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Abstract Smart technologies such as artificial intelligence, the Internet of Things,
and other cyber-physical systems are often associated to Industry 4.0 given their
potential for transforming current manufacturing and industrial practices. In par-
ticular, the significant potential of these technologies for increasing automation,
improving communication and self-monitoring, and optimizing production overall
for industries is well known. However, the influential power of these technologies is
not bounded by these applications and has significant potential for fields such as
disaster risk reduction and emergency management. In this context, the proposed
chapter discusses several applications of digital technologies and innovations from
Industry 4.0 in these fields, such as big data, the Internet of Things and machine
learning techniques for big data analytics. Additionally, research and governance
needs in this context are highlighted, as well as certain challenges to widespread
and mainstream the reliable use of these technologies in disaster management.
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1 Introduction

The occurrence of natural hazards such as cyclones, floods, tornadoes, droughts,
earthquakes, or volcanoes is often synonymous of disasters, given their devastating
impacts on human life, the economy or the environment. In 2019 alone, the
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Emergency Events Database (EM-DAT) recorded data about 396 disasters across
the world, globally involving 11,755 deaths, 95 million people affected, and 103
billion US$ in economic losses [1]. While fully eliminating these negative impacts
may be extremely difficult, efforts can nonetheless be undertaken to reduce their
severity using adequate disaster management policies and practices.

Even though disaster impacts are often sourced in a natural process, they are
seen to depend significantly on public policies addressing risk management, disaster
preparedness, and emergency management. In this context, the 2030 Agenda for
sustainable development [2] is seen as an important global policy step toward
raising awareness about the importance of disaster and emergency management. In
particular, the framework of 17 Sustainable Development Goals that it establishes
includes four (Goals 1, 2, 11, and 13) that refer to the need of nations and com-
munities to address the challenges related to natural hazards and disasters (see also
chapter “Shaping the Future of Construction Professionals”). Simultaneously, dis-
aster management practices also need to evolve by leveraging technological
advancements and innovations that are being mainstreamed in the context of
Industry 4.0. These advances, though originally targeting other objectives, create
new possibilities to support disaster resilience and risk reduction actions [3].

Industry 4.0 is the overarching term that symbolizes the current technological
trend underlying the Fourth Industrial Revolution (see chapter “Shaping the Future
of Construction Professionals”), and several sectors are expected to benefit from its
advancements. Disaster risk reduction and emergency management are among
those, as can be seen from the growing number of applications appearing in these
sectors that involve promising Industry 4.0 technological developments and inno-
vations. To illustrate some of their potential, concepts such as big data (see chapter
“Big Data and Cloud Computing for the Built Environment”) and the Internet of
Things (see chapter “Cyber-Physical Construction and Computational
Manufacturing”) are reviewed in the context of disaster management, and appli-
cations of machine learning techniques (see chapter “Artificial Intelligence for the
Built Environment”) for big data analytics and to emulate complex problems are
discussed. In addition, research and governance needs in this context are also
highlighted, as well as certain challenges to widespread and mainstream the use of
these technologies in disaster management.

2 The Disaster Management Cycle and the Risk
Management Cycle: A Brief Review

Several terminologies are available to define and describe the disaster management
cycle. Even though different fields of disaster-related practice use alternative
interpretations of this cycle, most of them are very close and differ in minor details
only. Therefore, the definition of disaster management cycle that is considered
herein is one that is simple, that incorporates all the main steps, and provides a clear
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connection with the risk management cycle. As such, the disaster management
cycle is considered to be a three-stage process, as presented in Fig. 1, that involves:
mitigation and preparedness; response; recovery.

Even though mitigation and preparedness are usually seen as independent
activities in several definitions of the disaster management cycle, they are in fact
complementary and need to be carried out simultaneously. Therefore, they are
considered to be in the same stage in the selected definition of the disaster man-
agement cycle. Mitigation involves actions attempting to prevent hazards from
developing into disasters altogether or to minimize the damaging effects of disas-
ters. Preparedness, on the other hand, is a continuous cycle of planning, organizing,
training, evaluating, and improving activities to ensure the enhancement of
capacities and an effective coordination to respond to and recover from the effects
of a disaster. Mitigation and preparedness are a direct output of the risk manage-
ment cycle that link with the disaster management cycle. The response stage
includes all the emergency management actions taken during or immediately fol-
lowing an emergency, including efforts to save lives and to prevent further property
damage. Ideally, disaster response involves putting into practice a pre-established
disaster preparedness plan. Finally, the recovery stage involves actions to return the
impacted area to its pre-disaster state or better by restoring, rebuilding, and/or
reshaping it. This stage usually starts after damages have been assessed, and ade-
quate response efforts are achieved and ongoing.

