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Abstract. The cortical pyramidal neurons in the cerebral cortex, which
are positioned perpendicularly to the brain’s surface, are assumed to
be the primary source of the electroencephalogram (EEG) reading.
The EEG reading generated by the brainstem in response to auditory
impulses is known as the Auditory Brainstem Response (ABR). The
identification of wave V in ABR is now regarded as the most efficient
method for audiology testing. The ABR signal is modest in amplitude
and is lost in the background noise. The traditional approach of retriev-
ing the underlying wave V, which employs an averaging methodology,
necessitates more attempts. This results in a protracted length of screen-
ing time, which causes the subject discomfort. For the detection of wave
V , this paper uses Kalman filtering and Cyclic Shift Tree Denoising
(CSTD). In state space form, we applied Markov process modeling of
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ABR dynamics. The Kalman filter, which is optimum in the mean-
square sense, is used to estimate the clean ABRs. To save time and
effort, discrete wavelet transform (DWT) coefficients are employed as
features instead of filtering the raw ABR signal. The results show that
even with a smaller number of epochs, the wave is still visible and the
morphology of the ABR signal is preserved.

Keywords: Cyclic Shift Tree · Auditory Brainstem Response ·
Wavelet Kalman Filter · Inter-wave intervals · EEG · Wave V

1 Introduction

Genetic predisposition, [post/peri]-natal factors, intrauterine environment, all
have a part in the growth of childhood hearing impairment. Due to the presence
of various categorization systems, the definition of hearing loss/deficit may fluc-
tuate. In early development, being exposed to spoken language is essential. As
a result, children with undiagnosed hearing loss, including mild and unilateral
deficits, may experience significant delays in speech development as well as psy-
chological and mental behavioral disorders, which can have an impact on their
social and academic skills as well as their overall development [15,18,22].

The Auditory Brainstem Response (ABR) is a regularly used tool for eval-
uating neonatal auditory function. This method has long been considered the
gold standard for neonatal diagnostic evaluation throughout the first six months
of life. However, employing repeated averaging of the trials for meaningful ABR
waveform, ABR is also utilized for detecting hearing loss in adults [1]. To find
the lowest level that provokes a discernible response, the electroencephalogram
(EEG) ABR waveform is sampled, averaged, and waveforms are recorded for
stimuli of various intensities [13,17]. Noise interferences can cause the morphol-
ogy of the ABR to be distorted, affecting its accuracy. As a result, identifying
the wave V can be a difficult task since noise can be emitted by equipment,
circuits, or power sources. To correctly identify the presence of the ABR and
differentiate it from physiologic noise, skilled clinical interpretation is required;
unfortunately, subjective interpretation and the possibility of human mistake
impair an objective physiologic measure [18]. For this reason, researchers like
Wang et al. [23] suggested reasonable techniques to make hearing screening fea-
sible. They suggested use a Kalman filter to adaptively extract sounds from ABR
signals, reducing the number of trials required to enhance efficiency. Their work
shows that with proper denoising using Kalman filter, fewer sweeps was required
to obtain reliable ABR waveforms. In another related study, a wavelet based
algorithm was introduced by [4] known as cyclic shift tree denoising (CSTD)
method that technically gives a faster convergence on estimating the underlying
ABR waveform compared to the conventional averaging methods [10,21]. The
CSTD method is computationally stable and it has uncomplicated algorithm
which motivates us to apply the method in this study.
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2 Materials and Methods

Stimulus such as click, tonal, or chirp can be used in ABR measurements
[20]. Though click stimulus is widely used in ABR measurements, however the
responses obtained are not from the whole cochlea but are rather thought to
originate from basal regions (2–4 kHz) [12]. Therefore, the chirp stimulus was
developed. This chirp purpose is to stimulate the entire cochlea simultaneously
and provide effective neural synchronisation. Studies report that, since chirp
stimulus has a specific sequence from low frequency to high, larger amplitude
ABR waves can be formed than with click sounds and the whole cochlea can be
stimulated at the same time [6,7,11]. A chirp is a quick sweep through frequen-
cies which is either low to high or high to low frequency. The stimulus of Audio
chirp was generated using a personal computer for each participant, which simul-
taneously processes and records the ABR signals. By simultaneously connecting
output audio to both the trigger box and the g.PAH Programmable Attenuator
Headphone buffer, the triggering procedure could be completed (Guger Technolo-
gies, Austria). The trigger box receives the computer’s audio signal and converts
it to a square signal (trigger signal), which is utilized as a reference point for
framing the EEG signal according to the provided stimulus. At the same time,
the g.PAH attenuator sent the signal to the headphones such that every time the
“click” played on the computer, the participant hears it. The device input power
is 100–240 V with a maximum frequency of 50–60 Hz; thus, we used a bandpass
filter with cutoff 100 Hz–1500 kHz for the recorded signal. Twenty chirps per
second of stimulus rate were used to record the ABR signal with a sampling rate
of 19.2 kHz and 24-bit resolution. Although, this sampling rate was empirically
set supported by previous studies, which was found to be around 20 kHz. In this
study, the intensity level of the stimulus was set in the range of 30–60 dBnHL
with an increment of 10 dB. The EEG data were then recorded and averaged
using sliding windows of 2000 frames. Each recorded epoch start-point is aligned
with the start of the triggering signal and ends within a window of 40 ms (768
samples) for chirp and 20 ms (384 samples) for a click. The processing steps were
implemented using MATLAB. Figure 1 shows the experiment setup and devices
used for data collection of the ABR signals.

