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Abstract Designing the built environment is by default a multidisciplinary
endeavour, producing an abundance of data that needs to be analysed during the
process. This data is associated with specific design solutions and driven by mul-
tiple, usually competing objectives that need to be taken into consideration during
fast review cycles. Quantifiable data ranges from simple area measurements, to
more elaborate metrics such as thermal performance, carbon footprint or contextual
integration, derived by a plethora of time-consuming analyses. The need to create a
built environment which is not only functional and elegant but also energy efficient
and sustainable is making performance-oriented design one of the main driving
forces in contemporary architecture. A by-product of this practice is the large data
sets that it can produce, which in turn raises the question of how the industry can
deal with all this data—not only in terms of production, but also classification and
reuse. This has been a catalyst to investigating how other industries are dealing with
similar issues. The shift, for example, towards big data and the adoption of cloud
computing, has enabled IT companies to dramatically increase performance and
efficiency of many industries over the past years. This runs contrary to contem-
porary tools used for architectural computing, traditionally built around a single
workstation, and their respective workflows. This problem is firstly challenged
by explaining the technology behind both big data and cloud computing while
comparing them to state-of-the-art computer-aided design (CAD) software.
Additionally, cloud-based software development and continuous delivery strategies
are analysed and the potential improvement on design pipelines, based on experi-
ence. Then a prototype of a bespoke system called Hydra will be presented, which
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runs on a high-performance compute cluster combining multiobjective optimiza-
tion, a popular parametric CAD system and a set of building performance analyses.
The data produced by the system is stored in a database and visualized using a
modern web-based interface. The system is being demonstrated and assessed on a
large-scale master planning project case study, where Hydra’s benefits are more
evident due to project’s complexity and size.

Keywords Big data � Cloud computing � Hydra � Parallelization � Performance
speed-up � Real time � Performance-driven design � Optimization � Distributed
computing

1 Introduction

Data has become the currency of the modern society. It is, in many ways, the most
abundantly generated product of our century. Every single action in our life—
asking directions from Google Maps, liking a post in social media, watching a
movie in Netflix or even browsing on an online retailer—produces data that is being
mined and used in a variety of imaginative and profitable ways. If, therefore, our
small, daily actions can produce an avalanche of information, how much data can
the design, construction and operation of a building produce? The answer is: a
significant amount! It is therefore unfortunate that in the architecture, engineering,
construction and operation industry (AECO) the use of big data and the adoption of
big data technologies is substantially less developed than in other industries [1, 2].

Many people will argue that data is power, but the authors also argue that it is
not one that can be wielded easily. Producing, collecting, processing, structuring
and classifying data to be used in a meaningful manner is a non-trivial task, par-
ticularly for an industry as multidisciplinary and complex as the AECO is (see
Fig. 1). The rise of performance-driven design has provided the perfect testbed for
such an assertion. The requirement to produce design solutions that are driven not
only by aesthetical criteria, but also by hard metrics such as their structural,
environmental or social performance has posed many challenges. These include the
complicated and time-consuming analyses that need to be run on a timely fashion
and productively inform the design process [3], but also how the knowledge
acquired in one project could become an input for the next one.

In these workflows, every single design choice (from conception to completion)
can be based on a plethora of information derived from a multitude of specialist
analyses. These, in turn, are driven by multiple, usually competing objectives that
need to be taken into consideration during fast review cycles [4]. But how is all that
information processed? How do the qualitative differences between options become
quantifiable? And ultimately, how can the industry learn from it for future projects
—how can it be gathered and used in a structured way further down the line?
Obviously, the latter is not anything new in the profession: every experienced
architect, engineer and contractor is doing this implicitly, building their knowledge
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on top of the experience acquired on every project worked on. But this type of
knowledge that lives in the head of every experienced professional is, unfortu-
nately, not easily transferable.

So, the above beg the question: how can the industry run, manage and generally
more effectively take advantage of the amounts of data each project yields in order
to increase performance and efficiency in the design process? To that end, we can
learn a lot by investigating how other industries deal with similar issues. The IT
industry is a good example: their shift towards cloud computing to deal with big
data has dramatically enhanced their processes both in terms of quality as well as
efficiency, in the past years. Interestingly, when it comes to the creative industries,
visualizers and animators are the most technologically advanced. That is a result of
a close connection with the motion pictures industry and advertising. The internal
competition for unusual visual effects and improved image quality has continuously
driven software and pipeline development since the 70s and made them highly
efficient.

Of course, AECO tools, processes and pipelines are different from those in IT or
animation, not only because of their workflows, but also in that architectural
computing is traditionally built around a single workstation. It is therefore inter-
esting to first try and understand what is the software and hardware architecture that
can allow us to run vast number of analyses in minimal timeframes or gather data
from sensors, store that data in a meaningful and easily traversable manner and
ultimately visualize and organize it.

