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�FDOPA Imaging for Neuro-oncology

�Introduction

MRI is currently the modality of choice for diagnosing and 
monitoring brain tumors given its high resolution and excel-
lent soft-tissue contrast. MRI is widely available and remains 
the mainstay for the initial clinical diagnosis, treatment plan-
ning, and posttreatment follow-up of brain tumors. A key 
feature of many high-grade gliomas is the compromise of the 
blood-brain barrier (BBB), which allows molecules, includ-
ing intervenous CT and MR contrast,  to enter the tumor 
but not enter a normal brain with an intact BBB. This com-
promise of the BBB can be detected as tumor enhancement 
on MRI through gadolinium-based contrast agent adminis-
tration. However, many low-grade gliomas and some high-
grade gliomas, mainly grade III, do not show contrast 
enhancement. Additionally, many high-grade gliomas that 
do show contrast enhancement also have substantial non-
enhancing regions. Lack of contrast enhancement on MRI 
makes delineating  tumor volumes and surgical margins 
much more challenging for surgical treatment planning and 
post-treatment follow-up of brain tumors. In addition,  the 
ability of MRI to differentiate between treatment-induced 
changes and residual or recurrent tumor is also limited as the 
imaging features have substantial overlap [1].

Brain PET imaging with amino acid tracers has great 
potential to provide more accurate and informative imaging 
in neuro-oncology. MRI alone has limited accuracy for 
delineating tumor margins and poorly predicts the biological 
aggressiveness of gliomas, especially when tumors do not 
enhance with conventional gadolinium-based contrast 

agents. Several PET tracers have been used to study aspects 
of brain tumor metabolism [2–6], one of the first was 
2-deoxy-2-18F-fluoro-D-glucose (FDG), used to image glu-
cose uptake and glycolytic metabolism. While there is some 
utility for brain tumor imaging using FDG-PET, there are 
limitations [7, 8] due to the high physiological glucose 
metabolism of normal gray matter, which results in modest 
FDG uptake of low-grade and some recurrent high-grade 
tumors making detection difficult [9]. Even in brain 
tumors visible on FDG-PET images, the high uptake of FDG 
in normal brain makes this tracer unsuitable for establishing 
tumor margins. Additionally, the specificity of FDG in tumor 
detection is often limited by uptake in non-tumor regions of 
inflammation [8, 10, 11].

�Amino Acid Tracers in Neuro-oncology: 
FDOPA-PET

The PET tracer 3′-deoxy-3′-18F-fluorothymidine (FLT) is 
used to image cellular proliferation and is more sensitive 
than FDG for detecting recurrent high-grade brain tumors 
due to the low background uptake of FLT in normal brain 
tissue. It has also been shown to correlate with the ex vivo 
Ki-67 proliferation marker and is an overall better prognostic 
marker of tumor progression and survival than FDG-PET 
[12]. However, FLT does not readily cross the intact BBB, 
limiting the evaluation of regions of  tumors that do not 
enhance with contrast [13, 14]. Therefore, FLT is not well-
suited to visualize the entire gross tumor volume or tumor 
margins when non-enhancing tumors are present.

Several amino acid PET tracers have established utility 
for imaging brain tumors, 11C-methyl-L-methionine (MET), 
O-(2-[18F]fluoroethyl)-L-tyrosine (FET), and FDOPA [15–
18]. These tracers target the system L substrates that are 
upregulated in tumors and do not depend on the BBB com-
promise [19, 20]. LAT1 expression has been shown to posi-
tively correlate with FDOPA uptake in resected glioma 
samples [20]. Unlike contrast-enhanced MRI, radiolabeled 
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amino acid substrates transported by system L can visualize 
both contrast-enhancing and non-enhancing brain tumors 
[21, 22]. The two most widely used PET tracers for brain 
tumor imaging are MET and FET [23, 24]. MET is an essen-
tial amino acid-labeled carbon-11, and despite its efficacy, 
the short half-life of 20 minutes limits its use to sites with an 
in-house cyclotron facility. FET was developed in the late 
1990s to provide an 18F-labeled amino acid PET tracer with 
a longer half-life (110 minutes) suitable for batch production 
and remote distribution. Studies directly comparing FET to 
MET for the characterization of brain tumors and differentia-
tion of residual or recurrent tumor from treatment-related 
changes have shown these tracers to be very similar [24, 25].

