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Abstract. The Assignment problem is a fundamental and well-studied
problem in the intersection of Social Choice, Computational Economics
and Discrete Allocation. In the Assignment problem, a group of agents
expresses preferences over a set of items, and the task is to find a pareto
optimal allocation of items to agents. We introduce a generalized version
of this problem, where each agent is equipped with multiple incomplete
preference lists: each list (called a layer) is a ranking of items in a pos-
sibly different way according to a different criterion. We introduce the
concept of global optimality, which extends the notion of pareto optimal-
ity to the multi-layered setting, and we focus on the problem of deciding
whether a globally optimal assignment exists. We study this problem
from the perspective of Parameterized Complexity: we consider several
natural parameters such as the number of layers, the number of agents,
the number of items, and the maximum length of a preference list. We
present a comprehensive picture of the parameterized complexity of the
problem with respect to these parameters.

1 Introduction

The field of resource allocation problems has been widely studied in recent years.
A fundamental and one of the most well-studied problems in this field is the
Assignment problem1 [1–3,5,6,9,19,24,35]. In the Assignment problem we
are given a set of n agents, and a set of m items. Each agent (human, company,
or any other entity) has strict preferences over a subset of items, and the objective
is to allocate items to agents in an “optimal” way. Different notions of optimality
have been considered in the literature, but the one that has received the most
attention is pareto optimality (see, e.g., [2,5,6]). Intuitively, an assignment p is
called pareto optimal if there is no other assignment q that is at least good as p
for all the agents and also strictly better than p for at least one agent.

Besides its theoretical interest, the problem has also practical importance.
Algorithms for the Assignment problem have applications in a variety of real-
world situations, such as assigning jobs to workers, campus houses to students,
1 The problem is called Assignment in all relevant literature. Although this name is

somewhat generic, to be consistent with the literature, we use it here as well.

A full version of this paper, including full proofs and examples, can be found in https://
arxiv.org/abs/2004.00655.
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time stamps to users on a common machine, players to sports teams, graduating
medical students to their first hospital appointments, and so on [17,23,30,36].

In the Assignment problem, each agent has exactly one preference list. The
preference lists may represent a single subjective criterion according to which
each agent ranks the items. However, they may also represent a combination of
different such criteria: each agent associates a score to each item per criterion,
and a single preference list is derived from some weighted sum of the scores.
In many cases, it is unclear how to combine scores associated with criteria of
inherently incomparable nature - that is like “comparing apples with oranges”.
Additionally, even if a single list can be forcefully extracted, most data is lost.2

Thus, the classic model seems somewhat restrictive in real world scenarios
where people rely on highly varied aspects to rank other entities. For example,
suppose that there are n candidates who need to be assigned to n positions.
The recruiters may rank the candidates for each position according to different
criteria, such as academic background, experience, impression, and so on [4,22].
Moreover, when assigning campus houses to students, the students may rank
the houses by multiple criteria such as their location, rent, size etc. [33]. This
motivates the employment of multiple preference lists where each preference list
(called a layer) is defined by a different criterion.

In many real-world scenarios, the preferences of the agents may sometimes
depend on external circumstances that may not be completely known in advance
such as growth of stocks in the market, natural phenomena, outbreak of pan-
demics [32,34] and so on. In such cases, each layer in our generalized model can
represent a possible “state” of the world, and we may seek an assignment that
is optimal in as many states as possible. For instance, suppose that there is a
taxi company with n taxis and m costumers (n > m) that want to be picked
at a specific time in future. The “cost” of each taxi depends on the time taken
to reach the costumer from the starting location of the taxi. Many factors (that
may not be completely known a-priori) may affect the total cost such as road
constructions, weather, car condition and the availability of the drivers [15,29].
The firm may suggest different possible scenarios (each represents a layer). For
each scenario, the costumers may be ranked differently by the taxis, and an
assignment that is pareto optimal in as many layers as possible will cover most
of the scenarios and will give the lowest expected total cost.

Furthermore, it is not always possible to completely take hold of preferences
of some (or all) agents due to lack of information or communication, as well
as security and privacy issues [10,27]. In addition, even if it is technically and
ethically feasible, it may be costly in terms of money, time, or other resources to
gather all information from all the agents [26]. In these cases, we can “complete
the preferences” using different assumptions on the agents. As a result, we will
have a list of preference profiles that represent different possible states of the
world. An assignment that is pareto optimal in as many preference profiles as
possible will be pareto optimal with high probability.

2 Our new generalized model allows us to limit the amount of data that can be ignored
using the parameter α.
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Table 1. Summary of our results. Results marked with † are proved to be optimal
under the exponential-time hypothesis.

Parameter Complexity class Running time Polynomial kernel?

� + d para-NP-hard [Theorem 8] – –

� + (m − d) para-NP-hard [Theorem 8] – –

n FPT O∗(n!)† [Theorem 1 + Theorem 5] No [Theorem 9]

m XP, W[1]-hard [Theorem 6] (nm)O(m) [Theorem 4] –

m + α XP, W[1]-hard [Theorem 6] (nm)O(m) [Theorem 4] –

n + m + α FPT O∗(n!)† [Theorem 1 + Theorem 5] No [Theorem 9]

m + (� − α) XP, W[1]-hard [Theorem 6] (nm)O(m) [Theorem 4] –

n + m + (� − α) FPT O∗(n!)† [Theorem 1 + Theorem 5] No [Theorem 9]

m + � FPT O∗(((m!)�+1)!) [C.1] No [Theorem 9]

n + � FPT O∗(n!) [Theorem 1] Yes [Theorem 2]

n + m + � FPT O∗(n!) [Theorem 1] Yes [Theorem 2]

Our work is inspired by that of Chen et al. [12], who studied the Stable

Marriage problem under multiple preferences.3 Chen et al. [12] considered an
extension where there are � layers of preferences, and adapted the definition
of stability accordingly. Specifically, three notions of stability were defined: α-
global stability, α-pair stability, and α-individual stability. The authors studied
the algorithmic complexity of finding matchings that satisfy each of these sta-
bility notions. Their notion of α-global stability extends the original notion of
stability in a natural way, by requiring the sought matching to be stable in (at
least) some α layers. Our notion of α-global optimality extends pareto optimal-
ity in the same way, by requiring an assignment to be pareto optimal in some α
layers.