2.1 Wavelets Methods

The two wavelet denoising methods subjected to performance evaluation are as
follows:

– Wavelet Kalman Filter (WKF)
– Cyclic Shift Tree Denoising (CSTD)

Figure 2, shows the flow of the two types wavelet based denoising methods,
(a) Wavelet Kalman filter approach, (b) Cyclic Shift Tree Denoising.

A detail description of WKF method could be found in [19] while CSTD
method could be found in [4]. This section only covered the process of modifi-
cation. Due to the closeness in morphology between the ABR and the synthesis
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Fig. 1. Hardware system setup with g-tech equipment which include gUSBamp, gPAH,
trigger box and Sound Card.

wavelet, the biorthogonal 5.5 wavelets were used as proposed by [8]. The signal
was split into high-pass (HP) and low-pass (LP) components, which correspond
to details and approximates components, respectively, using the discrete wavelet
transform (DWT). The signal was dissected to level 5, at which point the ABR’s
main frequencies were 200, 500, 900 Hz, respectively [8].

2.2 Wavelet Kalman Filter Approach

DWT is the digital form of continuous Wavelet transform (CWT) and can be
used by setting discrete values of s = 2j and u = n(2j), where j and n are
integer numbers, such that,

S2jf(n) =
∑

k∈Z

hkS2j−1f
(
n − 2j−1k

)
(1)

W2f(n) =
∑

k∈Z

gkS2j−1f
(
n − 2j−1k

)
(2)

where S2jf(n) are the approximation coefficients (represent the low frequency
sub-band), W2jf(n) are the detail coefficients (represent the high frequency sub-
band), j, n, k ∈ Z, Z is a set of all integer numbers. hk and gk are the low
and high pass filters coefficients respectively. This study used wavelet coefficients
for the observation model as suggested by [16] to reduce the state dimensions
as shown in Fig. 2(a). The biorthogonal 5.5 wavelets were chosen as suggested
in [16,24] by considering the similarity in the morphology of the ABR with
the synthesis wavelet. The improved signal was then decomposed with DWT
to obtain the coefficients for the Kalman filter process. Algorithm1 summarizes
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Fig. 2. Flowchart (a) Wavelet Kalman filter approach and (b) Cyclic Shift Tree De-
noising.

the recursive procedure of Kalman filter where H and C are reshaping matrices.
When applying Kalman filter, the ABR estimation model was assumed as a
linear additive model according to [5]. From the analysis, the minimum number
of epochs sufficient to detect wave V was chosen based on the experimental result.
This method was introduced to overcome the high computational complexity
due to the high dimensional state vector. This data fusion algorithm gives a
small computational requirement, elegant recursive properties and is the optimal
estimator for one-dimensional linear systems with Gaussian error statistics. They
typically used for smoothing noisy data and provide the estimated parameter of
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interest. It is also widely used for positioning system receivers, phase locked loops
in radio equipment, smoothing the output from laptop track pads and more.

2.3 Cyclic Shift Tree Denoising

The flow chart in Fig. 2(b) shows CSTD method, an array of wavelet coefficients
was created by performing a DWT on each frame and arranged as a successive
original frame. Proceeding with the final average created by linearly averag-
ing all the frames and applied the scale threshold to obtain a smooth ABR
signal. The array of wavelet coefficients was then denoised using CSTD, with
each denoised in a distinct way. To create a sequence of total N frames, linearly
average all different denoised reordering of frames to which CSTD has been per-
formed [3,9]. Time domain samples were obtained by linearly averaging the N
frames to generate one frame of wavelet coefficient and then reconstructing this
average frame. This new estimation technique has a faster rate of convergence to
the underlying signal than linear averaging, and it outperforms linear averaging
in terms of performance [2,8]. This current technique, however, has a number of
drawbacks, including the inability to apply it to a single frame of data. Other
constraints include the requirement for multiple measurements of the same sig-
nal. The CSTD algorithm requires a power of two number of initial frames, with
the signal being estimated being constant between frames.

