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Abstract. When dealing with election data it is reasonable to assume
that the votes are incomplete or noisy. The reasons are manifold and
range from cost-intensive elicitation to manipulation. We study the prob-
lems of evaluating elections with incomplete data and determining the
robustness of elections with noisy data from a computational point of
view. To capture a wide variety of motivations, we consider three differ-
ent models for the distribution of preferences: the uniform distribution
over the completions of incomplete preferences inspired by the possible
winner problem, the dispersion around complete preferences, also called
Mallows noise model, and a model in which the distribution over the
votes of each voter is explicitly given. We consider both approval vector
preferences and linear order preferences and show that the complexity
of the problems can vary greatly depending on the voting rule, the dis-
tribution model, and the parameterization. We investigate the problems
both in terms of counting complexity as well as decision complexity and
discuss the effects of the winner model and tie-breaking on the results.

Keywords: Probabilistic social choice · Computational complexity ·
Voting · Election robustness · Election prediction

1 Introduction

Elections are an integral part of any democracy, be it for the collective decision-
making of a whole country or just for any group of people, a sports club or
employees of a company. In addition to these classic applications, elections are
also considered in connection with software agents and automation. Here, the
applications of elections range from multi-agent planning (see, e.g., Ephrati and
Rosenschein [16]) and meta-search engines (see, e.g., Dwork et al. [15]) to rec-
ommender systems (see, e.g., Ghosh et al. [18]) and email classification (see, e.g.,
Cohen et al. [11]). In the classic case, we assume that we have perfect knowledge
about the preferences of the voters and are able to use a voting rule to determine
the rightful winners with respect to the specific rule.

A preliminary version of this work was published as an extended abstract in the pro-
ceedings of AAMAS 2020 (see Baumeister and Hogrebe [3]).
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However, in many realistic scenarios, we can not assume that we have perfect
information about voter preferences. Nevertheless, a decision must often be made
or at least in some way a result of the election must be presented, for example in
the form of the winning probabilities considered here. The reasons for imperfect
election data are manifold. First, we often cannot assume that the election data
we receive is complete. In the case of actual elections, the collection of complete
election data is often cost-intensive, complicated, or simply not possible under
the given circumstances. The same holds for the creation of election forecasts
based on partial data aggregated from social networks or polls, where a complete
collection of election data is not appropriate. On the other hand, even if we
receive complete election data, in many situations we cannot assume that it has
not been corrupted in transmission, by manipulation, or through the elicitation
itself. In these situations the question arises how robust and thereby justified a
candidate’s victory is if the data has been corrupted to a certain degree.

Therefore, we study the problem of determining the probability that a par-
ticular candidate wins an election for a given distribution over the preferences of
the voters. Conitzer and Sandholm [12] were the first to study this problem and
referred to it as the evaluation problem. The relevance of the problem is immense,
as it captures many different, and in particular the previously presented, sce-
narios, such as the winner determination on incomplete data, the creation of
election forecasts, and the examination of the justification or robustness of a
candidate’s victory if corruption of the data is possible. To cover those different
motivations, we consider three models for the distribution of preferences: the
uniform distribution over the completions of incomplete preferences inspired by
the possible winner problem, the dispersion around complete preferences, also
called Mallows noise model, and a model in which the distribution over the
votes of each voter is explicitly given. The basic definitions of formal elections as
well as the formal definition of the evaluation problem, the preference distribu-
tions, and computational complexity will be introduced in Sect. 2. In Sect. 3, we
study the computational complexity of the evaluation problem regarding those
distributions and consider both voting rules on approval vector preferences and
linear order preferences, namely positional scoring rules. Our results include both
hardness results for #P as well as polynomial-time algorithms. We show that
the complexity of the problem can vary greatly depending on the voting rule,
the distribution model, and the parameterization. Especially, we investigate the
problem both in terms of counting complexity as well as decision complexity in
Sect. 3.4. Finally, we will examine the relation between our and related work in
Sect. 4 and discuss our results in Sect. 5.

2 Preliminaries

Formally an election is given by a tuple E = (C, V ), with C = {c1, . . . , cm}
with m ≥ 2 denoting the set of candidates and V = (v1, . . . , vn) with n ≥ 1
denoting the preference profile consisting of n votes over C. We consider the two
most prominent types of votes: approval vectors and linear orders. In the case of



230 D. Baumeister and T. Hogrebe

approval vectors, each vote is represented by a vector vi ∈ {0, 1}m in which voter
i expresses approval for the candidate cj by setting the respective entry, denoted
by appvi

(cj), to 1. In the case of linear orders, each vote vi is represented by a
complete strict linear order >i over C. By L(C) we denote the set of all strict
linear orders over C.

