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Abstract. The incidence of gliomas has been on the rise and are the
most common malignant brain tumours diagnosed upon medical appoint-
ments. A common approach to identify and diagnose brain tumours
is to use Magnetic Resonance Imaging (MRI) to pinpoint tumour
regions. However, manual segmentation of brain tumours is highly time-
consuming and challenging due to the multimodal structure of MRI scans
coupled with the task of delineating boundaries of different brain tis-
sues. As such, there is a need for automated and accurate segmentation
techniques in the medical domain to reduce both time and task com-
plexity. Various Deep Learning techniques such as Convolutional Neural
Networks (CNN) and Fully Connected Networks (FCN) have been intro-
duced to address this challenge with promising segmentation results on
various datasets. FCNs such as U-Net in recent literature achieve state-
of-the-art performance on segmentation tasks and have been adapted to
tackle various domains. In this paper, we propose an improved extension
upon an existing transfer learning method on the Brain Tumour Seg-
mentation (BraTS) 2020 dataset and achieved marginally better results
compared to the original approach.
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1 Introduction

A tumour is an abnormal growth of cells that exist in a certain region of the
body. Based on the above definition, brain tumours are mainly situated in the
brain or central nervous system (CNS). The World Health Organization (WHO)
has provided a classification of tumours [1] according to a grading system which
ranges from Grade I to Grade IV, in increasing order of proliferative potential,
indicating the potential rate and activity of the cells multiplying. Gliomas are
brain tumours that arise from glial cells which are the supporting cells of the
brain and spinal cord [2] can be separated into 2 main grades depending on
their proliferative potential, namely low-grade gliomas (LGG) and high-grade
gliomas (HGG). LGGs are benign tumours that are slow growing and have low
potential to metastasize. HGGs, also known as glioblastoma multiforme [3] are
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malignant tumours that have aggressive growth rates and have high potential to
metastasize.

Cancer Research UK estimates that there are 12,100 new brain, central ner-
vous system (CNS) and intracranial tumours that were diagnosed from the years
2015 to 2017. Cancer Research UK [4] also states that brain, CNS and intracra-
nial tumours are the 8th most common cancer in the UK in the year of 2017,
with the median age range of prognosis being 40–44 years old in females, and
35–39 years old in males. According to Cancer Research UK, the survival rates
of patients which have brain tumours are dependent on the type of tumour and
age, but generally 40% of patients survive their cancer for 1 year or more, with
more than 10% of patients surviving their cancer for 5 years or more [4] with sur-
vival rates of patients being dependent on various factors such as age, tumour
behaviour, patient’s reaction towards treatment and tumour markers present
in the body. In addition, recent research [5] has shown that the incidence of
glioblastoma multiforme has increased by six times its original value between
the years 2008 and 2017. Glioblastoma multiforme is also the leading type of
brain tumour that occurs most frequently in adults [3] compared to other types
of brain tumours.

As such, the early and accurate segmentation of brain tumours play an impor-
tant role in the overall survival chance and treatment options of patients that are
diagnosed with brain tumours. Various non-invasive imaging techniques such as
MRI and Computed Tomography (CT) scans [6] are utilised to produce detailed
images of the brain that are used to detect the presence of brain tumours in
a patient. Manual segmentation of brain tumours from 3D volumetric imagery
produced by MRI or CT scans are a time-consuming and intensive task [6,7] as
the operator has to perform segmentations slice by slice for a great number of
slices to extract the boundaries of the target structure.

2 Background and Related Work

Before the rise of deep learning techniques in the medical imaging and computer
vision domain, more traditional approaches were used to segment brain tumours
from medical scans produced by MRI or CT procedures. Based on our under-
standing, traditional approaches can be classified as non-learning approaches
which do not involve machine learning techniques that use some form of learn-
ing to find features and patterns in the image to segment the tumour. One such
approach is by using thresholding that provides a straightforward technique by
classifying pixels according to their intensity values to a certain defined thresh-
old. Thresholding methods can be further split into two types [8], global and local
thresholding. Global thresholding is used when an image has only two classes of
interest and can be split distinctively using only a single threshold. If the image
has more than two classes of interest, local thresholding will be a better choice.
Global thresholding in brain tumour segmentation has been used [9] for the seg-
mentation of enhancing tumour sections from T1-weighted images. By applying
an intensity threshold to a manually selected region of interest in combination
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with a Sobel edge filter, the resulting image which highlights edge probability is
used to determine the class of border pixels with respect to the edge probabili-
ties. However, this technique has certain drawbacks [8] as it does not take into
account pixels of hyper-intense signals that represent normal brain structures in
T1-weighted images.