Although the Assignment problem can be solved in polynomial time using
a mechanism called “serial dictatorship” [2], we show that the problem becomes
much harder when multiple preference lists are taken into account. So, in this
paper, we study the parameterized complexity of deciding whether a globally
optimal assignment exists with respect to various parameters.

Our Contributions. One important aspect of our contribution is conceptual:
we are the first to study pareto optimality (in the Assignment problem) in the
presence of multiple preference lists. This opens the door to many future studies
(both theoretical and experimental) of our concept, as well as refinements or
extensions thereof (see Sect. 6). In this work, we focus on the classical and
parameterized complexity of the problem.

We consider several parameters such as the number of layers �, the number
of agents n (also denoted by #agents), the number of items m (also denoted by
#items), the maximum length of a preference list d, and the given number of
layers α for which we require an assignment to be pareto optimal. The choice
of these parameters is sensible because in real-life scenarios such as those men-
tioned earlier, some of these parameters may be substantially smaller than the

3 In the full version, we further argue that the Assignment and Stable Marriage

problems, being based on different concepts of stability, are very different problems.
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input size. For instance, �, α and � − α are upper bounded by the number of
criteria according to which the agents rank the items. Thus, they are likely to be
small in practice: when ranking other entities, people usually do not consider a
substantially large number of criteria (further, up until now, attention was only
given to the case where � = α = 1). For instance, when sports teams rank candi-
date players, only a few criteria such as the player’s winning history, his impact
on his previous teams, and physical properties are taken into account [18]. In
addition, the parameter � − α may be small particularly in cases where we want
to find an assignment that is optimal with respect to as many criteria as possi-
ble. Moreover, in various cases concerning ranking of people, jobs, houses etc.,
people usually have a limited number of entities that they want or are allowed
to ask for [14]. In these cases, the parameter d is likely to be small. Moreover,
in small countries (such as Israel), the number of universities, hospitals, sports
teams and many other facilities and organizations is very small [13,31]. Thus, in
scenarios concerning these entities, at least one among n and m may be small.
A summary of our results is given in Table 1.

Fixed-Parameter Tractability and ETH Based Lower Bounds. We prove
that α-Globally Optimal Assignment is fixed-parameter tractable (FPT)
with respect to n by providing an O∗(n!) time algorithm that relies on the
connection between pareto optimality and serial dictatorship. We then prove that
the problem admits a polynomial kernel with respect to n+ � and that it is FPT
with respect to #items+� by providing an exponential kernel. We also prove that
the problem is slice-wise polynomial (XP) with respect to #items by providing an
mO(m) ·nO(n) time algorithm. In addition, we prove that O∗(2O(t log t)) is a tight
lower bound on the running time (so, our O∗(n!) time algorithm is essentially
optimal) under ETH (defined in Sect. 2) for even larger parameters such as
t = n+m+α and t = n+m+(�−α) using two linear parameter reductions from
the k × k Permutation Clique problem. Lastly, we prove that the problem
is W[1]-hard with respect to m + α and m + (� − α) using two parameterized
reductions from Multicolored Independent Set.

NP-Hardness. We prove that the problem is NP-hard for any fixed α and � such
that 2 ≤ α ≤ � using a polynomial reduction from the Serial Dictatorship

Feasibility problem that relies on a reduction by Aziz el al. [6]. We also define
three polynomial-time constructions of preference profiles given an instance of 3-
SAT, and we rely on them in two polynomial reductions from 3-SAT, such that
in the resulting instances � + d and � + (m − d) are bounded by fixed constants.
This proves that the problem is para-NP-hard for � + d and � + (m − d).

Non-existence of Polynomial Kernels. We prove that the problem does not
admit polynomial kernels unless NP⊆ coNP/poly w.r.t. n+m+α, n+m+(�−α),
and m + � using three cross-compositions (defined in Sect. 2) from 3-SAT that
rely on the aforementioned reduction to prove para-NP-hardness.
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2 Preliminaries

For any natural number t, we denote [t] = {1, . . . , t}. We use the O∗ and the Ω∗

notations to suppress polynomial factors in the input size, that is, O∗(f(k)) =
f(k) · nO(1) and Ω∗(f(k)) = Ω(f(k)) · nO(1).

The Assignment Problem. An instance of the Assignment problem is a
triple (A, I, P ) where A is a set of n agents {a1, . . . , an}, I is a set of m items
{b1, . . . , bm}, and P = (<a1 , . . . , <an

), called the preference profile, contains the
preferences of the agents over the items, where each <ai

is a linear order over
a subset of I. We refer to such linear orders as preference lists. If bj <ai

br,
we say that agent ai prefers item br over item bj , and we write bj ≤ai

br if
bj <ai

br or bj = br. Item b is ac We use the O∗ and the Ω∗ notations to
suppress polynomial factors in the input size, that is, O∗(f(k)) = f(k) · nO(1)

and Ω∗(f(k)) = Ω(f(k)) · nO(1).ceptable by agent a if b appears in <a. An
assignment is an allocation of items to agents such that each agent is allocated
at most one item, and each item is allocated to at most one agent. We define a
special item b∅, seen as the least preferred item of each agent, and will be used
as a sign that an agent is not assigned to an item. We assume that b∅ is not
part of the input item set, and that it appears at the end of every preference
list (we will not write it explicitly). Formally, an assignment p : A → I ∪ {b∅} is
a mapping between agents to items, s.t. for each i ∈ [n]: (1) p(ai) = b∅, or (2)
both p(ai) ∈ I and for each j ∈ [n] \ {i}, p(ai) �= p(aj). We refer to p as legal
if each item is assigned to an agent who accepts it. For brevity, we will usually
omit the term “legal”.4 Moreover, when we write a set in a preference list, we
assume that its elements are ordered arbitrarily, unless stated otherwise.