We consider the following voting rules for winner determination. For approval
vectors, we use the canonical approval voting (AV). That is, the candidates with
the most approvals win. The common variant in which the voters must distribute
exactly k approvals is denoted by k-AV with fixed k ≥ 1 for m > k. For linear
orders, we focus on positional scoring rules. A positional scoring rule (or scoring
rule for short) is characterized by a scoring vector α = (α1, . . . , αm) ∈ N

m
0 with

α1 ≥ α2 ≥ · · · ≥ αm and α1 > αm, where αj denotes the number of points
a candidate receives for being placed on position j by one of the voters. Those
candidates with the maximum number of points are the winners of the election. A
scoring rule covering an arbitrary number of candidates is given by an efficiently
evaluable function determining a scoring vector for each number of candidates
above a certain minimum. Note that without loss of generality of our results we
assume that αm = 0 holds. The most prominent scoring rules are Borda with
α = (m−1,m−2, . . . , 1, 0), the scoring rule characterized by α = (2, 1, . . . , 1, 0),
k-approval with fixed k ≥ 1 for m > k characterized by α = (α1, . . . , αm) with
α1 = · · · = αk = 1 and αk+1 = · · · = αm = 0, and k-veto with fixed k ≥ 1
for m > k characterized by α = (α1, . . . , αm) with α1 = · · · = αm−k = 1 and
αm−k+1 = · · · = αm = 0. More specifically, 1-approval is also refereed to as
plurality and 1-veto as veto. Note, that k-AV and k-approval essentially describe
the same voting rule and differ only in the amount of information we are given
about the preferences of the voters. Interestingly, this very distinction leads to
differing complexity results in some cases, as we will see later.

In the course of this work we will also encounter elections with partial infor-
mation. A partial profile Ṽ = (ṽ1, . . . , ṽn), in contrast to a normal profile, may
contain partial votes. In the case of approval vectors, a partial vote is repre-
sented by a partial approval vector ṽi ∈ {0, 1,⊥}m, where ⊥ indicates that the
approval for the respective candidate is undetermined. An approval vector vi is
a completion of a partial approval vector ṽi if for all j ∈ {1, . . . ,m} it holds
appṽi

(cj) ∈ {0, 1} ⇒ appvi
(cj) = appṽi

(cj). In the case of linear orders, a par-
tial vote consists of a partial order ṽi : �i over C that is, an irreflexive and
transitive, but on the contrary to linear orders, not necessarily connex relation.
A linear order >i is a completion of a partial order �i if for all cs, ct ∈ C it
holds cs �i ct ⇒ cs >i ct. For both types of votes, a profile V = (v1, . . . , vn) is
a completion of a partial profile Ṽ = (ṽ1, . . . , ṽn), if vi is a completion of ṽi for
1 ≤ i ≤ n. The set of all completions of a vote ṽi or a profile Ṽ is denoted by
Λ(ṽi) or Λ(Ṽ ) respectively.

As mentioned earlier, there may be uncertainty about the votes in elections
due to several reasons. Thus we assume some distribution over possible profiles,
and investigate the problem of determining the winning probability of a certain
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candidate. This is formalized in the problem E-Evaluation for a given voting
rule E as follows.

E-Evaluation
Given: Set of candidates C, profile distribution P over C, and candidate p ∈ C.

Question: What is the probability Φ that p is a winner of the election with respect
to E assuming P?

Here we mainly focus on the non-unique winner case where p is considered
a winner of election (C, V ) with respect to voting rule E , if and only if p is
contained in the set of winners E(C, V ). In the unique winner case, we require
E(C, V ) = {p} for p to be considered a winner of the election. In addition, we also
consider random and lexicographic tie-breaking, where in the former the victory
of a candidate is weighted according to the total number of winners and in the
latter a tie is resolved according to a given order. Unless stated otherwise, the
results presented here hold for all four models. Note that regarding the definition
of Evaluation, the distribution as part of the input means that the respective
distribution is specified by the necessary parameters as part of the input.

In the following we will present the three distribution models for profiles
considered in this paper. Note that all the models presented here are products
of independent distributions over the preferences for each voter. For a discussion
of the properties and relevance of those models considered here and comparable
models, we refer to the overview by Boutilier and Rosenschein [8].

PPIC. The first model we consider is the normalized variant of the possible win-
ner motivated model of Bachrach et al. [2]. We will refer to this model as partial
profile impartial culture model (PPIC). Given a set of candidates C, a partial
profile Ṽ = (ṽ1, . . . , ṽn) over C. The probability of a profile V = (v1, . . . , vn)
over C according to PPIC is given by PrPPIC(V | Ṽ ) = 1/|Λ(Ṽ )|. Thereby, each
completion of the partial profile is equally likely, hence the name ‘impartial cul-
ture’. Note, that for partial linear orders, the computation of the probability of a
given profile is #P-hard, since the calculation of the normalization |Λ(Ṽ )| itself
is already a #P-hard problem as shown by Brightwell and Winkler [9] whereby
the normalized variant and the variant considered by Bachrach et al. [2] are not
immediately equivalent under polynomial-time reduction. For AV and k-AV, on
the other hand, the probability of a given profile can be calculated in polynomial
time. For AV it holds that |Λ(Ṽ )| = 2N⊥ where N⊥ denotes the total number
of undetermined approvals in Ṽ . For k-AV it holds that |Λ(Ṽ )| =

∏n
i=1

(
u(ṽi)

k−a(ṽi)

)

where u(ṽi) = |{c ∈ C | appṽi
(c) = ⊥}| and a(ṽi) = |{c ∈ C | appṽi

(c) = 1}|.
For Evaluation under PPIC the parameter is the partial profile Ṽ . Referring
back to the motivations stated at the beginning, PPIC can be used in relation to
the evaluation problem to create election forecasts based on partial data about
the preferences aggregated from social networks or polls. In terms of robustness,
PPIC can be motivated by the possibility that data was partially lost during
the collection or transmission. In both scenarios there is a reasonable interest in
finding out with which probability which candidate is the winner of the election.
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Example 1. Suppose we are in the run-up to a plurality (1-approval) election
over the set of candidates C = {a, b, c} and we have received the partial profile
Ṽ over C shown in Fig. 1 from aggregating social network data. The evaluation
problem assuming PPIC with distinguished candidate a asks for the probability
that a is a winner, when all possible completions are considered with equal
probability. In this case a is only a winner in one of the six possible completions
of Ṽ , whereby the answer to the Evaluation instance is Φ = 1/6.

