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Abstract. Recently, new advances and emerging technologies in health-
care and medicine have been growing rapidly, allowing for automatic dis-
ease diagnosis. Healthcare technology advances entail monitoring devices
and processing signals. Advanced signal processing and analytical tech-
niques were effectively implemented in numerous research domains. Thus,
adopting such methods for biomedical signal processing is an essential
study field. The signal processing techniques are explicitly applied to
heart sound (called phonocardiogram or PCG) signals as part of biomed-
ical signals for heart health monitoring in this paper. The automatic
detection of life-threatening cardiac arrhythmias has been a subject of
interest for many decades. However, the computer-based PCG segmen-
tation and classification methods are still not an end-to-end task; the
process involves several tasks and challenges to overcome. The conducted
evaluation scheme of the classifier also has a significant impact on the
reliability of the proposed method. Our main contributions are twofold.
First, we provided a systematic overview of various methods that can
be employed in real applications for heart sound abnormalities. Second,
we indicated potential future research opportunities. PCG segmentation
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is critical, and arguably the hardest stage in PCG processing. Basically,
basic heart sounds can be identified by detecting the offset R-peak and
T-wave in the ECG signal. Unfortunately, utilizing the ECG signal as a
reference to the PCG segment is not always an easy operation because: it
requires synchronous recording of ECG and PCG signals; precise identi-
fication of T-wave offset is often difficult; and ECG-PCG temporal align-
ment is not always consistent. Using machine learning methods in PCG
segmentation involves multiple types and many features retrieved in both
univariate or multivariate formats. This leads to selecting the best PCG-
segmentation performance feature sets. PCG segmentation approaches
that use featureless methods based on powerful statistical models have
the potential to solve the problem of feature extraction and minimize the
total computational cost of the segmentation approach.

Keywords: Cardiovascular diseases · Machine learning · Bio-signal ·
PCG · Classifier · Segmentation

1 Introduction

Cardiovascular diseases (CVDs) remain the top leading cause of death world-
wide. According to the latest world health organization (WHO) statistics, 17.7
million people die annually from CVDs, approximately 31% of all deaths world-
wide. WHO had forecasted that by 2030, almost 23.6 mil-lion people would die
from CVDs, mainly from heart disease and stroke [40]. In 2016, WHO and part-
ners launched a new initiative aiming to reduce the global threat of cardiovas-
cular disease, including heart attack and stroke. One of the three main packages
aimed by this global initiative is the reduction of heart attacks and strokes can
be made through equitable and cost-effective healthcare technical tools. Even-
tually, for most heart disease cases, the existing approach may come up with a
more complex and expensive solution because the patient has already been in
a high degree of danger. The heartbeats are generated as a result of systematic
electromechanical activity within the heart muscle. Two signals are produced
as a representation of the heart’s electromechanical activity (see Fig. 1). Elec-
trocardiogram (ECG) is a measure of the heart’s electrical activity, whereas a
phonocardiogram (PCG) is used to represent the mechanical activity of the heart
valves.

Both ECG and PCG are non-invasive tests that play important roles in heart
abnormality detection; however, diagnosis based on ECG signal or PCG signal
alone cannot detect all cases of heart symptoms. In other words, the ECG signal
is assumed to be a more efficient diagnosis tool than PCG. There are heart
defects that cannot be detected using ECG but can be detected with PCG;
mainly the problems are related to heart valves and heart murmurs. Moreover,
PCG could reveal some heart abnormalities before they can be manifested on
the ECG graph.
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Fig. 1. Example of a single lead ECG recording and single-channel heart sound (PCG)
signal. Both signals are recorded using Meditron Welch Allyn digital stethoscope.

2 Background

Throughout this paper, the electrical and mechanical activities are the primary
research subjects. Accordingly, a brief review of the heart anatomy and physiol-
ogy is introduced in this section.