Fig. 1 Different types of data associated with a building
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To try and give some answers to the above questions, the problem will be first
broken down to its fundamental parts: data, process, software and hardware. After
its dissection the problem will be put back together and presented along an
application which builds upon the understanding of how each piece works. More
specifically, the nature of data (particularly within the AECO context) will be
discussed and how it weaves in the design process and what are the capabilities and
limitations of the current CAD software towards a more efficient data-driven design
process. Then design workflows will be assessed against those in other industries,
identifying relationships and parallels that our industry could take advantage of
when dealing with big data issues. Various architectures for cloud computing will
be presented along with their roles played in successful big data pipelines, and most
recent software development practices for cloud environments will be discussed.
Finally, everything will be brought together in a custom application called Hydra,
that encapsulates all the above. Hydra is a distributed computing system that allows
the user to vastly parallelize tasks for big design projects, dealing with gigabytes of
data in a fraction of the time that traditional CAD software do and allowing the
resulting data to drive project designs through an optimization pipeline. In addition,
it is capable of classifying and visualizing its outcomes in a way that could allow us
to use them in the future (e.g. as data sets to train machine learning systems). It is
therefore a great example of how the authors are envisioning big data design
computing to be incorporated in the design process.

2 Data in the AECO Industry

2.1 Nature of Data

The multidisciplinary nature of the AECO industry poses some interesting chal-
lenges in terms of not only the nature but also the sheer volume of the data that can
be produced during the design and construction process. This data is everywhere:
created, assembled and embedded in the design of the built environment from
conception to operation and beyond. Sketches and drawings, simulation and
analyses, simple or building information models (BIM), spatial and geographical
data from geographic information systems (GIS), construction logistics and pro-
curement, post-occupancy data gathered by sensors or 3D scans (see Fig. 2),
HVAC systems monitoring: there is a multitude of processes, means and ways by
which data can be gathered, analysed and effectively drive the built environment.

If a rough grouping of this data has to be provided, it could be done in accor-
dance with the various stages in the life of a building: design, construction and
operation. Construction data can incorporate anything, from procurement analytics
to monitoring of as-designed against as-built models. Operational data, on the
other hand, has become more and more important, as it allows the owner to assess
an improved performance of a building daily. In this vein, a building is not much
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different to many businesses: its value is measured relatively to its ability to mine
and use data. Therefore, the use of sensors and Internet of things (IoT) in con-
junction to BIM and digital twin models has made the accessibility and manage-
ment of data on operational building a very powerful tool towards their perceived
success.

Although construction and operational data are very rich and interesting, it is
important to also focus on the data produced during the design process. It is this
performance-related data, produced during the design process, that is of interest to
us, as the potential of optimization in project early phases is higher and the impacts
of changes of the building and the construction costs are lower [5]. Design per-
formance has long been recognized as an important issue in the built environment
and has long been considered a seminal component in the value system of archi-
tectural design. A BIM model can be quite information-rich on its own right, but
usually it is only the final step of a very nonlinear and convoluted design process.

2.2 Design Process

Most of the data produced during the design process is a by-product of complex and
usually time-consuming simulations to assess objectives like structural viability,
daylight, wind, views, connectivity, etc. All these analyses, albeit very different to

Fig. 2 3D Lidar data from a construction site gathered by a scanner mounted on top of Boston
Dynamic’s semi-autonomous Spot
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one another, have some common characteristics: they require bespoke software,
they are usually run as branched out processes rather than in tandem with the design
progression, they are very time consuming and they provide data-rich results that
require specialized knowledge in order to be incorporated into the design process.
In addition, they may contradict each other, as they are often set to analyse
conflicting objectives. The above have as a result a time-consuming and compu-
tationally intensive production of information that is difficult to incorporate as
metadata within a design model.

Effectively, during the design stage, enormous amounts of data are produced
whose results are stored in different models and delivered in such a compartmen-
talized fashion that it becomes hard to even meaningfully use them during very fast
design cycles (not to mention storing them or even harnessing them for data mining
purposes). This is a result of both the process and the software used to complete
these tasks, which was for a long time reflecting the predigital workflow followed
by the industry: that of the architect/decision-maker spending many lonely hours in
front of the drafting board, while cross-discipline synchronization was left for later
stages in the process. Technological advances and collaborative design platforms
have made those lonely drafting days obsolete. However, those early-days CAD
software architectures have had a ripple effect whose repercussions are still felt
today. Namely, those platforms struggle to deal with the dramatic increase of speed
at which new data can be produced and in the endless parade of non-interoperable
data formats.

2.3 Design Software

CAD software is ever evolving, and each new generation promises new capabilities
in relation not only of the creation and manipulation of geometry, but also of data
(see Fig. 3). But to paraphrase Jane Austin, it is a truth universally acknowledged
that a CAD software in possession of a good parametric platform, must be in want
of simulation engines to interop with. If the replacement of hand drafting by CAD

Fig. 3 An evolution of design tools
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software was the flint, then the rise of computational simulation engines was the
steel that produced the spark which ignited the explosion of data in design work-
flows and the ultimate rise of performance-driven design.