Regarding the risk management cycle, several definitions and terminologies are
also available to describe it. Although different fields of risk management practice
also use alternative interpretations of the several steps involved, the risk manage-
ment cycle definition considered herein incorporates the essential elements. The risk
management cycle is considered to be a five-stage process, as represented in Fig. 2,
that involves: risk assessment; risk communication; analysis and decision-making;
risk mitigation and definition of emergency measures; control/monitoring and
emergency training.

As can be seen from Fig. 2, the risk assessment component of the risk man-
agement cycle comprises three sub-stages. These correspond to hazard identifica-
tion, assessing consequences, vulnerability and resilience, and risk evaluation. The
output of this stage is a risk value or classification that is then conveyed to
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stakeholders in the risk communication stage. Therefore, efficient risk communi-
cation needs to involve risk metrics that can be understood clearly by
decision-makers. The analysis and decision-making stage is where the need for
actions regarding a certain risk level is determined and where the type of action is
gauged against potential losses using cost–benefit analyses and other criteria. The
next stage has also two components: risk mitigation and definition of emergency
measures. The first addresses the implementation of the risk mitigation actions that
were selected in the previous stage (if any), and the second involves the develop-
ment of emergency preparedness measures and processes to enhance the capacity to
respond to and recover from a disaster. The final stage of the risk management cycle
also comprises two components. The first is the control and monitoring of changes
in the condition of the asset under analysis, including after the implementation of
mitigation actions if such actions were defined. The second component involves the
regular implementation of training activities addressing the emergency prepared-
ness measures that were planned in the previous stage. Unlike the disaster man-
agement cycle that is only activated by the occurrence of a disastrous event, the risk
management cycle needs to be regularly implemented to ensure an up-to-date risk
assessment information and an adequate level of emergency preparedness.
Moreover, it also becomes clear that the outputs of the stage that defines risk
mitigation actions and emergency measures are the link between the risk man-
agement cycle and the disaster management cycle.

3 Current Needs and Challenges in Disaster Management

Understanding disaster risks plays a central role in disaster management activities.
Research in this context has achieved significant developments, in particular over
the past 20 years [4, 5], but it has traditionally been focused on advancing pre-event
and post-event activities separately. Pre-event activities typically deal with the

Hazard identification

Risk assessment

Vulnerability analysis and
assessment of consequences

Risk evaluation

Control/monitoring and
emergency training

Risk mitigation and definition
of emergency measures

Analysis and decision-making 

Risk communication

Fig. 2 Risk management cycle
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components of the risk management cycle previously described, thus focusing on
preventing and reducing the frequency of disasters, i.e., reducing the frequency of
cases in which the occurrence of a certain hazard turns into an event with negative
impacts. Achieving this objective calls for adequate methodologies and tools cap-
able of forecasting the potential loss of life or injuries, and the potential destruction
or damage to tangible and intangible assets that could occur in a specific period of
time, determined probabilistically as a function of hazard, exposure, and vulnera-
bility. On the other hand, post-event activities are normally focused on developing
adequate strategies to respond to, cope with and recover from disasters [6].
Research on post-disaster issues started later than research on risk management and
other pre-disaster issues, but the outcomes of this multidisciplinary area can play an
important role in reducing disaster losses, namely by integrating lessons learned in
response and recovery from a given event into the development of enhanced risk
reduction and disaster preparedness measures [7].

Despite the significance of past advancements on these topics, many aspects
remain to be addressed, in particular when considering that the nature and the scale
of risks change continuously, often in a way that exceeds the risk management
capabilities of institutions and approaches that are established. In this context, the
systemic nature of certain events is a matter of increasing concern given its potential
to generate different types of simultaneous damage and destruction, namely to
different sectors of societies and economies [8]. The occurrence of this type of
wide-reaching event can also be seen as an unfortunate byproduct of the current and
unprecedented level of connectedness and complexity of societies due to global-
ization [9]. Events such as the 2010 Eyjafjallajökull volcanic eruption and its
impacts on the airline industry [10], or the 2011 Thailand floods and their conse-
quences for global supply chains [11] are just a few examples that demonstrate the
reaches of systemic impacts. Given the growing interconnectedness of economic
processes, systemic risks are therefore expected to increase, as can be seen by the
ongoing impacts of the COVID-19 pandemic [12] and are also likely to be mag-
nified by changes in the intensity and frequency of weather-related events as a result
of climate change [13].