Another traditional approach to medical image segmentation is region-based
approaches. Region growing is one such approach with the goal of extracting
a region of the image based off some predefined homogeneity criteria [10]. In
short, region growing requires a seed point which is manually determined, it
then extracts neighbouring pixels that meet the homogeneity criteria and merges
them into a region. The region will “grow” until the homogeneity criteria is
not fulfilled. Related region growing approaches in brain tumour segmentation
include [11] where two different kinds of homogeneity criteria were used in a
modified region growing technique. The criteria of “intensity” and “orientation”
were used as the homogeneity criteria. Pixels are chosen if both criteria are
met, where the “intensity” criteria refer to a pixel-wise intensity value that must
be over a certain threshold. The “orientation” criteria is a novelty in the region
growing approach by calculating the difference in gradient of neighbouring pixels,
and including the neighbouring pixel if it is below a certain threshold.

Despite the vast availability of traditional segmentation techniques, semi-
autonomous techniques require manual intervention from human operators.
Without proper domain expertise, these techniques could produce unfavourable
results. However, autonomous techniques such as deep learning in the medical
imaging and computer vision domain were quickly emerging, spurred by the suc-
cess of the CNN architecture on the ImageNet dataset [12]. Despite that, due
to the costly and time-intensive process of preparing labelled medical data, this
proposed a challenge as to the practicality of deep learning in the medical imag-
ing domain. Several approaches to confront the problem were proposed, such
as transfer learning approaches to speed up the convergence and increase the
accuracy of CNNs by transferring the knowledge gained [13] from learning from
a non-medical domain, to a different but related domain. The study showed that
the knowledge gained from the non-medical domain was able to be transferred
to the medical domain by the process of fine-tuning and more training.

Following that, Fully Convolutional Networks (FCN) for semantic segmen-
tation by [14] were introduced in 2014 which proposed a novel architecture that
replaces the fully connected (Dense) layers in CNNs with convolutional layers
that allows for variable size input as compared to nonconvolutional nets which
accept fixed size input such as the architecture proposed by [15]. FCNs also
introduce skip connections which concatenates output of lower layers to higher
layers which in turn retain the global structure in predictions, leading to less
loss of detail during the final predictions. The research adapted popular classi-
fication networks such as AlexNet [12], VGGNet [16] and GoogleNet [17] and
transformed them into their convolutional counterparts, which achieved state-
of-the-art accuracy on the PASCAL VOC 2011 dataset.The rise of FCN led to
the development of U-Net [18], being one of the key contributors to the field
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of semantic segmentation. Despite its original intention being the segmentation
of neuronal structures, U-Net has been shown to be applicable to various other
imaging domains, and has been adapted for the segmentation of various objects
with examples such as the pancreas [19], coral reefs [20], and even audio signals
from human voices [21].

Despite the popularity of FCNs in recent years for brain tumour segmenta-
tion tasks, Wang et al. proposed a novel CNN architecture to tackle this task.
The authors proposed a cascading CNN architecture [22] used in conjunction
with anisotropic convolutions and by fusing the output of the cascade of CNNs
in three orthogonal views to allow a more accurate and robust segmentation
prediction. The authors approach the challenge in a hierarchical structure, using
an individual CNN to create a bounding box of one class of tumour region,
then feeding the output into the next CNN to create another bounding box of
the next tumour region to create a binary segmentation problem. Anisotropic
convolutions were introduced to reduce memory consumption by introducing a
smaller receptive field with the trade off being that the network loses some global
feature information. In addition, residual connections [23] are used in the inter-
slice layers by adding the input of the block to the output, further encouraging
the learning of residual functions from the input. Predictions were made by fus-
ing the segmentation results from axial, sagittal, and coronal views. The authors
managed to introduce an architecture that produces competitive accuracy scores
and more efficient at test time compared to the more common FCN approaches.

An interesting submission during the BraTS 2018 challenge was the work per-
formed by Andriy Myronenko utilizing an asymmetrical encoder-decoder based
CNN architecture [24] with the encoder being the larger part and the decoder
the smaller part. The larger encoder is responsible for extracting feature maps
from the image while the smaller decoder is responsible to reconstruct the seg-
mentation mask produced. The authors introduce additional branch to the end-
point of the encoder section which induces regularization to the architecture by
using skip connections to transfer lower level features to higher levels of abstrac-
tion [25]. The author does not perform image augmentation as a pre-processing
step, rather performing image augmentation at test time. The final submission
by the author was an ensemble of 10 models which eventually took first place in
the BraTS2018 challenge.