Drafting CAD software, parametric and generative design platforms, BIM sys-
tems and ultimately algorithmic computational approaches are consequent and
ever-evolving versions of design tools that strive to offer increased control not only
of the design product, but also of the data associated to it (with promises of
interoperability being made abundantly). This rise in control and connectivity is
consequently—and unavoidably—directly related to a rise in the learning curve for
these tools. Nevertheless, it is partly to their ability to offer these extra layers of
control, that things like parametric and computational design have graduated from
fringe design tools to mainstream software within the span of a decade. To take
matters a bit further, the current implementation of BIM methodologies into various
platforms has been shaping to be the ultimate (if occasionally glorified) database of
the design industry: a data-rich 3D modeller, providing amazing drawing produc-
tion capabilities albeit sometimes limited data-driven problem-solving agency to the
designer.

Until recently, most of the above software had a common denominator: their
limitation of the single workstation software architecture. In the past 15 years, there
has been a shift in this paradigm with the use of central models in BIM, and with
the development of new, usually programmable platforms (e.g. Rhino.Inside), that
are trying to solve the interoperability issues the industry has long been burdened
with. But apart from these, most classic CAD software were predominantly
designed with the “one-computer-one-designer” approach in mind. This assump-
tion, integral in the software architecture of these tools (and the overall design
methodology), is a far cry from contemporary hardware/software paradigms, which
are built to their core to deal with distributed computing problems (where one
person can easily orchestrate hundreds of machines) and enhanced interoperability
capabilities.

3 Big Data in the Cloud

3.1 What is Big Data?

According to NIST, big data refers to extensive data sets, whose characteristics are
volume, variety, velocity and variability (also referred to as the “Vs” of big data)
that require a scalable (software) architecture for efficient collection, storage,
cleaning, processing and analysis [6]. Working with big data could not be pin-
pointed to a single framework or technology. Many tools have been developed to
work together towards the main goal of discovering patterns and correlations in raw
data and turning them into actionable insights. They belong to a large ecosystem
collectively labelled as big data analytics.
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The V’s characteristics can centrally be delineated to the data produced by
AECO. This data has huge potential, which could only be realized if only a step
back is taken and examined how other industries have dealt with their data-related
challenges. The broad definition of big data has two inherent characteristics relating
to both its size and structural complexity. Data is classified as “Big” when tradi-
tional database approaches of storing, cataloguing and querying fail to process it—
both in terms of data analysis as well as data visualization. These data sets are
becoming the norm, as the rate of data generation has been growing drastically over
the past decades. This is primarily credited to the extended use of smart mobile
devices and the ease of access to the Internet. Back in 2017, it was estimated that by
the beginning of 2020, the total amount of digitally stored data in the world would
be around 44 zettabytes [7]—a number which is almost impossible to comprehend
and yet could be already rendered obsolete due to the exponential rate of data
production. For comparison, the total compressed size of articles in the English
version of Wikipedia is 18.9 Gigabytes. This means that there could be roughly
2328 billion Wikipedias worth of data out there [8]—and growing!

Most of this data is unstructured, meaning that there is no predefined data model
or schema by which this data is being created, hence maintaining and processing it
is far from straightforward. This type of data, (e.g. point clouds from Lidar scans or
photogrammetry data) could be saved in data lakes which are systems designed to
store it in its natural format such as Google Cloud Storage [9], Amazon S3 [10] and
Azure Data Lake [11]. On the other hand, structured or semi-structured data adheres
to specific formatting that can be relatively easier to query and evaluate through
relational databases in data warehouses (e.g. Oracle [12], Amazon Redshift [13],
Azure Synapse [14]). Data fitting in this category can be for instance collected from
Internet of things (IoT) sources in a building through its lifecycle, as these usual
correspond to specific formatting as provided by the fabricator of the sensory
systems. Another metric in combination with the other Vs [15] that plays a detri-
mental role in the meaningful analysis of data is the “veracity”, which relates both
to the quality of the stored data but more importantly on its accuracy [16] and the
credibility of the generating source.

We have therefore two major issues: quantity and traversability of data, both of
which started booming at the beginning of the new millennium. These forced major
IT players and tech companies to present efficient ways of tackling problems of
storage and data processing power, in order to deal with the exponential increase of
data coming their way. Hardwarewise, there was simply too much data to fit even
the largest hard drive on a single machine. Additionally, the pace at which data was
produced was much faster than the growth of hard-drives’ sizes, so information had
to be divided in chunks and placed on multiple machines. This solved the storage
problem but automatically created maintenance issues. Eventually, keeping track of
where relevant chunks were physically located (the computers could be in different
geographical locations) and what was stored and processed became a major issue.
Depending on the size and turnaround of new data batches, there are two common
approaches. One is called batch processing and deals with large data chunks when
slower turnaround between collection and analysis is acceptable. On the other hand,
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if much faster decision-making is needed, then stream processing, which is more
complex, could work with smaller data blocks.

For example, to meet their own rapidly growing needs and based on some earlier
work, Google developed in 2013 the Google File System (GFS) [17]. The system
automatically divided their machines into storage and server nodes. Raw data was
split into chunks and placed on storage nodes, while the server nodes were only
responsible for keeping track of metadata. Additionally, they decided to use
low-spec machines, which despite having a higher failure rate, were much cheaper
to replace. Therefore, it was easier and more economically viable to make backup
copies of the data on many redundant machines (to cope with the percentage of
machines they anticipated would fail), rather than to invest in higher-end hardware.
This was followed by a distributed storage system also designed specifically to store
Google’s Big Data from applications such as Google Earth and Google Analytics,
focusing on latency-sensitive servicing called BigTable [18]. The above two
systems immediately demonstrated the necessity of distributed or cloud-based
solutions to deal with the new normal regarding the pace we generate, store and
analyse data.

