouses, road
hauliers, port authorities, customs, border protection agencies, and outside the port.
Port IoT ecosystems use to be operated by a large number of stakeholders, and
typically require high security and trust, due to mobility and seamless connectivity
requirements, that currently are not available with the exception of proprietary and
isolated solutions. Introduction of interoperability mechanisms and tools will there-
fore bring about new solutions and services leading to developments of the ports of
the future.

3.1.1 INTER-IoT Approach to INTER-LogP

INTER-LogP will be an INTER-IoT outcome to facilitate interoperability of hetero-
geneous Port Transport and Logistics-oriented IoT platforms already in place, i.e.,
VPF and NOATUM and other components that will be brought to the use case in
order to achieve the INTER-IoT proposed goals, e.g., 3WSN from UPV and other
IoT platforms from companies operating in the Port managed premises.

The Port Authority of Valencia will provide its own IoT platform ecosystem to the
project, including (i) the climate and weather forecast infrastructures, which monitor
the environmental conditions in real-time and maintain historical data; (ii) beacon
data acquisition system, which monitors and controls whenever necessary all the
buoys distributed on the sea side; (iii) PCS-IoT platform, developed to cover different
transportation and logistics components throughout the port premises, integrates an

Introduction to Interoperability for Heterogeneous IoT Platforms 11

internal communication network and connects (more than 400) operating companies
in the port.

NOATUM provides the SEAMS platform to be included in the INTER-LogP use
case. SEAMS is an outcome from the Sea Terminals action (Smart, Energy Efficient
and Adaptive Port Terminals) co-funded by the Trans-European Transport Network
(TEN-T). It is an operational tool based on the reception of real-time energy and
operative data coming from the whole machinery and vehicle fleets of NOATUM
Container Terminal Valencia (NCTV). SEAMS integrates the whole set of machines
(including Rubber Tyre Gantry cranes (RTG), Ship-To-Shore cranes (STS), Terminal
Tractors (TT), Reach Stackers (RS) and Empty Container Handlers (ECH)) and
vehicles deployed and available in the terminal premises.

INTER-IoT will help to expand the possibilities offered by not only SEAMS and
the sensors installed on its own container terminal vehicles and container handling
equipment units, but also sensors available on third party equipment (i.e., reefer
containers) and vehicles (i.e., external trucks picking up and delivering containers).
Finally, it will allow installation of sensors on legacy equipment that does not have
them available. Moreover, INTER-IoT will allow to seamlessly connecting the con-
tainer terminal IoT ecosystem with other ecosystems owned by other parties, e.g., the
port authority, road hauliers, the individual trucks, vehicles, containers and vessels
through intelligent objects offered by different vendors, some of them managed by
the PCS [30].

On the other hand, UPV provided I3WSN, semantic IoT methodology and plat-
form deployed in application domains like factories, automotive and defence. This
generic architecture was developed within a large Spanish National project FASyS
and has been extended to be used in different areas like port transportation and
m-health. The framework provides interoperability at different layers and includes
reliability, privacy and security by design. Additionally, devices from the partners
will be added to the trials and devices from the users (e.g., truck drivers or terminal
operators) like smart phones will be added to the system following BYOD (Bring
Your Own Device) philosophy, allowing the integration of COTS devices in the large
scale trials.

Although the different platforms that the transport and logistics use case integrates
(in particular, IoT-PCS from VPF, NOATUM TOS, I3WSN UPV and the IoT plat-
forms from other stakeholders) share some characteristics, they have different aims
(i.e., focused on the particular benefits of the administrator/operator and use differ-
ent technologies). All of them gather data, using different M2M and P2M protocols;
some of them are cloud-based and others will be, but the most important thing is
that they lack interoperability in terms of the five identified layers. There is a poten-
tial integration using one of the platforms (i.e., [oT-PCS) as a matrix architecture;
however interoperability and integration will not profit the power of the proposed
approach neither the capabilities of interoperable architectures rather than intercon-
nected architectures. The use case, mainly focused in the transportation of containers,
as it is the most sensorized in port transportation (especially reefer and International
Maritime Organization—IMO safe containers), may improve efficiency, security and
benefits to the whole transport chain. Additionally, INTER-IoT will provide the pos-

12 C. E. Palau et al.

Blood pressure Chimeter Weight

E@ Medical Devices

Fig. 3 INTER-IoT interconnection for m-Health (INTER-Health)

sibility to interact with other IoT platforms available in the port surroundings like
Valencia City FIWARE infrastructure (i.e., VLCi) that is an open platform that will
provide contextual information for different services and interactions at data and
services layers [31-33] (Fig. 3).

3.2 INTER-Health: Interoperability for Mobile Health for
Chronic Patients

The Decentralized and Mobile Monitoring of Assisted Livings’ Lifestyle use case,
aims at developing an integrated IoT system for monitoring humans’ lifestyle in a
decentralized way and in mobility, to prevent health issues mainly resulting from
food and physical activity disorders. Users that attend nutritional out-patient care
centres are healthy subjects with different risk degrees (normal weight, overweight,
obese) that could develop chronic diseases. Only the obese (in case of second and
third level obesity) need, at times, hospital care and get into a clinical and therapeutic
route. The medical environment in which the pilot will be developed and deployed
is the Dept. of Prevention/Hygiene Nutrition Unit at ASLTOS.

Introduction to Interoperability for Heterogeneous IoT Platforms 13

The use case will focus in the fact that in main chronic diseases, such as car-
diovascular diseases, stroke, cancer, chronic respiratory diseases and diabetes, there
are common and modifiable risk factors that are the cause of the majority of deaths
(and of new diseases). Between the common and modifiable risk factors there are
wrong lifestyles such as improper and hyper caloric diet and, in particular, the lack
of physical activity. Every year in the world (World Health Organization and others,
2013): 2.8 million people die for obesity or overweight; 2.6 million people die for
high cholesterol levels; 7.5 million people die for hypertension; 3.2 million people
die for physical inactivity. These wrong lifestyles are expressed through the inter-
mediate risk factors of raised blood pressure, raised glucose levels, abnormal blood
lipids, particularly Low Density Lipoprotein (LDL cholesterol) and obesity (body
mass index superior to 30kg/m2).

According to the reference standard medical protocol for the global prevention
and management of obesity, written by the World Health Organization, in order
to assess the health status (underweight, normal weight, overweight, obesity) of
the subject (of a given age) during the visit at the healthcare center, objective and
subjective measurements should be collected (and/or computed) by a health-care
team (doctor, biologist nutritionist, dietician, etc.). The objective measurements are:
weight, height, body mass index (enabling diagnosis of overweight and obesity),
blood pressure or waist circumference. The subjective measurements reported by the
subject, are collected through computerized questionnaires, and concern the eating
habits: quality and quantity of food consumed daily and weekly, daily consumption
of main meals (breakfast, lunch, dinner and snacks) and the practice of physical
activity (quality and quantity of physical activity daily and weekly). The physical
activity degree is detected subjectively during the first visit and could be objectively
monitored through wearable monitoring devices. On the basis of these measurements,
the caloric needs are automatically calculated, and the diet of the subject is defined.
From this point forward, the subject must be monitored periodically (for example,
every three months) for a period of at least one year. Usually monitoring is carried
out at the health-care center, where the objective and subjective measurements are
cyclically repeated. Based on the results, and depending on the health status reached
by the subject (improved or worsened), the possibility of redefining his diet and his
physical activity is analyzed.

By exploiting an integrated IoT environment, the aforementioned monitoring pro-
cess can be decentralized from the healthcare center to the monitored subjects” homes,
and supported in mobility by using on-body physical activity monitors. Specifically,
the system will be created by using a new IoT platform, named INTER-Health,
obtained by integrating two already-existing heterogeneous, non-interoperable IoT
platforms for e-Health according to the approach proposed in the INTER-IoT project,
based on the INTER-FW and its associated methodology INTER-METH: (i) Uni-
versAAL, developed by UPV, and (ii) BodyCloud [34], developed by UNICAL.

14 C.E. Palau et al.
3.2.1 INTER-IoT Approach to INTER-Health

There is a need of integrating different IoT platforms as proposed in the INTER-
Health use case. The effective and efficient integration of heterogeneous e-Health IoT
Platforms will provide an appropriate answer to the challenges described in INTER-
IoT proposal. The two platforms considered are UniversAAL and BodyCloud, and
the result of the integration will allow developing a novel IoT m-Health system for
Lifestyle Monitoring [27].

This flexibility allows deploying universAAL-based solutions in multiple config-
urations, such as local-only nodes, mobile nodes connected to server instances, or
non-universAAL nodes connecting to a multi-tenant server. Communication between
applications and/or sensors happens through three different buses. Messages and
members are always described semantically using the domain ontologies at hand: (i)
Context bus—An event-based bus for sharing contextual information from context
publishers to context subscribers; (ii) Service bus—A request-based bus for on-
demand execution and information retrieval from service callers to service providers
and (iii) User Interface bus—A centrally-managed bus that allows applications to
define abstract interfaces to be rendered by different User Interface (UI) modalities.
In each bus, semantic reasoning is used to match the transferred messages to the
appropriate destination. This way, applications and sensors only need to describe
what they provide and what they require from others. There is no need to specify
recipients, connections nor addresses explicitly [30].

BodyCloud is a SaaS architecture that supports the storage and management of
body sensor data streams and the processing (online and offline analysis) of the
stored data using software services hosted in the Cloud. In particular, BodyCloud
endeavours to support several cross-disciplinary applications and specialized pro-
cessing tasks. It enables large-scale data sharing and collaborations among users and
applications in the Cloud, and delivers Cloud services via sensor-rich mobile devices.
BodyCloud also offers decision support services to take further actions based on the
analyzed BSN data [34].

The BodyCloud approach is centered around four main decentralized components
(or sides), namely Body, Cloud, Viewer, Analyst: (i) Body-side is the component,
currently based on the SPINE Android, that monitors an assisted living through wear-
able sensors and stores the collected data in the Cloud by means of a mobile device;
(i1) Cloud-side is the component, based on SaaS paradigm, being the first general-
purpose software engineering approach for Cloud-assisted community BSNs; (iii)
Viewer-side is the Web browser-enabled component able to visualize data analysis
through advanced graphical reporting; and (iv) e Analyst-side is the component that
supports the development of BodyCloud applications.

The two platforms, UniversAAL and BodyCloud, share some high-level charac-
teristics while differ in objectives and technology. Specifically, they are both e-Health
platforms, based on Bluetooth technology to interact with measurement devices, and
based on Cloud infrastructures to enable data storing, off-line analysis, and data visu-
alization. However, they have different specific objectives and are not interoperable
from a technological point of view (at each layer and at the global level). Their spe-

Introduction to Interoperability for Heterogeneous IoT Platforms 15

- T iy
ECG Meter Blood pressure Owimeter Weight

<+ Medical Devices

Fig. 4 INTER-IoT interconnection for m-Health (INTER-Health)

cific objectives are complementary: UniversAAL is focused mainly on non-mobile
remote monitoring based on non-wearable measurement devices, whereas Body-
Cloud provides monitoring of mobile subjects through wearable devices organized
as body sensor networks. Thus, their integration will produce a full-fledged m-Health
integrated platform on top of which multitudes of m-Health services could be devel-
oped and furnished. The use case will be fully deployable atop the integration of
UniversAAL and BodyCloud: (i) the automated monitoring at the health-care center
and the decentralization of the monitoring at the patients’ homes will be supported
by UniversAAL remote services; (ii) the monitoring of mobile assisted livings would
be enabled by the BodyCloud mobile services; (iii) new cross-platform services will
be developed for enabling complete analysis of the measurement streams coming
from assisted livings [28, 35] (Fig. 4).

4 INTER-IoT Progress Beyond the State of Art

The overall concept of the INTER-IoT project targets a full-fledged robust approach
for seamless integration of different IoT platforms within and across different appli-

16 C. E. Palau et al.

cation domains. Interoperability will be achieved at different layers, depending on
the requirements of the specific scenario or the use case. The main outcomes of the
project will be infrastructures for layer-oriented interoperability and a reference inter-
operable meta-architecture; an interoperability framework and an API along with an
engineering methodology driven by a toolbox to be used by third parties to integrate
heterogeneous IoT platforms and thus implement interoperable IoT applications.
INTER-IoT will focus on two application domains (m-health and port transportation
and logistics) and on their integration. The project outcome will optimize different
operations in these two domains and in their integration. However, the INTER-IoT
approach will be easily reused in any application domain, in which there is a need
to interconnect already deployed (heterogeneous) IoT platforms. Or even in cross
application domains, where IoT platforms and smart objects from different applica-
tion domains will require co-operation or interoperability between them. Based on
these principles, INTER-IoT targets the following innovations [5, 6].

4.1 Global Platform Interoperability

Global interoperability of hardware/software infrastructures is usually based on stan-
dards. However, as IoT is an evolving technology without specific central technical
coordination and control, it is foreseen that many solutions and (pseudo) standards
will be developed and proposed in the coming years. This will lead to massive hetero-
geneity. Indeed, currently many different (quasi) standards do exist in the IoT arena
addressing: communications, hardware, software, and data. However, they mainly
refer to specific IoT objects (sensors, sensor networks, RFID, nanocomputers, etc.)
or contexts (smart grid, health-care, logistics, etc.). From the communications view-
point, standards protocols at different level (MAC, network, application) are avail-
able: IEEE 802.11—WiFi, IEEE 802.16—WiMax, IEEE 802.15.4—LR-WPAN,
2G/3G/4G—Mobile Communication, Zigbee, Bluetooth, ANT+, NFC, M2M com-
munications (M-Bus, WM-Bus, UWB, ModBus, Z-Wave), M2M ETSI, IPv4, IPv6,
6LowPAN, TCP, UDP, ISO/IEEE 11073 for medical devices, CoAP, HTTP, MQTT,
XMPP, DDS, AMQP, Websocket, etc. From the hardware perspective, the techno-
logical state of the art is also heterogeneous: Arduino, BeagleBoard, TelosB sen-
sor mote, RaspberryPI, pcDuino, Cubieboard, Libelium sensor/gateway, etc. The
software realm is even richer including many base software technology (TinyOS,
Contiki, FreeRTOS, eCos, Android, Ubuntu, Java, WebRTC, REST, WAMP, Django,
etc.) and middleware solutions (FedNet, Ubicomp, SmartProducts, ACOSO, SkyNet,
etc.), including cloud computing-based infrastructures (Amazon EC2, Google App
Engine, Xively, MS Windows Azure). Also the data (and semantics) level presents
high heterogeneity: XML (and XML-based like WSDL), JSON, UDCAP, uCode
Relational Model, RDF, OWL, W3C SSN (Semantic Sensor Network) [4, 11].

It is worth noting that, when we consider a complete IoT platform, the complex-
ity of technologies used to build up the platform further arises as each defined layer
(device, networking, middleware, application service, data and semantics) exploits

Introduction to Interoperability for Heterogeneous IoT Platforms 17

specific solutions that need to be holistically adapted to form the final platform.
For instance, several available platforms, each of which was designed and deployed
to fulfil quasi similar goals but exploiting heterogeneous IoT technological solu-
tions, or providing any (or even limited) interoperability [36]. Thus, it is critical to
provide bottom-up “voluntary” approaches able to integrate, interconnect, merge,
heterogeneous IoT platforms to build up extreme-scale interoperable ecosystems on
top of which large-scale applications can be designed, implemented, executed and
managed [37].

INTER-IoT will provide the first full-fledged methodological and technologi-
cal suite to completely address the fundamental issue of “voluntary interoperabil-
ity”. The suite will be composed of three main building blocks: (i) Layer-oriented
infrastructures to adapt heterogeneous peer layers (device-to-device, networking-
to-networking, middleware-to-middleware, application services-to-application ser-
vices, data-to-data, and semantics-to-semantics); (ii) Interoperable open framework
to program and manage integrated IoT platforms; (iii) Engineering methodology
and tools to drive the integration process of heterogeneous IoT platforms. By using
INTER-IoT, IoT heterogeneity will be turned from the most limiting factor for
IoT technology diffusion to its greatest advantage due to the exploitation of spe-
cific benefits and characteristics derived from multiple heterogeneous IoT platforms
[15, 38, 39].

4.2 Gateway and Device Interoperability

As sensors, actuators and smart devices become smaller, more versatile, lower cost
and more power efficient, they are being deployed in greater numbers, either as
special-purpose devices or embedded into other products. The unification and con-
vergence of the vast number of platforms already deployed, the accessibility (API
and interfaces) of the platform to app developers, requires interoperability. Smart-
phones are key components in Device-to-Device (D2D) communication and interop-
erability, however there are many other types of devices that are currently deployed,
both independently (e.g. smart watches and other wearables) and as part of other
devices and platforms (e.g. consumer electronics or Cyber-Physical Systems). Dif-
ferent communication protocols are used at device level. Here, Cellular and WiFi
that are ubiquitous; they are evolving to support higher bandwidths and lower cost.
Bluetooth is also becoming lower cost. New communication technologies like Blue-
tooth low energy (Bluetooth LE) and NFC are opening new possibilities for [oT. How-
ever, also traditional communication protocols and mechanisms for sensors, actua-
tors and smart objects have to be considered (e.g. ZigBee, ISA100, WirelessHart),
in addition to other non-standard proprietary protocols developed by individual ven-
dors, or even to new emerging protocols, e.g. [40, 41]. Different classes of IoT objects
need different communication supports: e.g. ‘deterministic’ communication proto-
cols (MAC and Routing layers) are not possible using current Internet protocols, but
may be needed by some application. Standardization on these topics is just starting

18 C. E. Palau et al.

(e.g., detnet working group in IETF). Yet, deterministic communications will hardly
meet the interoperability requirements of all IoT objects. Typically device-level inter-
connection of IoT architectures has been performed using gateway-based solutions.
FP7 Butler project proposed a device-centric architecture where a SmartGateway
allows interconnection between smart objects (sensors, actuators, gateways) using
IPv6 as communication protocol. Different approaches have been developed to inte-
grate and interoperate devices in IoT architectures. Basic devices (e.g. sensors, tags,
actuators) are virtualized and can be composed in more complex smart systems. The
idea has been to create virtual objects, allowing object composition, considering a
virtual object as a counterpart of existing smart objects [19, 42, 43].

INTER-IoT will provide fundamental benefits and competitiveness improvements
in the way IoT devices will communicate with each other and will interface with
different IoT platforms and subsystems. One of the proposed progresses regarding
D2D interaction is to complement standardized communication protocols (which
are mostly deterministic and reactive) with an ability for objects to make sense of
their surroundings in order to understand how to best interplay with their neigh-
bours. This requires new ‘proactive’ and ‘predictive’ communications capabilities,
whereby a node can determine its communication requirements and those of its
neighbours well before communication is required. It has recently been proven that
machine learning capabilities can run even on small sensors (with as little as 20
KB of RAM). INTER-IoT will develop an interoperable communication layer, even
based on lightweight machine learning that also accommodate for opportunistic com-
munications among heterogeneous nodes/devices, based on prediction mechanisms
[21, 44].

4.3 Networking Mobility and Interoperability

IoT products will encompass different data communication scenarios. Some may
involve sensors that send small data packets infrequently and do not prioritize timely
delivery. Others may involve storage in order to sustain periods when the communi-
cation link is down (e.g. Delay Tolerant Networks). Others may need high bandwidth
but be able to accept high latency. And others may need high quality, high bandwidth,
and low latency. Large amounts of traffic with relatively short packet sizes will require
sophisticated traffic management. More efficient protocols can help reduce overhead
but may present challenges to system integrity, reliability and scalability. Interface
standardization is desirable so that IoT objects can communicate quickly and effi-
ciently, and allow mobility between interoperable IoT platforms. IoT objects will
need a way to quickly and easily discover each other and learn their neighbour’s
capabilities [28, 45].

At networking and communications layer different protocols can be used like
6LowPAN, TCP/HTTP, UDP/CoAP. Communication between real objects and the
gateway can be based on universal plug and play (UPnP) or DLNA. Use of buses based
on MQTT protocol can also be used to implement asynchronous communications

Introduction to Interoperability for Heterogeneous IoT Platforms 19

between entities. The most promoted networking protocol in IoT environments is
IPv6 and its version for constrained devices 6LoWPAN, even though its adoption is
slow, and without global adoption it will be impossible for IoT to proliferate. [Pv6
provides the following benefits to IoT configurations: (i) [Pv6 auto-configuration; (ii)
Scalable address space (sufficiently large for the enormous numbers of IoT objects
envisioned); (iii) Redefined headers that enable header compression formats; (iv)
Easy control of the system of things: (v) Open/Standard communications; (vi) [IPv6 to
IPv4 transition methods; (vii) IPv6 over constrained node networks (6LO, 6LoWPAN
[11, 46].

IoT platforms have usually mechanisms for integrating with external systems, but
they are all based on specific point to point connections, usually with legacy systems
in the area of interest of the [oT platform (city, neighbourhood, factory, hospital, port,
house, etc.). The integration between IoT platforms will allow tracking the behaviour
of these objects when they move outside the intrinsic area of interest and get into the
area of interest of another IoT platform. The pub/sub mechanism usually available in
the communication buses at the core of these IoT platforms and the possible object
context sharing allow a powerful and easy way to track the behaviour of these objects
among different IoTs scope areas.

INTER-IoT will provide support for as many networks as possible, including as
many networks as possible in the INTER-FW definition. Main contributions of the
project will be focused to multihoming capabilities among the different IoT objects
in order to provide network offloading connectivity and seamless mobility between
different IoT platforms of moving objects. INTER-IoT will use SDN components
to configure interconnection at network level and also will use ICN/CCN as support
for interoperability and roaming of smart objects between different platforms of the
same ecosystem while keeping secure connectivity and also guaranteed quality of
service. Resource management and scalability so as reliability, trust, privacy and
security will be non-functional requirements that will be addressed by the project to
provide optimal interoperability at network layer [6, 30, 47].

4.4 Middleware Platform Interoperability

Middleware, widely used in conventional distributed systems, is a fundamental tool
for the design and implementation of both IoT devices and IoT systems. They pro-
vide general and specific abstractions (e.g., object computation model, inter-object
communication, sensory/actuation interfaces, discovery service, knowledge manage-
ment), as well as development and deployment tools, through which IoT devices,
IoT systems and their related applications can be easily built up. Indeed, middle-
ware (i) enable connectivity for huge numbers of diverse components comprised at
Device Layer, (ii) realize their seamless interoperability at Networking Layer, and
(iii) ensure operational transparency at Application Service Layer. In such a way,
heterogeneous, often complex and already existing IoT devices and IoT systems,
belonging to different application domains and not originally designed to be con-

20 C. E. Palau et al.

nected, can be easily integrated, effectively managed and jointly exploited. It follows
that the role of middleware within the cyberphysical, heterogeneous, large scale and
interconnected IoT scenario is even more crucial than within conventional distributed
systems. Over the years, many IoT middleware have been proposed, so much so that
only in [11, 34] more than 70 contributions have been surveyed and compared. The
best way to analyse such plethora of middleware, regardless of the specific detail
or technology, is to build up comparison frameworks around well-defined criteria to
effectively highlight their salient differences and similarities.

In very few words, LinkSmart is service-based middleware for ambient intelli-
gence (Aml) systems, supporting devices communication, virtualization, dynamic
reconfiguration, self-configuration, energy optimization and security by means
of WebService-based mechanisms enriched by semantic resolution. UbiROAD is
semantic, context-aware, self-adaptive agent-based middleware for smart road envi-
ronments, aiming at collecting, analysing and mining real time data from in-car
and roadside heterogeneous devices. ACOSO is an agent-oriented middleware with
a related methodology fully supporting the development (from the modelling to
the implementation phase), management and deployment of smart objects and IoT
systems, as well as their integration with the Cloud. IMPReSS, finally, is a mid-
dleware conceived for the rapid development of context-aware, adaptive and real-
time monitoring applications to control and optimize energy usage in smart cities
[2, 39, 48, 49].

In particular, INTER-IoT will focus on defining component-based methods for
middleware interoperability/integration; in particular, we focus on discovery, man-
agement and high-level communication of IoT devices in heterogeneous IoT plat-
forms. We will define two main approaches: (i) definition of overlay middleware
components able to couple the middleware components of the heterogeneous IoT
platforms; (ii) virtualization of the heterogeneous middleware components. In the
first approach, we will design overlay middle components such as mediators and
brokers [6].

4.5 Semantic Interoperability

Semantic interoperability can be conceptualized as an approach to facilitate “com-
bining” multiple IoT platforms. The simplest case, of combining two IoT plat-
forms, could be addressed by developing a one-to-one translator (a “gateway”)
to allow*semantic understanding” between them. However, this approach does not
scale, as for every subsequent entity joining an assembly of N platforms. Thus, N
translators would have to be created. The two main approaches to avoid this problem,
and deal with semantic interoperability are: (i) common communication standards;
(i1) ontology and semantic data processing [50]. Developing a common communi-
cation standard, is tried in the travel domain with the OTA message specification a
standard consisting on a set of (XML-demarcated) messages; or in the healthcare
domain (and thus related to the INTER-Health use case) with OpenEHR, which is an

Introduction to Interoperability for Heterogeneous IoT Platforms 21

open domain-driven platform for developing flexible e-health systems. Here, multiple
projects strive to establish interoperability between already known standards and the
OpenEHR, e.g. establishing semantic interoperability of the ISO EN 13606 and the
OpenEHR archetypes. Similarly the Think!EHR Platform (health data platform based
on vendor-neutral open data standards designed for real-time, transactional health
data storage, query, retrieve and exchange); aims at establishing interoperability of
the OpenEHR and the HL'7 standard (a framework for the exchange, integration, shar-
ing, and retrieval of electronic health information). Interestingly, development of the
Think!EHR Platform had to deal with the data standards problem caused by existence
of HL7 RIMv3, ISO13606, and OpenEHR standards. While it is possible to envision
an approach similar to this, applied to individual domains, it is not likely to be easily
generalizable to support interactions between domains. Therefore, approaches based
on ontologies and semantic data processing will be used in the project [51, 52].
INTER-IoT approach will be based on development of a generic ontology of an IoT
Platform (GOIoTP). The GOIoTP will be used as the centerpiece for establishing
platform interoperability (allowing for, among others, data interoperability, message
translation, etc.). It should be stressed that, state-of-the-art ontologies of the IoT, will
constitute the starting point for construction of the GOIoTP, needed in our project.
The proposed approach will require, (i) ontology matching, (ii) merging, noting that
ontology merging is often reduced to ontology matching, as well as (iii) techniques
for establishing semantic distance (needed for ontology matching). Observing that
this approach allows “understanding” and adaptability (handled through ontology
adaptation) of heterogeneous data [39, 53, 54].

The creation of GOIoTP in INTER-IoT, combined with the state-of-the-art
approaches to ontology matching/merging will allow development of a comprehen-
sive support for facilitation of semantic interoperability between IoT platforms. The
resulting approach, based on conducted research, will consist both of the methods
and supporting tools and will include, among others, methods for:

e Combining two (or more) [oT platforms with explicitly defined ontologies. Here,
among others, the following issues will be researched: (i) bringing multiple ontolo-
gies to acommon format/language (for example, transforming XML into RDF and
further transforming it into OWL-demarcated ontology using XLST), (ii) ontology
matching, to allow for (iii) ontology merging into the extended GOIoTP (as the
top-level ontology).

e Combining two (or more) [oT platforms with explicitly defined ontologies. Here,
among others, the following issues will be researched: (i) bringing multiple ontolo-
gies to acommon format/language (for example, transforming XML into RDF and
further transforming it into OWL-demarcated ontology using XL.ST), (ii) ontology
matching, to allow for (iii) ontology merging into the extended GOIoTP (as the
top-level ontology) [55].

e Joining an “incoming” IoT platform (with an explicitly defined ontology) to an
existing federation of IoT platforms (with an already defined common ontology).
Here the process would be somewhat a simplified version of the previous method
as only two ontologies will be integrated.

22 C. E. Palau et al.

e Dealing with IoT platforms without an explicitly defined ontology / taxonomy /
etc. Here, appropriate set of tools will be adapted to help instantiate an ontology
for the multi-IoT-platform under construction. Specifically, the ontology will be
built on the basis of information contained in one, or more: (i) definition of used
data; (ii) structure of the database(s); (iii) queries issued on the database(s); and
(iv) exchanged messages [54].

4.6 Cross-Layer Approach for Interoperability

INTER-IoT specifically aims at creating cross-layer interoperability and integration
between heterogeneous IoT platforms. Cross-layer approaches are fundamental to
made interoperable/integrate the whole layer stack (device, networking, middleware,
application service, data and semantics) of IoT platforms. Cross layering will be
therefore based on the outcomes of the previous points.

Moreover, important requirements and features such as Quality of Service (QoS),
Quality of Experience (QoE), Security, Privacy, Trust and Reliability, require to be
addressed at each layer with different mechanisms. Such transversal approach allows
retaining the benefits of a layered architecture (e.g., modularity, interoperability,
etc.) but adding, at the same time, flexibility (e.g., optimization, tunable design,
etc.) to those components that require it. Considering the heterogeneity and spread
of IoT devices and IoT applications, it is straightforward that such design choice
is more than suitable to properly support (i) dynamic QoS and QoE (the former,
basically aiming at splitting traffic up into priority classes and trying to guarantee
a particular performance metric, the latter at combining more subjective aspects
related to user perception into evaluating a service); (ii) novel security and privacy
techniques (that consider the cyber-physical nature of IoT devices as well as of the
IoT application contexts); extended trust models (in which unconventional actors,
like social networks, play an important role) and (iv) enhanced reliability mechanisms
(to deal with failure of resource-limited IoT device, lack of coverage from access
networks in some region, rapid application context switches, etc.) [11, 56].

5 Conclusions

In this chapter we have presented the INTER-IoT systemic approach, which is being
created within the INTER-IoT project together with necessary software tools and
enduser applications. It will provide ways of overcoming interoperability prob-
lems between heterogeneous [oT systems across the communication/software stack,
including: devices, networks, middleware, application services, data/semantics.
Henceforth, reuse and integration of existing and future (even standard) IoT sys-
tems will be facilitated and made possible to obtain interoperable ecosystems of IoT
platforms.

Introduction to Interoperability for Heterogeneous IoT Platforms 23

As the ecosystem of interoperable devices and services expands, so will increase
the value of building new devices for and applications working within this ecosystem.
This emerging ecosystem is not owned by any business or entity, but rather it exists to
enable many entities to pool their resources together to create larger opportunities for
all. Open interoperability delivers on the promise of open source software, enabling
vendors and developers to interact and interoperate, without interfering with anyone’s
ability to compete by delivering a superior product and experience. In the absence
of global 10T standards, the INTER-IoT project and results will support and make
it easy for any company to design IoT devices, smart object, or services and get
them to market quickly, to a wider client-base, and to create new IoT interoperable
ecosystems. In the long term, ability for multiple applications to connect to and
interact with heterogeneous sensors, actuators, and controllers, thus making them
interoperable, will become a huge enabler for new products and services.

References

1. Fortino, G., Savaglio, C., Spezzano, G., Zhou, M.C.: Internet of things as system of systems:
areview of methodologies, frameworks, platforms, and tools. IEEE Trans. Syst. Man Cybern.
Syst. 51(1), 223-236 (2021)

2. Savaglio, C., Ganzha, M., Paprzycki, M., Badica, C., Ivanovic, M., Fortino, G.: Agent-based
Internet of Things: state-of-the-art and research challenges. Future Gener. Comput. Syst. 102,
1038-1053 (2020)

3. Vermesan, O., Friess, P. (eds.): Digitising the Industry Internet of Things Connecting the Phys-
ical, Digital and Virtual Worlds. Riverpublishers (2016)

4. Vermesan, O., Friess, P. (eds.): D3.2. Methods for Interoperability and Integration, vol. 2.
INTER-IoT H2020 project, October 2017. https://inter-iot.eu/deliverables

5. Broring, A., Zappa, A., Vermesan, O., Frimling, K., Zaslavsky, A., Gonzalez-Usach, R.,
Szmeja, P., Palau, C., Jacoby, M., Zarko, I.P., Sour-sos, S., Schmitt, C., Plociennik, M., Krco, S.,
Georgoulas, S., Larizgoitia, 1., Gligoric, N., Garcia-Castro, R., Serena, F., Orav, V.: Advancing
IoT Platform Interoperability. River Publishers, The Nederlands (2018)

6. Gravina, R., Palau, C.E., Manso, M., Liotta, A., Fortino, G. (eds.): Integration, Interconnection,
and Interoperability of IoT Systems. Internet of Things. Springer International Publishing
(2018)

7. Fortino, G., Palau, C.E., Guerrieri, A., Cuppens, N., Cuppens, F., Chaouchi, H., Gabillon, A.
(eds.): Interoperability, Safety and Security in loT—Third International Conference, InterloT
2017, and Fourth International Conference, SaSelot 2017, Valencia, Spain, November 6-7,
2017, Proceedings. Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, vol. 242. Springer (2018)

8. Fortino, G., Garro, A., Russo, W.: Achieving mobile agent systems interoperability through
software layering. Inf. Softw. Technol. 50(4), 322-341 (2008)

9. Fortino, G., Garro, A., Russo, W.: D4.5. Interoperable IoT Framework API and tools vI.
INTER-IoT H2020 project, October 2017. https://inter-iot.eu/deliverables

10. Fortino, G., Savaglio, C., Palau, C.E., de Puga, J.S., Ghanza, M., Paprzycki, M., Montesinos,
M., Liotta, A., Llop, M.: Towards multi-layer interoperability of heterogeneous IoT platforms:
the inter-IoT approach. Internet of Things 199-232 (2018)

11. Fortino, G., Savaglio, C., Palau, C.E., de Puga, J.S., Ghanza, M., Paprzycki, M., Montesinos,
M., Liotta, A., Llop, M.: D3.3. Methods for Interoperability and Integration Final. INTER-IoT
H2020 project, June 2018. https://inter-iot.eu/deliverables

https://inter-iot.eu/deliverables
https://inter-iot.eu/deliverables
https://inter-iot.eu/deliverables

24

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

C. E. Palau et al.

Fortino, G., Savaglio, C., Palau, C.E., de Puga, J.S., Ghanza, M., Paprzycki, M., Montesinos,
M., Liotta, A., Llop, M.: D4.2. Final Reference IoT Platform Meta-architecture and Meta-data
Model. INTER-IoT H2020 project, January 2018. https://inter-iot.eu/deliverables

Fortino, G., Savaglio, C., Palau, C.E., de Puga, J.S., Ghanza, M., Paprzycki, M., Montesinos,
M., Liotta, A., Llop, M.: D4.6. Interoperable IoT Framework API and Tools, Model and Engine
v2. INTER-IoT H2020 project, June 2018. https://inter-iot.eu/deliverables

Fortino, G., Savaglio, C., Palau, C.E., de Puga, J.S., Ghanza, M., Paprzycki, M., Montesinos,
M., Liotta, A., Llop, M.: D4.3. Initial Reference IoT Platform Meta-Architecture and Meta
Data Model Interoperable IoT framework Model and Engine v1. INTER-IoT H2020 project,
October 2017. https://inter-iot.eu/deliverables

Fortino, G., Savaglio, C., Palau, C.E., de Puga, J.S., Ghanza, M., Paprzycki, M., Montesinos,
M., Liotta, A., Llop, M.: D5.1. Design Patterns for Interoperable IoT Systems. INTER-IoT
H2020 project, December 2017. https://inter-iot.eu/deliverables

Fortino, G., Savaglio, C., Palau, C.E., de Puga, J.S., Ghanza, M., Paprzycki, M., Montesinos,
M., Liotta, A., Llop, M.: D5.2. INTER-Meth: Full-fledged Methodology for IoT Platforms
Integration. INTER-IoT H2020 project, December 2017. https://inter-iot.eu/deliverables
Fortino, G., Savaglio, C., Palau, C.E., de Puga, J.S., Ghanza, M., Paprzycki, M., Montesinos,
M., Liotta, A., Llop, M.: D6.1. System Integration Plan. INTER-IoT H2020 project, August
2017. https://inter-iot.eu/deliverables

Yacchirema, D.C., Esteve, M., Palau, C.E.: Design and implementation of a gateway for per-
vasive smart environments. In: 2016 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pp. 004454-004459, October 2016

Aloi, G., Fortino, G., Gravina, R., Pace, P., Caliciuri, G.: Edge computing-enabled body area
networks. In: 2018 32nd International Conference on Advanced Information Networking and
Applications Workshops (WAINA), pp. 349-353, Krakow, May 2018. IEEE

Mocanu, D.C.: On the synergy of network science and artificial intelligence. In: Proceedings
of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IICAI’ 16, pp.
4020-4021, New York, New York, USA, July 2016. AAAI Press

Cankar, M., Gorriti, E.O., Markovi¢, M., Fuart, F.: Fog and cloud in the transportation, marine
and eHealth domains. In: Heras, D.B., Bougé, L., Mencagli, G., Jeannot, E., Sakellariou, R.,
Badia, R.M., Barbosa, J.G., Ricci, L., Scott, S.L., Lankes, S., Weidendorfer, J. (eds.) Euro-Par
2017: Parallel Processing Workshops. Lecture Notes in Computer Science, vol. 10659, pp.
292-303. Springer International Publishing, Cham (2018)

Belsa, A., Sarabia-Jacome, D., Palau, C.E., Esteve, M.: Flow-based programming interoper-
ability solution for IoT platform applications. In: 2018 IEEE International Conference on Cloud
Engineering (IC2E), pp. 304-309, Orlando, FL, April 2018. IEEE

Ganzha, M., Paprzycki, M., Pawtowski, W., Szmeja, P., Wasielewska, K.: Semantic technolo-
gies for the IoT: an inter-IoT perspective. In: 2016 IEEE First International Conference on
Internet-of-Things Design and Implementation (IocTDI), pp. 271-276, April 2016

Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K.: Semantic interop-
erability in the Internet of Things: an overview from the INTER-IoT perspective. J. Netw.
Comput. Appl. 81, 111-124 (2017)

Fortino, G., Savaglio, C., Palau, C.E., de Puga, J.S., Ghanza, M., Paprzycki, M., Montesinos,
M., Liotta, A., Llop, M.: D7.3. Final Evaluation Report. INTER-IoT H2020 project, December
2018. https://inter-iot.eu/deliverables

Yacchirema, D., Gonzalez-Usach, R., Esteve, M., Palau, C.E.: Interoperability of IoT platforms
applied to the transport and logistics domain. In: Transport Arena Research Conference 2018,
Austria. TRA (2018)

Margherita, G., Claudio, M., Anna, C., Marina, M., Ilaria, D.L., Monica, M., Massimo, U.,
Luciano, B., Massimo, C., Angelina, D.T., Bartolomeo, A., Anna, A., Domenica, P., Lucia, A.
Fortunata, M., Rina: Telemedicine and prevention: electromedical devices experimentation in
the nutritional counseling. Mattioli 1885 SpA Italy (2017)

Margherita, G., Claudio, M., Anna, C., Marina, M., Ilaria, D.L., Monica, M., Massimo, U.,
Luciano, B., Massimo, C., Angelina, D.T., Bartolomeo, A., Anna, A., Domenica, P., Lucia, A.

https://inter-iot.eu/deliverables
https://inter-iot.eu/deliverables
https://inter-iot.eu/deliverables
https://inter-iot.eu/deliverables
https://inter-iot.eu/deliverables
https://inter-iot.eu/deliverables
https://inter-iot.eu/deliverables

Introduction to Interoperability for Heterogeneous IoT Platforms 25

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Fortunata, M., Rina: D6.3. Site Acceptance Test Plan. INTER-IoT H2020 project, September
2018. https://inter-iot.eu/deliverables

Margherita, G., Claudio, M., Anna, C., Marina, M., Ilaria, D.L., Monica, M., Massimo, U.,
Luciano, B., Massimo, C., Angelina, D.T., Bartolomeo, A., Anna, A., Domenica, P., Lucia, A.
Fortunata, M., Rina: D7.2. Technical Evaluation and Assessment Report. INTER-IoT H2020
project, September 2018. https://inter-iot.eu/deliverables

Yacchirema, D., Sarabia-Jacome, D., Palau, C.E., Esteve, M.: System for monitoring and sup-
porting the treatment of sleep apnea using [oT and big data. Pervasive Mobile Comput. 50,
25-40 (2018)

Drozdowicz, M., Alwazir, M., Ganzha, M., Paprzycki, M.: Graphical interface for ontol-
ogy mapping with application to access control. In: Nguyen, N.T., Tojo, S., Nguyen, L.M.,
Trawiriski, B. (eds.) Intelligent Information and Database Systems. Lecture Notes in Computer
Science, vol. 10191, pp. 46-55. Springer International Publishing, Cham (2017)
Drozdowicz, M., Alwazir, M., Ganzha, M., Paprzycki, M.: D6.2. Factory Acceptance Test Plan.
INTER-IoT H2020 project, Febuary 2018. https://inter-iot.eu/deliverables

Drozdowicz, M., Alwazir, M., Ganzha, M., Paprzycki, M.: D8.6. Report on Impact Creation
at M36. INTER-IoT H2020 project, December 2018. https://inter-iot.eu/deliverables

Fortino, G., Parisi, D., Pirrone, V., Di Fatta, G.: Bodycloud: a SaaS approach for community
body sensor networks. Future Gener. Comput. Syst. 35, 62-79 (2014)

Drozdowicz, M., Ganzha, M., Paprzycki, M.: Semantically enriched data access policies in
eHealth. J. Med. Syst. 40(11), 238 (2016)

Fortino, G., Savaglio, C., Zhou, M.: Toward opportunistic services for the industrial Internet
of Things. In: 2017 13th IEEE Conference on Automation Science and Engineering (CASE),
pp- 825-830, Xi’an, August 2017. IEEE

Vargas, D.C.Y., Salvador, C.E.P.: Smart IoT gateway for heterogeneous devices interoperability.
IEEE Lat. Am. Trans. 14(8), 3900-3906 (2016)

Fortino, G., Gravina, R., Russo, W., Savaglio, C.: Modeling and simulating Internet of Things
systems: a hybrid agent-oriented approach. Comput. Sci. Eng. 19(5), 68-76 (2017)

Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K.: Alignment-based
semantic translation of geospatial data. In: 2017 3rd International Conference on Advances
in Computing, Communication and Automation (ICACCA) (Fall), pp. 1-8, Dehradun, India,
September 2017. IEEE

Smart, G., Deligiannis, N., Surace, R., Loscri, V., Fortino, G., Andreopoulos, Y.: Decentralized
time-synchronized channel swapping for ad hoc wireless networks. IEEE Trans. Veh. Technol.
65(10), 8538-8553 (2016)

Pace, P, Fortino, G., Zhang, Y., Liotta, A.: Intelligence at the edge of complex networks: the
case of cognitive transmission power control. IEEE Wirel. Commun. 26(3), 97-103 (2019)
Gonzalez-Usach, R., Collado, V., Esteve, M., Palau, C.E.: AAL open source system for the
monitoring and intelligent control of nursing homes. In: 2017 IEEE 14th International Confer-
ence on Networking, Sensing and Control (ICNSC), pp. 84-89, May 2017

Pace, P., Aloi, G., Gravina, R., Fortino, G., Larini, G., Gulino, M.: Towards interoperability
of IoT-based health care platforms: the inter-health use case. In: Proceedings of the 11th EAI
International Conference on Body Area Networks, BodyNets’16, pp. 12-18, Brussels, BEL,
December 2016. ICST (Institute for Computer Sciences, Social-Informatics and Telecommu-
nications Engineering)

Exarchakos, G., Oztelcan, 1., Sarakiotis, D., Liotta, A.: plexi: adaptive re-scheduling web-
service of time synchronized low-power wireless networks. J. Netw. Comput. Appl. 81, 62-73
(2017)

Pradilla, J., Gonzalez, R., Esteve, M., Palau, C.: Sensor observation service (SOS)/constrained
application protocol (COAP) proxy design. In: 2016 18th Mediterranean Electrotechnical Con-
ference (MELECON), pp. 1-5, April 2016. ISSN: 2158-8481

Kotian, R., Exarchakos, G., Stavros, S., Liotta, A.: Impact of transmission power control in
multi-hop networks. Future Gener. Comput. Syst. 75, 94-107 (2017)

https://inter-iot.eu/deliverables
https://inter-iot.eu/deliverables
https://inter-iot.eu/deliverables
https://inter-iot.eu/deliverables

26

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

C. E. Palau et al.

Kotian, R., Exarchakos, G., Stavros, S., Liotta, A.: D7.1. Evaluation Plan. INTER-IoT H2020
project, March 2018. https://inter-iot.eu/deliverables

Savaglio, C., Fortino, G., Zhou, M.: Towards interoperable, cognitive and autonomic IoT sys-
tems: an agent-based approach. In: 2016 IEEE 3rd World Forum on Internet of Things (WF-
I0T), pp. 58-63, December 2016

Savaglio, C., Fortino, G., Gravina, R., Russo, W.: A methodology for integrating Internet of
Things platforms. In: 2018 IEEE International Conference on Cloud Engineering (IC2E), pp.
317-322, Orlando, FL, April 2018. IEEE

Ganzha, M., Paprzycki, M., Pawtowski, W., Szmeja, P., Wasielewska, K., Palau, C.E.: From
implicit semantics towards ontologies—practical considerations from the INTER-IoT perspec-
tive. In: 2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC),
pp. 59-64, January 2017. ISSN: 2331-9860

Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K.: Streaming semantic
translations. In: 2017 21st International Conference on System Theory, Control and Computing
(ICSTCC), pp. 1-8, Sinaia, October 2017. IEEE

Pileggi, S.F,, Palau, C.E., Esteve, M.: Building semantic sensor web: knowledge and interoper-
ability. In: Proceedings of the International Workshop on Semantic Sensor Web (SSW), (IC3K
2010), vol. 1, pp. 15-22. INSTICC, SciTePress (2010)

Tkaczyk, R., Szmeja, P., Ganzha, M., Paprzycki, M., Solarz-Niesluchowski, B.: From relational
databases to an ontology—practical considerations. In: 2017 21st International Conference on
System Theory, Control and Computing (ICSTCC), pp. 254-261, Sinaia, October 2017. IEEE
Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K.: Identifier manage-
ment in semantic interoperability solutions for IoT. In: 2018 IEEE International Conference on
Communications Workshops (ICC Workshops), pp. 1-6, Kansas City, MO, May 2018. IEEE

Moreira, J.L., Daniele, L.M., Pires, L.F., van Sinderen, M.J., Wasielewska, K., Szmeja, P.,
Pawtowski, W., Ganzha, M., Paprzycki, M.: Towards IoT platforms integration: semantic trans-
lations between W3C SSN AND ETSI SAREF. In: Semantics. Workshop Semantic Interoper-
ability and Standardization in the IoT (SIS-IoT), November 2017

Frustaci, M., Pace, P., Aloi, G.: Securing the IoT world: issues and perspectives. In 2017
IEEE Conference on Standards for Communications and Networking (CSCN), pp. 246251,
Helsinki, Finland, September 2017. IEEE

https://inter-iot.eu/deliverables

INTER-IoT Requirements)

Check for
updates

Pablo Giménez, Miguel Llop, Regel Gonzalez-Usach, and Miguel A. Llorente

Abstract There are some significant tasks in the first stage of a project in order to
achieve success when taking out a new product, a service or release a software. It is
essential to know what is in the market and what the potential customers want. There-
fore, during the project, we performed a market analysis regarding all the products
related with IoT and we had interviews with all the involved actors in all the domains,
such as developers, integrators, operators, domain users, clients, etc. Furthermore,
from the previous information we define the requirements in order to determine how
the system should work and what it should do. This chapter presents the process
and the results of these three activities developed in the first stage of the INTER-
IoT project: market analysis, stakeholders analysis, and requirements analysis. This
task was done for the five different products defined in the project: INTER-LAYER,
INTER-FW, INTER-METH, INTER-LogP, and INTER-Health. These tasks have
been made using the VOLERE methodology, which is an excellent methodology to
extract conclusions and provide results following a systematic approach.

1 Introduction

Requirements are an essential part of any software project and it is critical to devote
enough time to identify all project requirements [1]. The gathering of and compiling
of requirements for a software project requires a very tight collaboration between the
clients, the developers and the software integrators. This is because the behaviour
attributes and properties of the future system rely dramatically on a correct identifi-
cation of requirements [2].

P. Giménez () - M. Llop
Fundacién Valenciaport, Valencia, Spain
e-mail: pgimenez @fundacion.valenciaport.com

R. Gonzalez-Usach
Universitat Politécnica de Valéncia, Valencia, Spain

M. A. Llorente
Prodevelop, Valencia, Spain

© Springer Nature Switzerland AG 2021 27
C. E. Palau (eds.), Interoperability of Heterogeneous loT Platforms, Internet of Things,
https://doi.org/10.1007/978-3-030-82446-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82446-4_2&domain=pdf
mailto:pgimenez@fundacion.valenciaport.com
https://doi.org/10.1007/978-3-030-82446-4_2

28 P. Giménez et al.

There are two main reasons for specifying requirements. First, it guides design
and decision-making processes towards a correct solution [3]. In addition, it provides
a basis of testing the implemented solution is correct [1].

It must be noted that the creation of the INTER-IoT framework represents a vast
and very complex development task that encompasses all layers from IoT systems,
and novel aspects in loT-related software [4].

Therefore, requirements on each level of the [oT stack [S] must be identified and
collected, including the platform layer [6], middleware [7], gateway or fog domain
[8], network [8], semantics [9, 10], service and application layer [11, 12], security
[13] and cross-layer elements [14] and other IoT-related aspects [5].

The first stage of the project was focused on the definition of all the elements
necessary for the development of the project. The objective of the initial phase was
to gather and define the set of technical requirements for the development of INTER-
IoT framework and for each of its core components. The work in this work package
was structured in five tasks:

o Identify and analyse stakeholders and products for both use cases addressed in the
project: smart port logistics and smart mobile m-health.

e Collect and analyse requirements from targeted stakeholders, and other involved

actors to develop the INTER-IoT products.

Identify and design suitable business models for the INTER-I0T system.

Define comprehensive suitable scenarios for the use cases and the targeted stake-

holders.

Analyse legal and regulatory requirements that are relevant to INTER-IoT.

1.1 Methodology

The methodology selected as a reference for most of the above tasks is VOLERE!
[15], as it represents a solid methodology widely used by thousands of organizations
around the world in order to define, discover, communicate and manage all the
necessary requirements for any type of system development (e.g. software, hardware,
commodities, services, organizational, etc.). The VOLERE methodology [3, 15] is
used in INTER-IoT mainly because it helps project partners to describe, formalize
and track the project market analysis, requirements, use cases and scenarios in an
explicit and unambiguous manner, and has widely proven to be effective and reliable
for this type of tasks. It is also quite clear and simple to apply.

VOLERE can be applied in almost all kinds of development environments, with
any other development methods or with most requirements tools and modelling tech-
niques. To produce accurate and unambiguous requirements, the VOLERE method-
ology uses techniques that are based on experience from worldwide business analysis
projects, and are continually improved [16].

Uhttp://www.volere.co.uk/.

http://www.volere.co.uk/

INTER-IoT Requirements 29

The VOLERE methodology provides several templates to deal with the different
techniques and activities that it includes. In a quick view, the VOLERE Requirement
Process that this methodology suggests can be summarised as follows:

Define the Purpose of the Project

. Stakeholders Identification and Analysis

. Business Use Cases

Scenarios

Writing the Requirements (functional requirements and non-functional require-

ments)

6. Validation of requirements (completeness, relevance, testability, coherency, trace-
ability, and several other qualities before they allow it to be passed to the devel-
opers)

7. Communicating the Requirements

8. Requirements Completeness.

N

The consequent application of the VOLERE methodology is not only useful in
the initial phases of the project but it is also helpful in specifying a reference point
for the later stages. During the implementation and management, it can be used
to track and evaluate the progress of the individual work packages and the overall
project. Besides being efficient and easy to use, the VOLERE methodology provides
a mechanism for all partners to specify requirements, needs, use cases and scenarios
in a standard format. Thereby, specifying additional context of an element such as
the rationale and the acceptance criteria helps to build a common understanding of
the overall system [16]. Furthermore, defining priorities helps to clarify the focus of
the project [17].

1.2 Repository

The implementation of this methodology in the INTER-IoT project has been done
using a commercial software called Jira. Jira is an online tracking tool to manage
the whole project progress, where all the information compiled and produced is
accessible through to the different partners. Following the Volere recommendations,
all the requirements, scenarios, stakeholders, and products were registered.

This repository help to search, access, review, and register new elements (stake-
holders, requirements, etc.) identified after completion of the initial stage as the
project progresses.

2 Volere Getting Started http://www.volere.co.uk/pdf %20files/ VolereGettingStarted.pdf.
3 https://es.atlassian.com/software/jira.

http://www.volere.co.uk/pdf%20files/VolereGettingStarted.pdf.
https://es.atlassian.com/software/jira

30 P. Giménez et al.

2 Stakeholders Analysis
2.1 Definition

Stakeholders’ analysis [18] was the first task in the project and it is part of a rigorous
and complete requirements specification [16]. It describes the process of targeting
the people who have an interest in the new products and results that are planned for
the project. The stakeholders’ group being involved in this task has also included
anyone who may have any influence on the project’s outcomes, may be affected
by the product or may have any knowledge needed to uncover the requirements
of these products. The identification and involvement of relevant stakeholders is
very important to be able to capture the requirements for the interoperability of
heterogeneous IoT platforms [19].

The stakeholders’ analysis was carried out through interviews with stakeholders,
following an INTER-IoT product oriented approach. With this analysis, we have
identified the initial needs for the five components of the project: INTER-LAYER,
INTER-FW, INTER-METH, INTER-LogP and INTER-Health. The identification
of stakeholders also helped us to start developing cooperation with them, to focus on
the requirements gathering process and, ultimately, to ensure a successful outcome
for the project. The analysis took into account both demand and supply points of
view and both qualitative and quantitative aspects [20].

Although there could be other kind of stakeholders, the following list of potential
classes of stakeholders was initially defined for the identification process carried out
by all the partners in the consortium:

1. Client/sponsor 10. Representatives of external associations
2. Customer 11. Business analysts

3. Subject-matter experts 12. Designers and developers

4. Members of the public 13. Testers

5. Users of the current system 14. Systems engineers

6. Marketing experts 15. Software engineers

7. Legal experts 16. Technology experts

8. Domain experts 17. System designers

9. Usability experts

As far as the European Commission (EC) is the sponsor of INTER-I0T, as it is the
funding entity of the project, it represents one of the most relevant stakeholders and
we established the optimal value for it. Although the EC influenced on the outcomes
of the project, it is not the customer of the project’s products and results.

To easily identify the stakeholders of each product, we have used a stakeholder’s
map as it has been described in the publication of “Mastering the Requirements Pro-
cess: Getting Requirements Right” used as a reference for the VOLERE methodol-
ogy. The stakeholder’s map shows the organizational rings surrounding the product
and the classes of stakeholders who inhabit on these rings. The stakeholder map

INTER-IoT Requirements 31

Wider environment

& o e Containing Business H..-\-"-\ N
.// - 8 e . \
P g— o
¥ _./" N
/' stakeholdérs who - Operational work Area
" have aninfluence

y
or interest of the ,/ 8
product y -

, | Stakeholders & Systems with
|' direct contact with the product
1

ln

N\ stakehold
N *. who benefit
b “from the prod

. e

Fig. 1 Stakeholders’ map template

determines which classes of stakeholders are relevant to the project and which roles
are needed to represent them.

Each product being considered in INTER-IoT has a stakeholders’ map represen-
tation in this document. The picture below shows the stakeholders map template.

At the centre of the stakeholder map is the intended product (i.e. INTER-
LAYER, INTER-FW, INTER-METH, INTER-LogP, INTER-Health). Surrounding
the intended product is a ring representing the operational work area—stakeholders
who have some direct contact with the product. In the next ring, the containing
business include the stakeholders who benefit from the product in some way, even
though they are not in the operational area. Finally, the outer ring, the wider envi-
ronment, contains other stakeholders who have an influence on or an interest in the
product. Note also the detailed and multiple involvement of the core team members
is emphasized by the fact they span all the rings (Fig. 1).

Each stakeholder identified for each product has been characterised through the
template (shown in Fig. 2) designed for the project. This template has helped to easily
identify, classify and manage potential stakeholders. The process of characterising the
stakeholders has helped to start developing cooperation between these stakeholders
and the project team.

The stakeholder’s template has also helped to identify other stakeholders who
may also be involved in the product design and implementation. The file has also
helped to identify existing products and systems being used, produced or provided
by the stakeholders related with the INTER-IoT products as well as new products

32 P. Giménez et al.

Product Name:

Name of the product analysed (INTER-LAYER, INTER-FW, INTER-METH, INTER-LogP, INTER-Health)

Stakeholder’s Name: Stakeholder’s Acronym:

Nome of the stakeholder For inclusion in the map

Stakeholder’s Profile & Role:
Profile: Stakeholder’s profile

Role: Description of the role within the product

Contact Person: Email: Position:

Stokeholders’ contoct Stakeholder contoct’s e-mail Contaoct position
Stakeholder’s Class: [0 Can appear in public reports [10T Demand side
Sample list provided above O shall remain anonymous [10T Supply side
Stakeholder’s Needs:

Description of the needs of the stakeholder for the Inter-loT product analysed

O Interested in participate in INTER-IOT open calls

Existing Products & Systems involved: New products & Systems required:

Identification of existing products and adj ¥ of the lentification of odditional products and systems required for
product the introduction of the product
New Stakeholders Stakeholder’s class

New stakeholders suggested or required for the design and | Class of the new stokeholders identified
implementation of the product to comply with the needs

identified
Reason of involvement: Identified by: Registration Date:
Why the stokeholder has been Partner who has identified the stokeholder Date of registration

identified
Fig. 2 Stakeholder template
or systems which might be required before or during the adoption of INTER-IoT

solutions. Many of the products identified during the stakeholder analysis have been
considered in the market analysis.

INTER-IoT Requirements 33

2.2 Analysis

The stakeholders’ analysis has been carried out through an INTER-IoT product-
oriented approach [18], as stakeholders have been identified separately with regard
to each product (INTER-LAYER, INTER-FW, INTER-METH, INTER-LogP and
INTER-Health). The addressed stakeholders are interested from one product to all.
From the data gathered in the stakeholder form, we carried out an analysis by product.
Therefore, for each of the five products we analysed the following topics:

e Stakeholders by company type (research institutions, public authorities, non-profit
organizations, private companies, etc.)

e Stakeholders by country

e Stakeholders map

Stakeholders by class (client, system, engineers, software engineers, IoT operators,

etc.)

Stakeholders by IoT Demand/Supply

Stakeholders with interest in Open Call participation

Products identified by Stakeholders

Stakeholders needs.

During the first phase of the project, the partners identified and interviewed 93
stakeholders. For each of them one or more stakeholders forms depending on their
interest in the different INTER-IoT products.

One of the most interesting conclusions is the type of stakeholders with interest
in the project. In Fig. 3 can be seen that a quarter of the stakeholders were potential
clients or customers of the INTER-IoT products. After that are the technology experts,
sub-matter experts, system and software engineers which will use the INTER-IoT
products developing new features and updating the last versions.

For each product, we completed a stakeholder map, like the one in the Fig.4 for
INTER-LAYER. Stakeholders are classified by how involved they are in the design,
development and execution of the product. There are four main areas in this map,
corresponding to the degree of influence that each stakeholder could have:

e Analysis team: Is the core team in the design and development of INTER-LAYER.
It is comprised by all project partners that lead the project and are directly involved
with INTER-LAYER (e.g. UPVLC, PRO, XLAB, VPF, etc.).

e Operational work area: Every stakeholder that has direct a contact with INTER-
LAYER (e.g. SigFox, ValenciaPort PCS), has enough knowledge in the product
(e.g. AFT) or has a main role in the development and execution of INTER-LAYER
(e.g. NOATUM, ASL TOS) fall under this ring.

e Business area: Stakeholders that are affected in some way by INTER-LAYER
(but not enough to have a main role) are located in this ring. Some stakeholders
are interested in contributing to INTER-LAYER (e.g. Infoport, ETRA) or testing
and adopting INTER-LAYER (e.g. Valencia Port Authority). Their business mod-
els may influence the business models developed within INTER-IoT regarding
INTER-LAYER.

34

P. Giménez et al.

Stakeholder's Class

3% 3% 1%

10%

11% 14%

12%

m Client m Technology experts - u Subjetc-matter expert
m Systems engineers m Domain Experts u Software engineers

m Designers and developers W Political beneficiary B loT Operator

m Usability experts m External associations

Fig. 3 Total stakeholders by class

INTER-Layer

Sensyscal UNIPA UNIBO

Fig. 4 INTER-LAYER stakeholder’s map

INTER-IoT Requirements 35

e Influence area: In the outer ring, stakeholders that have an influence or some
interest with INTER-LAYER are located. Other IoT related projects (e.g. BIG-
IoT, Vicinity), IoT alliances (e.g. AIOTI, AllSeen), I+D companies (e.g. ETRA
I+D), etc. Standardization organizations also play an important role in this ring,
as the developed INTER-LAYER product should follow or be in line with the
recommendations and working groups implied in these bodies [21].

The whole list of stakeholders and a complete analysis can be found in the INTER-
IoT deliverable D2.1 INTER-IoT Stakeholders and market analysis report [22].

3 Market Analysis

3.1 Definition

The aim of the market analysis [23] is to provide an insight of the current IoT market
landscape and the vision of different technologies supporting it [24]. The market
analysis process is a must to do task in order to identify products that are being
introduced or are already in the market which are related with the project in one of
the following ways [23]:

e as a component or module of the solution

e as a complementary product

e as a beneficiary, client or consumer of the solution
e as a concurrent product

The products identified during the stakeholders analysis need to be taken into
account to identify characteristics, capabilities, objectives and needs of these products
under the point of view of interoperability of heterogeneous IoT platforms. The
market analysis has been done in combination with the stakeholders analysis, this
has allowed us to identify the readiness and willingness of different stakeholders to
participate in interoperable IoT scenarios, different systems and products that could
be involved and systems and products that would be required to participate in those
scenarios [23].

This process has been quite relevant, as we have identified that many existing
products are not yet ready to participate in an interoperable IoT environment and
they need to be transformed and complemented with other components like IoT
gateways and platforms to meet the interoperability requirements. This represents a
new market niche, as there do not exist yet a wide adoption of IoT aware solutions
and interoperable IoT products. The market analysis also helps to identify relevant
standards and protocols that products are supporting and that INTER-IoT products
would need to assess.

The Fig. 5 shows the product’s template, which includes the name of the product;
the product class; the acquisition or licence options; references or web addresses
to access further information; a brief description and the services provided by the

36 P. Giménez et al.

Market Analysis

Product’s Name: <” XS_/ N\
Name of the identified product ’ Y \): -
Interiot

Product Class: Context: Access mode:

Hardware, Software, Methodology, | Local, national, European, | Open, Close, subscription, license, ...
Platform, Standard ... international, ...

Web address: (Logo)

Product Description:

Brief description of product

Product Services:

Main services of product

Links and Documents:

Useful links

Reason of involvement: . Related to loT Product: Identified by: . Registration Date:

Partner project Nome of the IoT product | Partner who has identified | Date of registration
associated (INTER-LAYER, | the stakeholder
INTER-FW, INTER-METH, INTER-
LogP, INTER-Health)

Fig. 5 Product template

product. The file also records the partner who has identified the product and the reason
why it is registered, including its relation with any of the INTER-IoT products.

INTER-IoT Requirements 37

2% Product class

2% 1% 1% 1% 1%

3%
4%

6%

m Hardware m eHealth m loT Platform

W Port System H Standards H Management Platform
m loT Framework m Medical Devices m Ontology

m loT Methodology W Software H Projects

m loT Simuulators m Education m Weather

i Services

Fig. 6 Products by class

3.2 Analysis

The market analysis was performed mainly through desk research, workshops, mar-
ket studies, report analysis and consultation with IoT market experts, including our
participation in IoT-EPI and AIOTI forums. The market analysis comprised exist-
ing solutions and trends, including vendor specific solutions, research projects and
existing and proposed standards. We analysed more than 110 representative prod-
ucts, although we were aware than a high spread of products exist. We classified the
products in 16 different domains, which can be seen in Fig. 6.

The most prominent effect of Fig. 6 is the fact it shows a high level of heterogeneity,
with many product classes accounting for very low portions of the overall product
class spread (e.g. hardware, standards, simulators, IoT platforms etc.). There is no
general rule that can emerge from this view though other than the fact that IoT
educated stakeholders’ awareness of existing products is quite scattered.

However, another interesting fact emerges, showing that the quantity of known
products can be closely tied to domain specific classes. The figure above indeed
shows that 20% of products identified are linked to either the medical sector (15% to
eHealth, 5% to medical devices) or to port systems (10%). This observation enables

38 P. Giménez et al.

Fig. 7 Products by access Prod uct access po'icy
policy

2%

mClose EMOpen M Subscription MLlicense WTBD

us to assume there is a high level of domain application specialization of the products
being identified.

Other conclusion extracted from the analysis is product access policy. It allows
to a certain degree to acquire a clearer idea of the economic and administrative
constraints to overcome in order to be able to use the products. The access mode also
provides a certain indication as to the structural interoperability the products bear.

Figure 7 confirms the need for INTER-IoT solutions as over half of the identified
products are used in a closed environment mode, thus hindering the economic effi-
ciency and competitive advantages that could be gained by fostering interoperability.
Luckily, among those products that can theoretically be accessed more openly, few
require to overcome additional hurdles such as subscription or licensing.

The whole list of products and a complete analysis can be found in the INTER-IoT
deliverable D2.1 INTER-IoT Stakeholders and market analysis report [22].

4 Requirements Analysis
4.1 Definition

The set of requirements define how should work the different products from the
needs of end users, suppliers and developers. A rigorous assessment of requirements
before design allows a clear idea of what you want to implement and reduces delays
due to design flaws. It also allows estimating more accurately the costs and the
risks [3].

INTER-IoT Requirements 39

The requirements are the basis for the design stage, so a well-defined requirement
reduces the development effort [16]. During the specification of the requirements, we
should involve almost all the departments of the organization in order to define the
necessary requirements for a specific product or service [25]. A complete and correct
requirement process reduces the effort wasted on redesign, recoding and retesting. It
also provides an efficient mechanism for the product validation and verification [3].

The characteristics that the requirements should have following ISO 2011 are:
necessary, appropriate, unambiguous, complete, singular, feasible, verifiable, correct,
consistent and comprehensible. There are several requirements categorizations, but
the Volere methodology categorises requirements into three main groups*:

e Functional requirements are the fundamental subject matter of the system and
are measured by concrete means like; data values, decision-making logic and
algorithms.

e Non-functional requirements are the behavioural properties that the specified func-
tions must have, such as performance, usability, etc. Non-functional requirements
can be assigned to a specific measurement. The methodology also includes a rich
catalogue of non-functional requirements to be taken into account, which will be
reviewed afterwards.

e Project constraints identify how the eventual product must fit into the world. For
example, the product might have to interface with or use some existing hardware,
software or business practice, or it might have to fit within a defined budget or be
ready by a defined date.

In the project, we followed 5-step iterative process for identifying, capturing,
defining, analysing, and reconciling requirements (see Fig.8). As it is an iterative
process, during the whole project the requirements were reviewed and redefined to
be more focused on the real development of the different components [26].

4.1.1 Identify Sources of Requirements

The partners identified the sources of information to collect requirements such as
previous research projects, partners’ knowledge, stakeholders, regulation, standards,
etc.

4.1.2 Requirement Capturing

This step generated an inventory of identified requirements by INTER-IoT product,
including requirement name and brief description.

4 Volere Requirements Specification Template https://www.st.cs.uni-saarland.de/edu/se/2009/
slides/volere_specification_template_v6.pdf.

https://www.st.cs.uni-saarland.de/edu/se/2009/slides/volere_specification_template_v6.pdf
https://www.st.cs.uni-saarland.de/edu/se/2009/slides/volere_specification_template_v6.pdf

40 P. Giménez et al.

Reconciling Capturing

Analysing Defining

Fig. 8 Requirements capture methodology

4.1.3 Defining

This step produced a detailed requirement specification following the requirement
template and taking into account the characteristics of good requirements specifica-
tion. A requirement template was defined with the main information needed in order
to be collected from the requirements identified (see Fig.9).

4.1.4 Analysing

This phase consisted in assessing the requirements obtained. For the analysis and
assessment of requirements, we created five task forces composed of the different
partners. These task forces produced the following improvements in the require-
ments:

Improving the quality of the description

Correcting and homogenizing the relevant classifications

Grouping similar requirements

Validating the requirements

Detecting new requirements not identified in other sources of information.

INTER-IoT Requirements 41

Requirement’s Name: Identifier: ('\

Name of the identified requirement #1 \}
Interiot

Category: Priority: Status:

Functional, Non-

functional, or Design

constraints o
MoSCoW Priority:

Product: Affected Layer: Scenario:

INTER-LAYER, INTER-FW, INTER- In the INTER-Layer product Involved sc
METH, INTER-LogP, INTER-Health

Rationale:
Reason of involvement
Requirement Description:

Brief description of the requirement

Acceptance criteria:
Conditions that requirement must satisfy to be accepted

Source: Identified by:

EU project, One-M2M, I0OT-A, Partner who has identified the
Partner’s expertise, ... r t

Fig. 9 Requirement template

4.1.5 Reconciling

This was the final step in which there were an agreement among the partners to
incorporate the requirement into the definitive list.

When implementing the functionality of a system it is important to prioritize the
requirements [17] to first develop the essential parts and remove the less significant
ones if necessary due to lack of time or resources [25].

In INTER-IoT, the requirements have two priority types. On the one hand are the
initial needs of stakeholders and the final users of the products. On the other hand,
it is necessary to prioritize what is essential for the operation of the product for the
development [16, 17]. The prioritization technique that has been used as a reference
to prioritizing the requirements is MoSCoW [27, 28].

42 P. Giménez et al.

The MoSCoW method [28] is a prioritization technique [17] used in management,
business analysis, project management, and software development to reach acommon
understanding with stakeholders on the importance they place on the delivery of each
requirement - also known as MoSCoW prioritization or MoSCoW analysis [27]. The
prioritization categories are typically understood as: must have, should have, could
have, and won’t have [28].

4.2 Analysis

From the interviews with the stakeholders during the first stage of the INTER-IoT
project, we could extract their main needs. We also did a thorough analysis of existing
products on the market. All this information was used to start the identification of
requirements, together with the knowledge of the partners and some regulations and
standards.

In first stage, we defined 201 requirements. However, since the requirements are
an iterative process that takes place throughout the duration of the project, during
the development tasks the number of requirements was reduced to 185.

Analysing the type of requirements, we can see in Fig. 10 that there are a large
number of requirements about security, privacy and interoperability. This is due to
INTER-IoT is a framework for the interoperability of platforms, so some require-
ments are focused on these issues. In some products there are types of requirements
more numerous such as communications in INTER-LAYER, API in INTER-FW,
methodology in INTER-METH, or operational in the application domains. There
are also other relevant types such as semantics, architecture, usability, etc.

Requirements by Type

|||III||II.....----
A S 3 & e c & o 4 & < A £ 2 L= 2 &

wn

wn

Fig. 10 Requirements by type

INTER-IoT Requirements 43

Fig. 11 Requirements by Cate gory
category

W Functional mNon-functional

From the results obtained, we can note that more than half of the requirements are
non-functional (Fig. 11). This may be because the project does not attempt to develop
a product or platform, but a framework for interoperability between platforms [29].
Therefore, many of the requirements describe system characteristics and features
that should be provided. We have also two application domains (INTER-LogP and
INTER-Health) where there are most of the functional requirements, since in this
case we try to develop a more specific product.

Concerning the requirements priority, there are two kind of classification (Figs. 12
and 13). First, in the classification from the needs of the stakeholders, where approx-
imately two thirds are mandatory, and only 10% are interesting to be included.

Otherwise, in the requirement prioritization based on the developers’ criteria,
around 40% are high priority. This is because we have identified the essential features
and functionalities that the different products must have. Furthermore, we have also
defined other requirements that might be interesting to have (39%).

The main sources of data we have taken into account when defining the require-
ments have been the stakeholders’ needs and the partner’s expertise. Nevertheless,
it has also been quite important to consider other sources such as IoT associations
and projects (IOT-A, AIOTI, etc.), standardization organizations recommendations
(IEEE, ITU, ISO, etc.) and national and European regulations.

The whole list of requirements and a complete analysis can be found in the INTER-
IoT deliverable D2.3 INTER-IoT Requirements and business [30] (Fig. 14).

44 P. Giménez et al.
Priority

B Must mMay mNiceto have

Fig. 12 Requirements by priority

MoSCoW priority
mMust mShould mCould mWon't

1%
23%

Fig. 13 Requirements by MoSCoW priority

Sources
120
100
80
80
40
20
0 B L e L N S S S
o b O R A D& H K “ DA A S n & o L o B A
$F CEFLS NI ST EE L P ST LT E
£ & FNEF T & O F Ve &S 7
¢ ¥ & o ST T ENe £
o N ¥ e o

Fig. 14 Requirements by source

INTER-IoT Requirements 45

5 Conclusions

For any product, design, or project is necessary to begin by establishing what we
want to achieve. For that aim, we must perform a thorough analysis of what is on
the market and what our customers may need. With this information, we have to
specify in detail the features and functionality of our product, which is reflected in
the requirements.

The requirements are used to establish the basis for agreement between the cus-
tomers and the suppliers on what the software product is intended to do. Once known
the needs of customers, it is easier to develop a successful business model.

Thus, that is the main reason to not assume customer’s needs and to perform a
thorough analysis to find them out. It is important to involve the end users as soon
as possible and to get in touch with the actual people that will be using the product
on a daily basis as they are the ones that truly understand what is needed.

In the INTER-I0T project, we identified 93 stakeholders interested in the INTER-
IoT products and we performed a market analysis with 110 products. All this data was
used to define a set of requirements used to design and implement INTER-LAYER,
INTER-FW and INTER-METH in their respective tasks.

One of the main conclusions extracted from the stakeholders’ needs and the mar-
ket analysis performed is the existence of a critical necessity for interoperability
between IoT platforms. The need for interoperability appears in terms of new stan-
dards being proposed and in the interest from developers and designers to add to
their products new plugins, services and connectors allowing the interoperability
with open platforms like FIWARE, sensiNact or universAAL.