2.1 The Heart Muscle Structure

The cardiovascular system (CVS) consists of the heart, which acts like the blood
hub in the human body, and the blood vessels network that distributes the
blood to the body organs. The heart is the main station of the CVS, where
an exchange of oxygenated (from lungs) and deoxygenated (from body organs)
blood happens and redistributed in a cell-to-cell basis in the human body [14].
The four chambers of heart are built from special cells called the cardiomyocytes.
Besides the cardiomyocyte cells, the heart also has some unique cells named the
cardiac pacemaker cells, which act as an electrical supply for the heart to keep
beating.

2.2 Basic Components of PCG

The normal heart contracts periodically, making an average of 70 beats per
minute. Each beat is a full cardiac cycle and a result of a series of contractions
in different parts of the heart muscle. The human ear translates the two major
sounds of the heart as “lub dub” sounds, where the lub sound is the first sound
that is caused by the opening and closure of tricuspidmitral valves. On the
other hand, the dub sound is a result of the opening and closure of pulmonary-
aortic valves. In between these two sounds, the heart normally remains silent or
produces a very low sound.
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Fig. 2. The heart electromechanical activity in the form of ECG and heart sound
(PCG) signals. Show-ing the fundamental heart sound (PCG) components along with
the reference ECG graph. (a) Shows an example of normal heartbeat (record a0068
from [9]), (b) shows an example of abnormal heartbeat (record a0002 from [21]).

Figure 2, shows examples of normal and abnormal PCG heart-beats, respec-
tively. A single cardiac cycle is divided into two phases, diastole and systole.
The diastole is the period of time when the blood flows from the atria to ventri-
cles; in this case, ventricles are in relaxing mode (not contracting). The systole
represents the period of time in which the ventricles contract pushing the blood
into the aorta and pulmonary artery. Between these two intervals, the two major
sounds of heart (lub-dub), formally known as S1 and S2 sounds, occur. One of
the main concerns of the researchers working in this area is to understand the
abnormalities of the heart valves in cases where the backflow and the effect of
the forward blood movement in the heart cycle stages.

3 PCG Preprocessing

The PCG is an acoustic signal, and it is more likely to be contaminated with
various types of surrounding noises, especially in clinical environments. A nor-
mal heartbeat contains two fundamental heart sounds, S1 sound and S2 sounds
separated by silent intervals. These silent intervals are called systole interval (the
interval from the end of S1 to the beginning of S2 sound) and diastole interval
(the interval from the end of S2 to the beginning of subsequent S1 sound). For
abnormal heartbeats, additional sounds (called murmurs) are manifested in the
silent intervals, in which the type of murmur is always referred to as a systolic
or diastolic murmur.

During the early stages, the low amplitude murmur sound could be easily
buried in noise. The presence of noise will increase the possibility of false alarms
occurring in automatic diagnostic systems. Furthermore, PCG may show some
innocent murmurs, which leads the primary care physicians and expert cardiol-
ogists to misdiagnose the heart status using a simple stethoscope. False alarms
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must be avoided in any automatic processing of PCG signals. Two possibilities
may occur to the patient under test with false alarms. The healthy patient is
sent for an echo-cardiogram that is costly and not easy to reach at any time.
The pathological patient is sent home without medication or treatment [11].

4 PCG Segmentation

The identification of fundamental components of PCG signals is an essential
step towards the automatic analysis of heart sounds. The process involves the
localization of the main heart sounds, S1 and S2 sound, followed by bound-
ary detection of these sounds. The segmentation allows the automatic analy-
sis method to explore the intra-beat segments (S1, systole, S2, and diastole)
characteristics which could be used for abnormality detection and heart dis-
ease diagnosis. Several approached of PCG segmentation have been reported in
the literature, which can be grouped into four categories, for example, but not
limited to; (1) envelope-based methods, (2) decomposition methods, (3) time-
frequency methods, (4) machine learning-based methods. Category (1) and (4)
may share a similar methodology; for example, the machine learning approach
was built based on envelope features. Some of the recent PCG segmentation will
be briefly discussed in this section.