Optimality. An assignment p is pareto optimal if there does not exist
another assignment q such that both p(ai) ≤ai

q(ai) for every i ∈ [n], and
there exists i ∈ [n] such that p(ai) <ai

q(ai); p admits a trading cycle
(ai0 , bj0 , ai1 , bj1 , . . . , aik−1 , bjk−1) if for each r ∈ {0, . . . , k − 1}, we have that
p(air

) = bjr
and bjr

<air
bjr+1 (mod k) . We say that p admits a self loop if there

exist an agent ai and an item bj such that bj is not allocated to any agent, and ai

prefers bj over its own item. We now provide a simple characterization of pareto
optimality that is defined with respect to trading cycles and self loops:

Proposition 1 (Folklore; see, e.g., Aziz et al. [5,6]). An assignment is
pareto optimal if and only if it does not admit trading cycles and self loops.

For an instance (A, I, P ) and an assignment p, the corresponding trading
graph is the directed graph over A∪ I, constructed as follows: (1) for each a ∈ A
s.t. p(a) �= b∅, p(a) points to a; (2) each a ∈ A points to all the items it prefers
over its assigned item p(a); (3) each b ∈ I with no owner points to all the agents
that accept it. An assignment is pareto optimal if and only if its corresponding
trading graph does not contain cycles (see, e.g., Aziz et al. [5,6]).

4 All the “optimal” assignments that we construct in this paper will be legal in a
sufficient number of layers, where they are claimed to be pareto optimal.
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A simple assignment mechanism is the greedy serial dictatorship mechanism.
For a given permutation over the agents, the agent ordered first allocates its
most preferred item, then the agent ordered second allocates its most preferred
item among the remaining items, and so on. If at some point, an agent has
no available item to allocate, it allocates b∅. We say that an assignment p is a
possible outcome of serial dictatorship if there exists a permutation π such that
applying serial dictatorship with respect to π results in p.

Proposition 2 (Abdulkadiroglu and Tayfun [2]). An assignment is pareto
optimal if and only if it is a possible outcome of serial dictatorship.

This implies that the Assignment problem is solvable in polynomial time.

Generalization of the Assignment Problem. We introduce a generalized
version of the Assignment problem where there are � layers of preferences. For
each j ∈ [�], we refer to <

(j)
ai as ai’s preference list in layer j. The preference

profile in layer j is the collection of all the agents’ preference lists in layer j,
namely, Pj = (<(j)

a1 , . . . , <
(j)
an ).

Definition 1. An assignment p is α-globally optimal for an instance
(A, I, P1, . . . , P�) if there exist α layers i1, . . . , iα ∈ [�] such that p is pareto
optimal in layer ij for each j ∈ [α].

α-Globally Optimal Assignment

Input: (A, I, P1, . . . , P�, α), where A is a set of n agents, I is a set of m items,
Pi is the preference profile in layer i for each i ∈ [�], and α ∈ [�].
Question: Does an α-globally optimal assignment exist?

Notice that this problem is solvable in polynomial time when α = 1 by apply-
ing serial dictatorship in some arbitrary layer. We study α-Globally Optimal

Assignment from the perspective of parameterized complexity.

Parameterized Complexity. In the framework of parameterized complexity,
each instance of a problem Π is associated with a parameter k. We say that Π
is fixed-parameter tractable (FPT) or slice-wise polynomial (XP) if any instance
(I, k) of Π is solvable in time f(k) · |I|O(1) or |I|f(k), respectively, where f is an
arbitrary computable function of k. We say that a problem is W[1]-hard if it is
unlikely to be FPT, and the main technique to prove so is by using parameter-
ized reductions. A polynomial compression from Π to Π ′ is a polynomial-time
algorithm that given an instance (I, k) of Π, outputs an equivalent instance I ′

of Π ′ such that |I ′| ≤ poly(k). If Π ′ = Π, we say that Π admits a polynomial
kernel. A cross-composition from Π to Π ′ is a polynomial-time algorithm that
given instances I1, I2, . . . , It of Π for some t ∈ N that are of the same size s ∈ N,
outputs an instance (I, k) of Π ′ such that (1) k ≤ poly(s + log t); and (2) (I, k)
is a Yes-instance of Π ′ if and only if at least one of I1, I2, . . . , It is a Yes-instance
of Π. By [7,8], the existence of a cross-composition from an NP-hard problem
Π to a parameterized problem Π ′ implies that Π ′ does not admit a polynomial
compression, unless NP⊆ coNP/poly. To obtain (essentially) tight conditional
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lower bounds for the running times of algorithms, we rely on the Exponential-
Time Hypothesis (ETH) [11,20,21]. Informally, ETH asserts that 3-SAT cannot
be solved in time 2o(n) where n is the number of variables.

3 Fixed-Parameter Tractability and ETH Based Bounds

We first prove that α-Globally Optimal Assignment is FPT with respect
to the parameter n = #agents.

Theorem 1 (*).5 There exists an O∗(n!) algorithm for α-Globally Optimal

Assignment.

Proof (sketch). We provide a brute-force algorithm. The algorithm enumerates
all possible pareto optimal assignments in each layer, using serial dictatorship
with respect to all possible permutations on the agents. For each assignment p,
it constructs the corresponding trading graphs for all the layers with respect to
p, and checks whether there exist α graphs with no cycles. The running time
of the algorithm is O∗(n!), since it iterates over O(�n!) assignments (each layer
may have at most n! different pareto optimal assignments by Proposition 2), and
for each assignment, it takes polynomial time to construct the trading graphs,
and to count how many contain no cycles. �	

We now provide a simple lemma that will help us to design a polynomial
kernel for α-Globally Optimal Assignment with respect to n + �.

Lemma 1. Let (A, I, P ) be an instance of the Assignment problem where
|A| = n. Then, for any agent a ∈ A and pareto optimal assignment, a is assigned
to b∅ or to one of the n most preferred items in its preference list.

