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Normal Pressure Hydrocephalus
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 Introduction

Normal pressure hydrocephalus (NPH) is a syndrome that 
was first described in 1965 by Hakim and Adams [1]. It is 
characterized by the clinical triad of memory impairment, 
gait disturbance, and urinary incontinence, accompanied by 
the presence of normal cerebrospinal fluid (CSF) pressure on 
lumbar puncture and the radiologic finding of enlarged cere-
bral ventricles [1].

NPH is now separated into two clinical categories: idio-
pathic NPH (iNPH) and secondary NPH, when the ventricu-
lar enlargement develops as a sequela of a known disease 
process. Typical conditions that can cause secondary NPH 
include subarachnoid hemorrhage, infectious meningitis, 
intracranial surgery, and other inflammatory or neoplastic 
processes. Surgical ventricular shunting is considered the 
standard-of-care treatment for many of these patients. 
However, response to ventricular shunting is variable and 
can be short-lived, with significant risks including complica-
tion rates up to 38% [2, 3].

 Etiology

Many theories have been proposed to explain the mecha-
nisms underlying the development of iNPH, although the 
exact etiology remains unclear. It is likely that iNPH is mul-
tifactorial, resulting from impaired CSF dynamics in combi-
nation with congenital and vascular etiologies.

The most widely accepted theory is that iNPH results 
from disordered CSF circulation, comprised of an imbalance 
among CSF production, circulation, and reabsorption [4]. 
Over time, CSF volume increases with a compensatory 
increase in ventricular volume to maintain normal intracra-
nial pressure. Any increased pulse pressure on the ventricular 

walls can result in a “waterhammer” effect, disturbing the 
paracentral fibers of the corticospinal tracts and contributing 
to the gait disturbance described in iNPH [5].

More recently, it has been proposed that alterations in 
glymphatic pathways can contribute to iNPH.  The glym-
phatic system is a clearance pathway by which CSF flows 
through the periarterial space into the brain parenchyma, is 
transported via aquaporin-P4 water channels into the inter-
stitial space, and flows through the perivenous space before 
draining into the cervical lymphatic system [6]. A defective 
glymphatic system can result in impaired CSF clearance and 
buildup of toxic metabolic products, including amyloid-β 
peptides and tau protein, potentially leading to the develop-
ment of iNPH and Alzheimer’s disease (AD) [7, 8]. Recent 
studies using imaging to examine the glymphatic system in 
iNPH patients found evidence for delayed clearance from the 
subarachnoid space and entorhinal cortex, as well as ven-
tricular reflux towards the periventricular white matter, 
which may contribute to the development of dementia in 
iNPH [5, 7, 9–11].

In addition to evidence for altered CSF dynamics and 
clearance in iNPH, the possibility of a genetic cause of iNPH 
was proposed by Portenoy et al., who described the occur-
rence of the syndrome in two siblings [12]. Other studies 
have reported that more than 10% of patients with iNPH 
have a large head size, which supports the idea that develop-
mental factors may impact the development of hydrocepha-
lus [13, 14]. More recently, copy number variations in 
SFMBT1, a gene encoding a protein of the choroid plexus 
endothelium involved in CSF secretion, have been reported 
in iNPH patients [15].

Vascular disease has also been reported to alter CSF 
dynamics and contribute to the development of iNPH [16]. 
Severity of small vessel disease, especially periventricular 
white matter changes, have particularly been associated with 
higher prevalence of iNPH [17] and a less favorable progno-
sis [18].I. Kovanlikaya · G. C. Chiang (*) 
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 Epidemiology and Clinical Presentation

Approximately 10% of the 50 million people worldwide liv-
ing with dementia suffer from iNPH [11]. iNPH is a disease 
of older individuals, with prevalence increasing with age; 
more than 2% of people aged 65 to 79 have the disease, com-
pared to almost 9% of people 80 years and older [19].

Clinical diagnosis is often based on the presence of the 
classic iNPH triad of symptoms:

 1. Gait impairment: Gait dysfunction is typically the initial 
symptom of iNPH and is characterized by a “magnetic” 
or apraxic gait, which occurs in the absence of primary 
sensorimotor deficits, cerebellar dysfunction, or involun-
tary movements. Rather, it is believed to result from dif-
ficulty integrating sensory information about the position 
of the body and properly executing motor function [20, 
21]. However, gait abnormalities occur in 20% of indi-
viduals older than the age 75, so it is important to exclude 
other causes [6, 22].