Kamnitas et al. constructed an architecture [26] with the goal of producing a
more reliable and objective deep learning model which can generalize to various
types of medical databases and robust to failures of individual components. The
architecture was termed the Ensemble of Multiple Models and Architectures
(EMMA). The authors construct an ensemble of models based on popular and
well performing architectures in the medical imaging space which include two
DeepMedic [27] models, 3 FCNs [14] and two 3D U-Net architectures [18]. Slight
modifications were performed on all 3 architectures to adapt to this ensemble,
such as doubling the number of feature maps in the DeepMedic at each layer,
changing skip connections to be a summation of signals instead of a concate-
nation in U-Net and other changes. All models were trained individually and
for predictions, their confidence maps for each class are created by calculating
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for each voxel, the class that it belongs to. EMMA assigns the voxel to a class
with the highest confidence. This approach won the authors first place at the
BraTS2017 segmentation challenge.

Jonas et al. proposed a transfer learning approach [28] which utilizes the
ResNet34 encoder. The author extended upon AlbuNet [29] proposed by A.
Shvets et al. The authors dropped the T1 modality from a the BraTS2020 dataset
to match the 3-channel input of ResNe34. For the evaluation of the model,
Jonas et.al used the validation set of the BraTS2020 challenge, in addition to
using a private dataset obtained from a Syrian-Lebanese hospital that is situated
in Brazil. The research shows that their model outperforms AlbuNet2D and a
introduces a more robust training process with speedier convergence compared
to models without pretraining.

Yixin et al. also contributed to the segmentation task of BraTS 2020, propos-
ing a novel architecture to tackle the challenge. Yixin et.al proposed [30] a
“Modality-Pairing Network” architecture. The authors split modalities into two
groups,(T1, T1ce) and (T2, FLAIR) respectively for a dual-branch network that
uses the 3D U-Net. The first branch uses the FLAIR and T2 modalities to
extract the features of the whole tumour, with the second branch using the
T1 and T1ce modalities to learn other feature representations of the tumour.
Both branches are densely connected to learn the complementary information
effectively. Another unique point of the paper was the usage of an ensemble of
models to provide the segmentation labels of the highest priority, by averaging
the sigmoid predictions of each trained single model and selecting the label with
highest priority. The authors managed to win second place for the segmentation
task at the BraTS 2020 challenge with their approach.

In the paper published by Fabian et al., [31] the authors have previously
developed an automated framework named nnU-Net [32] for 3D biomedical
image segmentation.The authors employed nnU-Net to the BraTS 2020 segmen-
tation challenge with BraTS-specific optimizations to better score on the chal-
lenge. Such optimizations include a region-based training approach, splitting the
entire tumour region into 3 subregions based off the BraTS labelling structure,
which consists of “edema”, “non-enhancing tumour and necrosis” and “enhanc-
ing tumour”. Each subregion is then optimized independently by changing the
objective function and optimization to all three tumour subregions instead of
individually optimizing each subregion. The authors increased the probability of
augmentations that may happen to their data sample which artificially increases
the number of data points by applying changes to the original data points, thus
increasing the generalizability of the model. Lastly, the authors developed an
internal BraTS-like ranking system to more realistically gauge the models pro-
duced against the BraTS segmentation benchmarks, using the evaluation metrics
of BraTS to decide on the ensemble of models to use for the competition. Based
on all these efforts, the team achieved first place in the BraTS 2020 segmentation
challenge and has proven that nnU-Net is generalizable across various medical
imaging domains and provide state-of-the-art segmentation accuracy.

In our work, we extend upon the work by Jonas et al., we aim to fill in the
gaps in the research by extending AlbuNet3D to accept all 4 input modalities. We
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believe that by discarding the T1 modality, some valuable knowledge and feature
representations are lost. We also experiment with a different noise injection owing
to research that justifies the distribution of signal intensities in MRI images when
exposed to noise. We utilise a combination of these techniques and report our
results.

3 Methodology

3.1 BraTS2020 Dataset

The publicly released BraTS2020 dataset consists of multimodal MRI scans
of glioblastomas (HGG) and lower grade gliomas (LGG) which contains 369
training entries with ground truths and 125 validation entries without ground
truths.The ground truth consists of the annotation of 3 different tumour regions,
namely enhancing tumour (ET) with label 4, peritumoral edema (ED) with label
2 and the non-enhancing tumour core (NCT/NET) with label 1.