References

1. Wiegers, K., Beatty, J.: Software Requirements. Pearson Education, August 2013. Google-
Books-ID: nbpCAwAAQBAIJ. https://ptgmedia.pearsoncmg.com/images/9780735679665/
samplepages/9780735679665.pdf

2. Vermesan, O., Friess, P. (eds.) Digitising the Industry Internet of Things Connecting the Physi-
cal, Digital and Virtual Worlds. Riverpublishers (2016). https://www.riverpublishers.com/pdf/
ebook/RE_E9788793379824.pdf

3. Robertson, S., Robertson, J.: Mastering the Requirements Process: Getting Requirements Right.
Addison-Wesley (August 2012). Google-Books-ID: yE91LgrpaHsC. https://books.google.es/
books/about/Mastering_the_Requirements_Process.html?id=yE91LgrpaHsCé&redir_esc=y

4. Fortino, G., Savaglio, C., Palau, C.E., Suarez de Puga, J., Ghanza, M., Paprzycki, M., Mon-
tesinos, M., Liotta, A., Llop, M.: Towards multi-layer interoperability of heterogeneous IoT
platforms: The INTER-IoT approach. Internet of Things, 0(9783319612997), 199-232 (2018)

5. Pattar, S., Buyya, R., Venugopal, K.R., Iyengar, S.S., Patnaik, L.M.: Searching for the IoT
resources: fundamentals, requirements, comprehensive review, and future directions. IEEE
Commun. Surv. Tutor. 20(3), 2101-2132 (2018). Conference Name: IEEE Communications
Surveys Tutorials

6. Palade, A., Cabrera, C., Li, F., White, G., Razzaque, M. A., Clarke, S.: Middleware for Internet
of Things: an evaluation in a small-scale IoT environment. J. Reliab. Intell. Environ. 4(1), 3-23
(2018)

https://ptgmedia.pearsoncmg.com/images/9780735679665/samplepages/9780735679665.pdf
https://ptgmedia.pearsoncmg.com/images/9780735679665/samplepages/9780735679665.pdf
https://www.riverpublishers.com/pdf/ebook/RE_E9788793379824.pdf
https://www.riverpublishers.com/pdf/ebook/RE_E9788793379824.pdf
https://books.google.es/books/about/Mastering_the_Requirements_Process.html?id=yE91LgrpaHsC&redir_esc=y
https://books.google.es/books/about/Mastering_the_Requirements_Process.html?id=yE91LgrpaHsC&redir_esc=y

46 P. Giménez et al.

7. Mi Jung, H., Jeong, K., Jin Cho, H.: A Design for security functional requirements of IoT
middleware system. J. Korea Converg. Soc. 8(11),63-69 (2017). Publisher: Korea Convergence
Society

8. Byers, C.C.: architectural imperatives for fog computing: use cases, requirements, and archi-
tectural techniques for fog-enabled IoT networks. [IEEE Commun. Mag. 55(8), 14-20 (2017)

9. Mazayev, A., Martins, J.A., Correia, N.: Interoperability in IoT Through the Semantic Profiling
of Objects. IEEE Access 6, 19379-19385 (2018)

10. Xhafa, F, Kilic, B., Krause, P.: Evaluation of IoT stream processing at edge computing layer
for semantic data enrichment. Futur. Gener. Comput. Syst. 105, 730-736 (2020)

11. Ahmed, A.ILA., Gani, A., Hamid, S.H.Ab., Abdelmaboud, A., Syed, H.J., Mohamed, R.A.A.H.,
Ali, L.: Service management for IoT: requirements, taxonomy, recent advances and open
research challenges. IEEE Access 7, 155472-155488 (2019)

12. Milovanovic, D.: Cloud-based IoT healthcare applications : requirements and recommenda-
tions. Int. J. Internet Things Web Serv. (2017)

13. Oh, S., Kim, Y.: Security requirements analysis for the IoT. In: 2017 International Conference
on Platform Technology and Service (PlatCon), pp. 1-6 (February 2017)

14. Hameed, S., Idris Khan, F., Hameed, B.: understanding security requirements and challenges
in Internet of Things (IoT): a review. J. Comput. Netw. Commun. 2019, €9629381 (2019).
Publisher: Hindawi

15. Santarremigia, FE., Poveda-Reyes, S., Hervas-Peralta, M., Molero, G.D.: A decision-making
method for boosting new digitalization technologies. Int. J. Inf. Technol. Decis. Mak., 1-35,
February 2021. Publisher: World Scientific Publishing Co

16. Elijah,J., Mishra, A., Udo, M.C., Abdulganiyu, A., Musa, A.: Survey on requirement elicitation
techniques: it’s effect on software engineering. Int. J. Innov. Res. Comput. Commun. Eng. 5(5),
15 (2007)

17. Hudaib, A., Masadeh, R., Qasem, M., Alzagebah, A.: Requirements prioritization techniques
comparison. Mod. Appl. Sci. 12(2), 62 (2018). Number: 2

18. Brugha, R., Varvasovszky, Z.: Stakeholder analysis: a review. Health Policy Plan. 15(3), 239-
246 (2000)

19. Ganzha, M., Paprzycki, M., Pawtowski, W., Szmeja, P., Wasielewska, K.: Semantic interop-
erability in the Internet of Things: an overview from the INTER-IoT perspective. J. Netw.
Comput. Appl. 81, 111-124 (2017)

20. Pileggi, S.F., Palau, C.E., Esteve, M.: Building semantic sensor web: knowledge and interop-
erability. In: Proceedings of the International Workshop on Semantic Sensor Web—Volume 1:
SSW, (IC3K 2010), pp. 15-22. INSTICC, SciTePress (2010)

21. Broring, A., Zappa, A., Vermesan, O., Framling, K., Zaslavsky, A., Gonzalez-Usach, R.P,,
Szmeja, C. Palau, M. Jacoby, L. P. Zarko, S. Sour- sos, C. Schmitt, M. Plociennik, S. Krco, S.
Georgoulas, 1. Larizgoitia, N. Gligoric, R. Garcia-Castro, F. Serena, V. Orav. Advancing [oT
Platform Interoperability. River Publishers, The Nederlands, 2018

22. Broring, A., Zappa, A., Vermesan, O., Frimling, K., Zaslavsky, A., Gonzalez-Usach, R.,
Szmeja, P., Palau, C., Jacoby, M., Zarko, I.P., Soursos, S., Schmitt, C., Plociennik, M., Krco,
S., Georgoulas, S., Larizgoitia, L., Gligoric, N., Garcia-Castro, R., Serena, F., Orav, V.: D2.1.
Stakeholders and Market Analysis Report vol 1.1. INTER-IoT H2020 project, March 2016

23. Day, G.S.: Strategic market analysis and definition: an integrated approach. Strat. Manag. J.
2(3), 281-299 (1981). https://onlinelibrary.wiley.com/doi/pdf/10.1002/smj.4250020306

24. Ilin, I.V., Izotov, A.V., Shirokova, S.V., Rostova, O.V., Levina, A.I.: Method of decision making
support for it market analysis. In: 2017 XX IEEE International Conference on Soft Computing
and Measurements (SCM), pp. 812-814, Saint Petersburg, Russia, May 2017. IEEE

25. Mougouei, D., Powers, D.M.W.: Modeling and selection of interdependent software require-
ments using fuzzy graphs. Int. J. Fuzzy Syst. 19(6), 1812-1828 (2017)

26. Giménez, P., Molina, B., Palau, C.E., Esteve, M.: Swe simulation and testing for the iot. In:
2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 356-361 (2013)

27. Ahmad, K.S., Ahmad, N., Tahir, H., Khan, S.: Fuzzy Moscow: A fuzzy based Moscow method
for the prioritization of software requirements. In: 2017 International Conference on Intelligent
Computing, Instrumentation and Control Technologies (ICICICT), pp. 433-437 (2017)

https://onlinelibrary.wiley.com/doi/pdf/10.1002/smj.4250020306

INTER-IoT Requirements 47

28. Miranda, Eduardo: Time boxing planning: buffered Moscow rules. ACM SIGSOFT Softw.
Eng. Notes 36(6), 1-5 (2011)

29. Fortino, Giancarlo, Garro, Alfredo, Russo, Wilma: Achieving mobile agent systems interoper-
ability through software layering. Inf. Softw. Technol. 50(4), 322-341 (2008)

30. Fortino, G., Garro, A., Russo, W.: D2.3. Requirements and Business Analysis, vol. 2. INTER-
IoT H2020 project (January 2017)

INTER-IoT Architecture for Platform)
Interoperability L

Alessandro Bassi, Miguel A. Llorente, Miguel Montesinos,
and Raffaele Gravina

Abstract The number and diversity of IoT platforms is huge, causing an unsus-
tainable ecosystem fragmentation. INTER-IoT proposes a solution to bridge het-
erogeneous loT platforms, promoting interoperability at different abstraction layers.
Modeling is a key engineering mechanism to abstract existing platforms require-
ments and functionalities, to capture common, reusable properties, so to realize gen-
eral approaches that are capable of addressing different degrees of interoperability.
Based on the significant results of the IoT-A EU funded project, INTER-IoT has
therefore defined a Reference Model for IoT Platforms Interoperability, a Reference
Architecture, and a complete interoperability system.

1 Introduction

The focus of INTER-IoT is to bridge different IoT platforms and make them fully
interoperable at different levels [1]. The number of solutions at time of writing is
simply unsustainable, heading towards 500 different platforms. Even looking only
at the “big players”, there is not a clear winner or a superior set of solution, and this
situation is not likely to change in the near future.

In such fragmented ecosystem, there is no doubt that being able to use the same
modeling for different system is the first important step towards true interoperabil-
ity. Modeling is a valuable mechanism to abstract commonalities of existing plat-
forms, extracting the main features that define the IoT domain and to build general
approaches to face the interoperability in a universal way.

For this reason, INTER-IoT has defined a Reference Model for IoT Platforms
Interoperability, a Reference Architecture based on this model and a complete inter-
operability system.

A. Bassi (<)
ABC Consulting, Prague, Czech Republic
e-mail: alessandro@bassiconsulting.eu

M. A. Llorente - M. Montesinos
Prodevelop, Valencia, Spain

R. Gravina
DIMES, University of Calabria, Rende, Italy

© Springer Nature Switzerland AG 2021 49
C. E. Palau (eds.), Interoperability of Heterogeneous loT Platforms, Internet of Things,
https://doi.org/10.1007/978-3-030-82446-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82446-4_3&domain=pdf
mailto:alessandro@bassiconsulting.eu
https://doi.org/10.1007/978-3-030-82446-4_3

50 A. Bassi et al.

2 INTER-IoT Reference Model

The INTER-IoT project adopted the OASIS definition for describing the reference
model. As a reminder, OASIS (Organization for the Advancement of Structured
Information Standards) gives the following definition of a reference model:

[Reference model is] an abstract framework for understanding significant rela-
tionships among the entities of some environment, and for the development of
consistent standards or specifications supporting that environment. A reference
model is based on a small number of unifying concepts and may be used as
a basis for education and explaining standards to a non-specialist. A reference
model is not directly tied to any standards, technologies or other concrete imple-
mentation details, but it does seek to provide a common semantics that can be
used unambiguously across and between different implementations [2].

Central features that a reference model needs to exhibit are:

Clearly defined concepts

Clearly defined concept relationships

Clearly defined concept properties

Does not describe concrete entities (instances)

Restricted to a specific problem space

Promotes understanding of the problem space

Technology agnostic and implementation independent

Used as reference for implementation

Enables understanding (i.e. common semantics) in communication.

The INTER-IoT Reference Model (RM) description and fundamentals are based
in the successful results of the IoT-A project [3], however, unlike the RM proposed
in IoT-A [4], in INTER-IoT RM is fully focused in providing a model for inter-
operability of existing IoT Platforms. Although IoT-A also contains the concept of
interoperability, this is considered a design constraint for the creation of new plat-
forms.

In spite, the approach followed in INTER-IoT is the provision of interoperability
mechanisms for already existing platforms, which is more realistic for real scenarios
in industry, health, cities, etc. The INTER-IoT RM discussed in this chapter proposes
a reference model for IoT interoperability mechanisms in real scenarios.

2.1 Domain Model

In general, a Domain model is a class diagram that is used to describe specific aspects
of a set of knowledge or activities. The main use for it is to represent use cases and
real-world concepts in a way that can then be used by the technical people to develop

INTER-IoT Architecture for Platform Interoperability 51

a service, application or a product. The main purpose of a generic domain model is to
generate a common understanding of the target domain in question. Such a common
understanding is important, not only within a specific project, but also to be able to
discuss with stakeholders and external parties. Only with a common understanding
of the main concepts it is possible to choose between different architectural solutions
and to evaluate them.

2.1.1 The IoT-A Domain Model

The IoT-A project defines a domain model [3] as a description of concepts belonging
to a specific area of interest. The domain model also defines basic attributes of
these concepts, such as name and identifier, and relationships between concepts,
for instance “Services expose Resources”. The IoT-A domain model also provides
a common lexicon and taxonomy that can be used in the IoT domain. In an IoT
domain, the most generic scenario is that of a generic User who needs to interact
with a Physical Entity (PE) in the physical world. Here we can already see two of
the main entities in IoT:

e a User which can be a human person or a Digital Artifact (e.g., a Service, an
application, or a software agent) that needs to interact with;

e a Physical Entity, which is an object that is under observation and can be modified
by automatic means. Physical Entities can be almost any object or environment;
from humans or animals to cars; from store or logistics chain items to computers;
from electronic appliances to clothes.

While in a physical environment, interactions can only happen directly (for
instance, by moving a pallet from location X to Y manually), within the IoT world
it is possible to interact indirectly, through a “mediator”. The mediator can be a
Service that will either provide information about the Physical Entity or act on it.
When a Human User is accessing a service, he/she does so through a service client,
a User Interface for instance. For the scope of the IoT Domain Model, the interac-
tion is usually characterised by a goal that the User pursues. Physical Entities are
represented in the digital world by a Virtual Entity, which can be seen as a “virtual
counterpart”. There are many kinds of digital representations of Physical Entities: 3D
models, avatars, database entries, objects (or instances of a class in an object-oriented
programming language). Virtual Entities are associated to a single Physical Entity
and the Virtual Entity represents this very Physical Entity. While there is generally
only one Physical Entity for each Virtual Entity, it is possible that the same Physical
Entity can be associated to several Virtual Entities. Each Virtual Entity must have
one and only one ID that identifies it univocally. Virtual Entities are Digital Artefacts
that can be classified as either active or passive. Active Digital Artefacts (ADA) are
running software applications, agents or Services that may access other Services
or Resources. Passive Digital Artefacts (PDA) are passive software elements such
as database entries that can be digital representations of the Physical Entity. Please

52

has atteis 1

A. Bassi et al.

e Pattorm o Bt st |
plariar - Lo -7 Pt
1
[s aceess o
o pattom defines
i Iniareperasilay = metsdes
1 intereparable e
o
Plattarm saT Sarvice. Semantic
Sarvan Imerapershiity Inbersperabiliy
Imeraparabaty
stotoy
platterm Ostoleayy *
Patoom !
Onolegy
Plttorm Oraskogy
Frovden provides Lo e it Digetal Artifact dvscribns
trom "
i Actrn Dl Pataiva Digital L yem—— -
Artitast act Service
sene containg
Al S e Vi *
oA "
Putfom
Service . e [
- M cantainy
paen arar contim 5
1 4 VESVE | q. [P]
s o oT3 ety T P I el v 1 L .
I e Serviee a1 Echiken | Vel iy | 1 repesnt LN TR
Wi is snsocited with § L : porlre
e e Pt
e P
xpoun L
pyre—— b it ermastian
< e with sbeuts
- s o0
.
Hetwork On-Deder . hesa AL
Meoures Meoures manie identifies
Actuator Tag - pre
reads
ttag

Fig. 1 INTER-IoT generic domain model

note that all Digital Artefacts can be classified as either Active or Passive Digital

Artefacts.

2.1.2 The INTER-IoT Domain Model

The INTER-IoT Domain Model is based upon the Domain model developed by loT-
A [3]. It represents an extension of that model to capture the full interoperability

between different systems.

In Fig. 1 the proposed Inter-IoT Domain Model for interoperability
forms is shown. IoT-A’s colors have been extended to include two n
entities:

e Purple: new entities that are intrinsic to each [oT Platform;

of IoT Plat-
ew types of

e Light brown: new entities that are outside the scope of an IoT Platform, and which

are necessary for the interoperability of IoT Platforms.

INTER-IoT Architecture for Platform Interoperability 53

The clearest entity is an IoT Platform itself. In any IoT Domain Model, the plat-
form is intrinsically implicit, as it really reflects “the whole model”. When dealing
with platform interoperability, different IoT Platforms appear, thus need arises to
model them independently. Any IoT Platform relates with the underlying entities,
like Services, Things or Physical Entities, and so on. Therefore, an IoT Platform can
be modeled as a set of composed entities, the entities the platform manages [5].

An IoT Platform is comprised of several collections of entities:

e IoT Service: An IoT Service is equivalent to a Service in the IoT-A Model. It
provides an open and standardised interface, offering all necessary functionali-
ties for interacting with the Resources/Devices associated with Physical Entities
through Virtual Entities. They are Active Digital Artifacts such as query, update,
or subscribe.

¢ Platform Service: A Platform Service is an Active Digital Artifact that exposes
functionalities about Resources related to Virtual Entities. However, rather than
being attached to specific Physical Entities (and its related Virtual Entities), they
offer more elaborated services built on IoT Services. Therefore, they belong to
higher layers of an IoT Architecture, allowing more complex processing like CEP
(Complex Event Processing), Stream Processing, Historical Data Management, or
Monitoring. They are similar to IoT processes in the [oT-A Model.

e Virtual Entity: A Virtual Entity is a representation of a Physical Entity in the
digital world. IoT platforms tend to use this digital representation, especially those
based on cloud platforms, regardless to the fact whether it is connected to the
Internet or not.

e Physical Entity: A Physical Entity is an object or environment of interest for an
external user, application, or service. It is something that can be observed and
connected to one or more IoT Platforms to interact with it.

e Augmented Entity: As of [oT-A definition, an Augmented Entity is “the compo-
sition of one Virtual Entity and the Physical Entity it is associated to, in order to
highlight the fact that these two concepts belong together. The Augmented Entity
is what actually enables everyday objects to become part of digital processes, thus,
the Augmented Entity can be regarded as constituting the ‘thing’ in the Internet
of Things.”

A new concept is the Platform Ontology. It is conceived to store the definition
concerning its inner structure and different components such as devices, or sensors.
The Platform Ontology defines also the ontology used for modelling the observations
made by each sensor, in our case available from the Virtual Entities. These ontologies
will usually be different for each Physical Entity type (and its related Virtual Entity).
This entity is thus the one that is responsible for handling the corresponding seman-
tics. Once we have modelled the different entities of the platforms and the platform
itself, we have added two entities related, specifically, to defining the interoperability
services that can be created at different layers. The Platform Interoperability Service
handles the definition of new compound services that appear as a consequence of
using, and mixing in any way, Platform Services from one or more IoT platforms.
An example of this would be the creation of an alert service that may throw an event

54 A. Bassi et al.

when weather sensors from platform A exceed predefined thresholds using a rule
engine service at platform A, or when weather sensors from platform B send an
alert using a CEP (Complex Event Processing) within platform B. So, the Platform
Interoperability Service is linked with the different Platform Services it uses. Used
Platform Services are just part of IoT Platforms. From the interoperability point of
view, they are the building blocks of more complex interoperability services among
different IoT platforms: Platform Interoperability Services. The VE Interoperability
Service has a similar role as the Platform Interoperability Service, but it defines inter-
operability services among devices rather than platform services. It is responsible
for defining the interoperability at the device layer, what we call D2D (Device to
Device) interoperability at INTER-IoT. The VE Interoperability Service can handle
the rules for performing the D2D interoperability. For instance, it could have the
definition of a rule triggered when a proximity sensor detects presence, switching a
light on.

Regarding the new entities related to IoT Platforms, a new abstract Service entity
has been created. A Service represents an Active Digital Artifact that provides a
generic service of an IoT Platform. The already existing Platform Service and IoT
Service extend this Service to provide two different types of services are:

e [oT Service: Mechanism to interact with specific Resources related to Virtual
Entities, like query, subscribe, insert, etc.

e Platform Service: Complex services provided by the platform not directly related
to a specific Resource or Virtual Entity, usually processing, monitoring, etc.

2.2 Information Model

The Information Model is another of the five Models composing the IoT-A Refer-
ence Model. The main aspects are represented by the elements VirtualEntity, Ser-
viceDescription and Association. As a VirtualEntity models a Physical Entity, a
ServiceDescription describes a Service that provides information about the Physical
Entity itself or the environment. Through an Association, the connection between an
Attribute of a Virtual Entity and the ServiceDescription is modelled; in other words,
the Service acts as a “get” function for an Attribute value.

Every Virtual Entity needs to have a unique identifier (identifier) or entity type
(entityType), defining the type of the Virtual Entity representation, for instance, a
human, a car or a temperature sensor. Furthermore, a Virtual Entity can have any num-
ber of different attributes (Attribute class). The entityType of the VirtualEntity class
may refer to concepts in an ontology that defines what attributes a Virtual Entity of
this type has. Each Attribute has a name (attributeName), a type (attributeType), and
one to many values (ValueContainer). The attributeType specifies the semantic type
of an attribute, for example, that the value represents temperature. It can reference an
ontology-concepts. This way, it is possible to model an attribute or a list of values,
which itself has several values. Each ValueContainer groups one Value and zero to

INTER-IoT Architecture for Platform Interoperability 55

many metadata information units belonging to the given Value. The metadata can, for
instance, be used to save the timestamp of the Value, or other quality parameters, such
as accuracy or the unit of measurement. The Virtual Entity (Virtual Entity) is also
connected to the ServiceDescription via the <Service Description/Virtual Entity>
Association.

A ServiceDescription describes the relevant aspects of a Service, including its
interface. Additionally, it may contain one or more ResourceDescription(s) describ-
ing a Resource whose functionality is exposed by the Service. The ResourceDescrip-
tion in turn may contain information about the Device on which the Resource is
hosted.

According [oT-A, the IoT Information Model defines the structure of all the infor-
mation for Virtual Entities on a conceptual level. This description utilizes meta-data
coming from appropriate ontologies. The INTER-IoT project uses semantic technolo-
gies to deal with meta-level interoperability. Specifically, the semantic interoperabil-
ity will be established through the use of a modular ontology, ontology alignments,
and semantic transformations.

The Inter-IoT reference meta-data model is a set of ontologies, that can also
be viewed as one modular ontology, with both horizontal and vertical modules.
This ontology needs to cover fundamental concepts in IoT, such as thing, device,
observation and deployment.

The meta-data model needs to conform to OASIS guidelines enumerated in Sect. 2.
OWL ontologies naturally exhibit some of those, such as: clear (and formal) descrip-
tions of concepts and relationships between them; independence of implementation
technology; and enabling common semantics. Other than that, the reference meta-
data model does not contain references to any specific instances, and is limited to
the scope defined by meta-data requirements [6].

2.2.1 Scope of Meta-Data Model

The scope of the Inter-IoT reference meta-data model is defined in a process that
defines meta-data items (entities) that need to be included in the model. Simple
examples of meta-data entities are Service, Device (with sub-types Actuator, Tag and
Sensor) that are declared in the [oT-A domain model. The meta-data reference model
expands those declarations into definitions by defining properties, class attributes,
taxonomy and other elements structuring the meta-data entities. Once the scope
(defined by the entities) is prepared, the reference model is constructed by choosing
and adjusting (expanding or reducing) modular ontologies.

2.2.2 IoT Platforms

Some IoT platforms, like OpenloT or UniversAAL provide explicit ontologies that
model the meta-data used within those platforms. The knowledge contained within
those models is an indirect source of meta-data entities. Since INTER-IoT is a set

56 A. Bassi et al.

of tools for interoperability between platforms, rather than a platform itself, the
models of platforms should not simply be copied. That being said, the analysis of
existing platform ontologies provides valuable insight that augments explicit meta-
data requirements from other sources, and puts them in context.

2.2.3 Comparing IoT-Related Ontologies

The space of ontologies is fragmented, regardless of the domain of interest. The
richer an ontology is, the larger area it spans. Hence, uniqueness and intersections
with other ontologies become more intricate and complex. Internet of Things spans
enormous number of domains, and rapidly expands with the growing popularity of
“smart devices”. Use of ontologies in the IoT mimics this expansiveness. There are
many ontologies that represent models relevant to the IoT, including, but not limited
to, devices, units of measurement, data streams, data processing, geolocation, data
provenance, computer hardware, methods of communication, etc. We assume that
the centrepiece of the IoT is a smart device capable of communication. Therefore,
the first iteration of the reference meta-data model is in the form of a device ontology
and forms a cornerstone for other ontology modules (that cover other meta-data
requirements). The ontologies were selected for analysis based on a simple criterion
that they describe some (at least one) of the meta-data requirements identified at the
beginning of the Inter-IoT project.

From this perspective, from the identified ones, we have selected ontologies that
capture the idea of a device, and are well established in the IoT space: SSN, SAREEF,
oneM2M Base Ontology, IoT-Lite, and OpenloT. Each of them takes a different
approach to modelling the IoT space but, despite the differences in conceptualization,
they cover intersecting fragments of the [oT landscape. Below, we discuss divergence,
contrariness and similarities between these ontologies.

SSN, or “Semantic Sensor Network™ [7] is an ontology centered around sensors
and observations. It is a de-facto extension of the SensorML language. SSN focuses
on measurements and observations, disregarding hardware information about the
device. Specifically, it describes sensors in terms of capabilities, performance, usage
conditions, observations, measurement processes, and deployments. It is highly mod-
ular and extendable. In fact, it depends on other ontologies in key areas (e.g. time,
location, units) and, for all practical purposes, needs to be extended before actual
implementation of an SSN-based IoT system. SSN, formulated on top of DUL, is
an ontological basis for the IoT, as it tries to cover any application of sensors in
the IoT [8].

SAREF [9], or “The Smart Appliances REFerence” ontology covers the area of
smart devices in houses, offices, public places, etc. It does not focus on any industrial
or scientific implementation. The devices are characterized predominantly by the
function(s) they perform, commands they accept, and states they can be in. Those
three categories serve as building blocks of the semantic description in SAREF.
Elements from each can be combined to produce complex descriptions of multi-
functional devices. The description is complemented by device services that offer

INTER-IoT Architecture for Platform Interoperability 57

functions. A noteworthy module of SAREEF is the energy and power profile that
received considerable attention, shortly after its inception. SAREF uses WGS84 for
geolocation and defines its own measurement units.

oneM2M Base Ontology (oneM2M BO; [10]) is a recently created ontology, with
first non-draft release in August 2016. It is relatively small, prepared for the release
2.0 of oneM2M specifications, and designed with the intention of providing a shared
ontological base, to which other ontologies would align. It is similar to the SSN, since
any concrete system necessarily needs to extend it before implementation. It describes
devices in a very broad scope, enabling (in a very general sense) specification of
device functionality, networking properties, operation and services. The philosophy
behind this approach was to enable discovery of semantically demarcated resources
using a minimal set of concepts. It is a base ontology, as it does not extend any
other base models (such as DOLCE+DnS Ultralite DUL or Dublin Core). However,
alignments to other ontologies are known [11].

IoT-Lite [12] is an instantiation of the SSN, i.e. a direct extension of some of its
modules. It is a minimal ontology, to which most of the caveats of the SSN apply.
Specifically: focus on sensors and observations, reliance on other ontologies (e.g.
time or unit ontologies), high modularity and extendibility. The idea behind the IoT-
Lite was to create a small/light semantic model that would be less taxing (than other,
more verbose and broader models) on devices that process it. At the same time,
it needed to cover enough concepts to be useful. The ontology describes devices,
objects, systems and services. The main extension of the SSN, in the IoT-Lite, lies
in addition of actuators (to complement sensors, as a device type) and a coverage
property. It explicitly uses concepts from a geolocation ontology [13] to demarcate
device coverage and deployment location.

OpenloT ontology [13] was developed within the OpenloT project. However,
here, we use the term “OpenloT” to refer to the ontology. It is a comparatively big
model that (re)uses and combines other ontologies. Those include all modules of
the SSN (the main basis for the OpenloT), SPITFIRE (including sensor networks),
Event Model-F, PROV-0O, LinkedGeoData, WGS84, CloudDomain, SIOC, Associa-
tion Ontology and others, including smaller ontologies developed at the DERI (cur-
rently, Insight Centre). It also makes use of ontologies that provide basis for those
enumerated earlier, e.g. DUL. Other than concepts from the SSN, OpenloT, uses a
large number of SPITFIRE concepts, e.g. network and sensor network descriptions.
While some mentioned ontologies are not imported by the OpenloT explicitly, they
appear in all examples, documentation, and project deliverables. Therefore, one can
treat OpenloT as a combination of parts of all of those. Similar to the SSN, OpenloT
does not define its own location concepts and does not explicitly import geoloca-
tion ontologies. It relies on other ontologies for that but, in contrast to the SSN, it
clearly indicates LinkedGeoData and WGS84 as sources of geolocation descriptions.
It defines a limited set of units of measure (e.g. temperature, wind speed), but only
when they were relevant to the OpenloT project pilot implementation.

The rich suite of used ontologies means that OpenloT provides a very exten-
sive description of devices, their functionalities, capabilities, provenance, measure-
ments, deployments and position, energy, relevant events, users and many others.

58 A. Bassi et al.

Interestingly enough, it does not explicitly describe actuators or actuating proper-
ties/functions. It can be observed that the broad scope of the ontology makes it rather
complicated. This is also because, it is not documented well-enough, i.e. the detail
level and ease-of-access of the documentation do not match the range of coverage of
concepts in the model. Moreover, it is not clearly and explicitly modularized, despite
being an extension of the SSN. Let us note that, while there are other IoT models of
potential interest (such as OGC Sensor Things, UniversAAL ontologies, FAN FPAI,
IoT Ontology,! M3 Vocabulary), we have decided that they are of less importance
or relevance to INTER-IoT. This was either because they have generated much less
“general interest”, or had scope well outside that of the project.

Each of considered ontologies proposes a different approach to modelling the IoT
space. The biggest differences are in the details.

1. OneM2M BO proposes a small base ontology, similar to upper ontologies that
provides only a minimal set of highly abstract entities. This allows for a very
broad set of domain ontologies to be easily aligned with it. It also means that
the BO itself is not enough to model any concrete problem (or solution) in the
IoT. Furthermore, it does not capture some aspects (device, sensor and actuator
properties) that are very common in other ontologies.

2. OpenloT contrasts the oneM2M BO philosophy by providing a detailed model
for a specific problem (i.e. pilot implementations from the OpenloT project) that
can be also be applied in a more general case, or in other solutions. Its heavy
usage of external ontologies provides high semantic interoperability by design.

3. SSNis a developed model of the IoT in general, but with strong focus on sensor
networks. It is based on DUL, and is clearly modularized, which makes it a
good candidate for extensions into concrete systems and implementations. This
is evidenced by the fact that other ontologies, evaluated here, make good use of
it. When it comes to specificity, it places itself in the middle between oneM2M
BO and OpenloT.

4. IoT-Lite is an extension of selected SSN modules, mainly to include actuators.
Rather than focusing on providing a detailed description of a delimited problem
space within the IoT, it approaches the modelling problem from the perspective
of an implementation device. It aims to deliver a small, but complete, model in
order to simplify processing of semantic information. This is also its distinctive
characteristic.

5. SAREF is a model with a strong focus on its own area—of smart appliances. Even
though mappings to other standards exist, SAREF was developed from scratch to
represent a specific area of application of the IoT. In this area, it delivers a strong
and detailed base, that is also clear and easy to understand. At the same time, it is
general enough to be used when extended to other domains, or solutions. Interest-
ingly, all these ontologies almost completely disregard hardware specifications.
It seems that the “place” of a device in an IoT system is much more important to
ontology engineers than its hardware specification and resulting capabilities.

! http://ai- group.ds.unipi.gr/kotis/ontologies/IoT-ontology.

http://ai-group.ds.unipi.gr/kotis/ontologies/IoT-ontology

INTER-IoT Architecture for Platform Interoperability 59

Results of our investigations show how different the existing conceptualizations
of the same domain can be, depending on the context of the approach, and the applied
ontology engineering methodology. Separately, we conclude that, while each con-
sidered ontology has its uses and caveats, two of them stand out in the context of the
INTER-IoT project. These are SSN and SAREF. The first presents a model focused
on sensors, but still robust enough, and with strong ontological basis. Those features
make it a good choice in terms of interoperability (which is the focus of the project).
In addition, the SSN is modular, extendable, and has been actually implemented
and extended in other systems and ontologies (e.g. IoT-Lite and OpenloT). SAREEF,
on the other hand, is a thoroughly modern ontology with many recommendations
and relatively large scope, despite targeting only smart appliances. It already has
alignments with other models, thus improving its interoperability. In light of the
facts and analysis presented in this section, the SSN ontology will be used as the
basis of INTER-IoT reference meta-data model. We have found that it covers many
meta-data requirements identified in INTER-IoT and is designed to be modular and
extendible. Itis also a core ontology, with many implementations in already deployed
and well-tested systems. This makes it, in our view, the best currently available core
IoT ontology for INTER-IoT.

2.3 Functional Model

The focus of the INTER-IoT Functional Model is to break up complexity in systems
by grouping similar Functional Components (FC) together. The Functional Decom-
position (FD) is the process by which different FCs are identified and related to one
another into Functional Groups (FG).

The Functional Model is divided into 9 FGs:

e At the bottom, we put the FG Device. This FG regroups all the Devices according
to the definition in the Domain Model.

e AsINTER-IoT also deals with Platforms that opaquely cover some of the devices,
the IoT Platform FG is defined. Those two FG are outside the scope of the INTER-
IoT FM, and are outlined only to show where the original data and interaction are
based upon.

e As both Devices and IoT Platforms need to transfer information, a FG Commu-
nication has been identified.

e A number of main abstractions identified in the Domain Model have been put into
the IoT Service FG, namely Service, Platform Service, Digital Artifact, Virtual
Entities, Resources.

e The Service Interoperability FG Includes the Interoperability Service and the
VE Interoperability Service.

e Inthe Ontology FG there are the Platform Ontology and the Global Interoperability
Ontology.

60 A. Bassi et al.

Applications

Semantics

Service Interoperability

Kjmoag

IoT Service

TUOUIS CUCT

Communication

N\

IoT Platforms
Devices

Fig. 2 Overall INTER-IoT functional model

e The Application FG corresponds to the upper layers. As defined in the require-
ments, the users of INTER-IoT will be also applications or systems willing to
access the different platforms.

e To address consistently the concern expressed about IoT Trust, Security and Pri-
vacy in the interoperability realm, the need for an orthogonal Security FG is
identified.

e Finally, the orthogonal Management FG is required for the management of and/or
interaction between the functionality groups (Fig. 2).

2.3.1 Communication

The Communication FG is fundamental in any [oT modeling, as it provides the capa-
bility for different entities to transfer information. In INTER-IoT case, entities may
be either devices or IoT platforms. This FG is represented by the Communication
Model (see Sect.2.4). Its focus is to provide a bridge between different commu-
nication protocols, or to encapsulate some communication with envelopes able to
carry the data towards Internet-capable proxies. As well, given the fact that in the
IoT domain there are constrained devices that may not be able to offer typical End-
to-End properties, like encryption, this FG is instrumental in setting up appropriate
schemes and abstractions for overcoming those issues—for instance, by using a spe-
cific proxy or gateway that masks the limited capabilities of a constrained device,
acting as the end node towards external nodes communicating with it.

INTER-IoT Architecture for Platform Interoperability 61
2.3.2 IoT Service

The IoT Service FGs include functions that relate to interactions on the Virtual Entity,
IoT Service and Digital Artifacts abstraction levels, respectively. To give a practical
example, we can say that in the physical world there are a number of Devices that
sense and modify the environment. The Resources associated to these Sensors and
Actuators are exposed as IoT Services on the IoT Service level. Interactions between
applications and the IoT system on this abstraction level are about reading sensors
data, or setting specific actuators. In order to apply these services, there must be
a communication scheme already in place between the devices and the final users;
furthermore, any Application can only interact with these Services if they already
know the semantics of the values. Therefore, on this level no semantics is encoded
in the information itself, nor does the IoT system have this information, it has to be
a priori shared between the Sensor and the application [14].

The IoT Service Functional Group contains IoT Services as well as functionalities
for discovery, look-up, and name resolution of IoT Services.

2.3.3 Service Interoperability

The Service Interoperability FG is central for any kind of interaction between dif-
ferent entities [15], in particular between IoT Platforms. Its main goal is to provide
the abstractions necessary for all interaction, based on the IoT Services and accord-
ing to a specific Ontology. In IoT-A, the Service Organization FG is responsible
for resolving and orchestrating IoT Services and also deal with the composition
and choreography of Services. Service Composition is a central concept within the
architecture, since IoT Services are very frequently capable of rather limited func-
tionality due to the constraints in computing power and battery life that are typical
for WS&ANSs or embedded Devices comprising the IoT. Service Composition then
helps combining multiple of such basic Services in order to answer requests at a
higher level of Service abstraction (e.g. the combination of a humidity sensing Ser-
vice and a temperature Service could serve as input for an air-conditioning). Service
Choreography is a concept that supports brokerage of Services so that Services can
subscribe to other Services available in the system. Within INTER-IoT, the Service
Interoperability FG allows not only a choreography, orchestration and composition
between different services belonging to the same system, but also between different
systems.

Therefore, the Service Interoperability FG relates to the need to interoperate dif-
ferent IoT Platforms at the Service layers. Interoperability between IoT Platforms
can be handled at different layers (e.g. device, middleware, service, etc.). The Service
Interoperability FG works at the service layer of each platform, regardless of their
underlying infrastructure.

The Service Interoperability FG has three main functions:

62 A. Bassi et al.

e To enable the access to different Entities. This includes the use of the appropriate
protocols and APIs at middleware level that each platform exposes.

e To keep track of the interconnected IoT Platforms and their devices, so that they
can easily be found, when needed. This allows the remaining groups to not to know
about the location of the platforms, or how the devices are connected to them.

e To perform device and platform interactions, like querying data from different
devices and platforms in a common way, mapping sensor data flows from a source
to a destination, offering subscriptions to sensor data, etc.

This FG makes use of the Semantics FG, for instance, to translate ontologies
from data flowing from heterogeneous IoT Platforms with its own ontology, into a
common one to be provided to a user at the Application FG.

2.3.4 Semantics

The role of the Semantics FG is to deal with the management of ontologies that are
needed for making IoT Platforms interoperable. Traditional interoperability designs
leave semantics tasks to the Application side, but this approach lacks the necessary
interoperability features. For instance, no common data processing can be made
at any component, as data ontologies are unknown. Compound services are then
very limited without semantic support, as the data from different platforms is not
compatible due to the lack of ontology. The Semantics FG defines the core ontology
used for interoperating a specific set of [oT Platforms, each with its own ontology. Itis
also able to identify the ontologies used at the different platforms interoperated for the
different devices or services providing information. The Semantics FG also performs
the ontology alignment, or the translation from an origin to a target ontology. This
ontology alignment process is just a step needed to perform the semantic translation
of content among IoT Platforms, which is the final goal of the Semantics FG. The
semantic translation among platforms, provided by the Semantics FG offers the
following functions:

e Identify or define the origin or destination ontologies of the data involved in a data
communication between IoT Platforms.

e Perform the ontology alignment from these origin ontologies to a common
ontology.

e Perform the ontology alignment from the common ontology to the destination
ontology.

The Semantics FG can provide its capabilities to several FGs with different purposes:

e Service Interoperability FG. It allows the Service Interoperability FG to perform
alignment of data ontologies from different IoT Platform services so that common
service processing can be done.

e Platform Interoperability FG. The Platform Interoperability FG can use this FG
when particular services need to translate ontologies from data flowing from het-
erogeneous [oT Platforms with its own ontology into a common one to be provided

INTER-IoT Architecture for Platform Interoperability 63

to a user at the Application FG or, for instance, to interconnect sensor data from
one to another platform each one of them having different ontologies.

e Device Interoperability FG. It allows this layer to perform ontology translation
of data between devices, when making Device to Device interconnections, if data
format or data ontology is different.

e Application FG. Although users, at the Application FG, will usually need to use
the Service Interoperability FG, Platform Interoperability FG or Device Interop-
erability FG to make IoT Platforms interoperable in different ways, there is a
possibility that the services provided by the Semantics FG can be of high value to
an external user. This is a secondary functionality of interoperable IoT Platforms,
but it’s considered interesting when, for instance, a user wants to orchestrate its
own services using raw data from different IoT Platforms and this data needs to
be semantically homogenized.

2.3.5 Security

The Security FG is responsible for ensuring all the security aspects involved in the
interoperability of IoT Platforms. The security in our realm has two faces:

e Management of the security aspects related to the connection with underlying
IoT Platforms. This implies to accomplish with the different security features that
the platforms require. INTER-IoT will need to tackle the user authentication for
connecting to a platform, the authorization management (e.g. use of authentication
tokens) and the encryption of some communications. Moreover, the access to
the different IoT Platforms maybe user-based or anonymized depending on the
decision of platform owners, so it must be handled by INTER-IoT with flexibility
for each scenario.

e Management of the internal security of INTER-IoT. The connection to INTER-IoT
must be secured, with appropriate authentication capabilities, and authorization
management. The identity of each user must be preserved, so much for keeping the
identification until the IoT Platform, as to keep track of the anonymization when
talking with the IoT Platforms. This internal security also implies the permission
assignment to specific IoT Platforms and its resources (devices, services, etc.)
under certain conditions for instance, a platform owner may wish to give access
to a subset of devices to a set of user roles, but only within a time range, or when
mobile devices are at a certain location.

The Security FG interacts with all the different groups and will allow that certain
accesses are made, or that certain interconnections between two platforms are autho-
rized or not.

64 A. Bassi et al.
2.3.6 Management

The Management FC considers all the functionalities needed to rule the interoper-
ability among different IoT Platforms. The Management FC is thus, responsible for
initializing, monitoring and modifying the operation of the interoperability among
IoT Platforms. The main reasons for needing management fall within the following
groups:

e Cost Reduction Users obviously want to operate a system at the lowest possible
cost. This implies that the design of the solution should satisfy a great number of
potential users and situations so that the cost can be recovered among many users.
To achieve this, the design should be as multipurpose as possible. It means that
the system should parametrized to a wide range of scenarios and user needs. The
Management FC will be responsible for setting up these parameters for any final
deployment of INTER-IoT.

e Lack of design experience We cannot assume that users of INTER-IoT will
always be high-skilled IT engineers that can easily understand all the concepts
and apply them right, finding good solutions for each and every problem. Some of
the problems that our end users will face, arise during the operation phase of the
system, not during the design phase. For instance, an IoT Platform can decelerate
its performance or even shutdown completely, some devices can have malfunctions
overloading with irrelevant data, some external component can inject too much
traffic in form of requests, like a DDoS attack or a service become unavailable at a
certain moment. To address this reality, the Management FC will need to include
capabilities to mitigate the impact of these issues without a necessary good design
of the interoperability made by an INTER-IoT user. Some examples of this would
be to monitor IoT Platforms state or to handle incoming requests.

e Fault Handling Failures are inherent to any operating system. They can have
many causes, not being possible to prevent all the failures. As the consequences of
these failures can be very severe, it’s necessary that the Management FC includes
strategies and actions to control the operation of the interoperability solution. Such
control implies the monitoring of the whole system, the prediction of potential
failures, the detection of existing failures, the mitigation of their effects and, if
possible, to repair them. The Management FC is responsible for addressing these
features, through monitoring capabilities and the possibility to change operational
parameters during run time, such as platform and device registries, communication
channel re-mapping, service catalog status, etc.

e Flexibility Traditional interoperability design is based on specific user require-
ments, which drive the design of a specific solution by, for instance, defining
specific communications or translations between two [oT Platforms. The danger
of this approach is that, on one hand, requirements can change in time, affecting the
already deployed solution, and on the other hand, each interoperability scenario
may have its own specific requirements. Instead of designing a new interoperabil-
ity solution each time, it is better to include some flexibility in INTER-IoT, so
that the Management FC can adapt to different situations and react to changes

INTER-IoT Architecture for Platform Interoperability 65

during the operational phase. Some flexibility features have been included in the
requirements. The Management FC is responsible for supporting these features
during the operational phase. Some examples of this is the ability to use different
ontologies for the same IoT Platform and change them during runtime, to be able
to define new services and have them available, or to define new rules for making
devices interoperable among them.

2.4 Communication Model

2.4.1 Communication Protocols on IoT Platforms

The INTER-IoT Communication Model aims at defining the paradigms for connect-
ing the elements that compose any IoT system. As the IoT domain is composed by
different kind of nodes, and includes resources that are constrained, the communi-
cation needs to focus on the whole communication spectrum from the device to the
application level.

The adoption of gateways and brokers is necessary given the variety of environ-
ments presents in different IoT systems. Simplifying the INTER-Layer solutions,
and being the aim of these the creation of interoperability between elements from
the same of different IoT system, it easy to see that all communication endpoints are
perfectly covered as mediators that understand several protocols are implemented at
each of the layers; in particular:

e Device Layer—Implementation of a gateway.

e Network Layer—Implementation of an SDN network (with controller) to make
the translation from constrained sensor networks to IP-based networks with the
collaboration of the gateway.

e Platform Layer—Implementation of a middleware that acts as a broker or inter-
mediary between platform communication.

e Application Layer—Implementation of a service compose modeler to orchestrate
the composition of services.

e Data and Semantic Layer—Implementation of a channel-based semantic mediator.

However, once we have the solutions implemented at different layers (INTER-
Layer), the communication of these solutions with other systems, e.g. using INTER-
FW, is carried out without any kind of constrain. That is, both sites or artifacts
that want to communicate are located in a non-constrained environment, so that,
the communication between INTER-IoT interoperability solutions and INTER-FW
is performed over common non-constrained protocols e.g. HTTP with REST, and
without the use of any broker, mediator, gateway or intermediary.

66 A. Bassi et al.
2.4.2 INTER-IoT Domain Model Element Communications

Device to Device Interactions

In Device to Device interactions, the Device is a Sensor and Actuator, or both, and
with a unique direction for it to be addressable. This is the main component for the
interaction and with this is representing the Physical Device in our Domain Model.
Additionally, other resources of the D2D gateway, the N2N network or the Platform
will appear in the communication. In INTER-IoT view, the Device (Sensor, Actuator
or Tag) represents the objects we desire to interconnect. Physical and Virtual Entities
are concepts implemented by the gateway as well as the Augmented Entity and the
Interoperability resources or Services are provided by the components within the
D2D gateway solution.

Network to Network Interactions

In this interaction, the elements or entities involved in the communication at network
level can be easily explained by means of the following use case:

¢ Device communicates with resource in the network: In this case, the interaction
takes place within the network, when a device or entity interacts with a resource
or service hosted and running in the in the network, or even when one or both
element that want to interact belong to this network (see Fig. 3).

e Platform service or a resource communicates with another resource in the
network: The domain model element communications affecting the network layer
are the IoT Platforms and Platform services (red) requesting information about
the IoT Services (green) available in the resources specifically network resources
(yellow) (see Fig.4).

e Resource on the network interacts with a virtual element: In this example there
is a network resource, that connects to an entity, specifically virtual entity located
on the network. This example seems simple but involves quite important process
that is the control and monitoring of network resources (Fig. 5).

In some particular cases, an inclusion of another entity of the Domain Model,
that is the Virtual Entity Interoperability Service might be needed. This element is
required when an Interoperability Service is running in some node of the network
and performs gathering of information from elements located on different network
domains.

Middleware to Middleware Interactions

The components that interact with underlying IoT platforms are the entities repre-
sented by IoT Platform and Platform Ontology, which is extended with the Generic
Ontology of IoT Platforms module. This module is a new concept that supports
semantic translation between [oT Platforms while the IoT Platform entity represents
knowledge about a specific IoT middleware deployment. Thus, these two entities
appear in all Middleware to Middleware communication scenarios. In specific cases,
they are aided by two other entities: the Platform Interoperability Service and the

INTER-IoT Architecture for Platform Interoperability 67

acts on Identmies.

Fig. 3 Domain model entities involved in network-to-network communication when the device
communicates with resource in the network

Fig. 4 Domain model

entities involved in - 1t =

device-to-device

communication when 1TSS getuses metadata wan . - phsttorm Ontelo
ot platfors = ertology) 1

platform communicates with
another resource in network

kil T et
- m_ @ ot W Patren
<o e VE i assorited wah § 0,

gy
K i vt
L]
.
 Netwark | On-Deween
 Reseunce —

68 A. Bassi et al.

Service Active Digital Passive Digital VE Interoperablity "
| 1 Artifat Artifact Service :
containg
VElnt th
XOR A "
Entity (Thing) i
) (e
- w contains
1. *
o1 o contains, o1
. 1.* ayEnt
WIS urs a1 1 .
T Service i Ye P i phyent | -5
1oT Service - VEchiklren ! preeanis Syt FPhysical Entity | | piene
VE is associated with § * ; phyEnt
g - phyEnt
- phyEnt
phynt
exposes
is associated has information
with abeut/
acts on
s
g device,
contains Device
(%}
MNetwork On-Device hosts 1
Resource Resource - monitans dentifies
Actuator Tag : : Sensor
reads
tag
a5 on

Fig. 5 Domain model entities involved in network-to-network communication

Platform Service. There are also additional entities, Interoperability Service with
extended entities, each with different interoperability feature among Services. Plat-
form Interoperability Service is an abstract concept whose main purpose is to interop-
erable different Services from Platforms. The implementation of the Domain Model
in the MW2MW and DS2DS architecture, is partitioned through various segments:
(i) The IoT Platform is implemented in Bridges segment; (ii) Interoperability Ser-
vice is implemented in Services segment; (iii) Generic Ontology of IoT Platforms is
utilized by IPSM (via alignments with platform ontologies), Services and Commu-
nication, and Control segments; (iv) Platform Ontology is in Services; and (v) loT
Service is implemented in specific IoT Platform.

Examples of Middleware to Middleware interactions, with included additional
entities, are:

Example 1 User accessing an [oT Platform through INTER-MW.

The interaction between user and IoT Platform has changed. The Platform Ontol-
ogy used in previous interaction is replaced with the Generic Ontology of IoT Plat-
forms which should extend, and also cover, all the features of different ontologies.
Through the Interoperability Services, users have unified access to IoT Platform
issues. The IoT Platform entity is used in the interaction between user and IoT Plat-
form (marked with red circle, see Fig. 6) and thus, with their assistance, the interaction
with specific segments of underlying IoT Platforms (marked with yellow circle) is
now possible (Virtual Entity, Augmented Entity, Physical Entity).

INTER-IoT Architecture for Platform Interoperability 69

B

s v by

i i £

Burvies Acves Dgad Fasstes Dighal VI meroparsbiey
Anfect Aeatea

G L SoT Sarvien 61 T Vitest ity 1 reprmnts s [remp—

Fig. 6 Domain model entities involved in middleware-to-middleware communication when human
user accesses an [oT platform through INTER-MW

Example 2 User configuring an IoT Platform through INTER-MW.

When the user attempts to configure an IoT Platform through the INTER-MW,
the entity Generic Ontology of IoT Platforms, which represents core ontology, is
needed and, in case a new Platform is added, the Generic Ontology of loT Plat-
forms is then extended to cover all the features of the different ontologies stored in
Platform Ontology. The entities like loT Platform (implementation of the Platform
itself), Platform Service (provides the support configuration of a specific platform)
and additional entity Interoperability Service, which supports the configuration of
different Services at different platforms (see Fig.7), are also needed.

Example 3 Direct Middleware-Middleware communication between IoT Platforms
through INTER-MW.

Communication between IoT Platforms through INTER-MW creates the align-
ments generated by each Platform ontology separately, which is used by Generic
Ontology of IoT Platforms entity. The latter enables communication without a mutual
understanding of ontologies. The IoT Service entity of one Platform initiates commu-
nication/interaction with different devices and is part of loT Platform entity, which
provides the explicit ontologies used within platform (see Fig. 8).

70 A. Bassi et al.

plat

ol Platform
1
- ot platform defines
Interoperability
i G adal
Service Global taem
P¥ interoperable with
uses Ontalogy
1- goit
Platform 10T Service Semantic
Serviee Interoperability Interoperability
Interoperability
covers
omtalo
. platform Ontalo
platiorm Ontolog,
provides PR reads writes Digital Artifact describes
from 1o
Service | Active Digital Passive Digital
| Artifact Artifact
Lery
' 1 plier
XOR

* - platServ o1 aa contains

Fig. 7 Domain model entities involved in middleware-to-middleware communication when user
tries to configure an IoT platform

Application and Services to Application and Services Interactions

The components of the Domain Model involved in the communication at Application
and Services level include a new entity named Interoperability Service. This entity
defined in the previous subsection is extended by Platform Service Interoperability,
IoT Service Interoperability and Semantic Interoperability entities, being the super
class from where the latter entities are inherited. In the AS2AS interoperability case,
attention is focused on the Platform Service Interoperability entity, directly related
with the services offered by the IoT platform that we have been analyzed. The entities
related with semantics will be used in those cases that Semantic Mediator will be
needed to communicate two services [14].

INTER-IoT Architecture for Platform Interoperability 71

[~ Interoperability
| Service
Platform loT Service
Servico Interoperabllity |
Interoperability
covers
- platform Ontolog
provides e reads writes Digital Artifact doscribos
from to
_ Service Active Digital Passive Digital
—_— Artifact Artifact
ey
* 11 - piSer
A XOR
Platform
Service
* - platServ (RREE contains
oo - . A EE

o1 VEchidren Vi
VE is associated with § "

- sendce

wl Senice

Fig.8 Domain model entities involved in middleware-to-middleware communication between loT
platforms

Example 1 User creating a Composed Service.

In this particular use case, just the Interoperability Service entity that includes
Platform Service Interoperability entity as its origin, has been included (Fig. 9).

Example 2 Service of an IoT Platform communicates with a service from another
IoT Platform.

72 A. Bassi et al.

- ot platform
S defines
Global matadata
99t Interoparable with
uses 1 | Ontelogy
1- goit
. loT Service Semantic
Interoperability Interoperability
i covers
1
- ontology
- platform Ontology * \
_ Platform
- platform Ontology
provides provides - reads writes - Digital Artifact describes

~ Service Active Digital Passive Digital
3 Artifact Artifact

XOR

* - platSery i
0.1(01 contains VE-v

-w0TS,
uses - ioT Service : 7 -wls i 0 I. |
[1T Service | - VEchildren I Virtual {

- 0T Service
VE is associated with §

- SENICE

Fig. 9 Domain model entities involved in application and services-to-application and services
communication creating a composed service

In the second use case it is indicated that, in some cases, it is necessary to use the
Semantic Interoperability entity to communicate two services that are structured with
different format. Here, the Interoperability Service entities allow to send messages to
any instance of IPSM (publish them to input topics of semantic translation channels)
for translation, and receive translated messages from IPSM (consume them from
output topics of semantic translation channels). The assumption is that input and
output messages have to be in RDF, specifically in JSON-LD message format (Fig.
10).

Data and Semantics to Data and Semantics Interactions

The domain model interactions in DS2DS do not include any new elements.

INTER-IoT Architecture for Platform Interoperability 73

1
1 - plat

- 10T Senvice

- iot platform 1- 0T Platform
1
il defines
i Service t metadata
with
uses
1-'goit
loT Sarvice Semantic
covers
1
- ontology
- platfarm Ontolodg,
- Platform !
Ontology
- platform Ontology
provides provides — reads writes - Digital Artifact describes
from te
Sarvice Active Digital Passive Digital
1 Artifact Artifact
sen |
1 plSer
p— = XOR
."kﬂﬂlﬂ
Service
v - platServ 1 i
0 “0 1 contains VB-v
- i’ R .
uses - loT Service LTS 4 o L
* loT Service | k - VEchidren Virtual |

VE is associated with §

* - service

Fig. 10 Domain model entities involved in application and services-to-application and services
communication between platform’s services

2.4.3 INTER-IoT Channel Model for Interoperability

Device to Device Interactions

The updated Communication Model defining device to device interactions considers
two cases. The first one is shown in Fig. 12 considering device to device commu-
nication through the same physical/virtual gateway. In this case, interoperability is
achieved since a sensor and actuator with different network and protocol stacks are
able to interact (Fig. 11).

The second case is shown in Figs. 13 and 14, it considers device to middleware and
middleware to device interactions through the gateway. In this case, device to device
that are linked to different gateways is achieved through the middleware platform.

74 A. Bassi et al.

Fig. 11 Domain model entities involved in network-to-network communication when the device
communicates with resource in the network

Fig. 12 Device to device channel interactions

Data

End to end

Network & 1D

Link

Physical

Physical Virtual MW

Gateway Gateway Platform

Fig. 13 Device to middleware channel interactions

INTER-IoT Architecture for Platform Interoperability 75

Application
Data
Presentation
HTTP HTTP l WebSocket | | WebSocket [MaTT MaTT
End to end L
TCP | TCP TCP TCP | UDP | | UDP
Network & ID i & B [3 & | | L 5 ! | :
o P P P LoRgWAN P
Link Ethernet Ethernet Ethernet Ethernet LoRa Ethérnet
Physical Ethernet Etharnet Ethernet Ethernet LoRa Elhl!'met
MW Virtual Physical m
Platform Gateway Gateway _

Fig. 14 Middleware to device channel interactions

Application Application
Data | e N i 1 -
Presentation Presentation
End to end HTTP | OpenFlow OpenFiow OpenFlow L Session
TCP TCP | | Teep | Ter |t 1| TCP
Network & ID | I 1 1
a— P P P P P
Link Ethemet Ethernet Ethemet Ethemnet Ethernet
Physical Ethemet Ethemnet Ethemet Ethemet Ethemet
ites | | Switch X | | Controller | Switch Y | | Platform |

Fig. 15 Network to network channel interactions

Network to Network Interactions

In the Network layer we also find protocols and communication paradigms that have
to be implemented to allow different nodes that compose the network connect with
each other and exchange data and control information about the network. In this case,
in addition to the data coming from the devices and the platforms, in the network layer
we have extra information or control information about the status of the network.
Additionally, these extra data is used for configuration purposes. This information
flows from the virtual switches to the controller using specific protocols for network
management as is OpenFlow, as it can be observed in Fig. 16.

In Fig. 15 it is shown the updated communication interaction between a gateway
and a platform through the SDN network. Hence, the information travels through the
SDN network, implemented by virtual switches, and in some cases control informa-
tion also is transported among the network from the switches to the controller.

Additionally, an example of communication of the control and management infor-
mation appears in Fig. 16 where, using protocols as OpenFlow and OVSDB, the new

76

A. Bassi et al.

ication
Data o

Presentation

Endto and OpenFlow (OpenFlow OVSDB OVSDB
TCP TCP TCP TCP
Network & ID
IP P IP P

Rl Ethernet Ethemet | Ethemnet Ethernet
Physical Ethernet Ethernet Ethernet Ethernet

Switch X Controller

Fig. 16 Network element to controller channel interactions

Switch Y

management rules can be added into the virtual switches. In the example, a switch
with no rule associated to a determined packet communicates with the controller to
take a decision about the packet. The controller then performs an action, based on
the network parameters, to decide the next hop of the packet. Later on, the controller
communicates with the switch to insert this new rule within its flow tables.

Middleware to Middleware Interactions

An example of middleware to middleware communication is indicated in the Fig. 17.
Application of Platform A on the left side of the image (a) wants to send a message
through HTTP protocol to another application of another IoT Platform B, which is
shown on the right side of the image. The message must first cross the Bridge A
(a)—(c) from the Platform A into INTER-IoT middleware. The Bridge A (marked
as 1A in the picture) performs syntactic transformation of the message from JSON
to JSON-LD, which will be later semantically translated by IPSM. By Rabbit MQ
the message is sent through the AMQP protocol to the IPSM Request Manager
component (2) (c)—(d) that orchestrates the communication (e)—(f) between Bridges
and the IPSM component. The semantic translation of the incoming message (f)—
(g) is performed in the IPSM. The message is then sent back to the IPSM Request
Manager (g)—(h) which forwards the message to the Services section (3) (i)—(1), where
additional processing of message may occur. The (processed) message through the
IPSM Request Manager (1)-(m) reaches the IPSM (n)—(0), where again, the semantic
translation occurs. Through the IPSM RM (p)—(q)—(r) the message reaches the Bridge
B (1B) which is associated with the receiving Platform B (s)—(t). The Bridge B routes
the message to the target platform through WiFi instead of Ethernet, demonstrating
the technical agnosticism of the INTER-IoT middleware.

INTER-IoT Architecture for Platform Interoperability 77

(a) by (€} (d) (e} @ (@ M) (0 (k) (m) (n) (@) (p) {a) (r) {s) (M
Data I

| sson [ison-oison-o lson.Lo] Lison.olson.cofison.1o| son-Lo) o | P
End to end Il ApqR | karra | | karkd || Karwa || pusod [karid || daeic] | | Rarca wrre| | | | wrTe
T¢p 1¢e | fce| | Tep| | frep| H [rep |||Tee|| Ter| H fep|H free | fTee || Ter|H | Tee

Network & 1D I ' -

P P | |e [G P P NG [P P
Link | | Ethamet Efhemet | Ethemat) | Elnemdt | | Etheret |§themet | Etherndt | | Efhemd | | Efhermet | Ethemet | WiFi WiFi
Physical | | Ethqmet | Ethémet| Eemt | Etheme |EE"W|H""'“|E"""" .| !Em| hemek | WiFi | WFi

ol @) L1 C 1 el@Uan L C1 @l—s L

[P | [ovanble¥esur | [#5U || o)ipolh mor(h Seves || P54 || coouiitbooces || "2 |

Fig. 17 Communication diagram in middleware-to-middleware interoperability

Data el et .
End to end
TcP TP e TCP i e
Network & ID
P P P P IP &
Lok | | Ethemef dihernet Elhemet | Etemdt Efemet [SRERemet
Physical] Ethemel [?“Em@ ﬁ‘ﬁﬂﬂ Ethemet [st

Fig. 18 AS to AS element channel interactions

Application and Services to Application and Services Interactions

Services from the same or different [oT systems are communicating with the Orches-
trator in the INTER-IoT AS2AS solution using HTTP or WebSocket protocol. Hence,
the communication between IoT services is performed using these high level com-
munication protocols. To access these [oT services, primarily RESTful Web service
is used. Thus, requests made to a resource’s URI will elicit a response that may be in
XML, HTML, JSON or some other defined format. The response may confirm that
some alteration has been made to the stored resource, and it may provide hypertext
links to other related resources or collections of resources. Using HTTP, as is most
common, the kind of operations available include those predefined by the HTTP
methods—GET, POST, etc.

Another commonly used communication protocol at this level is SOAP that spec-
ifies what information is exchanged between web services available in the deploy-
ment. It uses XML, with data information related with the service, for its message
format, and relies normally in HTTP or, in exceptional cases, in SMTP, for message
negotiation and transmission.

So that, as Fig. 18 shows, the application layer is in charge of translation of com-
munication protocols such as REST and SOAP form one to another and, moreover,

78 A. Bassi et al.

the transformation of the message formats, if needed, to achieve the interconnection
among these IoT services.

Data and Semantics to Data and Semantics Interactions

Interactions between Domain Model elements on DS2DS layer are exclusively
between an IoT artifact (platform) and its ontology. They are two-fold and divided
into preparation of ontology and its usage. In the INTER-IoT approach, every plat-
form (system, application, etc.), which would voluntarily like to interoperate with
one or more other platforms needs to be prepared and willing, first. In order to enable
semantic interoperability, and explicit ontology is needed. Some platforms, or mid-
dlewares (e.g. UniversAAL, OpenloT) already need to have OWL ontologies ready
before deployment. These ontologies can be used in INTER-IoT. In other cases, any
semantics present in a platform needs to be extracted and formalized into an OWL
ontology. In short, lifting to OWL is a process in which semantics of platforms,
sometimes contained in data schemas, are made explicit and stored in an ontology.
The most popular languages that can be used in lifting are: XML, RDF, JSON LD,
but other formalisms are also acceptable. Such formal description must cover all
aspects of data communication that will be needed for interoperability. It must rep-
resent entities (and their properties), which exist “inside” of the artefact. This formal
description is to be used in creation of platform ontology, as well as in instantiation
of communication channel(s) needed to send/receive messages to/from other arti-
facts (platforms, devices, middleware, services, or applications). Once a platform
has an ontology it is then used to create alignments to and from the GOIoTP, that
later serve as configuration for IPSM. The semantic translation process that takes
place inside IPSM is non-discriminative when it comes to contents or intentions of
communication. It simply translates the meaning of messages, according to configu-
ration of the communication channel that received the messages. Dynamic creation
of communication channels allows DS2DS interactions to serve multiple purposes
and assist in operation of other INTER-IoT components, as well as other artifacts,
if they wish to use IPSM as a “stand-alone” service within INTER-IoT. It should
be stressed that data processing within a single artifact can be represented through
more than one ontology (or, possibly, modules within a single modular ontology).
Such situation can materialize when different ontologies are used in different “con-
versations” (concerning different aspects of data, usually with different artefacts). In
this way, proposed approach gains flexibility and addresses the issue of scalability
(semantic processing is applied to smaller (sub-)ontologies).

3 INTER-IoT Reference Architecture

While an Architectural Reference Model (ARM) [16] is a description of elements and
relation types together with a set of constraints on how they may be used, a Reference
Architecture (RA) is a blueprint for developing Concrete Architectures. Specifically,
as shown in Fig. 19, a reference architecture is a Reference Model (RM) mapped

INTER-IoT Architecture for Platform Interoperability 79

. Reference Software

architecture architecture

Architectural
Reference
Model

Fig. 19 Reference architecture derivation

onto software elements (that cooperatively implement the functionality defined in
the reference model) and the data flows between them. The use of a RM and an ARM
to create a RA to instantiate a software architecture in the domain of IoT is widely
described in IOT-A [3] and appears previously in [17].

It is worth noting that a RA is not a concrete architecture; its role is not to com-
pletely specify all the technologies, components and their relationships in sufficient
detail to enable direct implementation but rather to provide a reference to derive
concrete system architectures.

The main scope of a RA is to apply different views to functionality areas, in order
to identify the relationships between different modules and the need of different
functions. In the following subsections, we describe in detail the most important of
such views related to Inter-IoT RA which are the Functional View and the Information
View.

3.1 Functional View

Figure 20 shows the approach we followed for defining the final INTER-IoT Func-
tional Architecture (FA) . There are 9 different functional groups: Devices, IoT Plat-
forms, Management, Security, Applications, Communication, IoT Services, Service
Interoperability and Semantics [18].

Devices and IoT Platforms are kept “separate” in order to illustrate the differ-
ent nodes that can be part of an INTER-IoT architecture. However, both of these
groups fall outside the scope of the analysis, together with the Application group,
and therefore will be ignored.

For what concerns the other 6 functional groups, the explanations are in the fol-
lowing subsections (Fig. 21).

80 A. Bassi et al.
[Applications J
() ()

Semantics
[Service Interoperability]
[10T Service]
[Communication]
(U J (& /)
-
[IoT Platforms J
Devices

Fig. 20 Overall functional architecture

[Applications]

~
J

Semantics ()
Ontology Ontology
Alignment Resolution
Service Interoperability
Service
Service Composition c
IgT Service
- Service IoT Service /E Manageme: Node
IoT Service)(Resolution)(VE Management)(Interoperability)
c P
Hop-to-Hop Network End-to-End Authentication
C Interoperability Communication

U J

[IoT Platforms]

Fig. 21 Mapping of the modules in the FA groups

Fault

Reporting

Member

State

h00al

N I LI I

~
&

~

Devices

3.1.1 Semantics

The Semantics FG is the central Functional Group that addresses the challenges
related to semantic interoperability of IoT Platforms. The main purpose of this FG
is to provide support for the Service Interoperability FG.

The Semantics FG consists of two Functional Components (see Fig.22)

INTER-IoT Architecture for Platform Interoperability 81

Ontology Ontology
Alignment Resolution

Fig. 22 Semantics FG

Semantics

e Ontology Resolution;
e Ontology Alignment.

The Ontology Resolution FC is responsible for managing the different ontologies
used by various IoT Platforms connected through INTER-IoT. These ontologies have
a double approach:

e Syntactic knowledge;
e Semantic knowledge.

The syntactic knowledge is about being aware of the syntax that the IoT Platforms
uses for interchanging data, what usually is related to the communication protocol
being used or the type of the API: JSON, XML, etc. The semantic knowledge is
about being aware of the structure and meaning of the data, usually through OWL
or similar definitions (JSON-schema, XSD, etc.). The Ontology Resolution FC is
the component that stores these data descriptions and offers access to them for the
Ontology Alignment FC.

The Ontology Alignment FC is responsible for performing the alignment from
a source data with an ontology to a target data with its own ontology. It makes the
data translation between two ontologies, using the ontology definitions resolved by
the Ontology Resolution FC.

3.1.2 Service Interoperability FG

The role of the Service Interoperability FG is to support the Application and Service
to Application and Service (AS2AS) interoperability through the definition and exe-
cution of new compound services that make use of already existing services in the
underlying IoT Platforms. Therefore, its goal is to use services from different IoT
systems and create new services based on them.

The Service Interoperability FG consists of three Functional Components
(see Fig.23):

Service Interoperability

Service. Service Composition Service Resolution
Orchestration

Fig. 23 Service interoperability FG

82 A. Bassi et al.

e Service Resolution;
e Service Composition;
e Service Orchestration.

The Service Resolution FC is responsible for the storage of what we call flows.
A flow is a logical definition of a sequence of steps, each of which can be a service
existing in an [oT Platform. The functions of the Service Resolution FC are three:

1. to resolve the access to IoT Platform services that can be used in a flow,

2. to store the definition of services and atomic components so that they can be used
by the Service Composition FC and instantiated by the Service Orchestration FC,

3. to provide storage and access to the logical definition of flows.

The flows that are defined for service interoperability have to be stored by the
Service Resolution FC, also enabling the semantic cataloging of services and their
discovery.

The main role of the Service Composition FC is to design new compound services
based on services that IoT Platforms exposes. These services have been previously
defined and cataloged by the Service Resolution FC. The new services are designed
like flows which will be later executed. The flows that are designed by the Service
composition FC are stored by the Service Resolution FC.

Finally, the Service Orchestration FC is responsible for the execution of the
flows that are stored in the cataloger managed by the Service Resolution FC. The
execution of these flows are initiated by triggers (user request, [oT Platform event or
alert, data received, etc.) which have been defined for each flow.

3.1.3 IoT Service

The IoT Service Functional Group is responsible of linking the existing services,
devices and platforms. From the organisation point of view, it’s the Functional Group
that bears the biggest difference from the previous version of the Functional View.
In order to simplify, the previous functions and concepts that were listed in the
Device Interoperability FG and Platform Interoperability FG are now belonging to
this FG. As well, the communication FC is taken out of this FG, and, as it was done
in the original IoT-A Functional Architecture, is it a Functional Group that allow
communication between the different nodes (Devices and Platforms) (Fig. 24).

The IoT Service FC is responsible for managing all Services linked to the IoT
nodes. These include functionalities for discovery, look-up, and name resolution
of IoT Services, as well as IoT Platforms catalogs with their characteristics. This

IoT Service
. IoT Service anas Node
(IoT Service j [Resolution j [VE Management j [Interoperability

Fig. 24 10T service FG

INTER-IoT Architecture for Platform Interoperability 83

includes, for instance, all functions needed for connecting to an IoT Platform and
accessing their resources (specific discovery, lookup, data query, data subscrip-
tion, device registry, etc.), using appropriate protocols and APIs that each platform
exposes. These functions were isolated in the Platform Access FC in the previous
version of the FV; however, as they can be considered as IoT services, we tried to
simplify the layout putting them within the IoT Service FC.

In general, these services expose resources of devices to the rest of the components.
They may allow to gather information about a sensor in a continuous asynchronous
way—after a subscription, for instance—or it may allow to submit requests to an
actuator. A specific IoT Service could be to provide access to recent history of sensor
observations. In the final design, the IoT Service FC is also responsible for perform-
ing device and platform interactions, like querying data from different devices and
platforms in a common way, mapping sensor data flows from a source to a destina-
tion, offering subscriptions to sensor data; in the previous FV design, this function
was belonging to the Platform Service FC.

The typical functions of the IoT Service FC are two:

e To access resources, interacting in three different ways: (1) to query information
about a resource of a device, e.g. get current temperature of thermometer X, (2)
to subscribe to observations about a resource of a device and receive notifications
asynchronous for each new observation, e.g. receive all temperature measurement
below 0 °C for thermometer X, (3) to submit a request to a resource of an actuator,
e.g. switch light actuator Y on.

e To provide the necessary functions for finding the appropriate IoT Services, which
may include: discovery, lookup, service locators, service management, etc. The
IoT Service runs in the virtual plane, decoupling the interaction with the resources
of devices from their usage.

The IoT Service Resolution FC allows any system to be able to contact IoT
Services. AsinIoT-A, it will also gives the different services the capability to manage
their descriptions, in order to be discoverable by a class of users.

The Virtual Entity Management FC allows the interaction with an IoT Platform
on the basis of Virtual Entities rather than IoT Services. It contains the functions to
associate the Virtual Entities with the IoT Services and with the physical things they
represent. The typical functions of the Virtual Entity FC are:

e Discovery and lookup functions to find VEs and their resources and register of
new ones.

e Handling VEs, whichincludes getting the values of the entities’ attributes, updating
this data, and accessing its recent history.

The Node Interoperability FC is responsible for implementing the primitives for
accessing the different nodes (both devices and IoT Platforms).

In case of Devices, interoperability means that rules are defined for each set of
devices. Devices may be either semantically or syntactically interoperable, meaning
that they may be able to communicate using a common communication protocol

84 A. Bassi et al.

C]
Hop-to-Hop Network End-to-End
Communication Interoperability Communication

Fig. 25 Communication FG

or their actions may be linked following a logical set of rules. Therefore, this FC
implements the directives for allowing two devices to interact.

In case of Platforms, there can also be substantial differences for what concern
interoperability, particularly at semantic level in this case, this FC will implement
the Ontology properties as specified in the Semantics FG (Fig. 25).

3.1.4 Communication

As in the original IoT-A Functional view, we thought that for simplicity matters
having a FG dedicated to handle communication within different entities would
greatly help the understanding and the usage of the Functional View in general.

However, we introduced the new concept of Network Interoperability FC. This
FC extends the original Network Communication FC, which took care of enabling
communication between networks through Locators (addressing) and ID Resolution.
As INTER-IoT is focusing on interoperability between different systems, this FC
is responsible for managing the interoperability between networks or parts of the
network that belong to an IoT deployment. We understand the network level of an
IoT deployment as the protocols, systems, and devices that work on the layer 2 and
3 of the OSI stack of protocol. The particularity of the network on the IoT is the
treatment of many different types of data flows as well as protocols to support this
communication. The Network Interoperability FC addresses the mobility of objects
through different access networks or secure seamless mobility and the backing of
real time data among the network. The operation in highly constrained environment
is also an important issue. The interoperability solution is based on software defined
paradigms but mainly on two approaches: SDR for interoperability on access network
and SDN/NFV for the core network. IoT-A

Similarly to IoT-A model, we have the Hop To Hop Communication FC, which
provides the first layer of abstraction from the device’s physical communication tech-
nology, enabling the usage and the configuration of any different link layer technology
from any kind of devices. This FC is therefore focusing on Device communications.
Its main functions are to transmit a frame from two different devices belonging to the
same network. The Hop To Hop Communication FC is also responsible for routing
a frame.

Furthermore, the End To End Communication FC takes care of the whole end-to-
end communication abstraction. This includes reliable transfer, transport and, transla-
tion functionalities, proxies/gateways support and of tuning configuration parameters
when the communication crosses different networking environments in INTER-IoT,

INTER-IoT Architecture for Platform Interoperability

(o]

5

Fig. 26 Security FG Ve Y

Authorisation

Key Exchange
and Management

Identity
Management

Authentication

this means both between devices belonging to different networks, both constrained
and unconstrained, and different IoT platforms.

This FC is responsible to set up a channel between different actors, so that they
are able to send and receive a message. It also takes care of protocol translation (for
instance, COAP to HTTP or IPv6 to 6LowPAN).

3.1.5 Security

The Security FG is responsible for ensuring the security and privacy during the
interaction of all systems (Fig. 26).
It consists of four functional components:

Authorisation;

Key Exchange and Management;
Identity Management;
Authentication.

The Authorization FC manages the different policies and perform access control
decisions. This access control decision can be called whenever access to a restricted
resource (whether a device or a specific service from an IoT platform) is requested.
For example, this function can be called from the IoT Service Resolution FC, to
check if a user is allowed to perform a lookup on a specific resource. Needless to
say, this FC plays an important role to protect privacy of users.

The basic functionalities offered by the Authorization FC (i) determine whether an
action is authorized or not—the decision is made based on the information provided

86 A. Bassi et al.

from the assertion, service description and action type, and (ii) manage policies. This
refers to adding, updating or deleting an access policy.

The Authentication FC, as the name states, provides user and service authenti-
cation mechanisms. The basic functionality it provides is checking the credentials
provided by a user, and returning an assertion (yes/no). If the requester has provided
the right credentials, it establishes secured contexts between this node and vari-
ous entities in its local environment. Therefore, the functionalities provided by the
Authentication FC authenticate a user based on provided credential, and (ii) verify
whether an assertion provided by a user is valid or invalid.

The Identity Management FC addresses privacy questions by issuing and man-
aging pseudonyms and accessory information to trusted subjects so that they can
operate (use or provide services) anonymously. Creating a ephemeral identity is fun-
damental in preserving privacy between data exchange between two parties that may
not trust each other: therefore, this FC is in charge of creating such an identity and the
necessary security credentials during the authentication process, in order to comply
with privacy directives and at the same time provide assurance about the legitimacy
of the data and identity.