 2. Cognitive impairment and dementia: The cognitive 
impairment seen with iNPH is commonly described as an 
executive dysfunction that manifests as slow processing, 
difficulty with problem solving, and memory deficits 
with poor retrieval but relatively intact recognition mem-
ory [21, 23]. These symptoms can overlap with neurode-
generative disorders, including parkinsonian syndromes, 
AD, dementia with Lewy bodies, and vascular dementia. 
Furthermore, many patients with iNPH have comorbid 
AD and vascular dementia, making diagnosis challenging 
[24].

 3. Urinary urgency and incontinence: Urgency and fre-
quency are the most common urinary symptoms and may 
occur with or without incontinence [25]. Patients are usu-
ally aware of the urinary urge before incontinence occurs. 
Since bladder symptoms are very common among the 
elderly, incontinence occurs in 38% of women and 18% 
of men in this age group [26, 27], other causes should 
also be considered in patients with suspected iNPH.

Commonly, an unexplained, symmetric gait disturbance 
is the primary symptom of iNPH. Although cognitive impair-
ment and urinary symptoms are part of the iNPH triad and 
are frequently present, the complete triad is not required to 
suspect the disorder [21]. Of note, the remainder of the neu-
rologic examination, besides these three symptoms, is typi-
cally normal.

According to the American-European and Japanese NPH 
evidence-based guidelines for diagnosis and management, 
patients suspected to have iNPH can be classified into prob-
able, possible, and unlikely categories. Possible iNPH is 
defined by (a) being older than 60 years old, (b) having one 

or more symptoms of the clinical triad, (c) MR evidence of 
ventricular dilatation and a narrow CSF space at the vertex, 
(d) CSF pressure  <  200 mmH2O with a normal CSF cell 
count and protein level, (e) no other disease that may account 
for the symptoms, and (f) having had no other previous ill-
nesses that can cause ventricular dilatation. A patient is con-
sidered to have probable iNPH if the patient meets the criteria 
for possible iNPH and has a positive spinal tap test [28, 29].

 CSF Tap Test and CSF Biomarkers

The CSF tap test consists of testing gait and cognitive func-
tion both before and after the drainage of approximately 
40–50 milliliters of CSF via a lumbar puncture. Since the 
single tap CSF tap test has a low sensitivity, ranging from 
26 to 61%, a negative result cannot be used to exclude 
patients from surgery. If there is a high clinical suspicion 
for iNPH despite a negative CSF tap test, one alternative 
diagnostic test is a repeated tap test; this involves perform-
ing lumbar punctures on three consecutive days and drain-
ing at least 30–40 milliliters of CSF each time. Another 
alternative would be to perform continuous external lumbar 
drainage (ELD) for 3–5 days, with a minimum of 150 ml 
CSF drained daily. ELD has a high positive predictive value 
of 80–100% and fairly high sensitivity of 50–100%. Since 
ELD best simulates the effect of definitive shunt surgery, it 
is considered the most effective test for identifying shunt-
responsive cases according to the 2005 International iNPH 
guidelines [30]. However, ELD also requires hospital 
admission and is associated with higher complication rates, 
including meningitis, subdural hematoma, and nerve root 
inflammation [31, 32].

CSF biomarkers have not yet been proven to be useful in 
confirming the diagnosis of iNPH. Some studies comparing 
CSF biomarkers in patients with iNPH and AD have reported 
low Aβ42 levels in iNPH; however, CSF tau was reported to 
be both normal and increased [33–36]. A challenge with 
using CSF biomarkers in this disease group is that many 
patients may have concomitant iNPH and AD pathology, 
resulting in overlap of CSF biomarkers.

 Imaging Features

 Conventional MRI

Currently, MRI is the imaging method of choice for assess-
ing iNPH and has been incorporated into the international 
and Japanese diagnostic guidelines [37]. Importantly, iNPH 
is a communicating hydrocephalus, so any sign of CSF 
obstruction needs to be excluded.
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Three of the cardinal neuroimaging findings of iNPH are 
as follows:

 1. The Evans index (EI) is the most commonly used mea-
sure for ventricular enlargement, first described in 1942. 
It is calculated by taking the ratio of the widest width of 
the frontal horns of the lateral ventricles and the widest 
width of the intracranial compartment on an axial image 
(Fig. 38.1) [38]. International guidelines propose an EI of 
greater than 0.3 is suggestive of iNPH, although its speci-
ficity is questioned [39, 40]. Yamada et al. developed the 
“z-Evans index” with additional measurements of the 
frontal horns of the lateral ventricle, resulting in higher 
accuracy in predicting patient response to a tap test [41].