Proof. By Proposition 2, each pareto optimal assignment is a possible outcome
of serial dictatorship. Observe that for each i ∈ [n], when the mechanism is in the
i-th step, it has already allocated at most i − 1 items. Thus, the i-th allocated
item must be either: (i) b∅ (if all the items in the current preference list has
already been allocated); or (ii) one of the i first ranked items in the current
preference list. �	
Theorem 2 (*). α-Globally Optimal Assignment admits a kernel of size
O(�n2). Thus, it admits a polynomial kernel w.r.t. n + �.

Proof (sketch). Given an instance of α-Globally Optimal Assignment I1 =
(A, I, P1, . . . , P�, α), the kernel reduces each preference profile Pi to a preference
profile P ′

i by keeping only the (at most) n first-ranked items in each preference
list. Let I ′ be a set containing the items ranked in the first n positions in some
preference list in I1. The resulting instance is I2 = (A, I ′, P ′

1, . . . , P
′
� , α), which

satisfies |I2| = O(�n2). We prove that I1 is equivalent to I2 using Lemma 1. �	
5 Proofs of statements marked by * are omitted due to lack of space; full proofs can

be found in the full version.
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Before we present an exponential kernel for α-Globally Optimal Assign-

ment with respect to the parameter m + �, let us define the following.

Definition 2. Let Q = (A, I, P1, . . . , P�, α) be an instance of α-Globally

Optimal Assignment and u ∈ A. The agent class of u in Q, C(u,Q),
is the tuple that contains the preference lists of u in all the layers, namely,
C(u,Q) = (<1

u, . . . , <�
u). Define D = {B ⊆ I × I|B is a linear order}. For a

given tuple of length � consisting of linear orderings on subsets of I, C ⊆ D�,
define A(C,Q) = {a ∈ A | C(a,Q) = C}.
Theorem 3 (*). α-Globally Optimal Assignment admits a kernel of size
O((m!)�+1). Thus, it is FPT with respect to m + �.

Proof (sketch). Given an instance of α-Globally Optimal Assignment

Q = (A, I, P1, . . . , P�, α), the kernelization algorithm works as follows (formally
described in the full version): It removes from A agents which share the same
agent class together with all their preference lists, such that in the resulting
instance there will be at most m + 1 agents in the set A(C(a,Q), Q), for each
a ∈ A. Intuitively, since there are m items, at most m agents in A(C(a,Q), Q)
will be assigned to items; we keep at most m + 1 agents (rather than m) in
each agent class to cover the case where an agent is assigned to b∅ and admits a
self-loop.

Assume that we run the kernel on I1 = (A1, I, P1, . . . , P�, α) to obtain an
instance I2 = (A2, I,Q1, . . . , Q�, α). We first show that |I2| = O((m!)�+1). There
exist

∑m
j=0

(
m
j

) · j! =
∑m

j=0
m!

j!(m−j)!j! = m!
∑m

j=0
1
j! ≤ e · m! = O(m!) possible

orderings of subsets of I. Then, there exist O((m!)�) different combinations of
such � orderings, implying that there exist O((m!)�) possible agent classes over
the item set I. Since for each agent class C, |A2(C, I2)| ≤ m + 1, we have that
|A2| = Σagent class C|A2(C, I2)| ≤ (m!)� ·(m + 1). Thus, |I2| = O((m!)� ·(m+1)) =
O((m!)�+1).

We now prove that I1 is a Yes-instance if and only if I2 is a Yes-instance.
(⇒): Assume that there exists an α-globally optimal assignment p for I1.

Then, there exist α layers i1, . . . , iα of I1 in which p is pareto optimal. We create
an assignment q : A2 → I ∪ {b∅} for the reduced instance as follows: For each
a ∈ A2, let p(A1(C(a, I1), I1)) denote the set of items allocated to the agents
from A1(C(a, I1), I1) by p. We allocate the items in p(A1(C(a, I1), I1)) to agents
in A2(C(a, I2), I2) arbitrarily (observe that C(a, I1) = C(a, I2)). Agents that do
not have available items are assigned to b∅. First, observe that q allocates all the
items which are allocated by p since there are at most m items, and the algorithm
keeps all or exactly m + 1 agents from each set A1(C(a, I1), I1). As a result, q
cannot admit self loops in layers i1, . . . , iα of I2. Formally, the sets A1(C(a, I1), I1)
and A2(C(a, I2), I2) satisfy |A2(C(a, I2), I2)| ≤ |A1(C(a, I1), I1)|. Since the agents
in these sets are allocated the same number of items by p and q, if there exists an
agent in A2(C(a, I2), I2) that admits a self loop in I2, there must exist an agent
in A1(C(a, I1), I1) that admits a self loop in I1. Second, we claim that q does
not admit trading cycles in these layers. For the sake of contradiction, suppose
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there exists a layer ij in I2, and t agents a′
1, . . . , a

′
t ∈ A2 that admit a trading

cycle (a′
1, q(a

′
1), . . . , a

′
t, q(a

′
t)) in Qij

. By the construction of q, notice that there
exist t agents a1, . . . , at ∈ A1, such that for each i ∈ [t], C(ai, I1) = C(a′

i, I2),
and q(a′

i) = p(ai). Then, p admits the trading cycle (a1, p(a1), . . . , at, p(at)) in
Pij

. This gives a contradiction to Proposition 1.
(⇐): Assume that there exists an α-globally optimal assignment q for I2.