On the emergency response side, the more apparent challenges are often con-
nected with the planning of disaster relief operations and their implementation in
the response phase immediately after an event. Aside from the fact that planning
these operations depends on the availability of robust and comprehensive risk
assessment results, this planning needs to accommodate multiple scenarios and
types of events whose complexity inevitably depends on the severity of the events
(both in terms of intensity and geographical spread), on the number of entities that
are involved, but also on unforeseen factors that may occur in real situations.
Furthermore, as for the case of risk assessment, this complexity can also be
amplified by the interconnectedness of society and its activities. In real events, the
implementation of emergency response is, in general, information-driven [14], thus
requiring that all the actors involved (governmental institutions, response opera-
tives, etc.) interpret information and interact with each other to make rapid deci-
sions. The quality and readiness of these decisions depend on several factors, but
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particularly on the speed at which adequate information is available for
decision-making. In turn, the availability of this information depends significantly
on the efficiency of the situational awareness of emergency operatives regarding the
ongoing incidents, the available resources, and existing needs [15]. Accurate and
timely assessment of the situation empowers decision-makers during an emergency
by providing adequate support for decisions regarding appropriate response actions,
ultimately facilitating the management of the overall response process.

Addressing the referred challenges, therefore, requires a robust and compre-
hensive understanding of disaster risks and emergency response. Disaster risk
assessment is based on identifying the multidimensional characteristics of factors
likely to cause or contribute to disasters, including exposure to hazards, vulnera-
bility of people and property, land use, and environment. Therefore, robust risk
predictions require detailed quantitative knowledge about hazard exposure and
vulnerability of assets, including their dynamic evolution over time. In addition,
given the relevance of multi-hazard risk scenarios in several situations [16, 17], this
aspect also needs to be considered, which implies the need to align methodological
approaches and data used for disaster risk assessment for different hazards.
Moreover, in the context of data, the importance of having access to consolidated,
detailed, and high-quality disaster loss data from past events cannot be overlooked,
given its importance for validating risk model predictions, but also for identifying
critical hazards, as well as disaster impact trends and spatial patterns [18, 19]. On
the other hand, an efficient emergency response depends on having an adequate
flow of information from the field-level operations to the decision-making process.
This flow of information, in turn, depends also on operatives having a level of
situational awareness that allows them to have an adequate perception and com-
prehension of the emergency and the ability to forecast its evolution [20].

4 Disaster Management Applications

Given the pervasiveness of big data, big data analytics based on machine learning
techniques are expected to be central for producing meaningful information for
disaster management from these large datasets. To illustrate the implementation of
these techniques in certain disaster management research fields, recent reviews and
developments on the topic are discussed in the following. The discussion addresses
the ability to generate relevant and reliable information from big data, but also
reports challenges that need to be overcome in each field and the corresponding
opportunities for research, based on research case studies, as well as real applica-
tions. Prior to this analysis, big data sources relevant for disaster management are
also briefly reviewed.
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4.1 Big Data for Disaster Management

A brief and non-exhaustive review of existing literature dealing with disaster
management issues was performed to identify sources of big data relevant for this
topic. The following were found to be relevant either for risk assessment or
emergency response and are briefly reviewed herein: satellite imagery; aerial
imagery; wireless sensor networks; light detection and ranging (LiDAR) data;
simulation data; spatial data; crowdsourced data; social media data; mobile-based
global positioning system (GPS) data and call detail records.

Satellite imagery is a source of quantitative and qualitative data that can be
useful for both risk assessment and emergency response [21–25]. Although satellite
imagery can be seen to provide important and detailed information for risk
assessments in terms of land use, it can also be used to develop building and
infrastructure inventory maps. In terms of emergency response, the availability of
satellite imagery has been used to identify disaster-affected areas and their char-
acteristics, but combinations of two-dimensional data have also been used to pro-
duce three-dimensional data that help identifying the intensity of disaster damage.
Such three-dimensional data are obtained by combining satellite stereo data and
provide digital surface models that enable, for example, the identification of
damaged/collapsed buildings by comparing the difference in their height by using
pre- and post-event imagery. Reference is also made to the use of synthetic aperture
radar (SAR) imagery since it can capture data during the day or night, regardless of
weather conditions, thus overcoming several limitations of traditional optical
satellite imagery.