FDOPA has been shown to have very similar brain tumor 
imaging properties to MET as expected from their shared 
transport mechanism. In a study directly comparing MET 
and FDOPA uptake in the same patients, mean tumor to con-
tralateral SUV ratios were almost identical (2.05 for MET 
and 2.04 for FDOPA) [26]. In studies directly comparing 
FDOPA and FET, equivalent sensitivity was observed for 
high-grade and low-grade gliomas with no substantial differ-
ence in tumor uptake pattern seen [27, 28].

In the past several years, multiple studies have explored 
the use of FDOPA for imaging of newly diagnosed and pre-
viously treated brain tumors, including the comparison of 
FDOPA to MRI, FDG-PET, and MET-PET. In newly diag-
nosed patients, the sensitivity and specificity of FDOPA-PET 
in differentiating low-grade from high-grade tumors are sim-
ilar to MET, varying from 70–96% and 86–100%, respec-
tively, with FDOPA uptake correlating to the grade of the 
newly diagnosed glioma [21, 29–32]. The distinction of 
tumor recurrence or progression from radiation injury has 
been shown to be possible with the use of FDOPA with a 
sensitivity of 81.3% and specificity of 84.3% [33]. In a single 
study, FDOPA tracer uptake (SUVmax) correlated with tumor 
grade and proliferative activity only in untreated gliomas and 
not in previously treated gliomas [30]. In a head-to-head 
comparison, FDOPA is more accurate than FDG for imaging 
low-grade tumors, evaluating recurrent tumors, and distin-
guishing tumor recurrence from radiation necrosis [21, 34–
36]. Compared to contrast-enhanced MRI, the accuracy of 
FDOPA-PET/CT was higher (97% vs. 80%, respectively) 
[17]. In a large comparative study with MRI, precise ana-
tomic localization of FDOPA was facilitated by image 
fusion, with FDOPA-PET detecting both enhancing and non-
enhancing tumors [37]. FDOPA has also been shown to be 
able to predict response in recurring malignant gliomas 
treated with bevacizumab [38]. A study of FDOPA-PET find-
ings in gliomas correlated with histopathology-validated 
PET imaging showed  that gliomas are underestimated by 
contrast-enhanced MRI and FDOPA more accurately delin-

eate non-enhancing tumors [39]. This study also demon-
strated the clinical utility of FDOPA-PET for guiding 
stereotactic biopsy by distinguishing areas of higher FDOPA 
uptake values. Better delineation of tumor margins is of con-
siderable importance, given that gross total resection of glio-
mas is a primary goal of surgery and is associated with 
increased survival [40, 41].

The growing body of literature on amino acid PET tracers 
provides strong evidence of their significant clinical value in 
neuro-oncology by providing insights into the diagnosis and 
management of brain tumors and overcoming MRI limita-
tions. Systemic reviews of the use of FDOPA-PET in diag-
nosing and managing primary brain tumors summarized the 
value of FDOPA as providing high diagnostic accuracy in the 
delineation of tumor extent, diagnosis of treatment-related 
changes, and assessment of treatment response [42, 43].

�Image Interpretation

The diagnostic importance of amino acid PET is increas-
ingly recognized and reflected in the response assessment in 
neuro-oncology (RANO) guidelines, which strongly recom-
mended their use in brain tumor management [44], and by 
the joint practice guidelines collaboratively developed by the 
European Association of Nuclear Medicine (EANM), the 
Society of Nuclear Medicine and Molecular Imaging 
(SNMMI), the European Association of Neuro-Oncology 
(EANO), and the working group for Response Assessment in 
Neuro-oncology with PET (PET-RANO) [45].

The visual assessment of FDOPA-PET images is to iden-
tify and locate areas of tracer uptake above the normal brain 
background using an appropriate color scale, set to the back-
ground counts in the lower third of the visual scale range. 
Standard summation (static) images are used for clinical 
reading and should be co-registered and fused with a recent 
high-resolution brain MRI if PET/MRI is not available. A 
positive FDOPA-PET scan is when the tracer uptake exceeds 
the background activity in the contralateral cortex. A nega-
tive scan is when no increased uptake above background is 
identified.

The recommended approach for a semi-quantification 
analysis to measure tracer uptake is performed by calculating 
the tumor to striatum ratio (TSR) using mean SUV (TSRmean) 
and maximum SUV (TSRmax) values, respectively. The 
guidelines note that FDOPA TSR cutoff thresholds for the 
definition of biological tumor volume have not been vali-
dated for all clinical questions.

