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Abstract. This work is motivated by a real-world problem of coordi-
nating B2B pickup-delivery operations to shopping malls involving mul-
tiple non-collaborative Logistics Service Providers (LSPs) in a congested
city where space is scarce. This problem can be categorized as a Vehicle
Routing Problem with Pickup and Delivery, Time Windows and Loca-
tion Congestion with multiple LSPs (or ML-VRPLC in short), and we
propose a scalable, decentralized, coordinated planning approach via iter-
ative best response. We formulate the problem as a strategic game where
each LSP is a self-interested agent but is willing to participate in a coor-
dinated planning as long as there are sufficient incentives. Through an
iterative best response procedure, agents adjust their schedules until no
further improvement can be obtained to the resulting joint schedule. We
seek to find the best joint schedule which maximizes the minimum gain
achieved by any one LSP, as LSPs are interested in how much benefit
they can gain rather than achieving a system optimality. We compare
our approach to a centralized planning approach and our experiment
results show that our approach is more scalable and is able to achieve
on average 10% more gain within an operationally realistic time limit.

Keywords: Vehicle routing problem · Multi-agent systems · Best
response planning

1 Introduction

B2B pickup-delivery operations to and from commercial or retail locations
involving multiple parties, commonly referred to as Logistics Service Providers
(LSPs), more often than not cannot be done in silos. Resource constraints at
these locations such as limited parking bays can cause congestion if each LSP
adopts an uncoordinated, selfish planning. Thus, some form of coordination is
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needed to deconflict the schedules of these LSPs to minimize congestion thereby
maximizing logistics efficiency. This research is motivated by a real-world prob-
lem of improving logistics efficiency in shopping malls involving multiple inde-
pendent LSPs making B2B pickups and deliveries to these locations in small,
congested cities where space is scarce.

Collaborative planning for vehicle routing is an active area of research and
had been shown to improve efficiency, service level and sustainability [9]. How-
ever, collaborative planning assumes that various LSPs are willing to collaborate
with each other by forming coalitions, exchanging of information and/or sharing
of resources to achieve a common objective. This is different from our problem
setting where LSPs are independent entities who can only make decision locally
in response to other LSPs’ decisions and they do not interact directly with each
other to collaborate or make joint decision.

Ideally if we have one single agent who can control the routes and sched-
ules of multiple LSPs with complete information and collaboration amongst the
LSPs, we may achieve some form of system optimality. However, an unintended
outcome is that some LSPs may suffer more loss than if they adopt their own
planning independently. Moreover, such centralized approach is not scalable and
not meaningful in solving the real-world problems, since LSPs may not always
be willing to collaborate with one another.

To address the above concern, this paper proposes a scalable, decentralized,
coordinated planning approach via iterative best response. The underlying prob-
lem can be seen as a Vehicle Routing Problem with Pickup and Delivery, Time
Windows and Location Congestion with multiple LSPs (or ML-VRPLC in short).

More precisely, we formulate the problem as a strategic game where each
LSP is a self-interested agent willing to participate in a coordinated planning
(without collaborating directly with other LSPs) as long as there are sufficient
incentives. [1] coined the term “loosely-coupled” agent to describe an agent which
exhibits such characteristics. Through an iterative best response procedure, mul-
tiple agents adjust their schedules until no further improvement can be obtained
to the resulting joint schedule. We seek to find the best joint schedule which max-
imizes the minimum gain achieved by any one LSP, since LSPs are interested
in how much benefit they can gain rather than achieving a system optimality.
To realize such gains, we propose to use maximum cost deviation from an ideal
solution (a solution that assumes no other LSPs exist to compete for the lim-
ited resources) as the performance measure. It is clear that the minimum gain
is equivalent to the cost deviation of the worst performing LSP from this ideal
solution.

This paper makes the following contributions:

– We define a new variant of VRP, ML-VRPLC and formulate the problem as
an n-player strategic game.

– We propose a scalable, decentralized, coordinated planning approach based
on iterative best response consisting of a metaheuristic as route optimizer
with a scheduler based on Constraint Programming (CP) model to solve a
large-scale ML-VRPLC.
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– We show experimentally that our approach outperforms a centralized app-
roach in solving large-scale problem within a operationally realistic time limit
of 1 h.