Ṽ

v1 : {a > c, b > c}
v2 : {b > c}
v3 : {b > c > a}v1 : a > b > c

v2 : a > b > c
v3 : b > c > a

v1 : a > b > c
v2 : b > a > c
v3 : b > c > a

v1 : a > b > c
v2 : b > c > a
v3 : b > c > a

v1 : b > a > c
v2 : a > b > c
v3 : b > c > a

v1 : b > a > c
v2 : b > a > c
v3 : b > c > a

v1 : b > a > c
v2 : b > c > a
v3 : b > c > a

Fig. 1. Example for an Evaluation instance assuming PPIC with distinguished can-
didate a. All possible completions of Ṽ , each with probability 1/6. Profiles for which a
is not a winner are grayed out.

We now use Example 1 to illustrate the difference between k-approval and k-
AV regarding Evaluation. They are essentially the same voting rule and differ
only in the amount of information we are given about the preferences and thereby
in the expressiveness of the partial preferences. For v1 with partial preference
{a > c, b > c} an equivalent partial 1-AV preference could be given by (⊥,⊥, 0)
over (a, b, c). However, for v2 with partial preference {b > c} it is not possible
to construct a partial approval vector such that b receives the approval with a
probability of 2/3 and a with a probability of 1/3. It is precisely this difference in
the underlying preferences that leads to different complexities for the evaluation
problem in Theorem 1 and Theorem 3 for the essentially one and the same voting
rule described by k-approval and k-AV.

Mallows. The second model we are considering is the Mallows noise model [28]
which is hereinafter mostly referred to as Mallows for short. The basic idea
is that some reference profile is given, and the probability of another pro-
file is measured according to its distance to the reference profile. Since the
Mallows model is originally defined for linear orders, we will also present a
version that applies to approval vectors. Given a set of candidates C, a pro-
file V̂ = (v̂1, . . . , v̂n) over C and dispersion ϕ ∈ (0, 1). The probability of a
profile V = (v1, . . . , vn) over C according to the Mallows model is given by
PrMallows(V | V̂ , ϕ) = ϕd(V,V̂ )

/Zn with distance d and normalization constant Z
chosen according to the vote type. Note, that it is assumed that the dispersion
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is the same for all voters. In the original case of linear orders, the total swap dis-
tance (also known as the Kendall tau distance) d(V, V̂ ) =

∑n
i=1 sw(vi, v̂i) is used,

where sw(vi, v̂i) is the minimum number of swaps of pairwise consecutive candi-
dates that are needed to transform vi into v̂i. The normalization can be written
as Z = Zm,ϕ = 1 · (1 + ϕ) · (1 + ϕ + ϕ2) · · · (1 + · · · + ϕm−1) (see, e.g., Lu and
Boutilier [27]). In the case of approval vectors, we propose to use the total Ham-
ming distance d(V, V̂ ) =

∑n
i=1 H(vi, v̂i) with H(vi, v̂i) = |{c ∈ C | appvi

(c) �=
appv̂i

(c)}|. The normalization factor is Z = Zm,ϕ =
∑m

j=0

(
m
j

) · ϕj . Addition-

ally, for k-AV vectors, the normalization becomes Z = Zm,k,ϕ =
∑�m/2�

j=0

(
k
j

) ·
(
m−k

j

) · ϕ2j . For Evaluation under Mallows, the parameters are the reference

profile V̂ over C and dispersion ϕ. Referring to the motivations, Mallows model
captures the scenarios in which the data was corrupted in transmission, by small-
scale manipulation, through the elicitation, or the preferences of the voters have
changed over time. While the profile obtained in this scenario is the most likely,
we have to assume that there is a statistical dispersion. Again, it is natural that,
in such scenario, we are interested in how likely and thereby justified and robust
the victory of a candidate is.

Example 2. Suppose we perform a 1-AV election over the set of candidates C =
{a, b} and the profile V̂ over C shown in Fig. 2. We assume that it has been
slightly corrupted in transmission with dispersion ϕ = 1/2. Now, Evaluation
assuming Mallows with distinguished candidate b asks for the probability that b
is a winner of the election. The profile V̂ over (a, b) and the surrounding profiles
with their respective total Hamming distance to V̂ and probabilities are shown
in Fig. 2. The probability that b is a winner, and thereby the answer to the
Evaluation instance, is Φ = (0.25+0.25+0.0625+0.015625)/Z3 = 0.296 with Z3 =
1.953125. Whereby, candidate b or the voters could have legitimate concerns
about the robustness and thereby the legitimacy of the victory of candidate a
under those circumstances.