Currently, there are no established guidelines for process-
ing and determining clinical values using dynamic FDOPA-
PET acquisitions.
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�Clinical Application in Neuro-oncology 
and PET/MRI

In clinical practice, one of the key utilizations of the hybrid 
modality PET/MR is in neuro-oncology, given that MRI is 
the modality of choice for diagnosing and monitoring brain 
tumors, and PET provides complementary functional infor-
mation. One of the most successful PET/MRI applications 
has been in pediatric oncology, providing multiple benefits 
to these patients by offering a reduction in the total number 
of imaging studies and necessary sedations, decreasing radi-
ation exposure, and the potential adverse long-term effects 
from sedation and radiation due to serial imaging. Taken 
together, the advantages of simultaneous brain PET/MR 
imaging and a growing list of PET tracers have great poten-
tial to significantly  improve and simplify patient manage-
ment in neuro-oncology.

Pediatric and adult brain tumor treatment commonly 
includes antiangiogenic drugs such as bevacizumab, a 
humanized anti-VEGF monoclonal  antibody. Bevacizumab 
treatment results in an early decrease in contrast enhance-
ment, which creates problems for imaging evaluation since 
this apparent decreased vascular permeability and enhance-

ment does not correlate with decreased tumor viability in this 
setting. Recently, simultaneous FDOPA-PET/MRI was used 
to monitor the effects of antiangiogenic therapy with bevaci-
zumab in pediatric patients with recurrent gliomas and sug-
gested that FDOPA may better predict response at 3 months 
after initiating therapy than MRI alone [46].

In this study, tumors were readily visualized with FDOPA-
PET/MRI on the baseline study prior to therapy with bevaci-
zumab. The metabolic tumor volume (MTV), defined by a 
1.5-fold threshold based on the normal contralateral side 
uptake, decreased in all patients by varying amounts. After 
4 weeks of bevacizumab therapy, the largest MTV decrease 
was 2% of the baseline MTV (Fig.  13.1) and the smallest 
decrease was 77% of baseline (Fig.  13.2). Patients with 
a smaller baseline decrease in MTV had worst clinical out-
comes. One patient had two distinct lesions with variable 
response to therapy; the optic chiasm tumor baseline decrease 
in MTV was 33%, while that of the optic nerve glioma was 
56% (Figs. 13.3 and 13.4).

Studies using simultaneous FDOPA-PET/MRI images 
have shown more accurate tumor visualization and delinea-
tion in gliomas, and the FDOPA-PET tumor region extended 
beyond the area defined by T1-weighted contrast enhance-

FDOPA-PET T1 C+ weighted images FDOPA-PET/MRI

FDOPA-PET T1 C+ weighted images FDOPA-PET/MRI

a

b

Fig. 13.1  FDOPA-PET/MRI in a pediatric patient with cerebellar pilo-
cytic astrocytoma. Images obtained prior to therapy (a, red arrows) and 
after 4 weeks of bevacizumab therapy (b, white arrows). There is near-

complete resolution of the metabolic tumor volume (MTV), with 2% 
remaining

13  FDOPA in Movement Disorders and Neuro-Oncology 
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ment and was variable in size to the area of T2/FLAIR hyper-
intensity (Figs.  13.5 and 13.6) [47, 48]. One study also 
integrated imaging findings with biopsy locations, histopa-
thology, and established molecular markers in gliomas and 
noted that it impacted patient management [47], shown in 
Figs. 13.7, 13.8, and 13.9.

�FDOPA Imaging for Dopaminergic System 

�Introduction

The dopaminergic system is associated with numerous neu-
rological disorders (Parkinson’s disease, Huntington’s dis-
ease, tardive dyskinesia) and psychiatric disorders 
(depression, addiction, and schizophrenia), given the signifi-
cant role it plays in several functions, including motor, mem-
ory, cognition, and emotions. Parkinson’s disease (PD) is a 
chronic neurodegenerative disorder clinically characterized 
by asymmetric parkinsonism (bradykinesia, tremor, rigidity, 
and postural instability) and progressive loss of dopamine 