Data acquisition is usually a unique process for every organization and is tightly
related to the nature of data they produce or use. Raw data is usually incomplete and
could produce incorrect insight. Therefore, before drawing any conclusions, it
always requires some preprocessing which reshapes raw data into an understand-
able format. That is where big data analytics come to play. Steps must be taken to
eliminate duplicates, handle inconsistencies, integrate information coming from
different sources or annotate and assign labels. When there is too much data, it
could be discretized or sampled. Once data is sanitized and formatted, it could
finally be analysed using both analytical and statistical tools to uncover useful
information.

Historical data could be used to make predictions and forecast future behaviour
using predictive analysis. Anomalies and data clusters can be identified by data
mining tools. The abundance of data also gave rise to more efficient ways of mining
data by utilizing machine learning (and even more advanced deep learning)
methods to derive patterns in data sets [19]—a practice in which companies like
Google saw enormous potential. Leveraging the power of collated data is what
made Alphabet Inc., the multinational conglomerate it is today. In retrospect, it
comes as no surprise that Google provided its users almost unlimited storage to host
their e-mails or imagery very early during this whole endeavour. In 2004, in their
new e-mail client—Gmail—they offered 1 GB of free data storage, almost 500
times more than similar vendors offered at the time, as they have foreseen the
dominance of big data and their key role in predicting trends based on the user’s
decision-making process. In a similar fashion, Facebook, Twitter, Amazon and
even Netflix have chosen their own platform-specific big data analytics [20] trying
to understand the landscape of their user base, while improving their services with
more relevant content.
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At the time of writing this chapter, the AECO industry is still trying to catch up
with this big data frenzy, not only because of the difficulty of collecting and
organizing its data in a useful way, but also due to the nature of the AECO data
itself.

3.2 Cloud Computing

As previously mentioned, to mine, analyse and meaningfully visualize big data we
need great compute power, which can be found amply in cloud resources. cloud
computing (CC) describes the process by which users may store data and appli-
cations on a remote cloud location (in contrast to on-premise or on-prem) and then
traverse them in an effective way [21]. CC is intertwined with the existence of data
centres, as it still requires a physical location for storing the data and performing
computational processes on/with it. A data centre can be defined as an actual
physical premise that organizations such as Google or Amazon use to store their
data and to run their applications.

The nature of data centres has shifted from the initial on-prem resource model—
where individual organizations had to provide a physical space to host computing
hardware, storage devices and a robust networking infrastructure—to completely
off-site ones [22]. The idea of those decentralized locations is to provide cheap
computing and storage resources as a service which could seamlessly integrate with
the clients’ basic infrastructure via fast Internet connections, as if all resources were
on site. Furthermore, they can be easily accessed by virtualization technology,
where an image of the behaviour of a typical computer is used to run applications or
perform tasks like a physical computer would normally do. These virtual machines
(VMs) are essentially applications that act as computers and are easily manageable,
widely available and capable of running different operating systems on environ-
ments from the same physical endpoint, for example our personal computer at home
[23]. This gives the users the ability to take advantage of massive compute and
storage resources (and be charged on a per-use basis) without being responsible for
their maintenance. It is worth noting that cloud computing, where resources such as
compute power are available via a service system, differs from systems such as grid
computing, where machines are connected in a grid structure and try to perform a
coordinated goal by accessing resources directly [24].

Cloud computing vendors provide different services, but in principle these
usually come under three distinct classifications: infrastructure as a service, plat-
form as a service and software as a service (see Fig. 4).

Infrastructure as a service (IaaS) is a very common model which provides the
whole hardware infrastructure to users without any further action required for
maintenance, back up or recovery [25]. However, the responsibility for the software
applications or the choice of platform lies with the user. In addition, the system
provides a very detailed model for monitoring, load balancing and billing.
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Platform as a service model (PaaS) offers the ability to build, test, deploy and
maintain applications by providing all the relevant hardware and software infras-
tructure, such as runtime, storage and queuing but the configuration of the system
lies with the user so it can be tailored to specific needs. This model favours not only
the users who can run their services or applications without managing an actual
network, but also the cloud infrastructure providers, as they can have many diverse
applications and systems running on their platform [26].

Lastly, the software-as-a-service (SaaS) model can also be described as a
licensing model. It contributed greatly to the explosion of cloud computing as it
removes the need of investing on locally based compute or storage resources to
install and run a specific software application. With SaaS, part of the software, such
a lightweight UI system, can reside on-prem, however all the major functionality
happens on the cloud, while enabling collaboration between many users or
machines.

3.3 Microservices

This tremendous increase in compute power available on demand (feasible and
directly dependent on Internet connection speeds) allowed millions of machines and
even more applications to be connected to the Internet, all of them ready to process
user requests or talk to each other while performing various tasks. This created
massive coordination issues. Traditional applications were developed in a mono-
lithic way (see Fig. 5). They were self-contained with each part tightly

Fig. 4 Diagram showing the three basic categories of services offered by cloud computing
providers—IaaS, PaaS and SaaS
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interconnected and interdependent. This turned out to be highly inefficient because
scaling-up such systems to accommodate the servicing of more users (and data)
required the scale-up of the entire application, instead of just scaling individual
function which were experiencing surges in demand. Additionally, it also turned out
to be incredibly difficult to make small updates without having to rewrite the entire
application.

