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Chapter 4
EFs in Pathological Gambling Disorder

Michela Balconi, Laura Angioletti, and Giulia Delfini

4.1  Introduction and Definition of Pathological 
Gambling Disorder

Gambling behaviour can be defined in different ways, such as “compulsive”, “path-
ological”, or “problematic” (Caretti & La Barbara, 2009). In the DSM-V (American 
Psychiatric Association, 2013) Gambling Disorder (GD) is placed in the “Substance-
Related Disorders” section as “Non-Substance Related Disorder” and is referred to 
as “gambling disorder”. It implies a significant compromise in family, work, and 
interpersonal life of the subjects. In order to be diagnosed, the person must present 
four or more of the following symptoms within a period of 1 year:

 1. Needs to gamble with increasing amounts of money in order to achieve the 
desired excitement.

 2. Is restless or irritable when attempting to cut down or stop gambling.
 3. Has made repeated unsuccessful efforts to control, cut back, or stop gambling.
 4. Is often preoccupied with gambling (e.g. having persistent thoughts of reliving 

past gambling experiences, handicapping, or planning the next venture, thinking 
of ways to get money with which to gamble).

 5. Often gambles when feeling distressed (e.g. helpless, guilty, anxious, depressed).
 6. After losing money gambling, often returns another day to get even (“chasing” 

one’s losses).
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 7. Lies to conceal the extent of involvement with gambling.
 8. Has jeopardized or lost a significant relationship, job, or educational or career 

opportunity because of gambling.
 9. Relies on others to provide money to relieve desperate financial situations caused 

by gambling

Over the years, several authors have developed assessment and screening tools 
for the diagnosis of GD.  Many of them have been developed by examining the 
diagnostic criteria of DSM (Diagnostic and Statistical Manual of Mental disorder, 
DSM). For example, Winters et al. (2002) have developed the Diagnostic Interview 
for Gambling Schedule, a 20-question interview to investigate the age of onset of 
gambling, symptoms, course and impairments in family, and interpersonal life 
(Winters et al., 2002).

From the point of view of symptoms, the psychological and physiological symp-
toms that occur in people with GD are very similar to the symptoms that can be 
found in people with substance addiction. Indeed, individuals with GD show symp-
toms of: abstinence, such as restlessness and irritability, when they are not gam-
bling; craving, or the impressible desire for gambling behaviour; tolerance, when 
they need to play more and more in order to reach the desired pleasant effect; inabil-
ity to control impulses, since subjects declare that they experience strong instincts 
to play and they are not able to resist them; and pervasive and constant thought of 
the game, which obscures the concentration of the subjects (Marazziti et al., 2015).

An important element to take into account is the impairment of family, work, and 
interpersonal life caused by gambling. In fact, individuals with GD tend to spend a 
lot of time playing and concentrating all their energies in the game, with the 
consequence of neglecting, reducing, or even interrupting other activities of daily 
life, such as work, family, or social ones (Rosenberg & Feder, 2014). Furthermore, 
a recurring problem in the life of gamblers is economic instability. Indeed, they 
often have financial problems caused by gambling, such as debt or bankruptcy.

In addition, GD presents several comorbidities with other addictions and psycho-
pathological profiles: it has often been associated with a substance-related disorder. 
In this sense, it is important to consider that the use of psychoactive substances 
influences development and course of GD, as these substances have negative conse-
quences on decision-making and impulsivity. In addition, gambling was found to be 
associated with other personality disorders, mood disorders, in particular depres-
sion and anxiety (American Psychiatric Association, 2013; Erbas & Buchner, 2012).

Over the years, several authors have tried to differentiate the subjects, applying 
terminological distinctions such as “pathological”, “problematic”, “social”, or “at 
risk” players. In particular, Custer (1984) identified six types of players: profes-
sional players, for whom gambling is not an addiction but a real job; antisocial 
gamblers, who play illegally; casual social players, for whom gambling is merely 
occasional entertainment; constant social players, who make gambling their main 
entertainment or leisure activity, but do not let it interfere with their family or work 
life; neurotic players without addiction syndrome, who use the game to soothe bore-
dom, anxiety, depression; and compulsive gamblers, who have no control over their 

M. Balconi et al.



89

own behaviour, cannot manage their impulses and continue to gamble despite nega-
tive repercussions on their family, work, and interpersonal life.

According to Custer, in this last type of player, a mechanism is established that 
he describes as “model of the career of the player” (Custer & Milt, 1985). In fact, 
they would go through three stages: a first phase of winning, in which they experience 
intense feelings of pleasure following the winnings of money; a second phase of 
loss, in which they begin to lose and therefore experience negative emotions due to 
the loss itself, thus trying to compensate by playing further; finally, a third phase of 
despair, in which the situation becomes increasingly serious to the point of causing 
a strong feeling of despair as a result of the different repercussions of the game on 
family and work life.

Finally, it was observed that, in pathological gamblers, it is possible to find neu-
robiological and neuropsychological alterations similar to those found in individu-
als with substance use disorder (SUD). In fact, several neuroimaging studies have 
been conducted that confirm the similarity between SUD and behavioural addic-
tions, specifically GD. For example, a reduction in the activity of the ventromedial 
prefrontal cortex (vMPFC) was observed in individuals with GD during certain 
tasks, such as Stroop test or during the presentation of signals associated with gam-
bling (Potenza et al., 2003b). As we have seen, the vMPFC plays a key role in the 
decision-making circuit and in risk assessment (Potenza, 2006). In addition, as 
regards subjects with GD, they show impairments in the performance of the Iowa 
Gambling Task (IGT) as much as individuals with SUD (Bechara, 2003). The IGT 
is used to analyse the effect of reward sensitivity and to identify predictive indica-
tors of GD. In particular, the factors that influence the choices of the individual in 
the decision-making process are analysed, distinguishing between high and low risk 
decisions (Balconi et al., 2015, 2014a), as we will explore in the next paragraphs.

4.2  How Are EFs Involved in Pathological 
Gambling Disorder?

Because Executive Functions (EFs, for a definition see Chap. 1) deficits frequently 
underlie addictive behaviours (Hester & Garavan, 2004), it is essential to study 
potential EFs dysfunction in GD. This is especially important because EFs deficits 
may have also implications for the capacity of individuals to benefit from 
psychosocial treatments for GD (Leblond et al., 2003).

As we underlined in the previous chapters, EF involves higher-level cognitive 
processes implicated in the formation of successful goal-directed behaviour (Lezak 
et al., 2004), including planning and initiating behaviours, anticipating (positive and 
negative) consequences of actions, and the ability to adjust behaviours based on 
environmental feedback.

Specifically, planning, judgment, decision-making, set shifting, anticipation, and 
reasoning are the cognitive processes required for the successful completion of any 
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complex behavioural or cognitive task. Also required in this context are the 
suppression of unnecessary input and output, and the inhibition of inappropriate 
responses.

As we have previously observed, EFs were first described as central executive by 
Baddeley and Hitch (1974) and have been characterized by Lezak as the dimension 
of human behaviour that deals with how behaviour is expressed (Lezak, 1982). 
Therefore, the definition of “executive functions” includes a large umbrella of mul-
tiple processes [such as decision-making, response inhibition, conflict monitoring, 
cognitive flexibility, and their possible relationship with reward-related decision-
making processes (Moccia et al., 2017)] and several, different definitions of EFs 
exist, which refer to different cognitive and neuropsychological models. Accordingly, 
in studying EFs in GD, authors referred to different models and adopted different 
tasks to analyse this family of functions. The problems of the absence of a homog-
enous definition of EFs and the large variety of tools used to assess them in the clini-
cal population has already been underlined in some meta-analyses (see Kerns 
et al., 2008).