Aerial imagery captured by unmanned aerial vehicles (UAVs) is also becoming
increasingly relevant for risk assessment and emergency response, despite the
challenges that using UAVs still involve. Since UAVs can carry various types of
sensors (e.g., cameras, video recorders, infrared and ultra-violet sensors, radiation
sensors, weather sensors, LiDAR sensors, spectrum analyzers, etc.), imagery
obtained using UAVs can be seen to have several advantages over satellite imagery,
namely due to the versatility of the recording possibilities, but also due to the speed
at which imagery can be captured and its spatial resolution. In post-disaster sce-
narios, imagery captured using UAVs can play a significant role given its ability to
provide real-time high-resolution data that will enhance situational awareness.
Furthermore, it can also be combined with other data sources such as satellite
imagery or crowdsourced data to improve emergency response planning. Some of
the technical challenges involved in the use of UAVs are seen to be related to their
short battery life, which limits their coverage area, and to stability issues under
certain atmospheric conditions. However, other non-technical challenges are also
involved, namely those involving safety, security, and privacy issues [26].

Wireless sensor networks (WSNs) are self-configured and infrastructure-less
wireless networks that can monitor physical or environmental conditions. The
monitored data goes through the network down to a central location (or sink) that
acts like an interface between users and the network and where data can be analyzed

Smart Disaster Risk Reduction and Emergency … 321



[27]. A WSN can have thousands of sensor nodes that can communicate with each
other using radio signals, often with multi-hop communication, and form a
self-organized network infrastructure. The sensors of WSNs are also able to answer
queries issued by the central location in order to perform specific actions or provide
data samples. WSNs can work continuously or in an event-driven mode.
Applications of WSNs relevant for disaster management are found in several fields.
In the context of risk assessment and management, WSNs have been used, for
example, to monitor certain environmental conditions relevant for forest fire
detection [28], landslide detection [29], but also for the monitoring of specific built
structures and infrastructures [30, 31]. In the context of emergency response,
WSNs, often combined with other technologies such as UAVs, contribute to
enhance situational awareness [32]. WSNs have also been used to improve com-
munications in disaster scenarios, namely between the affected population and
rescue services [33], or to extend the range of communications by combining the
use of WSN with autonomous mobile robots [34]. Despite their popularity, WSNs
have several limitations driven by memory, computing power, battery life, and
bandwidth constraints, which can then have serious implications in terms of their
security [35]. Since WSNs are seen as a major contributor to the Internet of Things,
security concerns increase given the number of sensors and devices that are
expected to be connected and the openness of the system. Aside from usual security
concerns regarding privacy, authentication, and access control, the Internet of
Things adds additional challenges regarding the capacity to be intrusion-tolerant
and self-healing [36, 37].

LiDAR is an airborne or terrestrial remote sensing method that is capable of
gathering detailed point cloud data that can provide high-quality distance measures
of land topography and water conditions, as well as other features. Based on these
measures, high-resolution digital elevation models can be developed, which can
then be used for multiple risk assessment [38, 39] and emergency management
purposes [40, 41]. LiDAR scanners are also able to gather information about the
ground surface below the vegetation, which can be used for mapping or measuring
geological features that can provide data for monitoring volcano growth and pre-
dicting eruption patterns [42].

Simulation using advanced predictive models is a central part of risk assessment,
both for hazard and vulnerability modeling. Predicting natural events such as
cyclones, heavy rain, storms, floods, or hurricanes requires huge meteorological
data but also complex numerical models. The Hurricane Weather Research and
Forecasting Model [43] for hurricane prediction and the Forecast Oriented Low
Ocean Resolution [44] for cyclone prediction are examples of such models. Other
advanced simulation environments are also being developed, such as those pro-
posed for the multi-hazard risk assessment of network infrastructures [45], for the
integrated dynamic flood risk assessment at regional scales [46], and those involved
in several earthquake simulation and seismic resilience modeling initiatives and
frameworks [47, 48]. Advances in modeling and simulating systemic risk scenarios
[49] and cascading risk scenarios [50] are also likely to soon contribute with large
datasets of simulation data. Aside from these modeling approaches, advances in the
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development of agent-based models for the simulation of human decisions [51] are
being explored in the context of simulating emergency response situations. For
example, these models are being used to simulate different types of crowd evacu-
ation [52], disaster response coordination [53], or post-disaster recovery scenarios
[54]. Given the large amounts of different types of observational data generated
during a disaster, these are expected to be useful to validate the complex nature of
agent-based models [55], if adequately curated and shared.