The Key Exchange and Management (KEM) FC is involved to enable secure
communications between two or more peers that do not have initial knowledge of
each other or whose interoperability is not guaranteed, ensuring integrity and confi-
dentiality. Two functions are attributed to this FC:

e Distribute keys in a secure way: upon request, this function finds out a common
security framework supported by the issuing node and a remote target, creates a
key (or key pair) in this framework and then distributes it (them) securely. Secu-
rity parameters, including the type of secure communications enablement, are
provided;

e Register security capabilities: nodes and gateways that want to benefit from the
mediation of the KEM in the process of establishing secure connections can make
use of the register security capabilities function. In this way the KEM registers
their capabilities and then can provide keys in the right framework.

3.1.6 Management

Similarly to IoT-A, we followed FCAPS for the Management FG as it incorporates

already established standard recommendations from ITU-T, and already used in IoT

applications. Therefore, our Management FG is the same as the one used in IoT-A.
FCAPS stand for:

e Fault;

Configuration;

Accounting (Administration);
Performance;

Security.

INTER-IoT Architecture for Platform Interoperability 87

Fig. 27 Management FG e)\
~N
Configuration
/
4)
Fault
_ /
4)
Reporting
_ /
4)
Member
_ /
4)
State
_ /
-)

The importance of Security in the IoT context was the basis of the decision to
keep it completely separate from this WG, and to have a dedicated FG instead. As
well, we consider Accounting as an IoT Service, therefore will be covered within
that FG (Fig. 27).

In details, the Configuration FC is responsible for initialising the system config-
uration such as gathering and storing configuration from different Devices and IoT
platforms. Itis also responsible for tracking configuration changes if any and planning
for future extension of the system. As such, the main functions of the Configuration
FC are to retrieve a configuration and to set the configuration:

e The IoT-A configuration function allows to retrieve the configuration of a given
system, either from history (latest known configuration) or directly from the system
(current configuration, including retrieval of the configuration of one or a group
of Devices), enabling tracking of configuration changes. The function can also
generate a configuration log including descriptions of Devices and IoT Platforms.
A filter can be applied to the query;

e The set configuration function is mainly used to initialise or change the system
configuration.

The Fault FC handles all different failures that can happen within a given action.
As such, it identifies, isolates, corrects and logs any behaviour that is not following
the correct procedures. As in normal error handling, this FC is supposed to intervene

88 A. Bassi et al.

whenever an unexpected behaviour occurs in any FC. This FC is then notified and
can then ask for additional data or context. Fault logs are one input used for com-
piling error statistics. Such statistics can be used for identifying fragile functional
components and/or devices.

The Member FC is responsible for the management of the membership and
associated information of any relevant entity (FG, FC, IoT Service, Device, Com-
munication, IoT Platform, Ontology, Interoperability, Application) to an IoT system.
It is typically a database storing information about entities belonging to the system,
including their ownership, capabilities, rules, and rights. This FC works in tight
cooperation with FCs of the Security FG, namely the Authorisation and Identity
Management FCs. The Member FC allows to update and retrieve members belong-
ing to a specific domain.

The Reporting FC can be seen as an overlay for the other Management FCs
allowing to retrieve reports on specific set of topics.

The State FC monitors and predicts state of the IoT system. For a ready diagnostic
of the system, as required by Fault FC, the past, current and predicted (future) state of
the system are provided. This functionality can also support billing. The rationale is
that Functions/Services such as Reporting need to know the current and future state
of the system. For a ready diagnostic of the system one also needs to know its current
performance. This FC also encompasses a behaviour functionality, which forces the
system into a particular state or series of states. An example for an action for which
such functionality is needed is an emergency override and the related kill of run-
time processes throughout the system. Since such functionality easily can disrupt
the system in an unforeseen manner this FC also offers a consistency checks of the
commands issued by the change State functionality in the State FC. The functions of
the State FC are to change or enforce a particular state on the system. This function
generates sequence of commands to be sent to other FCs. This function also offers the
opportunity to check the consistency of the commands provided to this function, as
well as to check predictable outcomes (through the predict State function). A second
function is to monitor the state. This function is mainly used in subscription mode,
where it monitors the state of the system and notifies subscribers of relevant changes
in state. Other functions of the FC are to predict the state for a given time, to retrieve
the state of the system through access to the state history and to update the state by
changing or creating a state entry.

3.2 Information View

The main reason about bringing connectivity to objects is to gather information
about the environment and be able to modify it. This information exchange can
happen directly between objects, or more commonly between an object and a back
system. Therefore, the way to define, structure, store, process, manage and exchange
information is fundamental in the connected objects domain.

INTER-IoT Architecture for Platform Interoperability 89

IoT-A defined a specific view (the Information view) in order to specify a static
information structure and a dynamic information flow.

Based on the IoT Information Model, the Information View gives more details
about how the relevant information is represented in an IoT system. As the Infor-
mation View belongs to the reference architecture space, and not a specific system
architecture, concrete representation alternatives are not part of this view. The infor-
mation view also describes the components that handle the information, the flow of
information through the system and the life cycle of information in the system. As
described earlier, the Virtual Entity is a key concept of any IoT system as it models the
Physical Entity that is the real element of interest. As specified in the IoT IM, Virtual
Entities have an identifier (ID), an EntityType and a number of attributes that provide
information about the entity or can be used for changing the state of the Virtual Entity,
triggering an actuation on the modelled Physical Entity. The modelling of the Entity-
Type is of special importance, as it can be used to determine what attributes a Virtual
Entity instance can have, defining its semantics. The EntityType can be modelled in
two different ways: either based on a flat type system or as a type hierarchy, enabling
sub-type matching. EntityTypes are similar to classes in object-oriented program-
ming, so UML class diagrams are suitable for modelling EntityTypes. Similarly, the
generalization relation can be used for modelling sub-classes of EntiyTypes, creat-
ing a hierarchy of several EntityTypes inheriting attributes from its super-classes.
Services provide access to functions for retrieving information or executing actua-
tion tasks on IoT Devices. Service Descriptions contain information about Service
interfaces, both on a syntactic as well as a semantic level. Furthermore, the Service
Description may include information regarding the functionality of the resources, or
information regarding the device on which the resource is running. The association
between Virtual Entities and Services captures the information on what kind of actu-
ation or data is possible to obtain by which Virtual Entity. The association includes
the attribute of the Virtual Entity for which the Service provides the information or
enables the actuation as a result of a change in its value. Information in the system is
handled by IoT Services. IoT Services may provide access to On-Device Resources,
that provide real-time information about the physical world accessible to the system.
Other IoT Services may further process and aggregate the information provided by
IoT Services/Resources, deriving additional higher-level information. Furthermore,
information that has been gathered by the mentioned IoT Services or has been added
directly by a user of the IoT system can be stored by a special class of IoT Service,
the history storage. A history storage may exist on the level of data values directly
gathered from sensor resources as a resource history storage or as a history storage
providing information about a Virtual Entity as a Virtual Entity history storage.

3.2.1 Information Handling by Functional Components
There are four message exchanges patterns considered for information exchange

between IoT Functional Components: Push, Request/Response, Subscribe/Notify,
Publish/Subscribe. The Push-pattern is a one-way communication between two par-

90 A. Bassi et al.

ties in which a server sends data to a predefined client that receives the data. The
server hereby knows the address of the client beforehand and the client is constantly
awaiting messages from the server. The communication channel in this pattern is
pre-defined and meant to be applied in scenarios in which the communication part-
ners do not changed often. For example, the server can be a constrained device that
sends data to a gateway dedicated to this device. The gateway is listening constantly
to the device and is consuming the data received from this device.

The Request/Response pattern is a synchronous way of communication between
two parties. A client sends a request to a server. The server will receive the request
and will send a response back to the client. The client is waiting for the response
until the server has sent it. The Subscribe/Notify pattern allows an asynchronous
way of communication between two parties without the client waiting for the server
response. The client just indicates the interest in a service on the server by sending
a subscribe-call to the server. The server stores the subscription together with the
address of the client wants to get notified on and sends notifications to this address
whenever they are ready to be sent.

The Publish/Subscribe pattern allows a loose coupling between communication
partners. There are services offering information and advertise those offers on a
broker component. When clients declare their interest in certain information on the
broker the component will make sure the information flow between service and client
will be established.

3.3 Deployment and Operation View

The Deployment and Operation View aims at developing a set of guidelines to drive
users through the different design choices that they must face while designing the
actual implementation of their services. To this extent this view will discuss how to
move from the service description and the identification of the different functional
elements to the selection among the many available technologies in the IoT to build
up the overall networking behaviour for the deployment. Since a complete analysis of
all the technological possibilities and their combination may be extremely complex,
IoT-A focus is on those categories that have the strongest impact on [oT systems real-
ization. Starting from the IoT Domain Model, there are three main element groups:
Devices, Resources, and Services. Each of them poses a different deployment prob-
lem, which, in turn, reflects on the operational capabilities of the system.

In particular, the viewpoints used in the Deployment and Operation view are the
following:

e The IoT Domain Model diagram is used as a guideline to describe the specific
application domain;

e The Functional Model is used as a reference to the system definition, as it defines
Functional Groups;

INTER-IoT Architecture for Platform Interoperability 91

e Network connectivity diagrams can be used to plan the connectivity topology to
enable the desired networking capability of the target application; at the deploy-
ment level, the connectivity diagram will be used to define the hierarchies and the
type of the sub-networks composing the complete system network;

e Device Descriptions (such as datasheets and user manuals) can be used to map
actual hardware on the service and resource requirements of the target system.

Devices in IoT systems include the whole spectrum of technologies ranging from
the simplest of the radio-frequency tags to the smartest objects able to understand
the environment and take real-time decisions. The unifying characteristics are the
connection and the capability of performing computation. These two characteristics
are the subject of the first choices a system designer has to make.

Selecting the computational complexity for a given device is intrinsic to the target
application and to the planned road-map: for instance, a system architect may choose
to have a large amount of memory that may seem unnecessary at first, but may
be used for future releases and upgrades. On the other hand, choosing among the
different connectivity types is not as straightforward as different choices may provide
comparable advantages, but in different areas. For the same reason, it is possible to
realize different systems implementing the same or similar application from the
functional view, which are extremely different from the Deployment and Operation
view.

Because of the coexistence of different communication technologies in the same
system, the second choice the system designer must account for is related to com-
munication protocols. Connectivity functionalities for IoT system are defined within
the ARM in the Communication FG of the FM; in addition, to better understand the
application, it is important to describe it within the Functional View.

The following possibilities have been identified:

1. IoT protocol suite: This is supposed to be the best solution for interoperability;

2. Ad-hoc proprietary solutions: Whenever the performance requirements of the
target application are more important than the system versatility, ad hoc solutions
may be the only way to go;

3. Other standards: Depending on the target application domain, regulations may
exist forcing the system designer to adopt standards, different from those sug-
gested by the IoT protocol suite, that solved a given past issue and have been
maintained for continuity.

After having selected the devices and their communication methods, the system
designer has to account for services and resources, as defined in the IoT Service
FG section. These are pieces of software that range from simple binary application
and increasing their complexity up to full-blown control software. Both in the case
of resources and for services the key point here is to choose where to deploy the
software related to a given device. The options are as follows:

1. On smart objects: This choice applies to simple resource definitions and
lightweight services, such as web-services that may be realized in few tens or
hundreds of bytes;

92 A. Bassi et al.

2. On gateways: Whenever the target devices are not powerful enough to run the
needed software themselves, gateways or other more capable devices have to be
deployed to assist the less capable ones;

3. Inthe cloud: Software can be also deployed on web-farms. This solution improves
the availability of the services, but may decrease the performance in terms of
latency and throughput.

Note that this choice must be made per type of resource and service and depending
on the related device. As an example, a temperature sensor can be deployed on a
wireless constrained device, which can host the temperature resource with a simple
service for providing it, but, if a more complex service (for instance, when the Service
Organisation FG is called in) is needed, the software should be deployed on a more
powerful device as per option (2) or (3).

On the same line, it is important to select where to store the information collected
by the system, let their data be gathered by sensor networks or through additional
information provided by users. In such a choice, a designer must take into considera-
tion the sensitiveness (e.g.: is the device capable of running the security framework),
the needed data availability and the degree of redundancy needed for data resiliency.
This choice is also very important for what concerns interoperability, as the location
of the data may ease the interaction between different systems—or, at the contrary,
may prove very complex to overcome. The foreseen options are the following:

1. Local only: Data is stored on the device that produced it, only. In such a case, the
locality of data is enforced and the system does not require complex distributed
databases, but, depending on the location of a given request, the response might
take longer time to be delivered and, in the worst-case scenario, it may get lost;

2. Web only: No local copy is maintained by devices. As soon as data is sent to the
aggregator, they are dispatched in databases;

3. Local with web cache: A hierarchical structure for storing data is maintained from
devices up to database servers.

Finally, one of the core features of IoT systems is the resolution of services and
entities, which is provided by the Entity and Service Resolution FCs, respectively and
oversees semantically retrieving resources and services, discovering new elements
and binding users with data, resources, and services. This is performed adopting the
definitions of the Virtual Entity FG. This choice, while one of the most important for
the designer, has only two options:

1. Internal deployment: The core engine is installed on servers belonging to the
system and is dedicated to the target application or shared between different
applications of the same provider;

2. External usage: The core engine is provided by a third party and the system
designer has to drive the service development on the third-party APIs.

Differently from the other choices, this is driven by the cost associated to the
maintenance of the core engine software. In fact, since it is a critical component of
the system, security, availability and robustness must be enforced. Hence, for small
enterprises the most feasible solution is the external one.

INTER-IoT Architecture for Platform Interoperability 93

4 Conclusions

The INTER-IoT Reference Model (RM) has been defined upon the results of the
IoT-A project; however, unlike the RM proposed in I0T-A, in INTER-IoT the RM
is fully focused on providing a model for interoperability of existing IoT Platforms.
Although IoT-A also contains the concept of interoperability, this is considered a
design constrain for the creation of new platforms. In spite, the approach followed in
INTER-IoT is the provision of interoperability mechanisms for already existing plat-
forms, which is more realistic for real scenarios in industry, health, smart cities, etc.
In this chapter we discussed the INTER-IoT reference model. In particular, we pre-
sented the domain model, the Information Model, the Functional Model (in details,
given its centrality role), and the Communication Model. We also described the
INTER-IoT Reference Architecture, which is also derived from the IoT-A Reference
Architecture and is a refinement with the main target of modeling interoperability
by design. The Reference Architecture is a blueprint for developing concrete archi-
tectures. Its main scope is to apply different views to functionality areas, in order
to identify the relationships between different modules and the need of different
functions.

References

1. Fortino, G., Savaglio, C., Palau, C.E., de Puga, J.S., Ghanza, M., Paprzycki, M., Montesinos,
M., Liotta, A., Llop, M.: Towards multi-layer interoperability of heterogeneous IoT platforms:
the INTER-IoT approach (2018) Internet of Things, 0, pp. 199-232

2. Vermesan, O., Friess, P. (eds.): Digitising the Industry Internet of Things Connecting the Phys-
ical, Digital and Virtual Worlds. River Publishers (2016)

3. Bauer, M., Boussard, M., Bui, N., Carrez, F., Jardak, C., De Loof, J., Magerkurth, C., Meissner,
S., Nettstriter, A., Olivereau, A., Thoma, M., Walewski, J.W., Stefa, J., Salinas, A.: Internet of
things—architecture loT-a deliverable D1.5—final architectural reference model for the IoT
v3.0, July 2013

4. Bassi, A., Bauer, M., Fiedler, M., Kramp, T., Kranenburg, R.V., Lange, S., Meissner, S.:
Enabling things to talk: designing IoT solutions with the IoT architectural reference model
(2013)

5. Broring, A., Zappa, A., Vermesan, O., Frimling, K., Zaslavsky, A., Gonzalez-Usach, R.,
Szmeja, P., Palau, C., Jacoby, M., Zarko, I.P., Sour-sos, S., Schmitt, C., Plociennik, M., Krco, S.,
Georgoulas, S., Larizgoitia, 1., Gligoric, N., Garcia-Castro, R., Serena, F., Orav, V.: Advancing
IoT Platform Interoperability. River Publishers (2018)

6. Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K.: Semantic inter-
operability in the Internet of Things: an overview from the Inter-IoT perspective. J.
Netw. Comput. Appl. 81, 111-124 (2017). http://www.sciencedirect.com/science/article/pii/
S1084804516301618

7. Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox, S., Graybeal,
J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W.D., LePhuoc,
D., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A., Taylor,
K.: The SSN ontology of the W3C semantic sensor network incubator group. J. Web Semant.
17, 25-32 (2012). http://www.sciencedirect.com/science/article/pii/S1570826812000571

http://www.sciencedirect.com/science/article/pii/S1084804516301618
http://www.sciencedirect.com/science/article/pii/S1084804516301618
http://www.sciencedirect.com/science/article/pii/S1570826812000571

94

10.

11.

13.

15.

16.

17.
18.

A. Bassi et al.

Pileggi, S.F,, Palau, C.E., Esteve, M.: Building semantic sensor web: knowledge and interoper-
ability. In: Proceedings of the International Workshop on Semantic Sensor Web, SSW, (IC3K
2010), vol. 1, pp. 15.22, April 2010

Daniele, L., den Hartog, F., Roes, J.: Created in close interaction with the industry: the smart
appliances reference (SAREF) ontology, 082015, pp. 100-112

Alaya, M., Medjiah, S., Monteil, T., Drira, K.: Towards semantic data interoperability in
oneM2M standard, January 2015

Ganzha, M., Paprzycki, M., Pawtowski, W., Szmeja, P., Wasielewska, K., Fortino, G.: Tools
for ontology matching—practical considerations from Inter-IoT perspective, vol. 9864, pp.
296-307, September 2016

. Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., Taylor, K.: IoT-lite: a lightweight semantic

model for the Internet of Things. In: 2016 International IEEE Conferences on Ubiquitous
Intelligence Computing, Advanced and Trusted Computing, Scalable Computing and Com-
munications, Cloud and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 90-97 (2016)

Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J.-P., Riahi, M., Aberer,
K., Jayaraman, P.P., Zaslavsky, A., Zarko, I.P., Skorin-Kapov, L., Herzog, R.: OpenloT: open
source Internet of Things in the cloud. In: PodnarZarko, I., Pripuzic, K., Serrano, M. (eds.)
Interoperability and Open-Source Solutions for the Internet of Things, pp. 13-25. Springer
International Publishing, Cham (2015)

Belsa, A., Sarabia-Jacome, D., Palau, C.E., Esteve, M.: Flow-based programming interoper-
ability solution for IoT platform applications. In: 2018 IEEE International Conference on Cloud
Engineering (IC2E), pp. 304-309, Orlando (FL), February 2018

Fortino, G., Garro, A., Russo, W.: Achieving mobile agent systems interoperability through
software layering. Inf. Softw. Technol. 50(4), 322-341 (2008)

Bauer, M. Bui, N., Jardak, C., Nettstrater, A.: The IoT ARM Reference Manual, pp. 213-236.
Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40403-09

Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, January 2003

Fortino, G., Liotta, A., Palau, C., Gravina, R., Manso, M. (eds.): Integration, Interconnection,
and Interoperability of IoT Systems. Springer, February 2017

https://doi.org/10.1007/978-3-642-40403-09

INTER-Layer: A Layered Approach for m
IoT Platform Interoperability i

Andreu Belsa, Alejandro Fornes-Leal, Clara 1. Valero, Eneko Olivares,
Jara Suarez de Puga, Fernando Boronat, and Flavio Fuart

Abstract A interoperability layer is fundamental to provide a global continuum
interoperability among IoT platforms. To address this layer, the following activities
have been carried out: (i) design of device-to-device interaction based on multipro-
tocol/access mechanisms; (ii) design of software defined interoperable modules for
mobility and routing; (iii) development of an open management framework for smart
objects; (iv) design and implementation of smart [oT application service gateway and
virtualization; and (v) definition of a common ontology which will facilitate access
to the heterogeneous data, data that will be collected and managed by integrated [oT
platforms.

1 Introduction

The lack of interoperability in the IoT ecosystem causes many issues, from the
impossibility of connecting non-interoperable devices into different IoT platforms,
to difficulties in leveraging data of multiple platforms to conform applications and, to
slowing the introduction of novel IoT technologies at large scale [1-3]. The INTER-
IoT presents a layer-oriented solution to provide interoperability at any layer and
across layers among different IoT systems and platforms. Although its design and
development are more challenging in comparison to an application-level approach
[4], the layered-oriented approach has a higher potential in order to provide interop-
erability. It facilitates a tight bidirectional integration, which in turn provides higher
performance, complete modularity, high adaptability and flexibility, and presents
increased reliability.

This layer-oriented solution is achieved through INTER-Layer. INTER-Layer
is an instantiation of the INTER-IoT Reference Architecture (RA) presented in
Chap.3, which was designed specifically for the interoperability of IoT Plat-

A. Belsa (&) - A. Fornes-Leal - C. I. Valero - E. Olivares - J. Suarez de Puga - F. Boronat
UPV, Universitat Politecnica de Valencia, Camino de Vera, 46022 Valencia, Spain
e-mail: anbelpel @upv.es

F. Fuart
XLAB doo, Pot za Brdom 100, SI-1000 Ljubljana, Slovenia

© Springer Nature Switzerland AG 2021 95
C. E. Palau (eds.), Interoperability of Heterogeneous loT Platforms, Internet of Things,
https://doi.org/10.1007/978-3-030-82446-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82446-4_4&domain=pdf
http://dx.doi.org/10.1007/978-3-030-82446-4_3
mailto:anbelpel@upv.es
https://doi.org/10.1007/978-3-030-82446-4_4

96 A. Belsaet al.

forms. It includes several interoperability solutions (methods and tools) dedicated
to specific layers: Device-to-Device (D2D), Networking-to-Networking (N2N),
Middleware-to-Middleware (MW2MW), Application and Services-to-Application
and Services (AS2AS), and Data and Semantics-to-Data and Semantics (DS2DS).

Each interoperability layer has a strong coupling with adjacent layers and provides
an interface which can be used for interacting with the components. Interfaces are
controlled by a meta-level framework to provide global interoperability. The different
layers can communicate and interoperate with each other through these interfaces,
therefore having cross-layering. Cross-layer components enable a deeper and more
complete integration, while supporting security and privacy mechanisms for all the
layers. In summary, INTER-Layer offers the following benefits at different layers or
levels:

e Device level: seamless inclusion of new [oT devices and their interoperation with
already existing heterogeneous ones, allowing a fast growth of smart objects
ecosystems.

e Networking level: seamless support for smart objects mobility (roaming) and infor-
mation routing. This will allow the design and implementation of fully connected
ecosystems.

e Middleware level: a seamless resource discovery and management system for
smart objects and their basic services, to allow the global exploitation of smart
objects in large scale [oT systems.

e Application and Services level: the discovery, use, import, export and combination
of heterogeneous services between different IoT platforms.

e Data and Semantics level: a common interpretation of data and information from
different platforms and heterogeneous data sources, providing semantic interop-
erability.

Except for the semantic interoperability layer, which has a dedicated chapter, the
solutions developed for each layer are described and explained in the following
subsections, considering all the relevant components, use cases the technologies
applied [5, 6].

2 Device Interoperability

The Device Layer, in the context of an IoT ecosystem, comprises the lowest level
layer in the IoT stack [7]. This layer comprises a range of interconnected small
devices with limited CPU, memory, and power resources, the so-called “constrained
devices”. It includes sensors/actuators, smart objects, and smart devices, and are used
to conform a network which in turn may exhibit constraints as well (e.g., unreliable or
lossy channels, limited and unpredictable bandwidth, and a highly dynamic topology)
[8]. These constrained devices are in charge of gathering information from their
respective ecosystems and send this information to one or more server stations.
Additionally, they could act on the information, performing some physical action

INTER-Layer: A Layered Approach for IoT Platform Interoperability 97

(including displaying it). Other entities on an IoT deployment, like a base station
or a controlling server, might have additional computational and communication
resources to support the interaction between constrained devices and applications in
a more traditional network approximation.

Interoperability at the device level implies that heterogeneous IoT devices are
able to interact with each other, so that IoT devices can be both accessed and con-
trolled through a unified interface and integrated into any IoT platform. At this level,
interoperability is usually achieved through gateways deployed in dedicated nodes,
although in can be implemented in other elements, such as smartphones [9]. In this
subsection, the approach followed in INTER-IoT for achieving this type of interoper-
ability as well as the architecture and components considered are presented. Besides,
some used cases and results are depicted.

2.1 INTER-Layer Approach for Device Interoperability

INTER-IoT, and more specifically INTER-Layer, aims to address the following
device interoperability challenges:

e Applications and platforms are tightly coupled, preventing them from interacting
with other applications/platforms.

e Sensors and actuators communicate only within one system.

e Certain platforms do not implement some important services (i.e. discovery), or

do so in an incompatible way.

Roaming elements can be lost or inaccessible.

e [oT Device software is never platform-independent, since companies produce pro-
prietary/closed solutions for economical reasons. This makes interoperability hard
or impossible.

Historically, there have been several approaches and communication patterns to oper-
ate at device level in IoT systems, each one of them having different application areas
and characteristics [10]: Strict Device-to-Device Communication Pattern, Device-
to-Cloud Communication Pattern, and Device-to-Gateway Communication Pattern.
The novelty introduced by INTER-IoT in this layer is a new communication pattern:
Device-to-Edge Communication Pattern. In this communication pattern, devices
interact with a gateway, similar to the Device-to-Gateway Communication Pattern,
but with some of the Device-to-Cloud capabilities shifted closer to the devices at
the Edge or Fog. Fog and Edge are intermediate layers between the Cloud and IoT
devices where smart agents provide processing and/or storage much closer to the
device layer, typically those smart agents stay in the MAN or WAN.

In order to shift IoT cloud computing capabilities to the Edge of the network,
closer to the devices, some of the functionalities that need more computing power
must be virtualized in the Edge [11]. In INTER-IoT, apart from studying typical
gateway approaches for providing interoperability [12], it also introduces a new
paradigm for IoT Gateways that adjusts to this new communication pattern: the

98 A. Belsaet al.

dual Physical-Virtual IoT Gateway. This gateway is decoupled in two parts, (i)
the Physical Gateway, which only performs lightweight network level operations
and data aggregation, typically instantiated in a resource constrained device, and
(i1) the Virtual Gateway, which represents the virtual counterpart of the physical
gateway but in a less constrained device or virtualized service [13]. With this new
communication pattern, three different connection levels are present:

e Device to Physical Gateway Network Level: Comprises all the different radio and
access network protocols that devices will use to connect to the physical gateway,
usually in the PAN or LAN range.

e Physical to Virtual Gateway Network Level: Is the connection between the
physical and virtual gateway. This network level resides in the Fog or Edge, usually
in the MAN or WAN range. This connection should be fast, secure and robust and
should handle sessions to allow roaming.

e Virtual Gateway to IoT Platform Network Level: In this network level, the
virtual gateway will connect and share its devices’ state and information with an
external IoT Platform. In a typical scenario, an IoT Platform resides in the Cloud,
therefore this network level resides in the GAN.

2.2 Architecture of the Solution and Components

The gateway architecture of INTER-Layer is shown in Fig.1 [14]. It is designed
considering always modularity in protocols and access networks, meaning that any
access network (AN) can be inserted into the structure as long as it is interfacing
accordingly with its corresponding controller. The same is true for the protocols
and middleware (MW) modules. The gateway is build up so that once the system
structure is functional, a split-up can be realized. Part of the gateway can be placed in
the Cloud to allow functionalities that a physical gateway is not able to perform in an
efficient way. The connector module is in charge of controlling the communication
between the physical and the virtual part of the gateway. When connection is lost, the
virtual part remains functional and will answer to requests of API and MW. There
are three ways to connect to IoT sensors and actuators:

1. The lowest level where a connection can take place is at the Access Network
controller (AN controller). This is for very simple sensors or actuators that either
does not have or have very limited processing power and can be offline for longer
time periods. Sensors of this kind are commonly battery powered, actuators may
have a power grid connection but usually have very limited processing power.
The AN controller will do all routing and will serve as a master or access point
for the sensors, and afterwards the Protocol controller will manipulate the data
and create the messages to be sent to the virtual counterpart of the gateway.

2. At the middle level, the dedicated sensors and actuators can be connected (COTS
IoT devices). Usually these sensors and actuators have some dedicated commu-
nication protocol between the wireless sensor and some piece of electronics with

INTER-Layer: A Layered Approach for IoT Platform Interoperability 99

a small processing core. They are capable of handling their own access and pro-
tocol controllers, and can be connected through a dedicated extension module by
implementing a Device controller.

3. At the highest level, the COTS IoT systems are found. They manage their own
gateway, protocols and AN controllers. These systems can be connected via the
connector directly to the Virtual Gateway of the Inter-IoT system. In any case, the
related COTS system software would have to be modified to add specific connec-
tion capabilities in order to implement the reference Physical-Virtual Gateway
communication protocol.

The architecture is composed of the following components:

e Registry: This component is responsible of registering all the devices with its
multiple sensors and actuators in the gateway. It adds an entry in the Device
Manager with the information about each sensor and actuator.

e Device Manager: The Device Manager is accessible to every other component
that needs information of any sensor/actuator. The protocol and access network
modules will call the Device Manager in order to resolve the metadata for each
sensor/actuator.

e Access Network Modules: The Access Network modules provide the INTER-IoT
gateway access to the following communication channels: WiFi, ZigBee, USB,
LoRaWAN and other proprietary RF links accessible via SDR. They are in charge
of establishing and terminating a connection with the sensor/actuator, requesting
and sending data from/to them, and handling the data pushed by the sensor/actuator
to the gateway, among other functionalities.

e Protocol Module: This components are located within the Protocol Controller
and implement the specific features of any supported protocol (CoAP, MQTT,
LWM2M, etc.) throughout standard interfaces towards the Protocol Controller
and the Dispatcher.

e Access Network Controller: It allows access to the devices, providing the neces-
sary interfaces between the devices and the protocol modules. The Device Manager
configures the access network modules according to the registry.

e Protocol Controller: This component is located within the physical part of the
gateway architecture and contains all the communication protocols supported by
the gateway, implementing the common interfaces between those protocols and
the other components such as the Gateway Configuration, the Access Network
Controller, the Device Manager and the Dispatcher.

e Gateway Configuration: This component is duplicated in the virtual and phys-
ical part. Every other component can use this component to access the gateway
configuration.

e Connector: It controls the communication between the physical and virtual part
of the gateway.

e Dispatcher: The device sends a trigger to the Dispatcher whenever new data
are available, being this component in charge of storing the new measurement
data from the device into the measurement storage. Any update request or data
request from upper layers (MW or API) will be handled by the Dispatcher. It will

100

A. Belsa et al.

MIDDLEWARE PLATFORM

¢

MIDDLEWARE BRIDGES
_______________ . T
| I D2D GATEWAY)]
. v |
i i
i MIDDLEWARE CONTROLLER !
1
5 FIWARE | |OPENIOT| | OM2M | | Mw2MW | [«——> i
A : i
1]
i i
i MEASURE / i
STORAGE RULES > |
" \ ENGINE i !
]
3| DISPATCHER H‘ > 8|1
=
2 |1
1| vin core =]
1 MSS a = SEEE eI n——" o |-
B
Q
PROTOCOL CONTROLLER g
ol <
N e o > | RAW || mMaTT | |Lwm2Mm | | coAP | [e—> ﬁ
i A w : s |
i Q i
DISCOVERY z 3
3}
H = AN. CONTROLLER
1
] (o]
i <> | WIFI SERIAL LTE BLE | |« > |
DATA |, i
MAPPING [€ A A A AAA A
| | e 1| Ee
SENSORS |

Fig.1 Gateway architecture

get the latest data sample from the Measurement Storage and will send it to the

middleware.

Measurement Storage: This component works as a cache in the gateway, storing

the information about the devices connected and the last available value, in case
of polling of these devices. If a platform requests the value, and the one contained
in MS is practically new, or it is the last one obtained in case of disconnection, the
value is returned in a faster way.

INTER-Layer: A Layered Approach for IoT Platform Interoperability 101

e Middleware Module: This Module is specific to a [oT Middleware platform and
handles the communication of the gateway with the platform. It is in charge of reg-
istering the sensors and actuators to the middleware platform as well as processing
the requests and responses exchanged with it.

e Middleware Controller: It wraps the active Middleware Module in order to have
a common interface for the gateway. This component creates the connection to the
MW platform and handles the messages interchanged between the module and the
platform, as well as the messages sent to the Dispatcher.

e Commons: Even if it does not appear in the architecture, it is a basic component
that includes several classes, methods and tools to be leveraged by the rest of
components.

2.3 Implementation and Use Cases

In this section, the main technologies used for implementing the described archi-
tecture for interoperability at device layer are presented, and then some use cases
in which the proposed solution has been utilized are briefly depicted. In particu-
lar, examples of integration at different levels of the device layer are showcased,
including integration at device level, at physical gateway level and at virtual gateway
level.

2.3.1 Implementation

The physical and virtual gateway implementation share a common base and runtime
code. Both are based in an OSGi' framework wrapper (the OSGi framework has to
be R4 compliant) with a customized bootstrap and initiation routines. This frame-
work first load the third party libraries, then the core components and afterwards the
extension modules. Finally, a routine for starting all the modules is launched, and
the Physical and Virtual Core take the main thread to control the gateway. In Figs.2
and 3 a schema and summary of the OSGi Framework, wrapper and components is
shown.

This approach follows OSGI recommendations for a clear decoupled and modular
system. As can be seen in the previous figures, these extensions can be developed
to work in both parts of the gateway. Typically, physical extensions are centered in
providing support for other device access network and protocols, creating new device
controllers, whereas virtual extensions are centered in creating new middleware con-
trollers to provide support for more IoT platforms. Common extensions can provide
utilities to configurate or manage the gateway as a whole.

In the INTER-IoT device-to-device interoperability gateway, there are four dif-
ferent APIs:

! https://www.osgi.org/.

https://www.osgi.org/

102

OSGI WRAPPER

osGl
FRAMEWORK

BOOTSTRAP CONFIG
3rd Party Libs
CORE BUNDLES

EXTENSION
BUNDLES

Fig. 2 Physical Gateway components

OSGI WRAPPER

osal _
FRAMEWORK

BOOTSTRAP CONFIG

3rd Party Libs

CORE BUNDLES

EXTENSION
BUNDLES

Fig. 3 Virtual Gateway components

A. Belsa et al.

» Concierge

+ Felix

= Equinox
+ Commons

+ Gson * Logging

+ Jline » Connector

+ Eventadmin + Configuration

s + An-controller
+ Protocol-controller
+ Device Manager

+ Console * Registry

+ Discovery + Physical Core

+ Serial

+ CoAP

+ Arduino

+ PanStamp

+ SDR

+ Concierge

+ Felix

+ Equinox

+ Gson

+ Jline + Commons

+ Eventadmin « Logging

= Freemarker « Connector

+ Javax.ws.rs + Configuration

+ SwaggerA. «+ Dispatcher
+ MW Controller
+ Virtual Core

+ Storage

+ API Engine

* Rules

Engine
» Console
« Orion

e Gateway CLI: The gateway console extension provides a Command-Line Inter-
face (CLI) to control the physical or virtual gateway instance.

e Gateway REST API module: REST API exposed by the virtual gateway API
Engine extension module to interact with the virtual and physical gateway.

e Physical/Virtual Communication API: Messages exchanged between the phys-
ical and virtual through the connector module.

e Programmatic API: Libraries and interfaces needed to develop new extension

modules for the gateway.

INTER-Layer: A Layered Approach for IoT Platform Interoperability 103

INTER-HARE network environment ‘

-L__,_.-r-'“"'_: l

2.4 GHz Q

o' [INTERIoT| &'

868 MHz

d Single band devices (2.4 GHz) QII Dual band devices (868 MHz / 2.4 GHz)

Fig. 4 INTER-Hare network

2.3.2 Integration at Device Level: INTER-HARE

The INTER-HARE project is intended to design a new LPWAN technology flexible
enough to transparently encompass both LPWAN devices and multiple so-called low-
power local area networks (LPLANSs) while ensuring overall system’s reliability. A
cluster-tree network is created [15], where the LPWAN acts not only as data collector,
but also as backhaul network for several LPLANS, as shown in Fig. 4.

The communication within the LPWAN is based on the HARE protocol stack
[16], which ensures transmission reliability, low energy consumption by adopting
uplink multi-hop communication, self-organization, and resilience. The INTER-
HARE platform is conceived as an innovative evolution of HARE protocol stack
and can be considered as a dynamic multiprotocol by means of the integration with
the INTER-IoT Gateway. The architecture of the INTER-HARE platform can be split
into two networks with different purposes: the transport network and the integration
network (as it can be seen in Fig. 5).

The transport network involves all internal infrastructures responsible for gather-
ing and transporting information from the end-devices to the physical gateway. This
internal infrastructure is formed by one single HARE protocol Gateway, several

104 A. Belsa et al.

-
Y e
gk / .\ /

otz
menparaturs &

/ I:‘,'.E'_« bty sema
[—

INTER-IoT virtual gateway
Data acquisition device #1

|

|

|

|

|

|

|

|

and middlewars :

- . | = N H Range coverage of cluster-

i I = = head (A) at 2.4 GHz

[& "

(= |

a1 |

; |

|

|

|

|

|

|

|

Zolartia RE-Motes.
(BGE Mz & 2.4 GHa)

2 Conmecied 246H . w—
lirnk

Cluster-head (A) P i)

err="

/ B68 MHz Data acquisition device #N
link

868 MHz

\ Hink o s
el 2.4 GHz v
oy = link /

: : oz

un : g I e
= SRwpeind B S Vi e
| —

[
Lo Data acquisition device #1
INTER-I0T physical gateway . — -
2 Conmected
Zolertia RE-Motes.

2460 - g
(B8 MHz & 2.4 GHz) Nk N

|
|
|
|
|
|
I Transport Cluster-head (B) eparinre
| T SERTL
|
|
|
|
!

WiFi or
Ethernet link \

Range coverage of cluster-
head (B) at 2.4 GHz

Integration Network for=}
network (INTER-HARE) Data acquisition device #N

Fig. 5 INTER-Hare architecture

Cluster Heads (CH) and Data Acquisition Devices (DAD). The integration network
is formed by the INTER-IoT Gateway, which enables access to the whole IoT stack.
Communication between the Physical Gateway and the Hare Protocol Gateway, is
done with serial UART communication protocol. The INTER-IoT gateway is there-
fore considered as the brain of the INTER-HARE platform and the single point of
contact between the physical network and the rest of the INTER-IoT system.

2.3.3 Integration at Physical Gateway Level: SensHook

SensHook is a IoT node focused on the prevention and detection of disease-vector
mosquitoes. The node is composed by a Smart Mosquito Trap capable of mimick-
ing the human body (scent and respiration) and of automatically counting captured
mosquitoes, identify the gender and the species. The information collected by each
node is then sent to a server. In this manner, SensHook aims at reducing inspec-
tion costs while improving surveillance programs, being the first solution in the
world to combine human mimicking with automatic pest information in their value

INTER-Layer: A Layered Approach for IoT Platform Interoperability 105

Legend | Virtual Gateway I
SensHook
eoage =l 0000 leecsececceeeeeeee-
AP Virtual Gateway Connector
VGC API VGC Application

Imported P 7
[imported Paciage | =) o vocn |

Measure Storage pé Smart di patch
({IEEE1451 Std 1451) and Layer X MQTT
Connector
Measure Storage API Measure Storage Provider
Dispatcher API Dispatcher Provider

o]

Senscape Hardware } d

Fig. 6 SensHook architecture

proposition. This will allow a whole new population of consumers to establish surveil-
lance programs that were only accessible to those with significant resources.

In this use case, the integration in this case is performed at physical gateway
level. Despite the fact that SensHook provides their own platform for performing low
level communication and computing, the capability of sharing the information of its
devices with IoT platforms is not available. Hence, aiming at enabling it, a connection
is made to the Virtual Gateway, by developing a specific connector integrated in the
SensHook platform that understands the Physical-Virtual communication protocol
as can be seen in Fig. 6.

2.3.4 Integration at Virtual Gateway Application Level: ACHILLES

ACHILLES is a project that provides an advanced access control and endpoint
authentication to devices attached to the INTER-IoT gateway. In general, these
devices are usually limited in storage capacity, power, energy and processing capabil-

106 A. Belsa et al.

(1) Policy, Thing Identifier

> ACP
Service provider (2) Secret key (7) Authorization request for
policy, nonce
{3) Secret key,
pointer to policy (8) Session key

(4) Unauthorized request

{6) Nonce, pointer to policy

(5) Calculate session key Client

Fig. 7 Achilles architecture

ities, presenting security risks in [oT deployments. Since these devices are not usually
able to perform complex cryptographic operations, security management becomes
an impossible task from the device perspective. ACHILLES project overcomes these
limitations by allowing the delegation of security operations to a third party (ACP,
Access Control Provider) which can be implemented by a trusted separate entity as
depicted in Fig. 7.

ACHILLES is integrated in the gateway as an extension of the Virtual part. This
extension implements the core client functionality and configuration, being able to
perform read/write calls to the supported physical devices. The main idea of the
ACHILLES concept is that IoT service providers store access control policies in
ACPs and in return ACPs generate secret keys which are stored in the device (steps
1-2). These keys are generated, during a setup phase, using a secure hash with the
device identifier as input. Additionally, devices are configured with pointers (e.g., a
URL that points to an ACP and a particular file) to the access control policies that
protect sensitive resources (step 3). Every time a client requests access to a protected
resource (step 4), the device uses a secure hash function to generate a session key
(step 5). The secret key used by that function is the key generated by the ACP, and
the hash inputs are the pointer to the policy that protects the resource and a random
nonce. The device transmits the nonce and the pointer to the client (step 6), which in
return requests authorization from the appropriate ACP (over a secure channel, step
7). The ACP has all the necessary information required to calculate the session key:
if the client is authorized, the ACP calculates the session key and transmits it back
to the client (step 8). Providing that the device has not lied about its identity and the
messages exchanged between the client and the device have not been modified, the
device and the client end up sharing a secret key. This key can be used for securing
subsequent communications (e.g., by using DTLS).

3 Network Interoperability

In the traditional OSI reference model for computer networking, the network layer
is conventionally located within the third one, directly standing over data link layer
(layer 2) and responding to the transport layer (layer 4). However, with the birth

INTER-Layer: A Layered Approach for IoT Platform Interoperability 107

of new radio access technologies and IoT protocols, this model had to adapt to be
compliant with the IoT reference layer architecture, hence enabling the embracement
of a large heterogeneous range of devices.

INTER-IoT understands the network layer of an IoT deployment as the protocols,
systems and devices that work on layers 2, 3, and even 4 in some cases, of the
traditional OSI model. IoT products encompass many different data communication
scenarios: (i) some of them may involve sensors that send small data packets at
low frequency without prioritizing timely delivery; (ii) others may involve storage
capabilities to sustain periods when the communication link is down (e.g., Delay
Tolerant Networks); (iii) some scenarios may need high bandwidth without having
strict latency requirements; (iv) while others may need high quality, high band-
width, and low latency. Besides, particular characteristics have to be taken in into
account, such as the mobility of objects through different access networks, secure
seamless mobility and backing of real time data among the network. The operation
in highly constrained environments is also an important issue to analyze. Finally,
the use of many heterogeneous protocols (6LowPAN, RPL, LoRa, SIGFox, etc.)
and mechanisms (tunneling mechanisms over IP, GRE and 6LoWPAN, etc.) on [oT
network level are problems that need of a network interoperability solution.

3.1 INTER-Layer Approach to Network Interoperability

The particularity of an IoT deployment network is the treatment of different types of
data flows as well as protocols to support communication. The great challenge that
interoperability in the network layer must face is caused by the following problems:

Difficulty to manage large amount of traffic flows generated by smart devices.
Poor system scalability, which difficulties the integration of new devices.

Hard interconnection of gateways and platforms via networks used by different
providers.

Several devices with totally different radio network access have to be accessed
from a single gateway as an access point.

Management of device’s mobility through different access points.

Great number of heterogeneous protocols (6LowPAN, RPL, LoRa, SIGFox, etc.)
and mechanisms (tunnelling mechanisms over IP, GRE and 6LoWPAN, etc.) at
IoT network level.

One of the main approaches to face these problems is the virtualization of the
network layer, providing an extra tier of abstraction that facilitates management,
scalability, seamless support for smart objects mobility (roaming) and packet routing,
hence allowing the design and implementation of fully connected IoT ecosystems.
To achieve network-to-network interoperability, the solution proposed by INTER-
Layer is based on virtualization and software-defined paradigms, specifically in two
approaches: Network Function Virtualization (NFV) and Software Defined Networks
(SDN). The following characteristics have been considered:

108 A. Belsa et al.

e Decoupling of data plane from control plane using the well-studied protocol Open-
Flow.

e Virtualizing network services at the top of the architecture.

e Implementation of techniques for traffic engineering to handle different flows of
data generated by sensors based on their priority.

3.1.1 SDN and NFV

Before getting into the details of the proposed interoperability solution, in this section
itis described how these technologies operate and how they have been included in the
INTER-IoT ecosystem. The term virtualization refers to the technologies that allow
the decoupling or abstracting logical resources from the real physical infrastructure.
Logical resources are named after the abstract vision that the software has of the
physical resources of the system. The creation of these logical resources aims at
offering a simpler high-level interface to isolate users and programmers from the
details and characteristics of the internal hardware devices as storage, processor,
memory or communication elements.

Virtualization can be applied in several domains. For instance, if the storage
is virtualized, the real size and distribution of machines’ storage is hidden and a
logical division of this one is created, which can be leveraged by other elements.
Virtualization of resources as processing capacity, as another example, can be use-
ful for aggregating several CPUs to create virtual machines with higher capacity
over a combined physical infrastructure. Besides, applying this concept to the com-
ponents of the network receives the name of Network Virtualization, in which its
physical resources (firewalls, routers, switches, load balancers, etc.) are virtualized
and assigned to different virtual instances [17]. Network virtualization can stand for
either aggregating physical networks into a single logical one, thus resulting in a
Virtual LAN (known as external network virtualization), or providing network-like
functionality within an operating system (internal network virtualization). In general,
hardware and operating system virtualization are applied in the latter, obtaining a
virtual network interface to communicate with. In this case, the Internal approach is
exploited. The complexity and scale of today’s data centres that are based in virtual-
ization of machines makes network virtualization even more complex that traditional
ones. Moreover, the hosting of new types of virtual machines as IoT platforms, vir-
tual devices, or containers makes this approach a mandatory need. Hence, thanks to
the implementation of virtualization, new architecture approaches can be deployed,
as in the case of SDN/NFV.

Software Defined Networking consists in the separation of the network functions
in two planes: the control plane and the data (or forwarding) plane. On the one
hand, the intelligence and network state, as well as the management and routing
algorithms, are centralized, and the underlying network infrastructure is abstracted
from applications and services. On the other hand, the elements that compose the
network, as switches, routers, etc., become mere forwarders which route the infor-
mation in an efficient manner, according to flow tables which are filled according to

INTER-Layer: A Layered Approach for IoT Platform Interoperability 109

Stats Routing . QoS _ Monitoring
& y y Yy @ y/

SDN Controller / Network Operating System

)

|

|

| -

: c OpenFlow
|

OpenFlow Compliant
Module

| |
| |
| |
| I
| |
| |
| |
| I
| |
I |

Packetforwarding
' ' OpenFlow Compliant
Module

L

Packetforwarding Packet-forwarding

Fig. 8 SDN basic architecture and components

OpenFlow Compliant
Module

the decisions of the control plane. Thanks to the NFV approach, the aforementioned
network elements are virtualized within generic servers instead of making use of
dedicated single-purpose equipment, being thus NFV and SDN highly compatible
and complementary [18]. The SDN basic architecture and components is shown in
Fig.8.

3.2 Architecture of the Solution and Components

The immense amount of traffic flows generated by smart devices is extremely hard
to handle, and thus so is the scalability of IoT systems. Besides, creating the inter-
connections between gateways and platforms is not a trivial task. Thus, the network-
to-network solution aims at providing seamless support for smart objects mobility
and information routing. It will also allow offloading and roaming, which implies the
interconnection of gateways and platforms through the network. The approximation
that INTER-IoT proposes uses the SDN/NFV paradigm, achieving interoperability
through the creation of a virtual network, with the support of the N2N API. The
implementation of the N2N solution in INTER-Layer is depicted in Fig.9.

The data plane (lower components of Fig.9) is composed of virtual switches.
They are connected to each other in a determined topology and all of them securely
connected to the controller. The upper part is the control plane, where the controller is
located, provided with an OpenFlow connector to parse all packets coming from the
network to the different services running on it. The connection with the forwarding

110 A. Belsa et al.

NORTHBOUND API (ADAPTERS, SERVICES, ETC)

v

______ 1
TOPOLOGY | NETWORK |
DISCOVERY |©]| SLICING :
P
3 .

CONTROLLER

HOST SWITCH
STATISTICS — ROUTING |— TRACKING MANAGER
v r v
OPENFLOW CONNECTOR
I I I
] I I
| I I
RS s
I

OF-COMPATIBLE
SWITCHES

Fig. 9 Network-to-network architecture high level building blocks

devices is implemented by a southbound API, which allows the entrance of OpenFlow
packets into the controller and formalizes the way the control and data planes interact.
The core of the controller consists of different modules containing all the logic that
will dictate how to route the packets as well as to obtain statistics. Specifically, the
modules that compose the control plane jointly with the controller are:

e OpenFlow connector: It is an OpenFlow understanding plugin that communi-
cates, by OpenFlow protocol, with all the switches that conforms the virtual net-
work. Is the Bridge between the Controller and the nodes of the network.

e Switch Manager: The Switch Manager API holds the details of the network ele-
ments. When a network element is discovered, its attributes (e.g. what switch/router
is, version, capabilities, etc.) are stored in the database by the Switch Manager.
Hence, it has all the information about the nodes of the network, the number of
switches, their configuration and state, etc.

e IoT Routing: In this module, some headers of the packets are introduced to per-
form a routing algorithm previously configured and resolve the next hop in the
network.

e IoT Host Tracking: Module in charge of handling the information from a host,
including the address, the position in the network, etc. It tracks the location of the
host relatively to the SDN network topology.

e Statistics: This module storage and provides information about the number of
packets analyzed through the Controller. It can return the number of packets attend-
ing to some filters.

INTER-Layer: A Layered Approach for IoT Platform Interoperability 111

e Storage: In this module, the information about statistics, topologies, direction,
and other data related with the network is stored and updated for other modules to
access them.

e Topology Discovery: It contains a set of services that allow conveying topology
information. It keeps track of the nodes in the network along with their links, and
creates a graph representing the state of the network with additional information
about the state of the links.

e Northbound API: It has been created and exposed so upper applications and
services can configure the controller or gather data from it.

3.3 Implementation and Use Cases

In this section, the main technologies used for implementing the described architec-
ture for network interoperability are presented, and then some use cases in which the
proposed solution has been utilized are briefly depicted.

3.3.1 Implementation

In order to implement the aforementioned modules, the most suitable available tech-
nologies have been implemented for creating a fully virtualized network with QoS
capabilities that enables connectivity between the components that traditionally con-
form an IoT deployment. On the one hand, the virtual switches of the data plane have
been implemented through Open VSwitch.? They are connected to each other in a
determined topology, being all of them securely connected to the controller through
TCP/SSL, leveraging the OpenFlow northbound protocol to update the flow tables
and the OVSDB management protocol to retrieve information about their status and
other statistics. On the other hand, the control plane contains the controller (RYUY),
which provides OpenFlow and OVSDB connectors to parse all data packets coming
from the network to the different services running on top it.

OpenVSwitch as a Virtual Switch

Open vSwitch (OpenVSwitch) is a production quality, multilayer virtual switch
designed to enable massive network automation through programmatic extension,
supporting standard management interfaces and protocols. Among its features one
can find:

VLAN 8021.Q support with trunk and access ports.

Traffic flow-based statistics (NetFlow and sFlow).

Traffic mirroring for monitoring (SPAN and RSPAN, among others).
Link aggregation and bonding with LACP.

2 https://www.openvswitch.org/.
3 https://ryu-sdn.org/.

https://www.openvswitch.org/
https://ryu-sdn.org/

112 A. Belsa et al.

Routing with Spanning Tree (STP).

Quality of service management.

Traffic queuing and shaping.

Tunnelling (GRE, VXLAN, etc.).

Security: VLAN isolation and traffic filtering.

Automated Control: OpenFlow/OVSDB management protocol among others.

OpenV Switch provides a more complex design than simple “bridges”, being these
the basic components to be used but, whereas bridges are only executed in host kernel
space, the virtual switch makes use of both kernel and user spaces, which allows cre-
ating more complex rules of packet processing. The main components that compose
a virtual switch are: (i) ovs-vswitchd, which is a daemon that implements the switch,
jointly with a compilation of the Linux kernel module for flow-based switching; (ii)
ovsdb-server, a lightweight database server to store and obtain switch configuration;
(iii) ovs-dpctl, which is a tool for configuring the switch kernel module; (iv) ovs-
brcompatd, which is a daemon that allows ovs-vswitchd acting as a substitute of
Linux bridge; (v) ovs-vsctl, a command for queuing and updating the configuration
of daemons; (vi) ovs-appctl: which is a utility that sends commands to the switch
daemons that are running; and (vii) ovs-ofctl, a utility that implements the OpenFlow
protocol to communicate with the controller.

The programmability and virtualization capabilities of OpenVSwitch have moti-
vated its selection to deploy and manage the INTER-Layer virtual network solution.
Besides, this switch supports different versions of the OpenFlow protocol, so it can
be programmed to make specific actions with specific data flows. Hence, after the
processing and decision-making that takes place in the specific modules of the con-
troller, the adequate flow entry is inserted in the tables of the switches so that when
data packet arrive it is already prepared to execute the necessary actions (forwarding,
dropping, etc.).

OpenFlow as Southbound Communication Protocol

OpenFlow was the first SDN standard defined and vital element of an open SDN
architecture. It is a communication protocol that gives access to the data plane as
well as to the remote programming of network switches and routers over the net-
work. This protocol decouples the intelligence required to route a packet from the
act of forwarding it through the correct interface of the router, switch or network
component, thus enabling the remote programming of the forwarding plane. This
is achieved by inserting flow tables, designed by the protocol, within the switches
managed by the controller.

The flow entries that compose the flow table are inserted and managed in the virtual
switches by this protocol. They require three fields: (i) Match Fields, which defines a
set of ingress ports, packet header fields and other metadata; (ii) Instructions, which is
the action that the virtual switch has to make when a match is found (ports and fields of
the data matches with the ones defined on the first field), and (iii) Counters, in charge
of updating the number of packets matched against the Match Field. The OpenFlow
protocol also allows representing additional methods of forwarding using group

INTER-Layer: A Layered Approach for IoT Platform Interoperability 113

entries to classify and manage groups of flows. These entries are: Group Identifier,
Group Type, Counters and Action Buckets. With the aid of this protocol and the
programmability of the switches, different policies can be applied to manage the flows
coming from the devices through the gateway. Additionally, with the information
provided by the headers of the protocol, informative statistics can be obtained so the
controller has a better overview of the state of the network and the flows being carried
out [19]. Besides, the Quality of service possibilities implemented by OpenFlow
includes:

e Queues: Associated to a port, define a priority treatment depending on the con-
figuration, and could define the rate of the packets.

e Rules: Implemented in the queues, define the aforementioned treatment.

e Meters: Switch element which measures and controls the ingress rate of packets,
i.e., the rate of packets prior to the output.

This protocol has several stable releases, starting from 0.8 and being versions 1.1
and 1.3 the most used ones. There are not many differences among version except
for some QoS aspects like:

e OF1.0: In this version, an OpenFlow switch can have one or more queues for its
ports. It is also possible to read/write headers for VLAN priority and IP type of
service.

e OFI.I: This version improves the matching and tagging of VLAN and MPLS
labels and traffic classes.

e OF1.2: Supports querying all queues of a switch, and introduces the OF-CONFIG
protocol 5 to reconfigure queues within the switch. Max-rate property can be set
to the queue. Flows can also be mapped to queues attached to ports.

e OF].3: This version introduces meters.

In INTER-Layer, the controller chosen to communicate through this protocol will
support all versions in order to connect with legacy switches that have implemented
one of them. The network layer provides a QoS API in order to satisfy the potential
QoS requirements of the deployment. When using the QoS API of Inter-IoT, the
developer can add/delete/monitor rules, queues and meters. Rules determine whether
the specified traffic is assigned to a certain queue or meter. Queues are designed to
provide a guarantee on the rate of flow of packets placed in the queue. Different queues
at different rates can be used to prioritize specific traffic. And meters complement
the queue framework already in place by allowing for the rate-monitoring of traffic
prior to output.

OVSDB as a Southbound Protocol to Manage OVS Database

The state of OpenVSwitch is stored in a database server. The Open vSwitch Database
management protocol (OVSDB) is used to manage this database, thus leveraged for
controlling the cluster database and determine the configuration of the virtual switch
including its ports, bridges, interfaces and other important switch information. The
OVSDB Protocol uses the JavaScript Object Notation (RFC 4627 [20]) for its schema
and wire protocol format, and JSON-RPC 1.0 for its wire protocol.

114 A. Belsa et al.

The differences between OF-CONFIG and OVSDB protocols are several. The
most important one is related to the fact that OVSDB is focused on the configuration
of virtual switches implemented with OpenVSwitch while OF-CONFIG is focused
on the configuration of physical switches. Still, vendors are also tending to implement
OVSDB within their physical switches. These protocols are quite different regarding
encoding, features, commands, etc. depending on the characteristic to be configured.

Ryu as a Base Controller

The component-based SDN framework Ryu has been chosen to handle the control
plane and manage the virtual switches that compose the network-to-network solution.
Ryu is simple, modular and highly designed to increase the agility of the network
through its management and versatility. It is composed by a main component, Ryu-
manager, which is in charge of (i) providing the environment where the different
modules and applications will run, and (ii) the communication between the different
modules. Besides, some modules have been implemented to extend the capabilities
of the controller and adapt it to the particular needs of the network interoperability
solution. Some of these modules are: (i) the Topology Discovery, which is in charge
of obtaining the network information to create a graph that represents the current
state of both the network and its components; (ii) a statistics module for accounting
the number of packets processed, dropped or queued; (iii) the IoT Routing and
Host Tracking modules, which goals are to create and manage the routes that each
packet has to take to reach their destination; and (iv) a set of modules related with
QoS and Security to prioritize some traffic flows and isolate them from others in
order to create network slicing over the virtual infrastructure. Since the controller is
entirely developed in Python 2.7, the modules created at the top of it to conform the
network solution have been also developed in this programming language. Finally,
a Northbound APIs REST-based have been developed for providing access to the
software components that compose the controller and facilitate the deployment of
new applications by future developers. This API is aggregated to other layers’ APIs
and published through INTER-API, which is presented in the following chapter.

3.3.2 Use Case: Traffic Priority in E-Health Environment

This use case implements the network-to-network solution with virtualized functions
and central management of the cloud in an e-health environment. The virtual network
is managed from a central monitoring application, using the API to request topologies,
statistics, historical, etc. Additionally, the implementation of the SDN paradigm
allows prioritizing data flows using traffic engineering and QoS. A real proof of
concept was designed in order to provide an example of the usability of the solution.
In this use case, the scenario presented a Central Hospital with different care houses
in charge, located around the city. In these care houses, there were nurses that take
care of the patients, measuring different health values (heart rate, temperature, sugar
in blood, etc.) with the devices located at those houses. However, this information

INTER-Layer: A Layered Approach for IoT Platform Interoperability 115

never leaved the care houses, and thus the doctors had to visit continuously each one
of them to gather the information, with the consequent cost that it entails.

The proposed architecture was based on the implementation of the network-to-
network solution together with the device-to-device solution. Each care house was
provisioned with a physical gateway that could obtain the information measured by
the health tools (pulse meter, thermometer, glucose monitor and others). The physical
gateway is directly connected and synchronized with its virtual counterpart located
in a private cloud at the Central Hospital. This cloud was designed by means of the
virtualization and SDN solution proposed by the INTER-Layer network approach.
This way, the different virtualized gateways, together with other resources as IoT
platforms or applications, were able to communicate through the virtual infrastructure
that can be automatically re-configured.

Once the information arrives at the Central Hospital border router, which is con-
nected to the SDN network, this information is automatically routed to the proper
virtual gateway instantiated in the private cloud. Once the information arrives at this
point, it can be filtered, aggregated or dropped off, and afterwards, all data could be
forwarded to another IoT/Big Data Cloud Platform for future processing. One of the
advantages of the implementation of SDN techniques, in this case, is the scalability
that brings to the network. For instance, if a new virtual resource has to be deployed
in the cloud infrastructure, it can be done in a seamless manner and its connection
and configuration is made quite straightforward. Moreover, a different doctor could
have access to a subset of care houses, hence to a subset of virtual resources. The
possibility to define network slices within the SDN networks allows the separation of
sets of virtual resources in order to define roles of data access, thus bringing privacy
to patients and doctors. Finally, as the controller provided QoS capabilities, the pri-
oritization of specific types of traffic brings a myriad of advantages to this scenario.
For instance, data from a care house with severely ill patients or from a specific type
of health devices can be prioritized in order to not get lost, for lowering the latency
to the destination, or to trigger an alarm to notify the expert in charge.

4 Middleware Interoperability

Middleware refers to the software and hardware infrastructure that enables commu-
nication between different system components, usually in either request/response
fashion or a sustained connection communication for data streaming.

Middleware thus abstracts several aspects of an end-to-end communication includ-
ing the service name, address and location, the message transport protocol, service
instance, interoperability features, etc. For example, a client can issue a request to a
service without knowing which instance of that service will communicate with, thus
hiding some of the complexities of service scalability. Middleware is also a conve-
nient layer for placement of additional system-wide meta-services such as security,
anonymization, auditing and monitoring.

116 A. Belsa et al.

4.1 INTER-Layer Approach to Middleware Interoperability

In the IoT domain, there is a need for dedicated and powerful middleware tech-
nologies to take the critical role of interconnecting the heterogeneous ecosystem of
applications communicating over several interfaces using and operating on diver-
sified technologies. Interoperability, context awareness, device discovery and man-
agement, data collection/storage/processing/visualization, scalability, privacy, and
security are among the most significant aspects that have to be addressed by such solu-
tions. Development of middlewares in the IoT domain is an active area of scientific
and industrial research, and a number of interesting solutions have been developed
so far [21, 22] (Fig. 10).

Due to the intrinsic difficulty to define and enforce a common standard among
all these complex scenarios, IoT platforms have to provide an abstraction and adap-
tation layer to applications from the things and offer multiple services by means
of easy-to-use, yet powerful APIs. However, there is no clear division line between

Private

loT Platform
ﬁ-

Virtual GW

MONITORING TOOL

- | e i =
| @ Virtual

= SDN Network

. g
% Physical
|

PLA GW
s / \
Sensors

Fig. 10 Use case on Health Vertical

INTER-Layer: A Layered Approach for IoT Platform Interoperability 117

.|I||I
¢ e
I r r
allh DATA ANALITICS VESUALISATION SMART APPLICATIONS
> e, (R
TR ANALYT) i
PATRRNALTIES _ wisuausamon INTER-Middleware

platform

and what is the t
E add a new functionality
trus 2m

tif something goes wrong . . i
1just plug it in INTER-Middleware
and it works!

Fig. 11 INTER-middleware complex usage scenarios made simple

a middleware solution and IoT platforms. Most IoT platforms provide some mid-
dleware functionalities, although their focus is on providing efficient IoT platform
services and not on solving interoperability issues [23].

Figure 11 shows a scenario where a system composed of ad hoc solutions has
been created. This approach exponentially increases the complexity (and thus devel-
opment and operating costs) of the system with the addition of each new application
or platform. As the system grows, it creates a complex network of different com-
munication channels between applications and platforms. The main challenge is to
interconnect systems that were never meant to work together, in a user-friendly, cost-
effective, transparent, and secure way. This raises many issues, introduces technical,
legal, privacy and security risks, and often places an insurmountable hurdle in front
of delivery of such innovative systems. As a result, we can claim that developing
value-added services on top of IoT platforms is expensive and time-consuming.

To address this issue, a middleware-to-middleware interoperability solution called
INTER-Middleware has been created. At the time of writing, INTER-Middleware is
in the incubation phase, where a robust product is being created from project results
that have been validated in e-health and port logistics. We present in this chapter
an IoT-focused middleware solution dedicated to the provision of the most critical
interoperability services in the IoT domain.

4.2 Architecture of the Solution and Components

INTER-Middleware architecture (Fig.11) provides core functionalities related to
facilitation of interoperability among IoT middleware platforms as well as provi-
sion of a common abstraction layer to provide access to IoT platform features and
information. The architecture acts as an abstraction layer unifying the view on all
interconnected platforms, devices and services. Moreover, its scalability permits the
easy addition of new IoT platforms. INTER-Middleware architecture is composed
by five main components (Fig. 12):

118 A. Belsa et al.

| REST Client

MW2MW
Communication and control " Services.
¥
API Resource
REST API
I atans naEa Request Registry
Manager T
+ * Resource
s | T 7| 1PSMRequest [~ Platform Request .
T Manager . —! Manager :- - f
X T & Routng& | | | &3
AL o Eaime
[N | Service -
T L : PARLIAMENT
IR r i =) InterMW registry
T A | | Message broker | Platform
T | L —— aj Registry
[LN
fsaisenlaa)
1 e e e e T F 1
) e e "~ ___Bridges! |
Y | ¥ 1
Platform 1 Platform N
Bridge Bridge
A [i
)
AAAAA)
¥ Y
‘ Platform 1 ‘ ‘ ‘ Platform N

Fig. 12 INTER-middleware architecture

e Ontology: Common ontology to represent all messages routed through the system.

e Bridges: Act as a middleman between INTER-Middleware and IoT platforms.

o Communication and control: Orchestrates all the communications that take place
between the different components of the architecture

e Services: Common services offered by INTER-Middleware to facilitate interop-
erability between platforms.

o REST Interface: Extends the usability of the abstraction layer by exposing this
functionality through a widely used technology.

4.3 Implementation and Use Cases

4.3.1 Ontology

Data model, used in INTER-Middleware, is based on the ontological reference model
of meta-data developed in INTER-IoT. It includes core concepts, shared between

INTER-Layer: A Layered Approach for IoT Platform Interoperability 119

IoT platforms, that have been identified and standardized in ontologies, such as SSN
(Semantic Sensor Network ontology). Using one common model for all internal
INTER-Middleware components improves the efficiency of internal data transfer,
as well as allows components to make assumptions about structure and content of
data, so that rich functionalities specific to IoT domain can be implemented and
offered in one common data model. INTER-Middleware uses the common INTER-
IoT ontology (GOIoTP) to represent all messages routed through the system. It is
implemented through JSON-LD messages and is in the core of INTER-Middleware,
thus tightly coupled with the common abstraction layer that unifies the view on
all interconnected platforms, devices and services. It does not matter what device
belongs to what platform, or what service is in which platform. There is, however,
no requirement of compliance with the INTER-Middleware data model placed upon
IoT platforms that use it. Data models of platforms participating in communication
through INTER-Middleware are mapped to ontologies and semantically translated in
IPSM. As a result, the commonalities between data models of IoT platforms can be
expressed through a common data model, despite the possibility of having different
semantics.

4.3.2 Bridges

Interoperability at the middleware layer is achieved through the establishment of an
abstraction layer and subsequent integration of all [oT platforms. INTER-Middleware
open architecture is extended through the development of IoT platform bridges that
provide specific functionalities to connect INTER-Middleware with an [oT platform.
This way there is no need interconnect all platforms among themselves, but rather
connect them to the abstraction layer and provide a mechanism for their communica-
tion within this layer. It supports actuation and subscription to observations as core
IoT platform functionalities. Virtual devices management, which is basically mir-
roring devices across IoT platforms, is implemented for those platforms that support
this functionality.

INTER-Middleware provides acommon Java interface that defines bridge features
that have to be implemented: subscriptions, actions, virtual devices management and
discovery. One important step in bridges development is the implementation of a
syntactic translator to/from platform-specific format and JSON-LD. Definition of
rules for semantic alignments is still necessary, but not at the bridge level. That part
of the process is fully implemented in IPSM. The integration with IPSM is achieved
through the IPSM Request Manager component that orchestrates the communication
between IPSM and INTER-Middleware components (Bridges, Platform Request
Manager).

120 A. Belsa et al.
4.3.3 Communication and Control

Data flow is managed through a the introduction of conversations. A group of mes-
sages belongs to the same conversation if they share the same unique conversation
identifier. For example, in a single conversation we would typically have first a
message which subscribes to a particular group of sensors, and then messages with
sensor readings, going upstream from the sensors to the application. Subscriptions
in INTER-Middleware are also tracked by the unique conversation identifier. Tech-
nically, data flows are implemented through a message broker. This allows complete
decoupling between components as well as isolation of the communication respon-
sibility in a single element, which in turn makes profiling, scaling and adaptation to
enterprise infrastructures easier. An abstraction mechanism enables interchangeabil-
ity of the message broker implementation [24].

4.3.4 Services

The INTER-Middleware solution maintains a registry of all devices present in
connected IoT platforms and provides meta-information about those devices. The
Parliament™?* triple store database provides persistence and advanced querying
mechanisms for the Services subsystem. All registry-related requirements that need
persistence or querying support, such as Platform Registry, Resource Registry and
Subscriptions Registry, are implemented through this database. This allows the
implementation of an efficient querying mechanism and seamless access to device
information across IoT platforms. Maintenance of the device registry is not a trivial
task, as there are several approaches utilized by IoT platforms to provide meta-data
about attached devices. INTER-Middleware implements discovery strategies that can
be used to populate the registry: full-query at regular time intervals, difference query
at regular time intervals or, with more advanced IoT platforms, registry updates with
callbacks.

4.3.5 REST Interface

Applications communicate with INTER-Middleware through a REST APL. It further
extends the usability of the abstraction layer by exposing most of the functionalities
through a widely used technology and making them available to application layer
components. Requests and results may be provided in either a simple JSON format,
that fulfils most of the basic user requirements, or in the more complex JSON-LD
format that also offers a richer set of functions and full semantic interoperability.
Security at application level is provided through the integration with the REST
API Manager and Identity Manager. Platform security, on the other hand, is a respon-

4 http://parliament.semwebcentral.org/.

http://parliament.semwebcentral.org/

INTER-Layer: A Layered Approach for IoT Platform Interoperability 121

sibility of bridge developers. In principle, authentication information can be passed
through platform registration messages.

4.3.6 E-Health Use Case

In the area of health, INTER-Middleware has been used to develop e-Health applica-
tion whose objective is the prevention of obesity-associated diseases through patient
monitoring. The application integrates data collected from two different data sources,
universAAL platform and Body Cloud platform. Both are health-focused IoT plat-
forms that use Bluetooth technology to collect sensor measurements. However, they
are not interoperable from a technological point of view. Instead of consuming data
directly from the application through their APIs (leaving the resolution of interop-
erability problems as a task to be solved within the application), a new element is
added to the architecture of the solution, INTER-Middleware, to be responsible for
providing data interoperability between the platforms involved. To this end, it has
been necessary to develop a platform bridges for each platform and connect them to
INTER-Middleware.

Thus, the application consumes the data from the API provided by INTER-
Middleware. In this way, if in the future it is desired to incorporate new platforms
or devices associated to the platforms to the solution, these changes will be made in
the interoperability layer, being transparent for the health application. An exhaustive
description of the interoperability application in e-Health can be found in the Chap. 8.

4.3.7 Port Logistics Use Cases

INTER-Middleware has been validated in a port environment through three use cases
whose main purpose is to improve the efficiency of resources in the transport chain of
a port system through the monitoring and automation of processes involving different
actors. The main actors are:

e Port authority: organism that manages the collection of different terminals, facili-
ties and auxiliary systems that enable the activity of the port itself.

e Container terminal: installation or set of port installations constituting the interface
between the mode of maritime transport and other modes.

e Haulier company: company that owns the fleet of trucks that access the port daily.

On the other hand, 3 use cases have been defined where each of them is focused on
solving a different problematic:

e IoT access control, traffic and operational assistance.
e Dynamic lighting.
e Wind gusts detection.

The main challenge presented by this scenario is precisely the difficulty of interacting
between systems that have not been designed to work together. The port authority

http://dx.doi.org/10.1007/978-3-030-82446-4_8

122 A. Belsa et al.

IoT platform is based on WSO2 whereas the container terminal uses its own IoT
platform (SEAMS) and the haulier company has an Azure IoT platform in the cloud.

In order to establish a common base on which to build the new solutions associated
with the different use cases in a user-fiendly, secure and scalable manner, it was
decided to use the INTER-Middleware interoperability solution. For this purpose,
the systems are integrated with INTER-IoT through the middleware layer and the API
layer. To this end, each system implements a specific platform bridge. An exhaustive
description of these cases can be found in the INTER-LogP chapter.

S Application and Services Interoperability

There are multiple types of services in IoT ecosystems, such as Complex Event Pro-
cessing, Historical Database, Big Data Processing, Visualization, Analytics, etc. IoT
platforms do not have the capability to interact between each other at application and
service level. This lack of interoperability is mainly produced by the heterogeneity
of the services, the different domains involved, the lack of standardization of the
technologies and the large amount of protocols involved, which in the end prevents
prevents the emergence of vibrant IoT ecosystems [25]. There are main aspects to
consider in order to achieve interoperability at this layer:

e The native access to the IoT Platform services. It should be considered as a method
to access IoT platforms applications and services. Most IoT platforms provide
a public API to access their services, APIs that are usually based on RESTful
principles and allow common operations such as PUT, GET, PUSH or DELETE.
However, there are other IoT Platforms that do not include a REST API or SOAP
for easing the development of Web services, but provide different ways to interact
with them.

e The use of wrappers. The term wrapper in this context refers to a specific program
able to extract data from Internet sites or services and convert the information into
a structured format.

e The creation of enablers to the applications and services. They guarantee, organize
and simplify access to the IoT Platform services.

e The development of application, data and device catalogues dedicated to the IoT
services. They are generally missing in the market. A solution based on a Service
Catalogue will be able to register applications to make them discoverable. Further-
more, it will offer a description or detailed information about services/applications.

e The virtualization of services and applications. There are some benefits like sim-
plifying the monitoring of the infrastructure, network issues and security inci-
dents. Furthermore, it provides flexible mechanisms like the creation of additional
instances of the services whenever needed. This allow to handle the additional
load while maintaining the quality of the service.

Service composition solutions facilitate achieving interoperability between appli-
cations and services [26]. These solutions encompass all those processes that provide

INTER-Layer: A Layered Approach for IoT Platform Interoperability 123

added-value services, so-called composite services, from existing services in the [oT
platforms. Service composition can be understood as allowing routes for the data to
be treated before reaching an application or end-user, or agents requiring informa-
tion or processes from other such agents. Such compositions can help provide more
valuable information and actions than plain raw data, tailored to a particular receiver
or purpose. The composition of such services can be as simple as one service making
use of a second service, to very complex and flexible schemes of interconnection that
need a coordinator to manage the mesh of requests and responses. There are several
techniques of service composition like mash-up, orchestration, choreography of flow
based programming and tools to facilitate its implementation. In the solution that will
be described in the following subsections, the flow based programming approach is
the selected technique.

5.1 INTER-Layer Approach at Service and Application Layer

The main objective at this layer is to guarantee a solution that is capable to offer a
layer of abstraction to achieve interoperability between the applications and services
of IoT platforms. In order to provide benefits like access, use, import, export, cat-
alog, discovery and combination of heterogeneous services between different IoT
platforms (Fig. 13).

INTER-Layer approach provides a detailed plan about how to perform access
to IoT platform services and implements a complete architecture to interact with
these services and to create and manage new composed applications. The technique
selected to create interoperability between services is Flow Based Programming
paradigm. This paradigm defines applications as black-box process, which exchange
data through predefined connections with message passing. These black-box pro-
cesses can be connected to create different solutions without the need of being mod-
ified internally [27].

Access to loT Platform Services Overview of AS2AS Approach

Service 1

¥ Y .