In this regard, studies have identified cognitive deficits in GD across a variety of 
domains (van Holst et al., 2010). Specifically, response suppression is indexed by 
stop-signal and Go/No-Go tasks, which require subjects to withhold simple motor 
responses when a stop-signal occurs (stop-signal tasks) or when a particular kind of 
stimulus is presented (Go/No-Go tasks). The ability to suppress responses is 
dependent on distributed neural circuitry, including the right inferior frontal gyrus 
and bilateral anterior cingulate cortices (Aron et al., 2004; Hampshire et al., 2010). 
The majority of studies have reported impaired response inhibition performance 
(i.e. increased motor impulsivity) in GD.

Several studies indicate a general trend towards EF impairment in GD. Specifically, 
GD performance in various neuropsychological tasks compared to non-GD revealed 
impairment in planning (Goudriaan et  al., 2006b; Ledgerwood et  al., 2012), 
cognitive flexibility (Goudriaan et al., 2006b; Odlaug et al., 2011), and behavioural 
inhibition (Goudriaan et  al., 2006b; Grant et  al., 2012; Kalechstein et  al., 2007; 
Odlaug et al., 2011; Potenza et al., 2003b; Roca et al., 2008). Other studies found 
deficits in episodic and working memory, as well as verbal fluency in GD (Leiserson 
& Pihl, 2007; Roca et al., 2008; Zhou et al., 2016). Finally, performance on IGT, 
which was designed to assess decision-making capacity under ambiguity and risk, 
is impaired in GD (see Goudriaan et al., 2006b; Brevers et al., 2012b; Ledgerwood 
et al., 2012).

Brain imaging data appear to be consistent with these findings, revealing aber-
rant patterns of hemodynamic responses in prefrontal cortices in GD (for a review, 
see Grant et al., 2016). Given that the lateral prefrontal cortices have a central role 
in the neural substrate of EFs and working memory (Wager & Smith, 2003; Zakzanis 
et al., 2005), taken together this evidence points to a dysexecutive cognitive basis 
for GD, possibly attributed to lateral prefrontal dysfunction (for a review, see van 
Holst et al., 2010).

GD may experience significant deficits in EFs compared with non-GD, meaning 
that GD may be associated with significant comorbid neurological dysfunction in 
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many individuals with gambling tendency. This is clinically significant when 
considering appropriate treatment strategies for this population, as EF difficulties 
may hinder an individual’s ability to benefit from treatment for GD (Ledgerwood 
et al., 2012).

As outlined previously, problems with cognitive functions dependent on cortico- 
subcortical circuitry have long been implicated in the manifestation of 
GD. Behaviours in people with GD are often repetitive, hard to suppress, and are 
impulsive in that they result in negative long-term outcomes. Furthermore, people 
with the disorder often have difficulty shifting their thoughts and behaviour away 
from gambling towards other areas of life that may be less damaging. Therefore, the 
study of Hinson et  al. (2003) is particularly interested in two cognitive domains 
often reported to be deficient in patients compared with controls in the extant 
literature: response inhibition and cognitive flexibility. In prior cognitive studies, 
there has been a lack of clarity regarding whether deficits stemmed from the 
pathophysiology of recurrent gambling itself or rather reflected deficits that can pre- 
date symptoms and exist in people “at risk”. In this study, authors attempted to 
address this issue in part by recruiting a group of subjects with “at-risk” gambling, 
viewed as being in an intermediate state between health and disease.

A second main and relevant factor that could be implicated in EF deficit in GD is 
the impulsivity control and related impaired behaviour. Many studies have found 
correlations between GD and behavioural and self-report measures of impulsivity. 
Specifically, impulse control is thought to be associated with underlying deficits in 
function in particular areas of the brain (e.g. prefrontal cortex) that are related to EF 
(Hinson et al., 2003).

Indeed, GD has been associated with impulsivity and attention deficit: GD 
patients were found to perform significantly worse than control subjects on attention 
measures and showed more childhood behaviours related to attention deficits (Rugle 
& Melamed, 1993). More recently, neuropsychological measures of impulsivity, 
such as the reaction time and number of errors at Go/No-Go tasks, as well as the 
scores at the Barratt Impulsiveness Scale, were higher in GD patients than healthy 
control subjects, while highlighting the importance of this dimension in the clinical 
picture of GD (Fuentes et al., 2006).

4.2.1  Brain Correlates of EF in GD Deficits

As we have underlined before (see Chaps. 1 and 2) prefrontal cortex (PFC)-
dependent neurocognitive functions have been of particular interest in addiction 
research (Goldstein & Volkow, 2011).

Although the function of the PFC is highly integrated, two partially distinct PFC 
networks have been implicated in different aspects of neurocognitive function. The 
anterior cingulate cortex (ACC), lateral inferior cortex, and dorsolateral prefrontal 
cortex (DLPFC) have been linked to so-called “cool” EF, including working 
memory, response inhibition, task switching, and conflict monitoring (Badre & 
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D’Esposito, 2009; Koechlin et al., 2003), and the ventral, medial, and orbitofrontal 
structures (VMPFC, OFC) manage the so called “hot” EF, more involved in reward/
emotion-related functions, including valuation, emotion regulation, and decision- 
making (Bechara & Van Der Linden, 2005; Peters & Büchel, 2010).

Also, GD patients may share a common dysfunction at the level of the vMPFC. In 
line with this hypothesis, a recent study using a comprehensive neuropsychological 
battery measuring EFs, demonstrated that GD and alcohol-dependent patients 
showed a reduction of executive functioning performance on inhibition, time esti-
mation, cognitive flexibility and planning tasks (Goudriaan et al., 2006a, b).

The first neuroimaging studies in GD indicate that abnormalities exist in the 
vMPFC and cortico-basal ganglionic-thalamic circuits (Potenza et al., 2003a, b). 
Neuroimaging studies have shown that EF tasks activate a variety of areas within 
the prefrontal cortex (Coull et al., 2004) and, in addition to this, activate areas with 
important connections to the PFC, such as the caudate nucleus, the putamen, 
thalamic areas (Monchi et al., 2001), cingulate and parietal cortex (Van Den Heuvel 
et al., 2003).

The deficits in EFs as found in GD and SUD groups are therefore likely to be 
associated with dysfunctions and clusters of abnormal activation of these brain 
structures and brain circuits (for a recent review, see Moccia et al., 2017).

More recently, abnormal activity of the right Middle Frontal Gyrus (MFG), con-
sistent with previous research (De Ruiter et al., 2009; van Holst et al., 2012a, b; 
Potenza et al., 2003a, b; Tanabe et al., 2007), and increased activity of the left dorsal 
ACC has been observed in GD (Quaglieri et al., 2020). The neural reward system 
encompasses both subcortical and cortical areas (including frontal lobes) and 
through the release of dopamine can stimulate food consumption, social reproduction, 
but also neural responses for “unnatural rewards” (such as monetary rewards), that 
contribute to compulsive behaviours like for instance gambling (the same occurs for 
substances) (Comings & Blum, 2000). Indeed, the striatum has been frequently 
reported to be involved in the expectation of monetary rewards (Crockford et al., 
2005; Miedl et al., 2012; Power et al., 2012; Reuter et al., 2005): individuals with 
GD displayed greater activation in the bilateral dorsal striatum, related to stronger 
associations between the action and its outcome (van Holst et  al., 2010), which 
could be accounted for by an overestimation of the gambling outcomes. The 
hyperactivity of dorsal striatum regions appears to be linked to a higher degree of 
reward-seeking behaviour, which could be a compensatory mechanism correlated to 
reward gaps in GD (van Holst et al., 2010); whereas the ventral part of the striatum 
appears to be more involved in the processing of the rewards (Miedl et al., 2012).