2 Related Works

VRPLC is essentially a variant of a classical VRP with Pickup and Delivery,
and Time Windows (VRPPDTW) but with cumulative resource constraint at
each location [13]. Resources can be in the form of parking bays, cargo storage
spaces or special equipment such as forklifts. In VRPLC, there are temporal
dependencies between routes and schedules that do not exist in classical VRPs.
In classical VRPs, arrival times of vehicles are merely used to ensure time window
feasibility. In VRPLC, changes to the time schedule of one route may affect
the time schedule of another routes in the form of wait time or time window
violation. Many existing approaches to VRP do not take into consideration this
relationship between routes and schedules.

[13] proposed a branch-and-price-and-check (BPC) approach to solve a single-
LSP VRPLC. It is inspired by a branch-and-cut-and-price method for VRP-
PDTW [20] and combines it with a constraint programming subproblem to check
the VRPPDTW solutions against the resource constraints. However, BPC app-
roach can only find feasible solutions for instances up to 150 pickup-delivery
requests and proves optimality for up to 80 requests given a time limit of 2 h.
Therefore, this approach is not scalable when applied directly to solve ML-
VPRLC since pickup-delivery requests are usually in the region of hundreds per
LSP and for our problem setting, solution is expected within a region of 1 h
due to operational requirement. In addition, a direct application of BPC to ML-
VRPLC assumes a fully centralized, collaborative planning approach which we
have concluded earlier that it may not be practical and not meaningful.

ML-VRPLC can be considered as a problem belonging to an intersection
between two main, well-studied research areas namely Multi-Party VRP and
Multi-Agent Planning (MAP). Existing approaches to Multi-Party VRP and
MAP can broadly be categorized based on the degrees of collaboration and
cooperation respectively.

2.1 ML-VRPLC as a Multi-Party VRP

To solve VRPs involving multiple parties similar to ML-VRPLC, many existing
works in the literature focus on collaborative planning approaches. [9] coined
the term collaborative vehicle routing and it is a big area of research on its own.
Collaborative vehicle routing can be classified into centralized and decentral-
ized collaborative planning. The extent of collaboration ranges from forming of
alliances or coalitions (for e.g. [6,11]) to sharing of resources such as sharing
of vehicles or exchanging of requests through auction (for e.g. [7,23]). We have
established earlier that existing works in this area are not directly applicable to
our problem due to the non-collaborative nature of the LSPs.
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2.2 ML-VRPLC as an MAP Problem

MAP is simply planning in an environment where there exist multiple agents
with concurrent actions. Approaches to MAP can be further categorized into
cooperative and non-cooperative domains although most MAP problems lie in
between the two domains.

Cooperative Domain. Cooperative MAP involves agents that are not self-
interested and are working together to form a joint plan for a common goal [22].
[1] introduced MA-STRIPS, a multi-agent planning model on which many coop-
erative MAP solvers are based on. [19] proposed a two-step approach consisting
of centralized planner to produce local plan for each agent followed by solving a
distributed constraint satisfaction problem to obtain a global plan. Meanwhile,
[2] introduced the concept of planning games and propose two models namely
coalition-planning games and auction-planning games. Those two models assume
agents collaborate with each other through forming of coalitions or through an
auction mechanism; similar to the approaches within the collaborative vehicle
routing domain. In general, the approaches in this domain essentially assume
cooperative agents working together to achieve a common goal.

Non-cooperative Domain. Planning in the context of multiple self-interested
agents where agents do not fully cooperate or collaborate falls into the domain
of non-cooperative game theory. MAP problem can be formulated as strategic
game where agents interact with one another to increase their individual payoffs.

[15] proposed a sampled fictitious play algorithm as an optimization heuristic
to solve large-scale optimization problems. Optimization problem can be formu-
lated as a n-player game where every pure-strategy equilibrium of a game is a
local optimum since no player can change its strategy to improve the objective
function. Fictitious play is an iterative procedure in which at each step, players
compute their best replies based on the assumption that other players’ actions
follow a probability distribution based on their past decisions [3]. This approach
had been applied to various multi-agent optimization problems where resources
are shared and limited such as dynamic traffic network routing [10], mobile units
situation awareness problem [14], power management in sensor network [4] and
multi-agent orienteering problem [5].