SHORT TERM . .
.wmﬂvgﬂ_*.f#-e—dﬁﬁ

Q G INTER-loT App/Services

CONTEXT BROKER

{

IaT Agents

=

loT-P1 loT-P2
App/Services App/Services
Service 2 3 _

LLET

EXAMPLE OF IOT PLATFORM

Fig. 13 AS2AS basic overview

124 A. Belsa et al.

The main functionalities offered at AS2AS level are based on access to APIs
or interfaces provided by IoT platforms, register those services/applications with
their description or detailed information to make them accessible, offer requests to
the catalogue to obtain the necessary services from the IoT Platforms, providing
an abstraction layer of interoperability that facilitates the common access to these
services and helping developers to make them interoperate with others of the catalog.

5.2 Architecture of the Solution and Components

The following architecture [28] is designed to perform the functionalities and goals
that have been listed in the previous subsection (Fig. 14).

The components and the relation that exists between these components are the
following:

e Service Catalogue and Service Discovery are in charge of storing and managing
the information and description about the services available on IoT Platforms.
To interact with these components, users can make use of the of the graphical
environment (GUI): Modeller and Register Client.

......................... T 11 !
F1Ea [o =] (21

0T PLATFORM X 10T PLATFORM Y 10T PLATFORM Z

Fig. 14 AS2AS basic architecture and components

INTER-Layer: A Layered Approach for IoT Platform Interoperability 125

e The Register Client provides a tool to register new native IoT platform services
and new composite services (also known as flows). During the registration of a
service, it is possible to add a description about its features. Once the registration
of the service occurs, it is stored in the Service Catalogue.

e The Modeller is a graphical environment that has access to the services that have
been registered. It uses the Service Discovery module, through which it calls the
Service Catalogue. In addition, it can access to util internal functions to execute a
particular process (for example, functions to perform transformations in the data
resulting from the execution of a service, to display information, to determine a
timeout between calls, to repeat a call to a service a number of times, etc.) that
facilitate the interaction with the available services. Using this tool, the AS2AS
users can design a solution based on the composition of services. The visual editor
lets user drag and drop the services (visually represented as nodes) onto the design
surface and then join them together by dragging lines between them. Once the
design made by the Modeller is validated, the generated flow is stored in the Flow
Repository. This component manages the information of all flows created.

e The Orchestrator is the central engine of the interoperability solution. It is respon-
sible for loading the flows created with the Modeller and stored in the Flow Repos-
itory. Once the design is loaded, it makes the necessary calls to the service APIs
of the IoT Platforms Services and executes its internal functions, in the order
indicated in the model to run the service composition. It collaborates with the
semantics module, which is responsible for performing semantic translation of
data exchanged.

The orchestrator and modeller are based in Flow Based Programming paradigm.
For that reason, it is necessary to take into account that in this technology the main
element is the node. These nodes provide a mechanism to access and interact with
the IoT services. A node needs input parameters and provides output information. It
executes a series of internal processes in the application that is calling. The interaction
between the different nodes will be defined by an execution flow, which defines and
manages this interoperability process between services.

The Catalog, Register and Discovery components work with the nodes and its
properties. The Modeller is responsible to create and modify the flows, which are
composed by the interconnection of several nodes. The purpose of the Modeller is
to define the service composition. These flows are stored and loaded in the Flows
Repository. Finally, they are executed by the Orchestrator, which is the one who
starts the service composition operation.

Finally, the API is responsible to manage the Orchestrator and the flows stored in
the Flow Repository. It offer the functionalities of a process manager, allowing users
to start/stop a flow of execution, view its status, load a flow of interoperability in the
orchestrator or access to specific services.

126 A. Belsa et al.

5.3 Implementation and Use Cases

The core solution is based in Flow-Based Programming using as core a tool,
Node-RED,’ that implements this paradigm according to the AS2AS INTER-Layer
interoperability requirements. This tool interacts with the components designed and
developed to offer the interoperability solution. It transfers the advantages of this
service composition paradigm to IoT. The solution enables a number of IoT ser-
vices to be available in a development environment. Access to [oT services has been
achieved by accessing its REST APIs and wrapping them through a node with a
series of functionalities for the user. For those services that do not have REST API,
other alternatives have been looked (e.g. SOAP web services).

5.3.1 Node-RED Integration in INTER-IoT

Node-RED offers a visual tool for wiring together hardware devices, APIs, IoT
Native Sevices and online services [29]. From the point of view of INTER-Layer,
Node-RED offers tools for creating new nodes for IoT services, as well as a legacy
and huge core set of useful nodes. These nodes can be stored in a catalogue. Users
can search available nodes in the catalogue or in the npm repository. New nodes can
be registered and installed, and existing nodes can be enabled or disabled. In order
to design and orchestrate interoperability, Node-RED provides a browser-based flow
editor that makes it easy to wire together flows using a wide range of nodes in the
palette. This flows can be deployed in runtime with a single-click. In addition, it
allows users to save useful functions, templates or flows for re-use [30, 31]. Finally,
it offers an API to remotely administer the runtime.

5.3.2 Nodes

Paying attention to technical issues, a node consists in a JavaScript file that runs in
the Node-RED service, and an HTML file consisting in a description of the node.
The description appears in the node panel with a category, colour, name and icon,
code to configure the node, and help text. Nodes can have at most one input, and
zero or more outputs. During the initialization process, the node is loaded into the
Node RED service. When the browser accesses the Node RED editor, the code for
the installed nodes is loaded into the editor page. Node RED loads both HTML for
the editor and JavaScript for the server from the node packages.

3 https://nodered.org/.

https://nodered.org/

INTER-Layer: A Layered Approach for IoT Platform Interoperability 127
5.3.3 Flows

The flows are a collection of nodes wired together to exchange messages, the data
contained in the flow is stored in a file in JSON format. It consists of a list of JavaScript
objects that describe the nodes and their configurations, as well as a list of down-
stream nodes they are connected to, the wires. Wires define the connections between
node input and output endpoints in a flow. The messages passed between nodes in
Node-RED are, by convention, JavaScript Objects called messages. Messages are
the primary data structure used in Node-RED and are, in most cases, the only data
that a node has to work with when it is activated. This ensures that a Node-RED flow
is conceptually clean and stateless.

5.3.4 Implementation

Regarding a mapping between the architecture and the implementation, itis necessary
to consider how to access to a complete instance of the interoperability solution. For
that reason, during the implementation it has been taken into account that the flow
designed by the modeller and executed by the orchestrator can be accessed by one or
more users, at the same time and with different permissions, through the APIs. Still,
only one flow can be executed in each instance of the solution. Therefore to have
several flows of the interoperability solution running at the same time, it is necessary
to work with different instances of the solution.

The core solution could be virtualized inside a docker container image allowing
deploying the solution in the same way regardless of the environment. It allows to
offer different instances of the interoperability solution located at the same host. Each
instance of the server have different nodes, its own internal folders and files with its
running configuration. It should be highlighted that instances access the same service
catalogue and flow repository.

Different graphical interfaces and web services have been developed to interact
with the components at various levels. The first level is from the point of view
of the management of instances, allowing users to generate and manage different
instances of the solution dynamically. The second level is to communicate with
each specific instance, to design flows and load configurations or services. The third
level is to interact with the catalogues. The framework designed in INTER-IoT starts
integrating in its graphic environment the complete management of these components
of the interoperability solution, including the management of the different users and
security.

5.3.5 Node Design Methodology

Regarding the validation of the correct operation of the interoperability solution and
the correct design of the nodes. The first steps after the creation of nodes to access
to the desired [oT services involve the design and implementation of interoperability

128 A. Belsa et al.

use cases. These use cases consist in a flow of execution to develop a new composite
application with a specific purpose. To homogenize the process, it has been defined
a procedure to integrate services and applications in the interoperability solution. If
a developer follows these steps, the result is the creation of an accessible and totally
functional node. As a summary of these procedure:

e Firstly, it is necessary to perform a complete analysis of the service, to obtain
access to an instance of the platform with the service running, to perform test with
data, to analyze the functionalities offered by the service, to study the provided
methods to access to the service, to document the functionalities and to analyze the
messages or actions that return the execution of each functionality of the service.

e In second place, the node has to be implemented: to group the functionality of
the service, to identify the parameters needed to access the service, to create
configuration nodes, to create the interface that collects the parameters that will
consume the service, to develop the code that will execute the functionalities, and
to define the messages that the node sends and receives.

e Then, the correct actuation of the node has to be tested considering real data, fixing
the bugs and catching errors.

e Finally, the deployment of the service with real data and the characteristics of the
node have to be documented.

5.3.6 Interoperability Use Cases

These nodes are used in the interoperability flows. They implement uses cases con-
sisting of a flow of execution to perform a new composite application with a specific
purpose. The flow and nodes involved are inside a instance of the interoperability
solution deployed as a docker container.

There are implemented several use cases, so in order to give a practical approach
to the information of this chapter, some of the most outstanding ones are going to
be briefly described. For instance, considering a use case of a Port Environment, a
CEP can be connected to trigger actions when the trucks monitored by different and
heterogeneous road haulier companies platforms are physically close to a specific
location, to perform actions in a platform from the port authority domain, like queries
or to store historical information about this truck and show it in a dashboard. This
implementation facilitates the improvement of logistic processes, shows alerts and
allow to consider several application domains (road haulier companies, port and
terminal) working together in a single composite application.

Another use case is related to Active Assisted Living Environment for accessing
to historical information from different IoT platforms with heterogeneous formats, to
perform syntactic and semantic translation in a common data model and to store data
in a centralized database. All this heterogeneous information is stored in a common
format and there exists the possibility of using different kinds of databases. Hence,
external applications can directly access and use all these data from various sources

INTER-Layer: A Layered Approach for IoT Platform Interoperability 129

PORT USE CASE AAL USE CASE

L

Fig. 15 AS2AS example of use cases

in their applications without making different connectors, providing extra value to
this data (Fig. 15).

Finally, the following are some examples of generic use cases of this level: access-
ing to different services from different [oT platforms and use a dashboard to show the
information in a mashup composition way, to use external services to store informa-
tion in an application that provides an extra security layer, to connect and interoperate
local IoT platforms services with services provided by main providers of web appli-
cations (mail, social networks, cloud services, etc.) or performing conversion and
translation between services that use different formats or protocols.

5.3.7 Results and Discussion

Different solutions and tools have been developed that are available in the public
GIT repository of the INTER-IoT project, together with the a guide that explains the
technical information, how to deploy the components and how to develop new ele-
ments to extend the solution. In addition, the different components of Application and
Services Interoperability solution are integrated inside the INTER-IoT Framework,
which offers a visual interface to access and interact easily with the components in a
way that integrates the common security and privacy functionalities of INTER-IoT.
The main accessible components are:

e Instance Manager. It performs the deployment and management of the solution
instances. It facilitates both extensibility and usability of the solution in a local or
cloud deployment.

e Service registry. It offers the registration of new platforms and services in the
interoperability solution.

e Flow registry. It provides access to the new services created and its information,
the easy execution and the possibility of reuse the flows.

An API is provided to manage, deploy, access and modify different instances of
the interoperability core solution without the use of v Framework. In addition, an

130 A. Belsa et al.

automatic Docker instantiation of the solution has been developed, since the use of
containers allows a centralized management of different instances of the solution
that can work concurrently in a scalable way and can be located in different servers.

As aresult of this work there are available around 20 nodes and 10 interoperabil-
ity flows available in the INTER-IoT git repository. They are related directly with
elements of the INTER-IoT project. These nodes cover different aspects, like access
to IoT Platform services or translation of formats of messages exchanged. All the
nodes and flows available are compatible with the Node-RED solution and can be
reused without effort.

6 Conclusions

This chapter describes the approach followed by INTER-IoT to solve the interoper-
ability problem at each one of the IoT layers. These solutions have been proposed as
an attempt to resolve one of the main remaining challenges that blocks the growth
of IoT systems in real environments.

The solutions proposed by INTER-Layer are based in the creation of adaptors,
gateways and higher level components, like the middleware, which provides a new
layer of abstraction that allows the communication of the different components
through it. Each one of the solutions can be implemented independently, follow-
ing its own architecture aiming at solving a concrete interoperability problem in
a specific layer. However, some of them are usually implemented altogether. For
instance, the Device-to-Device solution and Network-to-Network solution can con-
form an IoT deployment solution for lower levels, although they could perfectly
work separately. The only exception is the Middleware-to-Middleware solution, as
it requires the IPSM component of the Semantics module to allow interoperability

at Platform and Semantic levels as a whole.
A summary of the main and derived products extracted from each layer can be
observed in the following table:

Layer Core solution Derived products

D2D Physical and virtual gateway Installer tool, automatic
deployment tool, gateway
extensions and SDK

N2N SDN IoT controller CLI, QoS application, dash-
board and utilities
MW2MW INTER-MW TIoT bridges, Docker-

compose, examples and
demo dashboard

AS2AS INTER-AS Instance manager, INTER-
IoT services, flows and
nodes

Moreover, each solution exposes a standardized API that facilitates the extensibil-
ity of the system and the creation of new application tools at the top of INTER-Layer.

INTER-Layer: A Layered Approach for IoT Platform Interoperability 131

An example of this is INTER-FW, a management utility used to monitor the status
of the layered solutions and to create new instances of each one. This utility makes
use of the API and is installed combined with one or more INTER-Layer solutions.
More information about this tool is described in this chapter.

References

10.

12.

13.

14.

15.

16.

. Gravina, R., Palau, C.E., Manso, M., Liotta, A., Fortino, G. (eds.): Integration, Interconnection,

and Interoperability of IoT Systems. Internet of Things. Springer International Publishing
(2018)

Fortino, G., Savaglio, C., Palau, C.E., de Puga, J.S., Ghanza, M., Paprzycki, M., Montesinos,
M., Liotta, A., Llop, M.: Towards multi-layer interoperability of heterogeneous IoT platforms:
the inter-IoT approach. Internet of Things 199-232 (2018)

Fortino, G., Palau, C.E., Guerrieri, A., Cuppens, N., Cuppens, F., Chaouchi, H., Gabillon, A.
(eds.): Interoperability, Safety and Security in IToT—Third International Conference, InterloT
2017, and Fourth International Conference, SaSelot 2017, Valencia, Spain, November 6-7,
2017, Proceedings. Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, vol. 242. Springer (2018)

Fortino, G., Garro, A., Russo, W.: Achieving mobile agent systems interoperability through
software layering. Inf. Softw. Technol. 50(4), 322-341 (2008)

Vermesan, O., Friess, P. (eds.): Digitising the Industry Internet of Things Connecting the Phys-
ical, Digital and Virtual Worlds. Riverpublishers (2016)

Broring, A., Zappa, A., Vermesan, O., Frimling, K., Zaslavsky, A., Gonzalez-Usach, R.,
Szmeja, P., Palau, C., Jacoby, M., Zarko, I.P., Sour-sos, S., Schmitt, C., Plociennik, M., Krco, S.,
Georgoulas, S., Larizgoitia, 1., Gligoric, N., Garcia-Castro, R., Serena, F., Orav, V.: Advancing
IoT Platform Interoperability. River Publishers, The Nederlands (2018)

ITU-T. Y.2060: Overview of the Internet of things. Technical report, The International Telecom-
munication Union SG13 (2012)

Internet Engineering Task Force (IETF). RFC 7228: Terminology for Constrained-Node Net-
works (2014)

Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P., Russo, W., Savaglio, C.: Enabling [oT
interoperability through opportunistic smartphone-based mobile gateways. J. Netw. Comput.
Appl. 81, 74-84 (2017)

Tschofenig, H., Arkko, J., Thaler, D., McPherson, D.: Architectural considerations in smart
object networking. Technical report, Internet Architecture Board (2015)

. Ramalho, F,, Neto, A.: Virtualization at the network edge: a performance comparison. In: WoW-

MoM 2016—17th International Symposium on a World of Wireless, Mobile and Multimedia
Networks. Institute of Electrical and Electronics Engineers Inc., July 2016

Yacchirema, D.C., Esteve, M., Palau, C.E.: Design and implementation of a gateway for per-
vasive smart environments. In: 2016 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), pp. 4454-4459, October 2016

Zambrano, A., Perez, 1., Palau, C., Esteve, M.: Quake detection system using smartphone-
based wireless sensor network for early warning. In: 2014 IEEE International Conference on
Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS), pp. 297-
302 (2014)

Zambrano, A., Perez, ., Palau, C., Esteve, M.: D3.2. Methods for Interoperability and Integra-
tion v.2. INTER-IoT H2020 project, October 2017. https://inter-iot.eu/deliverables

Varga, L.-O.: Multi-hop energy harvesting wireless sensor networks: routing and low duty-cycle
link layer. Ph.D. thesis, Grenoble, December 2015

Vazquez, T.A., Barrachina-Muiloz, S., Bellalta, B., Bel, A.: HARE: supporting efficient uplink
multi-hop communications in self-organizing LPWANSs. Sensors 18(2), 115 (2018)

https://inter-iot.eu/deliverables

132

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

A. Belsa et al.

Omnes, N., Bouillon, M., Fromentoux, G., Grand, O.L.: A programmable and virtualized
network it infrastructure for the Internet of Things: how can NFV SDN help for facing the
upcoming challenges. In: 2015 18th International Conference on Intelligence in Next Genera-
tion Networks, pp. 64-69 (2015)

Kreutz, D., Ramos, FM.V., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S., Uhlig, S.:
Software-defined networking: a comprehensive survey. Proc. IEEE 103(1), 14-76 (2015)
McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker,
S., Turner, J.: Openflow: enabling innovation in campus networks. SIGCOMM Comput. Com-
mun. Rev. 38(2), 69-74 (2008)

Internet Engineering Task Force (IETF). RFC 4627: The application/JSON Media Type for
JavaScript Object Notation (JSON). Technical report, IETF Network Working Group (2006)
Zdravkovi¢, M., Trajanovic, M., Sarraipa, J., Jardim-Gongalves, R., Lezoche, M., Aubry, A.,
Panetto, H.: Survey of Internet of Things platforms, February 2016

Partha Pratim Ray: A survey of IoT cloud platforms. Future Comput. Inf. J. 1(1), 35-46 (2016)
Pileggi, S.F,, Palau, C.E., Esteve, M.: Building semantic sensor web: knowledge and interoper-
ability. In: Proceedings of the International Workshop on Semantic Sensor Web: SSW, (IC3K
2010), vol. 1, pp. 15-22. INSTICC, SciTePress (2010)

Giménez, P., Molina, B., Palau, C.E., Esteve, M.: SWE simulation and testing for the IoT. In:
IEEE International Conference on Systems, Man, and Cybernetics, pp. 356-361 (2013)
Broring, A., Schmid, S., Schindhelm, C.K., Khelil, A., Kébisch, S., Kramer, D., Le Phuoc, D.,
Mitic, J., Anicic, D., Teniente, E.: Enabling IoT ecosystems through platform interoperability.
IEEE Softw. 34(1), 54-61 (2017)

Lemos, A.L., Daniel, F., Benatallah, B.: Web service composition: a survey of techniques and
tools. ACM Comput. Surv. 48(3) (2015)

Guth, J., Breitenbiicher, U., Falkenthal, M., Leymann, F., Reinfurt, L.: Comparison of IoT
platform architectures: a field study based on a reference architecture. In: 2016 Cloudification
of the Internet of Things (CIoT), pp. 1-6 (2016)

Belsa, A., Sarabia-Jacome, D., Palau, C.E., Esteve, M.: Flow-based programming interoper-
ability solution for IoT platform applications. In: 2018 IEEE International Conference on Cloud
Engineering (IC2E), pp. 304-309 (2018)

Blackstock, M., Lea, R.: Toward a distributed data flow platform for the web of things (dis-
tributed node-red), pp. 34-39, October 2014

Blackstock, M., Lea, R.: Fred: a hosted data flow platform for the IoT, pp. 1-5, December 2016
Kleinfeld, R., Steglich, S., Radziwonowicz, L., Doukas, C.: glue.things: a mashup platform for
wiring the Internet of Things with the Internet of Services, October 2014

Semantic Interoperability)

Check for
updates

Maria Ganzha, Marcin Paprzycki, Wiestaw Pawlowski,
Bartlomiej Solarz-Niestuchowski, Pawel Szmeja, and Katarzyna Wasielewska

Abstract Interoperability, on the semantic level, deals with shared understanding
of data, between IoT artifacts. Positioned on top of the syntactic layer, semantic
interoperability facilitates solutions to problems that arise after the data is in a
common format, with syntax understood by all participants. Provisioning of com-
patibility between not directly compatible data structures, representations, conven-
tions and standards, falls strictly under the responsibility of semantic methods.This
chapter introduces the INTER-IoT perspective on data semantics and summarizes
it’s achievements in the field of semantic interoperability. Being a generic and far-
reaching solution, the syntactic compatibility challenge is also mentioned, as it is a
necessary precondition to comprehensive data interoperability suite.

1 Introduction

While the outlook for the Internet of Things (IoT) remains positive, its underlying
vision, of an all-encompassing ecosystem, remains unfulfilled. The pervasiveness
of so-called silos is, in no small part, due to differences in requirements on data
semantics introduced, independently, by joining systems. Whether caused by varying

M. Ganzha (<) - M. Paprzycki - B. Solarz-Niestuchowski - P. Szmeja - K. Wasielewska
Systems Research Institute Polish Academy of Science, Warsaw, Poland
e-mail: maria.ganzha@ibspan.waw.pl

M. Paprzycki

e-mail: marcin.paprzycki @ibspan.waw.pl

B. Solarz-Niestuchowski

e-mail: bartlomiej.solarz@ibspan.waw.pl

P. Szmeja

e-mail: pawel.szmeja@ibspan.waw.pl

K. Wasielewska

e-mail: katarzyna.wasielewska@ibspan.waw.pl
W. Pawlowski

Faculty of Mathematics, Physics and Informatics, University of Gdarisk, Gdansk, Poland
e-mail: wieslaw.pawlowski@ug.edu.pl

© Springer Nature Switzerland AG 2021 133
C. E. Palau (eds.), Interoperability of Heterogeneous loT Platforms, Internet of Things,
https://doi.org/10.1007/978-3-030-82446-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82446-4_5&domain=pdf
mailto:maria.ganzha@ibspan.waw.pl
mailto:marcin.paprzycki@ibspan.waw.pl
mailto:bartlomiej.solarz@ibspan.waw.pl
mailto:pawel.szmeja@ibspan.waw.pl
mailto:katarzyna.wasielewska@ibspan.waw.pl
mailto:wieslaw.pawlowski@ug.edu.pl
https://doi.org/10.1007/978-3-030-82446-4_5

134 M. Ganzha et al.

domain requirements and perspectives, legacy software, lack of foresight, or delib-
erate vendor-locking, IoT artifacts usually “speak different languages”, understood
exclusively “within their cliques”. When large(r)-scale IoT ecosystems are devel-
oped, different silos that are (physically and/or virtually) close to each other, often
require meaningful communication. Here, semantic interoperability layer offers pos-
sibility of shared understanding of data. Application of a semantic solution allows
implementation of valid, purposeful, and useful conversation, while protecting inter-
nal use of varying data syntax, models, and semantics [52].

Here, note that it is very rare that explicit semantics, using formal representation
of the domain, in the form of an ontology, is available. Often, the meaning of data is
implicit and, for instance, buried in system documentation. Fortunately, even in such
case it is possible to “make implicit semantics explicit” (i.e. establish an ontology
that represents it) and instantiate appropriate translators between the internal data
model and its ontology-based, semantically-enriched counterpart. Readers interested
in how this preliminary step towards semantic interoperability can be performed are
welcome to consult [37, 39], and references provided there.

In the layered model of interoperability [24] semantics is positioned above syn-
tactic interoperability [39], which ensures common understanding of the structure
of data. Since the objective of this chapter is to present the INTER-IoT approach to
semantic interoperability, and because syntactic interoperability is its prerequisite, in
what follows, we shall assume that: (i) (one way or another) IoT artifacts have explicit
semantics, represented as an ontology; (ii) artifacts participating in the ecosystem,
have already achieved the syntactic interoperability [53].

1.1 Towards Semantic Interoperability

To provide the context for this chapter, let us assume that a number of IoT artifacts
has to be “associated” to instantiate a new loT ecosystem. Naturally, the case when
an existing IoT ecosystem is to be enriched, by adding new artifacts (e.g. sensors/-
platforms/services) to deliver new functionalities, is also covered.

In general, there are multiple ways of achieving semantic interoperability within
the ecosystem. The simplest is to implement the same semantics (use the same
ontology) across the ecosystem. However, it would mean that each artifact would have
to comply to the common ontology, and possibly change its preexisting semantics
to fit the unified vocabulary and schema. In a structure, where no party is privileged,
and no one can enforce such far-reaching changes, such approach is not feasible [49].

Semi-interoperability may be achieved when many artifacts write data to the same
storage that has a specific semantics. In this case, they all need to translate the data
one-way, on their own, from their own semantics into the selected one. This approach,
however, is mainly applicable to data-fusion and does not support inter-artifact com-
munication. Furthermore, the question “which ontology should be selected for the
common repository”’ remains unanswered.

Fartial interoperability is (at least theoretically) achievable when artifacts share
an upper ontology as a core “module” of their ontologies. This level of interoper-

Semantic Interoperability 135

ability, however, is hardly applicable to IoT ecosystems, mainly because of their vast
(internal) heterogeneity. Simply said, in order to be fully functional, highly special-
ized applications in IoT require higher level of interoperability than what, in most
realistic cases, an upper ontology can offer. Here, it should be also noted that the
heterogeneity of semantic representations occurring in IoT-related domains (see, for
instance, [35]) further diminishes real-world applicability of this approach.

Even though, it is not strictly necessary from the technical point of view, the
INTER-IoT approach assumes that the joining process should be “non-invasive”
for the participating artifacts. In particular, it means that no internal adjustments
should be required in the process of forming/joining the ecosystem. To achieve this
goal, INTER-IoT uses communication channels which facilitate flow of information
between artifacts. Since the artifacts may “speak different languages” it is natural to
expect that the communication channels not only form communication “media” but
perform semantic translation as well.

1.2 IoT Case Study

To illustrate the proposed approach, let us consider a logistic and delivery system,
operating in an IoT-enabled city (see, Fig. 1). There are several delivery companies
(iotDelivery), operating in the area, that deliver/pick up goods to/from specific loca-
tions. Their goal is to dynamically optimize routes and operation time of their trucks.
Therefore, each monitors truck positions and routes and chooses a specific vehicle
for selected job. The choice is based on: (i) current traffic information, (ii) availabil-
ity of parking slots near the delivery/pick-up point. Traffic information is provided
by dTraffic company. This company analyses and publishes information gathered by
drones monitoring city traffic. Note that drones can come from different vendors and,
consequently, support different communication standards. Each drone should, peri-
odically, send two types of messages, containing: (i) its position and battery level, and
(2) traffic congestion information. dTraffic gathers and processes this information, to
publish traffic reports. Obviously, dTraffic needs to send messages to control drones,

Fig. 1 Smart delivery and logistics interoperability scenario

136 M. Ganzha et al.

e.g. request to return to base for charging (including coordinates of selected base
station). Since platform used by dTraffic has to operate 24/7, recycling/connecting
new devices must be seamless. Finally, parking lots companies (iParking) manage
parking spaces in specific regions. iParking’s publish information about availability
of free slots, and receive reservation requests from iotDelivery companies. Reserva-
tion messages contain, car ID/RFID and arrival time. Upon truck arrival, iParking
provides slot number. Note that each iParking instance can be managed by different
entities and use different communication standards.

Here, interoperability is needed for: (i) dTraffic company communicating with
its drones—drones should be able to send messages in their native format, while
dTraffic should communicate with them in a common selected format, not having to
directly use/support all vendor-specific standards; (ii) iotDelivery cooperating with
different trucks—should have simplified communication, as in the case of dTraffic;
(iii) iotDelivery gathering information from dTraffic, trucks, iParking’s, and sending
reservations to iParking’s. In first two cases, the interoperability mechanism should
seamlessly handle addition of new drone/truck vendors. The last example requires
creation of an IoT Delivery Hub, where information between parking lots, trucks,
delivery companies and traffic monitoring can be exchanged and understood.

The IoT Delivery Hub is a place where information is exchanged between stake-
holders: trucks, iParking platforms, iotDelivery platforms, and dTraffic platform.
Interoperability should enable any iotDelivery platform to receive information from
different parking lots with parking spaces availability in a way that is independent
from the original semantics that these platforms use internally. Moreover, when iot-
Delivery platform wants to make a reservation at a parking lot it should be able to
send it in its natively supported semantics. Additionally, loT Delivery Hub consumes
data from dTraffic platform with current city congestion status, and translates data
exchanged between trucks and iotDelivery platforms. Note that real-life scenario
can be even more complex because trucks may cooperate with different delivery
companies.

When designing the shared data model, in the IoT Delivery Hub, the following
concepts should be taken into consideration:

e Geolocation—for expressing trucks location, parking lot and parking place loca-
tion, and to identify areas with different traffic levels,

Time—for defining reservation time slots,

Traffic—for describing traffic congestion level in a given area,

Logistics—for trucks identification, description of delivery orders,

Parking—for describing parking availability.

Clearly, most of data publishing/exchange happening within the use-case, has a
streaming nature. Therefore, the interoperability solution should enable translation
of streams of messages exchanged between artifacts as well.

With the scenario in mind, we proceed as follows. First, we outline the seman-
tic interoperability problem, and possible approaches towards solving it. In Sect. 2,
we consider standards and ontologies that are available on the market, including
the domain of our example scenario. Next, in Sect.4, we discuss how to approach
semantic translation, and what is the role of ontology alignments in the process. Then,

Semantic Interoperability 137

we describe a specific format for persisting mappings/alignments between ontolo-
gies, and discuss the Inter-Platform Semantic Mediator (IPSM) — tool for performing
alignment-based semantic translation. Finally, in Sect.7, we return to the example
scenario, to describe its realization using INTER-IoT approach.

2 Ontologies in the Internet of Things

An ontology [45], in a broad sense, is a way of representing and describing knowl-
edge, and in more “applied” terms—is a way of representing data together with
metadata. It can contain information about both concrete instances of data (individ-
uals) and structural information about data, usually confined to a domain of interest.
In this chapter, systems are semantically interoperable if a sent message can be (in
a practical, not theoretical, way) expressed in terms of the ontology of the receiving
system.

A formal way of expressing semantics is the Web Ontology Language (OWL).!
OWL ontologies are often modular. Here, Horizontal modules are subsets of ontolo-
gies, often very loosely (or not at all) connected. They describe different areas of the
domain of interest, that reside on roughly the same level of abstraction. For instance,
in the scope of logistics, a geolocation module is independent from a module describ-
ing the cargo. While both modules will likely be used to describe an instance of a
physical container, there is no formal connection between the location of a container
and its type, weight, or color. Moreover, a geolocation module is not tied to trans-
portation or logistics, as it may be used for other physical entities, and even in entirely
different domains. In summary, horizontal modules are not dependent on each other,
separable, and sometimes completely orthogonal.

Vertical modules, on the other hand, build “on top of each other” and form a
strict top-down hierarchy. The “level of a module” corresponds to its relative level of
abstraction. Here, most general ontologies are “on top”, and most specific ones “at
the bottom”. Overall, vertical modularity, based on levels of abstraction, is a back-
bone of semantic interoperability. High-level (“top”) ontologies (or modules) contain
general terms that are being “specified” by lower ontologies. An example, central
to the 10T, are “device” ontologies that describe, in general terms, IoT devices (sen-
sors, actuators, smart and mobile devices, etc.). These ontologies are then extended
by domain-specific (or application-specific) ontologies. In the eHealth domain, for
instance, lower ontologies may add types of specific devices, e.g. patient monitor-
ing tools, automated medicine applicators, etc. Transportation devices, on the other
hand, may include GPS or speed sensors, port crane actuators, etc. A canonical model
of semantic interoperability assumes that the same high-level device ontologies are
used in both cases. Hence, without additional effort, there is a set of terms understood
across domains. For a more detailed explanation of ontology modularity, see [47].

To bring semantic methods to 10T, availability mature/standardized, loT-specific
and domain-specific, ontologies is crucial. Here, note that many ontologies were
developed within research projects and remain as prototypes, often incomplete, or
abandoned (upon project end). We will thus briefly describe the notable exceptions.

! https://www.w3.org/ TR/owl2-overview/.

https://www.w3.org/TR/owl2-overview/

138 M. Ganzha et al.

Fig. 2 SOSA/SSN modular
structure (source W3C)

Sensor,

Observation,
Sample, and
Actuator

(505A)

normative

non-normative

iy

2.1 IoT Core Ontologies

Proper semantic treatment of sensors, sensor networks, actuators, and their oper-
ations, i.e. observations and actuations, is of fundamental importance for the IoT
applications. Many ontologies for describing these concepts/entities have been pro-
posed. Some of them evolved over time to accommodate changing scope, target audi-
ence, and technological landscape. Usually, for obvious reasons, the loT-dedicated
ontologies are also combined with/utilize other, high-level ontologies (ontolog-
ical “modules”), such as ontologies of geolocation (e.g., LinkedGeoData [26],
GeoSPARQL [9], or WGS84 [1]), units of measure (e.g., QU,2 OM,? or SWEET
units*), time (e.g., Time OWL?), or provenance (e.g. PROV-O [18]).

The W3C SSN [25, 29, 51] is an ontology or, actually, a suite of ontologies for
describing sensors, their accuracy and capabilities, observations, methods used for
sensing, and sensor deployment. The original version of W3C SSN turned out too
“heavy-weight” for many smart devices, and did not cover concepts, which became
important over time, such as actuators and actuation, or samples, samplers, and
sampling. Therefore, recently, a new version of the SSN ontology was proposed.
The W3C SOSA/SSN® is a modular ontology (see Fig.2), providing the required
extensions. After the redesign, (the new version of) SSN became an extension of the
kernel module, called SOSA (Sensor, Observation, Sample, Actuator).

2 https://www.w3.0rg/2005/Incubator/ssn/ssnx/qu/.
3 https://github.com/HajoRijgersberg/ OM.

4 https://github.com/ESIPFed/sweet.

3 https://www.w3.org/TR/owl-time/.

6 https://www.w3.org/ TR/vocab-ssn/.

https://www.w3.org/2005/Incubator/ssn/ssnx/qu/
https://github.com/HajoRijgersberg/OM
https://github.com/ESIPFed/sweet
https://www.w3.org/TR/owl-time/
https://www.w3.org/TR/vocab-ssn/

Semantic Interoperability 139

TIoT-Lite [28], is a light-weight ontology for representing IoT specific concepts.
It specializes the SSN Device concept, and adds representation for objects, services,
and actuators. It deal with geolocation, by using WGS84 ontology. The IoT-Lite
focus on key IoT concepts directly supports semantic interoperability between loT
platforms.

Another notable ontology for IoT is the ETSI SAREF.” It models the domain of
smart appliances and household devices, although there are many extensions that
bring this ontology into the domains of energy, environment, and many others.

Many IoT platforms and middleware software solutions are also “riding the seman-
tic wave” and introducing support for ontologies by either (i) adopting existing stan-
dards (e.g. FIWARE support for schema.org ontologies in its data models®), or (ii)
authoring endemic ontologies (like oneM2M Base Ontology®). Readers interested
in an overview and a more in-depth discussion of the IoT related ontologies can
consult [36].

2.2 Domain-Specific Ontologies

Virtually every IoT-based application/system needs to consider domain-specific
ontologies. They accompany IoT ontologies to form a complete view of modeled
and exchanged information. We will now briefly discuss some of them, represent-
ing several application domains. First, let us focus on transportation and logistics,
as related to our sample use case. It was also central to one of pilot deployments
of INTER-IoT. Here, ontologies span business perspectives of freight and produc-
tion companies, transportation hubs (e.g. airports, train stations, ports), mass transit,
transport infrastructure, personal and business travel, etc. Interestingly, in logistics in
particular, many ontologies cover specific (and narrow) areas and very rarely describe
abroad view of the domain. Furthermore, in many cases, work on logistics ontologies
ended at the design phase (see, [46, 48]).

Here, one of the most-known ontologies is OTN (Ontology of Transportation
Networks; [17, 42])—a top-level ontology, produced in the REWERSE [20] project.
It models general concepts of transportation, traffic networks and locomotion, as
well as describes aspects of transportation relevant to, for instance, smart city or
smart highway systems. The OTN is a realization and extension of the GDF [8]—
Geographic Data Format (ISO specification)—as a formal OWL ontology. It was
used in [43], to facilitate ontology-driven interoperability between urban models.

Let us also mention a Logistic Grid Ontology [15] that represents a service-
oriented approach to logistics, realizing the idea of combining semantic technologies
and cloud services, in order to enable semantically-driven description and application
of logistic processes (see, [44]). It was developed within the LOGICAL project [11],
aim of which was to “enhance the interoperability of logistics businesses.” A cloud
service [12] utilizing the Logistic Grid Ontology was one of the results of this project.

7 http://ontology.tno.nl/saref/.
8 https://fiware-datamodels.readthedocs.io/en/latest/guidelines/.
9 http://www.onem2m.org/technical/onem2m-ontologies.

http://ontology.tno.nl/saref/
https://fiware-datamodels.readthedocs.io/en/latest/guidelines/
http://www.onem2m.org/technical/onem2m-ontologies

140 M. Ganzha et al.

Finally, LogiCO (and it’s extension LogiServ) ontologies [13, 14] contain core
concepts and properties from the domain. They model business activities (such as
Transport, Transshipment, Load, Discharge, Storage, Consolidation, Deconsolida-
tion, etc.) and their properties as the basis for specifying logistic services.

There are also ontologies, which cover other concepts related to transportation
and logistics. The Transport Disruption Ontology [22], for example, is devoted to
events, which can have a disruptive impact on travel planning. It is based on analysis
of published disruption information, described in the DATEX II [4] specification.

We will now give a brief overview of other domains with knowledge modeled as
ontologies. Some of them are related to INTER-IoT pilot use cases e.g. geospatial
data, whereas some were used in INTER-IoT open call projects e.g. weather data.

In the medical domain, biological and biomedical ontologies are within the OBO
Foundry [16] and the BioPortal [2]. These are mostly very specialized ontologies
or vocabularies, e.g. ICD10, ICD11, SNOMED CT. Standardization bodies, such as
HL7, support ontological representation of their standards, e.g. FHIR (Fast Health-
care Interoperability Resources) [6]. In INTER-IoT mHealth pilot we used a set of
UniversAAL ontologies [23] as domain ontologies (with extensions). They were
originally designed for UniversAAL platform and allow to describe measurements.

Ontologies from weather and meteorology domain include: (i) Linked Earth
Ontology [10] that provides a common vocabulary for annotating paleoclimatology
data; (ii) SEAS WeatherOntology [21] that allows to describe weather conditions,
e.g. temperature, weather, sunrise, sunset; (iii) Climate and Forecast (CP) features [3]
that offers representation of generic features defined by Climate and Forecast (CF)
standard names vocabulary.

InIoT deployments, concepts related to geolocation and positioning are frequently
required. Here, the most advanced ontology and geographic query language seems
to be GeoSPARQL [9]. They allow to describe complex geospatial objects and query
them using a set of built in functions. Other, simpler but still suitable for many use
cases ontologies include W3C Basic Geo Vocabulary [1] and GeoRSS.'?

Overall, ontologies have been designed for various domains—either as simple
vocabularies, or as more expressive conceptual models. The decision, which one to
use should be based on the requirements analysis and detailed information concern-
ing all data models that are involved. However, it is clear that, for interoperability,
abundance of ontology choices may also turn out to be a challenge rather than help.

INTER-IoT, as a generic interoperability solution for IoT, in its scope, covers [oT
entities that go far beyond a typical IoT platform, or service. Although, from a seman-
tic perspective, support for sensors and actuators, deployments, physical locations,
simple measurements, etc., is common, it is very rare that a given platform considers
a broader ecosystem. Hence, the interoperability problem necessarily includes not
just multitude of devices, but also multiple platforms, services, middlewares, users,
etc. Each of then needs to be treated with the same attention as devices. Hence, we
have developed the GOIoTP ontology, described in the next section.

10 http://www.georss.org/.

http://www.georss.org/

Semantic Interoperability 141

GOIloTP module
{ GOloTPex extension |

.............

oy
Senvice | ~ Location
ety : g
e Device

| _mddewares | | Observation | Sitaise
& Actuation R .

Fig. 3 GOIoTP ontology—main modules

3 Generic Ontology for IoT Platforms

Among the semantic products of INTER-IoT one can find two closely related ontolo-
gies: (i) Generic Ontology for IoT Platforms (GOIoTP),'"" and its extension (ii)
GOIoTPex."> The GOIoTP is a modular core ontology for general use in IoT projects.
It offers an expanded perspective on IoT, including both top-level concepts related
to platforms and users, as well as “devices” that the ecosystem consists of. There-
fore, GOIoTP, provides common and consistent shared semantics (see, Sects. 1.1
and 2), as well as typical core IoT ontology (Sect.2.1). GOIoTP was built around
SOSA/SSN and offers seven horizontal modules (with additional provenance exten-
sion points), each focused on a distinct area of an IoT ecosystem (see, Fig. 3). Other
notable imports include GeoSPARQL and NASA SWEET units ontologies.

Along a rich Device module (as in other IoT ontologies), GOIoTP, following
SOSA/SSN, proposes a separate module for observations and actuations. This decou-
pling allows better separation of physical or virtual devices, described by selected
properties, and device operation (including obtained or produced data).

Module dedicated to Platforms goes beyond the usual scope of platform-specific
IoT ontologies, and treats a platform as an entity in an ecosystem, in which it needs to
cooperate with other, equally important, platforms. This is critical for interoperability
scenarios, in which a platform can join or leave a federation/group, delegate the
management of some of its roaming devices to other platforms, while no artifact is
in a privileged position. Note that the importance of this approach will increase as
new IoT ecosystems will federate those already deployed using existing platforms.

" http://inter-iot.eu/GOIoTP#.
12 http://inter-iot.eu/GOloTPex#.

http://inter-iot.eu/GOIoTP#
http://inter-iot.eu/GOIoTPex#

142 M. Ganzha et al.

The User and Service modules are largely independent from others. Whereas,
usually in IoT ontologies, a service is attached to a platform, GOIoTP opts for
decoupling them. This allows treatment of services as separate entities, that may, or
may not be offered by some platform, or device. Similarly, a user in GOIoTP is a
separate “‘sovereign” that may be dynamically associated with a service, device, plat-
form, location, etc. Specifically, user is treated as a physical (e.g. a human) or virtual
agent that may have some presence and history with an IoT artifact (e.g. an account
and a set of roles registered with a platform). The user description is independent
from technical details or requirements of any platform, device, or service.

In addition to generic descriptions of physical locations and their interconnec-
tions available in the Location module, the geographic information can be annotated
with GeoSPARQL descriptions. In this way GOIoTP supports detailed descriptions
of areas, and geographical functions, such as area intersections, collisions, point
inclusion, distance calculation, etc.

In accordance with the ontology engineering best practices, GOIoTP has large
number of generic descriptions, also called “stubs” that are lightweight, and are
designed to be extended with more concrete definitions.

GOlIoTPex is an official extension of GOIoTP that proposes a number of real-
izations and concretizations for top-level abstractions, defined in modules vertical
with respect to GOIoTP, and horizontal to each other. For instance, where GOIoTP,
across 2 modules, defines general framework for units of measurement, and con-
nects it to observations and actuations, GOloTPex complements it with instances
and classes related to SI units. By the virtue of vertical modularization, this has no
bearing on GOIoTP, which remains compatible with the imperial unit system. In this
way, GOloTPex brings semantics closer to concrete implementations of individual
IoT systems, while leaving the option to fall-back to the more general GOIoTP, and
preserving the vertical and horizontal modularity. This is important both for semantic
interoperability, and for practicality of use. Both ontologies were successfully used
in INTER-IoT deployments as Central Ontologies (see, Sect. 6).

For more information about history and design of GOIoTP, please refer to INTER-
IoT deliverables (specifically D4.2 and D4.1). Ontology files, detailed axiom descrip-
tions, outline of modules, updates and more can be found online.3

4 From Alignments to Translation

Since the conceptualization of a domain directly corresponds to its ontology
(see, [40]), to bridge the “semantic gap” between the artifacts, we have decided to
use alignments between the corresponding ontologies. An ontology alignment [30]
is a set of correspondences between two or more ontologies. These correspondences
may be simple (between atomic entities) or complex (between groups of entities and
sub-structures), but always relate entities from different ontologies and express their

13 hitps://inter-iot.github.io/ontology/.

https://inter-iot.github.io/ontology/

Semantic Interoperability 143

similarity. Here, semantic translation is a process of changing the underlying seman-
tics of a piece of knowledge. Given information described semantically, in terms of
a source ontology, it is transformed into information interpretable (understandable)
in the scope of target semantics.

We assume that new instances of data may be generated dynamically within an
ecosystem. Therefore, we aim to utilize alignments between structural information,
rather than individuals, and assume that all exchanged messages are ontologically
demarcated and schema-compliant. In the translation process, appropriate alignments
are “applied” to messages traveling through communication channels. Specifically,
application of an alignment substitutes parts of information from incoming messages
with their translations (parts mapped by the alignment). Such, updated/translated,
messages are available to recipient(s) “at the end of the channel”. Here, let us assume
that two (or more) platforms operate in the same domain, e.g. logistics, but use
different semantics. For instance, one platform uses term fruck with an attribute
capacity, while the other uses term /orry with an attribute volume. Obviously, these
terms have the same meaning and can be treated as equivalent. This exemplifies
the simplest case of an alignment—equivalence between two atomic terms. Observe
also that capacity and volume may be represented in different units, e.g. one uses the
metric system (cubic meters), while the other comes from US and uses cubic inches,
which introduces a complication into the, otherwise simple, example.

The simplest way in which ontology alignment can be found/defined is to print
ontologies, place them next to each other and establish how their concepts relate.
However, potential size and complexity of ontologies immediately undermines this
approach. In [38], we have summarized the state-of-the-art in the area of tools for
ontology alignment/merging/translating, etc. We have identified several tools that
can support semantic engineers in preparing alignments. The most interesting among
them were LogMap [41],'"* COMA [27]" and Agreement Maker [31].'°

Let us now consider the translation process. In principle, a semantic-enabled com-
munication channel is a medium that, when properly configured, can accept messages
with data annotated by entities from one (input/source) ontology and produce seman-
tically equivalent messages annotated with another (output/target) ontology. In this
way, the translation is entirely external to the participating artifacts. This simple idea
(see, Fig.4) turns out to be fairly complex to realize in practice, and requires har-
monization of both syntax and semantics of information, besides actually using the
communication infrastructure. Note that the actual number and topology of commu-
nication channels depends on the information flow in the ecosystem, and can change
dynamically over time (in response to the needs of the applications using them).
Additional challenge is to ensure that the communication architecture is capable of
handling the volume of messages that can be exchanged between IoT artifacts. We
shall come back to this problem in Sect. 6, but first, we need to describe a format that
INTER-IoT solution uses for expressing alignments.

14 https://www.cs.ox.ac.uk/isg/tools/LogMap/.
15 http://dbs.uni-leipzig.de/Research/coma.html.
16 hitp://somer.fc.ul.pt/aml.php.

https://www.cs.ox.ac.uk/isg/tools/LogMap/
http://dbs.uni-leipzig.de/Research/coma.html
http://somer.fc.ul.pt/aml.php

144 M. Ganzha et al.

Messages in y Syntactic . \ Messages in
source format ———/ Y lati — JSON-LD and
and semantics translation source semantics

J
f
Semantic
translation
T
L
Messages in Syntactic Messages in
target format and [Y lati JSON-LD and
semantics 2 translation target semantics

Fig. 4 INTER-IoT translation

5 Alignment Format

As aresult of an in-depth analysis, we have decided to use the Alignment Format [7]
as the basis for alignment representation. We have inspected several other methods
of representing alignments, including EDOAL [5], but none of them turned out to
be fully satisfactory for our purposes. The Alignment Format is a language inde-
pendent format dedicated to persisting alignments in a simple and readable way. It
was designed with the goal to provide common output format for matching tools.
However, we have found that the Alignment Format itself, while working very well
in ontology matching competitions, is not going to work well for streaming semantic
translations. Therefore, taking the Alignment Format as the base, we have developed a
dedicated format, with an RDF [19] representation (in RDF/XML serialization). The
IPSM Alignment Format (IPSM-AF, in short) is used in the Inter-Platform Seman-
tic Mediator (IPSM) software component (see Sect.6). The IPSM-AF allows us to
express mappings between contents of any valid RDF graphs. At the same time,
alignments persisted in the original Alignment API format can be easily translated
to the IPSM-AF, because of similarity in their structures.

Listing 1 shows structure of IPSM-AF expressed in RDF/XML. The format allows
persisting uni-directional correspondences between ontologies. Mappings are split
into separate alignment cells. Each cell is a correspondence between two entities
(or compound entity description). Entity can be a class, instance, object or datatype
property. Namespace prefixes used in the examples are expanded in Table 1.

Elements from the align namespace are inherited from the Alignment Format.
Table 2 lists the elements elements that are used to persist basic metadata about the
alignment. The sripas:cellFormat property allows to specify data format used in
alignment cells. Currently, RDF/XML and Turtle!” are supported.

17 https://www.w3.org/TR/turtle/.

https://www.w3.org/TR/turtle/

Semantic Interoperability

Table 1 Namespaces in IPSM-AF

145

Suggested prefix

Namespace

sripas http://www.inter-iot.eu/sripas#

var http://www.inter-iot.eu/sripas:node_

pred http://www.inter-iot.eu/sripas:pred_

align http://knowledgeweb.semanticweb.org/
heterogeneity/alignment#

dcelem http://purl.org/dc/elements/1.1/

exmo http://exmo.inrialpes.fr/align/ext/1.0/#

Table 2 Metadata elements in IPSM-AF

Element/Attribute

Meaning

dcelem:title

Name of the alignment

exmo:version

Version of the alignment e.g. 1.0

dcelem:creator

Author of the alignment

dcelem:description

Comment on what is the scope/aim of the
alignment

align:xml

Derived from Alignment API. Default value:
yes

align:level

Derived from Alignment API. Default value:
2IPSM

align:time

Derived from Alignment API

align:method

Derived from Alignment API. Default value:
manual

align:type

Derived from Alignment API. Default value: **

<?xml version='1.0"'

namespaces$% >
<align:Alignment>

<dcelem:title> % alignment title %
alignment version %
alignment creator %
alignemnt description %

<exmo:version> %

<dcelem:creator> %

<dcelem:description> %
description>

encoding='utf-8’
<rdf :RDF xmlns="http://www.inter-iot.eu/sripas#" %

standalone='no’ ?>
other xml

</dcelem:title>
</exmo:version>
</dcelem:creator>
</dcelem:

<align:xml>yes</align:xml>
<align:level>2IPSM</align:level>
<align:type>**</align:type>
<align:method> % method % </align:method>
<align:time> % time % </align:time>
<sripas:cellFormat>

<iiot:DataFormat rdf:about="http://inter-iot.eu/sripas

#rdfxml" />

http://www.inter-iot.eu/sripas#
http://www.inter-iot.eu/sripas:node_
http://www.inter-iot.eu/sripas:pred_
http://knowledgeweb.semanticweb.org/heterogeneity/alignment#
http://knowledgeweb.semanticweb.org/heterogeneity/alignment#
http://purl.org/dc/elements/1.1/
http://exmo.inrialpes.fr/align/ext/1.0/#

146 M. Ganzha et al.

</sripas:cellFormat>
<align:ontol>
<align:0Ontology rdf:about="% source ontology URI %">
<align:location> % source ontology location % </
align:location>
<align:formalism>
<align:Formalism
align:name="% source ontology formalism
name %"
align:uri="% source ontology formalism URI
" />
</align:formalism>
</align:0Ontology>
</align:ontol>
<align:onto2> % target ontology information % </align:
onto2>
<sripas:steps rdf:parseType="Literal">
<sripas:step sripas:order="% cell order %" sripas:cell
="% cell id %" />
% more steps %
</sripas:steps>
<align:map> % alignment cell 1 % </align:map>

Q
T ... %

Q Q

<align:map> % alignment cell N % </align:map>
</align:Alignment> </rdf:RDF>

Listing 1 IPSM-AF structure

In principle, an IPSM-AF file (Listing 1) describes a uni-directional alignment
comprised of independent mapping cells, each having “input” and “output” entity
descriptions. Elements onfol and onto2 describe the “source” and “target” ontolo-
gies of the alignment, by giving their URIs and specifying formalism used for their
definition (e.g., OWL 2.0). Here, let us note that when bi-directional translations
are needed, separate alignments have to be defined (even if the alignment cells all
describe equivalences, and are, therefore, trivially reversible). This is because, in the
IPSM-AF, source and target ontologies are explicitly specified (information used for
communication channel configuration/creation process, within the IPSM).

The steps element specifies the (default) order, in which cells of the alignment
will be subsequently applied in the message transformation process. Each step refers
to a cell identifier as given by the id attribute of the Cell element. Note that a given
cell might be referenced here (hence also applied) more than once. The default order
may also be overridden during the channel configuration process.

Every Cell element represents an “atomic” RDF graph transformation. Here,
content of entityl describes the source, and content of entity2 establishes the rarget
of the transformation. Both should be valid RDF graphs, possibly containing special-
purpose nodes, playing the role of “variables”, which are to be bound and referenced
within the transformation.

Semantic Interoperability 147

Listing 2 shows an example (unidirectional) alignment between a drone and an
ontology used by dTraffic. In the sample scenario data coming from drones is inte-
grated and processed by the platform. We also assume that different types of drones
use different communication standards. Here, original data is expressed in SAREF
ontology. The target ontology is based on SOSA/SSN with extensions. This align-
ment includes two cells—one defining rules for translation of traffic message from
drone to platform, and the other for translation of battery level and location message.

<align:Alignment>
% ... alignment metadata ... %

<sripas:steps rdf:parseType="Collection">
<sripas:step sripas:order="1" sripas:cell="http
://www.inter-iot.eu/sripas#l_traffic"/>
<sripas:step sripas:order="2" sripas:cell="http
://www.inter-iot.eu/sripas#2_status"/>
</sripas:steps>

<align:map>
<align:Cell rdf:about="http://www.inter-iot.eu/
sripas#l_traffic">
<align:entityl rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">
var:Device a saref:Device ;
saref :makesMeasurement var:Meas, var:Posl
, var:Pos2

var:Meas a saref:Measurement ;
saref:hasValue var:Val ;
saref:hasTimestamp var:Tsp ;
saref:isMeasuredIn sarefInst:Frequency ;
saref:relatesToProperty sarefInst:Traffic

var:Posl a saref:Measurement ;

saref:hasValue var:StartPos ;

saref:relatesToProperty sareflInst:
StartPosition

var:Pos2 a saref:Measurement ;
saref:hasValue var:EndPos ;
saref:relatesToProperty sareflInst:
EndPosition
</align:entityl>

148 M. Ganzha et al.

<align:entity2 rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">
var:Device a iiot:IoTDevice, sosa:Sensor
sosa:madeObservation var:Meas, var:Posl,
var:Pos?2

var:Meas a sosa:0bservation ;
sosa:hasResult [a sosa:Result ;
iiot:hasResultValue var:vVal] ;
sosa:phenomenonTime [a time:Instant ;
time:inXSDDhateTime var:Tsp] ;
sosa:observedProperty iiotex:Traffic

var:Posl a sosa:0Observation ;

sosa:hasResult [a sosa:Result, geosparqgl
:Geometry ;

iiot:hasResultValue var:GeoStart] ;

sosa:observedProperty iiotex:
StartPosition

var:Pos2 a sosa:0Observation ;

sosa:hasResult [a sosa:Result, geosparqgl
:Geometry ;

iiot:hasResultValue var:GeoEnd] ;

sosa:observedProperty iiotex:EndPosition

</align:entity2>

<align:relation>=</align:relation>

<sripas:transformation rdf:parseType="
Literal">

</sripas:transformation>
<sripas:filters rdf:parseType="Literal">

</sripas:filters>
<sripas:typings rdf:parseType="Literal">

</sripas:typings>
</align:Cell>
</align:map>

<align:map>
<align:Cell rdf:about="http://www.inter-iot.eu/
sripas#2_status">

Semantic Interoperability 149

<align:entityl rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">
var:Device a saref:Device ;
saref :makesMeasurement var:Meas, var:Pos

var:Meas a saref:Measurement ;

saref:hasValue var:Val ;

saref:hasTimestamp var:Tsp ;

saref:isMeasuredIn sarefInst:Percentage

saref:relatesToProperty sareflInst:
BatteryLevel

7

var:Pos a saref:Measurement ;
saref:hasValue var:Position ;
saref:relatesToProperty sareflInst:
Position

</align:entityl>

<align:entity2 rdf:datatype="http://www.w3.
org/2001/XMLSchema#string">
var:Device a iiot:IoTDevice, sosa:Sensor

sosa:madeObservation var:Meas, var:Pos

var:Meas a sosa:0Observation ;
sosa:hasResult [a sosa:Result, geosparqgl

:Geometry ;
iiot:hasResultvValue var:Geo] ;
sosa:phenomenonTime [a time:Instant ;

time:inXSDDateTime var:Tsp] ;
sosa:observedProperty iiotex:BatteryLevel

var:Pos a sosa:0bservation ;
sosa:hasResult [a sosa:Result
iiot:hasResultValue var:Geo] ;
sosa:observedProperty iiotex:Position
</align:entity2>
<align:relation>=</align:relation>
<sripas:transformation rdf:parseType="
Literal">
<sripas:function about="str">
<param order="1" about="&var;Position
ll/>
<return about="&var;sGeo"/>

7

150 M. Ganzha et al.

</sripas:function>
<sripas:function about="replace">
<param order="1" about="&var;sGeo"/>
<param order="2" val=""(\\d+\\.\\d+)
A s+A\NA+\N L A\Nd+S " />
<param order="3" val="$1"/>
<param order="4" val="i"/>
<return about="&var;Lat"/>
</sripas:function>
<sripas:function about="replace">
<param order="1" about="&var;sGeo"/>
<param order="2" val=""\\d+\\.\\d+\\s
+ (\\d+\\ A\\d+) S />
<param order="3" val="S$1"/>
<return about="&var;Long"/>
</sripas:function>
<sripas:function about="concat">
<param order="1" val="Point ("/>
<param order="2" about="&var;Lat"/>

<param order="3" wval=" "/>
<param order="4" about="&var;Long"/>
<param order="5" val=")"/>

<return about="&var;Geo"/>
</sripas:function>
</sripas:transformation>
<sripas:filters rdf:parseType="Literal">
<sripas:filter about="&var;sGeo" datatype
="&xsd;string" />
<sripas:filter about="&var;Lat" datatype=
"&xsd; float" />
<sripas:filter about="&var;Long" datatype
="&xsd; float"/>
</sripas:filters>
<sripas:typings rdf:parseType="Literal">
<sripas:typing about="&var;Geo"
datatype="http://www.opengis.net/def/
sf/wktLiteral"/>
</sripas:typings>
</align:Cell>
</align:map>
</align:Alignment>
Listing 2 IPSM-AF alignment between drone and dTraffic

Semantic Interoperability 151

6 IPSM Semantic Translation Tool

IPSM (Inter-Platform Semantic Mediator) is a generic streaming semantic transla-
tion software developed by INTER-IoT. It realizes the idea of translation through
alignments (see, Sect. 4). IPSM offers highly-scalable, efficient translation architec-
ture applicable in any semantic translation scenario, and configurable with IPSM-AF
files, regardless of domain of application.

There are two main interfaces to access IPSM: REST and reactive streaming.
The first option offers quick, one-message-at-a-time, service, while the latter is bet-
ter suited for large asynchronous streams of data. In both cases, translation is done
transactionally “per message” by applying rules defined in alignment files. Tech-
nically, there is no limit on contents or size of messages, so the software could be
used to perform a one-time batch translation of a whole database worth of data. Nev-
ertheless, the design of IPSM makes it better suited for scenarios, where data that
needs translation is not known beforehand, and thus cannot be translated in a single
operation. This approach lends itself very well to communication between diverse
IoT artifacts.

Reactive streaming, in IPSM, rests on semantic translation channels (channels,
for short), and a central ontology (CO). A channel is a one way stream that accepts
messages described with a given ontology and translates them to a different ontology.
Just like in any reactive streaming implementation, inputs and outputs of channels
may be read from, written to, connected to other stream processors, and even to
each other. In IPSM, translation is performed “on the fly”, as messages pass the
channel, and is configured by two one-way alignments per channel. The 2 alignment
requirement is dictated by the central ontology architecture (described further on).
Consequently, to set up a two-way communication one needs to configure 2 channels
and 4 one-way alignments (2 per channel).

CO s ashared vocabulary, founded on the concept of core ontology (see, Sects. 1.1
and 2) that is going to be used in the process of translation, but does not need to be
implemented natively by the communicating artifacts. CO is a special, modular,
ontology used as an intermediary in translation (see, Fig. 5).

Assuming that [oT artifacts A, B that want to communicate, and with the central
ontology €2 in place (see, Fig.5), an [IPSM channel should be configured with one
alignment that defines translation from A semantics into 2 (denoted A > €2), and
another one from 2 into B (alignment 2 > B). Messages flowing through are first
translated using A > €2, and then © > B. In order to set up a different channel, say
from A to C, the same alignment A > 2 may be used as the “input” configuration,
with a new alignment 2 > C for the “output”. In this way, from the perspective of A,
it is enough to learn 2 and provide alignments to and from its own semantics (A > 2
and 2 > A). Once A makes such alignments available publicly by uploading them to
an instance of IPSM (i.e. its alignment repository component), anyone may use them
to configure communication to and from their own artifact. Technically, IPSM has a
built-in “identity” alignment that effectively performs no translation, and is used to
relax the two-alignment requirement, in case an artifact natively supports 2. Using

152 M. Ganzha et al.

Fig. 5 IPSM configuration with modularized central ontology €2

CO as an intermediate step, [PSM facilitates translation by mediating it through CO,
as opposed to pipelining it directly (one-to-one). Therefore, the cost of joining a
deployed IPSM ecosystem, regardless of its size, is always just 2 alignments.

IPSM places no technical requirements on the CO (any ontology can be used),
but there are features that make some better suited for a CO than others. First of
all, a good CO should have a broad range, and cover, in detail, its domain. Because
artifacts translate to and from CO, a broad and detailed (highly granular) semantics
will allow for translation of full range of messages from all artifacts without loss of
specificity. Second, (well documented) modularity of CO lowers the cost of authoring
alignments, because an engineer only needs to focus on the modules that are relevant
to their artifact, and can disregard others. For instance, if only two artifacts in an
ecosystem use descriptions of sea-faring vehicles, the sea module of a CO will not
be of interest to any other participant, because their artifacts simply do not support
it, i.e. they do not “talk” about sea vehicles, regardless of translation. Overall, while
the CO has to cover topics that the participants “want to communicate about” it does
not have to cover the whole range of semantics that participating artifacts do.

By design, all alignments in IPSM are “public” (i.e. the alignment repository in
an IPSM instance is available to anyone that has the rights to configure channels, in
the same instance), so the division of €2 into modules wl, w2, ... has bearing on
security. It is up to the artifact owner to decide what messages to send (and when),
what the scope of its own schema that the artifact will use to communicate with
others is, and what CO modules will the alignment apply. Technically, IPSM-AF
alignments can be used to redact, obfuscate, and anonymize data , but because IPSM
instances are de facto external to the data origin, IPSM should not be used as a data
security measure, unless run in a closed, trusted network.

Semantic Interoperability 153

More information about IPSM, its architecture, performance, use-case scenarios,
and deployment methods can be found in [32-34], as well as in the INTER-IoT
online documentation.'®-1°

7 Use Case Processing

Thus far we have considered and discussed different facets of our use-case scenario
(see, Sect. 1.2 and Fig. 1). The scenario involves actors with various communication
needs that can be realized with deployment of a number of IPSM instances.

Let us recall that the dTraffic actor needs interoperability in communication of
drones with a central “base of operations”. Here, we assume that dTraffic cooper-
ates with several types of drones that use different data models to represent position,
battery level, and traffic congestion level. They can be based on one of the core ontolo-
gies extended with domain ontologies e.g. drone type 1 uses SOSA/SSN for drone
description and W3C Basic Geo Vocabulary for geopositioning, whereas drone type
2 uses SAREF with GeoSPARQL. Additionally, drones may come from producers
using their native data models (not based on any standard). In each case, conges-
tion level is usually represented in a drone-specific way, since there are no publicly
available standards. Assuming impossibility of implementing the same semantics
across artifacts (now and in the future), the two main approaches to establish inter-
operability with different drones are to implement: (i) a bi-directional (one-to-one)
translation mechanism between dTraffic and each drone type, (ii) mediator with a
CO, to which messages exchanged in both directions are translated (see, Sect. 6). The
former approach is considerably more difficult and complex to realize in a dynamic
ecosystem with multiple IoT artifacts. Moreover, it implies system modification,
every time a new type of drone is added (defeating the 24/7 availability). In the
latter approach, preexisting artifacts are not affected by the integration. Addition of
new device type(s) requires translation to and/or from the CO. Therefore, it is the
mediator-based approach that was selected in INTER-IoT to provide interoperability
on data and semantics layer, and is recommended in the drones use case.

Similarly, iotDelivery needs to exchange data with trucks. This also requires
choice of data models. Since there are several publicly available standards in the
transportation and logistics domain, we may assume that e.g. truck company 1 uses
LogiCO and LogiServ ontologies, whereas truck company 2 might use OTN.

Let us now consider how semantic translation in our use case can be organized.
In the presented scenario, we may consider two IPSM instances that serve as com-
munication hubs: dTraffic Hub and iotDelivery Hub. The former translates messages
exchanged between different drone types and dTraffic (which can be assumed to
work with the dTraffic Hub data model directly). The latter enables exchange of

18 https://inter-iot.readthedocs.io/projects/ipsm/en/latest/.
19 https://inter-iot-cookbook.readthedocs.io/en/latest/inter-layer/ds2ds/appendices/products/.

https://inter-iot.readthedocs.io/projects/ipsm/en/latest/
https://inter-iot-cookbook.readthedocs.io/en/latest/inter-layer/ds2ds/appendices/products/

154 M. Ganzha et al.

information between trucks, iParking companies, and dTraffic, in order to schedule
trucks and reserve parking slots for them.

Next, a set of alignments needs to be prepared: (i) bidirectional, between data
models of drones of different types and the dTraffic Hub central data model, (ii)
bidirectional, between data models of iParking companies and the iotDelivery Hub
central data model, (iii) bidirectional, between data models of truck companies and
the iotDelivery Hub, (iv) unidirectional, between dTraffic central data model and the
iotDelivery Hub central data model, and (v) bidirectional, between data models of
iotDelivery companies and iotDelivery Hub central data model. To illustrate how
the proposed approach is going to work, let consider a sample message send by the
drone, that should be consumed by dTraffic.

{
"@graph" : [{
"@graph" : [{
"@id" : "InterIoTMsg:meta308c3987-b69e-4672-890b-3
£3d6229596d",
"@type" : ["InterIoTMsg:meta", "InterIoTMsg:
Thing Update"],
"InterIoTMsg:conversationID" : "conv85e0f5d2-cf65
-4d23-84b1-ff138laellfc",
"InterIoTMsg:dateTimeStamp" : "2019-02-08T13
:48:19.428+00:00",
"InterIoTMsg:messagelID" : "msg204d0405-a6da-4054-
a6db-96d20c413746"
Y1,
"@id" : "InterIoTMsg:metadata"
oA
"@graph" : [
{
"@id": "http://www.dronel.eu/devices/Device_1",
"@type": "saref:Device",
"saref:hasState": {
"@id": "saref:Start"
T,
"saref :makesMeasurement": [
{ "@id": "_:Pos" 1},
{ "@id": "_:Meas" }

"@id": "_:Pos",

"@type": "saref:Measurement",
"saref:hasvValue": "45.256 -71.92",
"saref:relatesToProperty": {

Semantic Interoperability 155

"@id": "sarefInst:Position"
}
I
{
"@id": "_:Meas",
"@type": "saref:Measurement",
"saref:hasTimestamp": {
"@type" : "http://www.w3.o0rg/2001/XMLSchema#
dateTime",
"@value" : "2019-02-08T13:48:18"
.,
"saref:hasValue": {
"@type" : "http://www.w3.org/2001/XMLSchema#
float",
"@value" : "0.75"
I
"saref:isMeasuredIn": {
"@id": "sarefInst:Percentage"
I
"saref:relatesToProperty": {
"@id": "sarefInst:BatteryLevel"

}
1,
"@id" : "InterIoTMsg:payload"
Y1,
"@context" : {
"InterToTMsg" : "http://inter-iot.eu/message/",
"InterIoTInst" : "http://inter-iot.eu/instance/",
"owl" : "http://www.w3.0rg/2002/07/owl#",
"rdf" : "http://www.w3.0rg/1999/02/22-rdf-syntax-ns
#",
"xsd" : "http://www.w3.org/2001/XMLSchema#",
"rdfs" : "http://www.w3.0rg/2000/01/rdf-schema#",
"InterIoT" : "http://inter-iot.eu/",
"sosa" : "http://www.w3.org/ns/sosa/",
"saref" : "https://w3id.org/saref#",
"sarefInst" : "https://w3id.org/saref/instances/"

}

Listing 3 Status message from drone

156 M. Ganzha et al.

Listing 3 shows a status message sent periodically by a drone, stating its current
position and battery level. Note that each drone type sends this kind of message
utilizing its own data model. This message can be translated with alignment given in
Listing 2. It matches pattern in entityl of cell 2_status that defines how it should be
translated to the data model based on SOSA/SSN and GeoSPARQL (dTraffic Hub
central data model is assumed to use these ontologies).

Listing 4 shows a sample message that can be sent from one of iotDelivery compa-
nies. Information is expressed in iotDeliveryl native semantics and contains Car ID
and time period for the reservation. Lets assume that reservation should be done by
iParking company named iParkingl that also uses its own native semantics. In such
case, we need to use two alignments: one from the iotDeliveryl to the iotDelivery
Hub central data model (see, Listing 5), the other from the iotDelivery Hub to the
iParkingl data model (see, Listing 6).

{
"@graph" : [{
"@graph" : [{
"@id" : "InterIoTMsg:metal308c3987-b69e-4672-890b-3
£3d62295964d",
"dtype" : ["InterIoTMsg:meta", "InterIoTMsg:
Thing_ Update" 1,
"InterIoTMsg:conversationID" : "conv85e0f5d2-cf65
-4d23-84b1-ff138laellfc",
"InterIoTMsg:dateTimeStamp" : "2019-02-08T13
:48:19.428+00:00",
"InterIoTMsg:messagelID" : "msg204d0405-a6da-4054-
a6db-96d20c413746"
Pl
"@id" : "InterIoTMsg:metadata"
oA
"@graph" : [
{
"@id": "iotDeliveryInst:Reservationl",
"@type": "iotDelivery:Reservation",
"iotDelivery:hasCarId": "WK 12345",
"jotDelivery:hasEndTime": {
"@type" : "http://www.w3.o0rg/2001/XMLSchema#
dateTime",
"@value" : "2019-02-08T13:50:00"
I
"iotDelivery:hasStartTime": {
"@type" : "http://www.w3.org/2001/XMLSchema#
dateTime",
"@value" : "2019-02-08T14:00:00"

Semantic Interoperability 157

}
1,
"@id" : "InterIoTMsg:payload"
Y1,
"@context" : {
"InterToTMsg" : "http://inter-iot.eu/message/",
"InterIoTInst" : "http://inter-iot.eu/instance/",
"owl" : "http://www.w3.o0rg/2002/07/owl#",
"rdf" : "http://www.w3.0rg/1999/02/22-rdf-syntax-ns
#",
"xsd" : "http://www.w3.org/2001/XMLSchema#",
"rdfs" : "http://www.w3.0rg/2000/01/rdf-schema#",
"InterIoT" : "http://inter-iot.eu/",
"iotDelivery": "https://iotDeliveryl.org#",
"iotDeliveryInst": "https://iotDeliveryl.org/
instances/"

}

Listing 4 Reservation message from iotDeliveryl
Listing 5 shows alignment with one cell that matches message from Listing 4.

<?xml version="1.0" encoding="utf-8" standalone="no"?>
<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#"
xmlns:sripas="http://www.inter-iot.eu/sripas#
xmlns="http://www.inter-iot.eu/sripas#"
xmlns:align="http://knowledgeweb.semanticweb.
org/heterogeneity/alignment#"

xmlns:dcelem="http://purl.org/dc/elements

/1.1/"
xmlns:exmo="http://exmo.inrialpes.fr/align/
ext/1.0/#"
xmlns:var="http://www.inter-iot.eu/sripas#
node_"

xmlns:sosa="http://www.w3.0org/ns/sosa/"
xmlns:time="http://www.w3.0rg/2006/time#"
xmlns:iiot="http://inter-iot.eu/GOIOTP#"
xmlns:iiotex="http://inter-iot.eu/GOIoTPex#"
xmlns:ssn="http://www.w3.org/ns/ssn/"
xmlns:iotDelivery="https://iotDeliveryl.org#"
xmlns:iotDeliveryInst="https://iotDeliveryl.
org/instances/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns:logico="http://ontology.tno.nl/logico#"

158 M. Ganzha et al.

<align:Alignment>

<dcelem:title>IoTDeliveryl_TIoTDeliveryCO</dcelem
ctitle>

<exmo:version>1.0</exmo:version>

<dcelem:creator>SRIPAS</dcelem:creator>

<dcelem:description>Between IoT-Deliveryl and
IoT-Delivery Hub.</dcelem:description>

<align:xml>yes</align:xml>
<align:level>2IPSM</align:level>
<align:type>**</align:type>
<align:method>manual</align:method>
<dcelem:date>13-02-2019</dcelem:date>
<sripas:cellFormat>
<iiot:DataFormat rdf:about="http://inter-iot
.eu/sripas#turtle" />
</sripas:cellFormat>

<align:ontol>
<align:0Ontology rdf:about="https://
iotDeliveryl.org#">
<align:formalism>
<align:Formalism
align:name="OWL2.0" align:uri="http
://www.w3.0rg/2002/07/owl#" />
</align:formalism>
</align:0Ontology>
</align:ontol>
<align:onto2>
<align:0ntology rdf:about="http://inter-iot.
eu/GOIoTPex#">
<align:formalism>
<align:Formalism
align:name="0OWL2.0" align:uri="http
://www.w3.0rg/2002/07/owl#" />
</align:formalism>
</align:0Ontology>
</align:onto2>

<sripas:steps rdf:parseType="Collection">
<sripas:step sripas:order="1"
sripas:cell="http://www.inter-iot.eu/sripas
#1_reservation"/>

Semantic Interoperability

159
</sripas:steps>

<align:map>

<align:Cell rdf:about="http://www.inter-iot
eu/sripas#l_reservation">
<align:entityl rdf:datatype="http://www
w3.0rg/2001/XMLSchema#string">
var:R a iotDelivery:Reservation ;
iotDelivery:hasCarId var:CarId ;
iotDelivery:hasStartTime var:Timel ;
iotDelivery:hasEndTime var:Time2
</align:entityl>
<align:entity2 rdf:datatype="http://www.
w3.0rg/2001/XMLSchema#string">

var:R a iliotex:Reservation ;
iiotex:hasIssuer [

a logico:Truck ;

logico:id [logico:hasIdvalue var
:CarId]
1
iiotex:forRegion [
a logico:Region ;
logico:id [logico:hasIdvalue var
:ParkingId ;
logico:hasAgency iiotex:

ParkingRegistry
1

iiotex:hasTimebox [
a time:Interval ;
time:hasBeginning [

a time:Instant;

time:
inXSDDateTimeStamp var:
Timel
1
time:hasEnd [
a time:Instant; time:
inXSDDateTimeStamp var:

Time2

]
1.
</align:entity2>

<align:relation>=</align:relation>
</align:Cell>

</align:map>

160

M. Ganzha et al.

</align:Alignment>

</rdf :RDF>

Listing 5 Alignment between iotDeliveryl and iotDelivery Hub central data model

Listing 6 shows alignment with one cell that matches output message, after trans-
lation of message from Listing 4 with alignment from Listing 5.