Spatial data are also known to be essential for the implementation of risk
assessment at the regional or national scales, both for hazard and vulnerability
modeling. Spatial data are important for mapping the physical and socioeconomic
exposure of assets and society to different types of hazards and threats, but also for
mapping hazards across territories. These include mapping land use and cover [56],
population dynamics [57, 58], structure and infrastructure location data [59–61],
georeferenced socioeconomic statistics and indicators [62], as well as hazard
intensities [63, 64]. Spatial data come from a variety of sources, namely the previ-
ously referred data obtained from satellite imagery, areal imagery, LiDAR, or
WSNs, but also from crowdsourcing and other collaborative initiatives. Despite the
currently increasing volume and variability of formats of geospatially collected big
data that present several challenges in storing, managing, processing, analyzing,
visualizing, and verifying the quality of the data [65], important opportunities are
being created for the disaster management sector from mixing these different data
sources [66, 67].

The rise of Web 2.0 also led to the rise of the Internet as a means to outsource
work to the crowd. This new form of dividing work among multiple participants to
achieve a given outcome quickly led to the now ubiquitous portmanteau “crowd-
sourcing” [68]. The fact that crowdsourcing data became popular among the
geospatial communities and that data are actively contributed by people also gave
rise to the term Volunteered Geographic Information (VGI) [69], which signaled a
new era where users became active providers of geospatial contents. Although there
are a number of initiatives to collect different types of VGI data, the OpenStreetMap
project [70] is perhaps the most popular example and one of the most relevant ones
for disaster management. Other geospatial crowdsourcing initiatives include the
Degree Confluence Project [71] and the Geo-Wiki initiative [72], which can both be
used for land cover classification. There are also several map-based crowdsourcing
platforms that can be used for creating crowdsourcing projects to collect data
relevant for risk assessment or for emergency response. Examples of these plat-
forms include Canvis.app, GIS Cloud, Greenmapper [73], Maptionnaire [73],
Mapillary [74], and Ushahidi [75]. Although data collected through such collabo-
rative initiatives are relevant to both risk assessment and emergency response, their
potential to improve disaster response and resource allocation based on real-time
reports from on-site responders and even affected people is particularly relevant [76,
77]. Despite the advantages of crowdsourcing, there are still issues and challenges
regarding the integration of crowdsourced data into the decision-making processes.
These are mostly related to concerns about the quality/reliability/credibility of the
data [78, 79], although certain strategies can be adopted to improve the performance
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of data contributors [80]. Still, government-led crowdsourcing initiatives have been
recently launched in order to interact with citizens during emergency situations to
collect real-time information and improve disaster response efforts [81, 82].

Social media data are mostly passively contributed data since social media users
are not creating data whose objective is to be collected by third-parties for addi-
tional purposes. There is currently a large number of social media platforms but not
all are relevant to or have been used in activities related to disaster management.
Among those, some of the more frequently used, in particular for emergency
response situations, are Facebook and Facebook Disaster Map, Flickr, Instagram,
and Twitter given their ability to provide geotagged data through the application
programming interfaces (API) provided by the corresponding companies [83–85] or
given the possibility of geolocating users of the platform. Despite the usefulness of
social media data, they might be more effective for certain components of emer-
gency management than for others, e.g., Twitter was found to be efficient for
emergency detection and prediction but less relevant for response and recovery
[86]. Given that social media are not only text-based data and also involve image
and video data, these platforms have also been used for other purposes relevant to
risk management such as land use and land cover classification [87], hazard anal-
ysis [88], risk assessment [89], risk communication [90], disaster recovery [91], or
population and human mobility mapping [92]. Although the potential of social
media for disaster management activities is becoming increasingly clear, challenges
still need to be overcome before being able to ensure that only robust information is
extracted. For example, automatic (unsupervised) recognition of relevant infor-
mation based on individual messages or massive social media data need to be
achieved in order to make these data sources truly usable in emergencies [93, 94].
Other relevant challenges are associated to organizational factors and policies of
governmental institutions that may not be ready to embrace these new sources of
data, namely due to credibility issues [95].