Meanwhile, [12] proposed a best-response planning method to scale up exist-
ing multi-agent planning algorithms. The authors used existing single-agent plan-
ning algorithm to compute best response of each agent to iteratively improve
the initial solution derived from an MAP algorithm. It is scalable compared to
applying the MAP algorithm directly to an MAP planning problem. However,
the authors evaluated their proposed approach only on standard benchmark
problems such as those found in the International Planning Competition (IPC)
domains. On the other hand, [8] applied a similar best-response planning app-
roach to a real-world power management problem.
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2.3 ML-VRPLC as a Non-cooperative MAP Problem

Given that the LSPs in ML-VRPLC are considered as “loosely-coupled” agents,
the approach to solve ML-VRPLC will be somewhere in between cooperative
and non-cooperative domains of MAP, although it tends to lean more towards
the non-cooperative domain since LSPs are still largely independent and self-
interested. Our proposed approach includes certain elements that are discussed
above such as non-cooperative game theory and best-response planning. Nev-
ertheless, our work differs mainly from other existing works in that we apply
techniques from other research fields (MAP and game theory) on a new variant
of a well-studied optimization problem (VRP) with a real-world problem scale.

3 Problem Description

Multiple LSPs have to fulfill a list of pickup-delivery requests within a day.
They have multiple vehicles which need to go to the pickup locations to load
up the goods and deliver them to various commercial or retail locations such as
warehouses and shopping malls. The vehicles need to return to their depot by
a certain time and every request has a time window requirement. A wait time
will be incurred if the vehicle arrives early and time violations if it serves the
request late. In addition, every location has limited parking bays for loading and
unloading, and a designated lunch hour break where no delivery is allowed. As
such, further wait time and time window violations will be incurred if a vehicle
arrives in a location where the parking bays are fully occupied or arrives during
the designated lunch hour.

The objective of each LSP is to plan for a schedule that minimizes travel
time, wait time and time window violations. Given that parking bays at every
location are shared among the multiple LSPs, some sort of coordination is needed
to deconflict their schedules to minimize congestion.

4 Model Formulation

4.1 ML-VRPLC as a Strategic Game

We formulate ML-VRPLC as an n-player game ΓML−V RPLC with LSPs repre-
sented as players i ∈ N having a finite set of strategies Si and sharing the same
payoff function i.e. u1(s) = ... = un(s) = u(s). s ∈ S1 × .... × Sn is a finite set
since Si is finite. Table 1 provides the set of notations and the corresponding
descriptions used in the model.

Strategy. In this paper, we will use the terms ‘strategy’, ‘solution’ and ‘sched-
ule’ interchangeably since a strategy of a player i.e. an LSP is represented in
the form of a schedule. A schedule is a solution of a single-LSP VRPLC which
consists of the routes (sequence of locations visited) of every vehicle and the cor-
responding time intervals (start and end service times) of every requests served
by each vehicle. si is represented as the following tuple:
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Table 1. Set of notations used in ΓML−V RPLC .

Notation Description

N A set of LSPs, N ∈ {1, 2, ..., n}
si A schedule of LSP i, i ∈ N, si ∈ Si

s A joint schedule of all LSP, s = (s1, s2, ..., sn), s ∈ S

s−i A joint schedule of all LSP except LSP i,
s−i = (s1, ..., si−1, si+1, ..., sn)

(si, s−i) A joint schedule where LSP i follows a schedule si

while the rest follows a joint schedule, s−i

ui(s) Payoff of LSP i when all LSP follows a joint schedule, s

Bi(s−i) Best response of LSP i when all other LSPs follow a joint
schedule, s−i

si = 〈si.routes, si.timeIntervals〉

Potential Function. We define a function, P (s) =
∑

i∈N ui(s) i.e. total
weighted sum of travel times, wait times and time violations when all LSP fol-
lows a joint schedule s. In this paper, we define the payoff function, ui(s) as cost
incurred (see Eq. (6) for the full definition). P (s) is an ordinal potential function
for ΓML−V RPLC since for every i ∈ N and for every s−i ∈ S−i

ui(si, s−i) − ui(s′
i, s−i) > 0 iff

P (si, s−i) − P (s′
i, s−i) > 0 for every si, s

′
i ∈ Si.