<?xml vers

ion="1.0" encoding="utf-8" standalone="no"?>

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-
syntax-ns#"

<align

xmlns:sripas="http://www.inter-iot.eu/sripas#
xmlns="http://www.inter-iot.eu/sripas#"
xmlns:align="http://knowledgeweb.semanticweb.
org/heterogeneity/alignment#"
xmlns:dcelem="http://purl.org/dc/elements

/1.1/"
xmlns:exmo="http://exmo.inrialpes.fr/align/
ext/1.0/#"
xmlns:var="http://www.inter-iot.eu/sripas#
node_"

xmlns:sosa="http://www.w3.0rg/ns/sosa/"
xmlns:time="http://www.w3.0rg/2006/time#"
xmlns:iiot="http://inter-iot.eu/GOIoTP#"
xmlns:iiotex="http://inter-iot.eu/GOIoTPex#"
xmlns:ssn="http://www.w3.0rg/ns/ssn/"
xmlns:iParking="https://iParkingl.org#"
xmlns:iParkingInst="https://iParkingl.org/
instances/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema#"
xmlns:logico="http://ontology.tno.nl/logico#"

:Alignment>

<dcelem:title>ToTDeliveryCO_iParkingl</dcelem:

title>

<exmo:version>1.0</exmo:version>
<dcelem:creator>SRIPAS</dcelem:creator>
<dcelem:description>Between IoT-Delivery Hub and

iParkingl.</dcelem:description>

<align:xml>yes</align:xml>
<align:level>2IPSM</align:level>
<align:type>**</align:type>
<align:method>manual</align:method>

Semantic Interoperability 161

<dcelem:date>13-02-2019</dcelem:date>
<sripas:cellFormat>
<iiot:DataFormat rdf:about="http://inter-iot
.eu/sripas#turtle" />
</sripas:cellFormat>

<align:ontol>
<align:0ntology rdf:about="http://inter-iot.
eu/GOIoTPex#">
<align:formalism>
<align:Formalism align:name="OWL2.0"
align:uri="http://www.w3.org
/2002/07/owl#" />
</align:formalism>
</align:0ntology>
</align:ontol>
<align:onto2>
<align:0ntology rdf:about="https://iParkingl
.org#">
<align:formalism>
<align:Formalism align:name="0OWL2.0"
align:uri="http://www.w3.o0rg
/2002/07/owl#" />
</align:formalism>
</align:0Ontology>
</align:onto2>

<sripas:steps rdf:parseType="Collection">
<sripas:step sripas:order="1"
sripas:cell="http://www.inter-iot.eu/sripas
#1 reservation"/>
</sripas:steps>

<align:map>
<align:Cell rdf:about="http://www.inter-iot.
eu/sripas#l_reservation">
<align:entityl rdf:datatype="http://www.
w3.0rg/2001/XMLSchema#string">
var:R a iiotex:Reservation
iiotex:hasIssuer [
a logico:Truck ;

logico:id [logico:hasIdvValue var
:CarId]

7

1

iiotex:forRegion [

162 M. Ganzha et al.

a logico:Region ;
logico:id [
logico:hasIdvalue var:
ParkingId ;
logico:hasAgency iiotex:
ParkingRegistry
1
iiotex:hasTimebox [
a time:Interval ;
time:hasBeginning [
a time:Instant; time:
inXSDDateTimeStamp var:
Timel
1
time:hasEnd [
a time:Instant; time:
inXSDDateTimeStamp var:
Time2

]

1.

</align:entityl>

<align:entity2 rdf:datatype="http://www.
w3.0rg/2001/XMLSchema#string">
var:R a i1Parking:Reservation ;
iParking:hasCarId var:CarId ;
iParking:hasStartTime var:Timel
iParking:hasEndTime var:Time2

</align:entity2>

<align:relation>=</align:relation>

</align:Cell>
</align:map>

7

</align:Alignment>
</rdf :RDF>

Listing 6 Alignment between iotDelivery Hub central data model and iParkingl

8 Concluding Remarks

In this chapter we summarized the INTER-IoT approach to semantic interoperability.
The simple dTraffic mock scenario was deconstructed throughout the text to expose
the affluent semantic methods, techniques, and advances weaved into every aspect

Semantic Interoperability 163

of design and implementation of semantically interoperable IoT systems that use
INTER-IoT. Arisen from the study of ontology alignments, the INTER-IoT pathway
is lined with elucidation of semantics into a very explicit and concrete form. Such
concretization empowered the novel IPSM-AF format, and paved way to the prac-
tical application of ontology alignments as translation rules for real-time dynamic
transformation of data. Driven by the needs and wants commonly emerging in the
IoT domain, the design of a flexible stream-driven architecture for efficient, scalable,
and reactive semantic translation of messages was crowned with the implementation
of IPSM software. Additionally, introduction of the idea of a central ontology capac-
itated multi-deployments of IPSM among considerable amount of communicating
artifacts with minimal cost of changes in the ecosystem, even during uninterrupted
operation.

The generic nature of proposed solutions makes the INTER-IoT approach to
semantics feasible for any domain that requires data semantics interoperability.
Additionally we developed two modular and extendable ontologies: GOIoTP and
GOIoTPex, ready to be used as central ontologies for any IoT-related sub-domain.
[50].

Fruitful usage of the INTER-IoT approach to semantics, including the theory,
designs, and software, in INTER-IoT pilot implementations, as well as other IoT
projects (e.g. EU ACTIVAGE, EU Pixel) is a testimony to its potential and practi-
cality.

References

Basic Geo (WGS84 lat/long) vocabulary. https://www.w3.0rg/2003/01/geo/

Bioportal ontologies. https://bioportal.bioontology.org/ontologies

Climate and forecast features. https://www.w3.org/2005/Incubator/ssn/ssnx/cf/cf-feature

DATEX II. http://www.datex2.eu/

EDOAL: Expressive and declarative ontology alignment language. http://alignapi.gforge.inria.

fr/edoal.html

FHIR OWL Ontology. https://w3c.github.io/hcls- thir-rdf/spec/ontology.html

. A format for ontology alignment. http://alignapi.gforge.inria.fr/format.html

8. Geographic data format. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.
htm?csnumber=54610
9. geoSPARQL. https://www.ogc.org/standards/geosparql

10. The linked earth ontology. https://linkedearth.github.io/ontology/

11. Logical—transnational logistics improvement through cloud computing and innova-
tive cooperative business models. https://trimis.ec.europa.eu/project/transnational-logistics-
improvement-through-cloud-computing-and-innovative-cooperative

12. Logical cloud portal. http://logical.bayzoltan.org/[ENG]/index_eng.html

13. Logico ontology. https://ontology.tno.nl/logico/

14. Logiserv ontology. https://ontology.tno.nl/logiserv/

15. Logistic grid ontology

16. The obo foundry. http://www.obofoundry.org/

17. Ontology of transportation networks

18. PROV-O: The PROV Ontology. https://www.w3.org/TR/prov-o/

19. Resource description framework (RDF). https://www.w3.org/RDF/

RAE i

N

https://www.w3.org/2003/01/geo/
https://bioportal.bioontology.org/ontologies
https://www.w3.org/2005/Incubator/ssn/ssnx/cf/cf-feature
http://www.datex2.eu/
http://alignapi.gforge.inria.fr/edoal.html
http://alignapi.gforge.inria.fr/edoal.html
https://w3c.github.io/hcls-fhir-rdf/spec/ontology.html
http://alignapi.gforge.inria.fr/format.html
http://www.iso.org/iso/iso_catalogue/catalogue_tc /catalogue_detail.htm?csnumber=54610
http://www.iso.org/iso/iso_catalogue/catalogue_tc /catalogue_detail.htm?csnumber=54610
https://www.ogc.org/standards/geosparql
https://linkedearth.github.io/ontology/
https://trimis.ec.europa.eu/project/transnational-logistics-improvement-through-cloud-computing-and-innovative-cooperative
https://trimis.ec.europa.eu/project/transnational-logistics-improvement-through-cloud-computing-and-innovative-cooperative
http://logical.bayzoltan.org/[ENG]/index_eng.html
https://ontology.tno.nl/logico/
https://ontology.tno.nl/logiserv/
http://www.obofoundry.org/
https://www.w3.org/TR/prov-o/
https://www.w3.org/RDF/

164 M. Ganzha et al.

20. Rewerse: Reasoning on the web. http://rewerse.net/

21. Seas-weatherontology ontology. https://ci.mines-stetienne.fr/seas/WeatherOntology

22. The transport disruption ontology. https://transportdisruption.github.io/transportdisruption.
html

23. UniversAAL Ontologies. https://github.com/universAAL/ontology

24. Achieving technical interoperability—the ETSI approach. ETSI White Paper No. 3, April
(2008)

25. Semantic Sensor Network XG final report, 2011

26. Auer, S., Lehmann, J., Hellmann, S.: LinkedGeoData: adding a spatial dimension to the web
of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E.,
Thirunarayan, K. (eds) The Semantic Web—ISWC 2009, pp. 731-746. Springer, Berlin, Hei-
delberg (2009)

27. Aumueller, D., Do, H.-H., Massmann, S., Rahm, E.: Schema and ontology matching with
COMA++. Presented at the (2005)

28. Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., Taylor, K.: [oT-Lite: a lightweight semantic model
for the Internet of Things and its use with dynamic semantics. Pers. Ubiquitous Comput. 21(3),
475-487 (2017)

29. Compton, M., Barnaghi, P., Bermudez, L., Garcia-Castro, R., Corcho, O., Cox, S., Graybeal,
J., Hauswirth, M., Henson, C., Herzog, A., Huang, V., Janowicz, K., Kelsey, W.D., Le Phuoc,
D., Lefort, L., Leggieri, M., Neuhaus, H., Nikolov, A., Page, K., Passant, A., Sheth, A., Taylor,
K.: The SSN ontology of the W3C semantic sensor network incubator group. Web Semant.:
Sci., Serv. Agents World Wide Web 17, 25-32 (2012)

30. Jerdme Euzenat and Pavel Shvaiko. Ontology Matching, 2nd edn. Springer (2013)

31. Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, L.F., Couto, EM. (eds.): The Agree-
mentMakerLight Ontology Matching System, pp. 527-541. Springer (2013)

32. Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K.: Streaming Semantic
Translations, pp. 1-8. IEEE (2017)

33. Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K.: Alignment-based
semantic translation of geospatial data. In: 2017 3rd International Conference on Advances in
Computing,Communication & Automation (ICACCA) (Fall), Dehradun, India, pp. 1-8 (2017)

34. Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K., Solarz-
Niestuchowski, B., Suirez de Puga Garcia, J.: Towards high throughput semantic translation.
In: Fortino, G., Palau, C.E., Guerrieri, A., Cuppens, N., Cuppens, F., Chaouchi, H., Gabillon, A.
(eds.) Iteroperability, Safety and Security in IoT, pp. 7-74, Cham, 2018. Springer International
Publishing

35. Ganzha, M., Paprzycki, M., Pawtowski, W., Szmeja, P., Wasielewska, K.: Semantic technolo-
gies for the [oT—an Inter-1oT perspective, pp. 271-276. IEEE, Berlin, Germany, April (2016)

36. Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K.: Towards common
vocabulary for 10T ecosystems—preliminary considerations. In: Intelligent Information and
Database Systems, 9th Asian Conference, ACIIDS 2017, Kanazawa, Japan, April 3-5, 2017,
Proceedings, Part I, Volume 10191 of LNCS, pp. 35-45. Springer (2017)

37. Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K.: Towards semantic
interoperability between Internet of Things platforms. In: Gravina, R., Palau, C.E., Manso, M.,
Liotta, A., Fortino, G. (eds.) Integration, Interconnection, and Interoperability of IoT Systems,
pp- 103-127. Springer (2017)

38. Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K., Fortino, G.: Tools
for ontology matching-practical considerations from INTER-IoT perspective, pp. 296-307.
Springer (2016)

39. Ganzha, M., Paprzycki, M., Pawlowski, W., Szmeja, P., Wasielewska, K., Palau, C.E.: From
implicit semantics towards ontologies-practical considerations from the INTER-IoT perspec-
tive (submitted for publication). Presented at the (2017)

40. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing? Int.
J. Hum.-Comput. Stud. 43(5), 907-928 (1995)

http://rewerse.net/
https://ci.mines-stetienne.fr/seas/WeatherOntology
https://transportdisruption.github.io/transportdisruption.html
https://transportdisruption.github.io/transportdisruption.html
https://github.com/universAAL/ontology

Semantic Interoperability 165

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

Jimenez-Ruiz, E., Grau, B.C.: LogMap: Logic-based and scalable ontology matching, pp.
273-288. Springer (2011)

Lorenz, B.: Hans Jiirgen Ohlbach, and Laibing Yang. Ontology of transportation networks
(2005). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.133.2953

Metral, C., Billen, R.: Anne-Francoise Cutting-Decelle, and Muriel Van Ruymbeke. Ontology-
based approaches for improving the interoperability between 3d urban models. J. Inf. Technol.
Constr. 15 (2010)

Scheuermann, A., Hoxha, J.: Ontologies for intelligent provision of logistics services. In:
7th International Conference on Internet and Web Applications and Services (ICIW 2012),
Germany, May 2012. XPS

Staab, S., Studer, R.: Handbook on Ontologies, 2 edn. Springer (2009)

Strzelczak, S.: Core ontology for manufacturing and logistics. Zeszyty Naukowe. Organizacja
i Zarzadzanie/Politechnika Slaska 73, 603-618 (2014)

Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.): Modular Ontologies. Concepts, Theo-
ries and Techniques for Knowledge Modularization, Volume 5445 of State-of-the-Art Survey,
LLNCS (2009)

Belsa, A., Sarabia-Jacome, D., Palau, C.E., Esteve, M.: Flow-based programming interoper-
ability solution for IoT platform applications. In: 2018 IEEE International Conference on Cloud
Engineering (IC2E), pp. 304-309, Orlando (FL) (February 2018)

Broring, A., Zappa, A., Vermesan, O., Frimling, K., Zaslavsky, A., Gonzalez-Usach, R.,
Szmeja, P., Palau, C., Jacoby, M., Zarko, I.P,, S. Sour- sos, C. Schmitt, M. Plociennik, S. Krco,
S. Georgoulas, I. Larizgoitia, N. Gligoric, R. Garcia-Castro, F. Serena, V. Orav. : Advancing
IoT Platform Interoperability. River Publishers (2018)

Giancarlo, F., Antonio, L., Carlos, P., Raffaele, G., Marco, M. (eds.): Integration, Interconnec-
tion, and Interoperability of IoT Systems. Springer (February 2017)

Pileggi, S.F., Palau, C.E., Esteve, M.: Building semantic sensor web: knowledge and interop-
erability. In: Proceedings of the International Workshop on Semantic Sensor Web, Volume 1:
SSW, (IC3K 2010), pp. 15.22 (April 2010)

Vermesan, O., Friess, P. (eds.): Digitising the Industry Internet of Things Connecting the Phys-
ical. River Publishers, Digital and Virtual Worlds (2016)

Fortino, G., Garro, A., Russo, W.: Achieving Mobile Agent Systems interoperability through
software layering. Inf. Softw. Technol. 50(4), 322-341 (2008)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.133.2953

INTER-Framework: An Interoperability)
Framework to Support IoT Platform i
Interoperability

Clara L. Valero, Andreu Belsa, Alejandro Fornes-Leal, Fernando Boronat,
Miguel A. Llorente, and Miguel Montesinos

Abstract INTER-Framework solution provides a way to homogenize the use of the
interoperability layered infrastructure. By using INTER-FW, any IoT platform can be
made interoperable with respect to its device, network, middleware and service layer.
This tool offers a complete visual framework to configure and manage in a secure
way and to develop new software applications leveraging data from multiple IoT
heterogeneous platforms. It facilitates the creation of an ecosystem of interoperable
and open IoT platforms. Thus, the development time of novel IoT services and
applications can be shortened, and these services can be provided atop interoperable
IoT platforms. It is reflected in lower development effort and economical costs for
product owners, users, developers and platform integrators. The framework includes
components to address several requirements like security, AP management, data
visualization, scalability and extensibility. INTER-FW also contains the identity
and authorization mechanisms of INTER-IoT. In addition, it contains INTER-API, a
gateway of the APIs from the different layers. INTER-API is managed and configured
within INTER-FW using the API Manager and the Identity Server.

1 Introduction

The overall goal of the INTER-IoT project is to provide an interoperable and open IoT
framework, with associated engineering tools and methodology, for seamless inte-
gration of heterogeneous IoT platforms [1], regardless of the application domains.
As seen in previous chapters, INTER-IoT uses a layer-oriented approach [2]. The
interoperability framework addresses interoperability issues between different het-
erogeneous [oT platforms. By using the INTER-FW, any IoT platform can be made
interoperable with respect to its fundamental layers: device, networking, middleware,
applications, and semantics. INTER-FW will facilitate creation of an ecosystem of
interoperable and open IoT platforms. Thus, development time of novel IoT services
and applications can be shortened, and these services can be provided atop interop-

C. L. Valero (X)) - A. Belsa - A. Fornes-Leal - F. Boronat - M. A. Llorente - M. Montesinos
UPV, Universidad Politecnica de Valencia, Valencia, Spain
e-mail: clavalpe@upv.es

© Springer Nature Switzerland AG 2021 167
C. E. Palau (eds.), Interoperability of Heterogeneous loT Platforms, Internet of Things,
https://doi.org/10.1007/978-3-030-82446-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82446-4_6&domain=pdf
mailto:clavalpe@upv.es
https://doi.org/10.1007/978-3-030-82446-4_6

168 C. I. Valero et al.

______ Interoperable loT Framework e
= INTER-FW k.
loT : 0 loT
Platform A Platform B
Data and P Data and
semantics DS20s R

o
),
services @r’) services

<
L
3

I
T
I
|
|
I
i
I
I
I
T
|
I
b Integration Methodology I>— _______ J
INTER-METH

Fig. 1 INTER-IoT multi-layered approach

erable IoT platforms. Furthermore, from a business point of view, interoperability
will result in lower costs [3].

The modular layered approach followed in INTER-IoT has multiple advantages
such as strong flexibility, adaptability to very different scenarios, separation of con-
cerns, decoupling between functional components, scalability across physical tiers,
etc. However, the approach also presents shortcomings in terms of usability or tool-
ing unification, especially in the case of INTER-IoT, where each Interoperability
Layer Infrastructure (ILI) is designed to be completely decoupled, being able to
work standalone (Fig. 1).

Other important challenge of the INTER-IoT global design, affecting each layer
separately, is the future-proof design. One of the fundamental problems solved in
INTER-IoT, the isolation of IoT data in information domains and the inability to
automatically share these data across these domains [4, 5], is a consequence of the
excessive short-term sight in the design or instantiation of IoT systems. INTER-IoT
addresses these drawbacks by the introduction of a framework based on the six ILIs
(D2D, N2N, MW2MW, AS2AS, DS2DS and CL) exposed APIs. This framework,
presented as the INTER-FRAMEWORK or INTER-FW [6], has three main goals
identified:

e Enable extension and scalability of the INTER-IoT solution to support present and
future applications or more demanding scenarios.

e Configure, monitor and manage the different layers from a unique view.

e Provide and manage a REST-like API to enable the use of the interoperable plat-
forms and INTER-IoT features (Fig.2).

INTER-Framework: An Interoperability Framework to Support ... 169

Challenges Goals Modules
=
® b~
4] Q \
.\—’ Extension Configure, E Configuration
Unification Global and monitor framework
design scalability and Software and toolset
manage development

B framework gEpr——
= O </>
-1~ == e

Usabilit frmy i

y proof REST API INTER-API

Fig. 2 INTER-FW overview

These goals are addressed in the following functional components developed in
INTER-FW:

e Software development framework: a combination of software results, documenta-
tion, templates and examples allowing extensibility through the application of the
INTER-IoT interoperability patterns in new platforms, devices, services, etc.

¢ Instantiation, configuration and management framework and toolset: a web based
application which unifies in a single environment the monitoring, management
configuration of the different [oT components (sensors, network elements, gate-
ways, platforms...) at each interoperability layer. This element also includes key
cross-layer elements management, such as authentication or authorization config-
urations.

e A global, unified API to offer a single-entry point to application and services
developers, either platform owners or third parties.

2 Framework Approaches to Interoperable IoT Platforms

In software engineering, the concept of ‘framework’ is wide [7] and can be applied
in very different disciplines, depending strongly on the approach and the goal of the
software artefact resulting [8]. The meaning of this term and some related concepts
are reviewed below. The types of frameworks used in INTER-IoT are also detailed.

2.1 Introduction to Frameworks

There are some related concepts that are frequently related to a software framework.
Some of them are quickly reviewed in this section.

170 C. I. Valero et al.

Library

A library is a set of functional implementations, coded in a programming language,
which provides a well-defined interface for the functionality being invoked. Unlike
an executable program, the behavior that implements a library does not expect to
be used in an autonomous way, but its purpose is to be used by other programs,
independently and simultaneously. Most modern operating systems provide libraries
that implement system services. In this way, these services have become a “raw
material” that any modern application expects the operating system to provide. As
such, most of the code used by modern applications is offered in these libraries.

Toolset

A toolset is a more specific library used to create, debug, maintain, or support other
programs and applications. In short, is a software that assists in the creation of new
software. It could include advanced interfaces solutions such as graphical widgets or
GUI elements either in desktop or web environments. Toolsets usually operate in a
higher level of abstraction of a library, being very often library consumers (it is very
common to find libraries distributions with an associated toolset e.g. mosquitto,'
jmeter,2 docker,’ etc.).

Framework

A framework is a conceptual and technological support structure, usually with spe-
cific software artefacts or modules, which can serve as a basis for the organisation and
development of software. The definition of a framework is usually linked to one of
its key properties, the Inversion of Control (IoC) principle, which means that the pro-
gram flow is taken over by the framework itself (a pre-existing and external element
to the program), instead of the common case in imperative programming, where it is
controlled by the developed program. However, frameworks are also targeted either
towards a specific output; an application for a specific OS for instance (e.g., MFC*
for MS Windows), or for more general-purpose work (e.g., Spring framework?>).

Software Development Kit (SDK)

An SDK is generally a set of software development tools that allows a software
developer to create a computer application for a specific system, for example certain
software packages, work environments, hardware platforms, computers, game con-
soles, operating systems, etc. It can consist of simply an application programming
interface (API) created to allow the use of a certain programming language, or it
can also include sophisticated hardware to communicate with a certain embedded
system. The most common software development tools include support for pro-
gramming error detection such as an Integrated Development Environment (IDE)
and other utilities. SDKs often also include example code and supporting technical

! https://mosquitto.org/.

2 https://jmeter.apache.org/.

3 https://www.docker.com/products/docker-desktop.

4 https:/docs.microsoft.com/es-es/cpp/mfc/mfc-desktop-applications ?view=msvc- 160.
3 https://spring.io/projects/spring-framework.

https://mosquitto.org/
https://jmeter.apache.org/
https://www.docker.com/products/docker-desktop
https://docs.microsoft.com/es-es/cpp/mfc/mfc-desktop-applications?view=msvc-160
https://spring.io/projects/spring-framework

INTER-Framework: An Interoperability Framework to Support ... 171

notes or other supporting documentation to help clarify certain points in the primary
reference material.

Engine

An engine (in computer science terms) is a software system, or subsystem, that serves
as the core foundation for a larger piece of software. An engine can also be defined as
a computer program that facilitates automated processes, in which different pieces of
software work interactively to minimize human intervention. A common feature of
software engines is metadata that provides models of the actual data that the engine
processes. The software modules pass data to the engine, and the engine uses its
metadata models to transform the data into a different state. Examples of software
engines include relational database engines, workflow engines, inference engines
and search engines.

Application Programming Interface (API)

An API [9] is a set of subroutines, functions and procedures or methods that provides a
certain library to be used by other software as an abstraction layer. An API represents
the ability to communicate between software components. It acts as an interface
between different software programs facilitating their interaction, such as the way the
user interface facilitates interaction between humans and computers. They are used
to overtake the interoperability limitations of the continuous creation and expansion
of IT services and in the last years have become a trend. Other important driver of
the API popularity is the creation of application-centric ecosystems, allowing third
parties to create clients, use data and add value to the features of existing systems.

2.2 Types of Frameworks and Uses in INTER-IoT

For the sake of completeness, a short study of different popular types of frameworks
has been performed. The results are gathered in this section.

2.2.1 Agent-Based Frameworks

A software agent [10] is a computer program that acts on behalf of a user or other
program in a relationship of agency. Such “action on behalf of” implies a number of
abilities that the agent need to possess: autonomous behaviour, social ability, respon-
siveness, proactiveness, and mobility. They represent a very expressive paradigm for
modelling dynamic distributed systems, and perfectly fit the generic and specific
requirements of IoT systems. Indeed, agent-based modelling could provide even
more benefits in the IoT domain than in conventional distributed environments.
Agents may be autonomous or, often, they interact with other agents. In the latter
case the environment in which the agents operate is called Multi-Agent Systems
(MAS) [11]. A MAS is a middleware that basically provide an API for developing
agent-based applications, and an agent server able to execute agents by providing

172 C. I. Valero et al.

them with basic services such as agent creation, execution, migration, communica-
tion, and access to resources. Three popular agent platforms are briefly introduced
in the following list:

e Java Agent DEvelopment Framework [12] is an open-source software Frame-
work fully implemented in the Java language. It simplifies the implementation of
Multi-Agent Systems through a middleware that complies with the FIPA spec-
ifications and through a set of graphical tools that support the debugging and
deployment phases.

e Mobile Agent Platform for SunSPOT [13] is an innovative Java-based frame-
work specifically developed on SunSPOT technology for enabling agent-oriented
programming of WSN applications.

e Java-based Interoperable Mobile Agent Framework [14] focus on interoper-
ability as a key issue for a wider adoption of Mobile Agent Systems (MASs) in
heterogeneous and open distributed environments where agents, in order to fulfill
their tasks, must interact with other non homogeneous agents and traverse different
agent platforms to access remote resources.

Use in INTER-IoT
In the context of the INTER-IoT project, there are many advantages enabled (or
favoured) using software agents. Agents can allow:

e Protocol encapsulation. In addition, in case of protocol upgrading, a new set of
mobile agents can easily replace the old one at run-time.

e Natural orientation to heterogeneity. Mobile agents can act as wrappers among
systems based on different hardware and software. This ability can well fit the
need for integrating heterogeneous IoT devices based on different platforms. An
agent may be able to translate requests coming from a system into specific suitable
requests to submit to another different system.

e Robustness and fault-tolerance. The ability of mobile agents to dynamically react
to adverse situations and events (e.g. low battery level) can lead to more robust
and fault tolerant IoT systems; e.g. the reaction to the low battery level event can
trigger the migration of all executing agents to an equivalent device to continue
their activity.

e Devices and platforms configuration and management, enabled by agents migrat-
ing to the target device/platform or communicating with the local agent.

The use of agents and associated development frameworks can be found in the
lower layers of INTER-IoT, such as the D2D level and in some parts of MW2MW.
However, given the functional relation between INTER-FW and INTER-Layer [15]
components (the former uses and aggregates functions of the latter), an extensive use
of agent-based frameworks is not well suited for the INTER-FW, since it performs
tasks of orchestration and encapsulation, while IoT interoperability-related business
logic is frequently delegated to the lower layers.

INTER-Framework: An Interoperability Framework to Support ... 173
2.2.2 Cloud-Based Frameworks

Before describing cloud-based frameworks [16], it is important to explain that cloud
computing [17] is a paradigm that allows computing services to be offered over a
network, which is usually the Internet. The term “cloud-based framework™ is used
to describe a wide range of solutions that support the creation, deployment and
management of cloud applications. The types of services available in the cloud are
described below:

o Software as a service (SaaS) [18] is a software distribution model in which a
third-party provider hosts software centrally and makes it available to customers
over the Internet.

e Infrastructure-as-a-service (IaaS) [19] it is an immediate computing infrastruc-
ture that is provisioned and managed over the Internet. It avoid the expense and
complexity of purchasing and managing your own physical servers and other data
center infrastructure, allowing the client to focus solely on the development of
software solutions.

e Platform as a service (PaaS) [20] is a category between between the two above
in which cloud computing services are responsible for the creation and mainte-
nance of a software infrastructure. That way customers can focus on developing
and managing applications and leave aside the maintenance of the infrastructure.
message-passing.

Some examples of popular cloud based frameworks are briefly summarized below:

e Amazon Web Services IoT® allows companies to use Amazon Web Services to
meet [oT needs by combining device communications, security measures, and a
number of versatile application program interfaces (APIs) with Amazon’s robust
AWS cloud.

e Predix’ is an open-source platform for both internal and external industrial appli-
cations and includes authorization and authentication protocols at both the device
and application level for security.

e Microsoft’s Azure IoT Suite® enables companies to implement a cloud-based
ToT solution with minimal development. The suite offers device SDKSs to connect
devices to the cloud and transmit operational data and statistics.

e IBM Cloud’ is a versatile and modular platform that allows companies inter-
ested in IoT deployments to employ a fully cloud-hosted, managed IoT platform.
Bluemix can connect to existing devices or gateways through either the MQTT or
HTTP protocols and transmit data in real time from a remote site to the cloud.

Use in INTER-IoT
The knowledge and use of cloud-based frameworks in INTER-IoT has a twofold
purpose:

6 https:/aws.amazon.com/iot.

7 https://www.ge.com/digital/predix.

8 https://azure.microsoft.com/suites/iot-suite/.
9 https://www.ibm.com/cloud.

https://aws.amazon.com/iot
https://www.ge.com/digital/predix
https://azure.microsoft.com/suites/iot-suite/
https://www.ibm.com/cloud

174 C. 1. Valero et al.

e To integrate systems based on these cloud-based frameworks with the INTER-
Layer infrastructure.

e To build a cloud-based framework to manage the different layers and the platform
nodes connected to them.

2.2.3 REST-Based Frameworks

The term REST [21] is used to describe any interface between systems that directly
uses HTTP to obtain data or indicate the execution of operations on the data, in any
format (XML, JSON, etc.) without the additional abstractions of pattern-based mes-
sage exchange protocols. Every REST resource is identified uniquely by an URL,
which is operated upon by a subset of HTTP commands: get, post, put and delete.
This is a major advantage of REST, as HTTP is the universal protocol of commu-
nication over the Internet. Another advantage is its scalability and independence.
The protocol used in RESTful API makes the server user interface and data storage
work independently. Thanks to this the software can be scaled without much diffi-
culty. It also provides technology independence. REST can be used regardless of the
type of language or technology being used in a project. In terms of security, we can
protect REST using HTTPS instead of HTTP. Some outstanding examples of REST
implementations are:

e Apache Livy'? is a service that enables easy interaction with an Apache Spark
cluster over a REST interface. With it one can submit Spark jobs or snippets of
Spark code, one can retrieve results synchronously or asynchronously, and also
manage SparkContext.

e Django REST framework!' is a third representative of REST-based frameworks.
It is a toolkit for building web-based APIs, which are self-describing, list API end-
points, describes allowable operations on each and presents them as hypermedia
controls that it sends in responses.

Use in INTER-IoT

As described above, this approach is suitable for the INTER-IoT project and is the
main mechanism to expose the layers APIs and the global API of the framework. As
REST philosophy [22] builds upon representations being completely at the mercy
of the client, INTER-FW would not become bloated with addition of new platform
types, new devices, new brokers, security features, etc. Existing nodes could be not
only easily accessed, but also managed.

10 htps://livy.incubator.apache.org.
' https://www.django-rest-framework.org/.

https://livy.incubator.apache.org
https://www.django-rest-framework.org/

INTER-Framework: An Interoperability Framework to Support ... 175

2.2.4 Reactive Streams Based Frameworks
Reactive Streams'? is an initiative to provide a standard for asynchronous stream
processing with non-blocking back pressure. In an asynchronous system, the handling
of data streams, especially data whose volume is not predetermined (e.g. “live” data)
requires special attention. The main objective is not to overload the destination stream
and for this it is necessary to control the source of the data.

The Reactive Streams initiative standard defines a set of interfaces for handling
streams in a reactive manner and gives a detailed specification of their intended
behaviour. The main idea behind is the “back-pressure” mechanism, based on the
Publish-Subscribe model. The Reactive Streams (RS) standard offers the following
interfaces:

e Publisher<T> is the source of data for Subscriber(s). It offers a possibly unbounded
sequence of data elements of type T.

e Subscriber<T> is an entity responsible for managing the subscription to a Pub-
lisher and handling the incoming data of type T. It also copes with error conditions
and subscription cancellation.

e Subscription represents the lifecycle of a Subscriber subscribing to a Publisher.

e Processor<T, R> represents a reactive stream processing stage which is a Sub-
scriber <T> and, at the same time a Publisher <R>.

The RS standard specification, although presented in the form of just four simple
interfaces turns out to be quite complex and demanding at the implementation level.
The treatment of asynchronous communication combined with back-pressure and
proper error handling mechanisms is not as simple as it may seem at first. Fortunately,
the existing libraries and frameworks that support the RS standard offer DSLs which
make creating and transforming reactive streams much easier and intuitive.

Some examples of RS frameworks are listed in the following lines:

e RxJava'’ is a lightweight (single-jar) library supporting reactive programming
in Java. It offers and advocates functional programming techniques, including
in-mutability and statelessness. RxJava is essentially a JVM implementation of
the Reactive Extensions (ReactiveX), which builds upon the standard Observer
pattern.

e Reactor Core'* similarly to RxJava, is a small (single-jar), highly focused library
directly implementing the Reactive Streams standard, adding many useful stream
transformation-building mechanisms.

e Akka' is a toolkit and runtime for building highly concurrent, distributed, and
resilient message-driven applications on the JVM. Akka utilizes the Actor Model
of concurrency.

12 https://www.reactive-streams.org/.

13 https://github.com/ReactiveX/RxJava.
14 https://github.com/reactor/reactor-core.
15 https://akka.io/.

https://www.reactive-streams.org/
https://github.com/ReactiveX/RxJava
https://github.com/reactor/reactor-core
https://akka.io/

176 C. I. Valero et al.

Use in INTER-IoT

Concepts of “stream of data” and “stream processing” seem very natural and fun-
damental for any Internet of Things application. Also, the principles of “reactivity”
undeniably apply to the realm of IoT. The popularity/acceptance of the Reactive
Streams standard increases, and will probably continue to do so in the future. Solu-
tions for many popular data sources/stores are available at the moment and new ones
are being created. Hence, a framework offering Reactive Streams as a tool/concept
is well worth considering in the case of INTER-IoT.

For a successful application within the INTER-FW, however, a framework defi-
nitely needs to provide more than just plain Reactive Streams support. Any INTER-
IoT deployment will surely be distributed and will run on a (cloud) cluster. Therefore,
the INTER-FW should also provide some flexible, high-level mechanisms for defin-
ing/composing such deployments. A carefully designed DSL would probably be
very helpful in this respect. Both Reactor and Akka Streams constitute a part of
comprehensive frameworks—Spring Framework and Akka respectively. RxJava, on
the other hand, is a targeted library offering “just” an implementation of Reactive
Streams standard, together with some tooling.

Taking the above into account, we should probably narrow our choice to Reactor
versus Akka Streams, or rather Spring versus Akka. Both frameworks provide com-
prehensive sets of tools for building distributed applications, and support microser-
vice architecture. Spring has an undeniably longer history, but Akka is definitely a
mature project as well. Both frameworks have vibrant user communities, and are
actively maintained. Out of the two Akka seems to be more coherent and compact
in design. It also offers high-level DSLs which INTER-FW might successfully uti-
lize/extend.

Some of the principles of reactive programming are successfully used in the design
and implementation of MW2MW layer (INTER-MW), although without following
a specific framework.

2.2.5 SOA-Based Frameworks

The concept of Service-Oriented Architecture [23] is a software design where ser-
vices can be accessed by other software components using a communication protocol
over the network. These services implement protocols that describe how to send and
parse message using description metadata. A service can be defined as a software
unit piece with a functionality that can be accesses remotely and acted upon and
updated independently, these services have four main properties:

It logically represents a business activity with a specified outcome.
It is self-contained.

It is a black box for its consumers.

It may consist of other underlying services.

Ll

The SO-Architecture is more related on how to compose an application by inte-
gration of distributed, separately-maintained and deployed software components.

INTER-Framework: An Interoperability Framework to Support ... 177

It is enabled by technologies and standards that make it easier for components to
communicate and cooperate over a network, especially an IP network.

Java OSGi'® technology is the most representative specification to implement
software frameworks and application in a service-oriented architecture. Some of the
most representative implementation examples are:

e Equinox,!” Concierge,'® Apache Felix'® or Karaf?’ as runtime framework and
service platforms OSGi-based on a module design that allows developers to imple-
ment an application in a bundles structure using the common services infrastructure
they provide.

o Swordfish?! is an open source SOA framework intended for applications ranging
from enterprise environments to embedded systems. Its features as a SOA runtime
platform that leverages three popular projects: Service Component Architecture
(SCA) as common programming model and assembly description format, Java
Business Integration (JBI) as a common messaging model, and Open Services
Gateway initiative (OSGi) as the basis of the runtime platform.

e WSO02 Carbon?? the core platform of the middleware, also based in OSGi, that
allows components to be dynamically installed, started, stopped, updated and unin-
stalled, and it eliminates component version conflicts, creating a service oriented
structure for an enterprise middleware.

Use in INTER-IoT

INTER-FW and some interoperability layers (gateway, INTER-MW) implementa-
tions are partially or completely distributed using services for each functionality of
the framework and communicating each other by communication protocols. This is
useful in the scalability and extendibility of the framework due to the modularity
that this architecture provides. It also presents some caveats, as for instance that
the components need to rely on the underlying network, so this has to be strongly
configured for resilience.

As INTER-FW has to access all the components of INTER-Layer, it can imple-
ment different services to be consumed for each one of the clients on each inter-
operability solution. hence, each tier of INTER-Layer exposes an API (e.g. REST
API) to connect with specific services within the framework where an added value is
also implemented. This added value is an environment where future developer can
implement a new service included within INTER-FW to be used by one or more
interoperability solutions. So that, the modularity that Service Oriented Architecture
provides facilitates this extension.

16 htps://www.osgi.org/.

17 http://www.eclipse.org/equinox/.

18 http://www.eclipse.org/concierge/.
19 https://felix.apache.org/.

20 https://karaf.apache.org/.

21 hitps://wiki.eclipse.org/Swordfish.
22 https://wso2.com/products/carbon/.

https://www.osgi.org/
http://www.eclipse.org/equinox/
http://www.eclipse.org/concierge/
https://felix.apache.org/
https://karaf.apache.org/
https://wiki.eclipse.org/Swordfish
https://wso2.com/products/carbon/

178 C. I. Valero et al.

3 Framework Design and Implementation

The solutions provided by INTER-Layer are specific for each layer. INTER-FW
is proposed to manage all these solutions from a higher and more abstract global
point of view, by providing mechanisms, tools and helper content to properly man-
age the Layer Interoperability Infrastructure (LIIs) and the Interoperability Layer
Interfaces (ILIs). To this end, each INTER-Layer solution will provide an API to be
consumed by INTER-FW in order to manage the content and configuration located
within the solution. Additionally, the INTER-FW API will expose together with its
own extra value API calls, the APIs provided by each layer as a suite for future appli-
cations to use not only the API provided by a single solution but several solutions
combined [24].

The following diagram depicts the components taking part in the INTER-FW
administration and configuration framework. For simplicity, some components that
share the same interactions have been represented in one single box. Colours have
been applied to identify the main functional groups (Fig. 3).

The functional groups are: (i) web application components, which follows the
classical design pattern model-view-controller. It includes all components related to
the data storage, organization and visualization for the end-user; (ii) security, whose
components intend to avoid the access to anonymous or unregistered users. It also

Depending on the -
tec selected it
can be part of the auth.
serves

1 ¥ 11|t erver = Austhentication fideiity) +
< companent: - < companent. d - companent- componert. | | | | Authoration. can be deployed n twa
) g recgurst vadatin £l inter-bw controller) inber-tor nodes regtry FClnede configuationy..| | 1| SMevent servers, even difterend sohutions.
i eeegnees = nd 1 | hewn as a single component for
: - i O e
; use; H Y e
: ¥ Loemees oy SCOmpOeres : <components ~compentr-
etomponents vy] imter-or uses manages H] ath prony 2] austh serves
P e et - b e == ____. >
i H Fmmr i By
y ! i L) | 1 A
scompontnts ' : ' (b} [H ' [
] render controlier .
“component. “compenet:
= dockes A] docks aerves
----- =
<) node credentiah manager|
~companent.
21 d2d api
. &-rnw.bp-au..a.m:.rwﬁ
. -(u'_'wumnkv Turgquoite: web spphication companenty
¥ 2 nln api
| ccompanens
=tomponents Pirk: vecurity 5
] interme api

campontnts
] astas api

ey gomponents
2lipum api

Fig. 3 Diagram of INTER-FW administration and configuration framework

INTER-Framework: An Interoperability Framework to Support ... 179

prevents the unauthorised access to data; (iii) API management, which components
perform operations related to the global API. In the following subsections a more
detailed explanation of the design rules follow to develop the components of these
groups as well as the technologies leveraged are presented; (iv) scalability, which
based in containerization technologies, contributes to enable the growing of con-
nected devices and users to the INTER-FW; and (v) extensibility, which is based
in mechanisms that allow adding new functionalities or improvements of existing
services.

3.1 Web Application

The target of the web application is to unify the monitoring, configuration and
management of many IoT components (sensors, network elements, gateways, plat-
forms ...) of the different interoperability layers in a single environment. It provides,
through a Graphic User Interface (GUI), a single management place for all the inter-
operability layers developed in INTER-IoT, as well as a user management tool for
authentication and authorization control. After performing an exhaustive analysis
of the requirements and use cases that the application of the GUI had to support,
inputs to the designers of the INTER-Layer solutions were provided so INTER-FW
could be seamlessly integrated with them. The application consisted of the following
components:

o INTER-FW front-end: the collection of views that are rendered to the user (main
view, platforms, gateways, network, services, semantics, configuration and users).

e INTER-FW controller: this component performs the classical operations of a
controller: it process and forward data requests to the model, ask for fields, cre-
dentials and permission validation, etc.

e API request validator: it checks the fields, verbs and paths of the API requests

before sending them.

User registry: a store of the INTER-IoT users.

e Nodes registry: a storage point for the registered nodes: platforms, gateways,
services, etc. Each entry contains the need information to univocally identify the
node.

e Node configuration validator: it checks that the configuration submitted for each
node is correct, before calling the associated API.

Both the front-end and the back-end (which includes some of the aforementioned
components) of the application were designed, including the security aspects of the
web application and the credentials brokerage needed to manage the security and
privacy of the connected platforms. It delegates a great part of its features in the
LIIs. However, to bring practical features that may eventually let the INTER-IoT
to understand and manage the concepts of multilayer interoperability of 10T Plat-
forms, some back-end operations were needed. In general, these operations include

180 C. I. Valero et al.

the features of serving, transforming and persisting the data of the application, so
the INTER-Layer components that were affected by these operations were modified
accordingly. The back-end was developed with Node.js>* as web application frame-
work, MongoDB?* to store unstructured data, and Mongoose? for object modelling.
On the other hand, the front-end is the presentation layer where users can see and
interact with content in a user-friendly interface. It is usually developed as a mixture
of Hypertext Markup Language (HTML), Cascading Style Sheet (CSS), JavaScript
(JS) and ancillary libraries. In this case, Vue framework?® was used for developing
the interface, which simplifies the process of building user interactive interfaces.

INTER-FW web console structures each one of its modules (see Sect. 5) depending
on the architecture and components of each layer solution, showing the structure of
each layer and information about the components managed by them (devices, network
elements, platforms, applications, etc.). More specifically:

e D2D: the containers running the virtual gateways instances are managed with the
web application.

e N2N: the topology of the network is visualized through the application and the
configuration of the switches, including QoS, are done within the web application.

e MW2MW: the different platforms connected to INTER-MW are shown. The
instance of INTER-MW is unique.

e AS2AS: different containers run one instance of AS2AS for each user.

e DS2DS: the IPSM instance is fully manageable from the web console, including
adding/removing channels, alignments and ontologies.

e Cross-Layer: all cross-layer functionalities related with the interaction of different
layer solutions will be available through the FW (e.g. utilization of the IPSM by
the AS2AS environment).

3.2 Security and Privacy

Security is a key aspect [25] to take in account when more than one solution and more
than one client access at the same system. One of the main problems with security is
that there are many point were data are gathered (devices, sensor, tags, etc.) and not
all of them have the enough capacity or processing power [26] to implement trustable
security mechanisms to ensure the privacy and authenticity of the provided data. For
this reason, the upper layers have to make up for this flaws and take the leading role
related with implementing security [27, 28]. This security can be defined in two key
points: trust and privacy. Trust addresses several parts of a system:

23 https://nodejs.org/en/.

24 https://www.mongodb.com/.
25 https://mongoosejs.com/.

26 hitps://vuejs.org/.

https://nodejs.org/en/
https://www.mongodb.com/
https://mongoosejs.com/
https://vuejs.org/

INTER-Framework: An Interoperability Framework to Support ... 181

Device Trust: Need to interact with reliable devices.

Processing Trust: Need to interact with correct and meaningful data.

Connection Trust: Requirement to exchange the right data and only with the right
service providers.

System Trust: Desire to leverage a dependable overall system. This can be achieved
by providing as much transparency of the system as possible.

On other side, privacy encompasses the sensible information managed by an IoT
system that can jeopardize a company, the system itself or the confidentiality of
data from individuals [29]. Since INTER-IoT is composed of several layers and
modules, the security implementation cannot be monolithic. INTER-FW provides
a portal to access several layers of the interoperability architecture, and each one
of them has to be isolated and just communicate through the official mechanisms
and channels. It aims at providing global and open platform-level interoperability
among heterogeneous IoT platforms coupled through specifically developed ILIs. In
this sense, the security-awareness and implementation in this component has to take
into account those particular aspects and depict an architecture that encloses them
and creates a reliable security framework across the different layers of the global
INTER-IoT solution [30].

Each layer will be responsible of ensuring the integrity and encryption (if neces-
sary) of the data it manages as well as the data exchanged with other components and
with INTER-FW. Nevertheless, the authentication mechanism will be centralized in
order to have a coherent access over all components of an INTER-IoT deployment.
An INTER-IoT deployment will interact with one or more IoT Platforms and those
IoT Platforms could implement their own security mechanisms. For that reason,
when a platform is registered in INTER-FW, it will also store (encrypted) every
authentication detail needed to interact with that IoT Platform. The following figure
explain how this security architecture is implemented.

As it can be observed on the figure, there are security-specific components that,
brought together with previously mentioned agents, comprise the whole design of
the privacy and security model:

e External [oT Platforms: These are the external IoT platforms that will be configured
and available to the rest of the layers

e INTER-FW Backend Server: This is then component where INTER-FW will be
installed and deployed. It is also the frontend for the management and configuration
of the INTER-IoT deployment. Regarding security aspects, all the authentication
credentials and security specific data to interact with the external IoT Platforms
will be stored under the Cryptex library.

e User Authentication Server: This server will be responsible to handle all authen-
tication related mechanisms. It will interact with the INTER-FW backend server
to provide the configuration and management points of the authentication inte-
grated with the INTER-FW frontend, but its main purpose is to act as a centralised
point of authentication for all the other layers deployed in the docker-swarm?’

27 https://docs.docker.com/engine/swarm/.

https://docs.docker.com/engine/swarm/

182 C. I. Valero et al.

Fig. 4 INTER-FW security @ “

management :‘
e I BASIC+SSL
OAUTH
o o
|AP| MAMAGER |
PROXY

Ea
g TLS

PLATFORMS
SECURITY Q

APls

USER AUTHENTICATION
AND AUTHORIZATION
SERVER

containers. For this reason, the WSO2 Identity Server?® has been chosen as the
centralised authentication server. It provides single sign-on and identity federation
capabilities, multifactor authentication, management of users, groups and roles,
monitoring and auditing and multiple connectors and libraries for easy integration
(Fig.4).

e Docker-Swarm Container: This is the container in which the components of differ-
ent layers will be deployed and managed. Regarding security and authentication,
each layer will be responsible for implementing their security mechanisms in the
framework and language chosen for each component. In order to have a coherent
and centralised authentication mechanism, each layer will have their connector to
the User Authentication Server to take advantage of all the authentication capa-
bilities that provides.

3.3 REST API Management

API management [31] is a process that encompasses publishing, documenting and
overseeing application programming interfaces (APIs) in a secure, scalable envi-

28 hitps://wso2.com/identity-and-access-management/.

https://wso2.com/identity-and-access-management/

INTER-Framework: An Interoperability Framework to Support ... 183

ronment. It allows organizations that publish their APIs to monitor the interfaces’
lifecycles and also make sure that needs of both internal and external developers, as
well as applications that are using their APIs, are being met. It thus provides core
competencies for ensuring successful API usage in developer engagement, business
insights, analytics, security and protection.

3.3.1 API Management Functionalities

Software that implements API management typically provides the following
functions:

e Automation and control of connections between the API and applications that use
it.

e Ensuring consistency between multiple API implementations and versions.

e Traffic monitoring from individual applications.

e Wrapping of the API into security procedures and policies, thus protecting it from
misuse.

e Memory management and caching mechanisms to improve application perfor-
mance.

e Sandbox environment for developers. Coupled with good API documentation, it
enables potential customers to try the API out.

Nowadays, APIs are less dependent upon conventional Service-Oriented Archi-
tectures (SOA) and more on lightweight JSON and REST services. It is however
possible to convert existing SOAP, IMS or MQ interfaces into RESTful APIs with
JSON content.

3.3.2 API Management Components

Typical components of API management systems are:

e Gateway: a server that acts as an API frontend, which receives API requests and
passes requests to the backend. It then passes the responses back to the requester.
It can modify the requests and responses on the fly, and it can also provide the
functionality to support authentication, authorization, security, audit and caching.

e Publishing tools: a collection of tools that API providers use to define APIs, for
instance using the OpenAPI or RAML specifications. They also generate API
documentation, manage access and usage policies, and can as well be used for
testing and debug purposes.

e Developer portal/API store: a community site that enables user’s access to docu-

mentation, tutorials, sample code, software development kits, and so forth. Here

users can also manage subscription keys and obtain support from the API provider
and the community.

Reporting and analytics: a collection of tools that monitor API usage and load.

e Monetization service: a service that monetizes API usage.

184 C. 1. Valero et al.

Subscribe 1o APIS and

use them in applicanons

End-users using APl
m — m

Backend web service .

Fig. 5 REST API manager structure

3.3.3 API Management Solutions

An API management solution could be implemented in three different ways. The
first one is as a proxy, where the API manager “sits” between the API and API’s
user, processing all the traffic between these two. In this way, API manager can
implement caching and protection of customer’s API from traffic spikes. However,
a proxy also drives the cost up, as well as introduces additional privacy and latency
issues. Apigee®® and Mashery®” provide API management solutions that work as a
proxy. An API management solution could also work as an agent, that integrates
itself with user’s server without acting as a middleman between the API and the user.
API managers that work as agents typically do not suffer from latency issues and
dependency on third parties, through which all the traffic passes. On the other hand,
features like caching are not easy to implement. 3scale®! offers a product of this type.
Some API managers work as hybrids, incorporating both a proxy and an agent. For
example, the proxy could be used for caching, and agent for authentication. Apigee
and 3scale are moving towards this solution (Fig.5).

Many vendors offer their own API management solutions, as for instance Azure
API management,*?> Oracle,*® IBM,** WS02* or Red Hat (3scale). Majority of
solutions are implemented as proxies, while others are hybrid. Most of them are
directed towards SMEs, except for WSO2’s API manager, Microsoft’s Azure API
manager and 3scale, which are also suitable for enterprises. CA Layer API manager
is unique, as it has advanced support for mobile applications, while WSO2 API

2 hitps://cloud.google.com/apigee.

30 https://developer.mashery.com/.

31 https://www.3scale.net/.

32 https://azure.microsoft.com/es-es/services/api-management/.

33 https://www.oracle.com/middleware/technologies/api-manager.html/.
34 hitps://www.ibm.com/es-es/cloud/api-connect.

35 https://ws02.com/api-management/.

https://cloud.google.com/apigee
https://developer.mashery.com/
https://www.3scale.net/
https://azure.microsoft.com/es-es/services/api-management/
https://www.oracle.com/middleware/technologies/api-manager.html/
https://www.ibm.com/es-es/cloud/api-connect
https://wso2.com/api-management/

INTER-Framework: An Interoperability Framework to Support ... 185

manager is open source. Apart from WSO2, among other open source API managers
one can found Kong*® and Tyk.?’

Different API managers cover different requirements. Some API managers, such
as IBM’s, Microsoft’s and Oracle’s, are part of a product or service, while others,
such as WSO2’s, are free. Some cannot even be deployed on premises, such as
Microsoft’s Azure. INTER-IoT aims at making use of an open source API manager,
highly customizable and feature-full. Out of the handful open source API managers,
WSO02 is the one selected for INTER-I0T as fulfilled all these necessities.

3.3.4 API Description

API specification and documentation is a key factor for technology adoption
[32, 33], regardless whether the software is being used internally or by third-parties.
With the growth of publicly available APIs de facto standards and tools have been
emerging. Thus, some top specification formats used are OpenAPI Specification
(Swagger®), RAML? and API Blueprint.*’ This section introduces briefly each of
them showing use examples and possible applications within the domain of INTER-
IoT. In their most basic definition, API specification tools generate HTML and CSS
code to display API methods, parameters, values, requests, responses, code samples,
and more.

The OpenAPI Specification is both a specification format and a framework for
generating documentation, server and client API code. Because of its wide adop-
tion, Swagger is becoming a standard for API specification. Swagger-enabled API
allows one to get interactive documentation, client SDK generation and discover-
ability. Swagger is language agnostic and uses JSON notation to describe the API
documentation. Swagger is open source and is widely supported by the developers’
community. It has a strong ecosystem providing tools, code generators, etc.

3.4 Scalability

The scalability of the components is achieved through the use of Docker containers
[34]. Docker is software container platform that encapsulates applications to run
and manage them side-by-side in isolated containers to obtain better performance
and compute density. These containers can communicate with each other through a
Docker network specifying the direction and port, and the Docker tool can handle
the lifecycle of the containers in a way that this packages of software run isolated on

36 https://konghq.com/kong/.

37 https://tyk.iol.

38 https://swagger.io/specification/.
39 https://raml.org/.

40 hitps://apiblueprint.org/.

https://konghq.com/kong/
https://tyk.io/
https://swagger.io/specification/
https://raml.org/
https://apiblueprint.org/

186 C. I. Valero et al.

a shared operating system being started, ran or stopped when needed. Despite other
virtualization methods or machines, containers do not build a full operating system,
instead only libraries and settings required to make the software work as needed.

3.4.1 Components Containerization and Clusterization

The solutions implemented in INTER-Layer should be wrapped then in Docker con-
tainers so that their lifecycles are managed in the framework. Docker-swarm provides
atool to observe and manage a group of Docker nodes as if it was only one cluster, so
that one can start several related Docker containers at the same time and treat them
as a whole. A swarm is a cluster of Docker nodes where the solutions are deployed,
with a CLI and an API to set commands to manage the swarm nodes (initialize them,
joining a running container, etc.). This tool is used to clusterize different solutions
from the same layer (e.g., several virtual gateways) and manage them as an ensem-
ble. The Dockerization of INTER-FW also comes with some security reinforcement,
since only authorized users/roles can access to the different containers or cluster of
containers.

3.5 Extensibility

Each INTER-Layer component has several extensibility mechanisms that allow
adding new functionalities or improvements to existing services. This will inevitably
lead to changes in REST API calls exposed by single layers. INTER-API pro-
vides API Lifecycle Management and Versioning, so that every change is typically
deployed as a prototype for early promotion. After a period of time during which
the new version is used in parallel with the older versions, the prototyped API can
be published and its older versions can be depreciated.

With updates to OpenAPI definitions of the Unified INTER-IoT REST API, every
change is documented and presented to prospective users in a standard format adopted
by a majority of modern software development frameworks. In INTER-IoT pilots and
tests, two different deployments have been used: (i) Self-standing API Manager with
build-in identity management, and (ii) integration with the WSO2 Identity Manager.
In principle, WSO2 API Manager can be integrated with several User Store types,
such as LDAP, Active Directory and custom realms.

3.5.1 Identity Server Extensibility

The extensibility of the Identity Server is achieved through several extension points:

e Creation and application of new XACML policies.

INTER-Framework: An Interoperability Framework to Support ... 187

e Aggregation of new authenticators and connectors (new identity providers) for
identity federation. This could allow users accessing INTER-IoT without having
an INTER-IoT account, by leveraging the Identity Server to control and restrict
the most sensitive parts of the system. A possible scenario of this extension could
be a deployment of INTER-IoT by a public service that allows all users (e.g., the
citizens in a Smart City) to access read-only information about different publicly
owned IoT platforms operating in an area.

e The INTER-I0T use of the Identity Server has a third expansion point through
Entitlement Mediators. An Entitlement Mediator intercepts requests and evaluates
actions performed by users against an XACML policy. Identity Server can be
used as XACML Policy Decision Point (PDP), where the policy is set. This is
also explained in the official documentation, and consists essentially in adding
authorization points to the Identity Server for protecting endpoints in the INTER-
API and other resources.

4 INTER-API Solution

As explained in Sect.3.3.2, the solution selected to implement INTER-API [35] is
WSO2 API Manager. This API Manager has been deployed as a Docker image in
order to facilitate an integrated cloud deployment with the other INTER-FW com-
ponents. The installation included the compulsory product registration, the Docker
image deployment and the authentication with the WSO2 account. In addition, the
appropriate URLs and API gateway endpoints have been configured. The creation
of a unified API access through the WSO2 API manager consisted in several steps.

e Firstly, to create an API design document for each INTER-Layer component. It is
provided through Swagger definitions.

e Afterwards, hose definitions are analyzed through a REST best-practice approach
and different naming conventions among INTER-Layers.

e A unified API interface is then defined, with mapping to the corresponding end-
points of the backend systems.

e A unified OpenAPI definition is created, in addition to a “mediator” module that
maps the APIs. The user should then subscribe to the APIs through the API sub-
scription web GUI.

The main types of API users with their corresponding set of access and manage-
ment privileges are (i) INTER-FW core users (users with full access to all INTER-FW
features), and (ii) INTER-FW frontend users (users with restricted set of access rights
necessary to execute API calls). In addition, a set of access policies, using SAML
definitions, are being developed as part of the pilots’ specific requirements.

INTER-API is documented considering a Swagger-JSON format. The INTER-
Layer APIs are accessed through an instance of the WSO2 API manager that acts
as the main entry point for API management, access and usage. A set of OpenAPI
definitions has been delivered for each layer in order to expose their respective

188 C. I. Valero et al.

d2d.api

d2d.virtual

DU fd2d/gasvirtual Get vt gas

d2d.physical

TS0 /d2d/gu/physical Get physical patewsy rdoma
B /d20/guiphysicalfdevices Gotassioro
d2d.device

m f&2dydeicas/ (deieald) ., maton .\ . .:I.‘.. n stabo (S6r0r readneg) Status or stared Siatus 5 the statis

SN /d2d/devices/{deviceld) Pertorm actons on a device

n2n.switches

Fig. 6 INTER-API screen shoot

components. These have been integrated in the WSO2 API manager and published
to the INTER-IoT API Store. There, users can register and gain access to the INTER-
IoT deployment (Fig. 6).

5 INTER-FW Solution

INTER-FW provides a complete visual environment to enable development, config-
uration and management of interoperable IoT Platforms. The result is presented as a
web application capable of controlling multiple aspects of interoperability at differ-
ent layers. INTER-FW is the world’s first visual framework that allows controlling
multiple 10T platforms in a single user interface. It provides platform, device, net-
work and service management for scenarios with heterogeneous IoT deployments,
while protecting data sovereignty with personal and industrial information in a secure
and safe way. The main functionalities covered by the framework are:

e To control all the interoperability layers. In a single screen, all the interoperability
means are managed visually with full configurability.

e Comprehensive REST API available for all layers. INTER-API allows controlling
all the interoperability aspects making easy building an application over hetero-
geneous [oT platforms.

e Fine-grained (up to device level) authorization of operations over interoperability
layers. Complete control over the API and framework operations by the platform
owner to keep sovereignty of the data (Fig. 7).

INTER-Framework: An Interoperability Framework to Support ... 189

(@ INTER-FW configures and
controls the full
interoperability stack

@ This instance is connected to
INTER-LogP pilot, where 5

different platforms
loT Platforms collaborate together
f R e ® INTER-FW also contains the

identity and authorization
mechanisms in INTER-IoT

(@ INTER-API is a composite of
the different APIs from the
different layers

(® INTER-API is managed and
configured within INTER-FW
thanks to APl Manager and
Identity Server

Fig. 7 INTER-FW set-up

An actual instantiation of the INTER-FW solution is presented. As previously
explained, apart from unifying the monitoring, configuration and management of
different [oT components (sensors, network elements, gateways, platforms, etc.) in
a single environment, the web console of INTER-FW also includes key cross-layer
management functions, such as configuration of authentication and/or authorization.
As it can be seen in Fig. 8, it has eleven different tabs providing different features:

e Devices: all the devices connected to INTER-IoT are represented. Although useful
for user experience purposes, tasks related to the registry or elimination of sensors
are performed at gateway level.

e Gateways: provision of functionalities at the gateway level. Both physical and
virtual gateways can be operated via the application.

e Network: management of virtual networks, QoS and networking rules.

e Platforms: instantiation, configuration and management of IoT platforms.

e Services: management of nodes, flows and instances of the IoT platforms appli-
cations and services interoperability solution.

e Semantics: definition of alignments, consultations with the semantic repository
and basic operations upon the supported ontologies.

e Policies: utility to define security XML policies for fine-grained authorization.

e API Management: links to the INTER-API API Manager, managing level of
access, lifecycle versioning and monitoring, among other tasks.

e Users management: a tool to manage the INTER-IoT users.

e Configuration: configuration of the INTER-FW too.

190

Inter-loT =

SEAMS,

=
=
—

Azure platform pos

http://www.inter-iot.eu/traxens L)

hittp://www.inter-iot.cu/traxens

http://www.inter-iot.eu/wso2port
http/fwww.inter-ioteu/wio2port

t
http://www.inter-iot.eu/azureport

httpe/fazure inter-ioteu/azure-platform

http://www.inter-iot.eu/nctv/seams2

Fig. 8 INTER-FW screen shoot

C. I. Valero et al.

VoW

1, ,_,_, http://vmplsp
%S B88® azurecom

e Downloads: This tab helps exporting information from INTER-FW to INTER-
CASE tool (tool explained in Chap. 7). A web service has also been provided.

The target users of this product are:

System integrators.

Curious techies.

Multiple IoT platform owners: typically public authorities and big corporations.

An overview of the impact that the use of the framework has provided during the
development of the project’s pilots is shown in the following statistics:

e In a typical deployment of 3 different platforms, an integrator can save up to 24%

of configuration time.

e Resources in a single view can reduce 46% errors in configuration and management

of devices.

e Cloud deployment increase by 62% the service availability.
e A common API reduces in 48% the boilerplate.
e Less dependency with manufacturers leads to 20% savings in licenses and sub-

scriptions.

Finally, the main benefits obtained using INTER-FW are:

e To avoid vendor-lock: use one tool to control multiple IoT Platforms.
e To provide visual management features for platforms that lack of them (FIWARE,

WS02, OneM2M).

http://dx.doi.org/10.1007/978-3-030-82446-4_7

INTER-Framework: An Interoperability Framework to Support ... 191

e To manage different interoperability layers in a single stop.
e To develop applications that leverage data from multiple heterogeneous platforms.
e To build applications based on a single API avoiding extra boilerplate.

6 Conclusions

INTER-FW offers the main features to configure, administer and manage heteroge-
neous IoT platforms in scenarios where interoperability is a key factor. These solu-
tions have been tested and validated in the three INTER-IoT pilots (INTER-LogP,
INTER-Health and Cross-domain Pilot) as well as in the Open Calls that joined the
project in 2017. A full coverage of the use cases, including mechanisms to expand
and adapt to specific interoperability scenarios, has been achieved. Different inter-
operability layers (D2D, N2N, MW2MW, DS2D2 and AS2AS) have been integrated
thorough a unified management framework and API access.

Taking as starting point the approach of this framework, the goal is to publish some
related theoretical works in the future. From the technical point of view, INTER-FW
offers a valuable cloud-based integration product. This framework is an interesting
complement for all the IoT platforms or projects without GUI and management
capabilities. Finally, the API Manager is a key factor to the monetization of cloud-
based services.

References

1. Schneider, M., Hippchen, B., Abeck, S., Jacoby, M., Herzog, R.: Enabling IoT platform inter-
operability using a systematic development approach by example. In: 2018 Global Internet of
Things Summit (GIoTS), pp. 1-6 (2018)

2. Fortino, G., Savaglio, C., Palau, C.E., Suarez, J., de Puga, M., Ganzha, M.P., Montesinos,
M., Liotta, A., Llop, M. (eds.): Towards multi-layer interoperability of heterogeneous IoT
platforms: the INTER-IoT approach. In: Integration, Interconnection, and Interoperability of
IoT Systems, pp. 199-232. Springer International Publishing, Cham (2018)

3. Legner, C., Lebreton, B.: Preface to the focus theme section: ‘business interoperability’ busi-
ness interoperability research: present achievements and upcoming challenges. Electron. Mark.
17(3), 176-186 (2007)

4. Amadeo, M., Campolo, C., Iera, A., Molinaro, A.: Named data networking for IoT: an architec-
tural perspective. In: 2014 European Conference on Networks and Communications (EuCNC),
pp. 1-5 (2014)

5. Pileggi, S.F, Palau, C.E., Esteve, M.: Building semantic sensor web: knowledge and interop-
erability. In: Proceedings of the International Workshop on Semantic Sensor Web—Volume 1:
SSW (IC3K 2010), pp. 15-22. INSTICC, SciTePress (2010)

6. INTER-IoT H2020 Project: D4.3. Initial Reference IoT Platform Meta-Architecture and Meta
Data Model Interoperable IoT Framework Model and Engine v1, Oct 2017. https://files.inter-
iot.eu/deliverables/accepted/D4.3%20- %20Interoperable %20IoT %20Framework %20Model
%20and%20Engine%20v1.pdf

7. Pasetti, A.: Software Frameworks and Embedded Control Systems, vol. 2231. Springer (2003)

https://files.inter-iot.eu/deliverables/accepted/D4.3%20-%20Interoperable%20IoT%20Framework%20Model%20and%20Engine%20v1.pdf
https://files.inter-iot.eu/deliverables/accepted/D4.3%20-%20Interoperable%20IoT%20Framework%20Model%20and%20Engine%20v1.pdf
https://files.inter-iot.eu/deliverables/accepted/D4.3%20-%20Interoperable%20IoT%20Framework%20Model%20and%20Engine%20v1.pdf

192

8.

9.

10.
11.

12.

13.

14.

16.

17.
18.

20.

21.

22.

23.

24.

25.

26.

217.
28.

29.

30.

31.

C. I. Valero et al.

Mnkandla, E.: About software engineering frameworks and methodologies. In: AFRICON
2009, pp. 1-5 (2009)

Ofoeda, J., Boateng, R., Effah, J.: Application programming interface (API) research: a review
of the past to inform the future. Int. J. Enterp. Inf. Syst. (IJEIS) 15(3), 76-95 (2019)

Nwana, H.S.: Software agents: an overview. Knowl. Eng. Rev. 11(3), 205-244 (1996)

Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access 6, 28573—
28593 (2018)

Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE—a Java agent development framework.
In: Multi-Agent Programming, pp. 125-147. Springer (2005)

Aiello, F., Fortino, G., Guerrieri, A., Gravina, R.: Maps: a mobile agent platform for WSNs
based on Java sun spots. In: Proceedings of the ATSN (2009)

Fortino, G., Garro, A., Russo, W.: Enhancing JADE Interoperability through the Java-based
Interoperable Mobile Agent Framework. In: 2007 5th IEEE International Conference on Indus-
trial Informatics, vol. 2, pp. 1071-1077 (2007)

. INTER-IoT H2020 Project: D3.3. Methods for Interoperability and Integration Final,

June 2018. https://files.inter-iot.eu/deliverables/accepted/D3.3%?20- %20Methods%20for
%?20Interoperability %20and %20Integration%20Final %20 Version.pdf

Mahmood, Z., Saeed, S.: Software Engineering Frameworks for the Cloud Computing
Paradigm. Springer (2013)

Antonopoulos, N., Gillam, L.: Cloud Computing. Springer (2010)

Buxmann, P., Hess, T., Lehmann, S.: Software as a service. Wirtschaftsinformatik 50(6), 500—
503 (2008)

. Bhardwaj, S., Jain, L., Jain, S.: Cloud computing: a study of infrastructure as a service (IAAS).

Int. J. Eng. Inf. Technol. 2(1), 60-63 (2010)

Keller, E., Rexford, J.: The “platform as a service” model for networking. INM/WREN 10,
95-108 (2010)

Fielding, R.T.: Fielding dissertation: Chapter 5: Representational state transfer (rest). http://
www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm (2000)

Masse, M.: REST API Design Rulebook: Designing Consistent RESTful Web Service Inter-
faces. O’Reilly Media, Inc. (2011)

Jerstad, I., Dustdar, S., Thanh, D.V.: A service oriented architecture framework for collaborative
services. In: 14th IEEE International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprise (WETICE’05), pp. 121-125 (2005)

Belsa, A., Sarabia-Jacome, D., Palau, C.E., Esteve, M.: Flow-based programming interoper-
ability solution for IoT platform applications. In: 2018 IEEE International Conference on Cloud
Engineering (IC2E), pp. 304-309, Orlando, FL, Apr 2018. IEEE (2018)

Frustaci, M., Pace, P., Aloi, G., Fortino, G.: Evaluating critical security issues of the IoT world:
present and future challenges. IEEE Internet Things J. 5(4), 2483-2495 (2018)

Altolini, D., Lakkundi, V., Bui, N., Tapparello, C., Rossi, M.: Low power link layer secu-
rity for IoT: implementation and performance analysis. In: 2013 9th International Wireless
Communications and Mobile Computing Conference IWCMC), pp. 919-925 (2013)
McGraw, G.: Software security. IEEE Secur. Priv. 2(2), 80-83 (2004)

Broring, A., Zappa, A., Vermesan, O., Frimling, K., Zaslavsky, A., Gonzalez-Usach, R.,
Szmeja, P., Palau, C., Jacoby, M., Zarko, I.P., Sour-sos, S., Schmitt, C., Plociennik, M., Krco, S.,
Georgoulas, S., Larizgoitia, 1., Gligoric, N., Garcia-Castro, R., Serena, F., Orav, V.: Advancing
IoT Platform Interoperability. River Publishers, The Netherlands (2018)

Acquisti, A., Brandimarte, L., Loewenstein, G.: Privacy and human behavior in the age of
information. Science 347(6221), 509-514 (2015)

Fortino, G., Liotta, A., Palau, C., Gravina, R., Manso, M. (eds.): Towards Multi-layer interop-
erability of heterogeneous IoT platforms: the inter-IoT approach (2017)

Fremantle, P., Kopecky, J., Aziz, B.: Web API management meets the Internet of Things. In: The
Semantic Web: ESWC 2015 Satellite Events, pp. 367-375. Springer International Publishing,
Cham (2015)

https://files.inter-iot.eu/deliverables/accepted/D3.3%20-%20Methods%20for%20Interoperability%20and%20Integration%20Final%20Version.pdf
https://files.inter-iot.eu/deliverables/accepted/D3.3%20-%20Methods%20for%20Interoperability%20and%20Integration%20Final%20Version.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

INTER-Framework: An Interoperability Framework to Support ... 193

32.

33.

34.

35.

Shi, L., Zhong, H., Xie, T., Li, M.: An empirical study on evolution of API documentation. In:
Fundamental Approaches to Software Engineering, pp. 416-431. Springer, Berlin, Heidelberg
(2011)

Gimenez, P., Molina, B., Palau, C.E., Esteve, M.: SWE simulation and testing for the IoT. In:
2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 356-361 (2013)
Hasselbring, W., Steinacker, G.: Microservice architectures for scalability, agility and reliability
in E-Commerce. In: 2017 IEEE International Conference on Software Architecture Workshops
(ICSAW) (2017)

INTER-IoT H2020 Project: D4.6. Interoperable IoT Framework API and Tools,
Model and Engine v2, June 2018. https:/files.inter-iot.eu/deliverables/accepted/D4.6%?20-
%?20Interoperable %2010T %20Framework %20API1%20and %20Tools %20v2.pdf

https://files.inter-iot.eu/deliverables/accepted/D4.6%20-%20Interoperable%20IoT%20Framework%20API%20and%20Tools%20v2.pdf
https://files.inter-iot.eu/deliverables/accepted/D4.6%20-%20Interoperable%20IoT%20Framework%20API%20and%20Tools%20v2.pdf

INTER-Meth: A Methodological)
Approach for the Integration of L
Heterogeneous IoT Systems

Giancarlo Fortino, Raffaele Gravina, Wilma Russo, Claudio Savaglio,
Katarzyna Wasielewska, Maria Ganzha, Marcin Paprzycki,
Wiestaw Pawlowski, Pawel Szmeja, and Rafal Tkaczyk

Abstract The Internet of Things (IoT) is a jeopardized ecosystem in which hetero-
geneity is intrinsic at all levels, from physical devices to communication protocols
till high-level application semantics. The absence of IoT standards increases the
complexity of integration and interoperability among heterogeneous platforms. This
generates a strong demand for proper methodologies in order to fully support the
development of heterogeneous, yet interoperable, IoT systems. To fill this gap, in
this chapter the INTER-METH engineering methodology is presented. Developed
in the context of the European H2020 INTER-IoT project, INTER-METH supports
the integration of heterogeneous IoT platforms from the analysis to the maintenance
phase. Its abstract and instantiated process schema are described, with particular
focus on the analysis and design phases that are fundamental drivers of the whole
integration process. Relevant interoperability design patterns, the building blocks of
the design phase, will be discussed. The chapter also presents the INTER-CASE
tool associated to the methodology which is useful to guide integrator designers in
properly following the INTER-METH workflow. Finally, the chapter shows the pro-

G. Fortino () - R. Gravina - W. Russo - C. Savaglio
University of Calabria, Rende, Italy
e-mail: g.fortino@unical.it

K. Wasielewska - M. Ganzha - M. Paprzycki - P. Szmeja - R. Tkaczyk
Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
e-mail: katarzyna.wasielewska@ibspan.waw.pl

M. Ganzha
e-mail: maria.ganzha@ibspan.waw.pl

M. Paprzycki
e-mail: marcin.paprzycki@ibspan.waw.pl

P. Szmeja
e-mail: pawel.szmeja@ibspan.waw.pl

R. Tkaczyk
e-mail: rafal.tkaczyk @ibspan.waw.pl

W. Pawtowski
Faculty of Mathematics, Physics and Informatics, University of Gdarisk, Gdansk, Poland
e-mail: wieslaw.pawlowski@ug.edu.pl

© Springer Nature Switzerland AG 2021 195
C. E. Palau (eds.), Interoperability of Heterogeneous loT Platforms, Internet of Things,
https://doi.org/10.1007/978-3-030-82446-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82446-4_7&domain=pdf
mailto:g.fortino@unical.it
mailto:katarzyna.wasielewska@ibspan.waw.pl
mailto:maria.ganzha@ibspan.waw.pl
mailto:marcin.paprzycki@ibspan.waw.pl
mailto:pawel.szmeja@ibspan.waw.pl
mailto:rafal.tkaczyk@ibspan.waw.pl
mailto:wieslaw.pawlowski@ug.edu.pl
https://doi.org/10.1007/978-3-030-82446-4_7

196 G. Fortino et al.

posed methodology and its tool in action, with the practical integration of BodyCloud
and UniversAAL platforms adopted in the INTER-Health pilot of the INTER-IoT
project.