 2. The callosal angle (CA) is defined by two lines tangen-
tially aligned with the medial walls of the lateral ventricu-
lar walls on coronal images. iNPH patients commonly 
have a CA that is less than 90 degrees, and this has been 
found to be a good predictor of shunt response [42–44]. 
When combined with an EI of greater than 0.3, iNPH can 
be discriminated from AD with a sensitivity and specific-
ity of 97% and 94%, respectively [45].

 3. The MR sign described as “disproportionately enlarged 
subarachnoid space hydrocephalus” (DESH) is character-

ized by narrowed sulci in the midline at the high convex-
ity, combined with enlarged Sylvian fissures and 
ventricular dilation (Fig.  38.1). The evaluation of this 
sign is performed on a coronal image at the level of the 
posterior commissure. This sign is highly associated with 
the clinical triad of iNPH, is not typically seen in the set-
ting of brain atrophy, and is a good predictor of response 
to shunt surgery [46–50].

Volumetric analysis of the hippocampi can also aid in 
differentiating iNPH from AD, since hippocampal atrophy 
is not a prominent feature in iNPH (Fig. 38.2) [51]. A few 
papers have also described an upward bowing of the cor-
pus callosum, although this can be seen in many forms of 
hydrocephalus and is not specific to iNPH (Fig. 38.3) [52, 
53].

A less commonly used sign is the presence of a prominent 
CSF flow void, extending through the cerebral aqueduct to 
the obex of the fourth ventricle [5]. It is believed to be related 
to the hyperdynamic flow seen in iNPH. During systole, arte-
rial pressure forces blood flow into the brain, putting pres-
sure on already enlarged ventricles and leading to 
hyperdynamic CSF flow. Because of this increased flow, the 
walls of the third ventricle, which normally bow inward, 

a b

Fig. 38.1 Axial (a) and coronal (b) T2-weighted fluid-attenuated 
inversion recovery MR images showing two commonly used MR fea-
tures of idiopathic normal pressure hydrocephalus (iNPH). The Evans 
index (a) can be calculated by dividing the maximum width of the fron-
tal horns of the lateral ventricles (D1) by the maximum width of the 

intracranial compartment (D2). An Evans’ index of 0.3 or higher is sug-
gestive of ventriculomegaly, as seen in iNPH. The MR sign “dispropor-
tionately enlarged subarachnoid space hydrocephalus” (DESH) is show 
in (b), in which there is narrowing of the sulci at the high convexities, 
but prominent Sylvian fissures
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a b

Fig. 38.2 Coronal T1-weighted MR image (a) demonstrating preser-
vation of hippocampal volumes (a, curved arrows), which can help dif-
ferentiate normal pressure hydrocephalus from Alzheimer’s disease. 
Fused 18F-FDG PET/T1-weighted axial MR image (b) demonstrates 

cortical hypometabolism in the frontal and parietal lobes (straight 
arrows). Patterns of hypometabolism in these patients can be 
heterogeneous

a b

Fig. 38.3 Sagittal T1-weighted MR image (a) demonstrating upward 
bowing of the corpus callosum (curved arrow), which can be seen in 
many forms of hydrocephalus, including normal pressure hydrocepha-

lus. Sagittal 18F-FDG PET image (b) demonstrates cortical hypome-
tabolism in the frontal lobes (straight arrow)
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become parallel or even bow outward. If these patients are 
not shunted, they will eventually develop atrophy [5].

 CSF Flow Studies with MRI

Newer MR imaging techniques have intrinsic flow compen-
sation, which masks the prominent CSF flow void that has 
been previously described in iNPH patients [5]. As a result, 
phase-contrast cine MR imaging has emerged as a promising 
technique to evaluate CSF flow in iNPH patients and to 
appropriately select candidates for ventriculoperitoneal 
shunting [54]. Using this technique, many MR imaging sys-
tems can calculate the volume of CSF flowing in a cranio-
caudad direction during systole and caudocranial during 
diastole. Aqueductal CSF stroke volume (ACSV) is the com-
monly used measure for the average volume of CSF passing 
through the aqueduct of Sylvius during the cardiac cycle. 
ACSV is increased in iNPH patients and decreases after suc-
cessful shunting [54–57]. Bradley et al. found that patients 
who respond to shunting for iNPH have at least twice the 
ACSV of healthy elderly patients [5]. Although the repro-
ducibility and reliability of ACSV values for prognosis in 
iNPH have been questioned [58], [59] phase-contrast MR 
imaging is often combined with a high-volume CSF tap test 
or ELD to assess whether or not to perform shunt surgery [5, 
60, 61].