Algorithm 1: Kalman filter algorithm
Result: X and P
X0 and P0;
while t = 1, 2, ..., T do

//Previous state
Xt−1 and Pt−1 ;
//Predicted state
Xtp = AXt−1 ;
//Predicted process co-variance
Ptp = APt−1A

′ + Q;
//Kalman gain
K = PtpH

′

HPtpH′+R ;
//Measurement value
Yt = CXt + εt;
//Updated state
Xt = Xtp + K(yt − HXtp);
//Updated process co-variance
Pt = (1 − KH)Ptp;

end

3 Results and Discussion

Wave V amplitudes and latencies, for example, were recognized as crucial com-
ponents. In the acceptance area of latencies, the wave V was traced whether it
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existed or not. The average of 2048 epochs of data from each subject were used
to calculate the delay. In addition, data collection from tainted data with noise
interference was examined using a new modified methodology called MCSTD,
which was recommended by the researchers. Female shows earlier latencies than
male and larger amplitude than male. Table 1, below shows the average latency
values of 11 normal adult’s subjects for chirp stimulus at 2048 sweep.

Wave V amplitudes and latencies were identified as key components. The
wave V was traced in the acceptance zone of latencies, whether it exists or not.
The average of 2048 epochs recorded data from each subject was used to calculate
the delay. In addition, data collection from contaminated data with noise inter-
ference were analyzed using new suggested modified approach MCSTD. Female
shows earlier latencies than male and larger amplitude than male. Table 1, below
shows the average latency values of 11 normal adult’s subjects for chirp stimulus
at 2048 sweep.

Table 1. The average latency values of wave V ABR for adult subjects

Stimulus Gender Intensity

60 50 40 30

Chirp Female 14.36 14.86 16.29 17

Male 16.6 16.63 17.5 17.75

The inter-wave intervals for females are shorter due to the effect of negligible
for a wave I and more pronounced for later waves. Females have smaller head size
and less brain volume compared to male. Thus, the inter-wave latencies become
shorter if the distance between the generators for each of the waves is shorter
and the amplitude will be larger if the recording electrode is relatively closure
to the wave generator. Figure 3, is the comparison between female’s and male’s
signal.

3.1 Selection Minimum Number of Epochs

The signal was analyzed using averaging, KF, CSTD and MCSTD approaches.
The data were recorded for four different intensity levels consist of 60, 50, 40 and
30 dBnHL. Wave V recognition between different intensity levels was related to
their latency and frequency for each stimulus. Corona-Strauss et al. [5] stated
that the latency value increased by decreasing the frequency content of chirps.
Moreover, the latency of the responses evoked by higher intensity levels is shorter
than the response evoked from a lower intensity level. Decreased the intensity
level will longer the latency and smaller the amplitude.

Figure 4 (a) and (b) showed the results for the wave V detection at sweeps
number of 16 and 8. When decreasing the sweep number, the signal amplitude
increased. According to [16] the ABR signal amplitude is between 0.1 to 1.0µV.
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Fig. 3. ABR signal for female and male at 60 dB, 2048 sweeps.

However, ABR signal amplitude at 16 and 8 sweeps exceeded 1µV showed by
the straight red line. In addition, wave V detection failed when decreasing the
sweeps number to 16 and 8. Thus, 16 and 8 sweeps are not reliable for detecting
wave V . The goal of this research is to determine the minimal trial that will be
fulfilled in detecting the presence of wave V and denoising the tainted signals.
By comparing the results of averaged data morphology, the performance of each
methodology was assessed. Each recorded signal was averaged sweep by sweep
and the sweep was divided into 2048, 1024, 512, 256, 128, 64 and 32 sweeps.
When the signal is averaged over 2048 epochs, all techniques provide an accurate
assessment of the ABR signal. When the number of epochs is reduced, however,
wave V identification differs between techniques. As a result, when compared
to other approaches, MCSTD performs admirably. When decreasing the epoch’s
number to 16 and 8, the signal amplitude increases and exceeded 1µV in which
ABR amplitude is between 0.1 to 1.0µV [14].
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Fig. 4. ABR signal for female and male at 60 dB, 2048 sweeps.

4 Conclusion

Analyzing EEG signal is very challenging due to their high complexity, low SNR,
non-linearity and non-stationary. ABR is currently the most reliable method for
hearing screening, however, the noise interference from environment, equipment,
and subject movement can be a difficult task for wave V detection. The aim
of this study is to reduce screening time by using a better signal processing
approach, reducing the sweeping number and lowering the noise interference
effects. This study focused on detecting wave V in normal adults by applying
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KF and CSTD. From the result, it is shown that better detection of wave V
is obtained using WKF with the reduced number of epochs by considering the
SNR and RMSE. Further work should be carried to see the performance based
on Modified Cyclic Shift Tree Denoising.
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