Then there exist α layers i1, . . . , iα in I2 in which q is pareto optimal. We denote

an assignment p for I1 by p(a) =

{
q(a) a ∈ A2

b∅ otherwise
, and we claim that p is pareto

optimal in layers i1, . . . , iα in I1. By the construction of p, for each a1 ∈ A1 \A2,
there exists an agent a2 ∈ A2 such that C(a1, I1) = C(a2, I2) and p(a1) = q(a2).
Namely, there exists a mapping f from agents in A1 to agents in A2 such that
for each a1 ∈ A1, C(a1, I1) = C(f(a1), I2) and p(a1) = q(f(a1)). If p admits a
trading cycle (a1, p(a1), . . . , ar, p(ar)) in some layer ij of I1, then q admits the
trading cycle (f(a1), q(f(a1)), . . . , f(ar), q(f(ar))) in layer ij of I2. If p admits a
self loop in layer ij of I1 with agent a1 ∈ A1, then q admits a self loop with agent
f(a1) in layer ij of I2. Thus by Proposition 1, we conclude that p is α-globally
optimal in I1. �	
Corollary 1 (of Theorems 1 and 3). α-Globally Optimal Assignment

is solvable in time O∗(((m!)�+1)!).

Theorem 4. α-Globally Optimal Assignment is solvable in time
(nm)O(m). Thus, it is XP with respect to m.

Proof. We present a simple brute-force algorithm. The algorithm simply iterates
over all subsets of items I ′ ⊆ I. For each subset, it iterates over all subsets A′ ⊆ A
such that |A′| = |I ′|. For each a /∈ A′, the algorithm allocates b∅, and it tries
all possible |I ′|! different ways to allocate the items in I ′ to the agents in A′ (it
skips allocations that allocate items that are not acceptable by their owners in
more than �−α+1 layers). The algorithm constructs the corresponding trading
graphs, and verifies in polynomial time whether the current assignment is α-
globally optimal. Hence, the running time of the algorithm is

∑m
t=0

(
m
t

) · (n
t

) · t! ·
(n + m)O(1) ≤ m · 2m · n

m
2 · m! · (n + m)O(1) = (nm)O(m). �	

Before we continue with our next results, let us discuss a simple property
that will help in many of our proofs.

Definition 3. Let (A, I, P ) be an instance of the Assignment problem and
suppose that P = {<a| a ∈ A}. We say that agents a1, a2 ∈ A respect each
other if there exists a linear order on a subset of I, � ⊆ I × I, such that both
<a1⊆ � and <a2⊆ �.

Lemma 2. Let (A, I, P ) be an instance of the Assignment problem such that
there exist agents a1, . . . , ar ∈ A where for each i, j ∈ [r], ai and aj respect each
other. Then, for every assignment p : A → I ∪ {b∅}, p does not admit a trading
cycle among the agents a1, . . . , ar.
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Proof. Towards a contradiction, suppose there exist an assignment p which
admits a trading cycle (a1, p(a1), . . . , ar, p(ar)) whose agents pairwise respect
each other. Then, there exists a linear order � ⊆ I×I, such that for each i ∈ [r],
<ai

⊆ �. This implies that p(a1)�p(a2)� . . .�p(ar). Since p(ar) <ar
p(a1),

we have that p(ar)�p(a1), a contradiction to � being a linear order. �	
We now prove that Ω∗(k!) is a (tight) lower bound on the running time of

any algorithm for α-Globally Optimal Assignment under the ETH, even
for larger parameters than n such as k = n + m + α and k = n + m + (� − α).
So, the algorithm in Theorem 1 is optimal (in terms of running time).

Theorem 5 (*). Unless ETH fails, there does not exist an algorithm for
α-Globally Optimal Assignment with running time O∗(2o(k log k)) where
k = n + m + α or k = n + m + (� − α).

Proof (sketch). We provide a proof sketch for the parameter k = n+m+α (the
proof for the second parameter is provided in the full version). We use the tech-
nique of linear parameter reduction (for more information, see the proposition
by Cygan et al. [16] in the full version) from k × k Permutation Clique to
α-Globally Optimal Assignment. In k × k Permutation Clique, we are
given a graph G where the vertices are elements of a k×k table (V (G) = [k]×[k]).
The task is to decide whether there exists a k×k-permutation clique in G, which
is a clique of size k in G that contains exactly one vertex from each row and
exactly one vertex from each column, i.e. there exists a permutation π on [k] such
that the vertices of the clique are (1, π(1)), . . . , (k, π(k)). Lokshtanov et al. [25]
proved that there is no O∗(2o(k log k))-time algorithm for k × k Permutation

Clique, unless ETH fails.
Let (G, k) be an instance of k × k Permutation Clique. We create an

agent ai for each row i ∈ [k], and an item bj for each column j ∈ [k]. We
construct an instance of α-Globally Optimal Assignment with k2 layers,
each corresponds to a row-column pair (i, j), containing the preference profile
P(i,j) defined as follows: (i) ai : bj (ii) ar : {bq | {(i, j), (r, q)} ∈ E(G), q �= j}
(sorted in ascending order by q) ∀r ∈ [k] \ {i}.

We finally set α = k. We prove that there exists a k × k-permutation clique
in G if and only if there exists a k-globally optimal assignment for the instance.

(⇒) Suppose there exists a permutation π for [k] such
that (1, π(1)), . . . , (k, π(k)) form a clique in G. We define an assignment p by
p(ai) = bπ(i) for each i ∈ [k] (each row agent is assigned to its corresponding
column item). Observe that for each i ∈ [k], bπ(i) is acceptable by ai in P(i,π(i))

and in all profiles P(j,π(j)) such that j ∈ [k] \ {i} since there is an edge between
(i, π(i)) and each (j, π(j)). Moreover, each P(j,π(j)) contains no self loops because
all the items are allocated. Since we sorted each preference list in an ascending
order by the item indices, all the agents respect each other in each preference
profile and by Lemma 2, p does not admit trading cycles in any layer.

(⇐) Suppose there exists a k-globally optimal assignment p for the con-
structed instance. Note that if p is pareto optimal in some profile P(i,j), it must
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satisfy p(ai) = bj , as otherwise, ai would admit a self loop. Hence, we have that
for each i ∈ [k], p is pareto optimal in at most one profile among P(i,1), . . . , P(i,k)

and in at most one profile among P(1,i), . . . , P(k,i). Since α = k, we have that
there exists a permutation π on [k] such that p is pareto optimal in P(i,π(i)) for
each i ∈ [k]. It can be proved that {(i, π(i)) | i ∈ [k]} is the vertex set of a
k × k-permutation clique in G.

