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Abstract Artificial intelligence (AI) and machine learning (ML) have been
repetitively mentioned in the headlines and associated with a multitude of disci-
plines and feats. So, what are in fact AI and ML and why should architects and
engineers care? This chapter will address the above questions by explaining the
meaning behind the buzzwords, clarifying the differences between AI and ML and
discussing what applications they might have in the creative industries in general
and in the construction industry in particular. Different learning paradigms and
examples of what are the types of problems ML can solve in the construction
industry are provided. Emphasis will be given on the quantity and quality of the
data required to train a ML model, and how this is likely to be mined and curated
within architecture and engineering firms in the next few years. In addition, two
case studies—which focus on two types of ML models, namely surrogate and
design-assist models—will be disambiguated, looking into why one might choose
to utilize ML techniques to tackle a problem, the methodology to follow and how to
critically evaluate the outcomes. One of the case studies deals with passively
actuated laminates, conducted in collaboration with Autodesk, whilst the other with
spatial and visual connectivity analysis of architectural floor plans. Finally, a dis-
cussion is drawn about present and future ML endeavours undertaken by the
authors within their practise and how machine learning could be incorporated in the
future of architecture and construction industry.
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1 Introduction

William Gibson, author of sci-fi novel Neuromancer, famously said: “The future is
already here, it’s just not evenly distributed.” And he is right. Most people, for
example, when faced with the question of what artificial intelligence is, think of the
Matrix, or the Terminator’s Skynet: intelligent machines that could—in a distant
future—take over the world! But artificial intelligence is much more real than a
character in a sci-fi movie—and it’s not (at least currently) planning for world
domination. On the contrary, along with machine learning (ML), AI has been
repetitively mentioned in the headlines in the past decade, associated with a mul-
titude of disciplines and feats. From stories of companies using artificial intelligence
to detect breast cancer and outperforming experts, to start-ups using machine
learning to create self-driving cars, the list of ways by which these technologies are
used keeps growing. Their momentum is building up exponentially, and one thing
is for sure: this time, they are here to stay.

Interestingly, not only are these technologies widely used in a plethora of
industries, but their success is built on every single one of us: or rather on the data
we produce. We all use (and effectively train), a ML algorithm every time we listen
to music on Spotify, buy something online or even watch Netflix. Every single
action in our life is underscored by the production of data that is being mined and
used in a variety of ways: from identifying spam email to defining our banking
credit profile.

Some may say that the above seem disconnected with the architecture, engi-
neering, construction and operation industry (AECO). This could not be further
from the truth.

The richness of data that is generated through all the stages of the life cycle of
the built environment could revolutionize the industry, if leveraged appropriately
using machine learning. This chapter will expand on how this may be possible by
firstly explaining what ML is and how it works. It will subsequently frame it in the
context of AECO, by providing examples of the data produced from conception to
operation and how it can be used to train ML models. This will be showcased with
theoretical and practical examples, investigating not only current applications, but
also the potential of these technologies in the construction industry.

Using data to train machine learning models could serve AECO in a variety of
ways, from helping designers and engineers deliver mundane tasks quickly, to
performing like a design assistant and effectively enhancing or even showcasing
creativity within the context of the built environment.
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2 Machine Learning

2.1 Artificial Intelligence

Before expanding on machine learning, it is necessary that it should first be placed
in the wider context of artificial intelligence. AI as a scientific field of study is quite
expansive: its goal is to create machines that can simulate human intelligence and
behaviour. To achieve that there are many subfields that need to be perfected
together, each vast in and of itself. Some of these fields—besides ML—include but
are not limited to natural language processing, robotics, computer vision and speech
recognition. Figure 1 provides an inexhaustive list of research fields that are
commonly attributed to the progression of artificial intelligence research. It is also
worth noting that a lot of overlap exists between those research topics.

Not only is AI expansive, but it is also vague: its goal keeps getting redefined.
Fifty years ago, an application running on a device the size of our palm that could
play chess, and defeat its human (Chess Grandmaster) counterpart would have been
described as AI. But nowadays, this is yet another app on a mobile device.

As technology and the understanding of how the human mind works progresses,
AI’s scope and what it should be capable of is reshaped and redefined constantly. In
parallel, the optimism around AI and what it can accomplish waxes and wanes.

Fig. 1 An inexhaustive list of research fields that are commonly attributed to the progression of
artificial intelligence research
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Two more times in the past overhyped enthusiasm about AI was seen (in the 60s
and 80s), both followed by reduced funding and disinterest in research when the
predicted high expectations failed to materialize—periods known as “AI Winters”.

Machine learning’s scope is more targeted and considered a subset of AI as seen
in Figs. 1 and 2. As summarized in the words of computer scientist Tom Mitchell:
“Machine learning is the study of computer algorithms that allow computer pro-
grammes to automatically improve through experience” [1]. In ML, the aim is to
develop a model that fits a specific type of problem [2]. To do this, an AI system
needs to be able to extract patterns from raw data. As with any field of scientific
study, there are different research approaches on how to accomplish this, materi-
alized as algorithms and computational methods.

One such approach that has been gaining a lot of traction and media attention
lately is the use of artificial neural networks (ANN). ANNs are loosely based on the
neurons in the human brain and how they interact together. Collectively, they try to
perform a bit like the human brain: taking data as an input, processing it through a
network of neurons and finally outputting a response as seen in a simple network in
Fig. 3. The neurons—structured as an array of consecutive hidden layers—decide
whether to be activated or not based on a function that considers the weighted
inputs of the previous layer. After that, their output propagates as an input to the
next layer. This is done until we reach the final output of the network [3].

Historically, ANNs were limited in the number of neurons used within a limited
number of layers. It was obvious though for some, since the 80s that the success of
neural networks was intertwined with mainly two things, fast enough computers
and big enough datasets [4]. With the satisfaction of those two conditions in recent
years a new subfield of research rose: deep learning (DL). DL is a subset of ML
research that is concerned with scaling up neural networks’ algorithms. This is
achieved by scaling up the size of the networks and the amount of neurons they
include, by increasing the amount of data they could consume and by dealing with
the by-product of this scale-up which is the amount of necessary computations.