Regarding the involvement of the frontal lobe, the fronto-striatal cortical circuit 
is crucial for EF (Robbins, 2007), encompassing reward processing, control, and 
motor planning (Meng et al., 2014). When the clinical syndromes of GD are more 
severe, a hyperactivation of the striatum leads to impaired ability to control gambling 
behaviour. This impairment may contribute to fronto-striatal dysfunction in GD, 
with individuals showing deficits in self-regulation and higher degree of reward-
seeking behaviour. The loss of control over gambling conduct is therefore due to an 
imbalance of the dopaminergic system and the neural circuits connecting 
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subcortical structures, such as basal ganglia and limbic areas and frontal regions 
(Moccia et al., 2017).

4.2.2  Empirical Studies About Behavioural Deficits in GD: 
Measurement Evidence

A recent study showed that patients affected by GD undergoing a battery of neuro-
logical tests, namely, the Wisconsin Card Sorting Test (WCST), the WMS-R 
(Wechsler Memory Scale revised) and the FAS (Verbal Associative Fluency Test), 
had sufficient or normal intellectual, linguistic, and visual-spatial abilities. As far as 
the WCST is concerned, GD patients showed qualitative but not quantitative deficits: 
in fact, although no differences were found between GD patients and healthy control 
subjects in the total number of categories completed, different abnormalities were 
detected at some subscales. As compared with healthy subjects, the thinking of GD 
patients appeared perseverant, because when they tried to resolve a problem while 
using an incorrect method, they tended to continue beyond that point at which other 
subjects would have looked for alternative solutions. A similar behaviour has been 
observed in GD patients at both the card-choosing tests (Goudriaan et al., 2006a, b) 
and the Go/No-Go task (Fuentes et al., 2006).

The difficulty that GD patients showed in learning from their mistakes and in 
redirecting themselves in the appropriate direction represents one of the most 
characteristic features of patients with alterations of the prefrontal lobe. This aspect 
has been observed in a significant number of experimental paradigms, in particular, 
patients with lesions of the prefrontal lobe are sometimes able to identify correct 
answers, while nevertheless still continuing to produce wrong answers (Drewe, 
1975; Lurija & Homskaya, 1964). These findings are also compatible with other 
studies reporting worse performances in cognitive “risk-taking” tasks in patients 
with prefrontal lesions, as compared with healthy control subjects or patients with 
temporal lobe excision (Miller, 1992). In addition, these data would suggest a more 
generalized frontal lobe impairment. This is also supported by a recent study 
showing behavioural evidence of an alteration of both DLPFC and orbitofrontal 
cortex (OFC) in GD (Brand et al., 2005). However, it is still unclear whether the 
observed frontal lobe abnormalities should be considered a primary phenomenon 
linked to the aetiology of GD, or secondary to some symptomatologic features, or 
to the comorbid psychopathological conditions.

Flexible responding has traditionally been assessed with the WCST and its vari-
ants, which are dependent on distributed neural circuitry, including the ventrome-
dial and ventrolateral prefrontal cortices (Buckley et al., 2009; Hampshire & Owen, 
2006). Consequently, the majority of available studies have reported on WCST per-
formance in GD compared with healthy controls.

Goudriaan and colleagues (2006a, b) concluded that comprehensive EF deficits 
were present in the GD group compared to normal controls. The deficits found in 
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EFs in the GD group could not be explained by deficits in basic cognitive functions, 
which are proposed as a prerequisite for performance of EF tasks. Also, their results 
indicate that the GD group resembled the alcohol dependence group, suggesting 
that comorbid symptoms had limited influence on EF performance.

While regarding the impairment of decision-making observed in GD might be 
explained by the inability to inhibit irrelevant information: in a recent study, the 
performances on the reverse Stroop task, which highly discriminates the ability to 
inhibit interferences, were significantly impaired in GD patients than in healthy 
subjects (Kertzman et al., 2006). Moreover, neurocognitive indicators of decision- 
making and disinhibition, such as the Card Playing Task and Stop Signal Reaction 
Time, respectively, seem to be powerful predictors of relapse in GD (Goudriaan 
et al., 2008).

4.2.3  Behavioural Addiction, GD, and Substance Addiction: 
What Kind of Brain Correlates Relationship?

The current state of knowledge from neuroscience studies suggests that there may 
exist a common pathological pathway between SUD and non-substance-related 
disorder (e.g. gambling or Internet gaming disorder), involving dysfunctional 
reward mechanisms and deficit in cognitive decisional processes (for an in-depth 
description, see Chap. 1). Previous studies observed that the neurobiological 
patterns of the addictive behaviours are similar: for instance, there is a reduction in 
dopamine (DA) receptor on compulsive feeding (Wang et al., 2002) and gambling 
related to deficits of the frontal cortex in GD (Potenza, 2008).

Many of the features central to GD are similar to those of SUD and implicate 
common underlying dysregulation of frontostriatal circuitry (Clark, 2010; Grant 
et al., 2010). Notable features that share commonality between GD and addiction 
include persistent engagement in a behaviour despite negative consequences, loss of 
self-control, compulsive engagement (“drive”), craving, tolerance, and withdrawal 
(Potenza, 2008). As such, GD represents a valuable model for studying the 
neurobiology of addiction, without the potential confounding pernicious brain 
effects from chronic alcohol or illicit substance abuse.

Apart from the diagnostic similarities that GD shares with SUD and Impulse 
Control Disorders (ICDs), these disorders are all characterized by behavioural 
deficits in self-regulation, as manifested in an impaired ability to inhibit the urge for 
the desired behaviour or drug. Deficits in EFs are proposed as important mediators 
in drug bingeing (Goldstein & Volkow, 2002), and several studies suggest that 
impairments in EFs have a negative impact on treatment success and relapse in 
substance dependence (Bates et al., 2004; Fals-Stewart & Schafer, 1992).
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4.2.4  Some Limits in EFs Studies Applied to GD

Despite the relevance of EFs in GD, research in this field is still scarce and findings 
are inconsistent. In addition, most studies did not investigate whether deficits in EFs 
were independent of deficits in basic cognitive functions. A closer look at the 
literature reveals a number of potential weaknesses in this notion. Firstly, there is 
evidence against a generalized EF impairment in GD (Manning et  al., 2013). 
Secondly, several studies have a number of methodological limitations. The most 
important reason for these inconsistencies concerns the fact that some studies tar-
geted only a single EF, most studies were restricted to small groups and studies 
often failed to assess and control for comorbid disorders and medication use. In 
addition, the specificity of EF deficits in GD is not known, because clinical com-
parison groups were not included in most of these studies. Sampling bias, mainly 
due to inclusion of treatment-seeking patients only, may provide non-representative 
groups (Lorains et al., 2011). Additionally, it has been argued that the majority of 
GD seek treatment for a co-morbid disorder rather than gambling per se (Winters & 
Kushner, 2003). Moreover, small sample size prevents the use of parametric statis-
tics and limits generalizability of results. Finally, a large proportion of the relevant 
studies lack a thorough neuropsychological assessment, thus drawing conclusions 
on the basis of limited data.

The above limitations stress the need for further studies utilizing comprehensive 
cognitive batteries on representative, unbiased, ecological samples of individuals 
with GD.

4.3  Theoretical Models to Explain SUD and GD

Some recent neurocognitive models were introduced to explain drug dependence. 
However, they can be applied and extended also to GD, based on previous evidence 
on both behavioural deficits and neurocognitive correlates. We summarize some 
main directions of these models in the following paragraphs.