It holds that n+m+α = O(k). Thus, by Cygan et al. [16], we conclude that
there is no O∗(2o(k log k))-time algorithm for α-Globally Optimal Assign-

ment, unless ETH fails. �	
Theorem 6 (*). α-Globally Optimal Assignment is W[1]-hard for the
parameters m + α and m + (� − α).

Proof (sketch). We provide a proof sketch for m + (� − α) (the proof for the
parameter m + α is provided in the full version). We present a parameterized
(and also polynomial) reduction from the W[1]-hard problem Multicolored

Independent Set to α-Globally Optimal Assignment. The input of Mul-

ticolored Independent Set consists of an undirected graph G = (V,E), and
a coloring c : V → [k] that colors the vertices in V with k colors. The task is to
decide whether G admits a multicolored independent set of size k, which is an
independent set V ′ ⊆ V that satisfies {c(v′) | v′ ∈ V ′} = [k] and |V ′| = k.

Given an instance (G = (V,E), c), assume that V = {v1, . . . , vn}. We con-
struct an instance of α-Globally Optimal Assignment with the agent set
A = {a1, . . . , an} and the item set I = {b1, . . . , bk}, consisting of � = n + 1
layers. Informally, the agents that will allocate the items from I in an �-globally
optimal assignment will correspond to vertices that form a multicolored inde-
pendent set in G. The first layer enforces each agent to allocate either the item
that corresponds to its color, or b∅ and it is defined by: ai : bc(i) ∀i ∈ [k]. For
each i ∈ [n], the goal of layer 1 + i is to admit trading cycles if both vi and one
of its neighbors are included in the independent set (this happens when both of
their agents allocate items). It is defined as follows:

(i) ai : {bj | j ∈ [k]}\{bc(vi)} (ordered arbitrarily) > bc(vi) (ii) aj : bc(vj) ∀j ∈
[n]\{i} such that (1) {vi, vj} ∈ E and c(vj) = c(vi) or (2) {vi, vj} /∈ E (iii) aj :
bc(vi) > bc(vj) ∀j ∈ [n]\{i} such that {vi, vj} ∈ E and c(vj) �= c(vi) . We finally
set α = �. We claim that G admits a multicolored independent set of size k
if and only if there exists an �-globally optimal assignment for the constructed
instance.

(⇒): Suppose that G admits a multicolored independent set of size k, V ′ =
{vi1 , . . . , vik

}. Denote an assignment p by p(aij
) = bc(vij

) for each j ∈ [k], and
p(ai) = b∅ for each i /∈ {i1, . . . , ik}. Observe that for each i ∈ [k], p(ai) is
acceptable by ai in each layer, and each layer cannot admit self loops since all
the items are allocated. Moreover, notice that p is pareto optimal in the first layer
since no trading cycles can be performed. We prove that p is pareto-optimal in
layer 1 + i for each i ∈ [n]. Towards a contradiction, suppose that there exists
i ∈ [n] such that p is not pareto optimal in layer 1 + i. Observe that the only
possible trading cycle in this layer consists of the agent ai and an agent ar such
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that p(ai) = bc(vi), c(vi) �= c(vr), {vi, vr} ∈ E, and p(ar) = bc(vr). Then, we have
that vi, vr ∈ V ′, a contradiction.

(⇐): Provided in the full version. �	

4 NP Hardness

Theorem 7 (*). For any 2 ≤ α ≤ �, α-Globally Optimal Assignment is
NP-hard.

Proof (sketch). We extend a polynomial reduction by Aziz et al. [6] from the
Serial Dictatorship Feasibility problem, which was proved to be NP-hard
by Saban and Sethuraman [28]. In the Serial Dictatorship Feasibility prob-
lem, the input is a tuple (A, I, P, a, b) where A is a set of n agents, I is a set of
n items, P is the preference profile in which each agent has a complete linear
order on the items, a ∈ A, and b ∈ I. The task is to decide whether there exists
a permutation for which serial dictatorship (defined in Sect. 2) allocates item b
to agent a. Given such (A, I, P, a, b), Aziz et al. [6] constructed two preference
profiles, P1 and P2, such that (A, I, P, a, b) is a Yes-instance if and only if there
exists an assignment that is pareto optimal in both P1 and P2.

We add � − α additional new items c1, . . . , c�−α and we define I ′ = I ∪
{c1, . . . , c�−α}. We construct an instance of α-Globally Optimal Assign-

ment over A and I ′, consisting of � layers. The first two layers are P1 and P2,
the next α−2 layers are copies of P1, and the next � − α layers are P ′

1, . . . , P
′
�−α,

where for each i ∈ [�−α], P ′
i is defined as follows: (i) a : ci (ii) a′ : ∅ ∀a′ ∈ A\{a}.

Notice that the only pareto optimal assignment for P ′
i is the assignment that

allocates ci to a, and b∅ to each a′ ∈ A\{a}. Using this observation, we prove
that an assignment is α-globally optimal for the constructed instance if and only
if it is pareto optimal in both P1 and P2. �	

We define three constructions of preference profiles given an instance of 3-

SAT and we consider their connections to the satisfiability of the formula. We
will rely on these connections to design a polynomial reduction from 3-SAT to
α-Globally Optimal Assignment that shows that α-Globally Optimal

Assignment is para-NP-hard with respect to � + d. We will also rely on these
results in Sect. 5 to prove that the problem is unlikely to admit polynomial
kernels with respect to n + m + α, n + m + (� − α), and m + �.

