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Preface

This volume constitutes the revised post-conference proceedings of the 18th European
Conference on Multi-Agent Systems (EUMAS 2021). The conference was held online
during June 28–29, 2021. 16 full papers are presented in this volume, each of which
carefully reviewed and selected from a total of 51 submissions.

The papers report on research regarding a wide range of topics in the field of
multi-agent systems. EUMAS 2021 followed the tradition of previous editions (Oxford
2003, Barcelona 2004, Brussels 2005, Lisbon 2006, Hammamet 2007, Bath 2008, Agia
Napa 2009, Paris 2010, Maastricht 2011, Dublin 2012, Toulouse 2013, Prague 2014,
Athens 2015, Valencia 2016, Evry 2017, Bergen 2018, and Thessaloniki (virtually)
2020) in aiming to provide the prime European forum for presenting and discussing
agents research as the annual designated event of the European Association of
Multi-Agent Systems (EURAMAS).

The peer-review process carried out put great emphasis on ensuring the high quality
of accepted contributions. The 50-person EUMAS Program Committee accepted 16
submissions as full papers. This volume is structured in sections mirroring the pre-
sentation sessions of the virtual conference event (https://biu-ai.com/EUMAS21/). In
addition to the papers included in this volume, the program was highlighted by two
great keynote talks, the first one by Catholijn M. Jonker (TU Delft), titled Towards
Hybrid Intelligence: A vision on the future of AI and Humankind, and the second one
by Ariel Procaccia (Harvard University), titled Democracy and the Pursuit of
Randomness.

Based on the reviews, the conference chairs presented two awards for papers that
especially stood out: a Best Paper Award was awarded to Barak Steindl and Meirav
Zehavi for their paper titled Verification of Multi-Layered Assignment Problems; and a
Best Paper Runner Up Award was awarded to Cihan Eran, Onur Keskin, Furkan
Canturk and Reyhan Aydogan for their paper titled A Decentralized Token-based
Negotiation Approach for Multi-Agent Path Finding. The award recipients were invited
to submit an extended version of their papers for fast track publication in the Journal of
Autonomous Agents and Multi-Agent Systems (JAAMAS). In addition, selected
papers were invited to extend their contribution for a special issue of SN Computer
Science.

The editors would like to thank the following:

• all members of the Program Committee, and all additional reviewers, for providing
their input regarding the submitted papers;

• all authors for submitting to EUMAS;
• all participants of the virtual conference event;
• the invited speakers for their great talks;
• the editors of JAAMAS for inviting the award recipients to extend their papers

and enjoy a fast track publication process.

https://biu-ai.com/EUMAS21/


• the editors of SN Computer Science for supporting a special issue of extended
selected papers;

• Davide Grossi, for helping in the background.

July 2021 Ariel Rosenfeld
Nimrod Talmon

vi Preface
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Ascending-Price Mechanism for General
Multi-sided Markets

Dvir Gilor1 , Rica Gonen1(B) , and Erel Segal-Halevi2

1 The Open University of Israel, Raanana, Israel
dvir@gilor.com, gonenr@openu.ac.il

2 Ariel University, Ariel, Israel

Abstract. We present an ascending-price mechanism for a multi-sided
market with a variety of participants, such as manufacturers, logistics
agents, insurance providers, and assemblers. Each deal in the market
may consist of a combination of agents from separate categories, and
different such combinations are simultaneously allowed. This flexibility
lets multiple intersecting markets be resolved as a single global market.
Our mechanism is obviously-truthful, strongly budget-balanced, individ-
ually rational, and attains almost the optimal gain-from-trade when the
market is sufficiently large. We evaluate the performance of the suggested
mechanism with experiments on real stock market data and synthetically
produced data.

Keywords: Multi-sided markets · Truthful auctions · Strong budget
balance

1 Introduction

The aim of this paper is to automatically arrange the trade in complex multi-
lateral markets. As an example, consider a market for a certain kind of laptop
computer, and assume for simplicity that it is made of only two components, e.g.
CPU and RAM. Even in this simplified market, there may be several different
categories of traders: 1. Buyers, who are interested in a laptop; 2. Laptop pro-
ducers, who produce whole laptops; 3. CPU producers; 4. RAM producers; 5.
Constructors, who construct a laptop from its parts; 6. Transporters, who take
a laptop and bring it to an end consumer. A deal in this market can take one of
two forms:

– A buyer buys a laptop from a laptop-producer, and asks a transporter to
transport it to his place. This involves traders of categories 1, 2 and 6.

– A buyer buys CPU, RAMs and a construction service, and has the final
product transported. This involves traders of categories 1, 3, 4, 5 and 6.

The second author would like to thank the Ministry of Science, Technology and Space
995 Binational Israel-Taiwan grant, number 3-16542.

c© Springer Nature Switzerland AG 2021
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2 D. Gilor et al.

In each category there may be many different traders, with potentially different
utilities for participating in a deal. Typically, the value of a buyer is positive and
the value of a producer or service-provider is negative. The main questions of
interest for automatically arranging the trade is who will trade and how much
they will pay (or receive). The answers to these questions should satisfy several
natural requirements (see Sect. 2):

(1) Individual rationality (IR): No agent should lose from participating: the
amount paid by a trading agent should be at most as high as the agent’s value
(if the value is negative then the agent should receive money). A non-trading
agent should pay nothing.

(2) Weak budget balance (WBB): The total amount paid by all agents together
should be at least 0, so that the market manager does not lose money. A
stronger requirement called strong budget balance (SBB) is that the total
amount be exactly 0, i.e., the market manager does not take away money
from the market, which might drive traders away.

(3) High gain-from-trade (GFT): The GFT is the sum of values of all agents
actively participating in the trade.1 For example, suppose a certain buyer
values a laptop at 1000, the laptop-producer values it at -700 (the cost of
production is 700), the CPU and RAM producers and constructor value their
efforts at -200 each, and the transporter values the deal at -50 (the cost of
transportation is 50). Then, the GFT from a deal involving categories 1, 2,
6 is 1000 − 700 − 50 = 250, and the GFT from a deal involving categories 1,
3, 4, 5, 6 is 1000− 200− 200− 200− 50 = 350. Maximizing the GFT implies
that the latter deal is preferred.

(4) Truthfulness: The agents’ values are their private information. We assume
that the agents act strategically to maximize their utility (assumed to be
their value minus the price they pay). Truthfulness means that such a utility-
maximizing agent reports his true valuation. A stronger requirement called
obvious truthfulness [12] is that, for each agent, the lowest utility he may get
by acting truthfully is at least as high as the highest utility he may get by
acting non-truthfully.2

1.1 Previous Work

The study of truthful market mechanisms started with Vickrey [20]. He con-
sidered a market with only one category of traders (buyers), where the famous
second-price auction attains all four desirable properties: IR, WBB, maximum
GFT and truthfulness.
1 We define the categories that receives payments as negative values so we can sum

the deal values to calculate the gain from trade.
2 In the terminology of Li [12], a mechanism is OT if and only if, for all agents, replying

truthfully to all queries is an obviously-dominant strategy. Note that Li [12] defines
games with actions and not with queries, so in his model, the notion of truthfulness
is irrelevant. He defines a mechanism as obviously strategy-proof if and only if it has
an equilibrium in obviously-dominant strategies..
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Fig. 1. Examples of trees in a recipe-forest.

When there are two caterogies of traders (buyers and sellers), the natural
generalization of Vickrey’s mechanism is no longer WBB—it may run a deficit.
Moreover, Myerson and Satterthwaite [15] proved that any mechanism that is
IR, truthful and maximizes the GFT must run a deficit. The way out of this
impossibility paradox was found by McAfee [13]. In his seminal paper, he pre-
sented the first double auction (auction for a two-category market) that is IR,
WBB, truthful, and asymptotically maximizes the GFT. By asymptotically we
mean that its GFT is at least (1−1/k) of the optimal GFT, where k is the num-
ber of deals in the optimal trade. Thus, when k approaches infinity, the GFT
approaches the optimum.

McAfee’s mechanism has been extended in various ways. Particularly relevant
to our setting is the extension by Babaioff and Nisan [1], with multiple categories
of traders, arranged in a linear supply chain. Their model contains a single
producer category, a single consumer category, and several converter categories.
Each deal must involve a single producer, a single consumer, and a single agent
of each converter category. In our laptop example, their model covers either a
market with the chain 1,2,6 or a market with the chain 1,3,4,5,6, but not a market
where both chains are possible. For this model, they present a mechanism that
is IR, WBB, truthful, and attains asymptotically-optimal GFT.

Recently, Gonen and Segal-Halevi [11] considered a multiple-category market
in which, like Babaioff and Nisan [1]’s market, all deals must be of the same
structure, which they call a “recipe”. Their recipes are more general than the
linear supply chains of Babaioff and Nisan [1], since they are not restricted to
a producer-converters-consumer structure. They present auctions that are IR,
SBB, truthful and asymptotically-optimal, but only for a single-recipe market.

Comparison to other supply-chain mechanisms e.g. [9,14] and a survey of
more recent works on two-sided markets e.g. [3–7,10,17–19], can be found in the
full version of our paper at [8].

1.2 Our Contribution

We study markets with multiple kinds of supply-chains which, following Gonen
and Segal-Halevi [11], we call “recipes”. In their paper, they have a general single-
recipe market. In this paper, we focus on a general multi-recipe market. In such a
market, computing the optimal trade—even without strategic considerations—is
NP-hard. Moreover, it is NP-hard to compute a trade that attains at least 94/95
of the optimal GFT (see the full version of our paper at [8]). Hence, it is unlikely
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that a mechanism that runs in polynomial time can be asymptotically-optimal.
In this paper, we focus on a special case in which the optimal trade can be
computed in polynomial-time (Sect. 3): the case in which the agent categories
can be arranged in a forest (acyclic graph), and each recipe is a path from a
root to a leaf in that forest. Our laptop market corresponds to a forest with the
tree in Fig. 1(d).

We present a randomized ascending mechanism for such markets (Sect. 4).
Our mechanism is IR, SBB and obviously-truthful. Moreover, all these properties
hold universally—for every possible outcome of the randomization. The expected
GFT of our mechanism is asymptotically-optimal—it approaches the optimum
when the optimal number of deals in all recipes approaches infinity (See Sect. 5
for the formal statements). We evaluate the performance of our mechanism on
both real and synthetic data (see Sect. 6).

Our mechanism extends [11] in the setting of binary recipes, in which each
category participates in each recipe either zero or one times. Extending [11] to
handle non-binary recipes is beyond the scope of this paper and is the topic
of our current research. Some other possible extensions of our mechanism are
discussed in the full version of our paper at [8]. In particular, we explain why
the limitation to acyclic graphs is economically reasonable.

2 Formal Definitions

2.1 Agents and Categories

A market is defined by a set of agents grouped into different categories. N is
the set of agents, G is the set of agent categories, and Ng is the set of agents in
category g ∈ G. The categories are pairwise-disjoint, so N = �g∈GNg.

Each deal in the market requires a certain combination of traders. We call a
subset of agents that can accomplish a single deal a procurement-set (PS).

A recipe is a vector of size |G|, denoted by r := (rg)g∈G, where rg ∈ Z+ for
all g ∈ G. It describes the number of agents of each category that should be in
each PS: each PS should contain r1 agents of category 1, r2 agents of category
2, and so on. The set of recipes available in the market is denoted by R.

In the market of McAfee [13] each deal requires one buyer and one seller, so
there is a single recipe and R = {(1, 1)}. In our initial laptop-market example
there are two recipes and R = {(1, 1, 0, 0, 0, 1); (1, 0, 1, 1, 1, 1)}. The first one
corresponds to deals with a buyer, a producer and a transporter, and the second
one corresponds to deals with a buyer, a CPU producer, a RAM producer, a
constructor and a transporter. In this paper we assume that recipes are binary,
i.e., rg ∈ {0, 1} for every recipe r and every g ∈ G.