V̂

v1 : (1, 0)
v2 : (0, 1)
v3 : (1, 0)

1/Z3

d(·, V̂ ) = 2

0.25/Z3

v1 : (1, 0)
v2 : (1, 0)
v3 : (1, 0)

v1 : (1, 0)
v2 : (0, 1)
v3 : (0, 1)

v1 : (0, 1)
v2 : (0, 1)
v3 : (1, 0)

d(·, V̂ ) = 4

0.0625/Z3

v1 : (1, 0)
v2 : (1, 0)
v3 : (0, 1)

v1 : (0, 1)
v2 : (1, 0)
v3 : (1, 0)

v1 : (0, 1)
v2 : (0, 1)
v3 : (0, 1)

d(·, V̂ ) = 6

0.015625/Z3

v1 : (0, 1)
v2 : (1, 0)
v3 : (0, 1)

Fig. 2. Example for an Evaluation instance assuming Mallows with distinguished
candidate b. The probability for each profile is given with respect to its Hamming
distance to V̂ . Profiles for which b is not a winner are grayed out.
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EDM. Finally, we consider the model introduced by Conitzer and Sandholm [12]
and later studied by Hazon et al. [19]. Due to its nature, we refer to it as the
explicit distribution model (EDM). Given a set of candidates C, for each voter
i ∈ {1, . . . , n} we are given a probability distribution πi over the votes over C
through a list of votes paired with their non-zero probabilities. Each unspecified
vote has probability 0. The probability of a profile V = (v1, . . . , vn) over C
according to EDM for π = (π1, . . . , πn) is given by PrEDM(V | π) =

∏n
i=1 πi(vi).

The parameters needed for Evaluation under EDM is the list of votes over C
paired with their probabilities for each voter. In practice, it can be quite difficult
to determine meaningful probabilities for the individual preferences required for
EDM. On the other hand, using EDM, one can replicate both PPIC, Mallows
and other models by explicitly stating the respective probability distribution for
each voter. However, this may require high computational effort as well as a list
of exponential length depending on the number of candidates for each voter.
Nevertheless, EDM in its generality and flexibility covers the motivations and
scenarios of the other models.

Example 3. Suppose we focus on a Borda election over the set of candidates
C = {a, b, c} and the probability distribution π shown in Fig. 3. The evaluation
problem assuming EDM with distinguished candidate b asks for the probability
that b is a winner of the election. Here b wins in two profiles with positive
probability, 12/20 and 3/20, so the answer to the Evaluation instance is Φ = 3/5.

π

v1 : a > b > c 4/5
b > a > c 1/5

v2 : a > c > b 1/4
b > c > a 3/4

v3 : c > b > a 1

v1 : a > b > c
v2 : a > c > b
v3 : c > b > a

4/20

v1 : a > b > c
v2 : b > c > a
v3 : c > b > a

12/20

v1 : b > a > c
v2 : a > c > b
v3 : c > b > a

1/20

v1 : b > a > c
v2 : b > c > a
v3 : c > b > a

3/20

Fig. 3. Example for an Evaluation instance assuming EDM with distinguished can-
didate b. The probability for each profile is given with respect to π. Profiles for which
b is not a winner are grayed out.

Computational Complexity. We assume that the reader is familiar with the basics
of computational complexity, such as the classes P, NP, FP, and #P. For further
information, we refer to the textbooks by Arora and Barak [1] and Papadim-
itriou [30]. We examine the complexity of the problems presented here mainly in
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Table 1. Complexity results for E-Evaluation in the non-unique winner case. The
number of voters is denoted by n. For a constant number of candidates, see Theorem 11.

PPIC Mallows EDM

General Const. n General Const. n General Const. n

AV FP,

Theorem 2

FP,

Theorem 9

#P-hard,

Theorem 10

FP,

Theorem 10

k-AV (k ≥ 1) #P-hard,

Theorem 3

FP,

Theorem 3

? FP,

Theorem 9

#P-hard,

Theorem 10

FP,

Theorem 10

k-appr. (k ≥ 1),

k-veto (k ≥ 1),

(2, 1, . . . , 1, 0)

#P-hard,

Theorem 1

#P-hard

(n = 1),

Theorem 1

#P-hard,

Theorem 6, 7

FP,

Theorem 5

#P-hard,

Theorem 10

FP,

Theorem 10

Borda #P-hard,

Theorem 6

FP (n = 1),

Theorem 4

terms of counting complexity as introduced by Valiant [34] using polynomial-time
Turing reductions from #P-hard counting problems to show the hardness of the
problems or by presenting polynomial-time algorithms to verify their member-
ship in FP. Comparing the complexity of #P-hard problems to the complexity
of decision problems in the polynomial hierarchy, we recognize the immense
complexity of just those. According to the theorem of Toda [33], the whole poly-
nomial hierarchy is contained in P#P. Therefore, a polynomial-time algorithm
for a #P-hard problem would implicate the collapse of the whole polynomial
hierarchy, including NP, to P.

3 Results

In this section we present our results regarding the evaluation problem. Table 1
summarizes our main results for the non-unique winner case. Note that we have
omitted several proofs due to the length restrictions but briefly address the ideas.