Let n,m ∈ N be positive integers. Denote the agent set A(m,n) = {ai,j , ai,j |
i ∈ [m], j ∈ [n]}, and the item set I(m,n) = {bi,j , bi,j | i ∈ [m], j ∈ [n]}. We
provide two preference profiles over A(m,n) and I(m,n): P1(m,n) and P2(m,n).
Intuitively, given a 3-SAT instance with n variables and m clauses, the way the
agents and the items are assigned to each other in an assignment that is pareto
optimal in both P1(m,n) and P2(m,n) will encode a boolean assignment for the
variable set of the instance. P1(m,n) is defined as follows: ∀i ∈ [m], j ∈ [n]: (i)
ai,j : bi,j > bi,j (ii) ai,j : bi,j > bi,j . P2(m,n) is defined as follows:
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• ∀j ∈ [n]: (i) am,j : bm,j > bm−1,j > bm,j (ii) am,j : bm,j > bm−1,j > bm,j

• ∀i ∈ {2, . . . , m − 1}, j ∈ [n]: (i) ai,j : bi−1,j > bi,j > bi+1,j > bi,j (ii) ai,j :
bi−1,j > bi,j > bi+1,j > bi,j

• ∀j ∈ [n]: (i) a1,j : b1,j > b2,j > b1,j (ii) a1,j : b1,j > b2,j > b1,j

Claim 1 (*). An assignment p : A(m,n) → I(m,n)∪{b∅} is pareto optimal in
P1(m,n) if and only if {p(ai,j), p(ai,j)} = {bi,j , bi,j} for each i ∈ [m] and j ∈ [n].

We denote P true
j = {(ai,j , bi,j), (ai,j , bi,j) | i ∈ [m]}, and P false

j =
{(ai,j , bi,j), (ai,j , bi,j) | i ∈ [m]}. Intuitively, P true

j and P false
j will correspond

to setting the variable xj to true or false, respectively.

Claim 2 (*). An assignment p : A(m,n) → I(m,n) ∪ {b∅} is pareto optimal in
both P1(m,n) and P2(m,n) if and only if for each j ∈ [n], either P true

j ⊆ p or
P false

j ⊆ p.

Proof (sketch). (⇒): Assume that p is pareto optimal in both P1(m,n) and
P2(m,n). Towards a contradiction, suppose that there exists j ∈ [n] satisfying
that both P true

j � p and P false
j � p. By Claim 1, there exist i1, i2 ∈ [m] such

that i1 < i2, satisfying that either (1) p(ai1,j) = bi1,j and p(ai2,j) = bi2,j ,
or (2) p(ai1,j) = bi1,j and p(ai2,j) = bi2,j . We have that there must exist
i1 ≤ i < i2 such that either (1) p(ai,j) = bi,j and p(ai+1,j) = bi+1,j , or (2)
p(ai,j) = bi,j and p(ai+1,j) = bi+1,j . This implies that p admits the trading cycles
(ai,j , bi,j , ai+1,j , bi+1,j) or (ai,j , bi,j , ai+1,j , bi+1,j) in P2(m,n), a contradiction.

(⇐): Assume that for each j ∈ [n], either P true
j ⊆ p or P false

j ⊆ p. By
Claim 1, p is pareto optimal in P1(m,n). Then by the construction of P2(m,n),
observe that every possible trading cycle in P2(m,n) has one of the forms:
(1) (ai,j , bi,j , ai−1,j , bi−1,j) or (2) (ai,j , bi,j , ai−1,j , bi−1,j), where i ∈ {2, . . . , m}.
Then, there exist j ∈ [n] and i ∈ {2, . . . , m} such that either (1) p(ai,j) = bi,j and
p(ai−1,j) = bi,j or (2) p(ai,j) = bi,j and p(ai−1,j) = bi,j . Thus, both P true

j � p

and P false
j � p, a contradiction. �	

Let D = (X , C) be an instance of 3-SAT where X = {x1, . . . , xn} is the set of
variables, and C = {C1, . . . , Cm} is the set of clauses, each of size 3. In order
to construct the third preference profile P3(D), order the literals in each clause
arbitrarily, such that Ci = �1i ∨ �2i ∨ �3i for each i ∈ [m]. The third preference pro-
file is responsible for the satisfiability of the formula. We define indD(i, j) as the
index of the variable which appears in the j-th literal in Ci for each j ∈ [3], and

we define bD(i, j) =

{
bi,indD(i,j) �j

i is negative
bi,indD(i,j) �j

i is positive
. Intuitively, when ai,indD(i,j)

gets bD(i, j) and ai,indD(i,j) gets bD(i, j), it means that �j
i is “satisfied”. Define

the preference profile P3(D) as follows:

• ∀i ∈ [m]: (i) ai,indD(i,3): bD(i, 3) > bD(i, 2) > bD(i, 3)
(ii) ai,indD(i,2) : bD(i, 2) > bD(i, 1) > bD(i, 2)
(iii) ai,indD(i,1) : bD(i, 1) > bD(i, 3) > bD(i, 1)
(iv) ai,indD(i,r) : bD(i, r) > bD(i, r) ∀r ∈ [3]
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• ∀i ∈ [m], j ∈ [n] such that xj does not appear in Ci: (i) ai,j : bi,j > bi,j (ii)
ai,j : bi,j > bi,j

Claim 3 (*). An assignment p : A(m,n) → I(m,n) ∪ {b∅} is pareto optimal in
P1(m,n), P2(m,n), and P3(D) if and only if: (1) for each j ∈ [n], either P true

j ⊆ p

or P false
j ⊆ p; and (2) for each clause Ci = �1i ∨ �2i ∨ �3i ∈ C, there exists at least

one j ∈ [3] such that p(ai,indD(i,j)) = bD(i, j).

Proof (sketch). (⇒): Assume that p is pareto optimal in P1(m,n), P2(m,n) and
P3(D). By Claim 2, p satisfies the first condition. Observe that the only pos-
sible trading cycles in P3(D) are of the form (ai,indD(i,3),bD(i, 3), ai,indD(i,2),

bD(i, 2), ai,indD(i,1) ,bD(i, 1)). Then by Claim 1, for each i ∈ [m], there must
exists j ∈ [3] such that p(ai,indD(i,j)) = bD(i, j). The opposite direction is pro-
vided in the full version. �	
Lemma 3 (*). An instance D = (X , C) of 3-SAT such that |X | = n and
|C| = m, is a Yes-instance if and only if there exists an assignment p : A(m,n) →
I(m,n) ∪ {b∅} that is pareto optimal in P1(m,n), P2(m,n), and P3(D).