In time, developers started breaking the monoliths into small, independent,
autonomous and loosely connected parts called microservices (see Fig. 5) [27]. In
short, microservices can be described as the approach where a fleet of smaller
independent processes communicate with each other via a lightweight data and
information exchange mechanism, working together to form a bigger application
and achieve a single goal [28]. The microservice approach has many significant
advantages both in terms of the flexibility of development of the applications
themselves, as well as its scalability, as each individual service can be executed on
many machines at the same time. The additional benefit is that, similarly to
Google’s GFS examined previously, multiple instances of each service allow some
of them to fail safely, without bringing down the whole system. On the other hand,
they are a bit more complex to structure than simple monolithic software appli-
cations, as the different services need to talk to each other efficiently. For instance, a
case of deficiency would be if the communication mechanism of one of the
microservices is changed in such a way that is not backwards compatible to other
services talking to it. The lightweight information exchange mechanism which
glues all those microservices together is called application programming interface
(API). APIs are based on predefined set of rules which allow certain actions to be
taken between individual services. The most popular standard of APIs for building
microservices is known as representation state transfer (REST) as introduced by
Roy Fielding in 2000 [29]. The application of REST services is particularly

Fig. 5 Monolithic versus microservice-based software architecture
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successful because only a representation of the state of the resource accessed by the
REST-based API is returned to a client—which can be either a person or a program.
This state is usually in a light data format such as JSON or XML and its inde-
pendent of the actual details of the implementation of the resource. For example, if
we need to access some entries in an e-mail address book, we do not care on how
the contact card is implemented, but only about the name and the e-mail of the entry
that we are looking for.

3.4 Cloud-Based Software Development

Creating efficient cloud-based applications as well as deploying and maintaining
thousands of their instances simultaneously have led to the development of new
coding standards and practices (see Fig. 6). The traditional monolithic applications
were developed in a highly sequential way and split into distinct phases. These
phases had a strict linear sequence, like a water cascading down a hill, christening
this type of systems architecture the waterfall approach. On the other hand, a highly
dynamic nature of the cloud environments, allowed for a more flexible and
adaptable approach. Software requirements could change overnight, often rendering
the careful planning, so valued by the waterfall approach, entirely outdated. The
ability to be agile—respond quickly to requests with targeted, small updates within
days rather than waiting for the entire waterfall to flow—proved to be more efficient
(Facebook, for example, is making updates to its production code every day [30]).

The necessity of reducing delivery times while still providing high-quality
products has led to increased automation and coordination of both the software
development side (Dev) and the IT operations side (Ops) of the process.

Fig. 6 Comparison between three most common software development methodologies
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The resulting methodology called DevOps is not a rival methodology to agile. Its
aim is to compliment agile’s costumer–client coordination and expand it to a
seamless communication between the developers and the IT infrastructure. The
primary goal of DevOps is automation. Especially when it comes to limiting
potential failures, minimizing bottlenecks and ensuring maximum performance
when deploying the solutions. It is comprised by a series of key components,
namely continuous integration (CI), continuous delivery (CD) and continuous
deployment. While CI is entirely focused to the development of code and its regular
testing and merging to the main software or application, the other two components
are sometimes interchangeable terms. Their key difference in a simplified way, is
that in continuous delivery the continuous updates delivered to the user are man-
ually triggered by the development team whereas in continuous development, the
whole pipeline is completely automated. A similar development practice can be a
potential candidate for the build environment from the planning, engineering to the
documentation aspect of it where iterations are delivered to the relevant stake-
holders (see Fig. 7).

3.5 Cloud Computing in AECO

As designers we can learn from the workflows of the IT and tech industry, as they
may differ in size, but draw some interesting parallels in the principles of

Fig. 7 Conceptual design pipeline based on to the DevOps methodology
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continuous deployment in delivering solutions, where the DevOps CD component
comes into play. Design teams are always required to frequently deliver iterations
of their designs to the respective stakeholders, whether these are internal reviews,
the client, building authorities or consultants. This involves a very time-consuming
iterative process associated with the design cycle and its derivatives—such as
documentation, costing or visualization.

Imagine now, employing discrete design workflows or procedures as
microservices in the design delivery process. This could work like this: whenever a
new design iteration is created, a series of automated pipelines could immediately
check for building regulation compliance, cost or performance-driven metrics. In
parallel, the system could fire-off a rendering pipeline to create visuals of prese-
lected views to be audited by the designers. Then, the design could be approved
through a sequence of design “pull requests”, tailored to each organization and its
existing workflows. After the approval stage, the new design option could be
automatically delivered to the relevant stakeholders. The system would be able to
run and assess various options in parallel, while simultaneously storing all the
derivative data in a structured way, so it could be accessed on demand, or even used
as a training set for predictive models.