3.1 PPIC

In the following, we present our results regarding PPIC. We start with the results
for profiles consisting of linear order votes. Bachrach et al. [2] have shown that
the evaluation problem for the non-normalized variant of PPIC is #P-hard for
plurality and veto, even though each preference has at most two completions. It is
precisely the latter limitation that makes it possible to easily transfer this result
to the normalized variant considered here. Furthermore, by using the circular
block votes lemma of Betzler and Dorn [6] it is possible to extend the result to
all scoring rules. Note, however, that all these proofs require a variable number
of voters. Therefore, we start by showing that E-Evaluation assuming PPIC
is #P-hard for all scoring rules in the non-unique winner case, even if only one
voter is participating in the election.

Theorem 1. E-Evaluation is #P-hard for each scoring rule assuming PPIC,
even for one voter.
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Proof. We show the #P-hardness by a polynomial-time Turing reduction from
the problem #Linear-Extension, the problem of counting the number of com-
pletions (also referred to as linear extensions) of a partial order �X over a set
of elements X, which was shown to be #P-hard by Brightwell and Winkler
[9]. Assume we are given a #Linear-Extension instance consisting of a set
X = {x1, . . . , xt} and a partial order �X over X. First, we determine one com-
pletion >∗

X of �X through topological sorting. Set X0 = X. For i = 0, . . . , t − 2
we perform the following routine.

In the following, we construct an instance for a query to the E-Evaluation
oracle. Note that Xi contains t−i elements. Set C = Xi∪{bj | 1 ≤ j ≤ t+i} with
m = 2t. We assume that the given scoring rules is defined for 2t candidates. If
not, the given linear extension instance can be enlarged using padding elements.
Let α = (α1, . . . , αm) with αm = 0 be the scoring vector for m candidates and
k = min{j ∈ {1, . . . ,m − 1} | αj > αj+1}. We distinguish between two cases.

Case 1 (k < t − 1): Let Ṽ be a partial profile over C consisting of one partial
vote ṽ : b1 � · · · � bk−1 � X�X

i � bk � · · · � bt+i with X�X
i being the

elements in Xi partially ordered by �X . Let xs be the element in Xi for
which ∀xj ∈ Xi \ {xs} : xs >∗

X xj holds.
Case 2 (k ≥ t − 1): Let Ṽ be a partial profile over C consisting of one partial
vote ṽ : b1 � · · · � bk−t+1 � X�X

i � bk−t+2 � · · · � bt+i with X�X
i being

the elements in Xi partially ordered by �X . Let xs be the element in Xi for
which ∀xj ∈ Xi \ {xs} : xj >∗

X xs holds.

We subsequently set Θi = Φ (Case 1) or Θi = 1−Φ (Case 2) with Φ denoting
the answer of the E-Evaluation oracle regarding the previously constructed
instance consisting of the set of candidates C, partial profile Ṽ , and candidate
p = xs. The routine ends with setting Xi = Xi \ {xs}.

Finally, after considering each value of i, we return
∏t−2

i=0 Θ−1
i as the num-

ber of completions of �X . We now show the correctness of the reduction.
By �Xi

we denote the partial order over Xi induced by �X . We show that
Θi = |Λ(�Xi+1)|/|Λ(�Xi

)| for i ∈ {0, . . . , t − 2} holds. For this we consider
an arbitrary step i. It holds that α1 = · · · = αk > αk+1. Note that in both
cases, the partiality of ṽ is limited to the partial order �Xi

embedded in it.
In Case 1, xs is a winner of the election regarding completion V = (v) of
Ṽ = (ṽ) if and only if xs is placed in position k in v. Candidate xs being
placed in position k in v is equivalent to ∀xj ∈ Xi \ {xs} : xs >v xj . Thereby,
Θi = |{>∗ ∈ Λ(�Xi

) | ∀xj ∈ Xi \ {xs} : xs >∗ xj}|/|Λ(�Xi
)| holds. But if xs

is fixed to the top position regarding Xi, it holds that the remaining number
of completions equals the number of completions regarding Xi+1 = Xi \ {xs}
whereby |{>∗ ∈ Λ(�Xi

) | ∀xj ∈ Xi \ {xs} : xs >∗ xj}| = |Λ(�Xi+1)| holds.
Thereby, Θi = |Λ(�Xi+1)|/|Λ(�Xi

)| follows. In Case 2, xs is not a winner of the
election regarding completions V = (v) of Ṽ = (ṽ) if and only if xs is placed in
position k + 1 in v. The proportion of completions in which xs is not a winner
and thus fixed to the last position regarding Xi is given by Θi = 1 − Φ with Φ
denoting the probability that xs wins. Thereby, Θi = |Λ(�Xi+1)|/|Λ(�Xi

)| can
be shown analogous to Case 1.
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Finally, it holds that |Xt−1| = 1 whereby |Λ(�Xt−1)| = 1. Thus, by repeatedly
applying |Λ(�Xi

)| = Θ−1
i · |Λ(�Xi+1)| for i ∈ {0, . . . , t − 2}, |Λ(�X)| = |Λ(�X0)

| =
∏t−2

i=0 Θ−1
i follows. As the reduction can be performed in polynomial time,

the #P-hardness follows. ��
Note that the complexity in the unique winner case is much more diverse. For
scoring rules fulfilling α1 > α2 for each number of candidates, for example plural-
ity, (2, 1, . . . , 1, 0), and Borda, the #P-hardness of the problem in the case of one
voter can be shown using the previous reduction. For 2-approval, the problem
is trivial for one voter, but can be shown to be #P-hard for two voters using a
slightly adjusted version of the previous reduction. Finally, for veto, the problem
is not hard for any constant number of voters, since the problem is trivial if the
number of candidates exceeds the number of voters by more than one.