4.3.1  Aberrant Learning Theory

Chronic drug exposure leads to long-term associative memory processes occurring 
in several neural circuits that receive input from midbrain DA neurons (reward 
learning). Specifically, cues predict-rewards can strongly activate NAcc related 
circuitry in both animals and humans even better than the reward itself (Schultz, 
1998). It was argued that explicit learning (declarative memory) could reinforce the 
addiction: usually people who take drugs since the first time learn, at conscious 
level, predictive relationships between some cues in the environment and rewards. 
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Abnormally strong explicit learning might distort declarative memories or 
expectations; such addicts make inaccurate predictions about the consequences of 
taking drugs. Even so, drugs cause strong implicit learning which is not directly 
accessible to conscious. The Stimulus-Response (S-R) habit learning hypothesis 
(Everitt & Robbins, 2005) proposed that the progression to addiction involves at 
first controlled behaviour by explicit and cognitive expectations about Act-Outcome 
relationships (memory of drug pleasure), and then occurs the automatic behaviour 
consisting of Stimulus-Response habits. Although habits are not intrinsically com-
pulsive, the addiction is due to the development of very strong S-R habits. 
Considering the neural system of reinforcement for addiction, the changing from 
voluntary drug use to habitual and compulsive abuse represents a transition from 
PFC to striatal control, involving its dopaminergic innervation.

A similar explicative approach describing the transition from voluntary gam-
bling behaviour to pathological and compulsive behaviour may be adopted for GD 
(Brevers & Noël, 2013). In this case, on the one hand, there are some structural 
factors of gambling games that could promote the repetition of gambling behaviour 
to the point that in some people it could lead to a dysfunction of controlling gambling 
conduct. On the other hand, there are three crucial neural systems whose dysfunction 
may lead to an impairment in controlling gambling conduct, and that will be 
described in the following paragraphs. Starting from the structural peculiarities of 
gambling behaviour, authors underlined that there are at least two properties of 
gambling that promote the repetition of playing behaviour: they are (a) the 
intermittent schedule for reward and loss, and (b) the illusion of control over the 
game (Brevers & Noël, 2013).

4.3.1.1  The Intermittent Schedule for Reward and Loss

Gambling is characterized by irregular wins and losses delivered on a variable ratio, 
which entails imperfect reward estimation. This may be one behavioural reason for 
why gamblers engage in gambling despite growing losses (Schultz, 2002). In fact, 
in previous studies, it has been demonstrated that behaviours learned after a primary 
learning phase featured by intermittent rewards are carried over time and far more 
resistant to extinction than conducts learned under continuous rewards (individuals 
stop the activity when it is no longer rewarded) (Schultz et al., 2003). Hogarth and 
Villeval (2010), for example, found that participants in the continuous-reward- 
schedule condition leave as soon as payment stops, while irregular monetary 
incentive schedules result in greater conduct persistence displayed by the participants 
at the end of the payment phase.

In line with the Reward Prediction Error Models of Learning (Montague et al., 
1996; Schultz et al., 1993), a behaviour learned under intermittent reward learning 
requires imperfect reward prediction and it is much more resistant to extinction. 
According to the model, rewarding events that entail a better result than predicted 
(i.e. a positive reward prediction error) produce highly positive emotional activations, 
and these feelings remained stable if followed by a good prediction, and/or may 
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vary and be diminished by a reward that is worse than predicted (Schultz et  al., 
2003). Also, the release of dopamine co-varied according to the uncertainty of the 
reward, with higher amount of release for rewards with maximal uncertainty 
(Fiorillo et  al., 2003). Therefore, when the roulette wheel spins and players win 
some money during gambling, they can experience a powerful emotional positive 
state, because the reward was so unpredictable or unforeseen.

4.3.1.2  Illusory Perceived Control

The second structural property of games supporting gambling behaviour consists of 
players option of arranging their own wagers (like picking a number at the lottery or 
selecting a colour at the roulette), which can boost players’ belief that he/she could 
win (Ladouceur & Sévigny, 2005). The term adopted to describe this mechanism is 
“illusion of control”, since none of the actions cited above have an effect on the 
probability of winning, and it has been described also in diagnostic manuals as a 
peculiarity of GD (American Psychiatric Association, 2013).

4.3.2  The Triadic Neurocognitive Model

As previously mentioned, a recent neurocognitive theoretical model includes gam-
bling structural features in a more complete and exhaustive view (Brevers & Noël, 
2013). Indeed, in addition to gambling games’ characteristics, the model posits 
there are three crucial neural systems whose dysfunction may lead to an impairment 
in controlling gambling conduct:

• A hyperactivation of an “impulsive” system that is immediate, unaware, and 
unconscious and promotes automatic and repetitive actions.

• A hypoactivation “reflective” system that is slow and deliberative, predicting the 
potential implications of a behaviour, response inhibition, and metacognition.

• The interoceptive system, which transforms bottom-up bodily sensations into a 
subjective state of craving, accordingly, boosting the impulsive system, and/or 
weakening the normal functioning of the reflective system.

We distinctly consider these three neural systems and their implications in gam-
bling behaviour.

4.3.2.1  The Hypersensitization Toward Gambling-Related Stimuli 
and the “Impulsive System”

Firstly, the authors try to answer to the following question: “how is it possible that 
individuals keep gambling despite growing monetary losses?” Authors advanced 
the hypothesis of a hypersensitization toward gambling-related stimuli and actions, 
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that is in line with the Incentive Sensitization Theory developed for SUD (Robinson 
& Berridge, 2003). Over time, gambling-related cue can activate disruptive 
motivational states, able to hinder high-order cognitive and affective systems 
adopted for controlling the behaviour and preventing the person from addiction- 
related conducts (Verdejo-Garcia & Bechara, 2009).

Through classical conditioning processes, the repeated gambling experience 
may promote the formation of associative learnings between gambling-related cues, 
the positive emotions derived from wins and gains, and the behavioural actions of 
gambling (Hofmann et  al., 2009). These learned associations can be easily 
re-activated when the individual is confronted with gambling related cues, in the 
sense that his/her brain-body system is able to answer immediately to these attractive 
and salient stimuli, based on previous learning experiences, and may in a suitable 
way trigger the positive emotions and the behaviours linked to gambling (Hofmann 
et  al., 2008, 2009). As for SUD, even gambling-related stimuli (considered as 
“unnatural rewards”) may promote these quick and implicit activations (both at the 
memory and emotional level) and capture the attention of individuals with GD, 
leading to the so-called “attentional bias” (Robbins & Ehrman, 2004).

4.3.2.2  The Disruption of the Reflective Function

Although impulsive processes and hyperactivation toward gambling stimuli may 
explain individuals with addiction incentive to look for rewarding cues, it does not 
appear to explain the deficit in individual’s capability to control the impulsive and 
immediate tendency to gamble, to implement a more functional and long-term goal- 
directed behaviour, a function that is mainly operated by the so called “reflexive 
system”.

The integrity of the two following sets of neural systems is needed for the reflex-
ive system to function: the “cool” and “hot” EF systems (previously described in 
Sect. 4.2.1). Also, successful decision-making represents the convergence of these 
two cognitive and affective processes, which results in the ability to optimally bal-
ance short-term benefits against long-term losses, or to predict the possible conse-
quences of a given decision (Damasio et al., 1996). In contrast to the “impulsive” 
system, the functions of the reflexive system are managed through comparatively 
slow, monitored, conscious, aware, and self-regulated processes (Smith & 
DeCoster, 2000).

An impairment in “hot” EF could have an impact mainly in decision-making 
situations in which emotion regulation is involved, since there is no information 
related to reward probability (i.e. decision-making under ambiguity; Brand et al., 
2006; Krain et al., 2006). In these conditions, previous associative memories of win 
or losses must be recalled foreseeing both short- and long-term positive or negative 
outcomes of any given option (Bechara, 2004) and an impairment of this ability in 
GD will be extensively described below.