neurons in the midbrain with resulting dopaminergic 
deafferentation of the basal ganglia [49]. The pathological 
hallmarks of PD are degeneration of the nigrostriatal dopa-
minergic system and the presence of Lewy bodies and neu-
rites, intracellular inclusions of aggregated α-synuclein, and 
other proteins such as ubiquitin [50]. Parkinsonian syn-
dromes are a group of disorders that shared the clinical signs 
of PD but are considered separate conditions based on their 
different pathologies. Atypical parkinsonism syndromes are 
other neurodegenerative diseases associated with parkinson-
ism, and the most common being multiple system atrophy, 
corticobasal degeneration, progressive supranuclear palsy, 
and dementia with Lewy bodies (DLB). These conditions are 
linked with nigrostriatal degeneration, a type of multiple sys-
tem atrophy. Clinical manifestations of parkinsonism may 
also be seen by syndromes not associated with nigrostriatal 
degeneration, such as essential tremor, drug-induced parkin-
sonism, and vascular parkinsonism [51]. Moreover, difficul-
ties are associated with the clinical differentiation of patients 
with parkinsonism with dementia from Alzheimer’s disease, 
given the overlapping features [52].

FDOPA-PET T1 C+ weighted images FDOPA-PET/MRI

FDOPA-PET T1 C+ weighted images FDOPA-PET/MRI

a

b

Fig. 13.2  FDOPA-PET/MRI in a pediatric patient with grade IV small-cell astrocytoma. Images obtained prior to therapy (a, red arrows) and after 
4 weeks of bevacizumab therapy (b, white arrows). There is a small decrease of the metabolic tumor volume (MTV), with 77% remaining
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�Dopamine PET-Ligands

Functional imaging with dopamine PET-ligands is used to 
assess dopamine synthesis, transport, and receptor densities 
and is performed using single-photon emission computed 
tomography (SPECT) or PET [53]. These imaging agents 
can target either presynaptic dopamine transporter and syn-
thesis or postsynaptic D2 dopamine receptors [54]. As an 
example, we focus here on the PET tracer, FDOPA, which is 
widely used for presynaptic dopaminergic imaging to distin-
guish between the different causes of parkinsonism and neu-
rodegenerative versus non-dopamine deficiency etiologies 
[55, 56]. FDOPA is approved by the European Medicines 
Agency (EMA) for assessing dopaminergic neuronal integ-
rity in suspected parkinsonian syndromes, and in October 
2019, a US academic medical center received US Food and 
Drug Administration (FDA) approval to manufacture 
FDOPA for clinical use [57]. Studies have demonstrated that 
FDOPA-PET scans are able to diagnose presynaptic dopami-

nergic deficits in early phases of PD with excellent sensitiv-
ity and specificity [58].

An accurate diagnosis of PD is a prerequisite for patient 
management, given that only PD patients clinically respond 
to antiparkinson drug therapy. Neuroimaging has played an 
increasingly important role in the differential diagnosis, and 
various imaging modalities have been used to confirm PD or 
rule out other parkinsonian syndromes. For example, 
FDOPA-PET may be used to differentiate LB-type demen-
tias (PD and DLB) from non-LB dementias, such as AD, 
based on the determination of nigrostriatal degeneration, in 
which the midbrain striatal uptake becomes more visible due 
to global reduction of striatal FDOPA uptake [59]. The accu-
rate diagnosis among parkinsonism variants remains chal-
lenging using neuroimaging, particularly in the early or mild 
stages of the disease. Multiple investigators have reported 
minimal differences in the reduction of FDOPA uptake 
between PD and parkinsonian syndromes associated with 
nigrostriatal degeneration, given the overlap between these 

FDOPA PET T1 C+ weighted images FDOPA PET/MRI

FDOPA PET T1 C+ weighted images FDOPA PET/MRI

a

b

Fig. 13.3  FDOPA-PET/MRI in a pediatric patient with two distinct 
tumors with variable response to therapy. Images of the optic nerve 
glioma obtained prior to therapy (a, red arrows) and after 4 weeks of 

bevacizumab therapy (b, white arrows). There is a moderate decrease of 
the metabolic tumor volume (MTV), with 56% remaining

13  FDOPA in Movement Disorders and Neuro-Oncology 
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populations [60, 61]. FDOPA-PET is normal in essential 
tremor, drug-induced parkinsonism, and psychogenic par-
kinsonism since these disorders are not associated with 
pathologic dopaminergic loss [62–64].