Each agent i ∈ N has a value vi ∈ Z, which represents the material gain
of an agent from participating in the trade. It may be positive, negative or
zero. In a two-sided market for a certain good, the value of a buyer is typically
positive, while the value of a seller is typically negative and represents the cost
of producing the good. However, our model is general and allows the values of
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different agents in the same category to have different signs. For simplicity, we
assume that all the vi are integer numbers, e.g., all valuations may be given in
cents.3 We also assume that there are publicly known bounds on the possible
valuations: for some sufficiently large V , −V < vi < V for all i ∈ N .

The agents are quasi-linear in money : the utility of agent i participating in
some PS and paying pi is ui := vi − pi.

2.2 Trades and Gains

The gain-from-trade of a procurement-set S, denoted GFT (S), is the sum of
values of all agents in S:

GFT(S) :=
∑

i∈S

vi.

In a standard two-sided market, the GFT of a PS with a buyer b and a seller s
is vb − |vs|, since the seller’s value is −|vs|.

Given a market (N,G, r), a trade is a collection of pairwise-disjoint
procurement-sets. I.e, it is a collection of agent subsets, S1, . . . , Sk ⊆ N , such
that for each j ∈ [k], the composition of agents in Sj corresponds to some recipe
r ∈ R. The total GFT is the sum of the GFT of all procurement-sets participat-
ing in the trade:

GFT(S1, . . . , Sk) :=
k∑

j=1

GFT(Sj)

A trade is called optimal if its GFT is maximum over all trades.
The value of agent i given trade S = (S1, . . . , Sk), denoted vi(S), is either vi

or 0: it is vi if i ∈ Sj for some j ∈ [k], and 0 otherwise.

2.3 Mechanisms

The definitions below cover only the notions used in the present paper. For a
more complete treatment of mechanisms and their properties see [16].

A deterministic direct mechanism is a function that takes as input a vector
b containing agent bids, and returns as output a trade S(b) and a price-vector
p(b). The utility of each agent i, given a deterministic mechanism and a bid
vector b, is ui(b) := vi(S(b)) − pi(b).

A deterministic direct mechanism is truthful if the utility of every agent i
is maximized when the agent bids vi, for any fixed bids of the other agents.
Formally, for every vector b = (b1, . . . , bn), denote by b|bi←x the vector
(b1, . . . , bi−1, x, bi+1, . . . , bn). A mechanism is truthful if for every agent i and b:

ui(b|bi←vi
) ≥ ui(b).

3 This simplifies Algorithm 2.
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A deterministic direct mechanism is individually-rational (IR) if the utility
of every agent i when the agent bids vi is at least 0, regardless of the bids of the
other agents:

ui(b|bi←vi
) ≥ 0.

A randomized direct mechanism is a lottery over deterministic direct mech-
anisms. In other words, it is a mechanism in which the functions S and p may
depend not only on the bids but also on some random variables.

A randomized direct mechanism is called universally-truthful if it is a lottery
over truthful deterministic direct mechanisms. In a universally-truthful random-
ized mechanism, the utility of agent i is maximized when the agent bids vi,
regardless of the bids of the other agents, and regardless of the random vari-
able values. Similarly, a randomized direct mechanism is universally-IR if it is a
lottery over IR deterministic direct mechanisms.

A mechanism is called obviously truthful if for every agent i and vectors b,b′:

ui(b|bi←vi
) ≥ ui(b′).

In other words, the lowest utility the agent can get when reporting truthfully is at
least as high as the highest utility the agent can get when reporting untruthfully,
where “lowest” and ”highest” are w.r.t. all possible reports of the other agents.
This is a very strong property that is not satisfied by non-trivial direct mech-
anisms. However, an analogous property is satisfied by some sequential mecha-
nisms.

In a deterministic sequential mechanism, at each time, an agent has to choose
an action from a prespecified set of actions. In order to give meaning to the
notion of truthfulness, we assume that the “action” is an answer to a query on
the agent’s value: at time t, the designer presents a function qt to some agent i,
and the agent is expected to reveal qt(vi). Our mechanisms will only use Boolean
functions such as “is vi > 2?”. Based on the agents’ answers so far, the designer
may decide to continue asking queries, or to end. When the mechanism ends,
the designer examines the vector of answers a, and determines the trade S(a)
and the price-vector p(a).

Given an answer vector a and an agent i, denote by a|ai←x the vector in
which the answer of agent i to any function qt is qt(x) (and the answers of other
agents remain as in a). A deterministic sequential mechanism is called obviously
truthful if, at any step during the execution, and for any two vectors a and a′

consistent with the history of answers up to the current step:

ui(a|ai←vi
) ≥ ui(a′).

In other words, the lowest utility the agent can get by answering truthfully,
according to vi, is at least as high as the highest utility he can get by answering
untruthfully.

A deterministic direct mechanism is a special case of a deterministic sequen-
tial mechanism in which there is only one step of queries and the queries are
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“what is your value?”. If such a mechanism is obviously-truthful, then it is also
truthful (set a = a′ = b in the definition of obvious-truthfulness).

A randomized sequential mechanism is a lottery over deterministic sequen-
tial mechanisms; it is called universally obviously-truthful if it is a lottery over
obviously-truthful deterministic sequential mechanisms.

2.4 Recipe Forests

Recall that a forest is an acyclic graph, composed of one or more trees; a rooted
forest is a forest in which, in each tree, one vertex is denoted as its root.

Definition 1. A recipe-set R is called a recipe-forest if there exists a rooted
forest T in which the set of nodes is G, and each recipe r ∈ R corresponds to a
path P from the root of some tree in T to a leaf of that tree (i.e., rg = 1 for each
g ∈ P and rg = 0 for each g �∈ P ).4

We use the same letter g to denote both the category index and the correspond-
ing node in T . As an example, the set R = {(1, 1, 0, 0), (1, 0, 1, 1)} is a recipe-
forest with a single tree shown in Fig. 1(a). The root category is N1. The recipe
(1, 1, 0, 0) corresponds to a path from N1 to the leaf N2. The recipe (1, 0, 1, 1)
corresponds to a path from N1 through N3 to N4.5

3 Computing Optimal Trade

Table 1. Left: an example market. Right: An optimal trade in that market.

Category Agents’ values

N1: buyers 17, 14, 13, 9, 6, 2

N2: sellers -4, -5, -8, -10

N3: A-producers -1, -3, -5

N4: B-producers -1, -4, -6

Procurement sets

Buyer 17, A-producer −1, B-producer −1

Buyer 14, seller −4

Buyer 13, seller −5

Buyer 9, A-producer −3, B-producer −4

We first present an algorithm for computing an optimal trade assuming all
values are known. We illustrate the algorithm on the market in the left of Table 1.
4 In all our examples, the opposite is also true: each path corresponds to a recipe.

But it is not necessary to make this assumption explicitly: if some path does not
correspond to a recipe in R, then the category corresponding to the leaf of that path
can be removed from the market, since it does not participate in any other recipe.
This can be repeated until all remaining paths correspond to recipes.

5 Note that the tree structure is not unique. For example, if R contains a single recipe,
then every category can be considered as the root. For our purposes, it is sufficient to
fix a single tree and a single root, and consider them as the input to the algorithms
(instead of the set R).
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The algorithm is based on contracting the recipe-forest down to a single node.
Two types of contraction operations are used.

In a vertical contraction, a leaf that is a single child is combined with
its parent in the following way. Suppose the sets of agent values in the child
category are v1 ≥ v2 ≥ . . . ≥ vmv

and the agent values in the parent category
are u1 ≥ u2 ≥ . . . ≥ umu

. Replace the parent category by a new category
with m := min(mv,mu) values: u1 + v1, u2 + v2, . . . , um + vm. For example, a
vertical contraction on the tree of Fig. 1(a) results in the tree of Fig. 1(b), where
N3 ∧ N4 denotes the elementwise combination of N3 and N4. In the Table 1
market, N3 ∧ N4 contains the value pairs {(−1,−1), (−3,−4), (−5,−6)} whose
values are {−2,−7,−11}.

The rationale is that the unique root-leaf path that passes through the parent
passes through its child too, and vice-versa. Therefore, any PS that contains an
agent of the parent category must contain an agent of the child category, and
vice-versa. In economic terms, these two categories are complements. Hence,
elementwise combination of the two categories leads to a market with identical
optimal GFT.

In a horizontal contraction, two sibling leaves are combined by tak-
ing the union of their categories in the following way. Suppose the sets of
agent values in the left sibling category are v1, . . . , vmv

and in the right sib-
ling category are u1, . . . , umu

. Replace both categories by a new category
with m := mv + mu values: v1, . . . , vmv

, u1, . . . , umu
. For example, a horizon-

tal contraction on the tree of Fig. 1(b) results in the tree of Fig. 1(c), where
N2 ∪ (N3 ∧ N4) denotes the combination of N2 and N3 ∧ N4. In the Table 1
market, N2 ∪ (N3 ∧ N4) contains the values {−4,−5,−8,−10} ∪ {−2,−7,−11}
whose values are {−2,−4,−5,−7,−8,−10,−11}. If the forest has two or more
trees, then all contracted trees (which now contain a single node each) can be
further combined to a single node, similarly to a horizontal contraction.

The rationale is that, for every path from the root to one leaf there exists a
path from the root to the other leaf, and vice-versa. Therefore, in any PS that
contains an agent of one leaf-category, this agent can be replaced with an agent
from the other leaf-category. In economic terms, these categories are substitutes.
Therefore, uniting them leads to a market with the same optimal GFT.

In any tree with two or more vertices, there is a leaf that is either a single child
or has a sibling leaf (for example, any leaf farthest from the root). Therefore,
any tree admits either a vertical or a horizontal contraction, and it is possible to
contract any tree to a single node. For example, a vertical contraction on the tree
of Fig. 1(c), in the Table 1 market, yields: {17−2, 14−4, 13−5, 9−7, 6−8, 2−10}.
The optimal trade in this market is the set of all deals with positive values, which
in this case contains four deals with values {15, 10, 8, 2}. This corresponds to an
optimal trade with k = 4 deals, shown at the right of Table 1.

If the forest has two or more trees, then all contracted trees can be further
combined using a horizontal contraction to a single node. The process is shown
as Algorithm 1.
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Algorithm 1. Find the optimal GFT.
Input: A set of categories G, a set of traders Ng for all g ∈ G, and a recipe-forest R based on

a rooted forest T . For each agent i ∈ ∪gNg, the value vi is public knowledge.

Output: Optimal trade in the market.

1. If T has a single vertex g:

Return all agents in Ng with a positive value: {i ∈ Ng|vi > 0}
2. Else, if T has two roots without children gl and gs:

Do a horizontal contraction of gl into gs. Go back to step 1.

3. Else, if there is a leaf gl that is a single child of its parent gp:

Do a vertical contraction of gl into gp. Go back to step 1.

4. Else, there is a leaf gl with a sibling leaf gs:

Do a horizontal contraction of gl into gs. Go back to step 1.

4 Ascending Auction Mechanism

4.1 General Description

The ascending-price auction is a randomized sequential mechanism. The general
scheme is presented as Algorithm 2. For each category g, the auctioneer main-
tains a price pg, and a subset Mg ⊆ Ng of all agents that are “in the market”
(that is, their value is higher than the current price of their category). At each
iteration, the auctioneer chooses a subset of the prices, and increases each price
pg in this subset by 1. After each increase, the auctioneer asks each agent in turn,
in a pre-specified order (e.g. by their index), whether their value is still higher
than the price. An agent who answers “no” is permanently removed from the
market. After each increase, the auctioneer computes the sum of prices of the
categories in each recipe, defined as: Prices-sum(r) :=

∑
g∈G pg. When this sum

equals 0, the auction ends and the remaining agents trade in the final prices.
To flesh out this scheme, we need to explain (a) how the prices are initialized,

(b) how the set of prices to increase is selected, and (c) how the final trade is
determined.

(a) An important challenge in determining the prices is that the sum of prices
must be the same for all recipes r ∈ R, so that the price-sum crosses 0 for all
recipes simultaneously, and all deals are simultaneously SBB. For the initial
prices, this challenge is handled by the initialization of Algorithm 2: the
price of each non-leaf category is set to −V (described in Sect. 2), and the
price of each leaf category is set to a number which is at most −V , computed
such that the price-sum in each path from a root to a leaf is the same.