4.1 Envelope-Based Methods

PCG segmentation using the popular envelope-based approach is addressed. The
Shannon and Hilbert procedures are two examples of energy envelope-based
approaches that are extensively employed. With regard to accuracy of PCG
classification, both systems offer advantages and limitations. It is generally diffi-
cult for the Shannon type to capture the nuances of PCG signals, but the Hilbert
type has many burrs and is unsmooth. As a result, segmentation is a difficult
process to complete in the PCG study. Identification of the cardiac cycle is the
most critical stage in PCG signal analysis. During a cardiac cycle, the heart
produces four different heart sounds. It is the initial (S1) and second (S2) heart
sounds that can be heard that are the most basic. With PCG segmentation,
the goal is to detect as accurately as possible the positions of S1 and S2, which
will allow for the estimation of the cardiac cycle to be performed. The ECG is
used by the majority of segmentation algorithms. The ECG and PCG signals
are not available at the same time, which is a disappointment. If you use the
envelope-based methodology, you compute the energy enveloped by applying
the S-transform on the PCG signal, and you can choose between the Shannon
or Hilbert types. It is possible that others will employ the empirical wavelet
transform for this segmentation as well. As a result, using the energy enveloped
model, it is possible to predict the cardiac cycle.

4.2 Decomposition-Based Segmentation Methods

PCG signals are usually segmented based on their time-domain characteristics.
Tang et al. [37] proposed a dynamic clustering-based method for segmenting
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heart sounds. In this method, the short-term cycle frequency spectrum was used
to compute the instantaneous cycle frequency (ICF); the ICF was then used to
segment the PCG signal into cardiac cycles (heartbeats). These cardiac cycles
were then decomposed into 38 time-frequency atoms using Gaussian modulation
model. Then compute the weighted density function using Gaussian density ker-
nel estimation to emphasize S1 and S2 sounds in the time-frequency domain.
The second-order derivative of the density function was employed to find the
peaks (hills) to create dynamic clusters for the involved atoms. Finally, some
frequency, timing, and energy constraints were applied for locating the atoms
that represent S1 and S2 sounds; other thresholds and level-set method were
used to find the boundaries of S1 and S2 sounds. The method was evaluated
on a self-collected database containing only 565 cycles in total. Figure 3 shows
Example of PCG signal with viola integral envelop. The data was collected using
iStethoscope iPhone application.

Fig. 3. Example of PCG signal with viola integral envelop. The data was collected
using iStethoscope iPhone application.

4.3 Time-Frequency

Time-frequency representation methods also provide some contributions in the
direction of heart sounds (PCG) segmentations. Gavrovska et al. [13] presented
the use of Wigner-Ville distribution (WVD) for time-frequency representation
of PCG signals. Two features (criteria) involved recognizing S1 and S2 viz, the
maximum (peak) of the envelope with the detected margins and the duration
between current and next candidate sound. Finally, k-mean clustering with city
block distance was used to classify the candidate sounds into three classes, S1,
S2, and others.
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4.4 Probabilistic Models and Machine Learning-Based Methods

Probabilistic and Machine Learning (ML) methods can learn the underlying
characteristics of the PCG components; hence, building discrimi-native models
that can be used in segmentation, clustering, or classification purposes. Schmidt
et al. [34] proposed a breakthrough application of duration-dependent HMM
(called DHMM, also known as, hidden semi-Markov model (HSMM)) on PCG
segmentation. In standard Markov models, each PCG component is referred to
as a state. Some probabilistic rules control the jump from one state to another
regardless of the duration of time a particular state remains unchanged. This
may lead to rapid jumps between states, hence misdetection of PCG components.
Schmidt et al. addressed this problem using labeled S1 and S2 sounds databases;
a rough average estimation of the heart sounds duration was found from this
database. In the DHMM training phase, multivariate features were extracted
from PCG signals including, homomorphic envelogram, STFT energy of band
25–50 Hz, 50–100 Hz and 100–150 Hz.