(1)

Proof.

P (si, s−i) − P (s′
i, s−i) > 0

⇒ ui(si, s−i)+
∑

j∈−i

uj(s−i) −
(
ui(s′

i, s−i) +
∑

j∈−i

uj(s−i)
)

> 0

⇒ ui(si, s−i) − ui(s′
i, s−i) > 0

Thus, ΓML−V RPLC is a finite ordinal potential game and it possesses a pure-
strategy equilibrium and has the Finite Improvement Property (FIP) [17]. Hav-
ing the FIP means that every path generated by a best response procedure in
ΓML−V RPLC converges to an equilibrium. We are able to show conceptually and
empirically that our approach converges into an equilibrium in the later sections.

Equilibrium and Local Optimality. s′ = (s′
i, s

′
−i) is an equilibrium if

ui(s′
i, s

′
−i) ≤ ui(si, s′

−i) for all i ∈ N where si ∈ Bi(s−i). (2)
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An equilibrium of ΓML−V RPLC is a local optimum since no player can improve
its payoff/reduce its cost by changing its individual schedule. Conversely, every
optimal solution, s∗ of ΓML−V RPLC is an equilibrium since ui(s∗) ≤ ui(si, s∗

−i)
for all i ∈ N where si ∈ Bi(s∗

−i).

Objective Function. The objective of this problem is to minimize the maxi-
mum payoff deviation of any one LSP from an ideal solution.

mins∈Sf(s) (3)
f(s) = maxi∈NDeviationLB(s, i) (4)

DeviationLB(s, i) =
ui(s) − ui(sideal)

ui(sideal)
× 100% (5)

where sideal is defined as the joint schedule where all other LSPs do not exist
to compete for parking bays. sideal is a Lower Bound (LB) solution since it
is a solution of a relaxed ΓML−V RPLC . We are essentially trying to search for
solutions where each LSP’s payoff is as close as possible to its corresponding LB
solution.

We do not define the objective function as mins∈S

∑
i∈N ui(s) because in

this game, the players are not concerned about the system optimality (total
payoffs of all players) but rather on how much benefit it can obtain by adopting
a coordinated planning instead of planning independently.

5 Solution Approach

The key idea of our proposed approach is to improve a chosen joint schedule
iteratively by computing the best responses of each player assuming the rest of
the players adopt the chosen joint schedule until no improvement can be obtained
to the resulting joint schedule or until a given time limit or maximum number
of iterations has been reached. Our approach is decentralized in nature because
each LSP is an independent agent which can compute its own route and schedule
i.e. a central agent does not dictate how each player determine their decisions.

Given that we have established that our problem is a potential game and
has an FIP, our approach will converge to an equilibrium which has been shown
earlier to be equivalent to a local optimal solution. Therefore, our approach seeks
to explore multiple local optimal solutions until the terminating conditions are
met and returns the best one found so far.

5.1 Iterative Best Response Algorithm

Algorithm 1 describes how the iterative best response algorithm works. At each
iteration (lines 3–22), a joint schedule is chosen from a sampling pool of previ-
ously obtained improved joint schedules or from the current best joint schedule
(line 7). We implement an epsilon greedy sampling policy to allow for exploration
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Algorithm 1: Iterative Best Response Algorithm to solve ML-VRPLC
Input : Initial joint schedule sinitial, maximum iteration K, time limit T
Output: Best found joint schedule sbest

1 sbest := sinitial, fmin := f(sinitial), k = 0

2 Create a sampling pool of joint schedules, H = {sinitial}
3 while k < K and runT ime < T and H �= {∅} do
4 if k = 0 then

5 sk := sinitial

6 else

7 With probability ε, sk ∼ U(H) otherwise sk := sbest

8 end

9 Remove sk from H

10 Find new joint schedules {sk,1, sk,2, ..., sk,n} where

sk,i = (ski , sk−i), u
i(sk,i) < ui(sk) and ski ∈ Bi(s

k
−i)