(b) Selecting which prices to increase is handled by Algorithm 3. It is a recur-
sive algorithm: if the forest contains only a single category (a root with no
children), then of course this category is selected. Otherwise, in each tree,
either its root category or its children are selected for increase. The selection
is based on the number of agents of each category g who are currently in the
market. We denote this number by mg := |MG|.
We denote the root category of a tree by g0. The algorithm first compares mg0
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Algorithm 2. Ascending prices mechanism.
Input: A market N , a set of categories G and a recipe-forest R.

Output: Strongly-budget-balanced trade.

1. Initialization: Let Mg := Ng for each g ∈ G. Determine initial price-vector p:

For each non-leaf g, set pg := −V ;

For each leaf g, set: pg := −V · (MaxDepth − Depth(g) + 1);

2. Using Algorithm 3, select a set G∗ ⊆ G of categories.

3. For each g∗ ∈ G∗, ask each agent in i ∈ Mg∗ whether vi > pg∗.
(a) If an agent i ∈ Mg∗ answers “no”, then remove i from Mg∗ and go back to step 2.

(b) If all agents in Mg∗ for all g∗ ∈ G∗ answer “yes”, then for all g∗ ∈ G∗, let pg∗ := pg∗ + 1.

(c) If after the increase
∑

g∈G
pg · rg = 0 for some r ∈ R, then go on to step 4.

(d) else go back to step 3.

4. Determine final trade using Algorithm 4.

Algorithm 3. Find a set of prices to increase.
Input: A set of categories G, a set of remaining traders Mg for all g ∈ G,

and a recipe-forest R based on a forest T .

Output: A subset of G denoting categories whose price should be increased.

0. Initialization: For each category g ∈ G, let mg := |Mg|
= the number of agents of Ng who are in the market.

1. If T contains two or more trees,

Recursively run Algorithm 3 on each individual tree T ′; denote the outcome by IT ′ .
Return

⋃
T ′∈T

IT ′ .
2. Let g0 be the category at the root of the single tree. Let cg0 :=

∑
g′∈Children(g0) mg′ .

3. If mg0 > cg0 [or g0 has no children at all],

then return the singleton {g0}.
4. Else (cg0 ≥ mg0 ), for each child g′ of g0:

Recursively run Algorithm 3 on the sub-tree rooted at g′; Denote the outcome by Ig′ .
Return

⋃
g′∈child(g0) Ig′ .

to the sum of the mg for all children of g0 (which is denoted by cg0). If mg0

is larger, then the price selected for increase is the price of g0; Otherwise (cg0
is larger or equal), the prices to increase are the prices of children categories:
for each child category, Algorithm3 is used recursively to choose a subset
of prices to increase, and all returned sets are combined. It is easy to prove
by induction that the resulting subset contains exactly one price for each
path from a root to a leaf. Therefore, all prices in the subset are increased
simultaneously by one unit, and the price-sum in all recipes remains equal.

Consider again the tree of Fig. 1(a), and suppose the numbers of remaining
traders in the four categories are 6, 4, 3, 3. Initially the algorithm compares
m1 to m2+m3; since the latter is larger, the algorithm recursively checks the
subtrees rooted at g = 2 and g = 3. In the former there is only one category
so it is returned; in the latter, there is one child g = 4. Since m3 ≤ m4, the
child g = 4 is selected. The final set of prices to increase is {p2, p4}. If the
counts were m1 = 6,m2 = 3,m3 = 2,m4 = 2 instead, then the set of prices
to increase would be {p1}. Note that in both cases, a single price is increased
in each recipe.
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Algorithm 4. Determine a feasible trade.
Input: A set of categories G, a set of remaining traders Mg for all g ∈ G,

and a recipe-forest R based on a forest T .

Output: A set of PSs with remaining traders, each of which corresponds to a recipe in R.

1. If T has a single vertex g:

Return Mg — the set of traders remaining in category g.

2. If T has two roots without children gl and gs:

Do a horizontal contraction of gl into gs. Go back to step 1.

3. Otherwise, pick an arbitrary leaf category gl ∈ T .

4. If gl is a single child of its parent gp ∈ T :

Perform a randomized vertical contraction of gl and gp. Go back to step 1.

5. Otherwise, gl has a sibling gs ∈ T :

Perform a horizontal contraction of gl and gs. Go back to step 1.

The equality of price-sums is preserved by the price-increase. The price-sum
increases by 1 at each step, so at some point it reaches 0. At that point, the
auction stops.

(c) Once the auction ends, the final trade has to be computed. At this stage, it is
possible that in some recipes, the numbers of traders remaining in the market
are not balanced. In order to construct an integer number of procurement-
sets of each recipe, some agents must be removed from the trade. The traders
to remove must be selected at random and not by their value, since selecting
traders by value might make the mechanism non-truthful. To this end, we
replace the vertical contraction operation with a randomized vertical contrac-
tion. A leaf that is a single child is combined with its parent in the following
way. Denote the leaf and parent category by l and p respectively, and let Mi

be the set of traders remaining in category i. Let nmin := min(|Ml|, |Mp|) =
the integer number of procurement-sets that can be constructed from the
agents in both categories. For each g ∈ {l, p} if |Mg| > nmin then choose
|Mg| − nmin agents uniformly at random and remove them from Mg. Then
perform a vertical contraction with the remaining agents.

The horizontal contractions can be performed deterministically, as no traders
should be removed. The process of determining the final trade is summarized as
Algorithm 4.

4.2 Example Run

We illustrate Algorithm 2 using the example in Table 1, where the recipe set is
R = {(1, 1, 0, 0), (1, 0, 1, 1)} and the recipe-forest contains the single tree shown
in Fig. 1(a). The execution is shown in Table 2.

Step 1. The initialization step ensures that (a) the initial sum of prices is the
same in each recipe; (b) the price in each category is lower than the lowest
possible value of an agent in this category, which we denoted by −V . In the
example, the initial prices are −V,−2V,−V,−V , and the price-sum of each recipe
is −3V .
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Step 2. The categories whose price should be increased are determined using
Algorithm 3. In the example, the numbers of remaining traders are 6, 4, 3, 3.
Since 6 < 4 + 3, the price of the root category (the buyers) is not increased. In
the first branch, the seller-price is selected for increase. In the second branch,
there is a tie between the A-producer and the B-producer, which is broken in
favor of the child. Therefore, the chosen set G∗ is {2, 4} = {seller, B-producer}.

Step 3. The auctioneer increases the prices of each category g∗ ∈ G∗ by 1, until
one agent of some category g∗ ∈ G∗ indicates that his value is not higher than
the price, and leaves the trade. The price never skips any agent’s integer value,
because the initial category price was a big negative integer number (−V ) and
the increment is done always by 1 so the category price visits every integer from
−V to the current category price. In the example, the first agent who answers
“no” is B-producer −6. While p4 has increased to −6, p2 has increased to −V −6,
so the price-sum in all recipes remains the same: −2V − 6. After B-producer −6
is removed, we return to step 2 to choose a new set of prices to increase. The
algorithm keeps executing steps 2 and 3 as described in Table 2. Finally, while
the algorithm increases p1, before buyer 9 exits the trade, the price-sum in all
recipes becomes 0 and the algorithm proceeds to step 4.

Step 4. The final trade is determined by Algorithm4. In the example, a random-
ized vertical contraction is first done between the A-producers and B-producers.
Since there is one A-producer −1 and one B-producer −1, none of them has to
be removed, and the combined category now has a single pair. Next, a horizontal
contraction is done between the pair of producers and the remaining two sell-
ers. This results in a combined category of size 3. Finally, a randomized vertical
contraction is done between this combined category and the buyers’ category.
Since there are 4 remaining buyers, but only 3 sets in the child category, one
of the buyers is chosen at random and removed from trade. Finally, three deals

Table 2. Execution of Algorithm 2 on market from Table 1

Category counts G∗ Price-increase stops when New prices Price-sum

[Initialization] −V,−2V,−V,−V −3V

6, 4, 3, 3 2, 4 B-producer −6 exits −V,−V − 6,−V,−6 −2V − 6

6, 4, 3, 2 2, 3 A-producer −5 exits −V,−11,−5,−6 −V − 11

6, 4, 2, 2 2, 4 seller −10 exits −V,−10,−5,−5 −V − 10

6, 3, 2, 2 1 buyer 2 exits 2,−10,−5,−5 −8

5, 3, 2, 2 2, 4 B-producer −4 exits 2,−9,−5,−4 −7

5, 3, 2, 1 2, 3 seller −8 exits 2,−8,−4,−4 −6

5, 2, 2, 1 1 buyer 6 exits 6,−8,−4,−4 −2

4, 2, 2, 1 2, 3 A-producer −3 exits 6,−7,−3,−4 −1

4, 2, 1, 1 1 price-sum crosses zero 7,−7,−3,−4 0
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are made: two deals follow the recipe (1, 1, 0, 0) and involve a buyer and a seller,
and one deal follows the recipe (1, 0, 1, 1) and involves a buyer, an A-producer
and a B-producer.

5 Ascending Auction Properties

Due to space constraints, most proofs can be found in the full version of our
paper [8].

A crucial feature of our mechanism is that the price-sum along each path
from the same node to a leaf is constant.

Lemma 1. Throughout Algorithm2, for any category g ∈ G, the price-sum
along any path from g to a leaf is the same for all paths.

The economic properties of the auction are summarized in the following theo-
rems.

Theorem 1. Algorithm2 is universally strongly-budget-balanced, individually-
rational and obviously truthful.

Proof. Given a fixed priority-ordering on the agents, consider the deterministic
variant of the algorithm in which, in step 3 of Algorithm4, instead of the ran-
domized vertical contraction, the removed agents in each category are selected
deterministically by the fixed agent ordering. Algorithm2 is a lottery on such
deterministic mechanisms, where the agent ordering is selected uniformly at ran-
dom. Therefore, to prove that the randomized mechanism satisfies a property
universally, it is sufficient to prove that each such deterministic variant satisfies
this property.

Strong budget balance holds since by Lemma1 (applied to the root category),
the price-sum for all recipes remains the same throughout the execution, and the
algorithm stops whenever this sum becomes 0. Individual rationality holds since
i ∈ Ng may remain in the market only if vi ≥ pg. To prove obvious-truthfulness,
we consider an agent i ∈ Ng who is asked whether vi > pg, and check the two
possible cases:

– Case 1: vi > pg. If the agent answers truthfully “yes”, then his lowest possible
utility is 0 (since the mechanism is IR). If the agent answers untruthfully
“no”, then his highest possible utility is 0 since he is immediately removed
from trade and cannot return.

– Case 2: vi ≤ pg. If the agent answers truthfully “no”, then his lowest possible
utility is 0 (since he is removed from trade immediately). If the agent answers
untruthfully “yes”, then his highest possible utility is 0, since the utility is
vi − pg and the price can only increase.

In both cases, the lowest possible utility of a truthful agent is at least the highest
possible utility of a non-truthful agent.
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We now show that the ascending auction attains an asymptotically optimal
GFT. The analysis assumes that the valuations are generic—the sum of val-
uations in every subset of agents is unique. In particular, the optimal trade is
unique. This is a relatively mild assumption, since every instance can be modified
to have generic valuations, as explained by Babaioff and Walsh [2].

First, choose a sufficiently large constant W ≥ n + 1 and replace each value
vi by 2W · vi. This scaling obviously has no effect on the optimal or the actual
trade. Then, arbitrarily assign a unique integer index i ∈ {1, . . . , n} to every
agent, and set v′

i := 2W · vi + 2i.
Now the sum of valuations in every agent subset is unique, since the n least

significant bits in its binary representation are unique. Moreover, for every subset
I ⊆ N ,

∑
i∈I v

′
i ≈ 2W

∑
i∈I vi plus some “noise” smaller than 2n+1 ≤ 2W .

Therefore, the optimal trade in the new instance corresponds to one of the
optimal trades in the original instance, with the GFT multiplied by 2W . If the
constant W is sufficiently large, the “noise” has a negligible effect on the GFT.