Springer et al. [36] made extensive attempts and other researches to further
improve the performance of HMM for PCG segmentation. Authors investigated
the use of different types of features from PCG signals, including Hilbert enve-
lope, DWT-based envelope, and short-time PSD envelope. The procedure is sim-
ilar to the one using HSMM, except instead of using Gaussian distributions, the
emission probabilities of the HMM were derived using SVM. The method was
evaluated and compared with [34] on the normal and pathologic database. The
performance showed an improvement of 2% when using the modified HSMM. In
contrast, the features are not showing a significant improvement in the perfor-
mance.

5 PCG Feature Extraction

Feature extraction is a fundamental step in PCG signal processing which is
carried out to convert the raw data to some distinctive parametric representa-
tion. This parametric representation, called a feature, was then used for further
analysis and processing [20]. Several methods and approaches are presented in
the literature for feature extraction aim to achieve effective PCG classification
performance. There is no feature set that can be said to be an optimal represen-
tation of the PCG signal diverse characteristics. The review was only conducted
on a sample of methods in the literature over the past few years, and it is
obvious the wide options of feature extraction methods from PCG signals. How-
ever, the MFCC and wavelet transform-based features are the most widely used
for HS classifications, and the results presented recently in the literature have
demonstrated their effectiveness. Another recently proposed PCG deep feature
extraction method [43] is also worth to be further explored and investigated on
their effectiveness with more real noisy PCG data, especially pathological PCG
data. Some methods may result in a huge number of extracted features, which is
impractical and may lead to classification overfitting. Therefore, feature selection
or reduction approaches are utilized to solve this issue, some of the previously
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proposed methods are also reviewed in the following sub-sections. The feature
extraction methods from PCG signals can be categorized into four domains: time
domain, frequency domain, time-frequency domain, and a mixture of domains.
Most of the methods required to perform PCG segmentation prior to the fea-
ture extraction process, in which features are extracted from specific intervals
within the cardiac cycle or globally from the whole cardiac cycle. A cardiac cycle
represents the complete heart mechanical activity in a single heart-beat which
consists of S1, S2, and other sounds like S3, S4, and murmurs.

6 Classification Models and Performance Evaluation

Automated PCG analysis has been widely studied during the past few decades.
The typical methods for PCG classification can be grouped into six categories:
(1) SVM-based classification; (2) Artificial Neural Net-work-based classification;
(3) Statistical Tests-based classification; (4) Deep Learning-based classification;
(5) Ensemble of classifiers; (6) others including probabilistic and clustering meth-
ods. Building on previous review articles, which can be found in [8,21,25] some
of the reported studies which involve using a considerable database are discussed
briefly in the following sub-sections.

6.1 SVM-Based Classifiers

SVM is the acronynm for a single-layer nonlinear network. It first trans-forms the
data into higher-dimensional space using some specialized kernel transformation
functions. Then it uses the distance metric to create a boundary between the
data groups in which this distance is simultaneously maximized. SVM has been
widely used for PCG signal classification and is a well-studied machine learning
approach. It has been provided through well-tested libraries and toolboxes, i.e.
library of support vector machine (LibSVM) and MATLAB. In addition to lin-
ear classification, the SVM has the ability to handle a large number of features
by efficiently performing a non-linear classification using what is known as the
kernel functions, implicitly mapping their inputs 2D features space into high-
dimensional feature spaces enabling accurate classes discrimination. How-ever,
SVM has various types of kernel functions, each of which uses some hyperpa-
rameters. The kernel function and hyperparameters have to be carefully selected
and tuned to achieve the best classification performance.

It is worth to note that, there are three publicly open sources of PCG data-
base; (1) Michigan Heart Sound and Murmur database (MHSDB) was provided
by the University of Michigan Health System. MHSDB includes only 23 PCG
recordings with a total of 1496.8 s duration. (2) PASCAL challenge database, a
total of 832 recordings with varying lengths, between 1 s and 30 s. (3) Physionet
CinC challenge 2016 database, contains a total of 3,126 PCG recordings, lasting
from 5 s to 120 s. The Physionet CinC is the current largest open source database,
which includes clean and very noisy, normal and pathologic, children and adults’
recordings. The database comprises of normal and abnormal classes with some
PCG recordings labeled as “unsure” which has low-quality heart sounds.
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6.2 Artificial-Based Neural Network Based Classifiers