11 if ui(sk) ≤ ui(sk,i) for all i ∈ N then
12 k+ = 1
13 continue

14 end

15 if mini∈Nf(sk,i) ≤ fmin then

16 sbest := sk,i
∗
, fmin := f(sk,i

∗
)

17 put {sk,i}i∈N\{i∗} in H

18 else

19 put {sk,i}i∈N in H
20 end
21 k+ = 1

22 end

23 return sbest

of multiple improvements paths (see Fig. 1 for an example of an improvement
path) to search for best joint schedule. An improvement step consisting of n − 1
best response computations is applied to the chosen joint schedule to obtain new
improved joint schedules (line 10). If no further improvement can be made to
the sampled joint schedule, we proceed to the next iteration (lines 11–13). We
update the current best joint schedule if any of the new joint schedules has a
lower f(s) value than fmin (lines 15–16). Otherwise, we place the new improved
joint schedules into the sampling pool for further improvement steps in the subse-
quent iterations (lines 17,19). We repeat the process until termination conditions
are met. Then, we return the current best joint schedule as the final output.

Initial Solution, Lower Bound and Upper Bound Solutions. The initial
joint schedule can be initialized to any random, feasible joint schedule. However,
in this paper, we use the uncoordinated joint schedule as the initial solution to
be improved by iterative best response algorithm. To compute the initial joint
schedule, sinitial, we first compute the best schedules for each LSP independently
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assuming no other LSPs exist to compete for the limited resources. This is akin
to solving a single-LSP VRPLC. The resulting joint schedule is in fact sideal and
is the LB solution to ΓML−V RPLC . Next, a scheduler consisting of a CP model
that incorporates the resource capacity constraint at each location is solved
for the combined routes of sideal. This forms an uncoordinated joint schedule,
suncoord which serves as an Upper Bound (UB) solution to ΓML−V RPLC as any
coordinated planning approaches should result in solutions that are better than
an uncoordinated one. We use the LB and UB solutions in the experiments to
evaluate the solution quality of our proposed approach.

Finite Improvement Paths and Convergence. Each improved joint sched-
ule can be represented as a node in a directed tree. A series of nodes with
parent-child relationship forms an improvement path as shown in Fig. 1 where
P (sk,i) < P (sk−1,i′) for all k ≥ 1 and i, i′ ∈ N . Every improvement path is
finite since S is a finite set. Every finite improvement path will converge to an
equilibrium and every terminal point is a local optimum. However, since the best
response is computed heuristically and there is no way to prove optimality, the
resulting equilibrium is just an approximate. Nevertheless, we can show empir-
ically in our experiments that our approach will converge to an approximated
equilibrium solution after a certain number of iterations.

Fig. 1. One example of an improvement path assuming n = 3.

In short, our approach explore multiple improvement paths to search for joint
schedule that return the best objective value, f(s) with the lowest total payoffs,
P (s) as a secondary objective.

5.2 Best Response Computation

At every iteration, best response to a chosen joint schedule, sk is computed for
each LSP (line 10 of Algorithm 1). The best response computation of single LSP
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is equivalent to solving a single-LSP VRPLC where the resource constraint is
determined by the resource utilization of each location by all other LSPs based
on sk−i. Table 2 shows the notations used in this single-LSP VRPLC model.

Table 2. Set of notations used in the single-LSP VRPLC model.

Notation Description

V A set of vehicles

R A set of all requests

M A set of all locations

Rv A set of requests served by vehicle v

Om A set of requests at location m ∈ M

Cm,t Resource capacity at location m at time t

er,v Lower time window of request r served by vehicle v

lr,v Upper time window of request r served by vehicle v

prev(r) Previous request served prior to request r, prev(r), r ∈ Rv

dx,y Travel time from location of request x to location of request y

timeIntervalr,v Time interval when request r in vehicle v is being served,

consisting of start and end time

T0, coolingRate Parameters for acceptance criteria in Simulated Annealing

We propose a heuristic consisting of Adaptive Large Neighbourhood Search
(ALNS) as route optimizer and a scheduler based on a CP model to solve this
single-LSP VRPLC. Heuristic is proposed as it is more scalable for a real-world
problem setting. ALNS is used to search for better routes and the CP model
based on the resulting routes is then solved to produce a schedule that meets
the resource and time-related constraints. ALNS is chosen because it is probably
the most effective metaheuristic for the VRPPDTW [16] and ALNS is widely
used to solve large-scale problem [24]. Algorithm 2 details the proposed best
response computation consisting of ALNS and CP model.