We now turn to the results regarding approval voting. We start with the
result for approval voting with a variable number of approvals per voter, for
which the complexity is significantly lower than for scoring rules.

Theorem 2. E-Evaluation is in FP for AV assuming PPIC.

Proof. We show that the problem is in FP using a dynamic programming app-
roach. Assume we are given an AV-Evaluation instance assuming PPIC con-
sisting of a set of candidates C = {p, c1, . . . , cm−1}, partial profile Ṽ = (ṽ1, . . . ,
ṽn) and candidate p.

First, we define some shorthand notations. By d(c), a(c), and u(c) we denote
the number of votes ṽi in Ṽ with appṽi

(c) = 0, 1, or ⊥ respectively. For a
candidate c ∈ C, by R(i, c) for 0 ≤ i ≤ n we denote the number of combina-
tions to extend the partial entries in Ṽ for candidate c such that c has exactly
i approvals. It holds that R(i, c) =

(
u(c)

i−a(c)

)
for 0 ≤ i − a(c) ≤ u(c) and 0 other-

wise. By N(s, j, k) we denote the number of combinations to extend the partial
entries in Ṽ for the candidates c1, . . . , cj in a way that exactly k candidates
in {c1, . . . , cj} receive exactly s approvals each while each other candidate in
{c1, . . . , cj} receives less than s approvals. Set N(s, 0, 0) = 1 for 0 ≤ s ≤ n
and N(s, j, k) = 0 for k > j or negative s, j, or k. The following relationship
applies. N(s, j, k) =

[∑s−1
i=0 R(i, cj)

]
· N(s, j − 1, k) + R(s, cj) · N(s, j − 1, k − 1)

for 0 ≤ s ≤ n, 1 ≤ j ≤ m − 1, and 0 ≤ k ≤ m − 1. The factor in the first term
of the formula equals the number of different possibilities for cj to receive less
than s approvals in a completion. The factor in the second term corresponds to
the number of different possibilities for cj in a completion to obtain exactly s
approvals, which increases the number of candidates with exactly s approvals by
one. Therefore, by summing over all possible numbers of co-winners and each
score of p that p could receive considering the different ways p may receive this
score we obtain H =

∑m−1
k=0

∑n
s=0 (R(s, p) · N(s,m − 1, k)) denoting the number

of completions for which p is a winner of the election. Thereby the probability Φ
that p is a winner of the election is given by H/2N⊥ with N⊥ denoting the total
number of undetermined approvals in Ṽ . We have to determine O(n·m2) different
entries with each one requiring at most O(n2) steps whereby the whole approach
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only requires a polynomial bounded number of steps. In the unique winner case
we receive the number of completions in which p is the winner of the elections
by excluding the possibility of co-winners: H =

∑n
s=0 R(s, p) · N(s,m − 1, 0). ��

On the other hand, if the number of approvals is fixed for each voter, the
problem becomes hard for approval voting. Interestingly, and contrary to the
result for scoring rules, this hardness does not hold for a constant number of
voters. This leads to the apparently contradictory result that the complexity
of the problem for one and the same voting rule described by k-approval and
k-AV is differing. This difference can be traced back to the differing degree of
information which was addressed in the explanation after Example 1.

Theorem 3. E-Evaluation is #P-hard for k-AV for any fixed k ≥ 1 assuming
PPIC, but lies in FP for a constant number of voters.

The first statement can be shown by a reduction from #Perfect-Bipartite-
Matching which was shown to be #P-hard by Valiant [34]. The second state-
ment follows from the observation that there is only a polynomially bounded
number of votes per voter and thus for a constant number of voters there is only
a polynomially bounded number of profiles with non-zero probability.

3.2 Mallows

In the following, we present our results regarding the Mallows noise model. Note
that the Mallows model is generalized by the repeated insertion model (RIM).
Therefore, the hardness results in this section also hold for RIM. Again, we
first present the results for profiles consisting of linear order votes. Note that
our main tool for the hardness results presented here is the observation that the
evaluation problem regarding Mallows is equivalent to the counting variant of the
unit-cost swap bribery problem (see Dorn and Schlotter [14]) under polynomial-
time Turing reduction. We omitted the proof for this result due to the length
restrictions. The main idea is to choose the dispersion factor in such a way that
it is possible to recalculate the exact number of profiles in a certain total swap
distance in which the respective candidate is a (non-)unique winner.

Theorem 4. E-Evaluation is in FP for all scoring rules assuming Mallows
for one voter.

We show that Kendall’s approach (see Kendall [22]) of calculating the number of
linear orders with an exact given swap distance to a given vote can be formulated
as dynamic programming and extended to take into account the position of p.