Fig. 2 A diagram showing
the relationship between AI,
ML and DL
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This chapter is not by any means an exhaustive introduction to ML, but rather an
attempt to provide an overview of important terms, basic intuition of how neural
networks work, the necessary logistics for using them and positioning those
attempts within the wider scope of the AEC industry. Readers who find this
interesting are encouraged to consider more comprehensive machine learning
textbooks [5–8].

2.2 Intuition

So how does an artificial neural network manage to learn? It could be said that in
very broad strokes an ANN develops similarly to a brain. Like the brain in a
new-born child, the processing mechanisms are not useful at the beginning, and the
response is far from being accurate. But through a process of feedback, a learning
cycle is established.

To help create a mental model of this, you should imagine trying to balance a
pen on your index finger. You might start by placing a random point of the pen on
the side of your finger, getting a feel for how the weight of the pen is distributed as
you are trying to balance it. Expectedly, at the beginning it will fall. You then start
testing points to the left or to the right of the point you initially chose. Every time
the pen falls, you keep building a better understanding of which point across the
pen you should try and balance it from, until you reach your goal. You can
memorize the optimal balancing position along the pen, but then most probably you
will fail if you try again with a pen of a different size and weight balance. You
might, weirdly, decide to take this task as a challenge and start trying hundreds,
maybe thousands, of different pens! In ML terms, this phase is called the training

Fig. 3 A simple fully connected neural network, with a highlighted neuron structure, showing that
each neuron’s output is the weighted sum of all inputs, which then passes through an activation
function that decides whether to intensify or abate the neuron’s output
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phase. Once you can perfectly balance almost all of them, you are on your way to
becoming an expert “pen balancer” (a coveted title!).

Congratulations: this expertise now allows you to be able to guess from a pen’s
shape, profile and cross section, how the weight is distributed, and which point
along the pen would make it balance perfectly on your finger! This phase is called
inference phase, and the quality of your guesses will be highly dependent on the
quality of your training. This tedious learning process of trial and error is exactly
what an ANN tries to imitate. The nuances of this learning process are captured and
modelled differently in different ML approaches (see Fig. 4).

With its capability to make accurate predictions, if trained on a good dataset, ML
enables us to depart from traditional ways of solving tasks and detecting patterns
which historically depended on explicit engineering and programming. For the sake
of argument, let us assume simplistically that a robot is tasked to achieve the above

Fig. 4 During training, the model is continuously exposed to new data from the training dataset,
and its knowledge is put to the test. Once we have a trained model, it can be used for inference/
prediction on new data. Only a subset of the data available is used for training
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task. To programme this, first, one would need to collect data about different brands
of pens, their length, cross section, weight distribution or any other features that
might be deemed of importance to the task. Second, comes the task of examining
optimal points along the pen where it could be balanced from. Then, one might start
writing a very long procedure that gives explicit conditional instructions to the
robot, manually encoding the knowledge about the pens that were surveyed. The
programme can be quite long, but at the end, given a pen from the surveyed ones,
our robot can potentially balance the pen on its finger. But what happens if there is
the need to use a new pen or maybe a paint brush? Well, since an explicit definition
of the desired output for every possible input was required, the programme would
need to be rewritten or expanded, requiring further investment of time and labour.
This is not always possible, and it certainly is not efficient. That is where ML
shines: using ANNs, one could train the robot to perform the task on its own,
without having to provide explicit and exhaustive instructions. This assumes though
that one has the pens to begin with: that is, one has the data—loads and loads of it!
The ANN will take as an input the pen, and output to the robot which point along
the pen it should balance it from. Not only that but after a whilst it will even
generalize, so if a decision was made that the robot needs to balance any object with
properties like those of a pen, it should still be able to guess where the balancing
point lies along this element.

2.3 Representation

But how can the ANN take the pen as an input? This question highlights an integral
point in ML research, which is representation. A machine learning algorithm/model
cannot really see, hear or sense the input directly. Some thought needs to be put into
how to represent the input data in a way that the model can then consume. More
importantly, one needs to think in advance which of the input qualities are key for
the model’s understanding of it (in order to complete its task), and consecutively
shape the input dataset accordingly.

Figure 5 shows a classification problem, which in this case is whether an input
presented to the system is a villa or not. Classification—one of the tasks ML is very
good at—is used to figure out which category an input most likely belongs to, given
a list of categories presented to the model (in this case “villa” or “not villa”). Using
traditional approaches, first, one would need to figure out what are the key aspects
that can portray the input (what makes a villa?). Second, one would need to provide
an exhaustive list of instructions about how to detect whether those key aspects
exist in an input or not. Given the above, a programme would be able to classify
whether a given input is a villa.

ML algorithms can change this process, where instead of an exhaustive set of
instructions, one needs to only provide an algorithm that works for this particular
task—e.g. a logistic regression model or naïve Bayes model or a similar ML
classification algorithm [9].

Artificial Intelligence for the Built Environment 109



Deep learning or deep neural networks have taken this process even further,
where the model is not only capable of learning the representation (feature
extraction) best suited to portray the inputs for the given task, but given a new
input, it can figure out which category it belongs to.

Going back to Fig. 3, we can assume that our dataset is comprised of images. In
this case (Fig. 6), each pixel in the image would be one of our inputs. If a
low-resolution image is used, e.g. 35 � 35 pixels, this means that the total number
of inputs would be 1,225 (35 � 35). But an image usually has 3 channels (red,
green and blue), each of which need to be an independent input. This would lead to
an input size of 3,675 (1,225 � 3). The neural network referenced in Fig. 3 is
called a fully connected network, since each neuron in a layer is connected to all
neurons from the previous layer. If our network has only a single hidden layer with
10 neurons that would result in a total number of connections of 36,750. One can
see how this number will drastically increase and become unmanageable if higher
resolution images are used or if more hidden layers and more neurons per layer are
added (deep NN). Another problem is that the now flattened input (which has been
transformed from a 250 � 250 � 3 pixel grid to a 3,675-long list of input values)
has lost all spatial information in regards to each pixel’s spatial relationship to its
neighbours. This was one of the many reasons why a different architecture of neural
networks was needed. Convolutional NNs started out as an adaptation of ANNs to

Fig. 5 Diagrams of a classification problem solved by a traditional approach, machine learning
and deep learning, respectively
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work with image-based tasks, but later their use expanded to other domains. It was
inspired by classical image processing techniques; it tries to limit the number of
neurons and connections by sharing them and utilizes other optimizations to deal
with image data—the mechanics of which are outside the scope of this chapter.