Theorem 8 (*). 3-SAT is polynomial-time reducible to α-Globally Opti-

mal Assignment where α = � = 3 and d = 3 or where α = � = 4 and d = m.

5 Non-existence of Polynomial Kernels

In this section, we prove (using three cross-compositions) that α-Globally

Optimal Assignment is unlikely to admit polynomial kernels with respect to
n + m + α, n + m + (� − α), and m + �.

Theorem 9 (*). There does not exist a polynomial kernel for α-Globally

Optimal Assignment with respect to n + m + α, n + m + (� − α), and m + �
unless NP⊆ coNP/poly.

Proof (sketch). We provide a proof sketch for the parameter m + � (the proofs
for the other parameters are provided in the full version). We provide a
cross-composition from 3-SAT to α-Globally Optimal Assignment. Given
instances of 3-SAT D0 = (X0, C0), . . . , Dt−1 = (Xt−1, Ct−1) of the same size
n ∈ N for some t ∈ N, we first modify each instance Di to have Xi = {x1, . . . , xn}
and |Ci| = n. We define an agent set Ai(n, n) = {ai

r,j , a
i
r,j | r, j ∈ [n]} for

each i ∈ {0, . . . , t − 1}. The constructed instance is defined over the agent set
A =

⋃t−1
i=0 Ai(n, n) and the item set I = I(n, n) (defined in Sect. 4); and it

consists of 2�log t� + 2 layers. Intuitively, the goal of the first 2�log t� layers is
to enforce each α-globally optimal assignment to allocate all the items only to
agents that correspond to the same Yes-instance (if one exists). Let i ∈ [�log t�],
the preference profile in layer i (or �log t� + i) requires an assignment to assign
the items in I only to agents whose corresponding instance is Dj such that the
i-th bit in the binary representation of j is 0 (or 1), and to assign b∅ to all other
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agents. These layers are constructed as a composition of P1(n, n) over Ar(n, n)
and I(n, n) for every r ∈ {0, . . . t − 1} such that the i-th bit in the binary rep-
resentation of r is 0 (or 1), together with empty preferences for all the other
agents. Layer 2�log t� + 1 is constructed as a composition of the profile P2(n, n)
over Ai(n, n) and I(n, n) for each i ∈ {0, . . . , t−1}, and the last layer is a compo-
sition of the profiles P3(Di) over Ai(n, n) and I(n, n) for each i ∈ {0, . . . , t − 1}.
We finally set α = �log t� + 2. Notice that every assignment can be pareto opti-
mal in at most one among layers i and �log t�+i for each i ∈ [�log t�]. Then, each
α-globally optimal assignment is pareto optimal in exactly �log t� layers among
the first 2�log t� layers, and must be pareto optimal in the last two layers. There-
fore, we have that each such assignment “encodes” some i ∈ {0, . . . , t − 1} in
the first 2�log t� layers (if it is pareto optimal in layer j or �log t� + j, then the
j-th bit of i is 0 or 1, respectively). The optimality in the last two layers implies
that p is pareto optimal in both P2(n, n) and P3(n, n) over Ai(n, n) and I(n, n).
Thus, by Lemma 3, Di is a Yes-instance. The opposite direction follows from
Lemma 3 as well. �	

6 Conclusion and Future Research

In this paper, we introduced a new variant of the Assignment problem where
each agent is equipped with multiple incomplete preference lists, and we defined
the notion of global optimality, that naturally extends pareto optimality. We
considered several natural parameters, and presented a comprehensive picture
of the parameterized complexity of the problem with respect to them.

The results show that the problem of finding an α-globally optimal assign-
ment is, in general, computationally hard, but that it admits more positive
results when the parameter depends on n = #agents (and α or �) than when it
depends on m = #items (and α or �). We proved that the problem admits an
XP algorithm with respect to m, but is unlikely to admit one with respect to
�+d and �+(m−d). We provided an O∗(n!)-time algorithm and an exponential
kernel with respect to m + �. Both results showed that the problem is FPT with
respect to these parameters. In addition, we proved that O∗(k!) is essentially a
tight lower bound on the running time under ETH for even larger parameters
than n such as k = n+m+α and k = n+m+(�−α). Moreover, we proved that
the problem admits a polynomial kernel with respect to n + �, but is unlikely to
admit one with respect to all the other parameters that we considered. We also
proved that the problem is W[1]-hard with respect to m + α and m + (� − α).
However, two questions are still open: (1) Is it possible to obtain a (not polyno-
mial) better kernel for m + � with size substantially smaller than O∗((m!)�+1)?
(2) Is it possible to obtain a better running time than O∗(k!) for k = n+m+ �?

Continuing our research, it might be interesting to study “weaker” defini-
tions of optimality, for example: finding an assignment such that every group
of k agents has some α layers where they (1) do not admit trading cycles; (2)
are not parts of larger trading cycles; or (3) do not admit the same trading
cycle. Verification variants of these problems can also be suggested, i.e. given an
assignment p, check whether it is optimal.
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Another direction is to study the particular case where the preferences of the
agents are complete since it may provide more positive algorithmic results under
some parameterizations. In addition, notice that a solution to α-Globally

Optimal Assignment can be seen as an approximation to the “optimal” solu-
tion in which an assignment is pareto optimal in a maximum number of layers
(this is similar to the Vertex Cover problem, where the parameter k is some-
what an “approximation” to the size of the minimum vertex cover). In this
approach, we can define the problem as an approximation problem and study it
from the perspective of parameterized approximability.

In this paper, we considered the basic “unweighed” model of the problem
(since this is the first study of this kind). Another direction is to consider a
weighted version in which some criteria (layers) may have higher importance
than others. A straightforward way to model this is by having several copies of
layers. However, if weights are high and varied, this might lead to inefficiency.
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