In recent years Machine Learning (ML) techniques have emerged for their notable
predictive abilities in a number of fields such as anomaly detection [5,12,41,42],
biological data mining [23,25], cyber security [24], disease detection [7,26,29,30,
33] and classification [6,10,22,35], earthquake prediction [1,2], elderly care [16,
17], elderly fall detection [3,4,27], financial prediction [31], safeguarding workers
in workplaces [19], text analytics [32,39], and urban planning [18]. Out of these
number of different methods, the artificial neural network technology has been
widely adopted for PCG classification. An example is a recurrent neural network
(RNN). The RNN is a multilayer neural network in which the output of some or
all layers do not only depend on the current input but also the previous output
is looped back and reused as extra input. RNNs can be configured in two designs
namely, fully connected or partially connected.

6.3 Statistical Tests-Based Classification

There are 2 types of statistical tests-based classifiers, namely the Hidden Markov
Model (HMM) and the Gaussian Mixture Model (GMM).

6.4 HMM-Based Classifiers

HMM are the time-averaged signal recorded during each measurement of the
heart and is assumed to be representative of some hidden state. This hidden
is not directly observed, is assumed to undergo a Markovian process that is
governed by statistical models.

6.5 GMM-Based Classifiers

Gaussian Mixture Model is a probabilistic model. The database consisting of
abnormalities is assumed to be generated by the Gaussian processes inside the
heart having arbitrary stochastic distribution. The classification technique is
based on the ECG signal extraction using specific algorithm.

GMM classifier is a basic supervised method which has the ability to auto-
matically cluster the data into a limited set of overlapped clusters. In training,
two Gaussian mixtures were used to represent the normal and diseased datasets.
The Gaussian parameters (mean, covariance, weights) were estimated iteratively
using an expectation maximization algorithm. In testing, the same feature vector
from the test ECG heartbeats was used to find the fitted Gaussian parameters,
the likelihood was calculated and com-pared with the already built GMM mod-
els. The main limitation of GMM based methods is that the number of mixture
models must be determined manually, which forces the GMM to cluster the data
into a limited number of clusters, which is highly dependent on the correlation
of the input data.
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6.6 Deep-Learning-Based Classifiers

Over the last few years, deep learning was getting more attention due to its
ability to learn and perform classification tasks from raw data directly. Re-cent
studies showed that deep learning methods were achieving results that were not
possible before, sometimes surpassing human-level performance. PCG classifica-
tion approach is based on the convolutional neural network (CNN). A CNN is
employed as a feature extractor, and features extracted by the CNN are input
into a heart-sound classification SVM. Time-frequency features are put into
a CNN model to classify normal and abnormal cardiac sounds. Deep-learning
architecture has a sequential mode employing a linear layer stack, namely one
input layer, and numerous dense layer. Layers’ aim is to transform data. PCG
segmentation is performed using fixed-length segments with one step from each
recording. For each segment, a PSD-based spectrogram was recovered using
STFT, and the spectrogram was regarded as the CNN model feature input.
The proposed CNN structure consisted of five-layers: input, convolutional with
max-pooling, two fully connected layers and output layer. The Physionet train-
ing database was first transformed to an overlapped (5-second) PSD spectro-
grams; the CNN treated these spectrograms as images in the input layer. The
CNN model was then trained with stochastic gradient descent using an opti-
mizer, while the output layer contained a single neuron with sigmoid activation
function. The system was designed to classify each 5-second segment whether it
belongs to a normal or abnormal class.

Ensemble of Classifiers. Homsi et al. [15] used a nesting of three ensemble clas-
sifiers: Random Forests (RF), Logit-Boost (LB), and a cost-sensitive classifier
(CSC). Each recording in the Physionet database was first segmented by iden-
tifying the fundamental heart sounds (S1, systole, S2, and diastole). A total
of 131 features were then extracted from time, frequency, wavelet, and statisti-
cal domains. The study investigated the tuning of different parameters involved
in meta-classifier in an attempt to improve the overall classification accuracy.
10-fold stratified cross-validation was used to partition the Physionet database
into train-test sets to evaluate the proposed classification approach. The method
achieved a MAcc score of 88.4% on 10-fold test-ing set and MAcc of 84.48% on
Physionet hidden test set.