For each domain and task, variations of the classical ANN exist. Some more
suited for a type of data input than others. There are particular ANN models that
specialize in image recognition [10, 11], text generation [12], audio synthesis [13],
graph structures [14] and 3-dimensional representations like voxel data [15],
point-cloud data [16], mesh data [17], SDF data [18] and many more.

2.4 Learning Paradigms

In an interesting parallel to real-life, there are different “styles” (or in this case
types) of learning used within the context of ML. These are usually split based on
two main differentiators: (1) whether a teacher or some form of feedback exists in
the process or not and (2) whether the learning entity is in active learning state
(exploring the environment) or passive learning state (being presented with data,
without interacting with the environment).

Table 1 shows the different types of learning based on the above [19]. These are
not the only styles of ML but the below split is the one most commonly observed.

Fig. 6 A diagram showing the amount of input parameters a fully connected network would
require for an image of size 35 � 35 pixels
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In the next few paragraphs, an effort will be made to explain these four basic
learning paradigms with simple examples.

The following learning styles had—through the years—various computational
models implementing them. With the rise of DL though, some of those tasks vastly
outer-performed classical ML algorithms. That by no means makes DL the best
solution for everything, as depending on the task and amount of data used, its use
may be considered an overkill.

Supervised learning. This in ML would be the equivalent of a teacher setting up
assignments for a class, for each one of which he/she has the perfect answer. Thus,
whenever a student submits their assignment, the teacher can provide detailed
feedback, of whether the answers are right or wrong, and if the latter, by how much,
so the student can adjust their knowledge of the subject and become better at it. In
this supervised learning approach, the model (student) is presented with a dataset of
inputs and their respective outputs (ground truth). This means that during training,
for each input the model can also be provided with its error value, calculated as the
difference between its output (prediction) and the ground truth. This process con-
tinues, where the model is “fitted” to the training data, ensuring it can predict the
answers for almost all questions correctly.

When it comes to supervised learning, data curation and testing are both
important parts of the process. Going back to the teacher-student analogy, let us
assume that the teacher is trying to prepare handouts to help the students achieve
top marks. To do so, the teacher would have to prepare extensive training material
of data carefully curated (curriculum) to impart the knowledge the students would
require in order to get high marks in their assignments. In ML, this would be the
equivalent of the data required to train the system. This data cannot be presented at
random, but rather must be carefully selected, cleaned and organized before it is
input to the ML model. This data curation is an essential step in feedback-based ML
—and is usually the hardest.

As mentioned above, testing is also important in ML. In the case of the teaching
example above, it would be common for the teacher to set small quizzes to test the
student’s understanding of the subject at hand. In ML, this happens through setting
part of the dataset aside, in order to conduct a test after the training process ends and
check the model’s predictive ability on data it did not encounter during training.
This data subset is called the testing set as opposed to the training set, and it is an
incredibly important part of supervised learning. It is critical to use diversified data
sets to validate and test an ML model to avoid over fitting [20] leading to the model
not generalizing well. Generalization refers to the ability of the model to correctly

Table 1 Learning paradigms

With feedback/teacher Without feedback/teacher

Active Reinforcement learning/active learning Intrinsic motivation/exploration

Passive Supervised learning Unsupervised learning
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predict answers to questions it did not see before, questions from outside its training
set, which is the ultimate goal.

A good example of supervised learning in the AECO industry would be the
T2D2: Damage Detector created by Core TT [21]. The application in part uses a
model trained through supervised learning to detect and classify damage to struc-
tures and materials given an image. This approach saves a lot of time and manual
labour. The user can provide hundreds of images for the state of the building taken
using reality capture solutions. The service then uses those images to construct a 3d
model of the building and highlight where damage is seen and what type of damage
it is.

Reinforcement learning. This is effectively a type of feedback-based ML where
a fixed dataset to train against is not available. It would resemble a player finding an
obscure arcade game with no instructions. In this case, if all the player had to go by
was the controls and the scoreboard, they would use the former to explore the
gaming environment and the latter as a metric of their success. The higher the score,
the closer they would be at figuring out the rules of the game. As opposed to
supervised learning, where a model answer (desired output) to a given input is
available, in reinforcement learning there are no model answers; there exists only
the ability of assigning a measure to how good the resulting output is, or in other
words one can “score the behaviour of the model according to some performance
criterion” [22]. In addition, since the learner here is active within the environment,
we refer to it as the agent. Just like with the player, there is no known answer—no
map to guide the agent through the rules: there is also no way of knowing which
exact actions during the game are beneficial or not, since the score is not necessarily
updated with every one of them. This sparse reward signal might affect the agent’s
learning progress.

What this means is that in reinforcement learning, the agent—just like the player
in the above example—will try to come up with its own playing technique: a system
to help provides guidance on which action will yield maximum rewards given the
current state of the game/environment. Leveraging memory, eventually, the search
efforts of the agent decrease with the increase in its experience.

Fig. 7 A diagram showing clustering which is an unsupervised learning task
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A great real-life example of this type of learning is DeepMind’s Agent57, a
model trained to play 57 Atari games that managed to obtain scores higher than the
human baseline scores.

Unsupervised learning. This type of learning comes into play when there are
not available desired behaviours (outputs) for a given input, nor is there a way to
judge if a behaviour is good or bad based on a performance criterion. This tech-
nique is usually concerned with uncovering structure and finding patterns hidden in
unlabelled data (Fig. 7). In the teacher analogy, it would be as if the teacher had
some questions that they did not know how to answer, about some random
uncurated content and they just dumped all of this on the students. This sounds like
a bad teacher indeed, which is why unsupervised learning is associated not with a
teacher, but the lack of one thereof.