Mobile GPS has emerged as an effective means of inferring data relevant to risk
assessment or emergency response related to human mobility and behavior through
the geolocation of mobile phones. These data can be relevant for both the real-time
analysis of human evacuation [96] and the post-disaster analysis of human behavior
during emergencies in order to enhance response in future events [97]. When
mobile emergency notification applications are present in the mobile device, mobile
GPS can complement them and provide additional information to the emergency
response centers gathering these emergency notification data [98, 99]. In a
post-disaster scenario, mobile GPS can also be combined with other mobile apps to
speed the damage assessment process of structures and infrastructures and facilitate
the analysis of their usability [100]. Call detail records are another data source
relevant for detecting human mobility and behavior by placing mobile phone users
in a geographical location based on the tower used by the mobile phones to send or
receive a phone call, text message, or Internet data connection. The ability to
monitor human population dynamics daily, seasonally, or annually can provide
relevant data for risk assessment and management. In low-income countries where
population distribution data may be scarce, outdated or unreliable, mobile
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positioning data are able to fill this gap [101]. In countries where detailed human
population census data are available at high resolution, the added value of using
mobile data lies in the ability to estimate changes in population distributions
through time, i.e., along the week days or a season, or due to other events that may
affect population over large spatial extents [102]. While mapping the exposure of
people to risks is facilitated by having information on their mobility patterns, it can
also provide useful information for developing risk prevention and mitigation
programs focusing on transport infrastructures that are more frequently used [103,
104]. In addition, the potential for using near real-time call detail records to assist in
emergency response has also been analyzed [105] and, as for mobile GPS, call
detail records generated during emergencies can also be used in post-disaster
analysis of human behavior, either alone or in combination with other data [106,
107]. Despite the increasing usefulness of call detail records when analyzing human
mobility, their validity must be carefully examined using robust methodologies
[108, 109] to avoid biased conclusions [110].

4.2 Outlook of Applications in Particular Fields of Disaster
Management

Recent reviews addressing the impact of machine learning techniques for flood risk
modeling and related aspects highlighted several applications where significant
changes are ongoing or are likely to occur due to the increasing use of these
techniques [111, 112]. Among other aspects, the use of data-driven machine
learning models for hazard prediction is increasing given their ability to provide
results faster than hydrologic and hydraulic models describing the physical pro-
cesses, which usually require large computational overheads. Still, this preference
comes at a cost since a trained machine learning model is unable to account for
changes to the hydraulic system it represents (e.g., when a certain protection
structure is introduced in the system) and may not perform well in predicting
scenarios far outside the training domain. Among the several machine learning
techniques that are being used, reference is made to the increasing popularity of
hybrid models where the hazard process simulation integrates machine learning to
perform certain tasks in the modeling process [113, 114]. Another popular approach
involves the use of an ensemble of methods, which increases the generalization
capabilities of the models and decreases the uncertainty of the predictions [115,
116]. In addition, it is also referred that advanced machine learning techniques are
being developed for applications in grid-based modeling and forecasting [117, 118].
In the domain of flood damage and loss modeling, the most common current trend
involves the development of multivariable flood impact models with the help of
machine learning techniques [119, 120], although developments in the field of flood
index insurance [121] are also exploring the use of machine learning-based
methodologies. The reliability of these applications, however, is often limited by
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the unavailability of high-quality data (especially data related to more extreme and
thus rare events) to train and build robust machine learning models. Overcoming
the challenges regarding the availability of representative high-quality data requires
changes in the current practice of post-event data collection and sharing, data
standardization and data quality protocols [18, 19], as well as the collaboration
between relevant organizations and stakeholders [112]. In this context, it is noted
that machine learning techniques developed for automatic damage identification/
classification based on remote-sensed data may offer limited advantages given that,
in many cases, the damage occurs inside built structures and infrastructures and
cannot be identified using the referred remote sensing technologies.

A recent review addressing the use of machine learning techniques in earthquake
engineering topics related to risk assessment, among others, emphasizes that
machine learning provides the ability to tackle certain problems that are difficult to
solve using traditional methods [122]. These include mostly the development of
data-driven or hybrid models simulating processes for which structural, geotech-
nical, or physics-based models are difficult to derive or costly to use, e.g., ground
motion prediction and generation [123, 124], seismic response of structural com-
ponents or systems [125, 126], fast and large-scale post-earthquake damage
assessment in built structures and infrastructures [127–129], and seismic fragility
assessment [130, 131]. Still, there are challenges to progressing the use of machine
learning in these topics. In particular, it is noted that large amounts of high-quality
data are necessary for machine learning outputs to be reliable, which is often
difficult to achieve since creating such large datasets may require high-fidelity
numerical analyses with large computational overheads or large-scale experimental
tests that can involve prohibitive financial costs. To address this issue, the review
refers that more transparent, accessible, and high-quality data should be shared
among the worldwide research community, namely by using dedicated online
platforms supporting research in these fields [48], but also that efforts should also
target the development of more simulation-based data based on high-quality
modeling approaches. Moreover, to overcome the limitations of purely data-driven
machine learning applications, which may lead to inadequate results outside their
training domain, it also suggests that machine learning algorithms incorporating the
physical understanding of the underlying process should be developed. In this
context, research addressing the development of more interpretable machine
learning models can be seen as a progress toward that goal [132, 133], as well as the
development of hybrid simulation approaches mixing physics-based simulations
and experimental data [134].