This result can also be extended to any constant number of voters for a certain
class of scoring rules. We call a scoring rule almost constant if the number of
different values in its scoring vectors is bounded by a constant, and additionally
only one value has an unbounded number of entries. This class of scoring rules
was considered by Baumeister et al. [5] and later by Kenig and Kimelfeld [23],
the latter of which coined the name. This class contains, for example, scoring
rules like k-approval, k-veto and (2, 1, . . . , 1, 0).
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Theorem 5. E-Evaluation is in FP for all almost constant scoring rules
assuming Mallows for a constant number of voters.

The result is based on the fact that the number of combinations of relevant
prefixes and suffixes of the votes in the profile is bounded by a polynomial
with the degree including the number of positions covered by the values with a
bounded number of entries and the number of voters. As we will see in Theorem 8,
there also exist scoring rules beyond this class for which the problem is hard for
a constant number of voters. We proceed with our results for an unbounded
number.

Theorem 6. E-Evaluation is #P-hard for (2, 1, . . . , 1, 0) and Borda assuming
Mallows.

Baumeister et al. [5] showed the NP-hardness of the unit-cost swap bribery prob-
lem for (2, 1, . . . , 1, 0) and Borda through a polynomial-time many-one-reduction
from the NP-complete problem X3C. As the respective counting problem #X3C
is #P-hard as shown by Hunt et al. [20] and the previously mentioned reductions
by Baumeister et al. are also parsimonious, the counting version of the unit-cost
swap bribery problem is #P-hard for (2, 1, . . . , 1, 0) and Borda. Therefore, by
the results stated at the beginning of this section regarding the polynomial-
time Turing equivalence of the problems, the #P-hardness of E-Evaluation for
(2, 1, . . . , 1, 0) and Borda assuming Mallows follows.

Contrary to Borda and (2, 1, . . . , 1, 0), it is known that the unit-cost swap
bribery problem is in P for plurality and veto (Dorn and Schlotter [14]). As we
see in the following, however, the respective counting variants and evaluation
problems assuming Mallows are #P-hard.

Theorem 7. E-Evaluation is #P-hard for k-approval and k-veto with fixed
k ≥ 1 assuming Mallows.

The proof consists of a reduction from #Perfect-Bipartite-Matching for
3-regular graphs which was shown to be #P-hard by Dagum and Luby [13].

Considering Theorem 4 and Theorem 5, the question arises as to whether a
scoring rule exists and, if so, whether a natural scoring rule exists, for which the
evaluation problem assuming Mallows is #P-hard even for a constant number of
voters. For this we consider top-m/2� Borda characterized by the scoring vector
α = (k, k − 1, . . . , 1, 0, . . . , 0) for k = m/2� and m candidates.

Theorem 8. E-Evaluation is #P-hard for top-m/2� Borda assuming Mal-
lows, even for a constant number voters.

Again, the proof consists of a reduction from #Perfect-Bipartite-Matching
for 3-regular graphs using König’s Line Coloring Theorem (König [24]). The
number of voters here is 13. We expect that the problem is already hard for a
lower number of voters for scoring rules similar to top-m/2� Borda and Borda.

We now turn to the results regarding approval voting.
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Theorem 9. E-Evaluation is in FP for AV assuming Mallows and for k-AV
assuming Mallows and a constant number of voters.

The proof for the first case consists of a dynamic programming approach
similar to that in the proof of Theorem 2. The second case follows from the fact
that only a polynomial bounded number of possible profiles exist.

3.3 EDM

We now present our results regarding EDM. Since EDM generalizes both PPIC
and Mallows, and, under certain restrictions, even through a polynomial-time
Turing reduction, many of the previous results can be transferred to EDM for
both scoring rules and approval voting. Note that some results for individual
scoring rules and EDM were already known through Hazon et al. [19].

Theorem 10. E-Evaluation is #P-hard for AV, k-AV, and all scoring rules
assuming EDM, but lies in FP for a constant number of voters.

The hardness results follow from the proofs of the hardness results regarding
PPIC (see the note on the complexity regarding an unbounded number of voters
above Theorem 1 and Theorem 3) in which for the constructed instances the
number of completions of a vote is at most two and thus the instance can be
efficiently transformed into an EDM instance. The efficiency result follows from
the fact that the number of possible profiles is polynomially bounded.

Finally, we present our results for a constant number of candidates.1

Theorem 11. E-Evaluation is in FP for AV, k-AV, and all scoring rules
assuming PPIC, Mallows, or EDM for a constant number of candidates.

The result follows by slight adjustments from the approach for a constant num-
ber of candidates by Hazon et al. [19] and the fact that Mallows and PPIC
instances can be efficiently transformed to EDM instances for a constant num-
ber of candidates.

3.4 Corresponding Decision Problem

Conitzer and Sandholm [12] defined the evaluation problem as a decision problem
instead of a weighted counting problem. Assume we are given a rational number
r with 0 ≤ r ≤ 1 as part of the input. Here we ask whether the probability that
the given candidate is a winner of the election is greater than r. We refer to
this problem as E-Evaluation-Dec. The question arises whether the decision
problem in some cases is easier to answer than the weighted counting problem.
The following result shows that this is not the case for the cases considered here,
namely AV, k-AV and scoring rules assuming PPIC, Mallows, and EDM. This
result holds for all winner models and parameterized cases considered here.