 Advanced MR Imaging

In the last decade, several studies have explored the utility of 
advanced imaging techniques, such as diffusion tensor imag-
ing (DTI) and resting state functional MRI (rs-fMRI), in the 
setting of iNPH. Although some positive correlations have 
been described in the literature, a clear advantage to using 
these advanced imaging techniques, either for diagnosis of 
iNPH or prediction of shunt response, is not evident [55, 
62–67].

Higher mean diffusivity (MD) and lower fractional anisot-
ropy (FA) in the corpus callosum and subcortical white mat-
ter of the bilateral temporal, parietal, and occipital lobes have 
been reported in iNPH patients, differentiating them from 
other neurodegenerative diseases. These measures are 
believed to result from the mechanical force exerted by the 
enlarged lateral ventricles onto the surrounding tissues and 
are also reportedly associated with worse gait performance 
[68–70]. Another paper combined the FA values in the inter-
nal capsule with the Evans index, achieving a diagnostic 
specificity of 100% for iNPH [62]. Ivkovic et al. used DTI as 
a supplementary test to distinguish iNPH from AD, 

Parkinson’s disease, and Lewy body dementia, achieving a 
sensitivity of 86% and specificity of 96% [71]. Other papers 
have combined MD in the superior thalamic radiations with 
ventricular volumes or alterations in corticospinal tract 
microstructure to discriminate among iNPH, AD, and age- 
matched healthy controls [64, 72]. Further validation in 
larger cohorts and correlation with clinical outcomes are 
warranted.

Studies using rs-fMRI have shown some promise. For 
example, reduced interhemispheric, temporal, anterior/pos-
terior cingulate, and precuneus functional connectivity con-
tributed to the accurate classification of iNPH versus controls 
[73–75]. Ogata et al. found that interhemispheric functional 
connectivity was most relevant to iNPH classification, which 
suggests that disruption of corpus callosum fibers due to ven-
tricular enlargement may explain the clinical triad of iNPH 
[76]. However, more validation is needed since the spatial 
location and direction of the functional connectivity were 
poorly consistent across studies [75].

 Positron Emission Tomography (PET)

18F-FDG-PET may be useful in the evaluation of a patient for 
iNPH by excluding other neurodegenerative diseases, spe-
cifically AD [77]. However, some patients could have iNPH 
and comorbid AD; in studies in which the brain was biopsied 
at the time of shunt placement for iNPH, about 30% of 
patients had concomitant AD pathology [78].

The utility of 18F-FDG-PET as a specific biomarker for 
iNPH is unclear. The pattern of hypometabolism can be het-
erogeneous, with many studies reporting hypometabolism 
globally or in several cortical regions (Figs. 38.2, 38.3, and 
38.4) [77, 79]. Recent studies have also suggested that hypo-
metabolism in the basal ganglia and thalami may be diagnos-
tic [80, 81].

PET imaging with an amyloid tracer has also been used in 
the setting of iNPH. Mostly, this is used to determine whether 
there is concomitant AD pathology, in the form of beta- 
amyloid plaques. Some have suggested that shunt surgery 
may be less effective in individuals with concomitant 
AD. However, a study of 15 patients who underwent shunt 
surgery found that 13 benefited from the surgery and 7 of 
those that benefited had positive amyloid PET scans [82]. As 
a result, there is no clear evidence for PET imaging for amy-
loid plaques in this cohort.

Finally, some studies have used 15O-H2O-PET to measure 
cerebral blood flow in iNPH, finding a global reduction com-
pared to healthy controls. However, studies that evaluated 
changes in blood flow before and after shunt surgery did not 
find a significant difference [83–87].
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 Other Imaging Modalities

Computerized tomographic cisternography is not recom-
mended for clinical examination, due to its low specificity. 
However, recently, radionuclide cisternography with SPECT/
CT has been proposed as an important exam for the evalua-
tion of iNPH [88, 89]. In one study, almost 90% of patients 
with a positive cisternography study showed clinical 
improvement after shunt surgery, which suggests that radio-
nuclide cisternography may be superior to measurement of 
the CA and CSF flow in predicting response to surgical 
shunting [89].