The ALNS algorithm implemented in this paper is adapted from the vanilla
version of ALNS proposed by [21] with differences in the choices of the remove
and insert operators and parameters used. However, the key difference in our
ALNS implementation lies in line 7 of Algorithm 2. To compute the time intervals
and the corresponding payoff of the updated solution, a CP model is solved. The
payoff is computed as follow:

ui(si) = w1 × totalTravelT ime(si.routes)

+ minimize
∑

v∈V

{
w2 × ∑

r∈Rv

waitT imer,v + w3 × ∑

r∈Rv

timeV iolationr,v

}
(6)
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Algorithm 2: Best Response Computation
Input : Chosen solution sk, initial temperature T0, coolingRate
Output: Bi(s

k
−i)

1 sbesti := ski , si := sinput
i , T = T0

2 while termination criteria are not met do
3 s′

i := si
4 Select removal and insert operators via roulette wheel mechanism
5 Apply the selected removal operator to remove the requests from s′

i.routes
6 Apply the selected insert operator to insert the orders into s′

i.routes

7 Calculate the cost/payoff, ui(s′
i, s

k
−i) and update s′

i.timeIntervals

8 if ui(s′
i, s

k
−i) < ui(sbesti , sk−i) then

9 sbesti := s′
i, si := s′

i

10 else

11 if ui(s′
i, s

k
−i) < ui(si, s

k
−i) then

12 si := s′
i

13 else

14 si := s′
i with probability, min{1, e(u

i(si,s
k
−i)−u(s′

i,s
k
−i))/T }

15 end

16 end
17 Update the weights and scores of the operators accordingly

18 T := T ∗ coolingRate

19 end

20 Bi(s
k
−i) := sbesti

21 return Bi(s
k
−i)

where

w1, w2, w3are predetermined set of weights,
waitT imer,v = min{0, (start(timeIntervalr,v)

− end(timeIntervalprev(r),v) − dprev(r),r)},
timeV iolationr,v = min{0, (end(timeIntervalr,v) − lr,v)},

si.timeIntervals = {timeIntervalr,v}r∈Rv,v∈V

The second term of Eq. (6) is the objective function of the CP model with
{timeIntervalr,v}r∈Rv,v∈V as the primary decision variables of the model. The
key constraints of the CP model are as follow:

CUMULATIV E({timeIntervalr,v : v ∈ V,
r ∈ Rv ∩ Om}, 1, Cm,t),∀m ∈ M

(7)

noOverlap({timeIntervalr,v : r ∈ Rv}),∀v ∈ V (8)

start(timeIntervalr,v) ≥ end(timeIntervalprev(r),v)
+ dprev(r),r,∀r ∈ Rv, v ∈ V

(9)

start(timeIntervalr,v) ≥ er,v,∀r ∈ Rv, v ∈ V (10)

Constraint (7) is used to model the resource capacity constraint at each location
at a given time t where start(timeIntervalr,v) ≤ t ≤ end(timeIntervalr,v) and
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Cm,t is determined by the resource utilization of all other LSPs based on sk−i.
Constraint (8) ensures that the time intervals of requests within a route do not
overlap. Constraints (9) and (10) ensure that the start time of a request must at
least be later than the end time of the previous request plus the corresponding
travel time and it should not start before its lower time window. Other con-
straints relating to operational requirements such as no delivery within lunch
hours, operating hours of the locations and vehicles are omitted to simplify the
discussion as it is fairly straightforward to incorporate these constraints.

Scalability and Flexibility. Our approach is scalable because the best
response computations for every LSP can be done in parallel since they are
independent of each other. Our approach is also flexible as it also allows any
other forms of solution approach to single-LSP VRPLC to be used to compute
the best response.