Additionally, regarding the disruption in “cool” executive functioning, recent 
research on excessive gambling indicates that the capability to inhibit unconscious 
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immediate responses could be the critical element in the development and 
maintenance of gambling addiction. Indeed, impaired inhibitory control has been 
associated with the onset of addiction by exacerbating problem gambling (Brevers 
et al., 2012a) and sabotaging gambling withdrawal (Goudriaan et al., 2008).

4.3.2.3  The Role of Interoceptive Processes: Halfway Between Impulsive 
and Reflective Systems

As third system of the model, Brevers and Noël (2013) included the interoceptive 
system, as a halfway system that may play a role in the onset and maintenance of 
addiction by transforming bodily signals into feelings of desire, anticipation, or 
urge (Goldstein et al., 2009; Goldstein & Volkow, 2011). At the neural level, the 
area that mainly processes the interoceptive signals is the insular cortex (Craig, 
2009). For further information on interoception and addiction, see also Chap. 9.

Furthermore, some recent theoretical discussions (Goldstein et  al., 2009; 
Goldstein & Volkow, 2011) propose that the inability to grasp the interoceptive 
signals can affect the metacognitive capacity (i.e. the ability to reflect on one’s own 
actions and thoughts, but also to assess one’s own performance at the behavioural 
level, discriminating its success or failure (Cleeremans et al., 2007); for this concept, 
see also Chap. 1) in an individual with addictions. The deficiency of metacognitive 
capability in addicts has been well documented and it is extremely relevant for the 
clinical relapses, since the individual fails to understand the seriousness of the 
condition (Goldstein et al., 2009). The underestimation of addiction severity and a 
disconnection between self-perception and actual behaviour have been detected in 
different categories of substance users (cocaine, nicotine, methamphetamine, and 
cannabis users) (Chiu et al., 2008; Hester et al., 2009; Moeller et al., 2010; Payer 
et al., 2011); as well as GD (Brevers et al., 2013; Brevers & Noël, 2013).

4.3.3  Frontocortical Dysfunction Theory

A more neurocognitive model posits that the cortical impairment may strongly sup-
port the cognitive function impairment in both drug addiction and GD (Quaglieri 
et  al., 2020). Chronic exposure to drugs can modify neural processing in frontal 
regions and distort functions of the PFC (Volkow et  al., 2013). Dysfunctional 
changes in fronto-cortical activity have been described during intoxication for many 
of the drugs and in polysubstance abusers and a decrease of the volume of the PFC 
was also found in these populations (Volkow et  al., 2013). Evidence show that 
fronto-striatal projections are important in regulating emotions and providing inhib-
itory control behaviour (Davidson et al., 2000). Furthermore, neurobiological stud-
ies report that some addicts show a variety of neuropsychological deficits shared 
with patients with frontal dysfunction (Bechara et al., 2000), such as deficit in deci-
sion-making (Verdejo-García & Pérez-García, 2008). It is widely accepted that PFC 
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is an important contributor to decision-making, assignment of value, and to mainte-
nance of goal-directed behaviours (inhibitory control).

In our recent study, we focused on the metacognitive representation in Cocaine 
Addicts (CA) about the strategies they used during the IGT decision-making task 
(Balconi et al., 2014d). The IGT (Bechara et al., 1994) is a sensitive measure of deci-
sional processing that simulates a real-world decision-making situation under uncer-
tain conditions, and it implies some factors like: immediate rewards, delayed 
punishments, risk and uncertainty of outcomes. In the IGT, participants are instructed 
to try to gain as much money as possible by drawing selections from a choice of four 
decks; two of the decks are disadvantageous (DD), because they produce immediate 
large rewards and also significant money loss; the other two decks are advantageous 
(AD), because rewards and punishments produced are lower. In general, insensitivity 
to punishment, together with a strong reward dependence, results in a disadvantageous 
pattern of decision-making, and more reward-dependent individuals should make 
more risky and disadvantageous choice (Balconi et al., 2014b, d). Data showed differ-
ent behavioural options and opposite strategies on the IGT comparing CA and healthy 
subjects: addicts demonstrated a more dysfunctional behaviour in their choice of strat-
egy; moreover, they were unable to evaluate and reconstruct a realistic thinking about 
the cognitive strategy they adopted during the IGT performance (Balconi et al., 2014d).

It is widely accepted that the frontal lobes are involved in cognitive and metacog-
nitive functions, and also the OFC and VMPFC, which are part of PFC, are net-
worked with the amygdala, dorsal striatum, NAcc, hypothalamus, and insula. Thus, 
it has been hypothesized that addictive drugs produce a distorted and excessive DA 
signal in the OFC and other regions of the PFC, and this excessive DA signal can 
produce overlearning of drug-related cues. In general, impairments in executive 
function and increased impulsivity have been correlated with the diminished ability 
to recruit high cognitive functions of the PFC in drug abusers. Thus, pathological 
over-evaluation of drug related cues and impairment of some functions of top-down 
control could make significant deficits, such as loss of control and absence of 
coherent meta-representation about their own strategy in decisional making 
processes in addiction.

4.3.4  The Cortical Unbalance Model and Lateralization Effect

Previous neuroscientific literature demonstrated an association between addiction 
and the abnormal functioning of neural systems supporting motivation and reward 
processing.

As previously underlined in Chap. 1, the development of a problematic addiction 
disease (related or non-related to substances) has been mainly linked to deficit in 
reward pathways, neurocognitive deficits, attribution of value to salient stimuli 
(Balconi et al., 2014b, d; Bechara, 2005; Goldstein & Volkow, 2002), neural changes 
in memory structures (Volkow et al., 2003), and impaired metacognitive processes 
(Balconi et al., 2014b, d; Goldstein et al., 2009). Regarding SUD, previous works 
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indicated that addiction to substance is linked to the salient properties of drugs, 
which are strictly connected to a rewarding effect (Balconi et al., 2014b, d).

One of the main characteristics of SUD and behavioural addiction is the dysfunc-
tional preference for instant gratification (i.e. reward) rather than a delayed gratifica-
tion, which is observable in behaviours characterized by impulsivity. Several fMRI 
studies supported this dysfunctional process displaying higher amygdala activation 
to addiction-related cues (Volkow et  al., 2013). For this reason, individuals with 
addiction have been compared to patients with VMPFC damage, highlighting how 
both clinical categories are characterized by insensitivity to future consequences 
(Bechara, 2005): in fact, as previously mentioned, they display the so-called “myo-
pia for the future”, being mainly compelled in obtaining a short-term gain, and 
unconscious of long-term beneficial or adverse outcomes (Balconi et al., 2014a, b). 
This aspect has been extensively studied by adopting decision-making tasks, such as 
the IGT.  Interestingly, the repetitive use of substances and problematic gambling 
could also induce individuals not previously displaying deficit in decision- making, 
to develop an impairment in evaluating the long-term adverse consequences of their 
actions and prefer short-term rewards for having relief from the negative mood.

4.4  Behavioural Study and EFs in GD

As mentioned in several points in the chapter, the IGT is one of the most used 
behavioural tasks for assessing decision-making deficits in multiple categories of 
patients, from patients with frontal lesions to SUD individuals, to patients with 
GD. Previous studies demonstrated that GD-impaired performance at the IGT task 
is comparable to that of individuals with SUD (Goudriaan et al., 2006b).