Definition 2. (a) The number of deals in the optimal trade is denoted by k.
(b) For each recipe r ∈ R, the number of deals in the optimal trade corresponding

to r is denoted by kr (so k =
∑

r∈R kr).
(c) The smallest positive number of deals of a single recipe in the optimal trade

is denoted by kmin := minr∈R,kr>0 kr.

Theorem 2. The expected GFT of the ascending-price auction of Sect. 4 is at
least 1 − 1/kmin of the optimal GFT.

To prove Theorem 2 we need several definitions. For every category g ∈ G:
(*) kg := the number of deals in the optimal trade containing an agent from

Ng (equivalently: the number of deals whose recipe-path passes through g). If g
is the root category then kg = k. If g is any non-leaf category then

kg =
∑

g′ is a child of g

kg′ . (1)

In the Table 2 market, kg for categories 1,2,3,4 equals 4, 2, 2, 2 respectively.
(*) vg,kg

:= the value of the kg-th highest trader in Ng—the lowest value of
a trader that participates in the optimal trade. In the Table 2 market, vg,kg

for
categories 1,2,3,4 equals 9,−5,−3,−4 respectively. Note that, in any path from
the root to a leaf, the sum of vg,kg

is positive—otherwise we could remove the
PS composed of the agents corresponding to this path, and get a trade with a
higher GFT.

(*) vg,kg+1 := the highest value of a trader that does not participate in the
optimal trade (or −V if no such trader exists). In the Table 2 market, vg,kg+1 for
categories 1,2,3,4 equals 6,−8,−5,−6 respectively. Note that, in any path from
the root to a leaf, the sum of vg,kg+1 is at most 0—otherwise we could add the
corresponding PS and get a trade with a higher GFT.
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Recall that, during the auction, mg := |Mg| = the number of agents of
category g currently in the market (whose value is larger than pg), and

cg :=
∑

g′ is a child of g

mg′ . (2)

When the algorithm starts, mg ≥ kg for all g ∈ G, since all participants of the
optimal trade are in the market. Similarly, cg ≥ kg. In contrast to Eq. (1), mg

and cg need not be equal. By adding dummy agents with value −V + 1 to some
categories, we can guarantee that, when the algorithm starts, mg = cg for all
non-leaf categories g ∈ G. For example, in the Table 2 market it is sufficient to
add a buyer with value −V +1. This addition does not affect the optimal trade,
since no PS in the optimal trade would contain agents with such low values. It
does not affect the actual trade either, since the price-sum is negative as long
as there are dummy agents in the market. Once mg = cg, we show that these
values remain close to each other throughout the algorithm:
Lemma 2. For all non-leaf categories g ∈ G,

cg ≤ mg ≤ cg + 1.

Definition 3. Given a price-vector p, a subset G′ ⊆ G is called:
(a) Cheap—if pg ≤ vg,kg+1 for all g ∈ G′;
(b) Expensive—if pg ≥ vg,kg

for all g ∈ G′.

We apply Definition 3 to paths in trees in the recipe-forest T . Intuitively, in
a cheap path, the prices are sufficiently low to allow the participation of agents
not from the optimal trade, while in an expensive path, the prices are sufficiently
high to allow the participation of agents only from the optimal trade.

Lemmas 3–7 show some cases when Cheap and Expensive paths can and
cannot exist in certain forest-trees. These lemmas are then used to prove Lemma
8: when Algorithm 2 ends, mg ∈ {kg, kg − 1} for all g ∈ G. With Lemma 8, we
prove our main theorem. Lemmas 3–8 and their proofs can be found in the full
version of our paper at [8].

Proof (Proof of Theorem 2). By Lemma 8, each recipe r ∈ R with kr = 0 does
not participate in the trade at all. For each recipe r ∈ R with kr > 0, for each
category g in r, all kg optimal traders of g, except maybe the lowest-valued one,
participate in the final trade. Therefore, in the random selection of the final
traders (Algorithm 4), at least kg − 1 random deals are performed out of the kg
optimal deals. Hence, the approximation ratio of the GFT coming from recipe r
alone is at least 1 − 1/kr of the optimum. Taking the minimum over all recipes
yields the ratio claimed in the theorem.

6 Experiments

We evaluated the performance of our ascending auction using simulation exper-
iments.6 For these preliminary experiments, we used the recipe-forest R =
6 The code used for the experiments and the experiment results are available at

https://github.com/dvirg/auctions.

https://github.com/dvirg/auctions
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Table 3. Results with stock-market prices and the recipe-forest R = {(1, 1,
0, 0), (1, 0, 1, 1)}.

n Optimal Ascending price

k kmin kmax 1 − 1
kmin

OGFT k′ kmin
′ kmax

′ %k′ GFT %GFT

2 1.11 1.00 1.00 6.592 106323.0 0.48 0.48 0.48 37.24 60563.5 43.473

4 2.27 1.56 1.83 24.051 231902.7 1.49 1.35 1.38 65.02 194877.0 80.655

6 3.43 1.89 2.65 30.710 348117.4 2.56 1.93 2.22 74.39 322155.4 90.531

10 5.78 2.46 4.31 42.567 594618.4 4.84 2.63 3.89 83.53 578495.9 96.269

16 9.32 3.36 6.79 56.172 953490.8 8.34 3.42 6.37 89.46 943732.1 98.473

26 15.19 5.05 10.91 69.904 1563658.4 14.20 4.88 10.50 93.45 1557792.5 99.401

50 29.34 9.49 20.77 83.685 3010702.2 28.33 9.13 20.37 96.56 3007474.9 99.831

100 58.77 18.86 41.35 91.395 6037200.9 57.74 18.50 40.95 98.25 6035460.2 99.953

500 294.16 90.59 206.05 96.664 30271280.7 293.03 91.92 205.66 99.61 30270801.8 99.997

1000 588.46 176.99 411.96 97.440 60588937.5 587.23 178.03 411.59 99.79 60588643.6 99.999

{(1, 1, 0, 0), (1, 0, 1, 1)}, which contains a single tree with only binary recipes
and two paths (N1 −→ N2 and N1 −→ N3 −→ N4). In the future we plan to
do experiments with larger forests and non-binary recipes. For several values
of n ≤ 1000, we constructed a market with n agents of each category g. The
agents’ values were chosen at random as explained below. For each n, we made
1000 runs and averaged the results. We split the values among the categories
uniformly at random, so each category has n values. The results and conclusions
can be found in the full version of our paper at [8].

6.1 Agents’ Values

We conducted two experiments. In the first experiment, the value of each buyer
(root category) was selected uniformly at random from [1, 1000], and the value
of each trader from the other three categories was selected uniformly at random
from [−1,−1000].

In the second experiment, the values were selected based on real stocks prices
on Yahoo’s stock market site using 33 stocks. For each stock, we collected the
prices from every day from the inception of the stock until September 2020.
Every day the stock has 4 values: Open, Close, High and Low. All price values
are multiplied by 1000, so they can be represented as integers, to avoid floating-
point rounding errors. On each stock, we collected all the price values and used
those price values as agents’ values at random. For the non-root categories,
the values were multiplied by −1. There were more than 1000 values for each
category.

6.2 Number of Deals and Gain from Trade

In each run, we calculated k (the number of deals in the optimal trade), kmin,
kmax (recipe minimum and maximum number of deals in the optimal trade),
1 − 1

kmin
(the theoretical lower bound ratio) and OGFT (the optimal gain-from-

trade). We found that the average value of k was approximately 0.6n. For the
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ascending-price mechanism, we calculated k′ (the actual number of deals done by
the mechanism), kmin

′, kmax
′ (the actual recipe minimum and maximum number

of deals done by the mechanism) and the GFT (the actual gain-from-trade of
deals done by the mechanism). The results are shown in Table 3.
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Başar, T. (eds.) GameSec 2018. LNCS, vol. 11199, pp. 227–247. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01554-1 13

7. Gerstgrasser, M., Goldberg, P.W., de Keijzer, B., Lazos, P., Skopalik, A.: Multi-
unit bilateral trade. In: Proceedings of the AAAI 2019, vol. 33, pp. 1973–1980
(2019). arXiv preprint arXiv:1811.05130

8. Gilor, D., Gonen, R., Segal-Halevi, E.: Ascending-price mechanism for general
multi-sided markets. In: EUMAS (2021). The full version of the paper is at https://
bit.ly/3oY1dZO

9. Gonen, M., Gonen, R., Elan, P.: Generalized trade reduction mechanisms. In: Pro-
ceedings of EC 2007, pp. 20–29 (2007)

10. Gonen, R., Egri, O.: COMBIMA: truthful, budget maintaining, dynamic combi-
natorial market. Auton. Agents Multi Agent Syst. 34(1), 14 (2020)

11. Gonen, R., Segal-Halevi, E.: Strongly budget balanced auctions for multi-sided
markets. In: AAAI, pp. 1998–2005 (2020)

12. Li, S.: Obviously strategy-proof mechanisms. Am. Econ. Rev. 107(11), 3257–3287
(2017)

13. McAfee, R.P.: A dominant strategy double auction. J. Econ. Theory 56(2), 434–
450 (1992). ISSN 00220531

14. McAfee, R.P.: The gains from trade under fixed price mechanisms. Appl. Econ.
Res. Bull. 1, 1–10 (2008)

15. Myerson, R.B., Satterthwaite, M.A.: Efficient mechanisms for bilateral trading. J.
Econ. Theory 29(2), 265–281 (1983). ISSN 00220531

16. Nisan, N.: Introduction to mechanism design (for computer scientists). In: Nisan,
N., Roughgarden, T., Tardos, E., Vazirani, V. (eds.) Algorithmic Game Theory,
pp. 209–241. Cambridge University Press (2007). ISBN 978-0521872829

https://doi.org/10.1613/jair.1316
https://doi.org/10.1016/j.dss.2004.08.008
https://doi.org/10.1007/978-3-662-54110-4_28
https://doi.org/10.1007/978-3-319-99660-8_15
https://doi.org/10.1007/978-3-319-99660-8_15
https://doi.org/10.1007/978-3-030-01554-1_13
http://arxiv.org/abs/1811.05130
https://bit.ly/3oY1dZO
https://bit.ly/3oY1dZO


18 D. Gilor et al.

17. Segal-Halevi, E., Hassidim, A., Aumann, Y.: SBBA: a strongly-budget-balanced
double-auction mechanism. In: Gairing, M., Savani, R. (eds.) SAGT 2016. LNCS,
vol. 9928, pp. 260–272. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53354-3 21

18. Segal-Halevi, E., Hassidim, A., Aumann, Y.: MUDA: a truthful multi-unit double-
auction mechanism. In: Proceedings of AAAI 2018. AAAI Press, February 2018.
arXiv preprint arXiv:1712.06848

19. Segal-Halevi, E., Hassidim, A., Aumann, Y.: Double auctions in markets for multi-
ple kinds of goods. In: Proceedings of IJCAI 2018. AAAI Press, July 2018. Previous
name: “MIDA: A Multi Item-type Double-Auction Mechanism”. arXiv preprint
arXiv:1604.06210

20. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. J.
Finan. 16(1), 8–37 (1961)

https://doi.org/10.1007/978-3-662-53354-3_21
https://doi.org/10.1007/978-3-662-53354-3_21
http://arxiv.org/abs/1712.06848
http://arxiv.org/abs/1604.06210


Governing Black-Box Agents
in Competitive Multi-Agent Systems

Michael Pernpeintner1(B) , Christian Bartelt1 ,
and Heiner Stuckenschmidt2

1 Institute for Enterprise Systems (InES), University of Mannheim,
Mannheim, Germany

{pernpeintner,bartelt}@es.uni-mannheim.de
2 University of Mannheim, Mannheim, Germany

heiner@informatik.uni-mannheim.de

Abstract. Competitive Multi-Agent Systems (MAS) are inherently
hard to control due to agent autonomy and strategic behavior, which
is particularly problematic when there are system-level objectives to be
achieved or specific environmental states to be avoided.

Existing solutions for this task mostly assume specific knowledge
about agent preferences, utilities and strategies, neglecting the fact that
actions are not always directly linked to genuine agent preferences, but
can also reflect anticipated competitor behavior, be a concession to a
superior adversary or simply be intended to mislead other agents. This
assumption both reduces applicability to real-world systems and opens
room for manipulation.