Some of the tasks unsupervised learning is good at are clustering and dimen-
sionality reduction. Clustering has interesting repercussions, particularly when
compared to classification (the typical supervised learning task explained in
Sect. 2.3, some examples of which are the k-nearest neighbour (KNN) model,
logistic regression, naïve Bayes classifiers and random forests). In both cases, the
goal is to split huge amounts of data into groups, but whilst the later tries to sort it
on a predefined set of clusters, the former is making no assumptions of how the split
should happen. On the other hand, dimensionality reduction tries to provide a more
readable organization for data with lots of attributes. An example of that would be
sorting pixels with different RGB values (three dimensions) in a 2D plane (two
dimensions). Or taking multidimensional objects and representing in a lower
dimension (2D grid) based on the relationships between their inputs (see Fig. 8).

A good case study of unsupervised learning implementation can be found on
how Netflix operates [23]. In very simple terms, prior to 2016, Netflix was building
its viewer recommendations based on gender, age, location and other demographics
—performing, effectively, a classification problem. But these predetermined cate-
gories were proven to not be really indicative of which type of content viewers
enjoyed. Since then, Netflix started collecting all sorts of behavioural information:
from the time a viewer watched a movie to the amount of time one may spend
browsing content before choosing something to watch. Based on all of that extra

Fig. 8 Unsupervised
learning: dimensionality
reduction of a multi-variable
massing problem to a 2D
representation using a
self-organized map (SOM)
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data, users are now clustered into “taste communities”, which are categories
developed based on data, and are currently used to tailor recommendations with
much greater success than before [24].

Intrinsic motivation and exploration learning. This final type is an interesting
ML paradigm investigating active ML models that do not require feedback. This
model is trying to address the main problem of supervised learning, which is that
learning through extrinsic rewards alone is not how humans evolve their knowl-
edge. And that’s because despite the fact that humans do learn based on “rewards”
as they are exposed to an array of experiences through their life, they still have the
capacity to navigate through first time experiences without any prior knowledge or
direction whatsoever. Intrinsic motivation and exploration are based on this pre-
mise, whose focus is to try to generalize and develop models that work well at a
wide variety of tasks and environments—tasks the models haven’t been exposed to
before, and yet could still manage to navigate autonomously, making this field of
research a hot topic of investigation [25].

3 Architecture, Engineering, Construction and Operation

3.1 Data

If machine learning was an engine (a high consumption one—think Lamborghini),
then data would be its fuel: it would need loads of it, and of the highest-octane
variety for that matter! When it comes to data for training ML systems, good things
cannot come in small packages—quantity and quality are equally important.

As a by-product of everything humans do, data is embedded in every one of their
actions. The previous sub-section explored how some of that data can be used to
train an ML model in different ways. But what about the AECO industry? What are
the types of data that can be extracted from the built environment? It is safe to say
that the multidisciplinary nature of AECO can promise a very rich data landscape,
comprising everything from variety of layouts on floor plates to operational
information available during the life cycle of the building.

Some of the aspects of AECO data are covered in chapter “Big Data and Cloud
Computing for the Built Environment”, where data gathered in the built environ-
ment is effectively broken down in 3 temporal subcategories based on the stages in
the life of a building: design, construction and operation. During these stages,
anything that describes a building, how it is made and how it operates, can be
collected as data. But what is more interesting, is not just the type of datasets that
can be extracted, but rather how they are related to each other. It is this under-
standing that makes its leverage more powerful. For example, a dataset of generic
massings of buildings relative to their plot outline could be collected to train a
system. Assuming that after training the system will, theoretically, be capable of
producing a 3D model of a building, given a plot as an input. How does the user
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know though that this building is relevant to the plot? The dataset would require
further refinement: further data should be collected on building regulations, built
context, environmental analyses, amongst others—data that not only is related to
that particular massing, but also to its performance and context. The models used as
data would not only need to be comprised of optimal individuals (massings that do
perform well in terms of daylight for example or comply to the building regulations
given their geolocation) but also the system would need to be trained in association
to the multiple datasets describing each massing.

As mentioned before, everything humans produce can be leveraged as data.
What is challenging—and particularly in AECO—is how the right datasets are
identified and brought together, so the system (ML model) can make interesting
correlations and produce performance driven results—whether that performance is
judged by hard criteria (sustainability), or soft criteria (aesthetics).

Machine learning data is the crux of the matter: the success of the system’s
training is only as good as the data it is provided with. In essence, the data used to
feed a ML model can have a significant impact on its performance [26]. Most
failures in ML trained systems will be a result of poor or bad datasets (the process
“affectionately” known in computer science as GIGO: garbage in, garbage out).
There are of course other factors that will affect how effective the system is, like the
choice of the ML model used (e.g. decision trees are great for interpretability, but as
they are prone to over fitting—modelling a lot of the noise in the training data—and
computationally intensive, they might not be the best choice for very rich and big
datasets), the choice of the cost function (which describes how the error rate
between the predicted and expected values is calculated) or how the model deals
with its bias-variance trade-off. These are only a few of the components of a ML
recipe, but the most significant ingredient is—as mentioned above—the quality and
quantity of the input data used. Small datasets can be prone to bias, outliers in
datasets can result in over fitting, poorly labelled datasets can lead to misleading
outputs, skewed distribution of data will produce errors—the list is endless. In any
ML endeavour, the hardest task is having good datasets to train a system on.

3.2 Tasks

Data may be abundantly available in AECO, but that does not mean that it is as
easily accessible or retrievable. And that is because although a huge amount of data
is produced during the design, construction and operation of the built environment,
this is usually scattered and unstructured. The industry’s current pipelines do not
offer a straightforward way for the data that is produced to be collected, processed
and classified in a meaningful and useful way. This is due to an array of factors,
having to do, not only with the vast variety of formats used (sketches, drawings,
models, reports to name just a few), but also the nature of the data itself. Whilst it’s
straightforward to collect and process set of images that represent animals for
example, it is much more difficult to extract useful and comparable information
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from a 3D model (not to mention the difficulties arising from what software this
model was created in). This information can be related to anything, from pro-
gramme and overall areas, to layouts, materials, simulations related to the model,
structural or environmental performance, occupancy, energy consumption,
embedded and embodied CO2 to name a few.