Although the above is still a remote target, the AECO industry has slowly started
implementing some of these concepts within its workflows. CAD software vendors
such McNeel and Associates have moved part of their applications (Rhinoceros3d
[31]) towards a SaaS model, where users are able to access instances of the software
over a cloud and perform all the computation there. This opened more possibilities
for tech companies stemming from the AECO industry to perform their computa-
tion on VMs. Such examples include Hypar.IO [32], a cloud-based CAD service
deploying both Rhino.Compute [33] and its own bespoke functions and Thornton
Tomasetti’s Swarm [34], that works purely with Rhino.Compute instances running
parametric definitions (Grasshopper3d) on the cloud. A similar approach which lies
closer to the microservice architecture is adopted by the developers of Ladybug
tools [35] for environmental analysis in their newest cloud-based platform called
Pollination. In their latest iteration, all the computation happens on cloud servers in
the form of small distinct functions that are parallelizable. In this way, failures
occurring while the processes are running can be easily traced back and rescheduled
without having to rerun the entire analysis from scratch.

On the other hand, there is a current trend for applications talking in between
software such as Speckle [36] and BHoM [37], which is open source and implement
the principles of RESTful APIs communicating stateless messages through servers.
Continuing the story on trends, start-ups and spin offs like Spacemaker.io [38],
Giraffe [39], TestFit.io [40]. Archistar.ai [41] and Google Alphabet’s SidewalkLabs
with project Delve [42] are developing applications that run on web browsers and
deal mainly with design space exploration, harnessing the power of data mining and
predictive modelling through machine learning. The important thing here is that
these systems are built in such a way so that the computation is independent of
software solutions and can be accessed by any device capable of connecting to the
Internet. This concept of central consolidated models over clouds is one of the basic
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functionalities of Autodesk’s BIM360, and the notion of distributing tasks has been
used by designers, even unknowingly, whenever they are rendering imagery over
render farms.

4 Harnessing the Power of Distributed Computing
and Big Data in Performance-Driven Design

4.1 Performance-Driven Design

Applying cloud-based workflows in AECO and harnessing the power of its data
could become a game changer in the way architects work and the quality of
buildings they produce. But as mentioned earlier, the focus will be predominantly
on workflows and data produced during early stages of the design process, as this
can have a cascading effect in further stages of the life cycle of a building.
Furthermore, the importance of early stage design has also to do with the plethora
of possible solutions (and its consecutive data) that can be explored during the
relative freedom that the conceptual stages of a project can offer.

In traditional design processes, early stage decisions are predominantly based on
the architects’ experience and their ability to make educated guesses about the
repercussions of their design decisions. While those early decisions are crucial to
the success of the project [43], it may be increasingly difficult to manually navigate
through the multiple criteria that drive them, particularly as the projects scale up in
size and complexity. However, there exists a feasible set of design options which
can extend beyond the limited manually produced and tested ones and which could
satisfy basic brief requirements while having vastly different performance values.
This set of possible options can be easily visualized as a physical landscape with
hills and valleys. In this analogy, the basic building features (like its orientation or
height) could be compared to the x, y components of geographic coordinates, with
their z value representing the performance score of each design option. Of course,
this is an oversimplification, as these landscapes of solutions spaces are usually
multidimensional, but the analogy is still applicable. When a project starts, this
landscape is usually an uncharted territory covered in dense fog. However, based on
the architect’s prior knowledge and experience, some promising locations of the
summits could be (sometimes almost unconsciously) identified. Thus, one of the
primary goals of the design process is to uncover and map this landscape, while
finding the best trade-offs between quantifiable, functional and aesthetic
requirements.

The exploration of the aforementioned landscape (and its potential for data
mining) can be assisted by fast, efficient and automated methods for creating and
analysing options in order to drive the solution to the right direction early on in the
design process.
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4.2 A Multitude of (Meaningful) Design Options

The most widespread method for automatic generation of design options is
currently based on parametric and generative modelling environments like
Grasshopper and Dynamo. The process of building such models requires a lot of
expertise and domain knowledge. In every model, both requirements and hard
constrains from the project’s brief must be combined with a set of chained geo-
metric rules. The rules reflect a certain design intent which is then translated into a
piece of software capable of generating variations of building geometry in respect to
a given context. Every project has unique characteristics, thus requiring a bespoke
approach. Additionally, during early stages, a design direction changes very often,
sometimes even overnight. Thus, many different typologies, derived from geo-
metrically different rule sets, need to be tested. The rules usually have nothing in
common and need custom development, resulting in multiple models per project.
Therefore, capturing a design intent becomes a challenge in all building scales, but
particularly for urban scale master plans, where many different building typologies
need to be designed and tested.

Striking a balance between flowing brief constrains and geometrical rules is
more art than science when handcrafting a model definition. Well-structured gen-
erative models should output design option with enough complexity and variety to
make the exploration interesting while still complying with building code regula-
tions and a desired aesthetic intent. For urban scale projects, this rule-based
approach is often the backbone of procedural city generators (e.g. City Engine [44])
dedicated to large-scale, high-level 3D city modelling. This technique is used
heavily in the gaming and visualization industries to produce vast landscapes and
cityscapes. Procedural modelling can produce more diverse and detailed results
with less effort and in a shorter period of time. Nevertheless, for these options to be
meaningful and compliant to project requirements, an extensive amount of rigour
needs to be applied to the definition of the rules applied.