We therefore propose a new governance approach for competitive MAS
which relies exclusively on publicly observable actions and transitions,
and uses the acquired knowledge to purposefully restrict action spaces,
thereby achieving the system’s objectives while preserving a high level
of autonomy for the agents.

Keywords: Multi-agent system · Competition · Stochastic game ·
Governance · Restriction

1 Introduction

1.1 Motivation

One of the most intriguing and challenging characteristics of an MAS is the
fact that its environmental changes depend simultaneously on the actions of all
agents, such that a single agent can never simply choose an action and accu-
rately predict the resulting transition. This mutual influence leads to strategic
and sometimes even seemingly erratic agent actions—particularly when human
agents are involved—, and at the same time decouples intended and observed
system behavior:
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Example 1. Consider an MAS consisting of two agents X and Y , two states A
(initial state) and B, and two actions 0 and 1 for each agent. This results in
the joint action set {00, 01, 10, 11}, where the joint action 10 means that the
first player, X, takes action 1, while the second player, Y , takes action 0. The
transition function of this MAS is shown in Fig. 1. Imagine now an observer who
sees the following sequence of actions and transitions:

A
10−→ A

01−→ A
00−→ B

If the observer does not know anything about the inner workings of X and
Y , it cannot distinguish whether X wanted to stay at state A and changed its
action from 1 in the first step to 0 in the second step because it anticipated
Y ’s second action, or X wanted to reach state B, observed the uselessness of its
first action and then tried another strategy to reach B (and failed again). This
shows that intentions are not immediately linked to observable behavior, and no
preference order over the environmental states can be concluded.

Several existing methods, for instance preference elicitation using CP-nets
[18], rely on the fact that preferences can be observed. However, this requires
additional assumptions about the link between actions and preferences.

A B

00, 11

00, 0101
,1
0 10
,11

Fig. 1. Transition graph of a simple MAS

In this paper, we are investigating the task of achieving a system objective in
the above-mentioned scenario where agents are purely self-interested and pursue
their confidential individual goals strategically without an inherent desire for
cooperation.

1.2 Governance in Multi-Agent Systems

While full control on the part of an outside authority contradicts the multi-
agent property of such a system, some level of control and cooperation can still
be achieved by a suitable governance approach. Several ideas have been proposed
or adapted over the last decades of MAS research, among them Stochastic Games
[36], Deontic Logic [26], Normative Systems [38], and more specifically Normative
Multi-Agent Systems [1,5] and Game Theory for MAS [6,21,23]. In all those
approaches, there are some “global desirable properties” [35] which are to be
fulfilled in addition to the natural, uncontrolled agent behavior. The governance
works toward this objective without destroying the multi-agent property of the
system.
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The simplest way of achieving a system objective would be, of course, to
set fixed rules which have to be obeyed by all agents (off-line rule design [38]).
While this can be an effective approach, it necessarily suffers from at least one
of two drawbacks: Either the agents are so heavily constricted that they lose
their autonomy altogether [12], or the system is unable to dynamically cope
with unforeseen strategies. Therefore, we propose to make use of the knowledge
that can be collected by observing how agents behave in the system, in order to
update and refine the governance interventions.

Following the above line of thought, we do not reason in terms of agent
preferences or utilities, but rather in terms of actions and transitions. Naturally,
there is a conflict between control and autonomy, requiring a relative weighting of
the two objectives. We strive here for minimal restriction, subject to a constraint
on the expected value of the system objective.

1.3 Overview of the Approach

The overall approach is shown in Fig. 2: A Governance, as formally defined
in Sect. 3, observes agent actions and subsequent state transitions in order to
predict future agent behavior and to restrict the action spaces from which agents
can choose. By looking only at the observable behavior, we avoid the fallacies
described in Sect. 1.1 which arise when directly concluding preferences over the
environmental states.

Agents

Governance

Environment

Governance

choosetheir actions

lear
ns f

rom

act
ion

s
makes atransition

rest
rict

s

act
ion

s

Fig. 2. High-level governance approach

1.4 Contribution

We present a practical approach and corresponding algorithm to immediately
turn observations about the history, i.e., the actions and transitions of an MAS,
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into suitable restrictions of the agents’ action spaces, such that the value of a
given system objective is optimized (i.e., either minimized or maximized) while
agent autonomy is preserved as much as possible.

The theoretical model is intended to be widely applicable to real-world MAS
and does therefore not assume any particular structure of agents and environ-
ment. The solution method in this paper focuses on Multi-Attribute MAS with
binary attributes, but the results carry over quite naturally to attributes with
arbitrary finite domains.

Our experimental evaluation indicates that the approach is effective and
indeed avoids the above-mentioned problem induced by “observing preferences”.
However, there are still several open challenges which are listed in the closing
section for ongoing and future research.

1.5 Structure

The remainder of this paper is organized as follows: Sect. 2 recaps relevant
existing work and places our work within the context of these approaches. Sect. 3
defines the system model and the governing instance. Section 4 describes the logic
and implementation of the governance loop, while Sect. 5 provides a quantitative
evaluation of two scenarios, demonstrating general feasibility of the approach.
Finally, Sect. 6 gives an outlook on open challenges and future work.

2 Existing Work

2.1 Classification and Scope

The fundamental challenge of “guaranteeing the successful coexistence of mul-
tiple programs” [38] in a Multi-Agent System obviously requires a measure for
“success”, as well as an instance which can evaluate and possibly influence the
degree of success. MAS research can readily be classified from this perspective:

Multi-Agent Systems

Unsupervised MAS Supervised MAS

Governed MAS Normative MAS

System Perspective Agent Perspective

An MAS can either have a supervising entity which interferes with the agents
in order to achieve a system objective, or this goal is achieved solely by the
interaction of the agents (self-organization and/or emergence [30,42]).

When there is a supervisor, its decisions can be either binding (which we will
call a Governed MAS ) or non-binding (normative). We follow here the reasoning
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of [4] who state that norms are “a concept of social reality [which does] not
physically constrain the relations between individuals. Therefore it is possible
to violate them.” Note that this terminology is far from being unambiguous;
for instance, [32] use the term “Normative Synthesis” for the enforcement of
equilibria.

There are two perspectives of a Governed MAS: The viewpoint of a par-
ticipating agent and that of the governing instance. In the latter case, the key
points of interest are the level of control–or level of satisfaction of the system
objectives–that can be achieved, as well as the necessary interventions.

In the remaining paper, we will focus on Governed MAS from a system
perspective only, but the relevant related work (Sect. 2.2) includes also some of
the adjacent areas.

2.2 Relevant Related Work

Multi-Agent Learning has been examined from an agent perspective in great
detail [16], and there are several approaches which can be partly transferred to
the system point of view. In contrast, only few areas, e.g. Normative Multi-Agent
Systems [5], have been thoroughly examined from an observer’s angle.

[16] and [15] identify two main research streams for competitive Multi-Agent
Learning: Game theoretic approaches, including auctions and negotiations, and
Multi-Agent Reinforcement Learning (MARL) [37]. The latter adds a layer of
complexity to classical reinforcement learning [8,40], since competitive agents
all evolve at the same time and therefore disturb the learning process of their
opponents (moving-target problem) [31]. Both surveys, however, restrict their
scope to learning agents, instead of external entities learning about agents.

Game theory in this context oftentimes deals with small, well-defined (and
mostly contrived) scenarios [3,14,39] like two-player games with a fixed payoff
matrix, which can be formally examined and sometimes also completely solved in
terms of optimal responses and behavioral equilibria. What these solutions lack
is widespread applicability to real-world settings where information is incom-
plete, environments are large and agents do not behave nicely. Therefore, the
gap between academic use cases on the one hand, and industrial and societal
applications on the other hand is still large.

[38] realized that social laws can be used by designers of Multi-Agent Sys-
tems to make agents cooperate without formally controlling them. The authors
describe an approach to define such laws off-line and keep them fixed for the
entire run-time of the system, and they mention the possibility that their laws
are not always obeyed by the agents. From this reasoning, the two notions of hard
norms and soft norms [34,35] have emerged—the two categories which we call
Governed (GMAS) and Normative (NMAS) Multi-Agent Systems, respectively.

[35] argue that “achieving compliance by design can be very hard” due to
various reasons, e.g. norm consistency and enforcement complexity. In their view,
NMAS are therefore more suitable for open and distributed environments. This
lack of hard obligations leads to concepts like sanctions, norm revision, norm
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conflict resolution, and others. NMAS have been researched from various per-
spectives and with a host of theoretical frameworks, among them formal lan-
guages and logics [7,13,32], Bayesian networks for the analysis of effectiveness
[10], bottom-up norm emergence [30] and on-line norm synthesis [29]. Many of
these approaches are also partially applicable to Governed MAS, but require
adaptation and generalization. However, the effectiveness of rewards and sanc-
tions fundamentally depends on the agents’ susceptibility to this kind of (dis-)
incentives, rendering the approach useless when agents simply do not react to
sanctions whatsoever.

MARL approaches, naturally built upon the Markov Decision Process
(MDP) model, concentrate on two core issues, compared to classical RL: Non-
stationarity, by force of unknown and dynamic agents, and scalability, since joint
action spaces often grow exponentially in the number of agents. Again, there is
vast literature for Multi-Agent learning from the perspective of an agent [40].
[11] specifically look at the balance between individual preferences and shared
objectives, but only consider cooperative agents.

Concerning the lack of stationary transition probabilities, multiple meth-
ods for model-free learning have been proposed, for example Q-learning [41],
DQN [28] and A3C [27]. In contrast, [19] employ a model-based approach for
non-stationary environments, assuming a continuous, bounded evolution of both
transition and reward.

To fight the scalability issue, [25] apply sequentialization to RL problems with
large action spaces at the expense of an increased time horizon. Their technique
of binarizing the action space into sequential decisions lends itself particularly
well to spaces which are binary themselves, for example all subsets of a fixed
set. This, as we will see, is the structure that we face in the MAS Governance
problem. Other methods for the reduction of state spaces or action spaces include
ε-reduction [2,9] as well as exploitation of symmetry [24] and policy structure
[22]. [17] apply such techniques to the problem of stochastic shortest paths, while
[33] use them for embedding biological state space models into an MDP.

3 Model

Unknown autonomous agents can generally behave in a contradictory manner
and thus defy consistent traceability. Probabilistic methods, however, are able
to deal with such behavior in a very intuitive way. Therefore, a Stochastic Game
[20] was chosen as the underlying model of the black-box MAS observed by the
Governance.

The proposed Governance acts by simply allowing and forbidding certain
actions for individual agents at run-time. This choice (instead of, for instance,
assigning rewards and punishments) is based on two factors: First, the effect
of a reward largely depends on an agent’s utility function, which we assume to
be unknown. Second, Stochastic Games are naturally equipped with a set of
fundamental actions for each agent, a subset of which (the currently available
actions) can be chosen at any given time step. This fits nicely into our idea of
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Governance which is to transform the set of fundamental actions into a subset
of allowed actions.

The Governance’s knowledge about agent behavior is stored in a data struc-
ture similar to a Q-table [41], such that acquisition of new knowledge from obser-
vations as well as conclusions about conflicts and optimal action restrictions can
be performed as part of an on-line governing cycle.

3.1 Agents and Environment

Consider a discrete-time Stochastic Game (I,S,A, r, δ) with a set I = {1, ..., n}
of agents, a set S of environmental states, a set A =

∏
i∈I Ai of fundamental

actions per agent, a confidential reward function r : S × A → R
n and a prob-

abilistic transition function δ : S × A → ΔS, where ΔS denotes the set of all
distribution functions p : S → [0, 1] with

∑
s∈S p(s) = 1.

At each step t, an agent is given an individual set A
(t)
i ⊆ Ai of allowed

actions—defined by the Governance—, from which it can choose. The system
dynamics of agent i are therefore represented by its confidential stochastic policy
πi : S×2Ai → ΔAi such that pπi (s,Ai )(ai) = 0 ∀ai /∈ Ai. The policies can change
dynamically at run-time, reflecting the agents’ ability to learn and evolve.