Brain perfusion SPECT may also be diagnostic in identi-
fying increased midline, high convexity perfusion with 
decreased Perisylvian fissure perfusion, termed the “convex-
ity apparently hyperperfusion” (CAPPAH) sign [46, 90]. 
This sign was also confirmed to be useful in a multicenter 
SPECT study, which demonstrated relatively increased per-
fusion areas in the high convexity region with severely 
reduced relative CBF around the corpus callosum and in the 
Perisylvian region [91].

 Treatment

iNPH is one of the few reversible causes of dementia, with 
treatment relying on efficient surgical diversion of CSF via 
shunt placement. Up to 10% of patients with dementia may 
have NPH and therefore may be treatable by shunting. Shunts 
are usually placed in the lateral ventricle or in the lumbar 
subarachnoid space and can have one of three different drain-
age points. The most common drainage site is the perito-
neum, known as a ventriculoperitoneal shunt (VPS). Two 
other types of shunts, ventriculopleural and ventriculoatrial 
shunts, terminate in the pleural space and the internal jugular 
vein, respectively. The last type, the lumboperitoneal (LP) 
shunt, is placed in the lumbar intradural space and drains into 
the peritoneum. While VPS is the most widely used approach 
in North America and Europe, LP shunts predominates in 
Japan and other parts of Asia. Nevertheless, both have been 
shown to be effective for iNPH treatment [92].

The best response to shunting occurs early in the disease 
process, when gait disturbance is the primary symptom. In 
an unblinded randomized controlled trial of iNPH patients 

Fig. 38.4 Stereotactic surface projections of the brain from an 18F- 
FDG PET study demonstrating patchy areas of cortical hypometabo-
lism involving the frontal, parietal, and temporal lobes, more 

pronounced on the left. There is preserved FDG uptake in the occipital 
lobes and cerebellum
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who underwent immediate LP shunt versus delayed treat-
ment, only 5% of the delayed group showed clinical improve-
ment at 3  months compared with over 65% of the treated 
group [93]. Later in the disease process, when dementia is 
evident, symptoms are less likely to improve with a mean 
chance of significant improvement of 30–50% [94, 95]. 
Nevertheless, it has been estimated that only 10% to 20% of 
patients with iNPH receive appropriate shunting, probably 
due to difficulties in diagnosing iNPH and the morbidity and 
mortality associated with shunt surgery [96].

Shunt complications can be significant and include sub-
dural hematomas and effusions, infections, seizures, focal 
neurologic deficits, shunt malfunction, and death. Twenty 
percent of patients require additional surgery, and 6% 
develop permanent neurologic deficits or death [3].

Endoscopic third ventriculostomy (ETV) has been pur-
sued as an alternative approach to shunting in iNPH. However, 
thus far, outcomes have not been favorable, so ETV is not 
currently recommended for treatment of iNPH [97].

Nonsurgical pharmacological approaches to managing 
hydrocephalus have been tried since 1924 using diuretics 
[98]. Acetazolamide, a carbonic anhydrase inhibitor, has also 
been studied to manage iNPH. It has been shown to reduce 
the production of CSF and interstitial edema by inhibiting 
the carbonic anhydrases present within the choroid plexus 
and preventing aquaporin-based water conductance via sig-
naling pathways. Ivkovic et al. found improvement in clini-
cal symptoms in a small iNPH cohort, but research is ongoing 
[96]. Therefore, shunting still remains the main treatment 
option [98].

 Conclusion

iNPH is one of the few reversible causes of dementia in the 
elderly and can be appropriately treated with shunt surgery, 
especially if identified early. The precise cause of iNPH 
remains unclear, although altered CSF dynamics likely play 
a role. The classic clinical triad consists of gait disturbance, 
urinary incontinence, and cognitive impairment. A CSF tap 
test and MRI findings help to confirm the diagnosis. PET 
imaging can be used to assess the likelihood of a concomi-
tant neurodegenerative disease, such as AD.  Ultimately, 
more research needs to be done to more specifically diagno-
sis iNPH and better predict who will respond to surgical 
shunting.
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