1 Introduction

The IoT domain is stimulating the interest of academia and industry, thus generating
considerable yet uncoordinated research efforts. As a result, high degree of hetero-
geneity is characterizing IoT scenarios at all levels, obstructing interoperability of IoT
devices, systems, and applications [1] and generating major technological and busi-
ness development issues. For instance, lack of interoperability causes impossibility to
plug third-party IoT devices into existing IoT platforms, makes very hard the devel-
opment of [oT applications exploiting multiple platforms, discourages the adoption
of IoT technology, increases maintenance costs, reduces reusability of existing tech-
nical solutions, and as a natural consequence generates user dissatisfaction. To tackle
the rapid proliferation of poorly interoperable IoT systems, the H2020 EU-funded
project INTER-IoT aimed to design, implement and evaluate methods and tools to
enable voluntary interoperability among different [oT platforms by using a bottom-up
approach [2]. Indeed, in the absence of global IoT standards, the INTER-IoT results
allows IoT stakeholders to design open IoT devices, smart objects, services, and
platforms leveraging on the existing ecosystem, and bring them to market quickly. In
particular, INTER-IoT is based on hardware/software tools INTER-LAYER) grant-
ing multi-layer interoperability among IoT system layers (i.e., device, networking,
middleware, application service, data and semantics), on frameworks for open IoT
application and system programming and deployment (INTER-FW), and on a full-
fledged engineering methodology for IoT platforms integration (INTER-METH)
complemented by its Computer Aided Software Engineering (INTER-CASE) tool.

INTER-METH, that is probably the most peculiar feature of the INTER-IoT
project, is the subject of this chapter. INTER-METH aims at supporting the inte-
gration process of heterogeneous IoT platforms to (i) obtain interoperability among
them and (ii) allow implementation and deployment of IoT applications on top of
them. INTER-METH, whose relevance is emphasized by the absence in the litera-
ture of any other full-fledged methodology for the integration of IoT platforms, is
based on a workflow composed by six phases: Analysis, Design, Implementation,
Deployment, Testing and Maintenance that are in turn divided into sub-tasks. Each
phase generates work-products that are inputs for the successive phase(s). It is worth
noting that INTER-METH is domain agnostic by definition, intended to be extensible
and customizable, and it can be associated to any specific IoT systems integration
approach.

The remainder of the chapter is organized as follows. Sect. 2 provides an overview
of available methodologies for integrating IoT systems and making them interoper-
able. Section 3 presents several interoperability patterns that represent the building
blocks of the integration design phase. Section 4 introduces, phase by phase, the

INTER-Meth: A Methodological Approach ... 197

INTER-METH methodology, with particular emphasis on its INTER-IOT instantia-
tion, with the goal of showing how the integration process between two heterogeneous
IoT platforms/systems can be concretely carried out by exploiting the INTER-METH
guidelines and INTER-IoT products. Section 5 describes INTER-CASE, the tool
associated to the methodology which is useful to guide integrator designers in prop-
erly following the INTER-METH workflow. Ultimately, in Sect. 6, a practical use
of INTER-METH and its INTER-CASE tool is presented by showing the analysis
and design workflows applied for the integration of the two platforms adopted in the
INTER-Health pilot. Final remarks conclude the chapter.

2 Background

The aim of this section is to provide background to the research and design of method-
ologies for interoperable IoT systems and their integration. State-of-the-art (SotA)
analysis includes discussion of: (i) the definition of methodologies, (ii) relevance
of the reviewed methodologies in the IoT domain, and (iii) characteristics of such
methodologies useful for defining INTER-METH. Specifically, they are organized
in two main categories: (a) General-Purpose Software Engineering Methodologies
(see Sect. 2.1) and (b) More Specific Methodologies for System Integration (see
Sect. 2.2). For each category, we provide an overview and finally an overall analysis
towards INTER-METH definition, i.e. the characteristics of surveyed methodologies
useful to support the definition of INTER-METH.

2.1 Software Engineering Methodologies

In software engineering, a software development methodology (also known as a
system development methodology, software development life cycle, software devel-
opment process, software process) is a splitting of software development work into
distinct phases (or stages) containing activities with the intent of better planning and
management. It is often considered a subset of the systems development life cycle.
The methodology may include the pre-definition of specific deliverables and artefacts
that are created and completed by a project team to develop or maintain an appli-
cation. Common methodologies include waterfall, prototyping, iterative and incre-
mental development, spiral development, rapid application development, extreme
programming and various types of agile methodologies.

The Waterfall development methodology [11] is a step-by-step guide to the devel-
opment of software systems. Briefly, it focuses on gathering the features of the final
product, designing it, and then implementing it following that design. The term
depicts the idea that only once a higher step in the process is complete (full of
water), it will spill its results in the following step below itself. The classic Water-
fall methodology is composed of five main steps, in the following sequence: (1)

198 G. Fortino et al.

Requirements gathering, (2) System design, (3) Implementation. (4) Verification,
and (5) Maintenance. This engineering method is one of the first such methods used
for the structured production of software solutions, and is still often used in several
industries, though the so called ‘agile’ methods have displaced the Waterfall method
in several areas, in particular in rapidly evolving systems.

The VOLERE methodology [12] helps to describe, formalize and track the project
market analysis, requirements, use cases and scenarios in an explicit and unambigu-
ous manner. VOLERE has been used by thousands of organizations around the world
in order to define, discover, communicate and manage all the necessary requirements
for any type of system development (e.g. software, hardware, commodities, services,
organizational, etc.). The VOLERE methodology provides several templates to deal
with the different techniques and activities that it includes.

Interestingly, several development methodologies are built around the concept of
Agent and are known as Agent-Oriented Software Engineering (AOSE)
methodologies.

Gaiais an AOSE Methodology [13] specifically tailored to the analysis and design
of agent-based systems. It is intended to allow an analyst to go systematically from
a statement of requirements to a design that is sufficiently detailed that it can be
implemented directly. It is worth pointing out that Gaia authors view the requirements
capture phase as being independent of the paradigm used for analysis and design. For
this reason Gaia does not deal with the requirements capture phase but it considers
the requirements statement as an input for the methodology. Analysis and design can
be thought of as a process of developing increasingly detailed models of the system
to be constructed moving from abstract to increasingly concrete concepts.

Tropos [14] is an AOSE methodology strongly focuses on early requirements
analysis where the domain stake-holders and their intentions are identified and anal-
ysed. This analysis process allows the reason for developing the software to be
captured. The software development process of TROPOS consists of five phases:
Early Requirements, Late Requirements, Architectural Design, Detailed Design and
Implementation.

ELDAMeth [15] is a methodology specifically designed for the simulation-based
prototyping of distributed agent systems (DAS). It is based on an iterative devel-
opment process covering the modeling, coding and simulation phases of DAS.
ELDAMeth can be used both stand-alone and in conjunction/integration with other
agent-oriented methodologies which fully support the analysis and (high-level)
design phases. The Modeling phase produces an ELDA-based MAS design object
that is a specification of a MAS fully compliant with the ELDA MAS meta-model
(MMM). This design object can be produced either by (i) the ELDA-based model-
ing which uses the ELDA MMM and the ELDATool [16], a CASE tool supporting
visual modelling and coding of ELDA-based MAS [33, 34], or by (ii) translation
and refinement of design objects produced by other agent-oriented methodologies.
The Coding phase produces an ELDA-based MAS code object which is a translation
of the ELDA-based MAS design object carried out manually or automatically (by
means of the ELDATool). The developed code could be also mapped onto heteroge-
neous MAS platforms [38]. The Simulation phase produces the Simulation Results

INTER-Meth: A Methodological Approach ... 199

in terms of MAS execution traces and calculation of the defined performance indices
that must be carefully evaluated with respect to the functional and non-functional
requirements [39]. Such evaluation can lead to a further iteration step which starts
from a new (re)modelling activity.

Other interesting AOSE methodologies include MaSE [17], Prometheus [18],
MESSAGE [19].

General AOSE methodologies deal with providing engineering support to sys-
tems modeled as multi-agent systems. Thus, they could be used for general software
development support (from analysis to implementation) for implementing or re-
engineering software systems. Nevertheless, some of their methods could be gener-
alized and reused to support integration of systems. For instance, TROPOS proposes
a goal-oriented analysis that could be reused to elicit integration requirements among
different components/part of systems/systems. In particular, we reused TROPOS to
identify/refine integration goals among IoT platforms.

Agent-oriented methodologies are suitable for the development of distributed
applications and systems in terms of multi-agent systems. They can be categorized
in basic (e.g. Gaia, Message, TROPOS, MaSe, Prometheus) and simulation-based
(e.g. ELDAMeth). However, they do not aim at supporting (hw/sw) distributed sys-
tems integration, thus they cannot directly support the definition of INTER-METH.
Nevertheless, some of the techniques proposed by such methodologies could be
reused as basic techniques for defining INTER-METH:

e Goal-oriented analysis (from TROPOS) to analyse integration goals;

e Agent-oriented domain conceptualization (from Gaia and ELDAMeth), to formal-
ize integration requirements in the form of a high-level agent system design;

e Simulation-based validation (from simulation-based methodologies) to validate
integration (i.e. the high-level agent system design) before its implementation.

2.2 IoT Methodologies

In the following, we analyse currently available IoT methodologies. It is worth not-
ing, however, that they are still at an earlier stage of development with respect to
methodologies presented in the previous section.

Despite a variety of research efforts that tackle different specific issues within an
IoT systems development process, a full-fledged IoT engineering methodology is
still missing. Several studies proposed domain specific best practices [5], guidelines,
checklists, and templates. For instance, Slama et al. [20] and Collins [15] created
a repository of technology-dependent solutions coming from the experience in the
industrial/business world and specifically directed to the IoT makers and enterprises.
In fact, they proposed reference architectures and guidelines to make specific pur-
pose devices interoperable through abstraction data models and high-level software
interfaces.

200 G. Fortino et al.

By means of different views, perspectives and metamodels, [oT-A aims to
offer a unified approach to the development of IoT systems, in order to promote
cross-domain interaction, to support interoperability and to reduce fragmentation
within an IoT context. Notably, IoT-A introduced an Architecture Reference Model
(ARM) [21] with the capability of generating architectures for specific systems.
A reference model is, according to the OASIS [22] is “an abstract framework for
understanding significant relationships among the entities of some environment. A
reference model consists of a minimal set of unifying concepts, axioms and relation-
ships within a particular problem domain, and is independent of specific standards,
technologies, implementations, or other concrete details”. Most of the indications
provided by IoT-A have inspired AIOTI (Alliance for the Internet of Things) [28]
particularly for the domain model. From IOT-A we re-used its functional architecture
in INTER-METH Analysis Phase.

Zambonelli [23] proposed a software engineering methodology centered on the
main general-purpose concepts related to the analysis, design and implementation
phases of IoT systems and applications. Such concepts are used to identify the key
software engineering abstractions as well as a set of guidelines and activities that may
drive the IoT systems development. The envisioned methodology, however, lacks the
definition of models and tools to represent different conceptual and software artifacts.

Fortino et al. [36] proposed the ACOSOMeth approach for the agent-oriented
development of IoT systems [3, 37]. ACOSOMeth uses a model-driven develop-
ment approach seamlessly covering the analysis, design and implementation phases.
ACOSOMeth also enables the development of even complex [oT systems of systems
[6, 7, 35].

Although the overviewed methodologies have been specifically defined for devel-
oping IoT systems totally or partially fulfilling the reference requirements for IoT
systems development, they have not been devised for IoT systems integration and
interconnection. Even though such methodologies have another scope, INTER-Meth
took inspiration by borrowing the ideas of:

e meta-modeling approach that is typical of the model-drive development (MDD)
approach;

e agent-oriented-like approach (see [23]) allowing to simplify the definition of inte-
gration requirements analysis;

o AIOTI [28] and IoT-A [24] meta-models to have reference IoT architectures dur-
ing the integration process, in order to align the meta-models of the IoT sys-
tems/platforms to be integrated/interconnected or made interoperable to the refer-
ence meta-model.

In [25, 26], the addressed [oT interoperability using “model-driven development”
tools and techniques. In particular, there are three key contributions:

1. Interoperability models are reusable, visual software artifacts that model the
behavior of services in a lightweight and technology independent manner; these
models are a combination of architecture specification and behavior specification
and are based upon Finite State Machines (FSM);

INTER-Meth: A Methodological Approach ... 201

2. A graphical development tool to allow the developer to create and edit interoper-
ability models and to also execute tests to report interoperability issues;

3. The Interoperability monitoring and testing framework captures systems events
(REST operations, middleware messages, data transfers) and transforms them into
a model specific format that can be used to evaluate and reason against required
interoperability behavior.

Hence, such model-driven development approach allows the developer to create,
use and re-use “models of interoperability” to reduce development complexity in
line with the following requirements to ensure interoperability is correctly achieved.
Different stakeholders are defined in the engineering methodology:

e Interoperability testers create new 10T applications and services to be composed
with one another;

e Application developers model the interoperability requirements of service com-
positions. They create interoperability models to specify how IoT applications
should behave when composed.

This research discusses about interoperability of IoT services, systems, and (vir-
tualized) devices and was taken in consideration in our CASE-driven integration
methodology (see INTER-CASE) supporting the integration process of heteroge-
neous [oT platforms. In [27] System of Systems (SoS) integration is considered.
SoS is defined as a “set of systems that are cooperating and interoperating while
the different systems are simultaneously working as independent entities”. Authors
proposed methods to improve the way in which an IT architect addresses the inte-
gration problem, focusing on how to select the best integration approach in SoS
context depending on the features of the environment and systems to be integrated.
Some design patterns from popular patterns catalogs are analyzed by the authors
who proposed a process for creating SoS based on patterns as a central architectural
concept.

2.3 An Analysis Toward INTER-METH

The analyzed methodologies and techniques directly address the issue of systems
integration by adopting different approaches. Some of them are purposely related to
IoT systems integration but they do not provide any systematic methodology that,
starting from two or more systems to integrate, provides a clean process (along which
tools for each phase) to support the integration.

Nevertheless, the Waterfall model can be used, after enhancement, to support
INTER-Meth. In fact, the proposed INTER-Meth process is based on an iterative
version of the waterfall model, as the basic waterfall is too static. Agent-oriented
methodologies are suitable for the development of distributed applications and sys-
tems in terms of multi-agent systems. However, they do not aim at supporting (hw/sw)
distributed systems integration, thus they cannot directly support the definition of

202 G. Fortino et al.

INTER-METH. Nevertheless, some of the techniques proposed by such methodolo-
gies could be reused as basic techniques for defining INTER-METH:

e Goal-oriented analysis (from Tropos) to analyse integration goals;

e Agent-oriented domain conceptualization (from Gaia and ELDAMeth), to formal-
ize integration requirements in the form of a high-level agent system design;

e Simulation-based validation (from simulation-based methodologies) to validate
integration (i.e. the high-level agent system design) before its implementation.

Regarding the overviewed IoT methodologies, they have been specifically defined
for developing IoT systems totally or partially fulfilling the reference requirements
for IoT systems development, but they are not devised for IoT systems integration
and interconnection. Thus, even though some of the ideas on which they are founded
could be reused, such methodologies (as the reviewed agent-oriented methodologies)
have another scope. INTER-Meth could borrow mainly:

e the meta-modeling approach that is typical of the model-drive development (MDD)
approach;

e The agent-oriented-like approach (see [23]) allowing to simplify the definition of
integration requirements analysis;

o AIOTI [28] and IoT-A [24] meta-models to have reference IoT architectures dur-
ing the integration process, in order to align the meta-models of the IoT sys-
tems/platforms to be integrated/interconnected or made interoperable to the refer-
ence meta-model.

3 Design Patterns for IoT Systems

With the proliferation of IoT artifacts (devices/platforms/systems/services) the need
arises to analyze existing solutions from the software engineering perspective. Specif-
ically, in the context of integration and interoperability new design patterns mate-
rialized and required to be analyzed and catalogued. Note that design pattern is
understood as a general reusable solution to a problem that recurs repeatedly within
a specific context in software design, whereas a pattern catalog is a collection of
related patterns, subdivided into a (small) number of categories. Here, we outline the
design patterns identified in INTER-IoT project either by defining them from scratch
or extending some existing pattern. They address issues that can be extended beyond
INTER-IoT project. For more detailed information INTER-IoT deliverable D5.1.

Since so far there have been no formal guidelines to IoT integration, in INTER-IoT
we have decided to decompose the the problem into layers: D2D (Device-to-Device),
MW2MW (Middleware-to-Middleware), AS2AS (Applications and Services-to-
Applications and Services, DS2DS (Data and Semantics-to-Data and Semantics)
and CROSS layer relating them. For each of these layers design patterns have been
proposed and described using the following template:

e Pattern name—unique name of the pattern.

INTER-Meth: A Methodological Approach ... 203

e Inspired by—name(s) of pattern(s) that a given one is based on/extends. In most
cases, when pre-existing patterns did not fully solve specific problems, new pat-
terns were created, extending existing ones.

e Related patterns—other patterns, related to the given one.

e [ntent (summary)—short description of the goal behind the pattern and the reason
for using it (an extension of the ‘“Pattern name”, explaining its action/purpose).

e Problem & Solution—scenario that illustrates a problem and how the pattern solves
it.

e Applicability—situations, in which the pattern is usable; context for the pattern.

e UML representation—structure of the pattern modeled with a UML diagram
(mostly deployment and component diagrams).

e Implementation—extension of the “UML representation” property, i.e. description
of realization and architecture.

e Known uses—an example usage of the pattern within the INTER-IoT pilot
installation.

Fields: UML representation, Implementation, Related patterns and Known uses have
not been included in what follows (find them in INTER-IoT deliverable D5.1).

3.1 D2D Patterns

The two following patterns are related to design on device-to-device layer. IoT Gate-
way Event Subscription describes an approach to data forwarding, whereas D2D
REST Request/Response describes approach to communication on D2D layer.

IoT Gateway Event Subscription

Inspired by: (1) “Publish/Subscribe” (IoT Patterns: Design Patterns for Interaction),
(2) “Publish-Subscribe Channel” (EIP: Messaging Channels), (3) “Facilitator” , and
(4) “Proxy” (Agent Design Patterns: by Kendall).

Intent: D2D gateway allows data forwarding (any type). Flexibility in the D2D layer
is achieved by decoupling a gateway into: a physical part that handles network access
and communication protocols, and a virtual part dealing with remaining gateway
operations and services. Note that, in this way, data providers (communicating within
the network) and their identities (known to the virtual layer) can also be decoupled.

Problem and Solution: To provide interoperability between two heterogeneous loT
devices, the solution should establish bidirectional, asynchronous communication
with the ability to publish, filter and consume data. Here, the IoT gateway is used
as a subscription mechanism. It is an intermediary between IoT artifacts (in D2D
communication, between two devices). It allows transmission of data generated by
“sensors” to the destination, and asynchronous messaging between artifacts that inter-
act with it. If required, the gateway should perform protocol conversion to enable
communication. Senders of messages (publishers) do not program messages sent
directly to specific receivers (subscribers). Instead, they publish them, using defined

204 G. Fortino et al.

classes, without knowledge of subscribers. Similarly, subscribers express interest in
one or more classes and receive only messages of interest (without knowing publish-
ers). Significant is the structure of the message, which should contain subscription
information (e.g. message endpoint; see: “D2D REST Request/Response” pattern).

Applicability: Used within event-based communication, when asynchronous data is
to be pushed/pulled to/from the gateway.

D2D REST Request/Response

Inspired by: (1) “Request-Response” (Reactive Patterns: Message Flow),
(2) “Request-Reply” (EIP: Messaging Patterns), (3) “Request/Response” (IoT Pat-
terns: Design Patterns for Interaction).

Intent: A request/response solution for gateway communication within the D2D
layer.

Problem and Solution: IoT Gateway needs to communicate with IoT artifacts [9]. It
should be accessible to authorized external elements to enable reception of informa-
tion and execution of control and configuration orders. For example, the main goal
of IoT ecosystems is to allow heterogeneous IoT artifacts to retrieve information.
Thus, the artifacts’s middleware should be able to communicate with the IoT gate-
way to enable needed information flows. Thus, it is desirable to connect IoT artifacts
(if possible) through a HTTP/REST API using the Request/Response pattern. This
communication pattern allows message exchange, in which a requester (e.g. middle-
ware or gateway) sends a request message to a replier system, which receives and
processes the request (e.g. middleware or gateway), ultimately returning a message,
in response.

Applicability: Used when communication between the middleware of an IoT artifact
and the IoT gateway is performed through a REST API (middleware — gateway is
typically based on Publish/Subscribe). Also, for management purposes, the gateway
will expose a REST endpoint where configuration and management actions can be
performed using the Request/Response patterns.

3.2 N2N Patterns

On network-to-network layer we have identified one pattern that addresses the prob-
lem of orchestration of different SDN network elements.

IoT Pattern for Orchestration of SDN Network Elements

Inspired by: (1) “Software-defined networking (SDN) orchestration”, (2) “Network
virtualization (NV)”.

Intent: Monitoring and configuration of SDN elements (virtual-switches) with an
orchestrator component (Controller) exchanging flow and control messages. To pro-
vide interoperability between different domains connected to a network or between
different network topologies and/or configurations.

INTER-Meth: A Methodological Approach ... 205

Problem and Solution: Domain-focus of IoT deployments isolates them from
each other. One of approaches to interconnection is, instead of realizing it at the
device/gateway level, to move it to upper layers. In particular, at the network layer,
interoperability and exchange of information can be achieved by applying pattern that
manages elements of the network that provide connection from different domains
to the network itself. The pattern is used in development of virtual SDNs, where
all elements are virtual resources, or instances, controlled within a central point, or
orchestrator. N2N interconnection can then be performed through the SDN. Differ-
ent networks (in different locations), can be virtually interconnected and belong to
a single Virtual LAN. Thus, physical separation of networks becomes “invisible”,
thus facilitating elastic definition of needed connectivity.

Applicability: Used when an IoT SDN is deployed, to enable its functionality. Allows
total software control over network functions, and transparent N2N interoperability.

3.3 MW2MW Patterns

Patterns on middleware-to-middleware layer address the issues of components
decomposition, communication infrastructure and messaging between IoT artifacts.

IoT Artifact’ s Middleware Simple Component

Inspired by: (1) “Simple component” (Reactive Patterns: Fault Tolerance and Recov-
ery).

Intent: Every IoT artifact is designed to perform (in full) a single task (single respon-
sibility principle, where each class should have only one reason to change).

Problem and Solution: In complex systems with multiple functions, it may be nec-
essary to have these functions performed by different components. Their responsi-
bilities are to be divided recursively, until desired component granularity is reached.
This enables testing, debugging and extending complex system more efficiently,
simplifying all operations.

Applicability: Basic pattern that can be universally applied. Does notimpose level
of granularity to be achieved, but indicates that analysis should be performed in order
to end up with the best component decomposition. Should be applied recursively,
remembering to not to divide components too far, to avoid trivial ones.

IoT artifact’s Middleware Message Broker

Inspired by: (1) “Message Broker” (EIP: Message Routing), (2) “Broker” (IoT
Patterns: Design Patterns for Interaction).

Intent: Facilitates passing messages between [oT artifacts.

Problem and Solution: In middleware, composed of several independent compo-
nents, point-to-point connections should be avoided, as they result in multiple inter-
faces that expose operations of each component. Furthermore, having point-to-point
interfaces complicates dynamic reconfiguration, matching of security constraints,
and quality of service (QoS) requirements management. Message broker helps to

206 G. Fortino et al.

overcome those limitations by enforcing common messaging interface upon different
components. This allows components to initiate interactions with other components,
no matter their architecture and purposes. Each component communicates directly
with the broker only, while within the broker, each component is represented with a
logical name, making its internal operation hidden from other components. Crucial
is the proper format of message, which consists of the payload and the label, storing
information needed by the broker.

Applicability: Central Message Broker receives messages from multiple message
producers, determines their destinations (message consumers), and routes them to
channels specific for their destinations. Allows decoupling the sender from the desti-
nation and maintains central control over the flow of messages. This can be achieved
through usage of topics, to which consuming components can: subscribe, and proceed
to consume awaiting messages.

IoT Artifact’s Middleware Self-contained Message

Inspired by: (1) “Self-contained message” (Reactive Patterns: Message flow), (2)
“Messaging Metadata” (SOA Patterns).

Intent: Messages contains complete information needed for execution of a specific
action.

Problem and Solution: Within middleware, messages should be “pure and com-
plete” representations of events (or commands), regardless when they are to be inter-
preted. Each middleware component must always be able to extract from the message,
stored there, complete information needed for its routing and interpretation, with only
minimal data stored within the middleware components. Each message has distinct
set of types associated with it. Each middleware component processes and routes
messages based solely on these types. For each message that travels “downstream”,
there can be a response that travels “upstream”. Such messages might, for example,
include additional response message type. Matching messages that go downstream
with responses that go upstream can be done through remembering and distinguish-
ing different chains of messages (conversations).

Applicability: Allows middleware components to be “contextfree, storing only
a minimal information needed for message processing and routing. Can be also
employed when there is no need to reference past messages, except for responses,
and even then, these are only semantically linked to original messages (could exist
without original messages).

IoT Artifact’s Middleware Message Translator

Inspired by: (1) “Message Translator” (EIP: Message Transformation), (2) “Data
Format Transformation” (SOA Patterns).

Intent: Translation of messages to/from IoT artifact’s middleware internal message
format and platform’s proprietary data models and data formats.

Problem and Solution: The purpose of the middleware is to pass information
between different IoT artifacts. However, artifacts produce/consume messages in
“their” formats and data models. Hence, to make sense of exchanged messages, they

INTER-Meth: A Methodological Approach ... 207

have to be syntactically and semantically translated. A message translator enables
conversion between proprietary data models and data formats, used by artifacts, and
the internal data model and data format, used by IoT middleware components.

Applicability: Enables interoperability between different platforms without the need
to introduce translations between every possible pair of platforms, i.e. translation
into and out of the common INTER-IoT data model. Semantic translation from and
into the internal message format is done by a dedicated IoT semantic translation
component, while syntactic translation is completed in bridges to/from artifacts, as
only they know the internal data syntax.

3.4 AS2AS Patterns

On applications and services-to applications and services layer design patterns
address the issues of service composition, orchestration and discovery.

AS2AS Flow-based Service Composition

Inspired by: (1) “Flow-based programming”.

Intent: Generate execution flow that allows interoperation and composition of ser-
vices from different IoT artifacts.

Problem and Solution: Pattern necessary to define execution flow that allows spe-
cific sequence of execution of multiple IoT services. Flow—based programming
(FBP) defines applications and services as networks of “black box” processes, which
exchange data across predefined connections by message delivery, where connections
are specified externally to processes. Considered pattern allows creation of sequen-
tial execution flows using those services, thus allowing composition among different
IoT services. Black boxes that represent IoT services can be linked by wiring the
output of a service with the input of a different one (output messages from a service
are routed to another service input). Thus, by wiring IoT services execution flow can
be instantiated.

Applicability: Used in black box representation of IoT services to be interconnected
through an FBP link, generating a flow.

AS2AS Service Orchestration

Inspired by: “Service Orchestration” (SOA Patterns).

Intent: To specify orchestration of services to facilitate interactions among different
IoT services.

Problem and Solution: Cooperating, diverse, heterogeneous IoT artifacts involve
huge number of different services that have to work together. Important is not only the
message flow from point(s) to point(s) but also triggering necessary actions (during
the flow). The common problem is that existing processes/actions are duplicated (not
reused). This pattern allows union and orchestration of heterogeneous IoT services,
creating a specific process. The main idea is to define a set of IoT nodes, i.e. services

208 G. Fortino et al.

and interfaces that run within the integrated platforms. Internal, central, element
wires nodes necessary to handle the specific task and controls processes.

Applicability: Reuse of process fragments. Orchestration enables composition of
ToT service workflows, based on services from IoT artifacts.

AS2AS Discovery of IoT Services

Inspired by: (1) “Discovery” (IoT Patterns: Design Patterns for Interaction), (2)
“Enterprise inventory” (SOA Patterns).

Intent: Registering and claiming specific services, used by the artifacts (within the
IoT ecosystem).

Problem and Solution: Multiple IoT services, from different IoT platforms, provide
a wide range of functionalities that have to be discoverable, to be aware of them and
to use them. This pattern enables registration of services (in a service catalog), in
order to find them and (potentially) use through an AS2AS layer solution. Here, only
registered services, indicating their associated features, can be discovered.
Applicability: Pattern for providing service interoperability via registration and ser-
vice retrieval. Applied to services that run within the IoT ecosystem, and used by
other IoT artifacts.

3.5 DS2DS Patterns

On data and semantics-to-data and semantics layer pattern address the problem of
semantic translation, specifically how to persist translation rules and how to organize
the translation process.

Alignment-based Translation Pattern

Inspired by: (1) “Message Translator” (EIP: Message Transformation), (2) “Data
Model Transformation” and (3) “Metadata centralization” (SOA Patterns), (4) “Mar-
ket Maker” (Agent Design Patterns).

Intent: Semantic translation of RDF messages exchanged between IoT artifacts,
based on alignments (sets of correspondences) defined between artifacts’ ontologies.
Problem and Solution: Building the IoT ecosystem involves combining existing
solutions, which (likely) belong to different owners and have been developed using
different technologies (e.g. Web Services “combined with” a graph database, com-
municating using JSON messages, to exchange information with application that
uses XML messages). Consequently, they differ both on syntactic and semantic
level. Interoperation between artifacts should be achieved regardless of the underly-
ing technology. Without loss of generality, we assume RDF message format, since
other formats can be transformed to RDF. Semantics of messages is artifact spe-
cific (ontology can be natively supported, or semantics, e.g. expressed in XSD, can
be lifted to an OWL ontology). Hence, for semantic interoperability, a method for
defining correspondences should support mapping between specific URIs, parts of
the RDF structure, transformations etc. The component implementing the translation

INTER-Meth: A Methodological Approach ... 209

should provide interfaces to submit messages to be translated and publish translated
messages.

Applicability: Providing semantic translation between RDF messages exchanged
between heterogeneous IoT artifacts. Translation, based on one-to-one translation
(alignment), should be possible to define for any two artifacts.

Translation with Central Ontology

Inspired by: (1) “Message Translator” (EIP: Message Transformation), (2) “Data
Model Transformation” and (3) “Metadata centralization” (SOA Patterns), (4) “Mar-
ket Maker” (Agent Design Patterns).

Intent: Semantic translation of RDF messages exchanged between IoT artifacts,
where one involves central/common data model.

Problem and Solution: To provide common understanding in the semantic transla-
tion process a modularized central ontology can be created on the basis of IoT and
domain ontologies. Here, a domain ontology is a conceptual model for a specific
domain, e.g. transportation, health, etc. [oT ontology describes different IoT aspects,
e.g. platforms, devices, sensors, services, etc. Central ontology should reuse/be based
on existing standards (e.g. SSN, SOSA, SAREEF, etc.). This approach is highly scal-
able: it is possible to add artifacts to the existing IoT ecosystem by instantiating
translations with the central ontology (i.e. creation of alignments; see above). This
approach requires less preparation/work, as only a single “point of joining” has to
be instantiated. Furthermore, the long-term maintenance is simplified, as changes in
a single platform require localized adjustments only. The component implementing
the translation should provide interfaces to submit messages to be translated and
publish messages after translation (realizable via an appropriate pattern, above).
Applicability: Providing semantic translation between multiple heterogeneous IoT
artifacts that are to exchange RDF messages.

3.6 CROSS-Layer Patterns

IoT SSL CROSS-Layer Secure Access

The CROSS-Layer pattern addresses issue that is common to the IoT-based systems
regardless of the layers, i.e. security.

Inspired by: (1) Security Patterns, (2) [oT Patterns: Design Patterns for [oT Security.
Intent: Ensuring security of interactions with external interfaces (i.e. APIs) of every
layer of the IoT ecosystem.

Problem and Solution: As IoT architecture is composed by diverse layers, access
to each of them, as well as interactions between them, must be secure. To ensure a
sufficient level of security on each of the IoT layers, different security mechanisms
can be implemented: authentication of credentials, use of authentication tokens, or
Secure Sockets Layer (SSL). In an IoT ecosystem, layer access will be secured with
the SSL that employs the IoT SSL pattern. Every IoT layer exposes a REST API that
represents an external interface accessible to the outside actors, such as other IoT
layers, users, or [oT artifacts. To enable use of such APIs to only allowed actors the

210 G. Fortino et al.

oagraton & T R A ED Ny » B N, o L . - R .
Goats R G egrate Deploved : Validiion . Bugs & -
k § Fecuremeens PR oweravees BREER LT AR Pudorm [Berits PSS nginesrinng gosts
@ —— s —— e . b — — - - —w
A Analysis J Design [Implementation [Deployment l Testing I Maintenance &

Single Frase, Multiple Phase, Wiale Process teration

Fig.1 INTER-METH abstract process schema

access is secured through SSL. REST APIs are accessible through a browser, which
should provide a trusted certificate. Only after the establishment of a secure con-
nection authentication through login will be allowed, to open the access to the layer
API. Further operations on the layer API will be done using this secure connection.
Applicability: Pattern applied in interactions of any actor with the IoT environment
layer’s APIs. Access can also be done internally between pairs of different layers.

4 INTER-METH

In this section, we will briefly introduce the abstract process of our INTER-METH
methodology. Then, we will describe in more details its INTER-IoT instantiation,
with particular attention to the Analysis and Design phases.

4.1 INTER-METH Abstract Process

The engineering methodology INTER-METH aims at supporting the integration pro-
cess of heterogeneous IoT platforms to obtain interoperability and support imple-
mentation and deployment of IoT applications on top. In this section, we introduce
the abstract process of INTER-METH whose SPEM'-based schema is shown in
Fig. 1. The process is envisioned as iterative waterfall and is composed of six main
phases, each of which is divided into tasks and produces workproducts that are inputs
for the successive phase. In particular:

e Analysis Phase supports the definition the IoT platform (non-)functional integra-
tion requirements.

e Design Phase produces both artifacts (e.g., diagrams) and programming/
management patterns to fulfill the elicited requirements and define the integra-
tion design.

1 OMG, SPEM, and O. M. G. Notation. “Software and systems process engineering meta-model
specification.” OMG Std., Rev 2 (2008).

INTER-Meth: A Methodological Approach ... 211

e Implementation Phase drives the implementation of the design workproduct to
obtain the full-working (hardware/software implemented) integrated IoT platform.

e Deployment Phase involves the support to the operating set-up and configuration
of the integrated IoT platform.

e Testing Phase defines the performance evaluation tests to validate the integrated
platform according to the functional and non-functional requirements.

e Maintenance Phase manages the upgrade and evolution of the integrated system.

In detail, at the Analysis Phase, on the basis of the Integration Goals (repre-
senting high-level integration requirements), each platform is analysed according
to a shared reference architecture model. Functional and non-functional integration
requirements of the platforms are hence formalized in a document whose format will
be specified according to the specific instantiation of the abstract INTER-METH
methodology (see Sect. 4). On the basis of the elicited requirements at the Analy-
sis Phase, an initial design specification is produced for each layer and iteratively
refined at the Design Phase. The final workproduct is a formalized specification
containing the design of the integration of the IoT platforms/systems to be inter-
connected/integrated. This full-fledged design specification is actually implemented
through multiple refinement steps at the Implementation Phase according to the inte-
gration specifications, aiming at obtaining the final integrated platform. The final
workproduct is the integrated platform, that will be based on the specific IoT plat-
forms/systems to be integrated/interconnected and that will be deployed according to
deployment goals and requirements at the Deployment Phase. Hence, the deployed
platform is set-up according to the defined configuration and run specifications. The
integrated and deployed platform is then executed and validated through testing
according to well-defined test cases at the Testing Phase: specifically, functional
and non-functional test cases (previously defined to respectively validate functional
and non-functional requirements) are executed by the platform and results collected
according to formalized analysis documents. Finally, to maintain and allow the evo-
Iution of the integrated [oT platform, the Maintenance Phase aims at identifying both
bugs and evolution points, activities which imply to totally/partially re-execute the
integration process.

4.2 INTER-METH Instantiated on INTER-IoT

The INTER-METH abstract methodology has been customized for the INTER-IoT
approach [2] with the aim of showing how the integration process between two or
more heterogeneous IoT platforms/systems can be concretely carried out by exploit-
ing the INTER-METH guidelines and the two INTER-IoT products INTER-LAYER
and INTER-FW. INTER-LAYER is a set of interoperability solutions dedicated to
each specific INTER-IoT architectural layer (Device-to-Device D2D, Networking-
to-Networking N2N, Middleware-to-Middleware MW2MW, Application&Services-
to-Application&Services AS2AS, Data&Semantics-to-Data&Semantics DS2DS).

212 G. Fortino et al.

Thanks to its layered approach, INTER-LAYER makes the interoperability flexible
and allows it to reflect the interests/needs of the stakeholders, integrators or appli-
cation developers. INTER-FW, instead, allows the development of new applications
and services by customizing INTER-METH and exploiting INTER-LAYER. Indeed,
INTER-FW is a global framework for programming and managing interoperable IoT
platforms by means of specific programming interfaces and interoperability tools for
every architectural layer. As in Sect. 4.1, for each phase of the instantiated process,
an overall description is reported along with a brief description of the performed
tasks and obtained workproducts.

e INTER-IoT-based Analysis Phase: given two or more heterogeneous IoT plat-
forms to be integrated according to certain Integration Goals, these are analyzed
according to the INTER-IoT RA that is, as previously reported in Sect. 2, based on
IoT-A [4]. Integration requirements are then defined for each architectural layer
(according to some iterative tasks that will be elicited in Sect. 4.2.1) and formalized
in the INTER-Goal Oriented Model INTER-GOM) as final workproduct.

e INTER-IoT-based Design Phase: for each layer, on the basis of the elicited require-
ments reported in the INTER-GOM, an initial INTER-IoT Design Pattern is pro-
duced and iteratively defined by exploiting the INTER-LAYER product (D2D,
N2N, MW2MW, AS2AS, DS2DS), thus producing five instantiated INTER-IoT
Design Patterns. On the basis of these Patterns, a full-fledged specification is iter-
atively produced as workproduct by incorporating also the CROSS-LAYER and
INTER-FW INTER-IoT Design Patterns. These patterns are integration solutions
structured according to certain templates (describing pattern’s main properties,
e.g., pattern name, its intent, its known uses) and formalized through XML files
providing domain-specific guidelines to be exploited for driving the INTER-IoT-
based Implementation Phase.

e INTER-IoT-based Implementation Phase: it consists in the (i) configuration of the
components of the Integrated Platform by means of the INTER-FW; (ii) potential
extension of the components of the Integrated Platform (e.g., a new functionality
enabled by the integration needs to be implemented); and (iii) implementation, in
terms of software bridges connected to INTER-LAYER, of the INTER-IoT based
design patterns. The final output workproduct is the INTER-IoT-based Integrated
Platform (if needed, an ontology alignment for finding correspondences among
entities and sub-structures from different ontologies can be performed). Indeed,
at this point, the heterogeneous IoT platforms are integrated according to the
INTER-IoT approach, thus obtaining interoperability among them and allowing
implementation and deployment of IoT applications on top of them.

e INTER-IoT-based Deployment Phase: the following six tasks have to be performed
for the deployment of the Integrated Platform according to deployment goals and
requirements: (i) Platform Configuration, which aims to instantiate and deploy an
IoT Platform Middleware in the INTER-FW; (ii) Gateway Configuration, focused
on the device to device interoperability, addressed in the scope of INTER-IoT in
the D2D Layer; (iii) Networking Configuration, which achieves network interop-
erability via network virtualization to support the needs of the N2N Layer [10];

INTER-Meth: A Methodological Approach ... 213

]
-5
o

e GO B8
ot Patform =
. ? @ e o) Categoreset 5
Goats N T loT Plstfoms pnayzed integration =
* 5| 3 INTERHGT 4 and B Paianms <<mandastory, inputs> N
3 Refeence <CMATCRCNY. Docustent . 71 \ L
Architect L e -
il _— =Heer [e \ ~ ! WTER-GOM
setect e N 23 \ & cemandstory, outpE:
3 | ok W -~ Y
sV Yy, ~
— — - *|
< & o & ®
Y integratar 1T Platform integration Laver NTER-GOM

Anabyss dent¥ication Production
-
o M -7
-

-

Frogucton |

- [reration]
<amanciRLOry, Inpus >

~ Caperiores, prmany Integration
Goals

(&)

Fig. 2 The INTER-IoT-based analysis phase: a requirement analysis activity overall description
and b its workflow

(iv) Application Services Configuration, which includes a graphic tool for ser-
vice orchestration, namely the underlying interoperability mechanism for AS2AS
Layer; (v) Semantics Configuration, which manages all the processes and mech-
anism of DS2DS Layer enabling ontologies interoperability; (vi) User Manage-
ment Configuration, to configure and manage the users of the INTER-FW and
their authorized access to the IoT resources connected in INTER-IoT.

e INTER-IoT-based Testing Phase: the integrated, configured and deployed platform
is executed and validated through well-defined test cases. In particular, to determine
if the requirements of a specification are met, Factory Acceptance Testing (FAT)
task is performed by simulation whereas Site Acceptance Testing (SAT) task takes
place after integration at the customer site and tests if the solution has been correctly
integrated into the customer’s environment. The Defect Reporting task, instead,
is in charge of identifying and reporting issues emerged in FAT and SAT tasks as
well as implementing, integrating and testing the related solutions. FAT and SAT
documents are the output workproducts of such phase.

e INTER-IoT-based Maintenance Phase: it allows the maintenance and evolution
of an integrated and already deployed IoT platform. It first identifies bugs and/or
evolution points at each layer as well as at cross-layer of the integrated platform
(i.e., at INTER-LAYER) and framework level (i.e., at INTER-FW), and then at
actually develops the required changes.

4.2.1 INTER-IoT-Based Analysis Phase

The INTER-IoT-based Analysis Phase involves the Requirement Analysis activity,
which is described in Fig. 2a in terms of tasks, roles, and workproducts as well as in
terms of workflow in Fig.2b. The Requirement Analysis comprising the following

214 G. Fortino et al.

three main tasks that are performed by the integrator: the IoT Platforms Analysis,
the Integration Layer Identification, and the INTER-GOM Production.

The IoT Platforms Analysis Task receives two or more heterogeneous IoT systems
as inputs and, according to the INTER-IoT RA, produces the Analyzed Platforms
Document. This step allows heterogeneous IoT platforms with even notably different
architectures to be compared by means of a common set of architectural solutions
and building blocks. In particular, INTER-IoT RA is depicted in Fig. 3 and consists
in the following Functional Groups (FG):

e Service Interoperability FG, supporting the AS2AS interoperability through the
definition and execution of new compound services that make use of already exist-
ing services in the underlying IoT Platforms; it uses services from different IoT
Platforms and create new services based on them.

e Semantics FG, addressing the challenges related to semantic interoperability of
IoT Platforms; it provides support for the Service Interoperability FG, the Platform
Interoperability FG and the Device Interoperability FG.

e Platform Interoperability FG, interacting with the different IoT Platforms to be
interconnected; it is the responsible for accessing the IoT Platforms.

e Device Interoperability FG, addressing the challenges of making legacy devices
and non-real [oT Platform interoperable with other IoT Platforms and systems.

e Device Access FG, that is responsible for offering a common interface to services
and virtual entities that represent and expose functionality of physical devices; it
abstracts all the necessary functions for managing the devices and interacting with
them.

e Management FG, considering all the functionalities to rule the interoperability
among different IoT Platforms; it is responsible for initializing, monitoring and
modifying the operation of the interoperability among IoT Platforms.

e Security FG is responsible for ensuring all the security aspects involved in the
interoperability of IoT Platforms.

The Integration Layer Identification Task receives the Analyzed Platform Docu-
ment and a set of Integration Goals as input. As extensively reported, INTER-IoT
presents a layer-oriented solution for interoperability, to provide interoperability at
any layer and across layers among different IoT systems and platforms. Although a
layer-oriented approach is more challenging than an application-level approach, it
has a higher potential to deliver tight bidirectional integration among heterogeneous
IoT platforms, thus providing flexibility, modularity, higher performance, reliability,
and security. This layer-oriented solution is achieved through INTER-LAYER and
includes several interoperability solutions dedicated to specific layers. The INTER-
LAYER architecture is reported in Fig.4 and comprises the following six layers: (i)
Device allows the seamless inclusion of novel IoT devices and their interoperation
with already existing ones; (ii) Network(ing) aims to provide seamless support for
smart objects mobility and information routing; (iii) Middleware enables seamless
resource discovery and management system for the IoT devices in heterogeneous
IoT platforms [8]; (iv) Application&Services enables the use of heterogeneous ser-
vices among different IoT platforms; (v) Semantics&Data allows a shared interpre-
tation of data and information among heterogeneous IoT systems and data sources,

INTER-Meth: A Methodological Approach ... 215

Application
Management Device Semantics Service Security
Interoperability Interoperability
Conianalon Network Authorisation
9 Interoperability Orchestration
Device to Device Ontology
Fautt Interoperabilit Alignment Key Exchange
loT Platform Resolution & Management
Reporting Interoperability Bralorn
Device Access mrero o Identity
Flatform
Member Management
State Slafform Authentication
Communication
Device loT Platform

Fig. 3 INTER-IoT reference architecture schema

achieving semantic interoperability; and (vi) CROSS-LAYER covers and guarantees
non-functional aspects that must be present across all layers: trust, security, privacy,
and quality of service (QoS).

Finally, the INTER-GOM Production Task receives the Analyzed Platform Doc-
ument, the Integration Goals and the Categories of Integration, and produces the
INTER-GOM. This task can be iterated one or more time, thus obtaining the
final INTER-GOM that will represent the formal requirements model and drive
the INTER-IoT-based Design Phase. In particular, the INTER-GOM comprises the
following components, according to its Metamodel depicted in Fig.5(a): (i) the
Analyzed Platform Document, which compares the platforms using the shared the
INTER-IoT RA to identify their integration points; and (ii) one or more Integra-
tion Points IP [14], which put together parts of the platforms according to the Col
and one or more Requirements. Requirements represent the states to be achieved by
the IP; they are progressively refined into intermediate goals, until the process pro-
duces actionable goals/tasks that need no further decomposition and can be executed.
According to the Analyzed Platform Documents and the IP, the GOM is defined fol-
lowing an iterative procedure as shown in the activity diagram of Fig. 5(b).

After having analyzed IoT platforms/systems whose formal integration require-
ments are reported in INTER-GOM model, process is ready to move toward the
INTER-IoT-based Design phase.

216 G. Fortino et al.

INTER-FRAMEWORK <>

interiot
APPLICATION

=
=
i
<
3
x

’/DEVICE

k-

Fig. 4 The INTER-LAYER approach schema

Do you want

) Category to identify
Requirements of _ . another IP?
Intearati Integration Point ’ '
1% ki ez Sars Identification ;
. 1 <
l..“l Il..* - : :
I . Integration Point
nlegatmn Requirement
Point Identification
1L [
I 1] GOM
’ 1 Analyvzed Generation
GOM 3 - end Do yvou want to add
1. Platform
another IP Requirement?
(a) (b)

Fig. 5 a INTER-GOM metamodel and b UML activity diagram of INTER-GOM production

INTER-Meth: A Methodological Approach ... 217

(2) (b}

Fig. 6 The INTER-IoT-based design phase: a design activity overall description and b its workflow

4.2.2 INTER-IoT-Based Design Phase

Given two or more IoT platforms/systems whose formal integration requirements
are reported in INTER-GOM model, a set of INTER-IoT Design Patterns have to be
produced (see Sect. 3), by instantiation, on the basis of the available pattern templates
(semi-instantiated patterns). For each layer, on the basis of the elicited requirements
reported in the INTER-GOM, an initial INTER-IoT Design Pattern is produced and
then usually iteratively refined. The Integration Design activity, which is the only
main activity of the INTER-IoT-based Design phase, is subdivided into two sub-
tasks that are performed by the Integrator according to the workflow depicted in
Fig.6: (i) INTER-IoT Layer Integration Design Specification and (ii) INTER-IoT
Full Integration Design Specification. On the basis of the INTER-GOM and Ana-
lyzed Platforms Document, for each INTER-IoT Layer a layer integration specifica-
tion is iteratively defined by exploiting the INTER-LAYER product. Such task will
produce instantiated INTER-IoT Design Patterns (see Sect. 3), one for each INTER-
IoT layer. Then, a full-fledged specification is iteratively produced by incorporating
the CROSS-LAYER and INTER-FW INTER-IoT Design Patterns. In particular,
INTER-IoT PATTERNS (or INTER-PATTERNS) are design patterns directly cor-
responding to the integration solutions already achieved in the WP3 (particularly,
according to INTER-LAYER) and WP4 (particularly, according to the INTER-FW
for contextualize solutions in different application domains, e.g. m-Health, Trans-
portation and Logistics) and they aim at furnishing well-formalized domain-specific
guidelines. Note that WP5 depends on WP3 and WP4 outcomes, while WP3 and
WP4 are independent from WP5.

The work product of this phase is a set of instantiated INTER-IoT Design Patterns
to be exploited for driving the implementation phase.

218 G. Fortino et al.
4.2.3 INTER-IoT-based Implementation to Maintenance Phases

The Implementation phase is the third step of our methodology; it takes in input
two or more IoT platforms whose integration has been designed according to the
instantiated INTER-IoT Design Patterns. The objective of this phase is to concretely
integrate/interconnect the considered IoT platforms by physically implement the
instantiated patterns according to successive refinement steps that involve to (i) con-
figure the components of the Integrated Platform by means of the INTER-FW, (ii)
extend the components of the Integrated Platform (e.g., a new functionality enabled
by the integration needs to be implemented), and (iii) implement, in terms of software
bridges connected to INTER-LAYER, the INTER-IoT based INTER-LAYER design
patterns. The final output work-product is the INTER-IoT-based Integrated Platform.
At this point, the heterogeneous IoT platforms/systems are integrated according to
the INTER-IoT approach.

The Deployment phase is the fourth step of the methodology and follows the
Implementation phase. The objective is the deployment of the integrated and imple-
mented platform. The Integrated Platform is deployed according to deployment goals
and requirements. In particular, the INTER-FW web framework is the entry point
to the INTER-IoT Configuration and Management Framework (CMF). The INTER-
IoT based Deployment activity, which is the only main activity of the Deployment
phase, comprises six main tasks, described in the following. The Platform Configu-
ration task deals with the deployment of complete IoT Platforms for interoperating
them towards rich applications. Although the technical focus of this module is the
deployment of interoperable middlewares of platforms, the whole content (i.e., the
platform) has been assumed to the concept of ‘middleware’ since the IoT platforms
are univocally bound to the concept of platform (there are few or none platforms
without a middleware, while there are middlewares not linked with specific plat-
forms). To instantiate and deploy an IoT Platform Middleware in the INTER-FW to
enable middleware interoperability, the following steps are followed: A bridge of the
platform to interoperate must be available. INTER-IoT provides a series of reference
bridges. If the platform is not in the list of reference implementations, this must be
done following the “developing new bridges” instructions that will be publicly avail-
able by the end of the project in the project site in GitHub. These instructions will
extensively use the Software Development Framework of the project. The Gateway
Configuration task focuses on the device to device interoperability, addressed in the
scope of INTER-IoT in the D2D Layer through the “Gateway Event Subscription”
and “REST Request/Response” patterns (as described in the Deliverable 5.1). To
add a new gateway, the following steps are followed: A gateway with the gateway
software of INTER-IoT must be available. The hardware must be compatible with
the INTER-IoT Gateway software. The compatibility list will be published in the
INTER-IoT Gateway development site in GitHub. The Networking Configuration
task focuses on network interoperability, achieved via network virtualization and the
“Virtual Network Orchestration” pattern is configured and managed. The Applica-
tion Services Configuration task includes a graphic tool for service orchestration.
This is one of the less intrusive views in the INTER-FW, since the implementation

INTER-Meth: A Methodological Approach ... 219

tool, the open source project “node-red” has a powerful user interface which allows
this service orchestration from a visual perspective. In the Semantics Configuration
task, configurable parameters and processes related to the semantics interoperability
are configured for the deployment of interoperable IoT platforms. The last task of the
Deployment phase is called User management Configuration and contains configu-
rations valid for all the previous modules; in particular, it configures and manages the
users of the INTER-FW and the authorized access of them to the IoT resources con-
nected in INTER-IoT. The final work-product of the deployment phase is, therefore,
a configured and deployment integrated IoT platform.

The fifth step of our methodology is the Testing phase. The integrated and deployed
platform is executed and validated through testing according to well-defined test
cases. Acceptance testing is a test conducted to determine if the requirements of a
specification are met [29]. In systems engineering it may involve black-box testing
performed on a system, such as for example for software modules. International
Software testing Qualifications Board (ISTQB), which is a software testing quali-
fication certification organisation, defines acceptance as formal testing with respect
to user needs, requirements, and business processes conducted to determine whether
a system satisfies the acceptance criteria [30]. There can be many types of accep-
tance testing for a system, service or product. The acceptance test can be performed
multiple times in the case of defect resolving or when test cases are not executed
within a single test iteration. In INTER-IoT acceptance testing is performed in two
tasks: Factory Acceptance Testing (FAT) and Site Acceptance testing (SAT). Factory
Acceptance Test (FAT) and Site Acceptance Test (SAT) are performed to test and
evaluate the INTER-IoT-based integrated system implemented in the Implementa-
tion Phase and deployed in the Deployment Phase. The FAT task is performed to
test and prove the system in a lab environment and tests if solution meets the spec-
ifications and if it is functional before it is deployed in the field. FAT tests can be
performed by simulation or a functional test. The SAT task takes place after integra-
tion at the customer site and tests if the solution has been correctly integrated into
the customer’s environment and meets all the requirements. During the SAT testing
process the actual deployed system is tested and proven.

Maintenance is the final phase of our methodology with the objectives to maintain
and track the evolution of the integrated IoT platform during time. Maintenance is
referred to the identification of a list of bugs and/or a list of evolution points at specific
INTER-IoT layers and/or products and to the consequent correction of bugs and/or
implementation of new functionalities. The Maintenance activity is subdivided into
two main tasks. Change Identification task aims at identifying bugs and/or evolution
points of the integrated platform. Change Implementation task is the actual develop-
ment of the changes, i.e. bug fixing or analysis, design, implementation, deployment,
and validation of new functionalities; the latter could imply to re-execute, totally or
partially, the integration process.

220 G. Fortino et al.

S INTER-CASE

INTER-METH is supported by a CASE (Computer Aided Software Engineering)
tool called INTER-CASE that helps supporting each aforementioned phase of the
integration process and specifically provides the following functionalities:

e Support for workflow execution in each phase;
e Web-based Graphical facilities;
e XML-based project data repositories.

INTER-CASE is specifically intended to guide the IoT integrator in properly
following and applying the integration workflow of the INTER-IOT instantiated
INTER-METH. It is particularly effective to keep trace of integration choices at each
phase of the methodology, so to favor and simplifying documentability of the IoT
platforms integration project. In addition, it supports the reduction of inconsistencies
during specification refinements from one step to the following, with warning and
error messages provided to the integrator when inconsistent conditions are detected.

A simple, intuitive graphic user interface (GUI) characterizes the INTER-CASE
Tool. It is composed of a:

e Navigation bar, with a menu that allows the integrator user to interact with the
application

Dashboard message bar, that displays the opened project

Container, in which all the documents are presented to the user

e Footer, that contains application and copyright information.

The use of the INTER-CASE Tool is allowed after authentication, by entering
a username and password in a traditional-looking form. Each authenticated user
can choose to open a previously saved integration project or create a new one from
scratch. Obviously, the user can modify or delete an existing project.

Each project has a status page showing the integration project summary at a
glance. For each phase, a card contains a list of documents produced. In every card,
the Integrator user can edit or export a document by using the specific buttons placed
to right of the name of every document. In case a produced document contains
inconsistencies (e.g. platforms name mismatch across documents), an alert icon will
be shown so to allow the Integrator with quick visualization of the issue. Figure 7
depicts an example of Project Status in which only the Analysis and Design phases
are displayed.

A menu to define the activities of a given phase becomes accessible to the integra-
tor user once all tasks related to the previous phase are complete. In the following,
we describe the various INTER-CASE functionalities for each phase of the INTER-
METH methodology.

INTER-Meth: A Methodological Approach ... 221

INTER-CASE

Dashboard v1.0 > Project: Platform A and Platform B

33% Complete

Fig. 7 INTER-CASE project status page

5.1 Analysis Phase

Through the Analysis menu, the analysis phase can be carried out. It is composed by
five tasks. The completion of a task enables the access to the following one.

The first task is the IoT Platforms definition, where the integrator user defines
generic information about the platforms to integrate, such as the platform type, the
platform owner, the ontology type used.

The second task is the Analyzed Platforms Document (APD) definition. In this task
the Integrator user has to analyze the platforms to integrate in terms of the INTER-IOT
platform reference model described in the Deliverable D4.1. The APD, exemplified
in Fig. 8, is a fundamental document in the integration project because represents the
basis to analyze the platforms according to a homogeneous representation, which is
necessary to identify the integration points among the platforms. The platforms in
this document must be obviously the one identified in the IoT Platform document, so
INTER-CASE automatically fills in the Platform Name field, although the Integrator
could still edit the pre-compiled information; in case of information mismatch with

222 G. Fortino et al.

INTER-CASE

Dashboard v1.0 = Project: Platform A and Platform B

Systems_Analysis
IoT_Platform_Analysis name platform &
Management
Configuration
Fault
Reporting
Member
State
Device_Interoperability
Device_Access
Semantics
Service_Interoperability
Matform_Interoperability
Security
IoT_Platform_Analysis name platfor= 8
Device_Interoperability
Device_Access

Semantics

Fig. 8 Example of analyzed platforms document

the IoT Platform document, however, the Tool will report a warning to the Integrator
user.

The third task is the Integration Goals definition where the integrator user identifies
high-level integration requirements and objectives.

The fourth task is the Category of Integration definition. The integrator user iden-
tifies the integration layers, selecting them among those defined in INTER-Layer.

The last task generated the final output of the Analysis phase: the Goal Oriented
Model (GOM) document. In this task the integrator user refines, in terms of func-
tional (FR) and non-functional requirements (NFR) and according to the APD, the
identified integration goals. The Goal Oriented Model document also includes the
list of Category of Integration document produced in the previous step. In Fig.9 an
example of the GOM document is depicted.

5.2 Design Phase

INTER-CASE enables the Design phase when the integrator completes the Analysis
phase. The page showed to the user is generated by the application according to

INTER-Meth: A Methodological Approach ... 223

INTER-CASE

Dashboard v1.0 > Project: Platform A and Platform B

Integration_Point

Category_of_Integration Col DEVICE

Functional_Requirements

SiE FR | Md 1

NON_Functional_Requirements
NFR id 1

® is an example of non fucntional re

Fig. 9 INTER-CASE goal oriented model

the GOMI document defined in the previous Analysis phase. Based on the identified
layers of integration, the integrator user must instantiate the design patterns proposed
in this phase. The instantiation of a pattern occurs by selecting the specific pattern
template, and involves opening the page of the corresponding pre-instantiated pat-
tern (see Sect.3). For a complete description of each identified and pre-instantiated
pattern, the interested reader can refer to the Deliverable D5.2 of the INTER-IOT
project. Figure 10 depicts an example of the Design document in which both mid-
dleware layer and device layer pattern are proposed.

5.3 Implementation to Maintenance

INTER-CASE also supports the following integration phases, from Implementation
to Maintenance.

In the Implementation phase the integrator user creates a document to specify the
information related to the public or private repository (or repositories) of the software
source code under development.

In Deployment phase, INTER-CASE requests the integrator to specify informa-
tion related to integrated platform deployment in terms of configuration parameters
of the INTER-FW product (see Deliverables D4.x).

The Testing phase the integrator user creates a systematic document with the
relevant tests to be carried out on the integrated platform. For each defined test, the
integrator has to specify the objectives, the requirement to validate (preferably also

224 G. Fortino et al.

INTER-CASE

Dashboard v1.0 > Project: Platform A and Platform B

INTER-IoT_Patterns_Catalog

D2D_Layer Availability 2
INTER-IoT_Gateway_Event_Subscription
D20_REST_Request_Response

MW2MW_Layer Availlability 4
INTER-MW_Simple_Component_Pattern
INTER-MW_Message_Broker
INTER-MW_Self-contained_Message
INTER-MW_Message_Translator

INTER-FW Availability 2
Configuration_delegation_pattern

API_facade

Fig. 10 INTER-CASE design phase: list of identified patterns

including NFRs identified in the Analysis phase), the tools necessary to execute the
test, the test strategy, and of course the expected results of the test execution.

Finally, the Maintenance phase allows to create a “live” document in which the
integrator inserts. From time to time, notes related to discovered bugs (including
possible resolution actions) and evolution points which essentially represent future
developments and functionalities of the integrated platform.

6 The INTER-Health Use Case: From Analysis to Design

To exemplify the use of INTER-METH for the integration of two heterogeneous IoT
platforms, we will summarize the work done in the context of INTER-Health (see
Deliverable D6.3), one of the two pilots developed in INTER-IOT, with particular
focus on the Analysis and Design phases that are carried out and documented through
our INTER-CASE tool.

The integration scenario, shown in Fig. 11 involves two different IoT platforms,
BodyCloud [31] and UniversAAL [32], that need to be integrated to develop the
INTER-Health Pilot.

To execute the INTER-METH workflow with INTER-CASE, the integrator logs
in the tool and creates a new Integration Project first. The Analysis phase starts with
the definition of the two platforms: each one is characterized by name, type, ontology,
and owner.

INTER-Meth: A Methodological Approach ... 225

Professional Web | WEB -
A 3
Tool NET

Healthcare
Professional
PC

Local
Server

INTER-loT

BodyCloud universAAL
Proxy Middleware

A o

I Android Phone Android Phana 651BLE

: — -
Xiaomi 0 “ “Jr
Band 2
- e BodyCloud &
- ¢ | o Middleware App

A&D UA

universAAL Middleware

App

A&D UC A&D UC
352BLE 352BLE

Fig. 11 INTER-Health integration scenario

Then, IoT Platforms Analysis is carried out by representing BodyCloud and Uni-
versAAL using the common, homogeneous model: the INTER-IoT Reference Archi-
tecture (depicted in Fig. 3 and described in Deliverable D4.1). The representation of
this model (called Analyzed Platform Document) is reported in Fig. 12.

The next task requires to define the high-level integration goals. In particular, for
INTER-Health the following goals were identified by the integrator:

e IG1: Data generated from the two platforms have to be shared and transparently
accessed from both platforms;

e IG2: Common notion of the users registered to each platform;

e IG3: Subscription support from one platform to the other to be notified upon the
availability of new data of a given user.

After the elicitation of the integration goals and by studying the possible integra-
tion points with the support of the Analyzed Platform Document, the integrator user
made the choice to integrate BodyCloud and UniversAAL at the “MIDDLEWARE”
layer among the INTER-LAYER stack.

The final task of the Analysis phase is the INTER-GOM Document production.
The high-level integration goals are refined in functional (FR) and non-functional
(NFR) requirements; for INTER-Health the result of such work led to the definition
of the following:

e FR1: Common knowledge and sharing of users IDs

226

INTER-CASE Analpsis =

Dushboard ¥1.3 » Project: BodyCloud and UnerAAL

Analyred Platforms Document

Systems_Analysis

ToT_Patform_Analysis name wocios

Dvice_Interoperability
Hetwork_intereperability
Device_Access
ToT_Service
Comenunication
Virtual_Entity
Service_Interoperability
Service_Compasition
. Service_Resolution
Platform_Interoperability
Platlorm_Access
Security
Authentication

ToT_Platlorm_Anstysts mame mioriss

Device_Interoperability
. Derke_To_ODevice_interoperability

Device_ Acoess

1oT_Servics

Ontology_Alignasent

amiology_Resolution
Service_Interoperability

Service_Composition
l‘;lﬂwn_mbemﬂﬂbﬂh

Platform_Access

Platform_Service
Security

Musthsentication

Fig. 12 INTER-health integration: IoT platforms analysis

G. Fortino et al.

INTER-Meth: A Methodological Approach ... 227

e FR2: Syntactical and semantic translation of messages (BodyCloud uses JSON
while UniversAAL is based on RDF)

e FR3: Subscription management to topics (e.g. messages generated from a given
user)

e FR4: User Access Gateway for Patients. The main functionalities for patients are:
Access to services (providing username and password); Setting Profile communi-
cation and devices pairing; Managing measures on the device and releasing them
to the gateway which stores them on a local database; Possibilities of inserting
measures manually; Sending measures to the platform.

e FRS5: Definition of reference meaning for health information. Health information
can be detected using different devices according to different way of measurement
(unit of measure that could differ from country to country and also depending on
devices manufacturers). To use same information coming from different systems
and going to others, it is mandatory to establish specific criteria to: (i) define
a common meaning if it is possible, (ii) determine a correspondence between
different data that have the same meaning and different values, (iii) set transcoding
tables between different values of the same data.

e NFR1: Application response time. The “navigation” functionalities on different
contents by using both Smartphone or Personal Computer to access to the platform,
have to guarantee a response time of a few seconds.

e NFR2: Availability of sensor data. Health monitoring data must be accessible from
a remote location to facilitate patient triage and inform decision making.

e NFR3: User Authentication to access INTER-Health services. Users shall authen-
ticate to the services using their username and password.

The design phase of the INTER-Health integration process involves the require-
ments elicited in the INTER-GOM model. The integrator instantiates a set of INTER-
IoT Design Patterns (see Sect.3 and Deliverable D5.2) related to the integration of
BodyCloud and UniversAAL platforms. The first step is the choice of the necessary
pre-instantiated design patterns, among the available ones that are automatically fil-
tered out by the INTER-CASE tool according to the input from the Analysis phase.

Given the choice of make the two platforms interoperable at Middleware layer,
the integration design patterns that are selected belongs to the INTER-Middleware
category. Specifically, three patterns will drive the implementation phase. INTER-
MW Message Broker template is instantiated as follows:

e Intent: A component that facilitates passing of messages between decoupled
INTER-Health components.

e Problem and Solution: Having point-to-point communication interfaces among
several interacting components, makes dynamic reconfiguration, matching of dif-
ferent security constraints and QoS, requirements between components difficult.
The employment of a message broker, can help to overcome limitations of point-
to-point connection and enforce a common messaging interface upon different
middleware components.

228 G. Fortino et al.

e Applicability: Each Inter-Health component communicates directly only with the
message server broker which in turn handles the communications and dispatches
messages to the respective destination component.

e Implementation: There is a message broker service that analyzes each received
messages to check is there exists a subscription for the user that sent the mes-
sage. If a subscription exists, the broker obtains (from the subscription message
initially received) the necessary information to send the current message. If the
subscription does not exist, the message is not forwarded to the external middle-
ware components.

INTER-MW Message Translator template is instantiated as follows:

e Intent: Syntactical and semantic translation of messages between BodyCloud and
UniversAAL.

e Problem and Solution: BodyCloud and UniversAAL use different message for-
mats and models, respectively based on JSON and RDF, so direct communication
between the two platforms is not possible. An effective solution is to introduce
a translator component in the middle that is able to understand both message
structures so to translate from the source platform format/model to the destination
one.

e Implementation: Message translation is actually composed of two steps. First,
there is need for syntactic translation to/from proprietary message format which
is done in the bridge; the second step is semantic translation of the message and it
is done in the Inter Platform Semantic Mediator (IPSM) component of Inter-IoT.

INTER-MW Self-contained Message template is instantiated as follows:

e [ntent: Each message contains all the information needed to subscribe or unsub-
scribe to a given topic (or conversation).

e Problem and Solution: BodyCloud and UniversAAL need to communicate. To
do so, it is necessary to know where one platform has to send the messages to
the other platform. Hence, the identified solution is the creation of a subscription
mechanism to conversations.

e Implementation: A bridge component of INTER-MW will process the messages
to perform the proper action (i.e. subscription or subscription). The bridges then
registers a corresponding callback to the action, in case of subscription message.

7 Conclusions

Interoperability among heterogeneous IoT platforms is a complex multi-faced issue
which requires effective approaches that are difficult to implement and test. Indeed,
it is not straightforward defining boundaries and requirements of the IoT platforms to
be integrated as well as controlling the development environment. Traditional soft-
ware/systems engineering approaches showed poor applicability in the IoT domain
and, therefore, ad hoc and closed integration/interoperability solutions are often

INTER-Meth: A Methodological Approach ... 229

adopted. INTER-IOT aimed at addressing the lack of systematic, generalizable
methods and tools for IoT platforms interoperability. This chapter, in particular,
described INTER-METH, developed in the project, that is first full-fledged, general-
purpose engineering methodology completely supporting the integration process
among loT platforms. Particular focus has been given to the INTER-IoT-based Anal-
ysis and Design phases, that are fundamental drivers for the integration process.
Relevant interoperability design patterns, the building blocks of the design phase,
have been discussed. The chapter also presented INTER-CASE, a web-based tool
that guides integrator designers to follow the methodology; INTER-CASE supports
semi-automatic integration refinements and particularly useful to easily document
the choices taken during the integration workflow. The practical use case related to
the integration of the two IoT platforms (BodyCloud and UniversAAL) adopted in
the context of the INTER-Health Pilot, is finally shown.

References

1. Savaglio, C., Fortino, G., Zhou, M.: Towards interoperable, cognitive and autonomic IoT sys-
tems: an agent-based approach. In: Internet of Things, 2016 IEEE 3rd World Forum on. IEEE,
pp. 58-63 (2016)

2. Fortino, G., et al.: Towards multi-layer interoperability of heterogeneous IoT platforms: the
INTER-IoT approach. In: Integration, Interconnection, and Interoperability of IoT Systems,
vol. 199-232. Springer (2018)

3. Fortino, G., Russo, W., Savaglio, C., Shen, W., Zhou, M.: Agent-oriented cooperative smart
objects: from IoT system design to implementation. IEEE Trans. Syst., Man, Cybern.: Syst.
48(11), 1939-1956 (2018)

4. Bassi, A., et al.: Enabling Things to Talk: Designing IoT Solutions with the IoT. Architectural
Reference Model (2013)

5. Houser, P.: Best Practices for Systems Integration. Northrop Grumman Corporation, Engineer-
ing & Product Excellence (November 2011)

6. OUSD AT&L.: Systems Engineering Guide for Systems of Systems. Pentagon, Washington,
DC (August 2008)

7. Vaneman, W.: The system of systems engineering and integration “Vee” model. In: Systems
Conference (SysCon), 2016 Annual IEEE. IEEE (2016)

8. Gama, K., Touseau, L., Donsez, D.: Combining heterogeneous service technologies for building
an Internet of Things middleware. Comput. Commun. 35(4), 405-417 (2012)

9. Aloi, G, et al.: Enabling IoT interoperability through opportunistic smartphone-based mobile
gateways. J. Netw. Comput. Appl. 81, 74-84 (2017)

10. Ishagq, L, et al.: Internet of things virtual networks: Bringing network virtualization to resource-
constrained devices. In: 2012 IEEE Intl. Conf. on Green Computing and Communications
(GreenCom). IEEE (2012)

11. Waterfall methodology: https://en.wikipedia.org/wiki/Waterfall_model, last accessed May
2019

12. Robertson, S., Robertson, J.: Mastering the requirements process: getting requirements right.
Addison-Wesley (2012)

13. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The Gaia
methodology. ACM Trans. Softw. Eng. Methodol. (TOSEM) 12(3), 317-370 (2003)

14. Giunchiglia, F.,, Mylopoulos, J., Perini, A.: The TROPOS software development methodology:
processes, models and diagrams. In: Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems: Part, p. 1. (2002)

https://en.wikipedia.org/wiki/Waterfall_model

230

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

217.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

G. Fortino et al.

Fortino, G., Russo, W.: ELDAMeth: an agent-oriented methodology for simulation-based pro-
totyping of distributed agent systems. Inf. Softw. Technol. 54(6), 608-624 (2012)
ELDATool, documentation and software, http:/lisdip.deis.unical.it/software/eldatool, last
accessed May 2019

DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent systems engineering. Int. J. Softw.
Eng. Knowl. Eng. 11(3), 231-258 (2001)

Padgham, L., Winikoff, M.: Prometheus: a methodology for developing intelligent agents. In:
Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent
Systems: Part, p. 1. (2002)

Garijo, F.J., Gomez-Sanz, J.J., Massonet, P.: The MESSAGE methodology for agent-oriented
analysis and design. Agent-Oriented Methodol. 8, 203-235 (2005)

Slama, D., Puhlmann, F., Morrish, J., Bhatnagar, R.M.: Enterprise [oT: Strategies and best
practices for connected products and services, O’Reilly media (2015)

Bassi, A., et al.: Enabling things to talk. Springer (2013). https://www.oasis-open.org/
committees/soa-rm/faq.php

https://www.oasis-open.org/committees/soa-rm/faq.php, last accessed May 2019
Zambonelli, F.: Towards a General Software Engineering Methodology for the Internet of
Things. arXiv preprint arXiv:1601.05569 (2016)

The IoT-A Unified Requirements list, http://www.iot-a.eu/public/requirements/copy_of_
requirements, last accessed May 2019

Grace, P, et al.: Taming the interoperability challenges of complex iot systems. Presented at
the (2014)

Grace, P., Pickering, B., Surridge, M.: Model-driven interoperability: engineering heteroge-
neous loT systems. Ann. Telecommun. 71(3—-4), 141-150 (2016)

Kazman, R, et al.: Understanding patterns for system of systems integration. Presented at the
(2013)

Report on High-Level Architecture (HLA) http://ec.europa.eu/newsroom/dae/document.cfm?
action=display&doc_id=11812, last accessed May 2019

Acceptance Testing, [Online]. https://en.wikipedia.org/wiki/Acceptance_testing, last accessed
9 Aug 2021

Standard glossary of terms used in Software Testing, Version 2.1. ISTQB. 2010.,
[Online]. https://en.wikipedia.org/wiki/Acceptance_testing#cite_ref-ISTQB_Glossary_2-0,
last accessed May 2019

Fortino, G., Parisi, D., Pirrone, V., Di Fatta, G.: BodyCloud: a SaaS approach for community
body sensor networks. Futur. Gener. Comput. Syst. 35(6), 62-79 (2014)

UniversAAL website, https://www.universaal.info, last accessed 9 Aug 2021

Fortino, G., Russo, W., Zimeo, E.: A statecharts-based software development process for mobile
agents. Inf. Softw. Technol. 46(13), 907-921 (2004)

Fortino, G., Garro, A., Russo, W.: An integrated approach for the development and validation
of multi-agent systems. Comput. Syst. Sci. Eng. 20(4) (2005)

Fortino, G., Savaglio, C., Spezzano, G., Zhou, M.C.: Internet of Things as system of systems:
areview of methodologies, frameworks, platforms, and tools. IEEE Trans. Syst. Man Cybern.
Syst. 51(1), 223-236 (2021)

Fortino, G., Russo, W., Savaglio, C., Shen, W., Zhou, M.: Agent-Oriented Cooperative Smart
Objects: From IoT System Design to Implementation. IEEE Trans. Syst. Man Cybern. Syst.
48(11), 1939-1956 (2018)

Savaglio, C., Ganzha, M., Paprzycki, M., Badica, C., Ivanovic, M., Fortino, G.: Agent-based
Internet of Things: state-of-the-art and research challenges. Future Gener. Comput. Syst. 102,
1038-1053 (2020)

Fortino, G., Garro, A., Russo, W.: Achieving Mobile Agent Systems interoperability through
software layering. Inf. Softw. Technol. 50(4), 322-341 (2008)

Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., Russo, W.: PASSIM: a simulation-based
process for the development of multi-agent systems. Int. J. Agent Oriented Softw. Eng. 2(2),
132-170 (2008)

http://lisdip.deis.unical.it/software/eldatool
https://www.oasis-open.org/committees/soa-rm/faq.php
https://www.oasis-open.org/committees/soa-rm/faq.php
https://www.oasis-open.org/committees/soa-rm/faq.php
http://arxiv.org/abs/1601.05569
http://ec.europa.eu/newsroom/dae/document.cfm?action=display&doc_id=11812
http://ec.europa.eu/newsroom/dae/document.cfm?action=display&doc_id=11812
https://en.wikipedia.org/wiki/Acceptance_testing
https://en.wikipedia.org/wiki/Acceptance_testing#cite_ref-ISTQB_Glossary_2-0
https://www.universaal.info

Interoperability Application in e-Health)

Check for
updates

Gema Ibaiiez-Sanchez, Alvaro Fides-Valero, Jose-Luis Bayo-Monton,
Margherita Gulino, and Pasquale Pace

Abstract This chapter describes INTER-HEALTH use case, a real application of
the INTER-IoT framework in a healthcare environment. INTER-HEALTH provides
a solution that allows health experts to prevent and reduce obesity, which is one of
the main causes of chronic diseases. Through INTER-IoT, two different platforms
are able to interoperate to exchange information and so, to provide aggregated infor-
mation to health experts. The results show a clear improvement in the health of the
participants compared with those that did not use INTER-HEALTH solution.