A more recent work sought to classify decision-making deficits in GDs and 
investigate distinct features in two types of decision-making; under uncertainty and 
under risk, with two different versions of the IGT (Ochoa et  al., 2013). As key 
findings, the authors indicated that the majority of GDs had general decision-making 
deficiencies, which were characterized by myopia for the future rather than aversion 
to punishment. Also, GDs mainly showed abnormal choice behaviour in relation to 
decisions made under risk on the IGT (linked to the explicit understanding of the 
task, EF, control processes, and impulsiveness) more than decision-making under 
ambiguity. It is worth noting that the authors highlighted that different pattern of 
deficits are involved in GD decision-making processes, and the predictors vary 
depending on the reinforcement schedule (Ochoa et al., 2013).

Moreover, basic research studies on the IGT demonstrated that decision-making 
under ambiguity features the first phases (trials) of the task, when the understanding 
of the rules is less explicit to the subjects (and the game depends primarily on 
emotional feedback processing), while decision-making under risk characterizes 
the final phases of the task, when the rules become more explicit (and the game 
relates with other complex mechanisms of EFs, such as categorization, task moni-
toring, and cognitive flexibility) (Brand et al., 2007).

4 EFs in Pathological Gambling Disorder



102

Therefore, despite Bechara (2001) claiming that to obtain a good performance on 
this task, individuals should listen to and follow their feelings and intuitions (in line 
with Somatic Marker Hypothesis), we agree with previous studies stating somatic 
signals are essential for decision-making processes, but the integrity of the cognitive 
processes also depends on EFs (Brand et al., 2007).

Overall, findings described above suggest the need for specific clinical approaches 
based on learning techniques to support people to deal with decreased inhibitory 
control and impaired decision-making ability (Goudriaan et al., 2008). For treating 
GDs effectively, it has been also suggested that interventions should include meth-
ods for identifying the impulsive reaction before acting, in order to support them in 
reflecting on the long-term consequences of their actions, to control their behaviour, 
and to find possible alternative solutions (Álvarez-Moya et al., 2011).

4.4.1  Reward Sensitivity and IGT

Theory and past research using monetary incentive tasks, such as IGT, suggest 
that individuals’ sensitivity to reward and loss plays a role in their ability to antici-
pate positive versus negative consequences that may result from their actions 
(Bjork et al., 2004).

As we know, and we already described in Chap. 1 (Sect. 1.6.2 on reward mecha-
nisms in behavioural addiction) in the IGT, participants choose from four decks of 
cards across 50 trials, with the goal of acquiring as much money as possible. Decks 
vary in both the magnitude and frequency of rewards and losses. As such, the task 
can be used both to assess sensitivity to reward as well as sensitivity to loss. 
Importantly, the IGT is sufficiently complex that participants are unable to calculate 
the net gains and losses that each deck affords (Damasio et  al., 1996). Rather, 
according to the hypothesis of somatic markers, participants must rely on covertly 
and overtly occurring marker signals to sense which decks are good, and which are 
bad, with correspondingly better versus worse likely future outcomes. For example, 
one study found that healthy subjects exhibited a Skin Conductance Response 
(SCR) prior to selecting a card from a bad deck, whereas patients with ventromedial 
frontal damage, who typically perform poorly on the task, did not (Bechara et al., 
1996). Poor performance on the task is hypothesized to indicate individuals’ less 
effective cue detection of these marker signals regarding possible future outcomes, 
which in turn may affect real-time decision-making.

Healthy participants will learn which decks are advantageous and will select 
more often from these decks, while patients with VMPFC lesions will persist in 
selecting from the DD that provide a large immediate reward (Bechara et al., 1996, 
1997). More interestingly, healthy comparisons showed anticipatory SCRs when 
they choose decks, and the SCRs were higher when choosing disadvantageous 
decks; however, the VMPFC patients did not show the same anticipatory SCRs 
(Bechara et al., 1996, 1997).
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Based on the studies in VMPFC patients (e.g. Damasio et al., 1991; Damasio, 
1994), Damasio proposed the famous Somatic Marker Hypothesis: he argued that 
these patients had decision-making deficits because they were not able to use 
somatic markers to guide their decision-making. The somatic markers are body-
generated, emotion-based signals (see also Dunn et al., 2006).

However, there are several limitations of the SCR studies. First, in the psycho-
physiology analysis, the deck that participants selected at last was used to designate 
each anticipatory “somatic marker”; however, in the deck selection phase, partici-
pants were free to shift their attention across all decks prior to selecting one. This 
procedure meant that the anticipatory SCRs may not reflect attention to a single card 
but shifting attention across all decks before making a choice (Dunn et al., 2006). 
Second, a study using the IGT in rhesus monkeys showed that SCRs were associ-
ated with the anticipation of a reward after a decision had been made rather than 
reflecting the decision-making process directly (Amiez et al., 2003). Thus, due to 
the low temporal resolution of SCRs, it was difficult to separate the signal related to 
response selection from the anticipation of feedback after the response (Dunn et al., 
2006). One solution is to use other psychophysiological responses with a faster time 
course, such as Event-Related Potentials (ERPs).

4.5  Electrophysiology of Pathological Gambling behaviour

4.5.1  ERP Evidence for GD

To examine the electrophysiological correlates of GD, some research has explored 
widely-known ERPs, which have been documented to mark brain activity variations 
associated with selective attention and inhibition (for a review see, Luijten 
et al., 2014).

Some specific deflections were studied, mediating different cognitive processes. 
Two main ERP components have been reported to reflect changes in brain activity 
related to inhibitory control (Kok et al., 2004). Specifically, accumulating evidence 
suggests that the N2 and P3 reflect functionally distinct processes associated with 
inhibitory control. Accordingly, less pronounced N2 or P3 amplitudes in addicted 
populations relative to controls can be considered markers for neural deficits in 
inhibitory control.

4.5.1.1  N200

The first component, the N200 (or N2), is a negative-going wave emerging 
200–300 ms after stimulus presentation. The neural generators of the N2 appear in 
the ACC (Huster et al., 2010; Nieuwenhuis & Yeung, 2003) and the right inferior 
frontal gyrus (IFG) (Lavric et al., 2004). The N2 is believed to index a top–down 
mechanism needed to inhibit the automatic tendency to respond (Falkenstein, 2006; 
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Kaiser et al., 2006) and corresponds to behavioural outcomes of inhibitory control 
(Dimoska et al., 2006; Falkenstein et al., 1999; Van Boxtel et al., 2001). The N2 has 
further been associated with conflict detection during early stages of the inhibition 
process (Falkenstein, 2006; Nieuwenhuis & Yeung, 2003). Consequently, the N2 
can be interpreted as an index for early cognitive processes necessary to implement 
inhibitory control rather than the actual inhibitory brake.

ERP findings in behavioural addicted individuals (excessive Internet users) 
showed reduced N2 amplitudes, suggesting a deficit in the conflict detection stage 
of the inhibition process. In contrast, N2 amplitudes in people with excessive 
gaming behaviour were enhanced in a parietal cluster (Luijten et al., 2014).

To go into more detail, various and different N2 subcomponents have been 
reported according to the generation sites, the experimental tasks, and the underlying 
cognitive process (Patel & Azzam, 2005): the N2a is mainly generated in frontal 
sites by conscious attention to an oddball stimulus; the N2b is mainly evoked in 
central sites and is related to conscious stimulus attention; the N2c arises in frontal 
and central regions, in relation to classification tasks; finally, the N2pc, with a 
posterior distribution, is evoked during visual perceptual tasks involving the 
discrimination of a featured target showed in a field with distractors, it is an indicator 
of attentional selectivity (Treisman & Sato, 1990).

4.5.1.2  P300

The P3, the second ERP component involved in inhibitory control, is a positive- 
going wave emerging 300–500 ms after stimulus onset. The source of the P3 has 
been found to be close to motor and premotor cortices (Ramautar et  al., 2006). 
Hence, P3 amplitudes appear to reflect a later stage of the inhibitory process closely 
related to the actual inhibition of the motor system in the premotor cortex (Band & 
Van Boxtel, 1999).