So, the industry is faced with an interesting challenge: how can data be collected,
organized and processed across disciplines during the life of a project, from design
to operation, in a meaningful manner? And ultimately, how can this data be
leveraged for future projects—how can it be gathered and used in a structured way
further down the line? Obviously, the latter is not anything new in the profession:
every experienced architect, engineer and contractor are doing this implicitly,
building their knowledge on top of the experience acquired on every project they
worked on. But this type of knowledge that lives in the head of every experienced
professional is, unfortunately, not easily transferable.

Remarkably, where a far better collection and use of data is observed in the
industry, is during the operational stage of the building. Interestingly, this task is
usually the job of facility managers or other consultants rather than architects.
Furthermore, the proprietary nature of the data makes it inaccessible to the project’s
architects.

The integration of sensors and the internet of things (IoT) in the built environ-
ment has given rise to more and more architects and clients adhering to the idea of
smart buildings. Data collected during the life of a building, which may not only be
related to the building itself (e.g. thermal comfort or energy consumption) but also
to its occupants (e.g. meeting room occupancy), allows us to monitor and measure
its performance not only quantitatively, but more importantly qualitatively. This
data is then usually fed to ML driven building management systems (BMS) that can
regulate how the building performs, make suggestions or even identify issues. It
may advise on things such as optimal use of meeting rooms, or optimal number of
different functional spaces for a building of such capacity. All that information,
when captured, becomes then a driver not only for the current building, but also can
be leveraged in every building project after that.

It is interesting here to point out that this is exactly what the AECO pipeline is
lacking during design: a way of not only capturing the data, but a method of being
able to reuse it in the future projects. Most of that knowledge is transferred as
experience through the architect’s and engineer’s mind, but how can it be stored as
a hard metric that could be used for every project that will follow? This is the big
question that the industry is currently called to address—and the answer is not
straightforward.

3.3 First to Market

There are already various AEC start-ups that are touting machine learning as part of
their offering. Some focused on site and construction like Insite [27] and Built
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Robotics [28] who are looking into upgrading construction site’s heavy machinery
with AI-based capabilities, increasing safety, guiding operators to use most efficient
trajectories for a given task or even allowing the machines to operate in a fully
autonomous mode.

Some applications focus on making long running analysis faster by providing
close enough predictions like the Austrian Institute of Technology’s wind flow
simulation integrated in Giraffe [29] or bringing forward analysis that would usually
be conducted in later stages of a project’s development, like Core TT’s Asterisk
[30] for structural analysis. Others are trying to leverage the research being done
with natural language processing (NLP), like UpCodes [31] who is creating a tool
for compliance of 3D models with building codes, by automating design reviews
and document control. Some platforms, like Archistar [32] and Spacemaker [33],
are even looking into providing designers and stakeholders design aid during the
early stage of the design process.

One commonality between most of those offerings is that the services are in the
form of cloud-based web platforms, forcing users to upload their data to where the
models are hosted if they are to use the trained models’ functionality. This might
prove problematic with some users, as maintaining the privacy, security and
integrity of the data becomes a general concern. On one hand, the companies
offering those services wouldn’t want to divulge their intellectual property by
sending the model that they developed and trained to the end-user [34] opening up
the possibility of reverse engineering attacks [35], nor would they want to lose the
opportunity of a usage-based pricing model. On the other hand, the users prefer
keeping their data private and secure in their servers, particularly when client
confidentiality issues come into play. In quest for a solution to this issue, a new way
of dealing with said data—called federated learning—is getting a lot of focus [36].
One of the main objectives behind federated learning is to train a central model with
data distributed over several machines, whilst maintaining the privacy and integrity
of each users’ data. Several organizations are starting to support this approach, most
notably OpenMined [37] which is an open source community creating an array of
tools and techniques to aid researchers and practitioners in adapting this learning
type in production.

3.4 Subjectivity, Creativity, Bias and Interpretability

Imagine that a user wants to build an application to recognize—let’s say—a
Palladian villa. To do so, one needs to select the ML model to use (in this case a
convolutional neural network (CNN) would be a good choice, as they represent a
type of deep neural networks commonly used to analyse images, see Fig. 9) and
feed the system thousands of images of Palladian villas, training it not to regurgitate
them, but rather to identify from them what are the defining characteristics of
Palladian villas and thus be able to recognize them (or not) when a new image is
presented to it. What is important in this process is that the user does not explicitly
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specify the characteristics of Palladian architecture to guide the system: rather the
system manages to extract these traits autonomously.

The above example may seem redundant if one is familiar with Palladian
Architecture. Through the years, this typology has been studied by different people,
which resulted in a detailed description of the rules and concepts that constitute a
building of that typology. But what makes the ML method, interesting, is that it
doesn’t require the huge amount of people, time and effort spent in encoding all this
knowledge into an exhaustive programme that once presented with a building, it
would be able to tell whether it follows the Palladian rules or not. If nothing else,
this process manages to save the user a huge amount of time and money. But this is
not what makes ML a great tool. Things become fascinating when one starts posing
questions for which they do not have an answer. What if, for example, what needs
to be identified or predicted is not governed by a well-defined ruleset? What if one
wanted to incorporate and capture more subjective, elusive or unpredictable qual-
ities? In face of those questions, traditional approaches fail. A user may know what
the defining characteristics of a Palladian villa may be, but can they pinpoint all the
characteristics of a successful public plaza? They may intuitively (or based on
experience) understand some of them, but if they train a system based on a set of
thousands of—what they think are—successful public spaces that system could
then be tasked with generating other spaces that are similar in traits. In many cases,
this training process comes up with incredible results: characteristics and correla-
tions that would be too obscure or complicated for the user to pick, formulate and
encode independently.