Another recent review analyzed the application of machine learning methods in
wildfire disaster management to address a manifold of problems such as fuels
characterization, fire detection, fire mapping, fire susceptibility, fire behavior pre-
diction, fire effects, and fire management [135]. As for the applications in the
earthquake engineering field, the lack of interpretability of machine learning models
is also seen as a major obstacle for the adoption of machine learning techniques in
these fire research domains. It can be seen that the development of machine learning
models with greater interpretability is starting to address this limitation, e.g., by
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analyzing the importance of certain variables from machine learning models [136,
137] or by using different model interpretation and visualization techniques [138].
Still, the review also refers that expertise in wildfire science will always be nec-
essary to ensure realistic modeling of wildfire processes using machine learning
techniques. Moreover, as in other domains, the availability of sufficient high-quality
data for developing reliable machine learning models is also an issue in wildfire
disaster management. For fire management problems, data are needed at large
spatial and temporal scales, while for fire spread and behavior modeling data are
needed at very fine spatiotemporal scales (including high-resolution fuel maps and
surface weather variables). To overcome this issue, the review highlights that
wildfire research and management communities should start sharing free
high-quality wildfire data that can be used by practitioners developing machine
learning models, e.g., see [139, 140]. Given the impact of the response phase on the
overall financial expenditure of wildfire management, the review also suggests that
further research involving machine learning techniques should target fire occur-
rence prediction and fire behavior prediction, namely by using machine learning in
time-series forecasting applications. Recent research on these topics is consistent
with this suggestion [141, 142].

Regarding landslide risk management, recent reviews highlight that most of the
existing machine learning applications in this domain are related to landslide
identification and susceptibility mapping by applying machine learning techniques
to remote-sensed data [143, 144]. The performance of several machine learning
techniques for landslide identification and susceptibility mapping has been analyzed
[144–146], but none can be claimed to be the most efficient overall. Still, deep
leaning-based machine learning algorithms have started to be favored in this
domain since they require less supervision than traditional methods [144, 147].
Nevertheless, the use of ensemble-based approaches is recommended to improve
the reliability of the model predictions [148, 149], as well as the use of hybrid
models [150, 151]. Given that the reliability of the machine learning models
developed in this domain depends on the accurate detection of landslide features
across large labeled training datasets, data augmentation techniques have been used
to artificially extend an existing dataset. These techniques can involve a translation
or a rotation of an image, a mirroring of an image or window shifting [144, 152].
Nevertheless, it is expected that remote-sensed big data may provide solutions to
overcome some of these issues [153], and applications are currently being devel-
oped on this front [154]. Another field related to landslide risk management with
increasing applications of machine learning addresses the monitoring of landslide
displacements and volume for developing early warning systems [155, 156]. In this
context, remote-sensed big data and the Internet of Things are both expected to play
relevant roles in the near future [157, 158].

Despite the large sub-domains of emergency management and disaster response
in which the application of machine learning techniques combined with multiple
big data sources can provide important advantages [159, 160], the following only
briefly reviews aspects related to situational awareness in emergency situations and
demand forecasting of emergency resources in disasters. These sub-domains were

Smart Disaster Risk Reduction and Emergency … 327



selected given some of the challenges they encompass. Regarding the former,
machine learning techniques have been applied in several situations to extract
relevant information for disaster response from text, image, or video data coming
from social media [161, 162]. Despite the increasing number of machine learning
applications addressing this topic, there are still several important challenges that
need to be overcome. For example, the identification of small-scale events remains
a challenge given that small events do not stand out across social media data that are
usually extremely noisy. Advances in machine learning techniques based on
multi-label learning have been used to address this issue [163, 164]. Another
challenge lies in the fact that the geolocalization of events that may be identified
from social media content is often difficult since only 1–3% of that is geotagged.
Machine learning applications dedicated to geoparsing based on classification and
semantic annotation, probabilistic language models, and representations of struc-
tured information contained in knowledge graphs are being developed to address
this issue [165, 166]. Another challenge is connected to the fact that crowdsourced
data often contains more than the credible data (e.g., ambiguity, opinions, com-
ments) and also to the concerns related to the trustworthiness of social media data
since it may contain fake news, rumors, misinformation, and disinformation.
Several advances are also being made on this front with the use of multiple machine
learning approaches [167, 168]. A further challenge related to social media data
analysis in emergency management situations refers to the risk of multimodal data
overload when a disaster occurs. Since manual analysis of these data is often
impossible, efficient data processing pipelines based on machine learning tech-
niques are being proposed [169]. Despite the availability of the referred machine
learning models, their reliability depends on the availability of large datasets for the
successful training and validation of the referred models. To achieve this, gov-
ernmental and non-governmental organizations need to collaborate with research
initiatives on this topic to curate such datasets [170, 171]. Finally, with respect to
the topic of demand forecasting of emergency resources in disasters, research
involving machine learning applications is scarcer [172]. A few studies have
addressed the issue of predicting the number of casualties in disasters using dif-
ferent types of machine learning techniques [173–175] but applications in other
fields of disaster emergency demand forecasting are even fewer [176–179].
According to [172], the lack of research in these fields is due to lack of data
describing the management of past emergency events. As such, governments and
emergency management agencies should start sharing relevant data about past
events in order to promote research in the multiple fields related to the prediction of
the necessary emergency resources in disasters.