3.2 Extending the Input Channels

The original AlbuNet3D only utilised a 3-channel input due to the original nature
of the ResNet34 encoder. T1ce, T2 and FLAIR modalities were in use for the
original paper by Jonas et al. In our project, we explore the possibility of extend-
ing the original encoder to a 4-channel input. We replace the initial 2D convolu-
tional layer in the ResNet34 encoder with another 2D convolutional layer, that
contains 4 input channels. Next, we initialize the weights of the extra convo-
lutional layer with the pretrained weights of the first convolutional layer. The
reasoning behind our actions is to recover the knowledge representation from
pretrained weights instead of a random initialization of weights which might
not carry any pretrained knowledge, therefore reducing the effectiveness of the
original transfer learning approach.

3.3 Pre-processing and Data Augmentation Policies

Fig. 1. Comparison between original image and transformations at slice 20 using a red
heatmap plot, with all transformations applied on the last image.

All modalities undergo a Z-score normalization and are cropped to their non-zero
regions to reduce subsequent computational time and memory usage. Various
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data augmentations are applied to all modalities such as spatial and geomet-
ric transforms by rotation, random cropping, elastic deformation, and mirroring
along axes at 10% probability. Colour space transforms are then applied with
15% probability by increasing the pixel brightness multiplicatively, followed by a
gamma transformation which introduces gamma correction as an augmentation.
Lastly, we introduce Rician noise injection as our data augmentation technique
instead of the regular Gaussian noise injection based on research [33] that inten-
sity of MRI signals in the presence of noise follow a Rician distribution. We also
experiment by doubling the probabilities of all data augmentations and trans-
forms.

3.4 Training and Hyperparameters

Our optimizer of choice is the Adam optimizer with a learning rate of 1e−3.
We use a minibatch size of 100 and a batch size of 12. Training was performed
on all 369 training entries for 50 epochs. Our loss function is the Multiple Dice
Loss [32] represented by Eq. 1:

L(X,Y ) = − 2
K

∑

k∈K

∑
i |Xk ∩ Yk|i∑

i |Xk|i +
∑

i |Yk|i , i ∈ I, k ∈ K (1)

where K represents the number of classes, X and Y represent predictions by the
model and ground truth segmentations respectively.

4 Results and Discussion

Table 1. Dice score and Hausdorff distance of our experiments over 5 runs on test
data

Model Dice score Hausdorff distance (95%)

ET WT TC ET WT TC

Baseline 0.7154 0.8799 0.7683 31.5239 6.2105 16.8746

Baseline + DA 0.6954 0.8715 0.7680 39.0705 6.7112 9.1945

4C 0.6978 0.8777 0.7285 33.6261 7.3111 22.1818

4C + DA 0.694 0.8618 0.7429 29.5483 6.7094 18.7031

4C + RN 0.7010 0.8724 0.7359 33.9554 7.3399 20.3901

4C + WI 0.7020 0.8762 0.7747 33.3952 6.494 15.4334

4C + WI + RN 0.7186 0.8736 0.7730 32.1839 6.7790 15.2054

As seen from Table 1, our approach by extending the input to 4 modalities (4C)
with weight initialization (WI), using Rician Noise (RN) as the preferred noise
injection yielded a marginal increase in accuracy on the Enhancing Tumour
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Table 2. Standard deviation of dice scores of our experiments over 5 runs on test data

Model Standard deviation (dice)

ET WT TC

Baseline 0.2969 0.0887 0.2527

Baseline + DA 0.2972 0.1039 0.2544

4C 0.3011 0.0894 0.2897

4C + DA 0.2929 0.1092 0.2672

4C + RN 0.2946 0.1022 0.2728

4C + WI 0.3007 0.0908 0.2285

4C + WI + RN 0.2870 0.0945 0.2473

(ET) and Tumour Core (TC) classes. From Table 2, we also notice that the
standard deviation of both classes mentioned shrinks marginally, signifying that
the model is more robust towards outliers. However, without weight initializa-
tion, the 4-modality approach performs slightly poorly compared to 4C + WI
+ RN. We hypothesize that the weight initialization using existing pretrained
weights helped to stabilize the training process and provide a more robust model
due to the existing knowledge and features from the pretrained weights. With-
out pretrained weights, the new convolutional layer for the fourth modality is
just initialized with random weights that might not provide any sort of learnt
representations and knowledge to the model.