A common pitfall, when dealing with ANNs, is subjectivity. Hopefully, what
they think are successful in the previous paragraph gave you pause. There are a lot
of prominent examples that call attention to the issue of bias in tools and apps that
are being used daily by the public. One such example is Twitter’s algorithm that it
uses to crop and centre the content of posted images: users were dismayed to find it
favouring white faces over darker ones [38]. Similarly, Amazon has stopped the
development of an ML driven tool used for recruitment and filtering job applica-
tions after they discovered it was gender-biased towards male candidates [39]. The
above showcases how easy it is for the datasets used to train these systems to

Fig. 9 Training and inference of an ML-based system for recognizing Palladian Villas
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introduce error and biases, which become a significant issue when this technology
is spreading to areas like medicine, law and transportation to name a few. One
approach suggested by researchers was to require companies and researchers to
produce public and transparent data statements that can be audited and challenged
[40], which may be a way to alleviate the issues.

Another catch: the fact that ANNs utilizes correlation between variables, means
that conditions existing in our dataset during training should remain consistent
when the model is used to make predictions based on new input data. Imagine, for
example, the previously described model that generates building massing, after it
was trained on building regulations, built context, environmental analyses, etc.
What would happen if the regulations changed after the model was trained? The
correlation between the inputs and outputs would be different. In this case, it cannot
be assumed that the previously trained model would work as expected, as the model
has no capacity of understanding causality. In fact, causality and casual predictions
are a field that researchers are looking into as one of the ways of making better and
more versatile models.

One more shortcoming of ANNs is interpretability: the ML trained model may
be able to predict the design of a successful public plaza, but the reasons why this is
so cannot be easily inferred. Neural networks are in many ways a black box, with
justifications of its internal workings being totally obscured from the user. Unlike
other ML models, like linear regression for example, where the evaluated coeffi-
cients of a polynomial can define the statistical significance of each of the variables,
in ANNs the process of how a prediction is made is hidden. The input is connected
to the output by one or many hidden layers of artificial neurons that process the
weighted input signals through an activation function. But this process does not
specify what is the correlation of the various inputs to the output. It is, therefore,
very hard to evaluate the reasoning behind the different outcomes, making inter-
pretability yet another field of research that is getting a lot of focus [41].

Nonetheless, machine learning could be a very interesting tool in the hands of
the AECO industry. The built environment is multidisciplinary endeavour and
traversed by a plethora of multi-objective criteria. The datasets (whether sketches,
models, technical drawings, analysis data, BIM models, fabrication data,
post-occupancy data, etc.) are rich and complicated. They are datasets that can
provide invaluable information and help train systems for a variety of undertakings:
automating mundane tasks (e.g. furniture layouts on a given floorplate), extracting
relationships in design problems, providing design assistance or real-time analytics
and insights about new projects built all over the world. All these capabilities would
enhance the designers’ knowledge and sensitivities, make them privy to correlations
that are not obvious and ultimately free them from routine tasks, thus allowing them
more time to be creative and helping them make more informed decisions.
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4 Case Studies

With Foster + Partners always striving to be in the forefront of innovation, the
Applied Research + Development group (ARD) has been investigating the poten-
tial of machine learning and how it could be incorporated throughout the practise’s
design pipelines. Thus, two ways by which ML could be directly useful in our
current processes has been identified: surrogate models and design assistance
models. Surrogate models, also known as approximation models, are used as a
replacement for analytical engineering simulations, when the simulation might be
computationally and temporally expensive to calculate. Real world design prob-
lems require simulations which can take hours, or even days to complete. This
problem leads to tasks such as design optimization or design space exploration
becoming nearly impossible since they require thousands to millions of simulations
in order to converge. With the objective of providing designers with the output of
those simulations near real-time, ARD started looking into creating approximation
models, where a computationally cheaper predictive model is constructed based on
several intelligently chosen simulation results. An example of this approach, where
a model can predict results of a spatial connectivity simulation, is explained in more
detail later in this chapter.

On the other hand, design assistance models fall more in the category of
automating tedious processes, where one does not necessarily need to have an
analytical answer. This could be, for instance, the spatial layout of furniture within a
space or providing designers with document control assistance in real-time, whilst
they are working.

In both cases above (surrogate models or design assistance models) data is a
necessity to train the system. Generally, there are two types of data one can work
with: original data or (plausible) synthesized data. Original data can be accessed
through the office’s huge database and is comprised of all the drawings, models,
sketches, details, etc. produced over the 53 years of the practise’s existence.
Synthesized data is data which can be automatically generated with the help of a
generative design system. Each has its own challenges. For original data—and
depending on the task at hand—it can be quite challenging to sift through years of
digitally archived work in different file formats, produced by thousands of
employees for thousands of different projects and be able to find the data that would
help us learn something about our task. On the other hand, synthesized data may
not always be an option either, as creating generative models with the richness of
information required may prove an almost impossible task.

4.1 Design-Assist Model

The first project presented here, conducted in collaboration with Autodesk in 2017,
was inspired by the recent advances in material science—and more precisely the
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developments around smart, passively actuated materials. These materials can
change their shape and deform under certain conditions without any help from
external mechanical actuation. They react like living organisms by adapting to
changes in their physical environment, e.g. thermal fluctuations, changes in light
conditions or even humidity. These materials could have great potential in archi-
tecture. Imagine an adaptive façade that does not have any mechanical shading
devices, but rather self-deforms based on external conditions—like a living skin—
to accommodate requirements of shading, overheating or privacy. This could be
possible by taking advantage of the material’s layering: by mixing patterns of
thermo-active materials around passive laminates, a difference in expansion and
contraction rates occurs. That difference, if curated, can lead to designed defor-
mations, which we, as designers, could control.

With that in mind and working very closely with Panagiotis Michalatos and
Amira Abdel-Rahman at Autodesk, our Applied Research + Development group
started investigating how laminates made from layers of smart materials behaved.
As architects, seeking to use these materials for adaptive façades in the future, what
was of interest was their morphological deformation: a controlled transition from
some initial state to an end state and back. Since these deformations are both plastic
and large (compared to relative sizes of the analysed objects), there exists a non-
linear relation between the laminates’ internal forces and their displacements. This
is opposed to a more common linear analysis, where force–displacement relation-
ships remain constant. As a result, such problems require a more sophisticated and
time-consuming simulation strategy for nonlinear analysis.