As discussed before, exposure refers to the spatial characteristics of people and
assets that can be affected by hazards. Aside from the possibility of crowdsourcing
exposure data, as previously referred, machine learning techniques are also
expected to cause significant changes in exposure mapping by classifying and
labeling remote-sensed data. Applications in these fields involve mapping built-up
areas based on night-time light data [180, 181] or satellite imagery [182, 183].
Furthermore, machine learning algorithms are also being used to automatically label
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buildings [184, 185], determine their height [186, 187], and map roads [188, 189]
using aerial/satellite imagery. These imagery sources can also be combined with
others such as street view images in order to enhance the identification of building
characteristics [190, 191] or extract other land use features [192]. Aside from
exposure mapping, machine learning algorithms can also be used to predict the
future evolution of exposure. In this context, machine learning algorithms have
been used on their own to model urban growth and land use change [193, 194] or
by integrating them with cellular automata which have been increasingly used to
model the evolution of urban systems. Given the complexity of defining the tran-
sition rules needed for cellular automata, due to the nonlinear evolution of urban
expansion, hybrid models combining cellular automata and machine learning
algorithms are being increasingly used to overcome these difficulties [195, 196].

5 Conclusion

This chapter reviewed the risk and disaster management cycles and discussed how
they can benefit from integrating certain technologies of Industry 4.0. Moreover,
applications of machine learning for big data analytics and emulation of complex
problems were also discussed in light of certain challenges identified in the risk
assessment and emergency response domains. In addition, challenges and research
opportunities for progressing the use of machine learning techniques in several
disaster management domains were also examined.

Several of these challenges were seen to be common to all domains. Among
those, the unavailability of large representative high-quality datasets to train
machine learning algorithms is at the top. To overcome this, real data collection and
experimental/simulated data generation need to advance significantly, while dedi-
cated systems and protocols also need to be developed among research, practice,
and governmental organizations to make those data available. The lack of inter-
pretability of machine learning models was also seen as a challenge common to
most domains. This issue is a major obstacle for the wider adoption of machine
learning models and is also a gateway to the dangerous path of reducing the role of
human judgment in the modeling processes. A possible solution for this issue
involves the development of hybrid machine learning algorithms incorporating the
physical understanding of the processes being emulated. Finally, concerns related to
the reliability of machine learning models and the uncertainty of their outputs are
also challenges that need to be addressed. A promising solution in this context
involves generalizing the use of ensemble-based approaches.

These challenges are in line with those identified in other domains related to the
bias, ethics, and fairness of machine learning models and artificial intelligence
technology in general [197, 198]. Although the disaster management sector does
not appear to be engaged in this global debate yet, the potential to generate negative
impacts in this sector with the use of machine learning approaches is not negligible.
Bias-related issues in machine learning can occur due to the previously referred
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unavailability of representative high-quality datasets. This may include lack of
important data that cannot be easily measured or identified and are, therefore, left
out of the modeling process. These issues are particularly common when devel-
oping large-scale regional- or country-level risk assessment studies for which
collecting all the relevant data in detail is often impossible [199]. Furthermore,
since economic exposure values are central for developing risk mitigation strategies
based on risk assessments, decisions for risk mitigation can be mostly driven by the
economic values that need to be protected [200], potentially leaving out other
relevant factors to consider. In addition, given that social media users are not
representative of all the demographics of a region [201, 202], bias-related issues
may also occur when deriving models from social media data only (i.e., certain
vulnerable parts of the true demographics will not be represented) [203]. As such,
these and other challenges that may be intensified by the widespread use of big data,
machine learning techniques, and artificial intelligence technology in general (e.g.,
data privacy concerns, lack of public participation in disaster management deci-
sions) need to be carefully addressed by adequate governance actions from multiple
sectors [204] if objectives such as those of the AI for Social Good movement
[205] are to be achieved in the future.
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