6 Experiments

The objective of the experiment is twofold. Firstly, we would like to empirically
verify whether our approach converges to an equilibrium for our problem setting
and secondly, to evaluate the solution quality produced by our decentralized
approach against a centralized approach with respect to sideal (LB) and suncoord

(UB). Intuitively, our approach should return solutions with lower payoff/cost
than UB solution and within a reasonable deviation from LB solution.

6.1 Experimental Setup

We synthetically generate 30 test instances to simulate a month’s worth of
pickup-delivery requests for 20 LSPs. These instances are generated based on
existing datasets of our trials with several local LSPs. Each test instances con-
sists of 100 requests per LSP and each LSP has 10 vehicles. To simulate con-
gestion at the delivery locations, we narrow down the delivery locations to 15
unique shopping malls with maximum capacity of 4 parking bays per location.
Our approach is implemented with K set at 300 with T = 60 min.

The solution approach is implemented in Java while CP Optimizer ver. 12.8
is used to solve the CP model. The experiments are run on a server with the
following configurations: CentOS 8 with 24 CPU Cores and 32 GB RAM.

Benchmark Algorithm. We chose a centralized, non-collaborative planning
approach as a benchmark algorithm. It is centralized since all LSPs are treated as
one single LSP and the central agent makes the routing and scheduling decision
on behalf of the LSPs. It is non-collaborative as no exchange of requests or
sharing of vehicles are allowed i.e. each vehicle can only serve requests from
the LSP they belong to. We use a heuristic approach combining ALNS and CP
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(a) The total payoffs converge for all 30 test
instances. Each coloured line represents the
result of one test instance.

(b) Our proposed approach outperforms the
centralized approach and its solutions are
well within the LB and UB solutions.

Fig. 2. Convergence plot and total payoffs across 30 test instances.

model similar to the one used to compute best response to solve this single-
LSP VRPLC. The initial solution is constructed via randomized Clarke-Wright
Savings Heuristics adapted from [18]. The algorithm is run for 1 h and 2 h for
each test instance.

Performance Measures. On top of f(s), we introduce other performance
measures to evaluate the two approaches. The other performance measures intro-
duced are as follow:

Maximum Payoff Deviation from an Uncoordinated Solution. f ′(s) measures the
payoff deviation of the worst performing LSP from the payoff if it follows a sched-
ule based on an uncoordinated planning. A negative deviation value indicates
reduction in cost and the lower the value, the higher the improvement gained
from the UB solution.

f ′(s) = maxi∈NDeviationUB(s, i) (11)

DeviationUB(s, i) =
ui(s) − ui(suncoor)

ui(suncoor)
× 100% (12)

Average Payoff Deviation from an Ideal Solution. The lower the value, the closer
the solution is to the LB solution.

g(s) =
1
n

×
∑

i∈N

DeviationLB(s, i) (13)

Average Payoff Deviation from an Uncoordinated Solution. Similar to Eq. (11),
a negative deviation value indicates reduction in cost.

g′(s) =
1
n

×
∑

i∈N

DeviationUB(s, i) (14)
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6.2 Experimental Results

Convergence. Figure 2a shows that the total payoffs of all players converged
after 200 iterations on average for all test instances. This supports our ear-
lier deduction that ΓML−V RPLC possesses an FIP and our proposed algorithm
explores multiple improvement path that will converge to an approximated equi-
librium. Meanwhile, the average run-time for 200 iterations is around 1 h.

Our Approach vs. Centralized. As shown in Fig. 2b, we intentionally present
the results as a line chart and sort the test instances based on increasing total
payoff of the ideal solution to better illustrate that our approach returns solutions
whose total payoffs are lower than the centralized approach and are well within
the UB and LB solutions in all 30 test instances.

Table 3 shows that our approach outperforms the centralized approach on
every performance measure even when the run-time for the centralized approach
is increased to 2 h. We include results in terms of average and percentiles for a
more extensive comparison. In terms of the performance of the worst LSP, our
approach is able to ensure that on average, the payoff of the worst performing
LSP is still within about 20.7% from the LB solution and at least gain about
2.6% improvement over uncoordinated solution. Meanwhile, even with doubling
of the run-time, the centralized approach can only manage to ensure that the
payoff of the worst performing LSP is within 31.6% from the LB solution while
incurring a 12.9% additional cost as compared to an uncoordinated planning.