Neuroimaging with FDOPA-PET has been applied to 
psychiatric disorders evaluating presynaptic dopaminergic 
integrity. In a study on depression, FDOPA uptake in the left 
caudate was significantly lower in depressed patients with 
psychomotor retardation than in normals, providing direct 
evidence of a link between dopamine hypofunction and psy-
chomotor retardation in depression [65]. Increased striatal 
FDOPA accumulation has been reported in patients with 
psychosis, suggesting an increased synthesis and dopamine 
turnover in these patients [66]. Increased FDOPA uptake was 
also noted in patients who responded to classic antipsychot-
ics, but not in patients with treatment-resistant schizophre-
nia, suggesting that dopamine synthesis capacity may be a 
useful biomarker to predict treatment responsiveness [67]. 

Several studies have used FDOPA-PET to evaluate dopa-
mine’s role in the human reward system [68] and to assess 
aging effects and cognitive functions [69], given that reward 
processing is particularly vulnerable to aging.

�Image Interpretation

The EANM and the SNMMI have developed practice guide-
lines that address dopaminergic imaging’s clinical and tech-
nical aspects in parkinsonian syndromes [70]. The diagnostic 
importance of presynaptic dopaminergic imaging using 
FDOPA-PET is for detecting loss of nigrostriatal dopaminer-
gic neuron terminals in patients with parkinsonian syn-
dromes. The visual assessment goal is to identify and locate 
areas of striatal uptake (putamen and caudate nucleus) using 
an appropriate color scale by setting the maximum color 
scale value to the maximal tracer value within the striatum. A 

FDOPA T1 C+ weighted images FDOPA-PET/MRI
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a

b

Fig. 13.4  FDOPA-PET/MRI in a pediatric patient with two distinct 
tumors with variable response to therapy. Images of the optic chiasm 
glioma obtained prior to therapy (a, red arrows) and after 4 weeks of 

bevacizumab therapy (b, white arrows). There is a significant decrease 
of the metabolic tumor volume (MTV), with 33% remaining

M. R. Ponisio et al.
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semi-quantification approach of tracer uptake is performed 
by calculating the striato-occipital ratio (SOR) [71], which 
has been shown to detect subtle asymmetric putamen FDOPA 
reductions and correlate SOR with ratings of disability. 
Analysis of dynamic FDOPA-PET time-activity curves 
(TACs) has been used to quantify and model multiple aspects 
of FDOPA influx constants (Ki maps) [58].

�Visual Assessment

In a negative dopaminergic imaging PET scan, the normal 
striata show a comma-shaped with symmetric well-delineated 
borders on axial images with the maximum uptake corre-
sponding to the putamen. Mild asymmetry may occur in nor-
mal subjects.

a b c

d e 

FDOPA TBR 1.5 threshold

FLAIR

FLAIRFLAIRFDOPA PET/MRI

FDOPA PET/MRI T1 C+ weighted  images

Fig. 13.5  FDOPA-PET/MRI in an adult patient with anaplastic oligo-
dendroglioma grade III, Ki-67 of 80–90%. (a) FDOPA contour repre-
senting the region of tumor uptake based on the tumor to normal brain 
ratio (TBR) > 1.5 (yellow outline). (b) FLAIR contour delineating the 
region of hyperintensity (magenta outline). (c) TBR contour superim-
posed on T2/FLAIR illustrates that tumor uptake extends beyond the 
T2/FLAIR abnormalities (red arrow). (d and e) TBR contour superim-

posed on T1-weighted MR with contrast. FDOPA-PET demonstrates 
higher sensitivity than MR T1-weighted with contrast and T2/FLAIR 
signal intensity abnormalities to delineate  the non-enhancing tumor. 
(Courtesy of Dr. Jonathan McConathy, Director, Division of Molecular 
Imaging and Therapeutics, The University of Alabama at 
Birmingham, Birmingham, Alabama, United States)

13  FDOPA in Movement Disorders and Neuro-Oncology 
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a b
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FDOPA TBR 1.5 threshold

Reference (normal brain)

FDOPA PET/MRI T1 C+ weighted  images

FDOPA PET/MRI T1 C+ weighted  images

Fig. 13.6  FDOPA-PET/MRI in an adult patient with anaplastic oligo-
dendroglioma, WHO grade III, Ki-67 of 80–90%. (a and c) FDOPA 
contour represents the region of tumor uptake based on the tumor to 
normal brain ratio (TBR) > 1.5 (magenta outline). (b–d) TBR contour 
superimposed on T1-weighted MR with contrast. Contralateral normal 

brain used as the reference region (yellow outline). MRI T1-contrast 
does not reliably reflect areas of viable brain tumor. The FDOPA-PET 
impacted the selection of biopsy sites and resection. (a–d) Red arrows 
indicate the stereotactic biopsy sites