Throughout this paper, variables or functions which are changing over time
will be indicated by superscripting the current time step t, as in π

(t)
i .

In this work, we limit our investigation to binary multi-attribute environ-
ments, i.e., S = B

m for some fixed m ∈ N, where agents can change one attribute
per time step (or choose the neutral action ∅), and an attribute is determinis-
tically toggled when at least one agent chooses to change it.

Example 2. Consider a smart home environment consisting of 7 binary vari-
ables: S = T × O × W × B × H × L × A ∼= B

7, where the variables denote
Time (day/night), Occupancy (occupied/empty), Window (open/closed), Blinds
(open/closed), Heating (on/off), Lights (on/off) and Alarm (on/off), respec-
tively. The n agents, who each have their individual preferences over the environ-
mental state, can now choose to change at most one of the variables W,B,H,L
or A at each step (they cannot, however, influence the Time or the Occupancy
of the house).

An exemplary progression of this system could be

1100101 wa∅−−−→ 1110100 blb−−→ 1111110
∅∅h−−−→ 1111010 hlb−−→ 1110100 bwl−−→ 1101110,

where states are written as binary numbers, and transitions, together with the
respective chosen actions, connect subsequent states. There are three agents
acting upon the environment with identical action sets Ai = {∅, w, b, h, l, a} ∀i.
Time and Occupancy would, of course, be controlled by external forces, but this
is omitted here for simplicity.
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3.2 Governance

Section 3.1 defines the evolution of an MAS according to the formula

s(t+1) = δ
(
s(t), π(s(t))

)
.

Since the action policies are at the agents’ discretion, it follows immediately
that this progression can be influenced via exactly two levers: Either by changing
what agents can do (altering their action sets) or by changing what consequences
actions have (altering the transition function).

Our proposed governance model follows a strict separation of concerns:
The transition function represents the unalterable evolution of the environment
according to the actions taken by all agents, while the restriction of actions is
performed by the Governance and therefore artificial. To use an analogy, the
transition function accounts for the laws of nature in the system, whereas the
Governance plays the role of the legislature.

The Governance G = (cG , Γ, λ) consists of a cost function cG , a restriction
function Γ and a learning function λ, which are defined formally in the next
sections. We call a MAS together with a Governance a Governed Multi-Agent
System (GMAS).

Observation and Intervention. The Governance intervenes at each time step
t by defining individual allowed actions for each agent before the agents choose
their respective actions from their restricted action sets:

A(t) = Γ
s
(t)
G

(s(t)),

where A(t) � A is a regular subset of the fundamental action set A =
∏

i Ai,
i.e., A(t) =

∏
i A

(t)
i with A

(t)
i ⊆ Ai ∀i. The subscript in Γ

s
(t)
G

(s(t)) hints to
the fact that Γ implicitly uses as an input not only the current environmental
state s(t), but also the internal state s

(t)
G of the Governance, representing the

knowledge acquired so far. Since this is always the case, we will henceforth omit
the subscript for brevity.

For consistency reasons, each agent i has a neutral action ∅i ∈ Ai which
cannot be deleted from the set of allowed actions. Consequently, the joint action
∅ is always allowed.

As soon as all agents have made their choice of action a = (ai)i ∈ A(t), the
Governance can then use the new observation (s(t), a(t), s(t+1)) to learn about the
agents and the effectiveness of Γ . The corresponding learning step is expressed
as an update of the Governance’s internal state which, in turn, will be used by
Γ in the next step, i.e.,

s
(t+1)
G = λ

(
s
(t)
G , s(t), a, s(t+1)

)
.

As opposed to other authors [4], we do not distinguish between legal and
physical power: An agent can, as a matter of fact, only choose from the set of
currently allowed actions, which might change from step to step.
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System Objective. After defining how the Governance can influence the sys-
tem behavior, we need to define why and to what purpose it uses this lever: As
mentioned in Sect. 1.1, we assume that there is a certain system objective which
is to be fulfilled in addition to the agent-specific goals. Since the Governance
has only probabilistic information about the agents’ future actions, its objective
needs to be compatible with probabilistic reasoning and therefore quantifiable.

Definition 1. The system objective of an MAS is to minimize a cost function
cG : S → R, and to choose a minimal restriction while doing so.

There are two common types of system objectives: Either minimize (or max-
imize) a numerical parameter, which can directly be expressed by cG , or distin-
guish between valid states S+ and invalid states S− := S \ S+. In the latter
case,

cG(s) := 1S−(s) (1)

describes a system objective which prefers all valid states over all invalid states.
Therefore, the Governance will pursue a valid state with minimal restriction of
the agents.

In sum, the three components of G are the functions cG : S → R, Γ : S → 2�A

and λ : SG × S × A × S → SG .

Example 3. As a continuation of Example 2, consider a GMAS where cG is
defined as in Eq. 1 with

S+ =
{
s ∈ S :

(
w(s) ∨ h(s)

) ∧ (a(s) ∨ o(s)) ∧ (
l(s) ∨ o(s)

)}
,

meaning that the system wants to make sure that (a) the window is not open
while the heating is turned on, (b) the alarm is on when the house is empty, and
(c) the lights are off when there’s nobody home.

It is now the task of the Governance to impose minimal restrictions on the
agents while keeping s(t) ∈ S+ ∀t ≥ 0.

4 Governance Loop

In this section, we will build and analyze an algorithm to integrate observations
into the current knowledge (learning step) and then turn this knowledge into a
Pareto-optimal restriction of action sets (restriction step).

Let n be the number of agents, m the number of binary attributes, and q the
number of actions for each agent (we assume the same fundamental action set
for all agents).

4.1 Observation and Learning Step

Let SG := N
n·2m·q
0 , such that the governance state is a simple counter of observed

actions per agent per environmental state. Note that the second index of the
governance state can naturally be identified with an environmental state s since
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S ∼= {0, ..., 27 − 1}. For each observation (s(t), a(t)), the learning function λ
increments the respective numbers by one:

λ(sG , s(t), a(t)) = s′
G , where s

′(i,s,j)
G :=

{
s
(i,s,j)
G + 1 if a

(t)
i = j ∧ s(t) = s

s
(i,s,j)
G else

.

This gives rise to an (observed) probability distribution

P
(t)
i (s) :=

(
s
(i,s,1)
G
s
(i,s)
G

, ...,
s
(i,s,q)
G
s
(i,s)
G

)

∈ Pq , where s
(i,s)
G =

q∑

j=1

s
(i,s,j)
G

for each agent i and environmental state s, which reflects the knowledge
about the agents’ past actions up to step t and thus contains the Governance’s
best guess for the actions at (t + 1). It is customary to set Pi(s) :=

(
1
q , ..., 1

q

)
if

s
(i,s)
G = 0, or to use another initial distribution.

Here, Pq := {x ∈ R
q, 0 ≤ xi ≤ 1, ‖x‖1 = 1} denotes the set of probability

vectors with q elements. Similarly, let P
n
q be the set of n-dimensional matrices

with size q in each dimension, whose entries lie within [0, 1] and sum up to 1.

Example 4. In the setting of Example 3, the governance state sG is a three-
dimensional matrix of size 3 × 27 × 6 (agents × states × actions). Slicing this
matrix along its second axis, i.e., at a specific environmental state, gives a (3×6)
matrix; at step t = 5, the above transition sequence would result in

s
(5)
G (�, 1110100,�) =

⎛

⎝
0 0 2 0 0 0
1 0 0 0 1 0
0 0 1 0 1 0

⎞

⎠

and consequently

P1(1110100) =
(
0 0 1 0 0 0

)

P2(1110100) =
(
1
2 0 0 0 1

2 0
)

P3(1110100) =
(
0 0 1

2 0 1
2 0

)
.

4.2 Restriction of Action Spaces

We make two independence assumptions regarding the probability of choosing
an action: First, the relative probability of choosing an action ai over another
action bi does not change when a third action is forbidden:

Assumption 1. Let Ai, A
′
i ⊆ Ai. Then

∀ai, bi ∈ Ai ∩ A′
i :

PAi
(ai)

PAi
(bi)

=
PA′

i
(ai)

PA′
i
(bi)

∈ R ∪ {∞} .
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Therefore, we can remove individual actions from Pi(s) and still have a valid
distribution (up to normalization) for the remaining actions.

Second, agents exclusively communicate by observing each other’s actions,
such that their actions are independent from each other at a single time step.
Interactions between agents therefore require at least one step between an action
and the corresponding reaction.

Assumption 2. Let Pi(s) be agent i’s action probability distribution for state
s. Then

P (s) =
∏

i

Pi(s) ∈ P
n
q

is the probability distribution for the joint action of all agents.

This product rule holds for accurate knowledge about the probabilities as
well as for the Governance’s estimation.

4.3 Algorithm

The Governance loop (see Algorithm 1) works as follows: The n-dimensional
matrix P (s) represents a function P (s) : A → R which assigns to each joint
action a ∈ A the (expected) probability of being chosen. Element-wise multipli-
cation of the matrix with the cost values of the resulting states gives an expected
cost matrix C(s) ∈ R

qn

with entries

C(s)a := cG (δ(s, a)) ·
∏

i

Pi(s)ai
∀a ∈ A ,

where an action a is identified with its n-dimensional position in C(s).
Each hyperplane of C(s) along axis i corresponds to an action of agent i.

We can therefore see from the expected cost matrix which actions from which
agents have the highest expected costs. The matrix C(s) can now be reduced
by successively removing maximum-cost hyperplanes (each corresponding to an
action by an individual agent) until the sum of all remaining entries drops below a
given cost threshold α. Forbidding the removed actions ensures that the expected
cost in the next step is less or equal to α, and that no unnecessary restrictions
are made. Note that α can be chosen arbitrarily, as long as it is large enough
to allow for the neutral action to be chosen. The value of α defines the balance
between optimizing restriction and cost.

We will write CA :=
∑

a∈A Ca (and in particular ‖C‖ := CA) for the expected
cost of a subset A � A of joint actions in an expected cost matrix C. Moreover,
we use the component-wise product X ◦Y := (Xi ·Yi)i for matrices X,Y and the
component replacement (x−i, yi) := (x1, x2, ..., xi−1, yi, xi+1, ..., xn) for vectors
x, y.

Theorem 1. Let α > 0, and assume that α ≥ Cδ(s(t),∅). Then Algorithm 1
produces a restriction A(t) � A of actions such that

CA(t) ≤ α. (2)

This restriction is Pareto minimal, i.e., �A′(t) � A(t) with the same property.



30 M. Pernpeintner et al.

Data: Governance cost function cG , fundamental action set A, cost threshold α
Input: Probability distributions Pi(s

(t)) for the actions of all agents at the
current state s(t)

Output: Restricted action set A(t)

P (s(t)) :=
∏

i Pi(s
(t)) ∈ P

n
q ;

C := P (s(t)) ◦ cG ∈ R
qn ;

A := A;
while

∑
a∈A Ca > α do

(i, j) := arg maxaj∈Ai\{∅},i∈[n] C(�−i,aj);

Ai := Ai \ {aj};
Slice C to remove the corresponding hyperplane;

end

A(t) := A;
Algorithm 1: Restricting agent actions

Proof. Termination and threshold: At each step of the while loop, an action is
removed for one of the agents. Therefore, the loop exits after at most n · (q − 1)
passes. Since α ≥ Cδ(s(t),∅), the cost is guaranteed to fall below α at some point,
and the loop does not break until this has happened. Therefore, Eq. 2 is satisfied
at the end of the algorithm.

Minimality: Let C∗ be the cost matrix corresponding to A(t), and assume
that C∗ �= C. Then C∗ was derived from C by successively deleting hyperplanes,
i.e. individual actions aj ∈ A

(t)
i . Let such a deleted action be denoted by (i, j).

Then the sequence of deletions can be written as

C = C0
(i1,j1)−−−−→ C1 → · · · → Cx−1

(ix,jx)−−−−→ Cx = C∗,

where x > 0, ‖Cx−1‖ > α and ‖Cx‖ ≤ α.
Assume now that there is a restriction B � C∗ with ‖B‖ ≤ α. Then ∃y ≤ x

such that action (iy, jy) lies in B. From ‖Cx−1‖ > α we can conclude that y �= x
(otherwise B would be equal to Cx−1, which is a contradiction) and therefore
y < x.