Although handcrafting rule-based generative models, to capture the complexity
of urban fabric, is considered state of the art, it is worth noting that the tech industry
is, based on recent advancements in artificial intelligence and machine learning,
investing a lot into systems which could create such models in other domains
automatically. Those advancements have been possible because of the access to
vast amounts of structured data and are discussed in detail in Chapter “Artificial
Intelligence for the Built Environment” on machine learning.

4.3 Performance Analysis

Earlier in this chapter, we have discussed the principles of performance-driven
design and their importance in the design process. Driving a design solution based
on performance, means that each option needs to be checked against a series of
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analytical factors that define its fitness. So, moving on from creation to analysis,
each of the hundreds of options created based on the generative tools presented
above, needs to be assessed against a set of criteria representing the project’s
performance indicators.

These indicators cover a vast array of analyses, from simple gross floor area
calculations to environmental analysis (daylight potential, total annual solar radi-
ation, number of sunlight hours, wind flow, etc.), sustainability (e.g. embodied and
operation carbon footprint), structural stability, intervisual and special connectivity,
financial models, perceptual or well-being such as quality of view (e.g. visibility of
certain context features like sea or green spaces) and many more.

Running each of those analyses require dedicated software and hardware (e.g.
high-end graphic cards) as well as considerable compute time. In most cases, basic
geometric data, which represent a mass of a single design option to be analysed,
must be preprocessed (sometimes tediously and manually) and converted into a
specific format before starting a simulation. Additionally, analysis engines usually
produce vast amounts of temporary data which needs storing and is required to
produce aggregated scores. Calculation times for each analysis could vary from
minutes to hours which makes a massive difference when a big number of design
option needs to be evaluated. This poses a great challenge both in terms of
investment in the infrastructure which could support that many different engines
and shear compute time. Many of those issues could be effectively mitigated, if both
cloud resources and parallel computing are used.

4.4 Big Data Challenges When Searching for Good
Solutions

Exploring a solution space defined by a generative model against a set of key
performance indicators is a non-trivial problem. Finding a relationship between the
vast input combinations of the generative model and their respective effect in the
solution’s performance against all set objectives is a task whose complexity
increases exponentially along with the number of inputs and analyses required. One
could try to make observations regarding input–output correlations, by manually
manipulating input values while observing the resulting calculating performance,
but this is not efficient, and it certainly is not scalable.

With the limited time that fast design cycles provide, an automatic search
mechanism is required. Nature has already created one of the most effective search
and optimization mechanism—biological evolution. Evolution promotes organ-
isms’ adaptation to their natural environment which is usually described in literature
as a combination of variation, heredity and selection [45]. Variation is realized by
the existence of multiple individuals at any given time in a population. Heredity
allows to pass down certain traits from parents to children in discrete chunks
iteratively from one generation to another working as a form of cache of good traits.
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Competition for natural resources creates a selection pressure which drives the
entire phenomenon. Biological evolution works on large timescales, but its basic
principles can be computationally replicated. From the computational perspective,
evolution could be seen as a distributed and parallel mechanism for constantly
creating organisms which are better set to adapt and survive in an ever-changing
natural environment [46].

Appling the evolutionary principle to the problem of finding an optimal building
massing expressed as a combination of input parameters (like building orientation
or height) driven by a single objective (e.g. daylight potential) is quite straight-
forward. The single performance score can be directly used to drive selection
pressure as a fitness value. As long as the fitness pressure exists, new solutions bred
(mainly but not solely) from the best performing individuals of previous ones will
have good chance of being better than their parents. This process becomes sig-
nificantly more difficult when more than one objective is being taken into con-
sideration, which is usually the case in any real-world scenario. There are various
strategies to deal with this issue but the most popular and widely accepted is to keep
selecting solutions where you cannot improve one objective without deteriorating
the performance of any other. A set of such solutions is called non-dominated or
Pareto-optimal after Vilfredo Pareto, an Italian economist. Finding and being able
to traverse this set by decision-makers is the main goal of multiobjective opti-
mization and multicriterion decision-making [47, 48]. Multiobjective optimization
is a mature field in computer science with many real-world application [47, 49]. On
the other hand, a high number of objectives could negatively influence the overall
performance of an optimization study. More data to process not only increases
computational cost but also might affect the stability of the whole simulated evo-
lution [50].

Despite almost 30 years of research on this topic, the applications in AECO
industry have been mostly academic or focused on simple or single domain
problems due to significant computational cost. As described, in the previous
paragraphs, architectural software is mostly outdated and does not fully take
advantage of recent advances in cloud computing. Performance-oriented design on
large-scale, real-world projects which could benefit from evaluating multiple per-
formance criteria is challenging. To put into perspective, using current tools a
generation of a single option for a large masterplan project and its subsequent
performance evaluation could take approximately 15 min [51]. This might not seem
long, but a single optimization study would need to process at least 100 generations
each with 100 options processing 10,000 solutions in total. Multiplying each option
by 15 min results in staggering 150,00 min (almost 104 days)! At an early stage
where a design intent changes weakly or even daily this timeframe would not be
acceptable. By the time the results are ready, the design would have moved on to a
point where the outcome of the study would be of no use to a design team. The
problem with this approach is that all work is done sequentially by a single
machine. It is a significant bottleneck, as it limits the applicability of this method to
simple or single domain studies, excluding most of the real-world problems. As
described in the previous paragraph, individual solutions which exist in each

Big Data and Cloud Computing for the Built Environment 149



population are completely independent from each other. Thus, they could be pro-
cessed on different machines in parallel, dramatically reducing compute time even
up to a single day.