In this research, every laminate had an initial, non-deformed state (e.g. fully
open, adaptive shading component) and a target deformation (e.g. closed façade). In
a linear problem, the effect of tweaking input parameters on the output is pre-
dictable. But in this case, faced with a nonlinear problem, it is very difficult to
predict how different parameters—e.g. the distribution of the thermo-active material
over the laminate layers at the initial state—would affect the resulting deformation
under a given temperature. One way this problem could be approached would be to
guess an initial layering for the thermo-active material, run a nonlinear finite ele-
ment analysis (FEA) to accurately simulate the laminate’s structural deformation,
then slightly change the laminate’s layering and keep repeating the whole process
hoping that the changes would yield results closer to the target deformation. This
process is similar in nature to trying to balance the pen on your index finger, as
explained before! In this case though, the process would have been extremely time
consuming, given the amount of time it takes to simulate the laminate’s structural
deformation and could only yield grossly approximated results.

Therefore, as showed in Fig. 10, it was decided to investigate whether an inverse
design problem could be solved. In this scenario, the final structural deformation
would be the input, rather than the output, to a process that could then provide the
initial layering which would cause such deformation. Since obtaining an analytical
solution for this problem was not possible, it was decided to use machine learning
to build a predictive model. As mentioned before, every predictive model requires
high-quality data to learn from. Not having that original data right off the bat, it was
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decided to go down the synthesized data route and create a generative dataset. To
that end, a parametric model was developed based on a simple design intent which
could generate variations of wavy layering representing laminates’ initial states.
Subsequently, hundreds of thousands of FEA simulations were run for a plethora of
laminates sampled from the parametric model. The process of simulating the
deformations of the newly generated samples was run in parallel and distributed
(using an in-house custom-written software called Hydra) on an on-premises
compute cluster. Hydra made possible to analyse the synthetic dataset tens of times
faster than using any out of the box commercial modelling and analysis software.
Later, this dataset (the deformations derived from the initial states) was fed into a
system of two ANNs competing against each other.

To explain this, one could revisit the example of the expert “pen balancer”, but
with a twist! You are approached by a person who aspires to be your mentee.
Interestingly though, the mentee’s aspiration is not to be a pen balancer himself, but
rather wants to design weird new pens, that can balance way off centre. They want
to be able to pick a point along the length of the pen and design a shape that would
make it balance on that point. The mentee knows that an expert “pen balancer”
would be the perfect mentor as someone who has seen thousands of pens and
knows where each of them should be balanced from. Being the good mentor that
you are, you explain to your mentee the structure of the learning sessions: you ask
them to pick a point along the length of the pen where they want it to balance at and
draw a shape around that. As a mentor, using your expansive knowledge, you will
provide feedback regarding two aspects. The first is whether the shapes they are
drawing look like pens or not, and the second, whether that shape would balance
around the point they picked or not. This loop of the mentee picking a point and
drawing a shape based on that choice, and you providing feedback keeps going for
a long whilst (“yes, this looks like a pen, but it would balance around this point, not
that!” or “no, this looks nothing like a pen, but if you adjust this part maybe it looks

Fig. 10 Comparison between traditional and inverse design workflows
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a bit closer to a pen. And by the way, this is the point it will most probably balance
on”).

As the process progresses, the mentee gets better at creating pens that can
balance wherever they may wish, but also the mentor gets better at understanding
what the essence of a pen is and the physics behind how it balances, by virtue of
researching more in order to be able to help the mentee. This structure of ANNs was
proposed in 2014 [42] and is called generative adversarial networks (GAN), some
variations of this structure are regarded as part of semi-supervised or unsupervised
learning techniques, whilst other variations like the one used in this case study rely
on framing the task as a supervised learning one. At some point, this adversarial
system reaches an equilibrium where both networks cannot improve anymore, and
the outputs generated by the mentee are hyper-realistic based on the mentor’s
knowledge. In GANs literature, there is often a different analogy used to describe
this, and marking one of the models as an art expert and the other model as a forger.
But that mental model obscures a very important part of the training process of
GANs: the part where the art expert is in fact helping the forger get better!

In this collaborative research with Autodesk, this type of GAN was used to train
on pairs of deformed laminates as inputs (the point at which the pen is required to
balance) and cut-out patterns of initial laminates’ layers which caused a given
deformation (our pens in the analogy) as outputs (see Fig. 11). In literature, the
mentor is called the discriminator and the mentee the generator. The discriminator
has expansive knowledge, obtained by seeing all the layering designs generated and
their respective deformation. The generator is given an image of the deformed
laminates and then asked to start figuring out what the initial laminate layering
should be. Again, the generator is not randomly giving answers, it is being guided
by the discriminator.

The generator model was able to create acceptable layering for a given defor-
mation within milliseconds after its training (see Fig. 12). This allowed our com-
bined Foster + Partners and Autodesk team to prototype a simple yet novel

Fig. 11 Diagram showing the training methodology for the GAN-based system used for the
passive material research project
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application where a designer could interactively design a laminate in a deformed
state and be presented with the cut-out patterns almost instantaneously. This
workflow not only completely challenged the way such laminates are being cur-
rently designed, but it also suggested a methodology of significantly reducing the
prototyping phase. The results (see Fig. 10) proved the effectiveness of the pro-
posed workflow, especially at an early design stage [43].

4.2 Surrogate Model

From the design of the material, let’s now jump to that of a space. And rather, how
that space could be better designed based on performance criteria. Spatial and visual
connectivity (or visual graph analysis—VGA) are two of the various metrics used
to evaluate the performance of a floor plan. They are excellent metrics to help
designers understand how well a floorplate works in terms of walkability, creation
of public versus private spaces, instigation of serendipitous knowledge
cross-fertilization and visual navigation.

The problem is that the two analyses can take hours to compute for large scale
floor plans—particularly on high resolution. The goal was to significantly cut down
this time to a near real-time experience, which would make the analyses accessible
and intuitive for designers to use during their design process. Previously,
state-of-the-art algorithms and parallelization techniques were used to get the
analysis down from hours to minutes. Nonetheless, that was not anywhere near
real-time performance. So, the possibility of training a surrogate model to
approximate the analysis output was investigated.