On average, across all LSPs, our approach return solutions that are well
within 8.3% deviation from the LB solution and improve the payoff of the LSPs
by an average of 11.2% from an uncoordinated planning approach. This is con-
trasted with the centralized approach which can only manage to return solutions
that are within 14.4% of LB solution on average and an improvement of about
6.1% from the UB solution even when the run-time is doubled.

We observe that the worst performing LSP in centralized approach consis-
tently returns f ′ values that are positive (see Table 3) which indicates that the
solution for the worst performing LSP is even worse than that of an uncoordi-
nated planning approach. This is because the centralized approach only concerns
about the system optimality and not on the performance of each individual LSP.
This reiterates our point that a centralized approach may result in some LSPs
performing worse than if they are to plan independently.

Experiment Discussion. The experiments show that our proposed decentral-
ized approach outperforms a centralized approach given the available run-time
limit of 1 h in all 30 test instances and in all 4 performance measures. Fur-
thermore, we also found that the centralized approach is computationally more
expensive and therefore not as scalable as our decentralized approach as it needs
longer run-time (>2 h) to return solutions that are at least comparable to our
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Table 3. Our approach outperforms the centralized approach on every performance
measures across 30 test instances.

Performance measure Our approach Centralized (1 h) Centralized (2 h)

Max payoff Q1 16.7% 26.3% 24.0%

Deviation from LB Q2 21.1% 30.7% 27.5%

f(s) Q3 24.0% 36.5% 32.7%

Avg 20.7% 34.2% 31.6%

Max payoff Q1 −3.0% 9.9% 6.8%

Deviation from UB Q2 −1.9% 13.4% 10.1%

f ′(s) Q3 −1.1% 16.4% 15.4%

Avg −2.6% 12.9% 12.9%

Avg payoff Q1 5.1% 12.4% 10.3%

Deviation from LB Q2 8.1% 16.9% 14.2%

g(s) Q3 11.6% 21.5% 18.3%

Avg 8.3% 16.9% 14.4%

Avg payoff Q1 −12.4% −7.1% −9.5%

Deviation from UB Q2 −9.1% 1.9% 4.0%

g′(s) Q3 −6.3% 2.9% 0.5%

Avg −11.2% −4.1% −6.1%

approach. To verify the lack of scalability of the centralized approach, we run
another set of experiments with 5 LSPs and find that it indeed performs well with
smaller scale problems. Overall, even though there will be LSPs who gain more
and others who will gain less, based on our experiments, our approach ensures
that there are enough incentives for LSPs to adopt this coordinated planning as
compared to them performing their own selfish, independent planning.

7 Conclusion and Future Works

The key idea proposed in this paper is a scalable, decentralized, coordinated
planning approach that can be tailored to large-scale optimization problems
involving multiple “loosely coupled” entities competing for shared resources.
Our proposed iterative best response algorithm decomposes a multi-agent prob-
lem into multiple single-agent problems allowing existing single-agent planning
algorithms to be applied to a smaller problem.

Even though we assume that the best response algorithms and the payoff
functions of each LSP (or agent) are identical, our approach can be extended to
problems where each LSP adopts different best response algorithm and payoff
function. The best response computation algorithm is akin to a black-box which
can be replaced with any solution algorithm to solve single-LSP VRPLC (or
single-agent version of the problem). Moreover, even with non-identical payoff
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functions, the inequality condition in Eq. (1) will still be valid and therefore our
approach will still converge to an approximated equilibrium.

One key limitation of our approach is that we assume the environment is
static which may not be the case in real-world setting. We assume that every
LSP in the system is cooperative in the sense that it participates and adheres
to the coordinated planning without any possibility of plan deviation such as
dropping out of the system or making changes to their pickup-delivery requests.
It is interesting to investigate and enhance our approach to take into consider-
ation uncertainty in the environment and evaluate its robustness in a dynamic
environment, as well as to extend it to domains beyond logistics.

Another interesting direction for future work will be to go beyond the empir-
ical study that we did in this paper by further defining and analyzing the the-
oretical bounds of our approach to n-player game ΓML−V RPLC in terms of the
classical notions of Price of Stability (PoS) and Price of Anarchy (PoA).
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