Some studies show that the reduced amplitude of P3 may be an indicator of the 
neurobiological vulnerability underlying disorders such as addictions (Patrick et al., 
2006). In this regard, a recent study found a neural index underlying the response 
inhibition difference between individuals with Internet Addiction Disorder (IAD) 
and a control group by using an ERP technique (Dong et al., 2010). As discussed 
above, N2 is believed to be related to the process of conflict monitoring, and P3 to 
response evaluation: these two mental processes are fundamental abilities in the 
impulse inhibition process, and these two ERPs are frequently examined together in 
electrophysiological studies. Internet-addicted participants were expected to show 
some difference in N2 and P3 compared with their normal peers. Indeed, significant 
difference was found between IAD and normal groups in No-Go condition, the IAD 
group elicited significant lower N2 mean amplitude than normal group. The 
difference was largest at the central sites, as compared with frontal sites and parietal 
sites. In addition, the peak latencies in No-Go conditions were significantly longer 
than Go conditions in both IAD group and normal group.
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Further analysis between groups showed that IAD group showed significantly 
higher P3 amplitude than normal group in No-Go items. In peak latencies of P3, 
IAD group elicited significantly longer P3 latency than normal group in No-Go 
condition, but no significant difference was found in Go condition. Thus, the size of 
P3 amplitudes in the present experiment might reflect the degree of cognitive 
endeavours when the participants successfully inhibited their impulse to respond. 
The IAD group elicited higher P3 amplitude than the normal group, and this 
evidence was interpreted as the need for more cognitive endeavours for behavioural 
addicted participants to successfully inhibit their response impulses. The NoGo-P3 
latency was longer in IAD-afflicted participants compared with that of normal 
subjects. Peak latency is associated with cognitive efficiency. P3 latency is an 
indicator of processing speed suggesting that IAD had less efficient information 
processing function than their normal peers (McEvoy et al., 2001; Polich & Criado, 
2006). On the other hand, the longer P3 amplitude may be related to impaired 
impulse control: evidence from studies on impaired inhibitory ability shows that 
individuals with Post Traumatic Stress Disorder and Parkinson’s disease have longer 
NoGo-P3 latency compared with control groups (Bokura et al., 2005; Shucard et al., 
2008). In summary, IAD participants displayed less efficient brain function not only 
with respect to information processing, but also response inhibition. Taking all 
features of N2 and P3 components into consideration, we can comprehensively 
understand impulse control in the IAD individuals.

In other studies, reduced P3 amplitudes to rewarding stimuli have been found for 
frequent gamblers compared to non-gamblers (Oberg et al., 2011), and in individuals 
with SUD (Goldstein et al., 2008). It is also of value to confirm whether problem 
gamblers abnormally process the significance of positive outcomes. A recent study 
revealed that the P3b subcomponent is likely to be driving the observed valence 
differences in global P3 amplitude (Lole et al., 2013). From this point on, references 
to the P3 will relate to the traditionally conceptualized global P3 component that 
comprises various subcomponents, including the P3a/novelty P3, P3b, and Slow 
wave, and it will be identified by its topography, latency, and experimental 
determinants.

4.5.1.3  ERN and FRN

The examination of the feedback-related negativity (FRN) ERP component was 
also considered a relevant effect in GD. Similar to the error-related negativity (ERN) 
that is elicited by commission errors in reaction time tasks (Falkenstein et al., 1999; 
Gehring & Willoughby, 2002; Miltner et al., 1997), the FRN provides insight into 
how feedback on reward and non-reward/punishment outcomes are evaluated in the 
brain. This component has been consistently shown to be sensitive to valence and 
context manipulations. Specifically, larger FRN magnitudes are observed when 
feedback signals monetary loss compared to gain (San Martín et al., 2010; Toyomaki 
& Murohashi, 2005; Yeung et  al., 2005) or the least desired outcome within a 
particular context (Holroyd et  al., 2004) during tasks that resemble gambling 
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activity. The reinforcement learning theory (Holroyd & Coles, 2002) postulates that 
the ERN and FRN reflect the activity of a high-level error-processing system within 
the mesolimbic–dopaminergic pathway, a system believed to be involved in the 
evaluation of environmental stimuli, the activation of motivated behaviours, and 
association formation.

Little and colleagues’ (2012) study showed increased error rates for No-Go trials 
in people with excessive gaming behaviour compared with controls (Littel et al., 
2012). Lower ERN amplitudes were found in participants with excessive gaming 
for error trials, suggesting that initial error processing in excessive gamers may be 
less pronounced than in controls, whereas error awareness may not be related to 
increased error rates.

Our recent research explored the main factors able to influence the subjects’ 
choices in the case of decisions and distinguish between high- and low-risk 
decisions. Behavioural responses at the IGT, meta-cognitive strategy, and two ERP 
(FRN and P3) effects were used as predictive markers of gambling behaviour. 
Behavioural activation system (BAS) reward measure was applied to distinguish 
between participants with high-BAS and low-BAS levels. It was found that higher- 
BAS participants opted in favour of the immediate reward, with a concomitant 
dysfunctional metacognition of their strategy: a consistent “reward bias” affected 
the high-BAS performance reducing the P3 and FRN in response to unexpected 
(loss) events.

Regarding the EFs and metacognition, it was shown that impaired working mem-
ory can lead to poor decision-making capacity, with a consequential inability to plan 
the best long-term strategy, to inhibit the immediate reward-seeking, and to orga-
nize a functional behavioural response (Bechara & Martin, 2004; Verdejo- Garcia & 
Bechara, 2009). In particular, these functions under uncertain conditions, flexibility, 
and adaptation in behaviour were required to preserve the processing of conse-
quences of previous decisions and actions (Perry et  al., 2011). Recently, some 
research contributed to clarify the role of cognition and metacognition in gambling 
behaviour, and some specific ERP effects, such as the FRN and P3 effect, were 
considered the neurocognitive correlates of decisional behaviour in case of both 
functional and dysfunctional conditions.

The first ERP effect related to FRN is involved in performance monitoring, and 
it was observed that it is probably cortically generated near the MFC, mainly the 
ACC (Hewig et al., 2007). In addition, processing underlying the FRN are triggered 
by phasic dopaminergic signals, which code reward prediction error. These 
prediction error signals may then be conveyed to the ACC where they lead to 
adjustments in subsequent action selection and FRN production as an ERP effect 
(Holroyd & Coles, 2002).

A second relevant ERP deflection, the P3, was used to explore the impairment of 
the EFs in decisional processes (i.e. the difficulty in updating the incoming 
contextual information.) The P3 is the ERP component commonly investigated 
during feedback processing; it has been shown to be sensitive to the significance and 
occurrence probability of a stimulus (Hajcak et al., 2005; Oberg et al., 2011) as well 
as task complexity (Duncan-Johnson & Donchin, 1977). The increasing amplitude 
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of this positive deflection might represent the necessity to restore adjunctive 
information to updating the context (Balconi & Crivelli, 2010; Isreal et al., 1980; 
Johnson & Donchin, 1980) when an unattended event is observed. Thus, it was 
found that more unexpected outcomes (as in case of losses) generated an increased 
P3 in comparison with more expected (gains) outcomes.

Therefore, when considered together, these two ERP measures could signal the 
increased inability to adopt an adequate cognitive strategy in response to a decisional 
context.

4.5.2  EEG and Lateralization Effect

In line with the reward and lateralization model (for this concept, see also Chap. 1, 
Sect. 1.6.3 on the cortical unbalance model), we propose that a similar cortical left 
“unbalance” could be suggested in GD as for SUD.