Aggressive data augmentation policies (denoted by DA) often resulted in a
degradation of segmentation performance. By increasing the probability of all
augmentations, more images in the training set are transformed and augmented.
However, these aggressive augmentations did not provide any boost in accuracy,
possibly due to the model losing its ability to generalize because the augmented
samples could not reflect the possible deformities in actual MRI images. It is
possible that a combination of different augmentations could be used to achieve
a more robust model.

5 Conclusion

We show that our results outperform the original AlbuNet3D marginally by
extending the input to four channels to accept all modalities of the BraTS
dataset. In order to further improve on the accuracy of our extension, further
work should focus on the initialization of weights when extending the pretrained
ResNet34 encoder of AlbuNet3D or to extend the approach to other pretrained
encoders that may perhaps provide a greater accuracy boost. It is crucial that
this line of research may continue to develop adaptive methods that may process
inputs of variable modalities in the future.

In conclusion, we have achieved the original aim and objectives of the project,
which is to extend upon the gaps in literature to propose an improved algorithm
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which can provide enhanced segmentation accuracy. Further work should focus
on the adaptive initialization of weights at the start of training when extend-
ing the input channels of a pretrained network to further stabilise the training
process and achieve higher segmentation accuracy.
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6. Despotović, I., Goossens, B., Philips, W.: Mri segmentation of the human brain:

challenges, methods, and applications. Comput. Math. Methods Med. 2015
7. Angulakshmi M., Priya, G.: Automated brain tumour segmentation techniques- a

review. Int. J. Imaging Syst. Technol., 27(1), 66–77
8. Gordillo, N., Montseny, E.,Sobrevilla, P.: State of the art survey on mri brain tumor

segmentation. Magn. Reson. Imaging, 318), 1426–1438
9. Gibbs, P., Buckley, D., Blackband, S., Horsman, A.: Tumour volume determination

from mr images by morphological segmentation. Phys. Med. Biol., 41(11), 2437–
2446

10. Pham, D., Xu, C., Prince, J.: A survey of current methods in medical image seg-
mentation

11. Kavitha, A., Chellamuthu, C., Rupa, K.: An efficient approach for brain tumour
detection based on modified region growing and neural network in mri images. In:
2012 International Conference on Computing, Electronics and Electrical Technolo-
gies, ICCEET 2012, pp. 1087–1095 (2012)

12. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convo-
lutional neural networks. Accessed 05 Apr 2021

13. Bar, Y., Diamant, I., Wolf, L., Lieberman, S., Konen, E., Greenspan, H.: Chest
pathology detection using deep learning with non-medical training. In: Proceedings
- International Symposium on Biomedical Imaging, vol. 2015, pp. 294–297

14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation

15. Le, Q.: Building high-level features using large scale unsupervised learning. In:
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Process-
ing - Proceedings, pp. 8595–8598. Accessed 03 May 2021

16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. Sep. Accessed 03 May 2021

17. Szegedy, C.: Going deeper with convolutions. In: Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, vol. 07,
pp. 1–9, 12 June 2015

https://doi.org/10.1007/s00401-007-0243-4


Extending Upon a Transfer Learning Approach 69

18. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedi-
cal image segmentation. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, vol.
9351, pp. 234–241

19. Oktay, O.: Attention u-net: learning where to look for the pancreas. arXiv, Apr
2018. Accessed 05 Apr 2021

20. Mizuno, K.: An efficient coral survey method based on a large-scale 3-d structure
model obtained by speedy sea scanner and u-net segmentation. Sci. Rep, 10(1),
12416

21. Jansson, A., Humphrey, E., Montecchio, N., Bittner, R., Kumar, A., Weyde, T.:
Singing voice separation with deep u-net convolutional networks. Accessed 03 May
2021

22. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmen-
tation using cascaded anisotropic convolutional neural networks: In: Lecture Notes
in Computer Science, vol. 10670 LNCS of including Subser. Lecture Notes in Com-
puter Science Lecture Notes Bioinformatics, pp. 178–190

23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778

24. Myronenko, A.: 3d mri brain tumor segmentation using autoencoder regulariza-
tion. In: Lecture Notes in Computer Science (including Subseries Lecture Notes in
Artificial Intelligence Lecture Notes Bioinformatics, vol. 11384 LNCS, pp. 311–320,
Accessed 03 May 2021
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