1 Introduction

It is a well-known fact that the world is aging rapidly. Living longer does not mean
living better, which can signify a reduction in Quality of Life (QoL). It leads to
a population with greater dependence that make health systems be overwhelmed.
It generates a necessity of solutions to alleviate this burden. Health systems need
better data to understand the health risks faced by population to target appropriate
prevention and intervention services. It is not about providing medicines to mitigate
a health problem; is to provide an optimal health service to contribute to having a
good quality of life throughout their lives [1].

G. Ibafiez-Sanchez (X)) - A. Fides-Valero - J.-L. Bayo-Monton
UPV, Universitat Politecnica de Valéncia, Valencia, Spain
e-mail: geibsan@itaca.upv.es

A. Fides-Valero

e-mail: alfiva@upv.es

J.-L. Bayo-Monton

e-mail: jobamon@upv.es

M. Gulino

Dipartimento di Prevenzione, ASL TOS, Nichelino, Torino, Italy

P. Pace
University of Calabria, Rende, Italy

© Springer Nature Switzerland AG 2021 231
C. E. Palau (eds.), Interoperability of Heterogeneous loT Platforms, Internet of Things,
https://doi.org/10.1007/978-3-030-82446-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82446-4_8&domain=pdf
mailto:geibsan@itaca.upv.es
mailto:alfiva@upv.es
mailto:jobamon@upv.es
https://doi.org/10.1007/978-3-030-82446-4_8

232 G. Ibanez-Sanchez et al.

Nowadays, Personalised Medicine is a new field where one of its objectives is to
achieve the best outcomes for preventing or managing a patient’s disease. Health is
determined by intrinsic characteristic of humans combined with their lifestyle and
environment. The combination of this socio-medical information from humans’ life
can help to determine individual risk of developing a disease, early detection of
illnesses, or even more effective interventions to improve health.

In that line, the Internet of Things (IoT) brings to the market a portfolio plenty
of opportunities, enabling pervasive communication between the physical and the
virtual world [2]. The IoT has the potential to contribute to many e-Health applica-
tions such as remote health monitoring, chronic diseases, or elderly care among others
[3, 4]. The number of e-Health applications in the market is increasing rapidly, which
generate a huge amount of data, being medical data the backbone of the healthcare
systems [5-7].

At the same time, the increasing shift to patient-centric generates the need for an
integrated healthcare platform to achieve scalability and engagement. It is not com-
mon for healthcare organizations to have a unique Electronic Health Records (EHR).
Usually, they may have several data sources for different purposes. This fragmenta-
tion leads to put at risk the integrity of the data, to define time-consuming processes
and to create challenges in coordinating care for the patient, rising maintenance
costs [8].

The aim of connected healthcare begins with an integrated system to a data-
oriented healthcare. Nonetheless, it is not always possible to integrate everything in
the same platform.

Due to medical data importance, IT challenges for handling medical data, becomes
more serious. Interoperability is a critical issue for communicating and handling dif-
ferent formats of medical data. At the same time, various legal and technical standards
are involved in handling, processing and communicating the medical data. Interoper-
ability and integration in healthcare system depends on various connectivity levels.
It covers a very vast technical spectrum and poses huge challenges to connect differ-
ent pieces (health platforms, m-Health solutions, IoT devices or any other resource
that contribute to a better patients’ life) in a regulated and standardized way for the
healthcare system workflows [9-11].

INTER-IoT framework applied in the health sector, INTER-Health, is designed
and built to specifically accommodate the communication and processing needs of
patients and Health Professionals (HP). INTER-Health integrates different IoT archi-
tectures, e-Health services and health sensors. It is a proof of concept of the potential
of INTER-IoT in the provision of interoperability within a clinical environment.
INTER-Health improves healthcare service offered by the hospital by providing
continuum of care.

Interoperability Application in e-Health 233

UNDERLYING COMMON MODIFIABLE . INTERMEDIATE RISK . MAIN CHRONIC

SOCIOECONOMIC, RISK FACTORS FACTORS DISEASES

i:ll‘)rg:‘n‘op:mt UrTIr.melat’tm mf‘t,_ Ra.is?d t:.bm prei;su:c H?;i.rl disease

DETERMINANTS Physical inactivity Raised blood glucose Stroke

Globalization . Tobacco use . Abnormal blood lipids ' Cancer

Urbanization NON-MODIFIABLE Overweight/obesity Chronic respiratory
RISK FACTORS diseases

Population agel
ikl Age Diabetes

Heredity .

Fig. 1 Causes of chronic diseases

2 INTER-Health Motivation

Obesity is one well-known risk factors faced by doctors today, with the corresponding
allocation of medical care resources for the disease and related comorbidities. Obesity
is associated with a high incidence of a number of diseases, including diabetes,
cardiovascular disease, strokes, chronic respiratory diseases and cancer (Fig. 1) [12].
It happens in almost all parts of the world, regardless of age, gender or geographical
origin. It is because of following an unhealthy lifestyle, in terms of a high calories
intake diet, and lack of physical activity. Every year in the world [13]:

o 2.8 millions of people die from obesity and overweight;

o 2.6 millions of people die from high cholesterol levels;

e 7.5 millions of people die from hypertension;

e 3.2 millions of people die from absence of physical activity.

2.1 INTER-Health Scenario

John is 40 years old, works in the office, he is slightly overweight. For some time
he feels a little tired and therefore went to the family doctor for a check-up. The
doctor visits him and prescribes some control tests. The test results are normal but
the doctor suggests that he contacts the service of Hygiene Nutrition Unit (ASLTOS)
[14] in order to change his lifestyle and to prevent diseases such as hypertension,
diabetes and so on.

The doctor of the ASLTOS in addition to provide a set of behavioural and
dietary recommendations proposes to John to undergo a period of monitoring to help
changing lifestyle and prevent diseases caused by obesity. Using INTER-Health the
ASLTOS operator

e registers the John personal data

234 G. Ibanez-Sanchez et al.

e provides devices (weight scale, blood pressure monitor, activity monitoring sensor)
for use at home to make periodic measurements and tells it how to use them

e collects the John measures

e sets the frequency of measurements

e sets the schedule for the completion of the questionnaire.

John starts the program compiling the online questionnaire on eating habits and
physical activity using INTER-Health.

Each day John wears the monitoring activity sensor and aims to reach the number
of steps suggested checking on INTER-Health.

Periodically (following the frequency of measurements suggested by ASLTOS)
he measures the pressure and weight and sends the data using INTER-Health.

The ASLTOS operator periodically checks if John is following the protocol and
checks the measures and the activities on INTER-Health. In case of any detected
problem (e.g. absence of measures for an interval of time, outside threshold values)
he can contact John.

2.2 INTER-Health Interoperability Components

Integrating data from different types of diverse sources and clinical systems is a
fundamental challenge for any healthcare entity in order to enhance patient care
and performance indicators. This section describes how INTER-Health deals with
interoperability and the different components to interoperate [11, 15, 16].

2.2.1 universAAL Platform

universAAL [17] is a semantic and distributed software platform. It was designed
to ease development of integrated Ambient Assisted Living applications. Its main
advantage resides on its suitability for IoT, wearables, Big Data and so on [18, 19].

The semantic nature of universAAL makes it ideal for highly heterogeneous envi-
ronments. It allows representing the world through ontologies, i.e. different devices,
from different vendors, can be modelled using the same ontological concepts, thus
applications will not see the difference between them. Different health and social
services have been validated at large scale pilots in the make IT ReAAL [20] project
with more than 5500 users.

In INTER-Health, the service provided by universAAL allows the collection of
patient’s data through quantitative measurement of different physiological values,
weight scale and sphygmomanometer, at ASLTOS facilities.

Interoperability Application in e-Health 235
2.2.2 BodyCloud Platform

BodyCloud [21] is a SaaS architecture that supports the storage and management
of body sensor data streams and the processing (online and offline analysis) of the
stored data using software services hosted in the Cloud. In particular, BodyCloud
endeavours to support several cross-disciplinary applications and specialized pro-
cessing tasks. It enables large-scale data sharing and collaborations among users and
applications, and delivers services via sensor-rich mobile devices.

In INTER-Health, Body-side component, currently based on Android, monitors
an assisted living through wearable sensors and provides the collected data through
INTER-IoT.

2.2.3 Professional Web Tool (PWT)

This website is an ad hoc solution that recollects data from universAAL and Body-
Cloud platforms through INTER-IoT. PWT is a dedicated website for monitoring
the progress of patients, helping health professionals in their daily activity [22].

The two platforms, universAAL and BodyCloud, share some high-level character-
istics while differ in objectives and technology. Specifically, they are both e-Health
platforms, based on Bluetooth technology to interact with measurement devices.
However, they have different specific objectives and are not interoperable from a
technological point of view [23]. Their specific objectives are complementary: uni-
versAAL is focused on non-wearable measurement devices at ASLTOS premises,
whereas BodyCloud provides remote monitoring through online eating and phys-
ical activity habits questionnaires and wearable devices organized as body sensor
networks [24-26]. Their integration delivers a mHealth integrated platform on top
of which multitudes of mHealth services could be developed, such as the PWT,
contributing to the continuum of care.

3 INTER-Health Solution

The goal of the INTER-Health [27] pilot is to foster healthy lifestyle and prevent
chronic diseases by monitoring subjects’ physical characteristics, nutritional
behaviour and activity.

From the health professionals’ perspective, to work on preventing chronic diseases
following a healthy lifestyle would be translated into savings time and more efficient
health treatments in ASLTOS, increasing efficiency with the same resources used.

From patients’ point of view, an e-Health solution would help to improve their
adherence to the prevention program, i.e. patients do not have to go to the hospital
premises so often, motivational messages...

The integrated open platform supports health monitoring at health-care centre
through the centre facilities, at home through a set of medical consumer devices,

236 G. Ibanez-Sanchez et al.

ARD UA 651BLE > Healthcare
Professional
“ \ Xiaomi Band 2 AQG ASLTOS :
Subject Phis Server ,"jf
: Healthcare

A&D UC 352BLE Professional

@
A&D UA 651BLE
Android ,a
Phone ~ Healthcare

Professional
ABD UC 352BLE

SUBJECTS F ASLTOS5

Fig. 2 INTER-Health conceptual design

and in mobility based on body sensor networks (Fig.2). In order to evaluate the
integration from functional and non-functional perspectives, atop the interoperable
platform, we develop and deploy in a controlled medical testbed, a fully-working
application, related to the lifestyle monitoring. The application has as specific objec-
tives to improve and overcome the currently available methods, instruments and
protocols.

In Fig.3 can be found Local Server at the premises of the clinical centre. It runs
the following components: The INTER-IoT Framework, the instance of universAAL,
the PWT in .NET and its Database in a SQL Server.

The INTER-IoT Framework runs in its Virtual Machine and contains all INTER-
IoT modules needed for the pilot, of which the ones of interest in INTER-Health are
the INTER-IoT Middleware and INTER-IoT APL

The universAAL instance is an OSGi container with all the universAAL modules
needed for the pilot, of which the ones of interest in INTER-Health are the REST
API, and all the modules that compose the basic universAAL Middleware.

The .NET Framework hosts the PWT web application, which finally allows HPs
to manage all the data within the pilot.

The SQL Server hosts the Database used by the PWT to store its data.

The setup of the mobile phone used at the clinical centre differs from those used at
each patient’s home. The mobile phone used at the clinical centre is an Android Phone
running the universAAL Android App and a dedicated app for getting measurements
from Bluetooth devices. The mobile phone used by the subjects is an Android Phone
running the BodyCloud Android App.

Interoperability Application in e-Health 237

nteriot

MW2ZMW

AEDUA
ssmal_ i
Xiaomi

Band 2 (&
ARD UC r BodyCloud I L rversaaL M ./ agopuc

Middl a A = 352BLE
352BLE iddleware App -

[{Android phone (nichelino)

Fig. 3 INTER-Health high-level pilot design

The Bluetooth devices used at the clinical centre differ from those used at each
subject’s home. The models used at the clinical centre and by each subject are A&D
Medical UA 651BLE (Blood Pressure) and A&D Medical UC 352BLE scales which
are Bluetooth Low Energy devices, in addition to the Xiaomi Band 2 for Physical
Activity.

The PCs used by HPs at the clinical centre to access the PWT are their own regular
PCs.

3.1 INTER-Health Features

INTER-Health is focused on providing prevention services, for healthy people with
different level of risk of developing chronic diseases, based on a monitoring system
helping to follow the prevention program to change their lifestyle.

The monitoring services are obtained by the interoperability between different
platforms offering the overall needed features, medical and wearable devices and
use of mobile phone with applications [19].

This scenario requires similar services based on the integration of two e-Health
existing platforms and used to handle different health problems. The chronic disease
prevention is based on four main use cases (Fig.4):

e Creates and operates patients and associated services
e Sets patients protocol parameters (kind of measures, thresholds, periodicity)

238

Healthcare
Professionals

o

creates/modifies

Chronic disease prevention

G. Ibanez-Sanchez et al.

uses the profile

Subjects

Administrator e Citizen
oaies r’on,;/;p A &
el ™ L
cred ate,
La o
e, 2
e <&
(@])
sets protocol i &
Qp‘w:‘ P -)
Sanitary Operatcr | e & ®
L0l b Healthy persan Patient
r A I o . o,
s, ”
ip, Do, O
(] B Oy 73
z
oy
n %,
g A oy 4 Measures
0 a8
ek e 1 ‘eHealth Platform
dald
ohfel 2ot
e

Fig. 4 INTER-Health use cases

e Performs objective measures (e.g. weight, activity) and subjective measures
(lifestyle questionnaires)
e Monitoring measures and trends.

The PWT is divided into two main sections: (1) Patient’s Profile to manage sub-
jects’ data and (2) Patient’s Progress to see their evolution.

3.1.1 Creates and Operates Users/Services (PWT)

HP enters his/her user and password in the welcome page and press LOGIN button
(Fig.5). If it is correct Patient’s List screen is open (1). Patient’s list screen provides
to HP a quick overview of the general status of the patients, including if there is any
alert. List can be ordered by column (ascending/descending order).

To add a new patient, the HP clicks on the ADD button. Fill the data and click
on SAVE button (2). Warnings appear when mandatory fields are not completed
properly. When it is created correctly, go back to the Patient’s List and the new
patient appears (3).

Alerts

Alerts can be triggered based on the values sent by the patients through INTER-IoT.
After the reception of an alert, a direct call is done to the patient in order to check
his/her status. Below is shown the criteria to launch alerts:

Interoperability Application in e-Health 239

%

Mmoo E5 G

5 Pationts List

Fig. 5 Creates and operates users/services use case

e Weight is evaluated every 4 weeks: if the weight increases, it is notified to the user
by means of an informative message (“Beware, your weight has increased! Improve
your lifestyle”) and then the health professional through the PWT (Patient code—
Alert weight); In the case that the weight decreases, it is the patient who receives
a motivational message (‘“Congratulations, you are losing weight! Continue like
this”).

e Blood pressure is evaluated every 7 days: if the patient’s blood pressure increases,
the HP is alerted by indicating an alert in the PWT (“Patient Code—Pressure
Alert”). HP contacts the patient to guide him with healthy lifestyle advices.

e Physical activity (steps) value is evaluated daily. Depending on the following
ranges, it has been shown a different message to the patient:

— 0-4999: “Beware, you're sedentary, move more!”. In this case, also the HP has
been alerted (“Patient Code—Alert steps”), who contacts by phone with the
patient to advice him/her.

— 5000-7499: “Your level of physical activity is low and take advantage of every
opportunity to move!”

— 7500-9999: “Congratulations! You just have a little effort to reach the recom-
mended physical activity level!”

— 10000-12499: “Great! Continue to keep you alive”

— >12500: “Great! Continue to keep you alive”

e Physical activity (duration) is evaluated weekly

— <150 min/week. The following message is shown to the patient: “The physical
activity you are doing is not enough yet”. The HP also is alerted: “Patient Code—

240 G. Ibanez-Sanchez et al.

Duration Physical Activity Alert”, who contacts by phone with the patient to
advice him/her.

— >150min/week. A motivational message is shown only to the patient (“Con-
gratulations, keep moving so!”)

¢ Questionnaire of eating and physical activity habits. It is evaluated per question,
where each one has identified the right and the wrong answers. When a question
is answered wrongly, it is shown a warning message. Otherwise, it is shown a
motivational message. If the patient has answered all questions incorrectly, then it
triggers an alert that is shown in the PWT for the HP. The HP calls the patient by
phone to advice him/her.

3.1.2 Sets Citizens/patients Protocol Parameters (PWT)

Before going to the Patient’s List, it is worth to mention the Main Menu Bar, as
central navigation component. From this bar, HPs can go to the Patient’s Profile and
Patient’s Progress screens or go back to the Patient’s List to choose another subject
for counselling (Fig. 6).

Patient’s folder is managed in this first tab. It is composed by two sub-sections:
(1) Patient’s folder and (2) check-ups. Patient’s profile contains personal information
relevant to the counselling. Check-ups stores information derived from the face-to-
face interviews carried out in ASL TOS facilities. Click on EDIT button to modify
patient’s profile data, change values and then click on SAVE button to keep the
modifications or CANCEL to discard everything (4). To modify principal data, click
on EDIT IMPORTANT DATA and change it, then click on SAVE button to keep the
modifications or CANCEL button to discard everything. In the same screen, a new
counselling can be added by clicking on the ADD button. Then a new screen with
nutritional status, and lifestyle data. Notice that the patient’s profile data appears
but cannot be modified. Click on SAVE button to keep the entire information or
CANCEL button to discard all. HP can print all check-ups registered in the PWT by
clicking on the PRINT button.

When a new check-up is added, it appears in the list of check-ups. To see the
details of a check-up, click on VIEW button. To edit an existing check-up, click on
EDIT button, then a new screen will appear. Collected data is the following.

e Objective data:

— Personal data (name, surname, gender, age, address);

— Personal data (civil status, educational level, social and economic status);

— Anthropometric data (weight, height, Body Mass Index—BMI, blood pressure,
waist circumference)

— Hematochemical data (blood glucose, blood insulin, hemoglobin, glycated
hemoglobin, cholesterol level, HDL, LDL, blood triglyceride, blood nitrogen,
AST, ALT, GGT, blood creatine, urea, blood urea, blood albumin, prealbumine-
mia, TSH, T3, T4, erythrocyte sedimentation rate).

Interoperability Application in e-Health 241

- TR -

N

Fig. 6 Set citizens/patients protocol parameters use case

e Subjective data:

— Food anamnesis (breakfast, main meals, vegetables consumption, fruit con-
sumption frequency, red and/or white meat consumption frequency, processed
meat consumption frequency, egg consumption frequency, cheese consump-
tion frequency, fish Consumption frequency, legumes consumption frequency,
bread and pasta and substitutes consumption frequency, dry fruit consumption
frequency, oil consumption frequency, animal fats consumption frequency, salt
consumption frequency, herbs and spices consumption frequency, sugar and/or
honey consumption frequency, sweetening consumption frequency, sweet con-
sumption frequency, water consumption frequency, alcohol consumption fre-
quency, sugary drink consumption frequency)

— Physical activity practice (daily physical activity, organized physical activity).

Tab Questionnaires shows data received of the online questionnaire from the mobile
app (5). Each row represents an online questionnaire. Prevention programme is
intended to assign devices to subjects belonging to EG (6). By default all the sub-
jects of this group has a bracelet and a scale. In the case of having a high-pressure
diagnosis, (s)he may need a blood pressure device, in which case, that option should
be activated and then assign a device.

universAAL app

Measurements of the anthropometric data is done through universAAL platform.
The HP is authenticated in the mobile application, then selects the device to use and
the measurement is done (Fig. 7).

242

INTER Health

Select user doctor

BLOOD PRESSURE UA-651BLE

G. Ibanez-Sanchez et al.

t 0

Weight Scale UC-352BLE

appears here.

Kg
BLOOD PRESSURE UA-T6TPET

Last measurement taken a

WEIGHT SCALE UC-3528LE

WEIGHT SCALE UC-321P8T

Fig. 7 Measurements of the anthropometric data

Prevention program
The prevention program assigned to patient was as follow:

o Weight reported weekly;

e Blood pressure, for those patients that at the first nutritional counseling were
identified as Normal-High pressure values (systolic pressure >130 and/or diastolic
pressure >85) with a daily frequency (morning and evening);

e Physical activity (number of steps and duration of physical activity practiced)
reported daily. In particular, to accomplish with the physical activity objective,
EG patients had to achieve at least 10.000 steps daily and 150min of activity
per week. Additionally, the questionnaire available in the mobile app gathered
information on eating and the physical activity habits, and provided feedback to
the patients to motivate them. The eating habits and the physical activity practice
were taken biweekly.

3.1.3 Performs Objective and Subjective Measures Use Case (BC

Platform)

Patient login and accesses to the Summary screen (1) (Fig.8). This screen shows
activities pending. If the patient click on any of them is redirected to the corresponding
screen. From main menu, the patient can go to the measurements screen (2). The
patient can measure anthropometric values by using the medical devices. Eating and
physical activity habits questionnaire is available in the next screen (3).

It is shown a question per screen, with two options to answer, and the possibility
to save and resume the questionnaire. When the patient answers, the app shows a

Interoperability Application in e-Health 243

.
R S = I |
oo foeper =
ke ni I | N |

I |
§

Fig. 8 Performs objective and subjective measures use case

motivational or warning message. Patient can see his/her weight, blood pressure and
activity progress in the available graphs (4).

3.1.4 Monitors Subjective and Objective Parameters Use Case (PWT)

Patient Progress shows the progress of the patient in terms of weight (Fig.9) (7). The
graph allows seeing different zooms: 1, 3, 6 months, Year-to-date (YTD), 1 year and
all the available data. It is possible to zoom in and navigate between dates by using
the date range. To zoom in click and drag on an area of the graph. To reset zoom,
click on RESET ZOOM button that will appear after doing zoom in at the right top
of the graph. And navigation bar lets navigate and do zoom in/out.

Next tab is about physical activity and here can be checked steps and minutes of
activity per day (8). As in the previous graph, you can do zoom in by clicking and
dragging, using the pre-defined zooms (1m, 3m, 6m, YTD, ly or all), the date range
or the navigation bar.

The last tab is aimed at blood pressure information (9). The first graph is about
the measurement taken every day in the morning and at evening. By clicking on the

244 G. Ibanez-Sanchez et al.

» O

| _ i 5 -oi'"E - e
[oinerior = . e

— e
| [pe——

Fig. 9 Monitors subjective and objective parameters use case

legend, text you can enabled/disabled the lines of the graph. As in the previous graph,
you can do zoom in by clicking and dragging, using the pre-defined zooms (1m, 3m,
6m, YTD, ly or all), the date range or the navigation bar. The second graph (Blood
pressure average) shows the average per day of systolic and diastolic measurements.

3.1.5 Device Management (PWT)

Administrator user has access in PWT to the screens (Fig. 10) to manage the medical
devices: bracelets (7), weight scales (8), and sphygmomanometers (9). (s)he is able
to add, edit and unable devices.

3.1.6 Diagnostic Tool (PWT)

Administrator user has access to the diagnostic tool, which allows monitoring data
flow of the system (Fig. 11). By selecting one of the platforms available, the diagnostic
tool shows the list of “things” registered (4). Selecting one “thing” the list of messages
associated to that one is shown (5).

Interoperability Application in e-Health 245

3.2 Privacy and Security

In order to guarantee the data protection and personal data treatment the following
security mechanisms have been applied:

1.

2.

Data transfer procedure to the server involves deleting the local data copy stored
in the Smartphone Memory Buffer Received on the ASL TOS5 Server;
Bi-directional communication between the application resides on the subject’s
Smartphone and the server is done by using login mechanisms, combined with the
HTTPS secure communication protocol, to assure server authentication, privacy
protection, encryption, and integrity of the server Data exchanged between the
communicating parties; Also the biomedical data travels in anonymous form as
they is associated with an alphanumeric code generated by the server and therefore
not associated with the subject’s identification data;

More concretely, the mobile app guarantees the data protection and personal data

treatment throughout the following techniques:

1.

The data communication protection between biomedical wireless devices and the
developed mobile gateway application installed on the patient’s Smartphone, is
guaranteed by proprietary mechanisms supported by device manufacturers; it is
worth noting that such mechanisms are not altered in any way by the partner.

Data collected by the mobile gateway application is temporarily stored in the
memory buffer of the patient smartphone waiting to be transmitted to the ASL
TOS server; it is worth noting that the procedure for transmitting data to the server

Fig. 10 Device management—PWT

246 G. Ibanez-Sanchez et al.

Fig. 11 Diagnostic tool—PWT

implies the automatic delete of the local data copy stored, once the reception and
the correct feedback have been made.

The bi-directional communication protection between the mobile gateway appli-
cation installed on the patient’s Smartphone and the remote server located at the
ASL TOS structure is guaranteed by using the HTTPS secure communication pro-
tocol that secures server authentication, privacy protection, the encryption and the
integrity of the data exchanged between the communicating parties.

Within the communication mentioned in the previous point, it should be noted that
biomedical data travels anonymously as they will be associated with an alphanu-
meric code generated by the server and therefore they are not directly associated
with any patient personal identification data.

Update and maintenance service of the mobile gateway application is provided
in case of errors and/or malfunctions of operation.

Regarding the INTER-Health pilot, to avoid the destruction and loss, even acci-

dental, of data, the following steps are done:

1.

Data exchanged between biomedical wireless devices and the mobile gateway
application that resides on the patient’s Smartphone is protected from destruction
and/or loss through proprietary mechanisms supported by device manufacturers;
It is specified that such mechanisms is not, in any way, altered and/or modified
by the UNICAL partner.

Data collected by the application is protected from destruction and/or loss through
a temporary storage mechanism within the patient’s smartphone until the trans-
mission to the ASLTOS server is completed and until the receipt of a specific
acknowledgment message activates a deletion procedure of the data copy stored
in the local memory buffer.

Interoperability Application in e-Health 247

3.3 General Data Protection Regulation

Likewise, the INTER-Health pilot has been subjected to an ethical board examination,
according to the Article 6 of Legislative Decree 24 June 2003, no. 211 [28] to carry out
clinical trials is mandatory to request authorization to the Ethics Committee. ASLTOS
got the approval to perform the study by the Ethical Committee of the A. O. U.
San Luigi Gonzaga of Orbassano (Torino). Documentation needed is the following:
privacy and security management, sensitive data, data controller, data processor,
eternal data processor, information sheet, informed consent, data collection folder,
research protocol, CE devices and datasheets, European project financial documents
plus:

e Information sheet of the experimental study

e Declaration of consent for the participation in the experimental study
e Information on processing personal data

e Declaration of consent for processing personal data.

4 INTER-Health Execution

The piloting has been executed in Turin (Italy) at the premises of ASLTOS hospitals
during one year. It was divided into two groups: (1) 100 patients, who followed a
traditional monitoring without IoT devices (control group) and (2) 100 patients with
devices (experimental group), being these last ones the ones using the INTER-Health
solution (Fig. 12).

OBJECTIVE DATA
- Personal data

- Anthropometnc data
4] (weight. height, BMI,
Abdominal circumference)
- Blood pressure

OBIECTIVE DATA
- Blood pressure
= Physical activity
- Anthropometric data: weight

DARLY. Blood pressure (morring, everang) WEEKLY. Weight
DARY. Phyysical acthvity [steps. minutes) BIWEEKLY, Dinline questionnaine

Fig. 12 INTER-Health in brief

248 G. Ibanez-Sanchez et al.

Control group (CG) consisted on visits to the hospital each 3 months. HP inter-
viewed patients to gather information related to their nutritional and physical activity
habits (check-ups). Furthermore, anthropometric values were measured. It is worthy
to mention that the results of these interviews were collected by hand (on paper)
before INTER-Health solution.

Experimental group (EG) attended a first nutritional counselling at hospital
premises, similar to the one done for the control group, and then each 6 months.
The patient was assigned to a prevention program, which included a kit of health
devices (weight scale, an activity bracelet, and when the patient is at risk of suffering
high blood pressure, a sphygmomanometer). Thus, the health professional helped the
patient to install a mobile app in his/her smartphone in order to get measurements
from the kit and a questionnaire on eating habits and physical activity practice. Once
at home, (s)he followed the prevention program by measuring the indicated anthro-
pometric values.

All the data is sent from the mobile app to the server in ASLTOS, where HPs have
access to all data.

4.1 Inclusion and Exclusion Criteria

Subjects had to meet inclusion criteria to be part of the Experimental Group. They
had to be healthy patients greater than 18 years old; and the possibility to be available
for at least 1 year to complete the whole piloting phase.

As exclusion criteria, subjects with food behavioural and/or serious psychiatric
disorders, with cardiovascular diseases, tumours, diabetes and/or hypertension, and
who required a unique appointment to have a dietetic or food advice, were discarded.

Subjects considered eligible were included in the non-invasive and health risk-
free study. The decision to include a subject into the EG or CG depended on the
presence or absence of a “Technological Prerequisite” that was to have an Android
smartphone compatible with a concrete Bluetooth version. In which case, the absence
of the “Technological Prerequisite” determined the inclusion of the subject in the
CG, against those subjects with present prerequisite in their smartphone meant the
inclusion of them into the EG.

In order to avoid drop out of the patients, eHealth solution has been designed to
aid them by means of reminders and motivational messages.

4.2 Key Performance Indicators

4.2.1 Health Indicators

The indicators used in the study to evaluate the effectiveness of the Experimental
Nutritional counselling are the following:

Interoperability Application in e-Health 249

Body Mass Index (BMI). BMI is an objective measure that allows assessing the
health state of subjects (underweight, normal weight, overweight, Level 1, Level 2
and 3rd level obesity), allowing making the diagnosis of overweight and obesity. This
indicator can be used to monitor over time the health status of individuals assisted;
it helps to HPs to state if the patient has maintained, improved or worsened his/her
health status.

The effectiveness of the experiment can be measured by evaluating whether the
treatment received by the group of persons assisted with Experimental Nutritional
counselling (EG) compared to the one received by the group of persons assisted with
the traditional nutritional counselling (control group) produced greater number of
“successes”. Considering “Success”:

e In normal weight, maintaining weight at 6 months, in the period from the visit to
the next control that takes place six months after the visit;

e In overweight patients, a decrease in six months by at least 5% of the BMI in the
period following the Visit to the next control that takes place six months after the
visit;

e In Ist level and 2nd level obese patients, a decrease in 12 months at least 5% of
the BMI in the period following the Visit to the next control that takes place 12
months after the visit;

e In 3rd level obese patients, a decrease in 12 months at least 10% of BMI in the
period following the Visit to the next control that takes place 12 months after the
Visit.

Waist Circumference. It is another method to diagnose overweight and obesity,
values greater than 94 cm in men and 80 cm in women are considered high risk factor
level to develop cardiovascular diseases. This indicator can be used to monitor over
time the health status of individuals assisted at the Nutritional Outpatient.

BMI and CYV related chronic risk pathology. The correlation between BMI and
CV gives a greater indication of the subject’s health and in particular about the risk
factors associated with overweight and obesity such as type 2 diabetes, hypertension,
cardiovascular diseases, and stroke.

Physical activity reported by the subject during the visit to the Nutritional Outpatient
is a subjective measure, that when it is not correct (physical inactivity) becomes a
common risk factor at the basis of major chronic diseases. So the amount (hours/daily
and hours/week) and the type of physical activity practiced (no type of activity; light
activity, moderate and intense) related to the subject, it will become an indicator
that can allow the medical staff to control during the various checks whether this
lifestyle is maintained, improved or worsened. In particular, for the subjects of the
“Experimental Group” the physical activity will be used as an indicator of steps
number and physical activity duration recorded by wearable mobile devices referring
to the 10,000 steps to be performed on a daily and 150 min a week.

Eating habits reported by the subject during the visit at the Nutritional Outpatient
is a subjective measure, which is a lifestyle that when it is not correct (incorrect diet

250 G. Ibanez-Sanchez et al.

and high-calorie) becomes a common and modifiable risk factor at the basis of major
chronic diseases. So eating habits such as quality of foods (various food groups),
amount of food consumed daily/weekly and daily frequency of consumption of the
main meals (breakfast, lunch, dinner and snacks) related to the subject will become
an indicator that may allow health staff to verify, during the various checks, if that
lifestyle is maintained, improved or worsened.

Drop-out rate of the group of persons assisted with the experimental nutritional
counselling (Experimental Group) compared to the one received by the group of per-
sons assisted with the traditional nutritional counselling (control group), can express
the effectiveness of the trial. We will use two quantitative indicators of Drop-out:

e Absolute quantity Drop-Out Indicator = N° of users leaving for study/12 months;
e Relative quantity Drop-Out indicator = N° of users leaving by choice from the
study/12 months/number of followers.

Number of patients connected to INTER-Health

INTER-Health pilot is tested with at least with 100 real patients. KPI value is obtained
by observing the number of patients registered in the health platform that actually
use the mobile application.

Results
100 subjects (77 females and 23 males) were recruited in the Control Group. The
average age of the subjects recruited is 47 years:

e 1% of patients were in a condition of underweight with BMI <18.5kg/m?,

e 12% of patients were in normal weight with a body mass index of between 18.5
and 24.9 kg/mz;

e 33% of subjects were overweight with BMI between 24.9 and 29.9 kg/m?;

e 54% of subjects were obese with a Body Mass Index greater than 30kg/m?.

The level of risk of developing cardiovascular disease in relation to waist circumfer-
ence values (CV) was 14% of subjects moderately increased and 74% significantly
increased.

Subjects presenting a risk (from high to extremely high) of developing chronic-
degenerative diseases in relation to the values of BMI and CV were 86% of the total
sample observed.

44% of subjects reported daily physical activity lasting at least 30—60 min, while
17% of subjects last longer than 60 min.

9% of subjects reported to practice structured physical activity for a duration of
at least 30—60 min, while 25% of subjects last longer than 60 min.

Regarding eating habits:

e 88% of subjects reported consuming the 3 main meals,
e 67% consuming at least two portions of vegetables a day,
e 53% consuming 2/3 portions of fruit a day.

Interoperability Application in e-Health 251

100 patients were recruited for the Experimental Group of which 67 females
(67%) and 33 males (33%). 100 scales, 100 step bracelets and 25 sphygmomanome-
ters were delivered. The average age of the subjects recruited is 46 years.

e 38% of patients were in normal weight with a BMI between 18.5 and 24.9kg/m?;
e 30% of the subjects were overweight with a BMI of between 24.9 and 29.9 kg/m?;
e 32% of subjects were obese with a BMI greater than 30kg/m?.

25 subjects presented normal-high blood pressure values (systolic blood pressure
>130 and/or diastolic blood pressure >85) and were then equipped with a sphyg-
momanometer for the provision of remote care at their homes.

The level of risk of developing cardiovascular diseases in relation to waist circum-
ference values (CV) was 21% of subjects moderately increased and 62% significantly
increased.

Subjects presenting a risk (from high to extremely high) of developing chronic-
degenerative diseases in relation to the values of BMI and CV were 69% of the total
sample observed.

22% of subjects reported daily physical activity lasting at least 30—60 min, while
11% of subjects last longer than 60 min.

35% of subjects reported to practice structured physical activity for a duration of
at least 30—-60 min, while 17% of subjects last longer than 60 min.

Regarding eating habits, 93% of subjects reported consuming the three main
meals, 51% consuming at least two portions of vegetables a day, 36% consuming
2/3 portions of fruit a day.

The subjects recruited for the Control Group who continued the experimentation
for a period of about 1 year were 43 of which 34 females (79%) and 9 males (21%).
The Control Group presents a 57% drop out rate in 12 months.

At the end of the T12 experimentation, 26% of subjects are in normal weight with
abody mass index (BMI) between 18.5 and 24.9 kg/m?; 28% of overweight subjects
with a BMI of between 24.9 and 29.9 kg/m?; 46% obese subjects with a BMI greater
than 30 kg/mz. The state of health of the sample observed, based on the IMC, has
improved.

The level of risk of developing cardiovascular diseases in relation to waist cir-
cumference values (CV) results for 16% of subjects moderately increased and for
63% significantly increased.

Subjects presenting a risk (from high to extremely high) of developing chronic-
degenerative diseases in relation to the values of BMI and CV are 79% of the total
sample observed. 53% of subjects reported daily physical activity lasting at least
30-60 min, while 16% of subjects last longer than 60 min.

19% of subjects reported to practice structured physical activity for a duration of
at least 30—60 min, while 19% of subjects last longer than 60 min.

As for eating habits, 98% of subjects reported consuming the three main meals,
79% consuming at least two portions of vegetables a day, 77% consuming 2/3 portions
of fruit a day.

252 G. Ibanez-Sanchez et al.

The subjects recruited for the Experimental Group who continued the experimen-
tation for a period of about 1 year were 88 of which 59 females (67%) and 29 males
(33%).

The Experimental Group has a 12% dropout rate in 12 months.

Atthe end of the T12 trial, it results that 32% of subjects are in normal weight with
a body mass index (BMI) between 18.5 and 24.9kg/m?; 42% of overweight subjects
with a Body Mass Index of between 24.9 and 29.9 kg/m?; 26% obese subjects with a
Body Mass Index greater than 30kg/m?. The state of health of the sample observed
on the basis of the IMC is therefore improved.

The level of risk of developing cardiovascular diseases in relation to waist cir-
cumference values (CV) results for 29% of subjects moderately increased and for
56% significantly increased.

Subjects presenting a risk (from high to extremely high) of developing chronic-
degenerative diseases in relation to the values of BMI and CV are 72% of the total
sample observed.

43% of subjects reported daily physical activity lasting at least 30-60 min, while
29% of subjects last longer than 60 min.

45% of subjects reported to practice structured physical activity for a duration of
at least 30—60 min, while 17% of subjects last longer than 60 min.

Regarding the eating habits, 99% of the subjects reported to consume the three
main meals, 56% to consume at least two portions of vegetables a day, 68% to
consume 2/3 portions of fruit a day.

In conclusion, the pilot was carried out successfully, most of the participants
improved their health conditions, preventing the risk of suffering for chronic
diseases [29].

4.2.2 Technical Indicators

Performance of the Professional Web Tool

This KPI measures the technical performance of the pilot system as perceived by
professional users (PU). The responsiveness of the Professional Web Tool (PWT)
is measured indirectly through the analysis of system log files. Parameters such as
speed of SQL queries execution or HTTP response times is considered.

PWT has been developed following Model-View-Controller architectural pattern.
PWT performance refers to the time that an action takes since a query is launched
until the result is shown to the PU, then invested time is registered in the system.

PWT is divided into controllers. Each controller has defined different actions
(methods). When an action is triggered, the controller executes a query in the
database. Then it is prepared a model based on the obtained result. Finally, the
model is sent to the view, which generates the HTML code to show the result to the
PU.

The list of actions taken into account are the following:

e Login. PU login into the PWT

Interoperability Application in e-Health 253

getPatientsList. PU accesses to the Patient list screen

PatientsFolderGet. PU accesses to the folder of a specific patient

AddCheckUpGet. PU creates a new check up for a patient

AddCheckUpPost. PU saves the data added to a new patient’s check up

ViewCheckUp. PU consults the data of an existing check up

EditCheckUpGet. PU edits the data of an existing check up

EditCheckUpPost. PU saves the modifications done to an existing check up

PrintCheckUp. PU prints the data of an existing check up

viewQuestionnaires. PU consults historic data of questionnaires reported by a

patient

viewPreventionProgram. PU consults the prevention program defined for a patient

e viewWeightChart. PU consults historical weight data of a patient

e viewPhysicalActivityChart. PU consults historical physical activity data of a
patient

e ViewBloodPressureChart. PU consults historical blood pressure data of a patient

e Logout. PU logout

The final KPI value is the average of the total time of actions divided into the
number of actions.

Body Cloud mobile app usage
It is important to measure the total amount of time spent by a patient in each screen
of the mobile app. It indicates how long takes for a patient to use the app. Being more
than 10 min per functionality and day may be that the adherence to the app is good
but not much user friendly as expected.

Value of this KPI is obtained by addition of time spent in each screen of the app.
Measured in the app itself. Measurement per day and functionality.

Professional Web Tool application usage

As in the case of the patient, the time spent by the health professionals in the PWT is
also important to measure the adherence to the tool. Time spent by a PU in a patient
counselling and without using INTER-Health solution is around 90 min.

Value of this KPI is obtained by addition of time spent in each screen of the app.
Measured in the app itself and per patient.

In INTER-Health, patients are split in experimental and control group. Patients
in the experimental group are using BC mobile app with the medical sensors, which
implies that every day the patients send data to the PWT and have counselling each
six months. Instead, in the control group, the patients visit doctors every three months
and do not have any associated app neither medical sensors.

The time of usage of the tool may vary depending on the group a patient belongs. It
is not the same when a PU is checking the profile of a patient or counselling her/him,
either when the face-to-face visits are dilated in time or are the unique feedback from
the patient.

It is easy to determine the time spent in the PWT, by using the list of actions
described in “Performance of the Professional Web Tool”, when a PU is actively

254 G. Ibanez-Sanchez et al.

working. However, there are moments where the PU interviews the patient or intro-
duces data that is not evident how to quantify this time. For that reason, we introduce
Process Mining techniques to recognize the different procedures followed by PUs.
The KPI is understood as the time that a professional dedicates to a patient during
a counselling, where is not possible to do more than one counselling per day and
patient. A counselling is described as a face-to-face visit of a patient to the hospital,
where the professional interviews and checks the progress of that patient.
Process Mining allows identifying workflows followed by PUs and inferring the
total time spent. The final KPI value is the median of all value obtained.
Results

Name Metric Target (T) Current KPI value
Number of patients connected to | Number of patients 100 102
INTER-Health

Performance of the Professional Seconds <5s 0.07 s

Web Tool

Body Cloud mobile app usage Minutes >10min 10min 40 s
Professional Web Tool application | Minutes >60min 68.82min

usage

5 Conclusions

Integrated care is a new approach followed in health, which main objective is to
provide a holistic service to patients. It implies to share data from different sources.
In the health environment, there are many different actors, and usually each with
its own independent system. The interoperability among these systems is necessary,
although this should be done in a secure and robust way.

The goal of INTER-Health pilot was to demonstrate the need for a system that
allows the exchange of data and messages among the different actors of a health
operator. In this case, there is only one actor, with the need of integrating different
e-Health solutions, but it can be extended with the integration of new ones (IoT plat-
forms, e-Health applications/services, medical devices, etc.) to enhance the current
portfolio offered by ASLTOS, demonstrating the success of INTER-IoT in a health
environment.

References

1. Suzman, R., Beard, J.R., Boerma, T., Chatterji, S.: Health in an ageing world-what do we
know? The Lancet 385(9967), 484-486 (2015)

2. Fortino, G., Trunfio, P. (eds.): Internet of Things Based on Smart Objects, Technology, Mid-
dleware and Applications. Springer (2014)

3. Fortino, G., Gravina, R., Galzarano, S.: Wearable computing: from modeling to implementation
of wearable systems and body sensor networks (2018)

Interoperability Application in e-Health 255

4.

5.

6.

10.

11.
12.
13.
14.
15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

Gravina, R., Fortino, G.: Wearable body sensor networks: state-of-the-art and research direc-
tions. IEEE Sens. J. (2020)

Li, S., Da Li, X., Zhao, S.: The Internet of Things: a survey. Inf. Syst. Front. 17(2), 243-259
(2015)

Yin, Y., Zeng, Y., Chen, X., Fan, Y.: The Internet of Things in healthcare: an overview. J. Ind.
Inf. Integr. 1, 3-13 (2016)

. Yacchirema, D., Sarabia-Jacome, D., Palau, C.E., Esteve, M.: System for monitoring and sup-

porting the treatment of sleep apnea using IoT and big data. Pervasive Mob. Comput. 50, 25-40
(2018)

. Cebul, R.D., Rebitzer, J.B., Taylor, L.J., Votruba, M.E.: Organizational fragmentation and care

quality in the US healthcare system. J. Econ. Perspect. 22(4), 93—113 (2008)

. Iroju, O., Soriyan, A., Gambo, I., Olaleke, J.: Interoperability in healthcare: benefits, challenges

and resolutions. Int. J. Innov. Appl. Stud. 3(1), 262-270 (2013)

Yacchirema, D., Gonzalez-Usach, R., Esteve, M., Palau, C.E.: Interoperability of IoT platforms
applied to the transport and logistics domain. In: Transport Arena Research Conference 2018,
TRA, Austria (2018)

Giménez, P., Molina, B., Palau, C.E., Esteve, M.: SWE simulation and testing for the IoT. In:
2013 IEEE International Conference on Systems, Man, and Cybernetics, pp. 356-361 (2013)
World Health Organization: Preventing chronic diseases: a vital investment. https://www.who.
int/chp/chronic_disease_report/en/. Accessed Dec 2015

Global status report on noncommunicable diseases 2010. https://www.who.int/nmh/
publications/ncd_report2010/en/. Accessed Oct 2015

Regione Piemonte. Azienda sanitaria locale TOS. https://www.aslto5.piemonte.it/

Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P., Russo, W., Savaglio, C.: Enabling [oT
interoperability through opportunistic smartphone-based mobile gateways. J. Netw. Comput.
Appl. 81, 74-84 (2017)

Pace, P., Gravina, R., Aloi, G., Fortino, G., Fides-Valero, K., Ibafiez-Sanchez, G., Traver,
V., Palau, C.E., Yacchirema, D.C.: IoT platforms interoperability for active and assisted liv-
ing healthcare services support. In: Global Internet of Things Summit, GIoTS 2017, Geneva,
Switzerland, 6-9 June 2017, pp. 1-6. IEEE (2017)

UniversAAL IoT: Home. https://www.universaal.info/

Ram, R., Furfari, F., Girolami, M., Ibafiez-Sanchez, G., Ldzaro-Ramos, J.-P., Mayer, C., Prazak-
Aram, B., Zentek, T.: UniversAAL: provisioning platform for AAL services. In: Ambient
Intelligence-Software and Applications, pp. 105-112. Springer (2013)

Yacchirema, D.C., Sarabia-Jacome, D., Palau, C.E., Esteve, M.: A smart system for sleep
monitoring by integrating IoT with big data analytics. IEEE Access 6, 35988-36001 (2018)
Make it ReAAL: Home. http://www.cip-reaal.eu/home/

Fortino, G., Parisi, D., Pirrone, V., Di Fatta, G.: BodyCloud: a SaaS approach for community
body sensor networks. Future Gener. Comput. Syst. 35, 62-79 (2014)

Wang, Z., Donghui, W., Gravina, R., Fortino, G., Jiang, Y., Tang, K.: Kernel fusion based
extreme learning machine for cross-location activity recognition. Inf. Fusion 37, 1-9 (2017)
Fortino, G., Garro, A., Russo, W.: Achieving mobile agent systems interoperability through
software layering. Inf. Softw. Technol. 50(4), 322-341 (2008)

Fortino, G., Guerrieri, A., Bellifemine, F.L., Giannantonio, R.: SPINE2: developing BSN appli-
cations on heterogeneous sensor nodes. In: IEEE Fourth International Symposium on Industrial
Embedded Systems, SIES 2009, Ecole Polytechnique Federale de Lausanne, Switzerland, 8—10
July 2009, pp. 128-131. IEEE (2009)

Iyengar, S., Bonda, E.T., Gravina, R., Guerrieri, A., Fortino, G., Sangiovanni-Vincentelli, A.L.:
A framework for creating healthcare monitoring applications using wireless body sensor net-
works. In: Panchanathan, S., Gupta, S. (eds.) 3rd International ICST Conference on Body Area
Networks, BODYNETS 2008, Tempe, Arizona, USA, 13—15 Mar 2008, p. 8. ICST (2008)
Bellifemine, F.L., Fortino, G., Guerrieri, A., Giannantonio, R.: Platform-independent develop-
ment of collaborative wireless body sensor network applications: SPINE2. In: Proceedings of
the IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA,
11-14 Oct 2009, pp. 3144-3150. IEEE (2009)

https://www.who.int/chp/chronic_disease_report/en/
https://www.who.int/chp/chronic_disease_report/en/
https://www.who.int/nmh/publications/ncd_report2010/en/
https://www.who.int/nmh/publications/ncd_report2010/en/
https://www.aslto5.piemonte.it/
https://www.universaal.info/
http://www.cip-reaal.eu/home/

256

217.

28.

29.

G. Ibanez-Sanchez et al.

Pace, P, Aloi, G., Caliciuri, G., Gravina, R., Savaglio, C., Fortino, G., Ibafiez-Sanchez, G.,
Fides-Valero, A., Bayo-Monton, J., Uberti, M., et al.: Inter-health: an interoperable IoT solution
for active and assisted living healthcare services. In: 2019 IEEE 5th World Forum on Internet
of Things (WF-IoT), pp. 81-86. IEEE (2019)

European Network of Research Ethics Committees. EUREC—Italy. http://www.eurecnet.org/
information/italy.html

Gulino, M., Maggi, C., Costa, A., Mortara, M., De Luca, 1., Minutolo, M., Uberti, M., Bernini,
L., Corona, M., Maio, F., et al.: Mobile health: studio pilota sul “monitoraggio decentralizzato ed
in mobilita degli stili di vita” nell’ambito del progetto europeo “interoperabilita di piattaforme
eterogenee iot-inter-iot”

http://www.eurecnet.org/information/italy.html
http://www.eurecnet.org/information/italy.html

INTER-LogP: INTER-IoT for Smart)
Port Transportation L

Pablo Giménez, Miguel Llop, Joan Meseguer, Fernando Martin,
and Antonio Broseta

Abstract In the transport chain there are involved several public and private com-
panies including ports, terminals, hauliers companies, shipping lines, freight for-
warders, customs, etc. The transport activity requires the exchange of data and doc-
umentation between these companies. However, each of them has its own system
and it is not easy to share data. This data can be used to provide better services to
their clients. This chapter presents the demonstration of the INTER-IoT components
in a real environment in the port and logistic domain. Three of the main actors in
the transport chain are sharing data in the port of Valencia. With the data provided,
we defined three different scenarios focused on access control and traffic, dynamic
lighting, and wind gusts detection. With this pilot we have shown the benefits of
sharing data in the port and logistic sector using INTER-IoT.

1 Introduction

Port environments are usually a technological level lower than other industrial sec-
tors [1, 2]. That is why they are large areas with a huge potential for deploying
IoT platforms [3, 4]. However when such platforms are deployed are typically not
interoperable and are managed and used by the operator stakeholder (e.g. shipping
line or container terminal operator). Increasing ability to track the location of smart
objects has enabled the monitoring of traffic flows (save time and reduce conges-
tion) as well as the provision of new location-based services (LBS), have enhanced
the effectiveness and interoperability of smart transportation management systems
(STMS). Real-world application scenarios are needed to derive requirements for
software architecture and functionalities of future-generation STMS in the context
of IoT. The deployment of IoT technologies can provide future STMS with huge
volumes of real-time data that need to be linked, aggregated, communicated, anal-

P. Giménez (<) - M. Llop - J. Meseguer
Fundacién Valenciaport, Valencia, Spain
e-mail: pgimenez @fundacion.valenciaport.com

F. Martin - A. Broseta
CSP Iberian Valencia Terminal, Valencia, Spain

© Springer Nature Switzerland AG 2021 257
C. E. Palau (eds.), Interoperability of Heterogeneous loT Platforms, Internet of Things,
https://doi.org/10.1007/978-3-030-82446-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82446-4_9&domain=pdf
mailto:pgimenez@fundacion.valenciaport.com
https://doi.org/10.1007/978-3-030-82446-4_9

258 P. Giménez et al.

ysed, and interpreted [5]. However, being individual, self-contained services, these
offerings fall short in terms of their seamless integration into the network of business
roles conjointly performing the activities required to execute the business processes
or fulfil customer requirements, e.g., interoperability or communication needs [6].

Typical logistic operations within a port can be enhanced due to interoperabil-
ity, e.g. parking space availability, container status, availability of unloading/loading
capabilities at the container terminals, ETAs (Estimated Time of Arrival), and remain-
ing driving times. Currently, these operations have to be performed independently
and with a complete lack of interoperability between components and platforms.
[7]Additionally, the increase in utilization of vehicle/infrastructure electronics and
communications raises security and privacy issues that, if left unaddressed, could
jeopardise the wider deployment of IoT platforms. Security in a transport context
seeks to prevent acts of unlawful interference against freight, goods or the transport
infrastructure. There are several mechanisms, architectures, procedures and proto-
cols in the state of the art to achieve security and privacy in services related with
transportation at national and international level that need to be considered in case
IoT interoperability [8, 9].

INTER-IoT framework applied in the port sector, INTER-LogP, is designed and
built to specifically accommodate the communication and processing needs of trucks,
containers and sensors. This use case test M2M communications of objects in a way
that it can be monitored without any human intervention by different IoT architectures
[3, 10, 11], generating a progress beyond the state of the art in the information
management within the port premises and the business process. This facilitate and
optimize transport operations and intermodal changes from origin to destination
through different logistics nodes and substituting papers and barcodes with automatic
M2M communications between objects.

2 Main Actors

The goal of INTER-LogP pilot is to demonstrate the need for a system that allows the
exchange of data and messages among the different actors of the port community. In
this case, as can be seen in Fig. 1, there are three main actors: the port, the terminal
and the haulier company. INTER-IoT has to provide interoperability between the IoT
platforms of the port and the terminal, and give access to other devices from other
companies, like trucks.

Both the port and the terminal have a large number of sensors and devices that
produce large amounts of data, which can be interesting for other entities. Further-
more, they need data from other companies to provide a better services to their clients
[12, 13].

INTER-LogP: INTER-IoT for Smart Port Transportation 259

 Terminal { . ~ Port

1oT platform® INTER-loT loT platform?
Noatum . = Port Access
machines loT platfom‘ n, . SENSOrS gates b

™Ss

Trucks

X Hauliers

Fig. 1 INTER-LogP high-level pilot design

2.1 Port Authority

The port authority has a large number of sensors distributed throughout the port that
provides data for management and operation. Most of that data is confidential, but
other can be shared, adding value to other companies.

The architecture for providing interoperability from the legacy infrastructure is
the one that can be seen in Fig. 2. Currently, the port authority has a common database
where all the data is stored coming from different systems (in red). It uses WSO2
to provide an IoT architecture in two ways: data in real time through the Message
broker and historic data through the Data services server and Enterprise Service Bus
[14].

Because the port has its own platform, the integration with the INTER-I0T is
done through the middleware. It needs a bridge in the middleware layer in order to
interoperate with order platforms. The integration of new devices, such as the light
controllers, is done using the INTER-IoT gateway to connect them with the IoT
platform.

The port authority of Valencia has a virtual machine in which its IoT platform is
deployed (in green). The platform has an API, which provide services to interoperate
with it. The port bridge developed and deployed in INTER-MW, is using this API to
subscribe to observations and act on the sensors.

The IoT platform is based on WSO2, an open source service-oriented architec-
ture (SOA) middleware. It is designed with independent components, so it can be
adapted for a lean targeted solution to enterprise applications. WSO2 products use
Java technology and are built on top of WSO2 Carbon, a SOA middleware platform.
Carbon makes use of Apache Axis2 and encapsulates SOA functionality such as data
services, business process management, ESB routing/transformation, rules, security,
throttling, caching, logging and monitoring [15].

260 P. Giménez et al.

3 - e

|
Fig. 2 Port IoT platform and integration

Not all components are used as stand-alone implementations. Many of them are
used to supplement the capabilities or add functionality to an implementation of the
Enterprise Service Bus. The main WSO2 components deployed in the [oT platform
are:

Integration

e Enterprise Service Bus: Allows developers to connect and manage systems and
software in accordance with SOA Governance principles.

e Data Services Server: Provides a Web service interface for data stores.

e Message Broker: Translates, validates and routes messages between systems.

API Management

e API Manager: APl management platform for creating, deploying and managing
APIs to expose data and functionality of backend systems.

Identity Management and Security

e Identity Server: Connects and manages multiple identities across applications,
APIs, the cloud, mobile, and Internet of Things devices.

Management and Governance

e App Manager: Facilitates the process of creating, deploying and managing appli-
cations.

INTER-LogP: INTER-IoT for Smart Port Transportation 261

Analytics

e Data Analytics Server: Real-time, batch, interactive and predictive analytics using
enterprise data.

e Complex Event Processor: Real-time event processing and detection. Identify pat-
terns from multiple data sources, analyse their impacts. Uses WSO2 Siddhi and
Apache Storm.

2.2 Container Terminal

NOATUM is the biggest container terminal in the port of Valencia and in the Mediter-
ranean. The correct management of resources in a container terminal implies the
monetarization of all the machinery in the yard, to be able to manage the resources
properly. For that reason, in the NOATUM terminal each of the machines (vehicles,
cranes, etc.) provide massive data about up to 80 sensors per machine each second.

There are around 300 monitored devices such as: STS (Sea-To-Shore) cranes, RTG
(Rubbed-Tyred Gantry) cranes, Reachstackers, ECH (Empty Container Handler), TT
(Terminal Tractor) and dynamic lighting on lamp posts.

So far, data were polled every second from around 200 machines and inserted
into an SQL Server relational database, arising obvious scalability issues. With the
deployment of an IoT platform, now data is sent from the machinery to the IoT
Platform in two ways. Legacy sensors are collected once per second and inserted in
the IoT Platform. New IoT devices are configured to send directly through MQTT
or REST interfaces real-time data [16, 17]. In addition, the data is stored in a non-
relational database, providing faster access to information. This architecture can be
seen in the Fig. 3.

As in the case of the port, the IoT platform of the terminal is integrated with
INTER-IoT through the middleware layer and the API layer, so a specific bridge was
developed.

The container terminal has its own server with its IoT platform. They are mainly
interested in knowing the estimated time of arrival of the truck to the terminal to be
able to manage its yard resources. Furthermore, the terminal gives access to other
companies to some of their own data, such as the entry and exit of trucks by their
gates.

2.3 Haulier Company

Haulier companies have a large fleet of trucks, which access the port daily. These
companies usually have fleet management systems in order to receive data form the
truck. However, they are not exchanging any data with the port or the terminal, only
the proper documentation.

262 P. Giménez et al.

<

interiot

m SEAMS loT Platform ‘

REST API

Device Calibeation and N Complex Event Data analytics
manager pre-processing ”‘“_: Processing dashboard

Message Broker

Machinery

Cranes
Dowicn w Wit = o
9 Trucks a1
Light towers

‘Access control ‘/ \/ —
———— e r -
ool s -
-6 . S—
| sl

Systam
Industrial network Industrial loT network Lighting network Other external systems [no-loT)

Fig. 3 Terminal IoT platform and integration

For the pilot we have designed an alternative system where each truck has a mobile
app (MyDriving) installed in a mobile or a tablet that acts as a bridge between the
vehicle and the [oT platform of the haulier company. All the devices in the truck and
the driver send the data to the IoT platform through the movie app via Bluetooth.

Although there are big transport companies, there are other that do not have the
necessary human resources have and maintain servers in their premises. That is the
reason why the haulier company in the pilot has an Azure IoT platform in the cloud
[18], where their trucks send all the data from the truck. These data is accessible to
other companies as long as they are authorized and certain conditions are met, such
as being inside the port area.

The main Azure modules used in IoT platform are:

e TheIoT Hubis a managed service, hosted in the cloud that acts as a central message
hub for bi-directional communication between INTER-IoT and MyDriving.

e Azure App Service is the service that enables you to build and manage your devices
and applications.

e MyDriving is a mobile app that allow you to send data form your car to the IoT
platform.

3 Use Cases

During the project, we have defined three scenarios where the INTER-LogP archi-
tecture has been tested. These scenarios demonstrate some of the products developed
during the project in some relevant systems in the port. These scenarios are:

INTER-LogP: INTER-IoT for Smart Port Transportation 263

m INTER-oT Middleware

Fig. 4 Haulier company IoT platform and integration

e Pilot IoT access control, traffic and operational assistance
e Pilot Dynamic lighting
e Pilot Wind gusts detection

Furthermore, other scenarios were defined in collaboration with the third parties
of INTER-IoT (Fig.4).

3.1 Scenario IoT Access Control, Traffic and Operational
Assistance

The main objective in this scenario is a service to monitor the gate access in order to
assist the operations at the port. Several systems are able to identify trucks and drivers
using different devices. This information can be shared under certain predefined rules
through interoperability between the IoT platforms involved. This information can
be used to monitor the truck inside the port by the Port Authority platform (security
and safety purposes) and to manage more efficiently resources in the terminal. This
can also allow to avoid queues in the access gates to the port and the terminal [19].

The main benefits we can get from this scenario is to obtain data regarding queues,
congestion and temporary distribution of traffic, to manage efficiently the resources.
Other important data is the position of the trucks while they are inside the port
facilities, for safety and security. All these data can be shared between the port
authority and the port terminals to improve the operation (Fig.5).

264 P. Giménez et al.
&
interiot

Port Terminal

€ noatum

—=-1

;MHE [~ !‘l‘ Y ey 0
Fig. 5 High-level view of gate access scenario

3.2 Scenario Dynamic Lighting

The goal of this scenario is expand the smart illumination (Dynamic Illumination)
in the yard of NOATUM for the rail yard. This area in not lit properly due some
administrative issues.

In this case, the element that are triggering the activation of the lights is the
NOATUM’s personnel and machinery, but the lighting posts that are of the port
authority of Valencia. So it is needed an exchange of data between both companies
to illuminate it properly during the operation.

As can be seen in the Fig. 6, currently the rail yard (green area) is dimly lit with the
container yard lighting posts. The objective is replace the road lighting posts (blue
area) with low consumption lights and a dynamic lighting system, which receive data
from the terminal to change the degree of illumination.

The opposite situation occurs on the railway switchgears at the Noatum’s entrance
(pink area). This area is not illuminated due to the little activity that is carried out.
In this case, the lighting posts are of NOATUM but the operators are from the port
authority (Fig. 7).

The dynamic lighting system is based in the GPS position of the NOATUM port
equipment and long range PIR Sensors (presence sensors).

INTER-LogP: INTER-IoT for Smart Port Transportation 265

Fig. 6 Representation of the dynamic lighting scenario

Anwre 10T

Lighting Pilat Trucks Pilot

INTER-oT APY

INTER-l0T

Bridge SEAMS 2

IoT Plataform APY

o - le
Now o

= E

g

P Raad - AP Comroders 80T APY Rowd - ETTCay Controdery et - Rty

Netum Inlrastructure.

Fig. 7 High-level view of dynamic lighting scenario

The main benefits we can get from this scenario is an energy saving due to the
adaptation of lighting to traffic and operation, and an improvement of the safety and
security in the railway infrastructure due a better illumination.

This scenario was deployed with two different approaches. Firstly, a scenario was
deployed only with the participation of the INTER-IoT partners. Then, there was a
second version in the INTER-DOMALIN pilots, which integrates the technology of
the third party involved in the Open call, called E3TCity.

266 P. Giménez et al.

T

interiot
Port Terminal
etencia¥or: € noatum
@iy L2r

A - |a

Fig. 8 High-level view of gate access scenario

3.3 Scenario Wind Gusts Detection

Currently, both the port authority and each of the container terminals in the port
have anemometers to detect wind gusts. In situations where the wind speed exceeds
a threshold, operations must be stopped for safety reasons. However, each terminal
can only measure information in its premises, so that there is not data of surrounding
areas, making impossible to predict when the stronger wind gusts can be expected.
This makes the first detection of strong wind a risky situation for the operators, since
the hazard is only detected when there is already active. If they were able to receive
this information before, they would stop the operation in a safer way (Fig. 8).

The main benefit we can get from this scenario is improve operational safety at
terminals, enabling an early awareness system that could end up in less accidents
due to environmental phenomena.

4 Pilot Design

The initial high-level pilot design in Fig. 1 can be focused with the information from
previous sections. In Fig. 9, the three 10T platforms are represented with the sensors
that are sharing with companies. In the middle of the figure is INTER-IoT with the

INTER-LogP: INTER-IoT for Smart Port Transportation 267

" Port

/ Terminal

| n INTER-AGT Gtewary
1 INTER tT Middleaare

INTERGT IPSM

Port Access
sensors gates

Noatum
machines

Fig. 9 INTER-LogP pilot design

main components used: INTER-MW, IPSM and the three bridges. There is an extra
INTER-IoT product in the port environment. The lights and PIRs data is sent through
the Gateway.

4.1 Ontology

Each IoT platform has its own ontology defined according to their operations. Port
and terminal have at least three different set of data, which is used in the INTER-
IoT pilots: gate access, environmental, and lighting. NOATUM also includes the
machinery as a set of data. Finally, the haulier company includes data from the
trucks and containers. For each one of them, we have defined a message and they are
included in the ontologies.

4.2 Data Services

The data coming from the three [oT platforms is accessible in two different ways,
depending on the type of data.

To access real-time data, a platform or application can subscribe to different
devices through the MW. If the client has the proper permissions, it is subscribed to
the platform broker to receive the data [20].

268 P. Giménez et al.

In the case of historical data, there are different APIs providing access to the data
stored in the database. The port and the terminal IoT platform have an API manager
where all the published APIs can be found.

4.3 Equipment

The INTER-LogP pilots reuse the existing systems and sensors in the port and the
NOATUM terminal as much as possible. However, the pilots required the deployment
of some additional equipment.

The main equipment included in INTER-LogP are servers for hosting the port and
the terminal IoT platforms. The servers are connected to the different port legacy
systems needed to collect the data.

However, in the case of the lighting scenario new equipment had to be deployed
in order to monitor the two areas involved in the scenario: the rail yard in NOATUM
and the railway switchgear area, which are shown in the Fig. 10.

The new equipment distributed between the port and the terminal is:

e 28 light bulbs

e 35 controllers for lights and PIRs
e 9 PIRs

e 4 routers

e 3 Wi-Fi access points

e 3 INTER-IoT gateways

In Fig.7 is shown how this equipment is connected and controlled through the
different IoT platforms.

Fig. 10 Lighting scenario installation map

INTER-LogP: INTER-IoT for Smart Port Transportation 269

5 Pilot Execution

The first stage in the pilot execution was the deployment and configuration of the IoT
platforms in each environment. After that, all the legacy systems and new devices
were integrated and tested. These integration test were made following the FAT
(Factory Acceptance Test) defined, in a controlled environment.

Then, we started to work in a real environment following the SAT (Site Acceptance
Test). In this stage, we started to work with the real time data needed in the three
scenarios.

Finally, we developed and tested the three scenarios, which are described below.

5.1 Scenario IoT Access Control, Traffic and Operational
Assistance

The main objective of this scenario is verify the integration of all the components
in the IoT access control, traffic and operational assistance scenario in the port and
provide a tool to analyse real time data.

The process that follows the scenario is the following:

1. The truck continuously sends information to the haulier company. This informa-
tion includes the position.

2. Upon arrival, the truck is detected by the port gates system and the associated
data is sent to the port authority IoT platform.

3. The port IoT platform publishes the data to all the entities that are allowed to
receive this data.

4. From this moment, the haulier IoT company starts to share the position of the
truck with the port and the terminal.

5. When the truck is detected by the NOATUM gates system, the data is sent to the
terminal IoT platform.

6. The terminal IoT platform publishes the data to all the entities that are allowed to
receive this data.

7. All the data is gathered, analysed and represented in a dashboard owned by the
port authority (Fig. 11).

All the data gather by the application is shown to the port authority operator to
analyse the real time situation. In the dashboard, he can see the number of trucks and
container accessing and leaving the port, and some figures with average time in the
port and the time spent getting to the terminal. The last one is the most interesting,
as it combines data from the port and the terminal to represent the time needed to
arrive to the terminal [21] (Fig. 12).

270 P. Giménez et al.

00 seorssrs e |

--== nteriot «--

-

o

=

MyDriving

0 ©

=B

Mumber of trucks per hour Number of trucks per day

ame

,
|11 | | 1
.]

Average time to Noatum Average time in the port

Fig. 12 Gate access scenario dashboard

5.2 Scenario Dynamic Lighting

The main objective of this scenario is verify the integration of all the components
in the dynamic lighting scenario, and to develop a smart illumination (dynamic
Illumination) system for the rail yard in the yard of NOATUM.

INTER-LogP: INTER-IoT for Smart Port Transportation 271

Fig. 13 Dynamic lighting scenario process 1

The process that follows the first situation is the following:

1. Activity is detected in the train yard (train, truck, or person) by PIRs located on
the left corner (truck access) or on top of the building.

2. Upon detection, the associated data is sent to the terminal IoT platform to be
processed. The light posts that depend on the terminal raise their light intensity.

3. At the same time, the data is published through INTER-IoT and, hence, shared
with the port.

4. The two platforms managing some of the port streetlights receive the data and
raise the light intensity (Fig. 13).

The process that follows the second situation is the following:

1. Activity is detected in the railway switchgear (train or person) by PIRs located at
the beginning or at the end of the area.

2. Upon detection, the data is sent to the port IoT platform to be processed.

3. At the same time the data is published though INTER-IoT and, hence, shared
with the terminal.

4. The terminal IoT platform receives the data and raises the light intensity in the
area (Fig. 14).

The terminal yard operator has a tool where he can see all the devices in the
terminal. He is able to filter the dynamic lighting system and see the level of light
of each of the lamppost. Clicking in each of the devices it is possible to see the
parameters of the device (Fig. 15).

272 P. Giménez et al.

Fig. 15 Dynamic lighting dashboard

5.3 Scenario Wind Gusts Detection

The main objective of this scenario is verify the integration of all the components in
the wind gust detection scenario and to provide a service to share wind gust data to
improve the safety.

The process that follows the scenario is the following:

1. The port weather stations detect wind data that is stored in the port IoT platform.
2. When the wind gust exceeds a threshold, the event is published through INTER-
IoT.

INTER-LogP: INTER-IoT for Smart Port Transportation 273

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
A

Fig. 16 Wind gusts detection pilot process

3. In the same way, NOATUM has its own weather station that are storing metro-
logical data.

4. When a dangerous wind gust is detected, is also published.

5. All the data is gathered, analysed and represented in a dashboard (Fig. 16).

Port and terminal safety operator have a tool to get real time environmental data.
This dashboard generates alarms when the wind gust exceeds a threshold, and he
can stop the activity to avoid dangerous situations. There are different views with
all the devices deployed in the three ports, figures with historical data, and alarm
management (Fig. 17).

6 KPIs

During the pilot, we were able to gather some data, which was analysed to assess
the performance of systems and the INTER-IoT components. Furthermore, in the
validation plan, some indicators were defined to represent the results.

The list of defined KPIs are:

In the table we can see the number of scenarios deployed in the port and the
number of devices connected, including the contributions from the third parties.
Furthermore, all the technical indicators have been achieved (Table 1).

W

Fig. 17 Wind gust dashboard

Table 1 List of KPIs defined in the evaluation plan

P. Giménez et al.

KPI id Name Description Metric Target | KPI value
KPI.2.01 | Port scenarios Scenarios defined Number | 4 3+(1+10) =14
and deployed to
test different
developments
KPI.2.03 | Number of objects | Number of devices | Number | 250 61+182+2+(10+14)
connected to and sensors =269
INTER-LogP connected to the
different IoT
platforms in
INTER-LogP
KPIL.2.04 | Accuracy ETA vs | Measurement about| Minutes | 5 7.3
ATA the accuracy
between estimated
time of arrival,
versus actual time
of arrival
KPIL.2.05 | Activity detected in | Percentage of trains| % 0.8 0.85
the railway area correctly detected
by system (Arrival
and Departure
trains).
KPIL.2.06 | Trucks detected by | Percentage of % 0.8 0.81
system trucks correctly
detected by system
KPI1.2.07 | Global events Percentage of % 0.8 0.83

detected by system

events correctly
detected by system

INTER-LogP: INTER-IoT for Smart Port Transportation 275

7 Privacy and Security

7.1 Privacy and Confidential

The objective of this project is interoperability, so the exchange of data between
components and platforms is mandatory. However, in the port sector this data could
be sensitive to the owner’s company, so agreements are necessary among the organi-
zations to use the data only for the agreed purpose. Moreover, the information should
not be shared with anyone else [22].

The data used in the INTER-LogP pilot is not critical or sensitive, oppositely to
the health pilot, but it is confidential. The access has to be secure as this data could
be used by competitors for market positioning.

Furthermore, all the INTER-IoT developments and platforms must adapt to the
General Data Protection Regulation (GDPR) legislation that becomes enforceable
on May 2018 [23]. For this reason, the data owner is always capable to give consent,
see who is accessing their data and revoke the access permissions if necessary.

One of the lessons learnt regarding data sharing in a port environment is that
several companies are reluctant to share their data. If these companies are not in the
consortium agreement and they do not see a clear benefit to them, they do not want
to participate [24, 25].

7.2 Security

In addition to privacy and confidentiality, all these processes require a high level
of security. The security must be guaranteed in communications and in each of the
intermediate components. This must be done through the use of secure and encrypted
communication channels and with high security in the middleware [26].

In the port IoT platform there is an Identity Access management module that
manages the security. A token is necessary to access the data through any of the
APISs or the real-time data in the broker. The protocol used for this purpose is OAuth
version 2.0. In fact, the client has to go through two steps before getting a valid token:
first, it must get the client id and the secret key, and second, the client uses the client
id and secret key to request a token using the OAuth2 Client Credentials Grant type.

Apart from OAuth2 access protocol, each client is required to establish a con-
nection using SSL/TSL encryption protocol. Clients need a CA signed certificate in
order to connect with the port [oT platform and thus exchange information encrypted
by both sides.

276 P. Giménez et al.

8 Conclusions

In recent years, there is a need to share real-time data between different companies
in order to offer new services to their clients. In the port environment, there are many
different companies, each with its own independent system. Nowadays they only
exchange some logistic documentation and not sensor data. This new exchange of
data should be done in a secure and robust way.

The goal of INTER-LogP pilot was to demonstrate the need for a system that
allows the exchange of data and messages among the different actors of the port
community. In this case, there are three main actors: the port, the terminal and the
haulier company. INTER-IoT provide interoperability between the IoT platforms of
the port and the terminal, and give access to other devices from other companies,
like trucks. We have demonstrated in three different scenarios the benefits of data
exchange between companies in the port sector.