1 Theorem 11 covers the case of classical scoring rules with a fixed-size scoring vector.
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Theorem 12. For the cases considered here, the problems E-Evaluation and
E-Evaluation-Dec are equivalent under polynomial-time Turing reduction.

While the reduction of the decision variant to the probability variant is straight-
forward, the reduction in the opposite direction uses the decision problem as
oracle for the search algorithm of Kwek and Mehlhorn [25]. It follows that E-
Evaluation is in FP, if and only if E-Evaluation-Dec is in P. On the other
hand, E-Evaluation is #P-hard, if and only if E-Evaluation-Dec is #P-
hard. While it is unusual to speak of #P-hardness of decision problems, it is
possible to show just that using Turing reductions. The #P-hardness makes the
NP-membership of such a problem unlikely (Toda [33]).

An interesting special case of the decision problem is to ask if the probability
that the given candidate wins is greater than r = 0. By the previous theorem it
follows that if the problem for r = 0 is NP-hard, the NP-hardness of the evalua-
tion problem under Turing reduction follows, but not the stronger #P-hardness.
Regarding EDM, the problem is referred to as the Chance-Evaluation prob-
lem by Hazon et al. [19]. Regarding PPIC, the problem is equivalent to the well
studied possible winner problem (for a recent overview, see Lang [26]). Regard-
ing Mallows, the problem is trivial for the voting rules considered here as each
candidate has a non-zero winning probability.

4 Further Related Work

In the following we discuss the related work which has not been sufficiently
covered in the paper so far. For a comprehensive overview regarding elections
with probabilistic or incomplete preferences, we refer to the overview by Boutilier
and Rosenschein [8] and the survey by Walsh [35].

Subsequently to the polynomial-time randomized approximation algorithm
with additive error for calculating a candidates’ winning probability assuming
PPIC by Bachrach et al. [2], Kenig and Kimelfeld [23] recently presented such
an algorithm with multiplicative error for calculating the probability that a
candidate loses assuming PPIC or RIM including Mallows.

Wojtas and Faliszewski [37] and recently Imber and Kimelfeld [21] have stud-
ied the problem of determining the winning probability for elections in which the
participation of candidates or voters is uncertain by examining the complexity
of the counting variants of election control problems.

Shiryaev et al. [31] studied the robustness of elections by considering the
minimum number of swaps in the profile necessary to replace the current win-
ner for which the evaluation problem under Mallows forms the probabilistic
variant. Very recently, Boehmer et al. [7] have further built on these studies
and thoroughly investigated the corresponding counting variant considering the
parameterized complexity and by experiments based on the election map dataset
by Szufa et al. [32], to investigate the practical complexity as well as the actual
stability measurement considered by the problem. In comparison to the Mal-
lows model, not all profiles are taken into account, weighted according to their
distance, but all profiles up to a given distance limit are equally weighted.
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In many cases the Mallows model is used to describe the distribution of votes
based on a true general underlying ranking. If one assumes that the assumption
regarding the existence of such a ranking is correct, it seems a reasonable app-
roach to determine the winner by determining the most likely underlying ranking
or to ask for a voting rule with the output as close as possible to such an under-
lying ranking. This approach has been examined, beside others, by Caragiannis
et al. [10] and de Weerdt et al. [36].

The evaluation problem is also considered in other contexts. For example,
in sports, the evaluation problem was studied by Mattei et al. [29] for various
tournament formats and subsequently by Baumeister and Hogrebe [4] with a
particular focus on predicting the outcome of round-robin tournaments.

5 Conclusion

We studied the computational complexity of the evaluation problem for approval
voting and positional scoring rules regarding PPIC, the Mallows noise model,
and EDM. We showed that the complexity of the problem varies greatly depend-
ing on the voting rule, the distribution model, and the parameterization. While
in the general case, and partially even in very restricted cases, the evaluation
problem is quite hard, we also identified general cases in which the probability
that the given candidate wins the election can be calculated efficiently. Finally, in
addition to the more practical motivations we have presented at the beginning,
the evaluation problem is essential for the theoretical investigations of proba-
bilistic variants of election interference problems such as manipulation, bribery,
and control. As introduced by Conitzer and Sandholm [12] the decision variant
of the evaluation problem is essentially the verification problem for just those
problems. They show NP-hardness for several cases, but also finally point out
that these problems do not necessarily lie in NP. In Sect. 3.4 we show that this
assumption is probably correct by proving the #P-hardness for several cases. For
just those NP- and #P-hard cases, it is unlikely that the interference problem
itself lies in NP, as the problem of verifying the success of a given intervention
is probably not contained in P.

Besides solving the open cases, namely the complexity regarding Mallows and
k-AV in general and Borda for a constant number of voters, it may be interesting
to consider multi-winner elections, further distribution models, and the fine-
grained parameterized counting complexity as introduced by Flum and Grohe
[17]. Of course, the worst-case, and the slightly more practical parameterized
worst-case, analysis is only the first but an indispensable step in the complexity
analysis of the problems and should, especially for the here identified hard cases,
be followed by an average-case or typical-case analysis.
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