Previous research works based on Gray’s BIS/BAS model (Gable et al., 2000), 
indicated that behavioural motivational responses related to personality 
characteristics are essential for two main aspects: for generating emotions, and 
approach (reward) and withdrawal (inhibition) behaviours in the decisional process 
(Gray, 1981; Yu & Dayan, 2005). With respect to reward mechanisms, the BIS/BAS 
scale is a valuable instrument for evaluating possible anomalous reward sensitivity 
in neuropsychiatric populations, such as addictions, relative to healthy subjects 
(Gray, 1981; Gray & Naughton, 1987; Yu & Dayan, 2005). It permits to quantify the 
prevalence of BIS or BAS in individuals. As we have seen, the BAS motivational 
component has been conceived as a mechanism sensitive to compensation, incentive 
stimuli, reward, and non-punishment, involving actions directed towards a gain and 
away from a loss (Gray & Naughton, 1987).

Therefore, approach behaviour is promoted by reward, which induces a positive 
reinforcement for action, whereas avoidance behaviour (withdrawal) is reinforced 
by punishment. A normal level of BAS has a functional influence on positive 
emotional attitudes, while severe BAS and reward sensitivity levels have been 
related with impulsivity disorders (Fowles, 2000), and high levels of BIS have been 
associated with anxiety disorders (Balconi et al., 2014c; Balconi & Mazza, 2009; Yu 
& Dayan, 2005).

A crucial aspect of the BIS/BAS system (as previously explained in Chap. 1) is 
its cortical correlation with the PFC structures: while the left PFC activity was 
shown to be involved in approach-related motivations (appetitive) and positive 
emotions (reward processing), it was found that the right PFC activity was involved 
in withdrawal-related motivations (aversive) and negative emotions (punishment) 
(Gray, 1987; Quay, 1998).

Former studies showed that individuals with SUD, GD, or high-level of BAS 
reward sensitivity exhibited substantially more risky decision-making, preferring a 
greater possible reward even at a higher penalty risk. In addition, in these populations, 
their electroencephalographic behaviour showed a left PFC (DLPFC and ACC) 
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frontal hemispheric activation asymmetry found at the electrophysiological level, 
suggesting an enhanced sensitivity to more risky choices (Gray, 1981; Yu & 
Dayan, 2005).

A recent line of research investigated gambling tendency in a group of individu-
als with high-BAS scores and found that, in comparison with low-BAS, the high-
BAS group showed an increased tendency to opt in favour of the immediate reward 
(losing strategy) instead of the long-term option (winning strategy), and members of 
this group were more impaired in metacognitive monitoring of their strategies and 
showed an increased left hemisphere activation when they responded to losing 
choices. A “reward bias” effect was hypothesized to act for high BAS, based on a 
left hemisphere hyperactivation (Balconi et al., 2015, 2014c; Finocchiaro & Balconi, 
2015, 2017).

An earlier EEG study by Goldstein and Carlton (1988) studied lateralization of 
EEG activity in eight pathological gamblers and eight normal controls, matched for 
age and socio-economic status. The authors hypothesized that GD is associated with 
compulsiveness, and therefore expected difficulty switching between behaviours in 
GD.  Therefore, they investigated switching between hemispheric activities, by 
employing tasks that typically involve left or right hemispheric activity. In the GD 
group, no significant shifts in right or left hemispheric activation existed, while in 
normal controls, these shifts were present. Furthermore, it took the GD group 
significantly longer to activate either left or right hemisphere. This last finding could 
have influenced the lack of lateralization differences, since less data with lateralized 
activation in the GD group was available. A possible explanation of the results is 
that the ability to shift brain activation on task demands is decreased in GD. This 
implies that an inflexibility in brain activity could lie at the base of GD, leading to 
perseveration and persistence in gambling activities, despite the negative 
consequences.

While an imbalance between prefrontal structures and the mesolimbic reward 
system has been related to addictive behaviour, whether their dysfunction in GD is 
reflected in the interaction between them and their lateralization remains unclear. 
Koehler and colleagues (2015) strive to address this question using functional 
connectivity resting-state fMRI in individuals with GD and controls. GD patients 
demonstrated increased connectivity from the right middle frontal gyrus to the right 
striatum as compared to controls, which was also positively correlated with non- 
planning aspect of impulsiveness, smoking and craving scores in the GD group. 
Moreover, GD patients demonstrated decreased connectivity from the right middle 
frontal gyrus to other prefrontal areas as compared to controls. The right ventral 
striatum demonstrated increased connectivity to the right superior and middle 
frontal gyrus and left cerebellum in GD patients as compared to controls.

The seed regions used by this study for the functional connectivity analysis were 
lateralized to the right hemisphere because of a previous voxel-based morphometry 
study (Koehler et al., 2015) showing a significant difference in  local grey matter 
volume centred in right PFC and right striatum between GD patients versus matched 
controls. The right lateralization is consistent with previous evidence showing that 
the prefrontal EFs, such as inhibitory control, are mainly situated in the right 
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hemisphere (Aron et al., 2004; Simmonds et al., 2008). Moreover, the involvement 
of right PFC has also been shown for self-regulation (Cohen & Lieberman, 2010; 
Knoch & Fehr, 2007). With respect to the reward system, imaging studies on GD 
reported right lateralized changes during reward processing: alterations only in right 
ventral striatum have been found in response to gambling stimuli (van Holst et al., 
2012a) as well as during the processing of monetary reward (Reuter et al., 2005). 
However, this study is not without limitations since it involved mainly male subjects 
and considered specific targeted seed regions.

Given these premises, it is possible to state that further clinical EEG studies are 
needed to determine the presence and direction of the cortical imbalance in groups 
of GD patients.

4.6  To Summarize: Gambling Between Specificity 
and Uniqueness

The present chapter highlights the actual solely behavioural addiction included in 
the DSM-V under the non-substance related disorder, which is GD. What mainly 
distinguish GD from SUD is the absence of substance intake that is replaced by a 
repetitive and pathological behaviour. Indeed, in GD, there are no physical signs of 
pharmacological withdrawal, as frequently reported in SUD; however, irritability, 
anxiety, and sadness can be described when the gambling activity is interrupted 
voluntarily.

Before, several behavioural and neural parallels were previously traced between 
GD and SUD, and those include neural responsiveness in specific brain areas (such 
as frontocortical circuits and reward system structures), loss of control over the 
behaviour, tolerance aspects, withdrawal, repeated ineffective attempts to avoid or 
stop playing, and impairment of normal functioning (American Psychiatric 
Association, 2013).

Regarding the cognitive functioning, it is interestingly noticed that these disor-
ders share the progressive loss of control in terms of amount of time dedicated to 
obtaining the substance or to be engaged in the repetitive behaviour. Progressively, 
all individual’s activities revolve around the gambling behaviour, and he/she 
displays impaired cognitive control in cutting down or regulating the gambling 
activities. Reduced levels of self-control, indicating possible deficit in the inhibitory 
control brain networks, and higher degree of reward-seeking behaviour were found 
to characterize GD. Interestingly, the so-called “myopia for the future”, the lack of 
metacognition and the possible impairment in interoceptive processes has been 
described in GD by discussing theories and models, behavioural study, and 
electrophysiological research.

To conclude, despite the relevance of EFs in GD, research in this field is still 
scarce and findings are not always consistent. Study limitations stress the need for 
further research utilizing comprehensive cognitive batteries, but also neuroscientific 
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methods (such as EEG and specific ERP analysis) on representative, unbiased, 
ecological samples of individuals with GD.  Within this framework, we strongly 
believe the study of EF deficits deserve further attention and are extremely important 
in GD, because EFs integrity may have implications for the capacity of individuals 
with GD to seek a cure, to benefit from psychosocial treatments, and to avoid 
relapses.
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