References

1. Carlan, V., Sys, C., Vanelslander, T. and Roumboutsos, A.: Digital innovation in the port sector:
Barriers and facilitators. Compet. Regul. Netw. Ind., 71-3 (2017)

2. DP World/The Economist Intelligence Unit: A turning point: The potential role of ICT inno-
vations in ports and logistics. DP World, s.1. (2015)

3. Fortino, Giancarlo, Savaglio, Claudio, Spezzano, Giandomenico, Zhou, MengChu: Internet of
Things as System of Systems: A Review of Methodologies, Frameworks, Platforms, and Tools.
IEEE Trans. Syst. Man Cybern. Syst. 51(1), 223-236 (2021)

4. Vermesan, O., Friess, P. (eds.): Digitising the Industry Internet of Things Connecting the Phys-
ical. River Publishers, Digital and Virtual Worlds (2016)

5. Fiosina, J., Fiosins, M., Miiller, J.: Big Data Processing and Mining for the future ICT-based
Smart Transportation Management System. Jurnal Teknologi 63(3) (2013)

6. Giménez, P., Molina, B., Calvo-Gallego, J., Esteve, M., Palau, C.E.: I3WSN: Industrial intel-
ligent wireless sensor networks for indoor environments. Comput. Ind. 65(1), 187-199 (2014)

7. Sarabia-Jacome, D., Palau, C.E., Esteve, M., Boronat, F.: Seaport Data Space for Improving
Logistic Maritime Operations. IEEE Access 8, 4372-4382 (2020)

8. Fortino, G., et al.: Towards multi-layer interoperability of heterogeneous IoT platforms: the
INTER-IoT approach. In: Integration, Interconnection, and Interoperability of IoT Systems,
vol. 199-232. Springer (2018)

9. Broring, A., Zappa, A., Vermesan, O., Frimling, K., Zaslavsky, A., Gonzalez-Usach, R.,
Szmeja, P., Palau, C., Jacoby, M., Zarko, I.P., Soursos, S., Schmitt, C., Plociennik, M., Krco, S.,
Georgoulas, S., Larizgoitia, 1., Gligoric, N., Garcia-Castro, R., Serena, F., Orav, V.: Advancing
IoT Platform Interoperability, River Publishers (2018)

10. Fortino, Giancarlo, Russo, Wilma, Savaglio, Claudio, Shen, Weiming, Zhou, Mengchu: Agent-
Oriented Cooperative Smart Objects: From IoT System Design to Implementation. IEEE Trans.
Syst. Man Cybern. Syst. 48(11), 1939-1956 (2018)

11. Claudio Savaglio, Maria Ganzha, Marcin Paprzycki, Costin Badica, Mirjana Ivanovic, Gian-
carlo Fortino: Agent-based Internet of Things: State-of-the-art and research challenges. Future
Gener. Comput. Syst. 102: 1038-1053 (2020)

12. Celtinkaya, B., Cuthbertson, R. et al.: Sustainable Supply Chain Management, Practical Ideas
For Moving Towards Best Practice, Springer, p. 264 (2011)

INTER-LogP: INTER-IoT for Smart Port Transportation 277

13.

14.

15.

16.

17.
18.

20.

21.

22.

23.

24.

25.

26.

27.

Rodrigue, J.-P.: The geography of port terminal automation, PortEconomics website, https://
www.porteconomics.eu/the-geography-of-port-terminal-automation/. Accessed Apr 2019
Fremantale, Paul. A reference architecture for the Internet of Things. WSO2 White paper, 2015
Fremantle, P., Aziz, B., Kopecky, J., Scott, P.: Federated identity and access management for
the Internet of Things. In: International Workshop on Secure Internet of Things. Wroclaw,
Poland 2014, 10-17 (2014). https://doi.org/10.1109/SI0T.2014.8

Soni, D., Makwana, A.: A survey on mqtt: a protocol of Internet of Things (IoT). In: Inter-
national Conference On Telecommunication, Power Analysis And Computing Techniques
(ICTPACT-2017), vol. 20 (2017,)

Richardson, L.: RUBY, Sam. RESTful web services. O’Reilly Media, Inc. (2008)

Bansal, N.: Microsoft Azure IoT Platform. Designing Internet of Things Solutions with
Microsoft Azure, pp. 33—48. Apress, Berkeley, CA (2020)

. Yacchirema, D., Gonzalez-Usach, R., Esteve, M., Palau, C.E.: Interoperability of IoT Platforms

applied to the transport and logistics domain. In: Proceedings of Transport Arena Research
Conference 2018 (April 2018)

Fortino, G., Liotta, A., Palau, C., Gravina, R., Manso, M. (eds.) Integration, Interconnection,
and Interoperability of IoT Systems, Springer (February 2017)

Belsa, A., Sarabia-Jacome, D., Palau, C.E., Esteve, M.: Flow-based programming interoper-
ability solution for IoT platform applications. In: 2018 IEEE International Conference on Cloud
Engineering (IC2E),pp. 304-309, Orlando (FL) (February 2018)

Pileggi, S.F., Palau, C.E., Esteve, M.: building semantic sensor web: knowledge and interoper-
ability. In: Proceedings of the International Workshop on Semantic Sensor Web, Vol. 1: SSW,
(IC3K 2010), pp. 15.22 (April 2010)

Seo, J., Kim, K., Park, M., Park, M., Lee, K.: An Analysis of Economic Impact on IoT Industry
Under GDPR. Mobile Information Systems (2018)

Giczelis, C., Mavroeidakos, T., Marinakis, A., Litke, A., Moulos, V.: Towards a Smart Port: The
Role of the Telecom Industry (2020)

Cavanillas, M., Edward Curry, J., Wahlster, W.: New Horizons for a Data-Driven Economy: A
Roadmap for Usage and Exploitation of Big Data in Europe. Springer Nature (2016)

Hiro Gabriel Cerqueira, F., Timoteo de Sousa Junior, R.: Security analysis of a proposed Internet
of Things middleware. Clust. Comput. 20.1, 651-660 (2017)

Fortino, Giancarlo, Garro, Alfredo, Russo, Wilma: Achieving Mobile Agent Systems interop-
erability through software layering. Inf. Softw. Technol. 50(4), 322-341 (2008)

https://www.porteconomics.eu/the-geography-of-port-terminal-automation/
https://www.porteconomics.eu/the-geography-of-port-terminal-automation/
https://doi.org/10.1109/SIoT.2014.8

IoT Ecosystem Building m

Check for
updates

Regel Gonzalez-Usach, Carlos E. Palau, Miguel A. Llorente, Roel Vossen,
Rafael Vaiio, and Joao Pita

Abstract A main obstacle for building the emerging IoT ecosystem is the current
lack of standardized infrastructure and thus interoperability, hampering IoT plat-
forms to inter-operate among them and causing a massive proliferation of vertical
silos. Since interoperability is a critical feature for the creation of IoT ecosystems, the
novel open interoperability solutions provided by the H2020 INTER-IoT project can
very significantly promote the creation and expansion of IoT interoperable ecosys-
tems, especially across domains. The road towards INTER-IoT ecosystem building
is described in this chapter, noting the different IoT solutions and domains already
addressed.

1 Introduction

Internet of Things (IoT) is a recent paradigm that is deeply transforming and revolu-
tionizing our world [1]. Most organizations today are under a digital transformation,
changing their business model through the use of IoT technologies and as a result,
providing new critical value-producing opportunities and revenues. Many sectors in
our modern world will face or are already facing a transformation through the IoT that
will open up a new world of possibilities. For example, cities can take an immense
advantage of IoT by adopting the smart city paradigm, which requires the intercon-
nection and coordination of many systems. Also, industry is enormously benefiting
from the Industry 4.0 paradigm, on which IoT has a critical role as a technology
enabler.

Smart Digitalization involves creating, nurturing and maintaining of a vast ecosys-
tem comprising devices, technology infrastructures, markets and industries world-

R. Gonzalez-Usach (X)) - C. E. Palau - M. A. Llorente - R. Vaifio
Universitat Politécnica de Valencia, Camino de Vera, 46022 Valencia, Spain
e-mail: regonus @dcom.upv.es

R. Vossen
Neways Technologies B.V., EP Son, The Netherlands

J. Pita
XLAB doo, Pot za Brdom 100, SI-1000 Ljubljana, Slovenia

© Springer Nature Switzerland AG 2021 279
C. E. Palau (eds.), Interoperability of Heterogeneous loT Platforms, Internet of Things,
https://doi.org/10.1007/978-3-030-82446-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82446-4_10&domain=pdf
mailto:regonus@dcom.upv.es
https://doi.org/10.1007/978-3-030-82446-4_10

280 R. Gonzalez-Usach et al.

wide. It is not easy to achieve and present many challenges to overcome. A main
obstacle for building the emerging IoT ecosystem is certainly the lack of standardized
infrastructure that enables IoT systems to be interoperated across different industry
verticals [2—4]. IoT systems are typically locked as vertical silos of information and
associated services, constrained to a single platform and unable to interact with other
verticals due to the differences between them regarding standards, formats, commu-
nication procedures, information models and semantics [5]. Horizontal integration is
complex, and this fact hinders the creation of fruitful ecosystems, reduces the bene-
fits from the use of the IoT paradigm and hampers the incipient evolution of IoT (e.g.
Ambient Intelligent Environments, natural transparent human-oriented interfaces,
integration with machine learning mechanisms, blockchain security and Artificial
intelligence) [6].

In order to enable IoT horizontal integration, the Inter-IoT framework offers a
valuable set of tools capable of overcoming the barriers of the inherent lack of inter-
operability in IoT at many different levels (i.e. device, network, middleware, data,
semantics, application and services) and boost the disappearance of vertical silos.
Those assets are an open cross-layer framework, an associated methodology and
tools for enabling voluntary interoperability among heterogeneous IoT platforms.
As aresult, INTER-IoT interoperability solutions allow effective and efficient devel-
opment of adaptive, smart IoT applications and services, atop different heterogeneous
IoT platforms, spanning single and/or multiple application domains and creating sig-
nificant added value. This interoperability approach is general-purpose and can be
applied to any application domain and across domains, in which there is a need to
interconnect IoT systems already deployed or add new ones [5].

The use of the INTER-IoT interoperability solution has been explored and applied
for building thriving domain agnostic IoT ecosystems. First, the development of the
INTER-IoT pilots allowed to set the basis for ecosystem building in and across the
domains of e-health, transport and logistics. Second, the launch of the project Open
Call supported by the European Commission represented a key action to obtain the
collaboration of key stakeholders of the IoT landscape, improve and validate the
INTER-IoT framework, and boost the creation and enlargement of interoperable
ecosystems. Third, the adoption of the INTER-IoT solutions in other innovative
projects such as H2020 PIXEL and H2020 LSP ACTIVAGE enabled the creation of
new ecosystems in new domains. Moreover, INTER-IoT benefited from the support
and promotion of the IoT-EPI initiative for promoting ecosystem building across
Europe, and from specific actions that allow to attract stakeholders and adopters
(i.e. dissemination and communication activities and the INTER-IoT open source
release).

This set of actions that lead to the creation and enlargement of an IoT domain-
agnostic ecosystem are described in this chapter. In particular, this document is
mainly focused on the Open Call impact enabling the creation of ecosystems on dif-
ferent domains. Pilots, already described in previous chapters, are indirectly referred
through their relation to some open call projects.

10T Ecosystem Building 281

2 INTER-IoT Ecosystem Creation

INTER-IoT has offered the latest solutions in the area of interoperability and ser-
vice development support, addressing major interoperability needs of IoT platforms
and IoT ecosytems [6]. IoT platforms require interoperability in multiple layers. IoT
connectivity is the first step in making the Smart Objects collect valuable informa-
tion and exploit the vast potential of IoT. It involves linking to sensors, actuators,
Bluetooth, NFC, other low power short range communications, 4G, 5G, syntactic
transformation of data formats, protocol conversion, and even pre-processing of data
in order to deliver the IoT information collected by the Smart Objects through the
Internet to upper systems such as IoT platforms or Cloud services. The access to
IoT middlewares and APIs from IoT platforms, and the possibility of adapting the
data formats and semantics of shared key information to the receiver’s models in real
time, will allow the possibility of sharing key information in real time and having all
of them accessible in a single access point in order to create new applications and
services. Key aspects to achieve across platforms in order to foster an interopera-
ble ecosystem are semantic interoperability, resource access and resource discovery.
Another layer in which interoperability and ecosystem growth is needed, is cross-
platform service composition as IoT platforms provide native services that are not
exploited externally. Additionally, new functions for the creation and management
of Software Defined Networks (SDN) are useful to prevent the network congestion
due to the exponential increase of data on the Internet, providing flexibility to the
networks in case of peaks of traffic, and prepare the ground for 5G.

The outcomes of the Inter-IoT project are a set of interoperability tools that can
provide tight interoperability at each layer of IoT platforms and systems (i.e. INTER-
Layer). Those tools can be used as a whole or separately. This framework can be used
through INTER-FW, a software that provides a usable visual interface for launching
this tools in a virtualized way, providing instantaneous deployment regardless the
underlying technologies and operating system, monitoring of connected IoT plat-
forms through INTER-IoT solutions, and an integrated API of all INTER-IoT layer
solutions, which simplifies the access for developers and users. Moreover, INTER-
IoT also provides a guiding methodology to easily implement interoperability solu-
tions.

In particular, the INTER-IoT assets for layered interoperability are:

e at device level, a smart gateway (i.e. INTER-IoT Gateway) [6] allows to connect
very dispair and heterogeneous IoT devices, with constrained resources and very
limited memory and wireless connectivity. These type of devices are the ones that
typically constitute IoT networks. Inter-IoT smart gateway connects those devices
with the Internet, performing operations of data format adaptation, pre-processing
and protocol conversion. The gateway is decoupled in a real and a virtual part,
and the latter performs network functions and is capable to connect to Software
Defined Networks (SDN) and support Network Function Virtualization (NFV)
functionality, at a network level. This smart gateway allows the seamless inclusion

282 R. Gonzalez-Usach et al.

DATA & SEMANTICS

0
=
(o}
v
¥
5
<
m
o

HL3W-431NI

Fig. 1 INTER-IoT layered interoperability solutions

of new IoT devices and their interoperation with already existing heterogeneous
ones, allowing a fast growth of smart objects ecosystems (Fig. 1).

o at middleware level, the INTER-MW engine [7], allows to connect seamlessly
to any IoT platforms and allows communication on top, or between them, despite
of the different communication interfaces, standards, data format and information
model. The combination of INTER-MW with the Inter Platform Semantic Media-
tor (IPSM) component [6] from the semantic layer provides real-time data format
and semantic information model adaptation of the data from platforms, translat-
ing in real-time the information from the sender’s semantics into the receivers’
semantics, in order to make information understandable by the receiver, and thus
providing syntactic and semantic interoperability. INTER-MW provides access to
connected resources and performs resource discovery.

o at semantic level, as mentioned, the IPSM [8] which is able to provide semantic
interoperability by performing real-time semantic translations between connected
entities. It can be used separately from INTER-MW, and it employs a central
ontology specifically designed for IoT in the INTER-IoT project, called GOIoTP,!
which extends W3C SSN/SOSA .2

! https://inter-iot.github.io/ontology/.
2 https://www.w3.org/ TR/vocab-ssn/.

https://inter-iot.github.io/ontology/
https://www.w3.org/TR/vocab-ssn/

10T Ecosystem Building 283

e at application level, the AS2AS graphic tool [6] allows to easily combine appli-
cation and services from different IoT platforms, creating sequences of service
composition and service execution in cascade on-demand.

e at all layers (i.e. cross-layer), it is aimed to guarantee non-functional aspects that
must be present across every layer: trust, security, privacy, and quality of service.

Those INTER-IoT interoperability solutions can very significantly boost the cre-
ation and growth of IoT ecosystems, by providing horizontal integration of vertical
isolated systems and IoT interoperability at all levels. The ecosystems would be
domain-agnostic, as the INTER-IoT technology can be applied to any domain, or
across domains, in which there is a need of interoperability [9].

It should be noted that the openness of the solutions is also a key enabler of ecosys-
tem building, as this feature incentivizes the adoption, support and future extension,
attracting developers and stakeholders, as well as an open-source community.

3 INTER-IoT Open Call

In a continuously evolving IoT landscape with new protocols, platforms, communi-
cation and network technologies, ontologies, there is a need for flexibility, constant
update and openness. Partnering with the latest cutting-edge technology vendors and
developers represents an important means to accomplish this objective. To collabo-
rate or associate with the right partners is essential to develop better solutions and
enlarge the IoT ecosystem with crucial support and promotion.

One important step towards IoT ecosystem creation in the INTER-IoT project
was the launch of the INTER-IoT Open Call to incentivize external stakeholders to
use INTER-IoT interoperability tools and create new technology solutions based on
the INTER-IoT framework.

The Open Call has been an important means towards exploitation and validation
of the Inter-IoT solutions: tools (INTER-Layer), framework (INTER-FW), method-
ology (INTER-METH) and developed technologies. Moreover, through the Open
Call the INTER-IoT ecosystem widened by involving new partners and enhancing
the offerings of the interoperability solutions. Indeed, the Open Call represented a
key tool to impact and attract new stakeholders around an Inter-IoT interoperable
global ecosystem, across many different application domains, while consolidating
the stakeholders’ relationships.

This call was open to individual European Small and Medium Enterprises (SMEs),
Universities and Research Center Organizations (RTOs) that could contribute to the
INTER-IoT paradigm.

This action allowed the evolution of the INTER-IoT products (i.e. INTER-Layer,
INTER-FW and INTER-METH) to match the needs of proposers, but at the same
time evolve their products in order to add new interoperability features. Moreover,
this action allowed to test, validate and improve INTER-IoT components and their
associated methodology, and add new scenarios, platforms and components on which

284 R. Gonzalez-Usach et al.

achieve interoperability. The proposals accepted validated the Inter-IoT solutions at
different application domains.

The Inter-IoT Open Call was conducted following the basic principles that govern
European Commission calls provided in the “Guidance note on financial support to
third parties under H2020: excellence of selected proposals, transparency, fairness
and impartiality, confidentiality, efficiency and speed of evaluation.

The activities eligible to receive funding from the European Commission involved
the integration of new components for a specific layer solution (i.e. device, network,
middleware, application, data and semantics) that improve or extend the interoper-
ability solution functionality and thereby INTER-FW, the integration of new IoT
platforms in the INTER-IoT ecosystems and their application on the project pilots,
and the enhancement of aspects of INTER-FW and INTER-METH. The detailed
list of eligible activities for Open Call participants, as listed in the Grant Agreement
between the European Commission and the INTER-IoT Consortium, are:

e Design, implementation and integration of interoperable device layer components
for INTER-FW. Device layer components should be based on different low-
level communication standards (e.g. Zigbee, 6LowPan, WIFI, Bluetooth, IEEE
802.15.4, NFC, etc.) or on ad hoc proprietary device solutions.

e Design, implementation and integration of interoperable networking layer compo-
nents for INTER-FW. Networking layer components should be based on different
standards higher-level communication standards (e.g. TCP/IP, HTTP, CoAP, etc.)
or on ad hoc proprietary networking solutions.

e Design, implementation and integration of interoperable middleware layer compo-
nents for INTER-FW. Middleware layer components need to deal with the different
middleware services such as discovery, management, querying, coordination and
interaction.

e Design, implementation and integration of interoperable application service com-
ponents for INTER-FW. Application service layer components should exploit
major standards e.g. HTTP, SOA, or REST as well as proprietary solutions.

e Design, implementation and integration of interoperable data and semantics layer
components for INTER-FW. Specifically semantics layer components have to deal
with heterogeneous IoT ontology matching.

e Design, implementation and integration of virtualization mechanism for smart
objects and platform of smart objects for INTER-FW, including context-aware
mechanisms and transfer of virtual objects between servers and cloud platforms.

e Design, implementation and integration of cloud support mechanisms to be inte-
grated in INTER-FW, including support for different services, inter cloud mech-
anisms applied to 10T and support for virtualization.

e Design and implementation of new components of the INTER-METH tool for
supporting integration among IoT platforms. Extension of the INTER-METH tool
is needed to include the support for other IoT platforms to be made interoperable.

e Development of services/applications on top of the proposed use cases (INTER-
Health and INTER-LogP) by (re)using the INTER-API to obtain a novel INTER-
IoT ecosystem, representing the INTER-DOMALIN use case.

10T Ecosystem Building 285

e Integration of IoT platforms in the three addressed use cases (INTER-Health,
INTER-LogP, INTER-DOMALIN), following the INTER-METH methodology and
the employing the INTER-IoT associated tools.

Next, itis presented the summary of the selected stakeholders that received funding
from the European Commission and the different contributions that they proposed
and provided. There were 2 large proposals, with a major budget and very ambitious
objectives:

e Integrating sensiNact platform with INTER-IoT-Framework—CEA, Com-
missariat a I’energie atomique et aux energies alternatives (France/RTO)
e INTER-OM2M—VUB, Vrije Universiteit Brussel (Belgium, university).

As potential solutions that relied on a medium budget, 10 different small proposals
were accepted:

e INTER-HARE platform: Integration of multiband IoT technologies—
Universitat Pompeu Fabra (Spain/University)

e Mission Critical operations based on IoT analytics (MiCrOBIoTA)—
Nemergent Solutions S.R.L. (Spain/SME)

e Interoperable Situation-Aware IoT-Based Early Warning System—University
of Twente (The Netherlands/University)

e SENSHOOK—Irideon S.L. (Spain/SME)

e SOFOS: A software-defined end-to-end IoT gateway with virtualization—

INFOLYSIS P.C. (Greece/SME)

E3Tcity Smart City Platform and Devices Integration—E3TCity (Spain/SME)

e ACHILLES: Access Control and autHenticatlon deLegation for interoper-
abLE IoT—AUEB—Athens University of Economics and Business Research
Center (Greece/University)

e INTER-HINC: Interoperability through Harmonizing IoT, Network Func-
tions and Clouds—TU Wien, Vienna University of Technology (Austria/
University)

e A Semantic Middleware for the information synchronization of the IoT
devices—ITIA-CNR, Institute of Industrial Technologies and Automation National
Research Council (Italy/RTO)

e SecurloTy—security for the IoT: AvailabilityPlus GmbH (Germany/SME).

As it can be appreciated in Fig. 2, the different proposals contributed to diverse
aspects and areas of the INTER-IoT set of interoperability solutions. The majority
of Open Call partners contributed with integrations on the different layer solutions
of INTER-Layer.

Most Open Call contributions were related with the middleware layer (CEA, VUB,
ITIA-CNR, e3tcity, TU Wien). This layer represents the level of IoT systems on which
IoT information generated by Smart Objects flows across large streams of data in
IoT platforms. CEA and VUB integrated IoT platforms with Inter-IoT by extending
the Inter-MW solution with 2 new platform bridges. This way, both sensiNact and a
smart city OneM2M platforms were able to seamlessly interoperate with other IoT

286 R. Gonzalez-Usach et al.

UNIVERSITY |

Nemergent OF TWENTE.
INTER-FRAMEWORK
oaassemantics | ([|p
(APPLICATION R
(@)
-. = 2
[MIDDLEWARE ~ — . '3 =
= irideon | BN &
=1 o ;
i,.. NETWORK |NF:" \:I :N ﬂ
LYSiS =
> B,
| DEVICE
upf. e3f{e

Fig. 2 Applications and contributions to different INTER-IoT interoperability solutions

platforms and systems connected to the Inter-MW solution, instead of being isolated
platforms unable to communicate with others. The bridges will also enable the future
connection of any instance of these type of platforms (sensiNact and OneM2M) to
Inter-MW. In particular, the sensiNact bridge was reused in other H2020 project,
ACTIVAGE, providing interoperability and numerous interoperability-related ben-
efits to an Active and Healthy Ageing growing ecosystem.

E3tcity provided a Smart City platform with associated applications, which was
integrated with the interoperability middleware and application solutions (Inter-MW
and AS2AS). And differently, ITIA-CNR developed a Semantic Middleware (i.e. a
semantic IoT platform) for the synchronization of IoT devices, which included the
semantic dimension and involved the use of the Inter-IoT ontology and the Inter-MW
solution.

Regarding network interoperability, the Open Call partner INFOLYSIS provided
an important solution: a fully virtual smart gateway capable of supporting functions
of network virtualization (SOFOS, a software-defined end-to-end IoT gateway with
virtualization). Moreover, INFOLYSIS improved the INTER-IoT virtual gateway
providing additional SDN and FNV functionality via the addition of new modules
on top.

10T Ecosystem Building 287

On the device layer, e3tcity aimed to integrate Smart Devices from a real Smart
City using the Inter-IoT Smart Gateway and the e3tcity IoT platform. Also, UPF
focused on the integration of multiband IoT technologies belonging to the device level
in their INTER-HARE solution, which contributed to improve the Inter-IoT Smart
Gateway functionality. Moreover, Irideon provided SENSHOOK, an IoT system that
incorporates a smart solution for capturing mosquitoes, tested in the port of Valencia,
one of the most important hubs in the world and a critical point for the entry of
invasive species. This IoT system integrated the INTER-IoT Gateway as a middle
element in their solution that allowed to collect data from the IoT Mosquito Trap
system and deliver it to the SensHook monitoring IoT platform. A critical cross-layer
feature for IoT systems is security, which must be provided across all INTER-Layer
solutions, and to systems connected to INTER-Layer. Both AvailabilityPlus and
AUES provided security mechanisms for IoT that enhanced the security provided
through the use of INTER-Layer solutions.

Independently of Inter-IoT independent layer solutions, the University of Twente
and Nemergent opted for feeding their full IoT systems with IoT data via the INTER-
IoT solution. This data came from platforms connected to the INTER-IoT interoper-
ability solution, and it was retrieved by Twente and Nemergent systems through the
use of the INTER-IoT API (Inter-API) provided by INTER-FW. The University of
Twente developed an Interoperable Early Warning System based on the monitoring
of IoT sensoring devices which provided situation awareness and enabled prompt
warning in case of abnormal situations that require external attention. On the other
hand, Nemergent provided a solution for Mission Critical Operations based on IoT
analytics, called MiCrOBIoTA.

Finally, TU Wien provided a solution that covered all INTER-IoT layers solutions
in addition to enhance the INTER-FW, in order to provide Interoperability through
Harmonizing IoT, Network Functions and Clouds (INTER-HINC). This solution
allowed an easy launch and management of all INTER-Layer solutions, and it was
integrated in INTER-FW, significantly improving the INTER-IoT framework func-
tionality.

From an overall perspective, the Open Call projects a set fully exploit the func-
tionality of the diverse Inter-IoT interoperability solutions and contribute in a well-
balance manner to the whole areas of the Inter-IoT framework and the expansion of
the ecosystem in different domains: Smart City, Port environment, AHA, Sanitary
Plague Smart Prevention, e-Health, Critical Operation. Moreover, they contributed
to the development of IoT cutting-edge technology such as the reception and inter-
operability of the latest multiband technologies or the creation of a novel seman-
tic middleware. Furthermore, the availability of more and new data, thanks to the
interoperability solutions, stimulates the creation of new opportunities, services and
products.

In the following subsections, each of the Open Call projects contribution for the
IoT ecosystem, along with their integration with INTER-IoT, is described.

288 R. Gonzalez-Usach et al.

3.1 E3Tcity Smart City Platform and Devices Integration

E3Tcity platform® is a Smart City platform in production stage used in more than
20 towns in Spain, which provides a wide variety of services spanning from public
lighting control to mobility control solutions such as traffic, parking, crowd, traffic
lights, irrigation and water quality, and heating, ventilation and air conditioning
control. All those services are remotely controlled and monitored.

ET3city platform was integrated with INTER-IoT at middleware level, achieving
interoperability with other entities connected and providing INTER-IoT a whole
device-cloud-app solution that could be applied in IoT scenarios, such as INTER-
LogP port pilot. For this integration, it was necessary to develop an interoperability
bridge for E3Tcity platforms that connects to Inter-MW.

In order to validate the integration of et3city with INTER-IoT, and to take advan-
tage of the use of the platform resources in an INTER-IoT pilot, it was performed a
technical feasibility assessment of the integration of E3TCITY devices the INTER-
IoT architecture, via the use ModBus and MQTT standards, in the port of Valencia.
The final result was the integration of the et3city solution in the lighting pilot of
INTER-LogP, on which the platform interacted and interoperated seamlessly with
several port management loT platforms to create a smart lighting system, thanks to
the interoperability provided by Inter-MW.

3.2 SENSHOOK

SENSHOOK is a smart solution provided for Plague Prevention and Disease Control
via IoT technologies. Several mosquito species can bring lethal diseases to humans,
and its entrance in the country must be controlled and monitored for the sake of citizen
safety. The port of Valencia is one of the most important hubs in the world and thus
a critical point of entry of invasive species that must be monitored, according to the
European Centre of Disease Control. For these reasons, it represents a key neuralgic
center for applying the SENSHOOK solution.

Non-native species cost the EU €12 billion per year in damage and control costs. In
the last decades several species of disease carrying mosquitoes have invaded Europe
through the transport of goods, international travel and climate change. SensHook
potentially reduces inspection costs and improves surveillance programs.

The system was deployed as a set of observation static IoT nodes in a critical point
of the port of Valencia. These nodes were composed of a Smart Mosquito Trap capa-
ble of mimicking human body signals (scent and respiration) and of automatically
counting captured mosquitoes, identify the gender and the species. The information
collected by each node was sent to a central server.

3 https://partners.telefonica.com/es/buscador-partners/e3tcity-sl-8b6e9021-6344-¢711-8166-
3863bb34ed80.

https://partners.telefonica.com/es/buscador-partners/e3tcity-sl-8b6e9021-6344-e711-8166-3863bb34ed80
https://partners.telefonica.com/es/buscador-partners/e3tcity-sl-8b6e9021-6344-e711-8166-3863bb34ed80

10T Ecosystem Building 289

Trap /}!»! !t Server running Senshook bundles

_/f \ and virtual gateway Middleware platform

oo

TCP/UDP HTTP

Sensor Senscape Board

Fig. 3 SENSHOOK system overview

The following diagram provides a high-level overview of the system. Every time a
mosquito enters in the trap it becomes detected by the sensor. This sensor is connected
to a Senscape board which sends the information to a server running SensHook and
to the INTER-IoT virtual gateway. The middleware platform can then retrieve the
gathered information, sent by the INTER-IoT Virtual Gateway. The communication
between the trap and the monitoring IoT platform is bidirectional (Fig. 3).

The pilot started with preliminary tests in the zoo of Barcelona in May-June
2018 and lasted until October 2018, covering exactly the period of the year when
disease-vector mosquitoes are active and must be critically monitored.

Irideon S.L.* contributed to the INTER-IoT project by providing a new open tool
for the INTER-LAYER building block (a virtual gateway connector for enabling the
connection with the trap). This contribution will allow the evolution of products based
on INTER-IoT, and at the same time will allow Irideon S.L. to evolve SENSHOOK
products in order to add new interoperability features.

3.3 MiCROBIoTA: Mission Critical Operations Based on
IoT Analytics

The “Mission Critical operations based on IoT analytics” (MiCrOBIoTa) project,
developed by Nemergent,® aims at exploiting the INTER-IoT platform as a means
to gather information from heterogeneous sensors of diverse IoT platforms in a
converged way. This way, the Nermergent Control Room engine receives IoT sen-
soring information from a monitored environment, from IoT platforms connected to
INTER-IoT (Inter-MW). This information will be used to perform Mission Critical
Operation on those environments.

4 http://irideon.eu.
3 https://nemergent-solutions.com/lang/es/.

http://irideon.eu
https://nemergent-solutions.com/lang/es/

290 R. Gonzalez-Usach et al.

Emergency Control = Integrated loT and
Centre (CCE) PTT communications
«“—— -
- H\--_—K -
o e 14
df} e ot - >
- =
———
Port Road Early
authority haulier Warning
loT) loT System
Port Health
\?'g u+ ‘ _ Monitoring)/ Mmonitoring
“0—O RS QSsteme””

QO

v

000

Fig. 4 MiCrOBioTa cross-domain use case employing interoperability solutions

As aresult, Nemergent integrated a new IoT monitoring and analytics component
in its product portfolio, and especially into the Nemergent Control Room application.
Figure4 illustrates the overall Nemergent mission critical applications framework
and the specific scope of the work in MiCrOBIoTa.

The benefits of the interoperable “Mission Critical operations based on IoT ana-
lytics” are unquestionable. A typical situation in mission critical operations support
systems is to include information coming from specifically deployed devices to gather
environmental measurements. Examples of these devices are temperature sensors,
meteorological and hydrological probes, traffic monitoring cameras, etc. The Mis-
sion Critical IoT (MC-IoT) system, which includes a new monitoring and analytics
component and an evolved Control Room interface tailored to the specific needs of
the use case. In the case of a simulated crisis, significant information from on-body
health-related sensors and port logistics devices will provide life-saving information
to the mission critical operations support system. Besides, the available mission crit-
ical communications components can be used to demonstrate the crisis handling use
case.

10T Ecosystem Building 291

MiCrOBloTa defined a cross-domain IoT scenario in the scope of mission critical
operations. Moreover, it contribute to INTER-IoT activities related to the definition
of the common semantics for specific mission critical scenarios. Also, for the inte-
gration with INTER-IoT, NEMERGENT developed a new component to cover the
communication with the INTER-IoT platform. This component, namely “Nemer-
gent MC-IoT monitoring and analytics”, interfaces with INTER-IoT API and with
the Nemergent Control Room application. This connector implements all the neces-
sary calls to the INTER-IoT API in order to gather the selected information with the
corresponding message formats and data types.

The Nemergent Control Room application was adapted to perform basic IoT-
related operations. Activities were monitored and controlled through the use of the
evolved Nemergent Control Room. A service was created to perform specific actions
in response to each of the messages. For example, temperature variation can be
monitored, raising an alarm when it exceeds a predetermined threshold.

3.4 Interoperable Situation-Aware-loT-Based Early Warning
System

The University of Twente® provided an Early Warning System (EWS) on top of an [oT
platform (FIWARE?), which interoperates with other EWSs, emergency systems and
emergency services [10]. The system coordinates emergency services based on IoT
smart monitoring, alerting the involved parties (e.g. emergency command control,
first responders and employees) when an accident occurs. The set of emergency-
related services and the alert management are on top of different IoT platforms,
and are coordinated through the IoT-based EWS, by enabling data exchange among
them. Those platforms are very heterogeneous in terms of semantics and informa-
tion models, and are not directly interoperable. To enable the sharing of informa-
tion among them, IoT ontology translations are performed through the IPSM from
INTER-Layer. This way, semantic interoperability is enabled across the different
heterogeneous IoT systems, adapting the semantic model of the data to be under-
standable for the receiver. Several semantic models for disaster management were
employed, which combined e-Health standards, context awareness and logistics.
Notably, it was enabled of interoperability between the most important ontologies
for IoT, the Smart Appliances REFerence ontology (SAREF®) and W3C Semantic
Sensor Network Ontology (SSN?).

This EWS was implemented and validated in a cross-domain use case that com-
bined the e-health, port logistics and transportation domains, allowing early warning
in ships and boats in case of health emergency [11]. In the port of Valencia, on which

6 https://www.utwente.nl/en/.

7 https://www.fiware.org.

8 https://saref.etsi.org.

? https://www.w3.org/TR/vocab-ssn/.

https://www.utwente.nl/en/
https://www.fiware.org
https://saref.etsi.org
https://www.w3.org/TR/vocab-ssn/

292 R. Gonzalez-Usach et al.

it was implemented this solution, transportation companies (haulers) and insurance
companies could benefit from the IoT EWS by reducing disaster risks involving the
employees and the goods being transported. This EWS project had significant impact
on the [oT solutions industry, as it provides innovation by enabling the data exchange
of different data formats from heterogeneous IoT platforms to detect and alert emer-
gencies. Also, it represents a low-cost business model for logistics, healthcare and
insurance companies.

Main technical achievements for the enablement of this novel EWS are the fol-
lowing:

e Semantic integration of a variety of data sources, avoiding a loss of semantics when
multiple ontologies, standards and data models from different and overlapping
domains are involved. considering their syntactic and semantic alignments.

e Processing in time- and safety-critical applications: provide the required perfor-
mance for upstream data acquisition, emergency risk detection and message bro-
kering, in terms of scalability and total transaction time.

e Data analysis for effective response: enable high quality situation awareness to
avoid false positives and improve decision support based on emergency procedures.

3.5 INTER-HINC: Interoperability Through Harmonizing
IoT, Network Functions and Clouds

INTER-HINC provided a framework for building “IoT Cloud systems” that link and
use different IoT platforms. A main objective of the framework was to allow complete
interoperability and integration between those platforms in the Cloud system and
focusing on data integration and protocol integration via plug-ins and APIs (that
includes INTER-API and Inter-MW). INTER-HINC relies on resources (offered
by IoT, network functions and cloud providers) and software artefacts that can be
instantiated [12]. This way, it makes use of network functions, cloud functions, edge
computing brokers, edge computing workflows engines and domain and application
specific services, as well as virtualized INTER-IoT solutions.

For creating this solution, TU Wien'® made use of INTER-IoT interoperability
tools and INTER-API, creating a framework that allowed an instantaneous deploy-
ment of the layer solutions, regardless the underlying operating systems and tech-
nologies, through advanced virtualization techniques. By means of the INTER-IoT
virtualized solutions, it was possible the linking of several platforms on the Cloud,
providing interoperability across them at all levels (including data and protocol).
This INTER-HINC framework was seamlessly integrated in INTER-FW, notably
enhancing the INTER-IoT framework functionality [13].

10 https://www.tuwien.at.

https://www.tuwien.at

10T Ecosystem Building 293

3.6 A Semantic Interoperable Middleware for the
Information Synchronization of the IoT Devices

ITIA-CNR developed one of the most ambitious Open Call IoT solutions: the cre-
ation of an interoperable semantic middleware for IoT (i.e. semantic [oT platform).
From a semantic perspective, this middleware adopted the Global IoT Ontology (i.e.
GOIoTP)!! from INTER-IoT, and ensured by design that all exchanged information,
including synchronization requests, is expressed under a semantic model. Very few
IoT platforms adopt a complete semantic model for IoT information management,
being this a very novel and interesting feature.

ITTA-CNR successfully developed a publish-subscribe middleware that combines
Semantic-Web and agent-based technologies to provide services for events notifica-
tion, and designed a mechanism with which devices can subscribe to the Semantic
Middleware [14] to receive alerts related to the changes of the state of one or more
elements of interest.

The integration of ITIA-CNR Semantic Middleware with INTER-IoT [15] was
performed at two different levels. First, as a middleware or IoT platform it was
integrated with Inter-MW (INTER-IoT interoperability solution at middleware level)
through the creation of an specific Inter-MW bridge that connected both artifacts, and
could be reused on any instance of this new middleware. This way it could interoperate
seamlessly with other IoT platforms, receiving information from them in this new
middleware’s format, semantics and information model. From the other hand, from
a semantic perspective, it followed the INTER-IoT ontology (i.e. GOIoTP), thus
directly integrating with the INTER-IoT semantic model (Fig. 5).

3.7 INTER-HARE Platform: Integration of Multiband IoT
Technologies

Inter-HARE [16] is focused on the integration of new multiband IoT technologies.
This area is clearly related with the technologies employed in the IoT device layer,
and the interoperability of Smart Gateways. Their solution integrated with the Inter-
IoT Smart Gateway, the interoperability solution provided by Inter-IoT for the device
layer that enables the communication of dispair IoT devices with the IoT platform,
employing very heterogeneous communication technologies and network protocols.

One of these network technologies is LPWAN (low-power wide-area network), a
type of wireless telecommunication wide area network designed to allow long-range
communications at a low bit rate among IoT Smart Devices (connected objects),
such as sensors. The low power, low bit rate and intended use distinguish this type
of network from a wireless WAN (wide area network) that is designed to connect
users or businesses, and carry more data, using more power. LPWAN is a recent

1 https://inter-iot.github.io/ontology/.

https://inter-iot.github.io/ontology/

294 R. Gonzalez-Usach et al.

|5ensor. [::)M! 8: Update i

'““““39': | GOloTP

Smart ' IPSM
| sml |:>w~0— — AN et
cangel — Manager ml’ﬁ C MC'_‘

T[: i

Messasmg System (Active MQ) [
with Request-Response interaction pattern
aQn If Qfl

] semantic Broker ‘
T integrated INTER-IoT components Bridge

Fig. 5 Overall architecture of Semantic Middleware and its interaction with INTER-IoT solutions

Semantic Repository

ol

SPARQGL endpoint

REST over

Jw!k Ao

technology IoT-oriented, as solves the connectivity problem of most IoT devices that
typically have very limited energy and thus very reduced wireless distance reach.
A LPWAN may be used to create a service or infrastructure allowing the owners of
sensors to deploy them in the field without investing in gateway technology.

The INTER-HARE project is intended to design a new LPWAN technology flexi-
ble enough to transparently encompass both LPWAN devices and multiple so-called
low-power local area networks (LPLANSs) while ensuring overall system’s reliability.
A cluster-tree network is created, where the LPWAN acts not only as data collector,
but also as backhaul network for several LPLANSs, as shown in Fig. 6, in which is pos-
sible to see the role of the Inter-IoT Gateway in the INTER-HARE set-up, managing
their corresponding LPLAN, to which sensors connect, in a hierarchic way.

Communication within the LPWAN is based on the HARE protocol stack
[17], ensuring transmission reliability, low energy consumption by adopting uplink
multi-hop communication, self-organization, and resilience. Under these premises,
LPWAN boundaries are extended beyond typical 868 MHz coverage range and eas-
ily integrate devices coming from adjacent/overlapping 2.4 GHz LPLANs. The use
of separated frequency bands in overlapping networks results in an overall reduc-
tion of interferences. Lastly, thanks to the hierarchic system proposed, scalability is
enforced by a management based on sub-networking techniques.

The INTER-HARE platform is conceived as an innovative evolution of HARE
protocol stack and can be considered as a dynamic multiprotocol. INTER-HARE
successfully guaranteed a transparent network interoperability and a unified, cen-
tralized, self-organized control of heterogeneous devices. Moreover, this project
designed, developed and tested a novel end-to-end communication protocol, both
from the LPWAN and from the LPLANSs. For this aim, it was built a simulation

10T Ecosystem Building 295

INTER-HARE network environment

~I Single band devices (2.4 GHz) "I Dual band devices (868 MHz / 2.4 GMz)

Fig. 6 INTER-HARE network environment

platform based on open-source technologies for preliminary testing of communica-
tion mechanisms, a preliminary testbed with heterogeneous devices in laboratory,
and finally it was performed a pilot execution of the whole platform in a real IoT
environment and use case. Statistics were collected by the Inter-IoT virtual gate-
way regarding network’s resilience and self-organization as well as communication
performance, proving the success of this technology environment.

3.8 SOFOS: A Software-Defined End-to-End Gateway with
Virtualization

The disruptive and accelerated arrival of the IoT implies that future networks need
a new architecture to accommodate end-to-end IoT networking, dealing with: (i)
the exponential massive increase in data generation, (ii) the problems related to the
end-to-end IP networking of the resource-constrained IoT devices, (iii) the capac-
ity mismatch between devices, and (iv) the rapid interaction between services and
infrastructure.

296 R. Gonzalez-Usach et al.

Software defined networking (SDN) and network function virtualization (NFV)
are two technologies that promise to cost-effectively provide the scale and versa-
tility necessary for IoT services in order to address efficiently the aforementioned
challenges. Moreover, given that SDN and NFV are considered fundamental com-
ponents in the 5G landscape, since it is widely recognized that 5G networks will
be software-driven and most components of future heterogeneous 5G architectures
should be capable to support software-network technologies, both SDN and NFV are
promising candidate technologies for a Software Defined Approach of end-to-end
IoT Networking [18].

SOFOS [19] complemented the existing INTER-IoT framework with SDN and
NFV functionalities towards a Software-defined end-to-end IoT infrastructure with
IoT service chaining support. The main objective of SOFOS SDN/NFV-enabled
framework is to enhance the interoperability of the INTER-IoT framework in order
to facilitate the interoperable management of a large number of diverse smart objects
that currently operate utilizing a variety of different IoT protocols (CoAP, MQTT,
HTTP, etc.).

SOFOS added SDN/NFV Automation and Verification in IoT Infrastructures to
relocate various IoT functions from HW appliances to Virtual Machines (VMs) (i.e.
Virtual Network Functions—VNFs), to enhance the interoperability support of the
INTER-IoT platform by deploying VNFs that map IoT protocols (such as CoAP,
MQTT) to standard IP networking, to connect and chain the software-defined IoT
functions (i.e. VNFs) together and to abstract plane by exploiting the SDN concept.

INTER-IoT infrastructure with the proposed advances can be enhanced by means
of NFV with integration of SDN, making it more agile and introducing a high degree
of automation in service delivery and operation-from dynamic IoT service parameter
exposure and negotiation to resource allocation, service fulfilment, and assurance.
SOFOS has deployed on top of INTER-IoT virtual gateway modules that provide
SDN/NFV Automation in IoT Infrastructure, such as INFOLYSiS SDN/NFV Net-
work Manager. By applying appropriate OPENFLOW commands, INFOLYSiS add-
on steer the data traffic from the INTER-IoT Virtual Gateway to the various VNFs
deployed, which is translated into a common protocol (e.g. HTTP). This way, the
interoperability functions of INTER-IoT are enhanced, and the application layer
becomes able to represent the received data in a unified way.

3.9 ACHILLES: Access Control and Authentication
Delegation for Interoperable IoT

The ACHILLES solution [20] addressed an important security challenge in IoT,
providing cross-layer security which can be applied to an IoT network (i.e. smart
devices connected to a smart gateway), and it was integrated within the INTER-IoT
virtual gateway.

10T Ecosystem Building 297

Unauthorized request

D Virtual GW

- >

o

User > ACHILLES INTER-IoT Virtual GW API

e
(3| [(Measurement]

Authorized request

H

Physical GW
& Emulated physical device
S Users
o Groups
S
Policies
ACP

Fig. 7 ACHILESS security scheme for IoT systems

ACHILLES is focused on IoT access control and endpoint authentication, which
is a current important challenge in IoT. Things are usually small devices with limited
storage capacity, power, energy, and processing capabilities, in order to be inexpen-
sive and practical. In many cases IoT devices are exposed to tampering, whereas in
many application scenarios on which those devices are deployed, it is not easy to
access them. IoT devices, such as sensors and actuators, usually are not able to per-
form heavy tasks, such as complex cryptographic operations. Storing user credentials
or any other sensitive information in a Thing or Smart Object creates security risks,
adds storage overhead, and makes security management an impossible task. When
it comes to interoperable applications, Things (or even gateways) cannot interpret
complex business roles and processes. Moreover, companies are not willing to share
sensitive information about their users with a Thing (or a gateway), even if this infor-
mation is required by an access control mechanism. Also, neither they want to invest
in another security system.

The ACHILLES project overcomes these limitations by allowing the delegation
of security operations to a third party, referred to as the Access Control Provider
(ACP), which can be implemented by a trusted separate entity, or even the service
provider itself. The ACHILLES concept is depicted in Fig.7.

This solution is fully integrated with Inter-IoT as the virtual part of the Inter-IoT
gateway has been extended to include ACHILLES API (as it can be seen in the figure
below). The Achilles API is integrated as a part of the Virtual Gateway API.

This extension implements ACHILLES functionality and configuration files, and
it is able to perform read and write calls to physical devices provided by the IoT

298 R. Gonzalez-Usach et al.

framework. It is possible to externally communicate as a client to the INTER-IoT
gateway, through this API, and interact with an ACP, enhancing the security of IoT
systems.

3.10 SecurityloT: Security for the IoT

SecurityloT is focused on providing higher security to IoT systems, through an
advanced security mechanism that can be incorporated in the cross-layer of INTER-
layer solution. In a complementary way to ACHILLES, which was focused on access
control at device level using an authentication server, Security IoT is focused on a
secure transmission of IoT information by means of an advanced encryption system.
This type of transmission is related with the cloud, platform and application lev-
els, and thus it is integrated as a cross-layer feature with the inter-MW and AS2AS
INTER-IoT solutions. Concerns about information security are one of the main rea-
sons for companies and private individuals not to adopt cloud services and to be skep-
tical about IoT systems. On top of concerns regarding physical- and cyber-attacks,
international corporations additionally carry legal attacks in their threat model. How-
ever, cloud services are essential in improving efficiency and cost structures. Secu-
rloTy addresses that gap by combining several security mechanisms to protect data
and to address all relevant security dimensions such as confidentiality, integrity and
availability. This solution uses DOCRAID'? and CloudRAID'? fragmentation and
encryption [21]. By these means, data is fragmented, the fragments are encrypted
and they are redundantly distributed to multiple independent storages [21]. As Secu-
rloTy is storage agnostic, meaning that the data fragments may be distributed across
multiple jurisdictions, adding additional security. This way, SecurloTy solves secu-
rity and compliance issues when sending and sharing data via public networks like
the Internet and when storing data in cloud services, thus enabling companies to use
cloud based IoT services, which they would not use without this type of protection.
This security solution is a crypto proxy technology and as such it is transparent to
users and does not affect user experience or end processes. The integration SecurloTy
in platforms and applications is seamless and transparent, thus non-invasive, and this
security mechanism can be operated off-premise, on-premise or in a hybrid manner.
Regarding its integration with INTER-IoT, SecurityloT was linked in a pilot with
AS2AS and INTERMW components. AvailabilityPlus'* provided a web application
that facilitates the access and management to application and middleware solutions
in INTER-IoT, providing exchanged information making use of this underlying data
encryption and fragmentation.

12 https://www.docraid.com/.
13 https://hpi.de/meinel/security-tech/secure-cloud/secure-cloud-storage.html.
14 http://www.availabilityplus.com/.

https://www.docraid.com/
https://hpi.de/meinel/security-tech/secure-cloud/secure-cloud-storage.html
http://www.availabilityplus.com/

10T Ecosystem Building 299

3.11 Integration of the SensiNact Platform with the
INTER-IoT Framework

sensiNact!> [22] is an open-source IoT platform based in the evolution of BUTLER, '
an IoT platform created by the H2020 BUTLER project with the endorsement of
the ECLIPSE foundation.!” sensiNact is an edge IoT platform, that can be directly
installed in gateways and performs network routing functions. The relevance and
impact in the IoT landscape of sensiNact is significant, since it has been employed in
numerous research project in Europe and Asia (i.e. Korea and Japan) on very diverse
application domains from Smart Cities to Active and Healthy Aging.

CEA'® performed the integration of the sensiNact open IoT platform with the
Inter-IoT framework at middleware level (i.e. platform level). This way, it was
enabled seamless interoperability among sensiNact and any other platforms con-
nected to INTER-IoT middleware solution. This integration required the creation of
an interoperability bridge to connect any instance of sensiNact with INTER-MW.
Moreover, it was also defined an IPSM semantic alignment to allow semantic inter-
operability across its connection with Inter-MW and other platforms, and the ability
to publish information following the INTER-IoT ontology (GoloTP'?) [2]. This inte-
gration was tested and validated with a large sensiNact deployment of traffic sensors
in Japan.

The collaboration of CEA in INTER-IoT brought a relevant case of ecosystem
building as the bridge was further reused in the Large Scale Pilot H2020 ACTIVAGE
project, validating the extendibility and reuse of technology in different application
domains. The bridge allowed to connect the sensiNact platforms of the Isere Smart
Home large-scale pilot to an Active and Healthy Ageing (AHA)?[] ecosystem that
employs the INTER-IoT solution for connecting platforms and enable semantic inter-
operability across them. The bridge allowed the interoperability of sensiNact with
many other platforms connected in the ecosystem (e.g. universAAL,>! FIWARE,??
SOFIA2%).

Moreover, from an ecosystem building perspective, it allowed to join forces
between INTER-IoT and the sensiNact ecosystem for sustainable exploitation plans,
foresee this exploitation within the ACTIVAGE project and new projects in per-
spective, and moreover collaborate with the ECLIPSE and the Urban Technology

I3 https://projects.eclipse.org/projects/technology.sensinact.

16 https://cordis.europa.eu/project/id/287901.

17 https://www.eclipse.org/org/foundation/.

18 https://www.cea.fr.

19 https://inter-iot.github.io/ontology/.

20 https://www.who.int/westernpacific/news/q-a-detail/ageing-healthy-ageing-and-functional-
ability#:~:text=Healthy.

21 https://www.universaal.info.

22 www.fiware.org.

23 https://sofia2.readthedocs.io/en/latest/.

https://projects.eclipse.org/projects/technology.sensinact
https://cordis.europa.eu/project/id/287901
https://www.eclipse.org/org/foundation/
https://www.cea.fr
https://inter-iot.github.io/ontology/
https://www.who.int/westernpacific/news/q-a-detail/ageing-healthy-ageing-and-functional-ability#:~:text=Healthy
https://www.who.int/westernpacific/news/q-a-detail/ageing-healthy-ageing-and-functional-ability#:~:text=Healthy
https://www.universaal.info
www.fiware.org
https://sofia2.readthedocs.io/en/latest/

300 R. Gonzalez-Usach et al.

Alliance.’* This interoperability solution supported the development of a wide range
of use cases and allowed application developers to produce new added value across
multiple systems.

3.12 INTER-OM2M

OneM2M [2] is an ETSI standard that can be used as a reference architecture for
IoT platforms [23], while OM2M? or Open Machine to Machine is an Eclipse open
source project that developed an implementation of the oneM2M standard, providing
the OM2M IoT platform.?®

Vrije Universiteit Brussel?” (VUB) has a deployment for SmartCity managed by
an open source OM2M platform with different sensors connected to provide vehicle
location data and environmental information. This platform was integrated in the
INTER-IoT solution via the development of an OM2M interoperability bridge and
an IPSM semantic alignment that allows the seamless connection of this type of
OM2M platform with other IoT platforms and systems, providing interoperability
and thus common understanding of the information across them [24].

From an ecosystem perspective, VUB enlarged the INTER-IoT ecosystem and
INTER-Layer solutions with the interoperability bridge specific to OneM2M stan-
dards, and endorsed the developments in a broader scenario. Moreover, VUB
extended the INTER-IoT framework with respect to the application protocols HTTP,
COAP and MQTT that are employed in VUV SmartCity OM2M[24] platform.

4 INTER-IoT Adoption in H2020 Projects

The INTER-IoT interoperability solutions were also successfully adopted in other
H2020 European projects, such as PIXEL,?® ACTIVAGE? and 5GENESIS.*

H2020 PIXEL (Port IoT for Environment Leverage) [25] foresees the use of the
Inter-MW solution for connecting platforms in port environments, enabling interop-
erability across them.

On the other hand, the H2020 LSP ACTIVAGE project [6] adopted INTER-IoT
solutions for creating an Active and Healthy Ageing (AHA) interoperable ecosystem
across multiple IoT platforms of Smart Homes deployment sites across Europe [26].

24 https://www.urbantechnologyalliance.org.
25 https://www.eclipse.org/om2m/.

26 https://wiki.eclipse.org/OM2M/Download.
27 https://www.vub.be.

28 https://pixel-ports.eu.

29 https://www.activageproject.eu.

30 https://5genesis.eu.

https://www.urbantechnologyalliance.org
https://www.eclipse.org/om2m/
https://wiki.eclipse.org/OM2M/Download
https://www.vub.be
https://pixel-ports.eu
https://www.activageproject.eu
https://5genesis.eu

10T Ecosystem Building 301

The major aim of the ACTIVAGE project is the foundation of the first European AHA
ecosystem, in order to address and provide IoT-based solutions to the critical societal
problem of the steep increase of elderly population around the world, along with the
caring needs that they need. This way, this AHA ecosystem provides smart solutions
for improving the well-being and home safety of elders, as well as promoting an
active and healthy lifestyle.

The combined use of Inter-MW and the IPSM in ACTIVAGE provided semantic
interoperability across the whole AHA ecosystem [26]. This ecosystem it is com-
posed by 12 AHA deployment sites from 12 different regions across Europe and
several IoT systems from third parties. Each deployment site or system is man-
aged by its own IoT platform. The interconnection and interoperability of those
deployment sites and external systems was achieved through platform interoperabil-
ity bridges connected to Inter-MW and the use of specific semantic alignments for
the IPSM. As a result, new IoT platforms were included both in the INTER-IoT and
ACTIVAGE ecosystem: IoTivity,’! SOFIA2,*> OpenloT,*> MC Cardio,** eukari®’
and eukendu.?® Moreover, the Inter-IoT ontology (GOIoTP) became the core of the
ACTIVAGE ontology. The integration actions on these AHA platforms validated the
scalability of INTER-Layer and enlarged the INTER-IoT interoperability solution.

Focused on providing 5G solutions, the H2020 SGENESIS?’ project adopted the
INTER-IoT smart gateway, capable of providing NFV/SDN functionality, in one of
their pilots across Europe (i.e. Limassol pilot) [27].

Furthermore, alliances with stakeholders incentivize the adoption of INTER-IoT
in future projects and endevours. For example, the collaboration between INTER-
IoT and sensiNact foresees a future participation in joint exploitation activities and
in other projects within the sensiNact ecosystem. Moreover, it would promote col-
laborations with the Eclipse Foundation.

S IoT-EPI

IoT-EPI* is a joint project initiative endorsed by the European Commission that
aims to promote a vibrant and sustainable IoT ecosystem in Europe [28]. All Hori-

31 https://iotivity.org.

32 https://sofia2.readthedocs.io/en/latest/.
33 http://www.openiot.eu.

34 hitp://EHR .it.

35 https://www.activageproject.eu.

36 https://www.activageproject.eu.

37 https://5genesis.eu.

38 hitps://www.eclipse.org.

39 https://iot-epi.eu.

https://iotivity.org
https://sofia2.readthedocs.io/en/latest/
http://www.openiot.eu
http://EHR.it
https://www.activageproject.eu
https://www.activageproject.eu
https://5genesis.eu
https://www.eclipse.org
https://iot-epi.eu

302 R. Gonzalez-Usach et al.

Fig. 8 IoT-EPI initiative

European BIG

Platforms

Initiative m

8. > 3
N SR
b~.;?-pre interiot A5 GILE

™
M VICINITY
P TAG | VICINITY symbloTe

zon 2020 research projects of the ICT30 cluster*” participated in the IoT-EPI initiative
(i.e. INTER-IoT,*! BigloT,*? symbloTe,* bloTope,* VICINITY,* Agile*® and Tag-
ItSmart*”) [29]. These RIA*® projects under different approaches and scopes seek the
common goal of improving horizontal interoperability and provide viable solutions
for IoT platforms and connected devices to easily, safely, and reliably be integrated
for a multiplicity of IoT applications. Each RIA project focuses on different nuances
of interoperability or standardisation with respect to IoT platform solutions, gateways
for IoT devices, and asset monitoring [29].

The initiative IoT-EPI developed a series of activities meant to foster and support
the 7 RIA projects to build different IoT platform ecosystems. The IoT-EPI provided
a common space to support the projects to find assistance to solve common problems
and to identify and deal with shared threats and common opportunities. Partners of
these European projects provided information and recommendations about their first-
hand experience through questionnaires, roundtables, and workshops. Each project
pursues a different goal, adopts different platforms, and has a different experience
on establishing ecosystems across different domains, while shares a common overall
objective in broad terms. Due to this fact the sharing of their experience to other RIA
projects was highly valuable (Fig. 8).

Moreover, the IoT-EPI enabled the creation of a community for the seven RIA
projects, and it was considered as an aggregation point thanks to the workshops, the

40 https://ec.europa.eu/info/funding- tenders/opportunities/portal/screen/opportunities/topic-
details/ict-30-2017.

41 https://iot-epi.eu/project/inter-iot/.

42 https://iot-epi.eu/project/big-iot/.

43 https://iot-epi.eu/project/symbiote/.

44 https://iot-epi.eu/project/biotope/.

4 https://iot-epi.eu/project/vicinity/.

46 https://iot-epi.eu/project/agile/.

47 https://iot-epi.eu/project/tagitsmart/.

8 https://ec.europa.eu/info/funding- tenders/opportunities/portal/screen/opportunities/topic-
details/ict-30-2017.

https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/ict-30-2017
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/ict-30-2017
https://iot-epi.eu/project/inter-iot/
https://iot-epi.eu/project/big-iot/
https://iot-epi.eu/project/symbiote/
https://iot-epi.eu/project/biotope/
https://iot-epi.eu/project/vicinity/
https://iot-epi.eu/project/agile/
https://iot-epi.eu/project/tagitsmart/
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/ict-30-2017
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/ict-30-2017

10T Ecosystem Building 303

roundtables, the meetups, and all the occasions for the different projects to have a
communication shared space.

6 Conclusions

INTER-IoT has been part of a larger European initiative called IoT-EPI in which the
key research leaders in IoT have provided ways of overcoming different interoper-
ability problems between heterogeneous IoT systems.

The INTER-IoT initiative has provided a novel set of interoperability tools that
enable interoperability at every layer of [oT systems, along with an associated frame-
work and an implantation methodology. Those can facilitate the reuse and integration
of existing and future IoT systems to obtain interoperable ecosystems of IoT plat-
forms. The development of INTER-IoT has allowed stakeholders and developers to
interact with different IoT platforms in a domain agnostic ecosystem. The creation of
such ecosystem has addressed the needs of use cases and scenarios in which different
IoT platforms are involved, and mainly in those in which more than one application
domain is addressed.

Key aspects of INTER-IoT solutions that remarkably promote ecosystem building
are the novel ability of providing seamless interoperability across any IoT systems,
and the openness of the framework. Notably INTER-IoT provides semantic interop-
erability across heterogeneous [oT platforms that do not share common information
models, data formats and semantics and employ different and heterogeneous com-
munication interfaces.

Open interoperability delivers on the promise of open source software, enabling
vendors and developers to interact and interoperate, without hindering with anyone’s
ability to compete by delivering a superior product and experience. INTER-IoT has
been designed not to compete, but to contribute and collaborate with current growing
ecosystems such as FIWARE, UniversAAL or Industrial Data Spaces.

In the absence of global IoT standards, the INTER-IoT interoperability solutions
support and make it easy for any company to design IoT devices, smart objects or
services and get them to market quickly to a wider client-base and to create new
IoT interoperable ecosystems. In the long term, ability for multiple applications
to connect to and interact with heterogeneous sensors, actuators, and controllers,
thus making them interoperable, will become a huge enabler for new products and
services.

INTER-IoT has created growing ecosystems with different entities making use
of the different results provided by the project, mainly in the AHA, smart cities and
transportation and logistics application domains. Other domains explored have been
e-Health, Plague Control, Disease Prevention, Emergency Management and Industry.
As the ecosystem of interoperable devices and services expands, so it will increase
the value of building new devices for and applications working within this ecosystem.
The data spaces ecosystem will provide a mean to exploit the interoperability tools
developed in INTER-IoT and application market places will benefit from the results.

304 R. Gonzalez-Usach et al.

This emerging ecosystem is not owned by any business or entity, but rather it exists
to enable many entities to pool their resources together to create larger opportunities
for all.

References

1. Fortino, G., Savaglio, C., Spezzano, G., Zhou, M.C.: Internet of things as system of systems:
areview of methodologies, frameworks, platforms, and tools. IEEE Trans. Syst. Man Cybern.
Syst. 51(1), 223-236 (2021)

2. Kim, J., Choi, S.-C., Yun, J., Lee, J.-W.: Towards the oneM2M standards for building IoT
ecosystem: analysis, implementation and lessons. Peer-to-Peer Netw. Appl. 11(1), 139-151
(2018)

3. Fortino, G., Savaglio, C., Palau, C.E., de Puga, J.S., Ghanza, M., Paprzycki, M., Montesinos,
M., Liotta, A., Llop, M.: Towards multi-layer interoperability of heterogeneous IoT platforms:
the INTER-IoT approach. Internet of Things 199-232 (2018)

4. Fortino, G., Palau, C.E., Guerrieri, A., Cuppens, N., Cuppens, F., Chaouchi, H., Gabillon, A.
(eds.): Interoperability, Safety and Security in loT—Third International Conference, InterloT
2017, and Fourth International Conference, SaSelot 2017, Valencia, Spain, November 6-7,
2017, Proceedings. Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, vol. 242. Springer (2018)

5. Gonzalez-Usach, R., Yacchirema, D., Julian, M., Palau, C.E.: Interoperability in IoT. IGI, 2018.
Handbook of Research on Big Data and the IoT

6. Gonzélez-Usach, R., Palau, C., Julian, M., Belsa, A., Llorente, M. A., Montesinos, M., Ganzha,
M., Wasielewska, K., Sala, P.: Use cases, applications and implementation aspects for IoT
interoperability. In: Next Generation Internet of Things: Distributed Intelligence at the Edge
and Human Machine-to-Machine Cooperation. River Publishers (2018)

7. Yacchirema, D., Gonzalez-Usach, R., Palau, C., Esteve, M., Montesinos, M., Llorente, M. A.,
Gimenez, P., Llop, M.: Interoperability of IoT platforms applied to the transport and logistics
domain. In: Transport Arena Research Conference 2018, April 2018

8. Ganzha, M., Paprzycki, M., Pawtowski, W., Szmeja, P., Wasielewska, K.: Towards semantic
interoperability between Internet of Things platforms. In: Gravina, R., Palau, C.E., Manso, M.,
Liotta, A., Fortino, G. (eds.) Integration, Interconnection, and Interoperability of IoT Systems,
pp- 103-127. Springer International Publishing, Cham (2018)

9. Fortino, G., Garro, A., Russo, W.: Achieving mobile agent systems interoperability through
software layering. Inf. Softw. Technol. 50(4), 322-341 (2008)

10. Moreira, J., Daniele, L., Pires, L.F., van Sinderen, M., Wasielewska, K., Szmeja, P., Pawtowski,
W., Ganzha, M., Paprzycki, M.: Towards IoT platforms’ integration. In: SEMANTICS confer-
ence 2017, November 2017

11. Moreira, J., Pires, L.F.,, van Sinderen, M., Wieringa, R., Singh, P., Costa, P.D., Llop, M.:
Improving the semantic interoperability of IoT early warning systems: the port of valencia use
case. In: Popplewell, K., Thoben, K.-D., Knothe, T., Poler, R. (eds.) Enterprise Interoperability
VIII, pp. 17-29. Springer International Publishing, Cham (2019)

12. Truong, H.-L., Gao, L., Hammerer, M.: Service architectures and dynamic solutions for inter-
operability of IoT, network functions and cloud resources. In: Proceedings of the 12th European
Conference on Software Architecture: Companion Proceedings, ECSA’18, pp. 1-4, New York,
NY, USA, September 2018. Association for Computing Machinery

13. Truong, H.-L.: Dynamic IoT data, protocol, and middleware interoperability with resource
slice concepts and tools: tutorial. In: Proceedings of the 8th International Conference on the
Internet of Things, pp. 1-4, Santa Barbara California USA, October 2018. ACM

14. Modoni, G.E., Caldarola, E.G., Sacco, M., Wasielewska, K., Ganzha, M., Paprzycki, M.,
Szmeja, P., Pawtowski, W., Palau, C.E., Solarz-Niestuchowski, B.: Integrating the AAL

10T Ecosystem Building 305

15.

16.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.
29.

CasAware platform within an IoT ecosystem, leveraging the INTER-IoT approach. In: Singh,
PK., Pawlowski, W., Tanwar, S., Kumar, N., Rodrigues, J.J.P.C., Obaidat, M.S. (eds.) Proceed-
ings of First International Conference on Computing, Communications, and Cyber-Security
(IC4S 2019), pp. 197-212, Singapore. Springer Singapore (2020)

Modoni, G.E., Caldarola, Nicola E.G., Mincuzzi, N., Sacco, M., Wasielewska, K., Szmeja, P.,
Ganzha, M., Paprzycki, M., Pawlowski, W.: Integrating [oT platforms using the INTER-IoT
approach: a case study of the CasAware project. J. Ambient Intell. Smart Environ. 1-18 (2020)
Adame, T., Bel, A., Bellalta, B.: Increasing LPWAN scalability by means of concurrent multi-
band IoT technologies: an industry 4.0 use case. IEEE Access 7, 46990-47010 (2019). Con-
ference Name: IEEE Access

. Vézquez, T.A., Barrachina-Muiioz, S., Bellalta, B., Bel, A.: HARE: supporting efficient uplink

multi-hop communications in self-organizing LPWANSs. Sensors 18(2), 115 (2018)

. Nagarajan, G., Minu, R.I., Giannoccaro, I. (eds.): Advances in computational intelligence and

robotics. In: IGI Global, Edge Computing and Computational Intelligence Paradigms for the
10T (2019)

Koumaras, V., Kapari, M., Papaioannou, A., Theodoropoulos, G., Stergiou, 1., Sakkas, C.,
Koumaras, H.: IoT Interoperability on Top of SDN/NFV-Enabled Networks, pp. 127-152. IGI
Global Publisher (2019). ISBN: 9781522585558

Fotiou, N., Polyzos, G.C.: Authentication and authorization for interoperable IoT architectures.
In: Saracino, A., Mori, P. (eds.) Emerging Technologies for Authorization and Authentication.
Lecture Notes in Computer Science, pp. 3—16. Springer International Publishing, Cham (2018)
Sukmana, M.I.H., Torkura, K., Meinel, C., Graupner, H.: Redesign cloudRAID for flexible and
secure enterprise file sharing over public cloud storage. In: Proceedings of the 10th International
Conference on Security of Information and Networks, SIN’17, October 2017

Giirgen, L., Munilla, C., Druilhe, R., Gandrille, E., do Nascimento, J.B.: sensiNact IoT platform
as a service. In: El Fallah Seghrouchni, A., Ishikawa, F., Hérault, L., Tokuda, H. (eds.) Enablers
for Smart Cities, pp. 127-147. Wiley, Hoboken, NJ, USA (2016)

Xu, S.S., Chen, C., Chang, T.: Design of oneM2M-based fog computing architecture. IEEE
Internet of Things J. 6(6), 9464-9474 (2019). Conference Name: IEEE Internet of Things
Journal

Thielemans, S., Sartori, B., Bracken, A., Steenhaut, K.: Integration of oneM2M in Inter-IoT’s
platform of platforms. In: 2019 IEEE International Symposium on Local and Metropolitan
Area Networks (LANMAN), pp. 1-2, July 2019. ISSN: 1944-0375

Lacalle, I., Llorente, M. A., Palau, C.E.: Towards environmental impact reduction leveraging
IoT infrastructures: the PIXEL approach. In: Montella, R., Ciaramella, A., Fortino, G., Guer-
rieri, A., Liotta, A. (eds.) Internet and Distributed Computing Systems, pp. 33—45. Springer
International Publishing, Cham (2019)

Gonzalez-Usach, R., Julian, M., Esteve, M., Palau, C.E.: IoT semantic interoperability for active
and healthy ageing. In: SIoT 2020: Semantic IOT: Theory and Applications - Interoperability,
Provenance and Beyond. Studies in Computational Intelligence. Springer (2020)

5G-PPP. H2020 SGENESIS project, October 2020

IoT-EPI. Steps towards the IoT platform ecosystem maturity (2017)

Arne, B., Zappa, A., Vermesan, O., Framling, K., Zaslavsky, A., Gonzalez-Usach, R., Szmeja,
P, Palau, C., et al.: Advanced IoT Platforms Interoperability. River Publishers, The Nederlands
(2018)

	Preface
	Contents
	 Introduction to Interoperability for Heterogeneous IoT Platforms
	1 Introduction
	2 INTER-IoT at a Glance
	3 INTER-IoT Use Case-Driven
	3.1 INTER-LogP: Interoperability for Transport and Logistics in a Port Environment
	3.2 INTER-Health: Interoperability for Mobile Health for Chronic Patients

	4 INTER-IoT Progress Beyond the State of Art
	4.1 Global Platform Interoperability
	4.2 Gateway and Device Interoperability
	4.3 Networking Mobility and Interoperability
	4.4 Middleware Platform Interoperability
	4.5 Semantic Interoperability
	4.6 Cross-Layer Approach for Interoperability

	5 Conclusions
	References

	 INTER-IoT Requirements
	1 Introduction
	1.1 Methodology
	1.2 Repository

	2 Stakeholders Analysis
	2.1 Definition
	2.2 Analysis

	3 Market Analysis
	3.1 Definition
	3.2 Analysis

	4 Requirements Analysis
	4.1 Definition
	4.2 Analysis

	5 Conclusions
	References

	 INTER-IoT Architecture for Platform Interoperability
	1 Introduction
	2 INTER-IoT Reference Model
	2.1 Domain Model
	2.2 Information Model
	2.3 Functional Model
	2.4 Communication Model

	3 INTER-IoT Reference Architecture
	3.1 Functional View
	3.2 Information View
	3.3 Deployment and Operation View

	4 Conclusions
	References

	 INTER-Layer: A Layered Approach for IoT Platform Interoperability
	1 Introduction
	2 Device Interoperability
	2.1 INTER-Layer Approach for Device Interoperability
	2.2 Architecture of the Solution and Components
	2.3 Implementation and Use Cases

	3 Network Interoperability
	3.1 INTER-Layer Approach to Network Interoperability
	3.2 Architecture of the Solution and Components
	3.3 Implementation and Use Cases

	4 Middleware Interoperability
	4.1 INTER-Layer Approach to Middleware Interoperability
	4.2 Architecture of the Solution and Components
	4.3 Implementation and Use Cases

	5 Application and Services Interoperability
	5.1 INTER-Layer Approach at Service and Application Layer
	5.2 Architecture of the Solution and Components
	5.3 Implementation and Use Cases

	6 Conclusions
	References

	 Semantic Interoperability
	1 Introduction
	1.1 Towards Semantic Interoperability
	1.2 IoT Case Study

	2 Ontologies in the Internet of Things
	2.1 IoT Core Ontologies
	2.2 Domain-Specific Ontologies

	3 Generic Ontology for IoT Platforms
	4 From Alignments to Translation
	5 Alignment Format
	6 IPSM Semantic Translation Tool
	7 Use Case Processing
	8 Concluding Remarks
	References

	 INTER-Framework: An Interoperability Framework to Support IoT Platform Interoperability
	1 Introduction
	2 Framework Approaches to Interoperable IoT Platforms
	2.1 Introduction to Frameworks
	2.2 Types of Frameworks and Uses in INTER-IoT

	3 Framework Design and Implementation
	3.1 Web Application
	3.2 Security and Privacy
	3.3 REST API Management
	3.4 Scalability
	3.5 Extensibility

	4 INTER-API Solution
	5 INTER-FW Solution
	6 Conclusions
	References

	 INTER-Meth: A Methodological Approach for the Integration of Heterogeneous IoT Systems
	1 Introduction
	2 Background
	2.1 Software Engineering Methodologies
	2.2 IoT Methodologies
	2.3 An Analysis Toward INTER-METH

	3 Design Patterns for IoT Systems
	3.1 D2D Patterns
	3.2 N2N Patterns
	3.3 MW2MW Patterns
	3.4 AS2AS Patterns
	3.5 DS2DS Patterns
	3.6 CROSS-Layer Patterns

	4 INTER-METH
	4.1 INTER-METH Abstract Process
	4.2 INTER-METH Instantiated on INTER-IoT

	5 INTER-CASE
	5.1 Analysis Phase
	5.2 Design Phase
	5.3 Implementation to Maintenance

	6 The INTER-Health Use Case: From Analysis to Design
	7 Conclusions
	References

	 Interoperability Application in e-Health
	1 Introduction
	2 INTER-Health Motivation
	2.1 INTER-Health Scenario
	2.2 INTER-Health Interoperability Components

	3 INTER-Health Solution
	3.1 INTER-Health Features
	3.2 Privacy and Security
	3.3 General Data Protection Regulation

	4 INTER-Health Execution
	4.1 Inclusion and Exclusion Criteria
	4.2 Key Performance Indicators

	5 Conclusions
	References

	 INTER-LogP: INTER-IoT for Smart Port Transportation
	1 Introduction
	2 Main Actors
	2.1 Port Authority
	2.2 Container Terminal
	2.3 Haulier Company

	3 Use Cases
	3.1 Scenario IoT Access Control, Traffic and Operational Assistance
	3.2 Scenario Dynamic Lighting
	3.3 Scenario Wind Gusts Detection

	4 Pilot Design
	4.1 Ontology
	4.2 Data Services
	4.3 Equipment

	5 Pilot Execution
	5.1 Scenario IoT Access Control, Traffic and Operational Assistance
	5.2 Scenario Dynamic Lighting
	5.3 Scenario Wind Gusts Detection

	6 KPIs
	7 Privacy and Security
	7.1 Privacy and Confidential
	7.2 Security

	8 Conclusions
	References

	 IoT Ecosystem Building
	1 Introduction
	2 INTER-IoT Ecosystem Creation
	3 INTER-IoT Open Call
	3.1 E3Tcity Smart City Platform and Devices Integration
	3.2 SENSHOOK
	3.3 MiCROBIoTA: Mission Critical Operations Based on IoT Analytics
	3.4 Interoperable Situation-Aware-IoT-Based Early Warning System
	3.5 INTER-HINC: Interoperability Through Harmonizing IoT, Network Functions and Clouds
	3.6 A Semantic Interoperable Middleware for the Information Synchronization of the IoT Devices
	3.7 INTER-HARE Platform: Integration of Multiband IoT Technologies
	3.8 SOFOS: A Software-Defined End-to-End Gateway with Virtualization
	3.9 ACHILLES: Access Control and Authentication Delegation for Interoperable IoT
	3.10 SecurityIoT: Security for the IoT
	3.11 Integration of the SensiNact Platform with the INTER-IoT Framework
	3.12 INTER-OM2M

	4 INTER-IoT Adoption in H2020 Projects
	5 IoT-EPI
	6 Conclusions
	References