Like the previous case study, a parametric model capable of generating basic
floorplan variations was developed, which incorporated open plan and compart-
mentalized office spaces, complete with walls, doors and furniture (see Fig. 13).
This model was then used for generating a dataset of thousands of synthetic floor

Fig. 12 On the left-hand side, progress of the GAN-based system learning to predict the layering
based on a given input displacement. On the right, the difference between the ground truth
deformation and the model’s predicted deformation
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plan images. Using the analytical accurate engines that were previously developed
in-house for both analyses, the analyses were run on those synthesized images. This
step would have taken days, but again thanks to ARD’s bespoke distributed
computing software called Hydra—mentioned previously—it took hours. The result
was a curated set of floor plan images that would be used as an input for the ML
model and the same images with the analyses result overlaid on top, which will be
the output the model is asked to generate.

Now, the ML model was supposed to answer one tough question: given those
thousands of images, what is the function or process needed, in order to map
correctly between each input and output image in the curated list of data. In an
abstract sense, the model would be trying to figure out what is it that leads to lower
or higher connectivity/visibility values across the different floorplans. When sim-
ulation engines are used, an analytical solution is produced. For the spatial analysis,
for example, a grid is overlaid on the floor plan, from which a graph is constructed
where each grid cell represents a graph node. The connectivity values on the
floorplan are derived from how well each node is connected to all the other nodes.
But the ML system does not have knowledge of that process. All it has is the input
as an image comprised of black (obstacles) and white (unobstructed space) pixels
and the output as an image where the white pixels are transformed into a greyscale
gradient representing the spatial or visual connectivity.

During training, the model keeps trying to answer the above question. Its
answers are terribly wrong at the beginning, but as time goes by and through the
learning process of an ANN that is dependent on continuous feedback, the ANN
starts to correct its mistakes and the answers start getting closer to being correct. At
the end, the model finds its own recipe to map from input to output—and it is not
one that the user provided, but one the model devised from the examples, by trial
and error. Again, the objective of the training is to reach a state where the model can

Fig. 13 Generated floorplates and their respective analyses for the connectivity study
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provide the right answer for almost all the images in that dataset—a model that can
generalize well and this system, as described, delivers just that.

For this study, we were comparing two different types of networks, one based on
GANs, and the other is a convolutional neural network called U-Net [44].
Information about the data processing aspect of this study, the reasoning behind the
choice of networks, the optimization of the networks’ parameters and more is
provided in [45].

Once the ML model is trained, it can be used to run both spatial and visual
analyses on images of floorplans of various size. The time it takes to derive to the
result is less than 0.03 s.

In Fig. 14, a snapshot of this process can be seen. Each column represents a
snapshot in time during the model’s training phase. At the top of each column we
see one of the synthesized square floor plans with the connectivity analysis output
overlaid on it. In the middle looking from left to right, we see the progress of the
model trying to answer how the analysis should look like. At the bottom we see the
difference between the real analysis (top) and the model’s output (middle), the
darker the whole image is, the closer the model’s answer is to reality. Which we can
see at the bottom of the far right column.

Fig. 14 Automatically generated floorplates and their respective analyses for the connectivity
study. Progress of GAN-based network learning to predict connectivity analysis
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5 Looking to the Future

Given the rapid development and integration of ML, it is possible that in the next
few years, a lot of the simulation analyses that designers rely on in their early stage
design process will be replaced with surrogate models. This will allow for even
faster design iterations than currently available and facilitate integration in design
mediums leveraging augmented and virtual reality in mobiles, head-mounted dis-
plays and web applications. It will, in turn, speed up tasks that use evolutionary
algorithms coupled with analytical performance analysis, producing vast datasets of
information. It will push AECO to rely more on cloud-based services as means to
access the inference capabilities of those models. Whether those capabilities will be
integrated into different client applications or through web-apps is yet to be seen,
although a lot of new products are adapting and pushing for the latter. This last
point raises a lot of concerns about data privacy, especially in this industry, which
makes research focusing on federated learning or privacy preserving learning very
appealing.

Foster + Partners’ current research is targeted towards design-assist models.
Therefore, most efforts are concentrated in showcasing the possibilities that ML can
open in AECO as a real-time assistant during the design process. The Applied
Research and Development group is continuously working on identifying inter-
esting design problems, without analytical solutions, for which there is qualitative
and quantitative original data to train ML systems on.

In the next couple of years, design and construction firms will be in full retro-
spect about the amount of data they have been generating for years. Different
initiatives will arise looking into means of gathering, standardizing, tagging and
augmenting data in the AECO industry. Given the competitiveness of AECO, it is
anticipated that this new corpus will be fragmented, rather than a holistic repre-
sentation of where the industry is.

AECO companies will realize soon enough how integral it is to develop data
pipelines that they can have control of and organize them in a way useful to ML or
data-driven workflows. Roles related to data administration, analysis, governance
and management will be in demand and should be positioned in away allowing
them to drive and alter business decisions. Pursuing the goal of data acquisition,
companies and new start-ups will consider the appeal provided by vertical inte-
gration or exploring different contracts that will allow data sharing partnerships.

Competition will not only be between large firms monopolizing AECO data as a
by-product of their scale. New regulations for data sharing practises will come into
play, allowing and encouraging smaller companies to create data alliances.

Architectural schools will further focus on the business and data aspect of
architectural projects, balancing the objective and subjective sides of design.
Hopefully, awareness will also be raised about issues of bias and intellectual
property concerns and how those could affect the products of this industry.

In Foster + Partners, and specifically in the Applied Research and Development
group, there is a lot of focus not only on the creative design process, but
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simultaneously on the many innovative ways by which it can be facilitated. That is
why, new technologies are perceived not as a threat, but as a possibility; a possi-
bility to explore new ideas, to enhance creativity and to constantly optimize and
push the boundaries of design. A possibility to make a difference and to make the
future come quicker for everyone.
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