This means that (iy, jy) was removed from C before (ix, jx), thus C(iy,jy) ≥
C(ix,jx) and consequently

‖B‖ > ‖Cx−1‖ > α,

contradicting the above assumption. ��
If cG has the structure of Eq. 1 (valid states have cost 0, invalid states have

cost 1), then α is precisely an upper bound for the probability of transitioning
into an invalid state.

Example 5. Coming back to Example 4 one last time, we see that s(1) = 1110100
incurs cost cG(s(1)) = 1 since s(1) /∈ S+. While the Governance probably cannot
anticipate and prevent this transition between t = 0 and t = 1 due to lack of
knowledge, it might be able to do so at a later time when enough information



Governing Black-Box Agents in Competitive Multi-Agent Systems 31

has been gathered. For example, at t = 3, the Governance could forbid action
h ∈ A1 such that the joint action hlb cannot happen. If agent 1 now chooses
action w instead, s(4) = δ(s(3), wlb) = 1100000 ∈ S+, and the Governance has
therefore successfully prevented an undesirable transition.

4.4 Computational Complexity

The time complexity of Algorithm 1 with regard to the input sizes n, m and q
can be derived from the pseudo-code in a straight-forward manner:

– Initialization of P , C, and A: O(qn) + O(qn) + O(qn)
– while loop: O(qn) passes

• Checking the break condition: O(qn)
• Finding the arg max: O(qn · qn)
• Reducing C: O(qn)
• Reducing A: O(1)

Altogether, this results in a worst-case time complexity of O (
n2 · q(n+2)

)
.

5 Evaluation

To test the validity and efficacy of our approach, we compare unrestricted and
restricted evolution of the Smart Home use case from Examples 2, to 5: In the
unrestricted case, agents simply act according to their action policies, having
the full range of actions at their disposal all the time. The restricted case adds
a Governance which employs the governance loop from Sect. 4.

Definition 2. The degree of restriction imposed by G at time t is the ratio
r
(t)
G := 1 − |A(t)|

|A| ∈ [0, 1] of forbidden actions and fundamental actions.

The average cost over time is shown for unrestricted and restricted simula-
tions, while the degree of restriction only applies to the restricted case.

5.1 Setup

We consider two specific scenarios with different types of action policies: In the
deterministic case, each agent i has a fixed mapping of states and actions, i.e.,
a deterministic action policy πi : S → Ai. In the probabilistic case, each agent
has a probability distribution for its actions for every state, i.e., an action policy
πi : S → ΔAi.

For each of the two scenarios, we run the simulation with three different
numbers of agents n ∈ {2, 3, 5}, and with a random initial state. To mitigate the
risk of biased results, the data shown in the charts is calculated as the mean of
10 independent runs with identical parameters.

The cost threshold α was chosen such that the cost associated with a uniform
probability distribution (i.e., no observation) lies within the allowed margin of
error, i.e., α := 3

2 · 1
qn .
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Fig. 3. Evaluation results: deterministic action policies (Color figure online)
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Fig. 4. Evaluation results: probabilistic action policies (Color figure online)

5.2 Results

As can be seen in Figs. 3 and 4, the intervention of the Governance succeeds
in reducing the average cost substantially in all cases. If the Governance does
not act, the a priori probability of being in a violating state is 25%, which is
confirmed by the unrestricted cases (red lines).

Moreover, both the average cost and the degree of restriction decrease over
time, which indicates that the Governance indeed learns to predict agent actions
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and to fine-tune its corrective action. Notably, this learning process is indepen-
dent from an estimated agent preference order: Indeed, the action policies were
created randomly, which means that they most likely do not correspond to a
consistent order over the environmental states.

The effect of Governance tends to drop with increasing number of agents. This
might be due to the more widespread probability distribution which prevents
the Governance from finding clear “dangerous” joint actions. Of course, this
suspicion needs to be scrutinized with suitable experiments or supported by
theoretical findings before drawing any conclusions.

6 Conclusion

6.1 Summary

In this paper, we have demonstrated that an effective Governance mechanism
can be employed for competitive Multi-Agent Systems without further assump-
tions about agent preferences and utilities. Instead, publicly observable actions
and transitions are the only input for the Governance in order to prevent undesir-
able environmental states by restricting agent action spaces. We have presented,
analyzed and tested an algorithm which creates a minimal restriction for a given
margin of error and thereby prevents most of the transitions into undesirable
environmental states in the test cases.

As opposed to other work which assumes a transparent decision and reasoning
process from its agents, or even requires fixed agent preferences, this approach
is applicable whenever actions can be observed and restricted by the governing
instance.

6.2 Future Work

While the algorithm is functional, it lacks (polynomial) scalability in terms of the
number of agents and attributes, and it fully re-evaluates the minimal restriction
at every step, thereby reducing continuity of allowed actions over time.

Future work will therefore include a more efficient representation of knowl-
edge (e.g. attribute dependencies and conditional probabilities) as well as envi-
ronments with continuous attributes or irregular shape, more complex transi-
tions, and the ability to handle open systems (i.e., agents dynamically entering
and leaving the MAS). In addition, a more extensive evaluation is necessary to
derive significant conclusions about the Governance’s asymptotic behavior.

Furthermore, the current approach basically applies two consecutive steps
where the value of actions is determined before deriving a suitable restriction
policy from this knowledge. In analogy to policy-optimization methods in clas-
sical RL, a promising next step is merging these two steps into an immediate
policy generation from raw observations.

Note that, by doing so, Assumptions 1 and 2 can be relaxed, resulting in a
much more general solution approach.
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Abstract. Although the multi-agent pickup and delivery (MAPD) prob-
lem, wherein multiple agents iteratively carry materials from some stor-
age areas to the respective destinations without colliding, has received
considerable attention, conventional MAPD algorithms use simplified,
uniform models without considering constraints, by assuming specially
designed environments. Thus, such conventional algorithms are not appli-
cable to some realistic applications wherein agents have to move in a
more complicated and restricted environment; for example, in a rescue
or a construction site, their paths and orientations are strictly restricted
owing to the path width, and the sizes of agents and materials they carry.
Therefore, we first formulate an N-MAPD problem, which is an extension
of the MAPD problem for a non-uniform environment. We then propose
an N-MAPD algorithm, the path and action planning with orientation
(PAPO), to effectively generate collision-free paths meeting the environ-
mental constraints. The PAPO is an algorithm that considers not only
the direction of movement but also the orientation of agents as well as
the cost and timing of rotations in our N-MAPD formulation by con-
sidering the agent and material sizes, node sizes, and path widths. We
experimentally evaluated the performance of the PAPO using our sim-
ulated environments and demonstrated that it could efficiently generate
not optimal but acceptable paths for non-uniform environments.

Keywords: Multi-agent pickup and delivery tasks · Multi-agent path
finding · Non-uniform environments

1 Introduction

In recent years, the use of multi-agent systems (MAS) for complex and enormous
real-world tasks has attracted considerable attention. Examples include robots
for automated warehouses [31], autonomous aircraft-towing vehicles in air-
ports [21], ride-sharing services [14], office robots [28] and multiple-drone deliv-
ery systems [11]. However, simply increasing the number of agents may result in
inefficiencies due to redundancy and resource conflicts between agents such as
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collisions. Therefore, cooperative and/or coordinated actions that improve the
performance and avoid a negative mutual effect are required for actual use. In
particular, conflict avoidance is essential in our target application—a pickup and
delivery agent system in a restricted environment, where agents are robots that
carry heavy and large-size materials.

These problems have often been formulated as a multi-agent pickup and deliv-
ery (MAPD) problem, wherein several agents are assigned multiple tasks; for
each task, an agent has to move to the material storage area, load a specified
material, deliver it to the required location, and unload the material there. If we
look at the MAPD problem from the planning aspect, it can be considered the
repetition of multi-agent path-finding (MAPF) wherein leads to multiple agents
generating collision-free and optimal or acceptable paths between the start and
end; this is because the number of the requested tasks is large in an MAPD prob-
lem, and agents have to consequently repeat the MAPF problems one by one as
well as avoid possible conflicts. Unfortunately, the MAPF problem is known be
NP-hard to obtain the optimal solution [19], and so the MAPD problem is more
time-consuming. Nevertheless, we have to efficiently obtain acceptable solutions
for the MAPD problems.

There are many studies that focused on the MAPF and MAPD prob-
lems [15,18,24], and their results are used in real-world applications. However,
the applications of these studies assumed that specially designed environments
are usually described as grids with uniform aisle widths, ignoring agent and
carrying object sizes, and with no constraint regarding the agent’s operations
such as rotation and moving directions. In contrast, our target application—
transportation by forklift-type autonomous agents with a picker in front at a con-
struction site and autonomous arm robots for rescue in a disaster area—is more
complicated and has its own constraints. For example, in a construction site,
passages/aisles may have various widths. Moreover, agents often have to carry
a heavy and large material whose width is wider than the agent’s width. Agents
may not be able to rotate at certain points owing to obstructions. This suggests
that the locations in the environment may have their own constraints and that
agents should undertake different paths depending on whether they have mate-
rials; owing to these constraints, assuming a simple and uniform environment is
not realistic. Furthermore, the widths and topology of the passages easily change
because new walls that did not exist the previous day are constructed or new
materials are placed on or removed from the passages the next day. This also
indicates that the learning method that requires enormous amounts of learning
data may not be desirable.

In this study, we first propose another extended MAPD problem formula-
tion, multi-agent pickup and delivery in non-uniform environment (N-MAPD)
problem, for the above-mentioned complicated situations. For example, in the
pickup and delivery problem in a construction site, agents may encounter pro-
hibited activities in certain nodes and paths owing to their widths and area
sizes. Similarly, agents have their own sizes (width and size including the mate-
rials they carry) to consider; however, in this study, our agents can move in any
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direction (up, down, left or right) without rotation. In this environment, we must
consider additional constraints for movement as well as the constraints for colli-
sion avoidance. The simple shortest path without considering the constraints on
the sizes of agents, edges, and nodes may not be acceptable because, for example,
an edge in the path is so narrow that the agent with a material has to change
the orientation to pass but additional rotation may consume considerable time.

Therefore, we propose an N-MAPD algorithm, path and action planning with
orientation (PAPO), to generate collision-free paths and action sequences in such
environments. The PAPO is an algorithm that considers not only the speed and
direction of movements but also the orientation of agents and time cost (dura-
tion) as well as timing of rotations in our N-MAPD formulation. Furthermore,
we have considered a sophisticated process for conflict resolution because agents
need to appropriately decide avoidance method such as wait (synchronization),
detours, and changes in the order of actions to meet environmental constraints.
Subsequently, we experimentally evaluate the performance of PAPO using our
simulated environments under various experimental settings by comparing them
with the results of the naive centralized method in our environments. We demon-
strate that our proposed algorithm could generate not optimal but acceptable
paths. We also investigate the effect of agent number on the entire performance.
Our formulation can be used in other situations wherein physical constraints
such as the multiple-agent disaster-rescue problem need to be considered.

2 Related Work

There are many studies conducted on the MAPF/MAPD problem from differ-
ent perspectives [7,17,23]. For example, if we focus on the control structure of
cooperation between agents, it can be divided into two types: centralized and
decentralized. The former includes, for example, the conflict-based search algo-
rithm (CBS) [24] for MAPF and its extension [4–6,34], which is a two-stage
search comprising low-level search, in which each agent determines its own path
independently, and high-level search, wherein it generates action sequences by
removing conflicts between agents. Some decentralized methods guaranteed com-
pleteness under certain restrictions [18,22,29,30]. For example, [18] proposed the
token passing (TP) for MAPD, where agents assign tasks to themselves and gen-
erate their paths by using the information in the token, which is a synchronized
shared block of memory. However, these studies assume simple environments
that ignore constraints such as agent sizes, path widths, duration of movements
and speeds of individual agents, thereby limiting the real-world applications.