5 Hydra Tool

Hydra is an example of a bespoke tool developed at Foster + Partners by the
Applied Research + Development group, which aims at addressing the aforemen-
tioned issues and tap on to the potential of big data and cloud computing [51]. In its
basic principle, it takes large geometry generation and simulation tasks and splits
them into smaller parts which are automatically executed in parallel on multiple
machines using an on-prem cloud. Following the previously discussed software
developed patterns, Hydra’s components are developed in the agile way and broken
down into microservices which communicate using a custom REST API (see
Fig. 8). Similar to Google’s GFS system, it uses two high-level machine types: the
first schedules and monitors execution of subtasks or controls the optimization
process; the second picks pending subtasks from a queue and runs them simulta-
neously. The tasks range from creation of geometry using generative models or
procedural city generators, various performance analysis and both image and video
rendering. This software pattern, known as the controller–worker model, is extre-
mely efficient, especially for evolutionary-based optimization studies [52, 53].

Fig. 8 Diagram showing Hydra’s microservice-based software architecture
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Metadata associated with design solutions generated by Hydra is stored in an
organized database which could be queried by designers. The database also stores
pointers to temporary geometries and images generated during the execution of the
sub-task, which could be pulled and reviewed on demand. Tens of thousands of
solutions generated by Hydra could be visualized in an interactive web-based
dashboard which helps with exploring and understanding the relations between
various design parameters and trade-offs between design objectives.

Hydra’s development has been driven by an extensive use in real-world projects
in the practice. It has been used on 15 real-world projects for the past 2 years,
especially large-scale masterplans. One of such examples is the project which won
the design competition for Guangming Hub, a new transport-oriented development
situated on the high-speed rail link that connects Hong Kong, Shenzhen and
Guangzhou. Based on the brief, an integrated team of architects and specialists
identified a set of key objectives and constraints which would drive the initial
placement of urban massing to positively influence urban growth in the region. The
challenge was to find an optimal combination of buildings based on site-specific
design typologies, while maximizing daylight potential, cutting down average
walking time to a high-speed rail station, ensuring that as many buildings as pos-
sible have a view to the central park while keeping the 2 M sqm GFA target (see
Fig. 9).

Base on the project brief, a parametric model was developed and fed along with
the constraints to Hydra, which processed 10,000 options in total in 49.14 h pro-
viding approximately 37 times speed up (each option would take otherwise on
average 11 min to process). The final Pareto-front of 100 options with the best
trade-offs between the objectives was then uploaded into the web-based interface
(see Fig. 10) and discussed with the design team. After choosing the most

Fig. 9 A single design option from the Guangming Hub project analysed against four
performance criteria

Big Data and Cloud Computing for the Built Environment 151



promising solution, a Hydra-generated massing was used as an inspiration and
starting point for the team’s design explorations towards the production of the final
model.

6 Conclusions

As demonstrated in the Hydra-based case study, the current advancements in cloud
computing could dramatically reduce computing time for performance analysis
simulations and complex multiobjective optimization studies. By cutting down the
processing time from months to days or even hours, those tools could be effectively
used in the context of early stage design. This in turn, gives architects and all
stakeholders involved in the process, a powerful tool which allows to make more
informed decisions and significantly influence the design at its most critical stage. It
also allows for the immense amounts of data produced to be collected, processed,
structured and classified in a meaningful manner, ready for further reuse, e.g. in
machine learning pipelines.

This change has been possible because current cloud computing technology
provides access to massive compute clusters and data storage for little money as a
service without a need to invest in expensive hardware and maintenance. This, as
we showcased, led to an explosion of cloud-based distributed applications and
facilitated the creation of new software development standards. The easiness with
which it is possible to develop such applications and whole systems (as demon-
strated in the Hydra example) gives architects a new perspective and an opportunity
to rethink current design pipelines and workflows.

Fig. 10 A screenshot of Hydra’s web-based UI showing the interactive dashboard which allows
easy exploration of the project’s solution space
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Additionally, data which is currently being created by the AECO industry
contains a great amount of unstructured information such as CAD models, images
or written documents, which makes it inherently difficult to query or effectively
analyse. However, the increasing input of technology within the building industry
profession and in combination with more schema-specific data from IoT devices
and smart buildings can potentially lead to a point where data coming out of the
design board or collected from buildings will be suitable for analysis and further
processing. On the other hand, more compute power available on demand and vast
storage capacity could facilitate the creation of huge and more structured data sets.
Such sets are critical for building data-based predictive which could lead to a next
generation of more sophisticated design tools.
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