Vernekar et al. [38] proposed a PCG classification method using a weighted
ensemble of four XGBoost (extreme gradient boosting) and four ANN classi-
fiers. The Physionet heart sound database was used in this study, ignoring the
recordings labeled as noisy. The rest were split into 2615 recordings for training
and 296 for validation. The annotations for four heart sound components (S1,
systole, S2, diastole), for each heartbeat, were then obtained using Springer’s
HSMM segmentation algorithm [36]. A total of 108 features were extracted from
the time domain, frequency domain, and Markov chain analysis. However, fea-
ture importance analysis selected only 36 features to train the classifiers. The
proposed method achieved MAcc score of 81.75% on the validation set and MAcc
of 77.2% on Physionet hidden test set.
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7 Future Work

ECG and PCG are two easy-to-use non-invasive tools for monitoring heart elec-
tromechanical activity. Despite the amount of research proposed in the literature,
the performance of automatic diagnosis of heart disease is still not satisfying to
be implemented in clinical systems. However, the current methodologies could
be used in primary healthcare units or at home as the first screening tool and
diagnosis tool. This will provide great assistance to help physicians to perform
a correct and final diagnosis. The ECG and PCG signals analysis are not end-
to-end processing but usually ensembles various methods for each processing
step. In general, the state of the art on techniques oriented to the use of neural
networks and deep learning should look into for example, classification methods
through the use of networks with low computational complexity without domain
transformation and with or without feature extraction.

Deep learning methods besides showing promising results also has its dis-
advantages such as there are numerous parameters of the deep learning model,
with a large amount of data to be optimized which can lead to a long execution
time and a large training data set required. Moreover, the deep learning mod-
elling needs higher configuration of the computer with powerful CPU and GPU
for calculation; hence the model is unsuitable for home computers and microcom-
puters. Existing deep learning research using only ECG data from multiple per-
spectives and highlights the present challenges and problems to identify potential
future research directions. There are too many different learning architectures
that has been used in areas such as disease detection/classification, annota-
tion/localization, sleep staging, bio-metric human identification, and denoising.
The deep learning model for disease detection is to map input ECG data to
output disease targets through multiple layers of neural networks. Detection of
cardiac arrhythmias (e.g., atrial flutter, supraventricular tachyarrhythmia, and
ventricular trigeminy) is one of the most common tasks for deep learning models
based on ECG signals. However, there are still some unresolved challenges and
problems related to these deep learning methods.

Simultaneously analyzing multivariate time series from the same source pro-
vides insight into exploring the intersection of underlying dynamics in cardiovas-
cular signals. Simultaneous PCG data recording at multiple auscultation points
on the chest area with multiple sensors is more beneficial in terms of diagnos-
tic accuracy since the results from a single HS signal can be cross-referenced
with those obtained from other locations. In fact, the introduced SLDS methods
in [28] were used for multivariate data analysis and modeling in the literature.
Hence, these methods are assumed to provide higher performance if applied to
multivariate PCG data, i.e., PCG segmentation application. This research was
constrained by using univariate HS data because currently there is no existing
clinically approved technology for multivariate HS data acquisition from dif-
ferent heart auscultation points. The recently published benchmark database
(Physionet CinC challenge 2016) does not consist of a precise diagnosis of the
whole large provided dataset. The accurate automatic diagnostic systems of the
multi-class problem are needed, which would help cardiovascular monitoring and
pre-screening.
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8 Conclusion

In this paper, we provided a systematic overview on the state-of-the-art stud-
ies conducted in the last two years on new techniques for classifying cardiac
pathologies using ECG/PCG and machine/deep learning techniques from the
perspectives of models, data and tasks in real life applications. We found that
deep learning methods can generally achieve better performance than traditional
methods for ECG/PCG modeling.
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