M. R. Ponisio et al.
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FLAIR

FDOPA PET/MRIFDOPA PET/MRI

T1 C+ weighted  images

a b

c d

Fig. 13.7  FDOPA-PET/MRI in an adult patient was recurrent anaplas-
tic astrocytoma, WHO grade III, Ki-67 of 10.5%. (a and b) Left frontal 
non-enhancing and T2/FLAIR hyperintensity that was initially reported 
as stable post-treatment changes (red arrows). (c and d) Marked focal 

increased FDOPA avidity (white arrows) in the follow-up of previously 
treated astrocytoma, consistent with tumor recurrence. FDOPA-PET/
MRI was more accurate than MRI alone in distinguishing between 
tumor recurrence and radiation necrosis

13  FDOPA in Movement Disorders and Neuro-Oncology 
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In a positive dopaminergic imaging PET scan, there is a 
decreased tracer uptake on one or both striata, with an oval 
or circular shape. An asymmetric pattern of reduced puta-
men and preserved caudate uptake showing a caudate to 
putamen posterior-anterior gradient or dot shape is most 
consistent with parkinsonism syndromes (Fig. 13.10). The 
locus coeruleus and substantial nigra nuclei may become 
more visible in nigrostriatal degeneration cases (Figs. 13.11 
and 13.12).

�Role of PET/MRI Dopaminergic System 
Imaging

The introduction of simultaneous PET/MRI in the field of 
movement disorders is still in the early stages. Recent studies 
[72–74] have focused on better characterization of parkinson-
ism using PET/MRI. Structural findings on MRI, namely lacu-
nar infarcts or enlarged perivascular spaces found in the basal 
ganglia and midbrain, may aid in improving PET assessment. 

a b c

T1 C+ weighted image FDOPA PET/MRI FDOPA PET/MRI

Fig. 13.8  FDOPA-PET/MRI in an adult patient with oligodendroglioma, WHO grade II, Ki-67 of 4.7%. (a) Minimally non-enhancing frontal 
mass (red arrows). (b and c) Marked FDOPA uptake in the tumor. The delineated FDOPA tumor margins impacted radiotherapy target volumes

a b c

T1 C+ weighted FDOPA PET/MRI FDOPA PET/MRI

Fig. 13.9  FDOPA-PET/MRI in an adult patient with oligodendroglioma, WHO grade II, Ki-67 of 4.8%. (a) Minimal, non-enhancing left frontal 
lesion (white arrow). (b and c) Moderate FDOPA avid lesion (red arrows). The FDOPA has better detection of the tumor than MRI

M. R. Ponisio et al.
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b

a

FDOPA PET FDOPA PET/MRI T1 weighted images

FDOPA PET FDOPA PET/MRI T1 weighted images

Fig. 13.10  FDOPA-PET/MRI demonstrates a positive dopaminergic 
imaging PET scan. The  (a)  axial images and (b) coronal images 
show  asymmetric reduced tracer uptake in the putamen, more pro-
nounced in the posterior part creating a posterior-anterior gradient (read 

arrows)  with preserved bilateral tracer uptake in the caudate (white 
arrows) and right putamen (black arrows). (Courtesy of Dr. Juan 
M. Chomont, Chief of Radiology at INTECNUS, S.C. de Bariloche, 
Argentina)

13  FDOPA in Movement Disorders and Neuro-Oncology 
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b

a

FDOPA PET FDOPA PET/MRI T1 weighted images

FDOPA PET FDOPA PET/MRI T1 weighted images

Fig. 13.11  FDOPA-PET/MRI demonstrates extrastriatal mesencephalic uptake in a patient with nigrostriatal degeneration in the (a) axial images 
and (b) coronal images (red arrows). (Courtesy of Dr. Juan M. Chomont, Chief of Radiology at INTECNUS, S.C. de Bariloche, Argentina)

M. R. Ponisio et al.
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These lesions, best identified on MRI, cause decreased striatal 
uptake depending on their location, mimicking PET features 
of PD and provide  alternative etiologies for the patient’s 
symptoms. 
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