In contrast, [3,8–10,13,16,20,26,32] modeled agent’s rotation, size, and speed
differences. For example, [16] proposed the TP-SIPPwRT, an extension of TP by
using a novel combinatorial search algorithm called safe interval path planning
with reservation table (SIPPwRT) to consider the agent direction of movement
and rotation. Nevertheless, it is based on a specially designed environment with
uniform aisle widths and distances. Therefore, applying it directly to our target
environment is almost impossible. There exist studies in the area of trajectory
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Fig. 1. Definition of agent size (including the materials it carries) and orientation

planning that focuses on kinematic constraints during the planning [1,2,12,27],
but our study differs from them in the sense that we aim to more efficiently
complete repeated tasks of the MAPD in cluttered and tight environments.

In addition, conventional algorithms may be applied to our N-MAPD prob-
lems by adding orientation to the agent’s state and considering environmen-
tal constraints. As the path planning of conventional algorithms has a two-
dimensional search space involving spatial dimension and time dimension, if the
orientation dimension involved in various path widths and agent sizes is added to
the search space, the search space becomes very large for an N-MAPD problem.
Therefore, using naive search to obtain the optimal solution such as conventional
algorithms in this three-dimensional search space increases the computational
cost. To the best of our knowledge, there have been no studies of path planning
on a discrete graph with conflict resolution under the constraint of actions caused
by the shape and size of spaces, agents, and the materials carried by them.

3 Problem Formulation and Background

We define the N-MAPD problem, an extension of the conventional MAPD prob-
lem, by introducing the width of the paths (edges), sizes of agents and materials,
and durations of agent’s actions.

3.1 N-MAPD

The N-MAPD problem comprises a set of agents A = {1, . . . , M}, a set of tasks
T = {τ1, . . . , τN}, and an undirected connected graph G = (V,E) embeddable
in a two-dimensional Euclidean space described by x- and y-axes. Node v ∈ V
corresponds to a location in the environment and edge (u, v) ∈ E (u, v ∈ V )
corresponds to the path between locations u and v along which the agents can
move. Node v has a width Wv and length Lv. The width and the distance of (u, v)
are denoted by Wuv and dist(u, v), respectively, where the distance is defined as
the length between the centers of u and v in the Euclidean space. We assume that
an agent is a robot for carrying a heavy material such as a forklift robot with a
picker in the front. A material is on a rackbase, and the agent can pick up (load)
or put down (unload) using its picker with a specific direction at a certain node.
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We introduce discrete time t ∈ Z
+ (Z+ is the set of positive integers); then, the

agent’s actions such as the movement toward an adjacent location, rotation, wait
action, and loading/unloading of a material require certain durations. Examples
of environments are shown in Fig. 2.

Agent i ∈ A has its size, specified by its width Wi and length Li. We define
the orientation ot

i ∈ Z
+ and the (moving) direction dt

i ∈ Z
+ of i at time t,

where 0 ≤ ot
i, d

t
i < 360, in D increments. For example, if D = 90, then there are

four orientations/directions of ot
i, d

t
i = 0, 90, 180, 270. D can have any number in

accordance with the environmental structure but we assume D = 90 for the sake
of simplicity. We define the north orientation/direction as 0, (so ot

i = 0, dt
i = 0)

in G. We also denote the set of possible orientations as D = {0, 90, 180, 270} if
D = 90. The x-axis length wt

i and y-axis length lti of i at t are calculated by

wt
i = |Li sin ot

i| + |Wi cos ot
i|

lti = |Wi sin ot
i| + |Li cos ot

i|.

A material associated with task τk has a corresponding size, wherein width and
length are Wτk and Lτk . When agent i loads it, we assume that the size of i has
temporally changed to

Wi = max(Wτk ,Wi)
Li = max(Lτk + γLi, Li),

where γ (0 ≤ γ ≤ 1) is the ratio of the length of agent’s body to its fork
part. Figure 1 shows examples of the size and orientation of agents with/without
materials when γ = 0.5.

Agents have to move in the environment by considering the constraints of
considering the path width and agents’ length and width. We refer to the con-
straints defined in the environment such as the width and size of paths, nodes,
and agents as environmental constraints.

Agents can perform the following actions—move, rotate, wait , load and
unload . Using the moving distance l = dist(u, v) between u and v, the rotation
angle θ ∈ Z and the waiting time t, we denote the durations of move, rotate,
wait, load and unload as Tmo(l), Tro(θ), Twa(t), Tld, and Tul, respectively. For
example, if l = 1, then Tmo(1) = 10 in our experimental setting. Suppose that i
is on v at t. In a move action, i moves along edge (u, v) to u without changing
orientation ot

i if the edge has enough width. With a rotate action, i stays at v
and rotates D degrees clockwise (D) or counter-clockwise (−D) from ot

i, i.e.,
o

t+Tro(D)
i = ot

i ± D, if the node has enough size. Agent i has a unique parking
location park i ∈ V [15], which is its starting location at t = 0, and agents return
and stay there as long as they have no tasks to perform. Parking locations are
expressed by red squares in Fig. 2.

Task τj is specified by tuple τj = (νld
τj , ν

ul
τj ,Wτj , Lτj , φτj ), where νld

τj =
(vld

τj , o
ld
τj ) (∈ V × D) is the location and orientation to load material φτj , and

νul
τj = (vul

τj , o
ul
τj ) (∈ V × D) denotes the location and orientation to unload φτj ,

and Wτj and Lτj are the width and length of φτj , respectively. When an agent
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loads and unloads material, it needs to be oriented in a specific direction, con-
sidering the direction of the picker and the shape of the material. Agents are
required to complete all tasks in T without collision and by not violating any
of the environmental constraints. When i completes all tasks in T , it returns to
park i to recharge.

3.2 Well-Formed N-MAPD

While not all MAPD instances are solvable, well-formed MAPD instances are
always solvable [18]; an MAPD instance is well-formed if and only if (a) the
number of tasks is finite, (b) the parking location of each agent is different from
all pickup and delivery locations of tasks, and (c) there exists a path between
any two start/goal locations that does not traverse the start/goal location of
other agents. To reflect the environmental constraint in the N-MAPD, we modify
condition (c) to: (c’) there exists a feasible path between any two start/goal
locations that does not traverse start/goal location of other agents, wherein a
feasible path implies that a solution exists in the MAPF instance, considering
the environmental constraints. In well-formed (N-)MAPD instances, agents can
always return and stay in their parking locations as long as necessary to avoid
collisions with other agents; this action reduces the number of agents in an
overly crowded environment. The well-formed MAPD instances are a realistic
subclass of all MAPD instances because many real-world MAPD instances are
well-formed, including those in a construction site, but we need some discussion
on condition (c’) in N-MAPD. This will be described below.

4 Path and Action Planning with Orientation

We propose PAPO for the N-MAPD problem to generate a collision-free path
and subsequently a plan, i.e., an action sequence to reach the destination in a
non-uniform environment. In this proposed method, agents maintain and use
a synchronized block of information (SBI) to detect/resolve conflicts. The SBI
comprises a reservation table (RT) [25] and a task execution status table (TEST),
which is the set of tuples (τ, v, i), where τ is the currently being executed task
by i and v is the load or unload node specified in τ ; thus, two tuples are stored
to the TEST when one task is assigned an agent. The details of the RT and the
TEST are described in the later subsections. The SBI is stored at a centralized
memory area and only one agent can access to this area. Although synchronized
shared memory often becomes a bottleneck for performance, the robot move-
ments herein are slow compared to the overhead time caused by mutual exclu-
sion; therefore, for a realistic number of agents (e.g., less than 100 agents), we
assume that such shared memory exclusion control does not affect agent behav-
iors. The PAPO algorithm has a two-level structure: two-stage action planning
(TSAP), wherein the agent first generates numerous shortest paths to the desti-
nation and then builds a set of candidate action sequences to follow each of the
paths; and conflict resolution with candidate action sequences (CRCAS) with
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which it generates a collision-free (so approved) action sequence through which
the agent resolves possible conflicts by referring to the previously approved plans
of other agents in the SBI.

4.1 Two-Stage Action Planning (TSAP)

In the first stage of the TSAP, agent i ∈ A generates the first NK shortest paths
(where NK ∈ Z

+) from the current location vi
s to the destination vi

d, usually
the pickup, delivery, or parking location depending on the phase of the task. A
path is defined as a sequence of nodes r = {v0(= vi

s), v1, . . . } where any pair of
adjacent nodes are edges in E and the distance of r is

∑|r|
l=1 dist(vl−1, vl). There

are several algorithms for obtaining the first NK shortest paths, and we use
Yen’s algorithm [33] with the Dijkstra method. In this stage, we do not consider
the constraints of widths and sizes and use only the topological structure of
G = (V,E).

In the second stage, for path ∀rk ∈ {r1, . . . , rNK
} generated in the first

stage and for parameter NP ∈ Z
+, i builds the first NP lowest-cost action

sequences without using action wait to move along path rk without breaking
the environmental constraints, where cost indicates the duration until complet-
ing action sequences. We herein elaborate on this stage. First, for path rk, we
generate the weighted state graph Gi = (Vi, Ei) for agent i from G to build
the action sequences (subscripts will be abbreviated below) that follow path rk.
Node ν = (v, o) ∈ V (⊂ V × D) corresponds to the location and orientation
of i, and an element in V is called a state node. Edge (μ, ν) ∈ E (μ, ν ∈ V)
corresponds to action, move or rotate, to transmit μ to ν. The weight of edge
ω(μ, ν) is defined as the time required for the corresponding action. By denoting
the search space as (ν, tν), where tν is the time at which i will reach state ν, we
apply Yen’s algorithm with the A∗-search to generate the first NP lowest-cost
action sequences, where the heuristic function h is defined by

h(l, θ) = Tmo(l) + Tro(θ), (1)

where l is the distance between the current node and vi
d, and θ is the difference

between the current orientation and the required orientation at vi
d. Function h

is clearly admissible because it does not consider any constraint of the actions
and the environment. The required orientation at vi

d is usually determined by
i’s task because vi

d is the location to load or unload material.
In this stage, agent i can prune some state nodes so that i does not violate the

environmental constraints by considering its own size with the carrying material
and path widths. Suppose that i’s state is ν = (v, o) at t1 and i schedules a state
transition to μ = (u, o′) at time t2 = t1+ω(ν, μ) by (ν, μ). Then, μ will be pruned
owing to the violation of constraint between node and agent sizes if wt2

i > Wu

or lt2i > Lu. Similarly, (ν, μ) is move (so o = o′ and (u, v) ∈ E) is impossible
if Wuv < |lt1i sin dt1

i | + |wt1
i cos dt1

i | depending on orientation o and direction d;
therefore, μ after ν is pruned as well. Finally, if (ν, μ) is rotate (so v = u but
o �= o′), the corresponding action may be impossible; consequently, μ may also
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Algorithm 1. Conflict Resolution part of PAPO
1: function CRCAS(Pi)
2: // Pi is generated by TSAP(NK , NP ).
3: Cmax ← Maximal duration of the plan in Pi

4: while true do
5: if Pi = ∅ then return false
6: end if
7: Pi is sorted by duration
8: p1 ← the first (shortest duration) plan in Pi

9: C1 ← duration of p1 // Shortest duration in Pi

10: c1 ← (〈i, j〉[t′
s, t

′
e], v

′) // The first conflict in p1 by comparing with the
entries in RT.

11: if c1 = null then return p1

12: end if
13: C ← all conflicts occurring at v′ // so c1 ∈ C
14: cf ← final element (〈i, k〉, [ts, te], v) in C after sorted by occurrence order.
15: u ← ekv − siv + 1, C1 = C1 + u
16: if C1 ≥ Cmax + β then // β: tolerance parameter.
17: Pi ← Pi \ {p1} // abandon p1

18: end if
19: wait(u) is inserted in p1 before reaching v with the modification strategy.
20: p1 in Pi is replaced to the modified p1 if p1 ∈ Pi.
21: end while
22: end function

be pruned owing to the violation of rotation constraint, i.e., as the size of v, Wv

and/or Lv is insufficient; this situation can be identified by comparing Wv and
Lv with wt

i and lti between t1 and t2, which are maximum, for example, when
i’s orientation is 45, 135, 225 or 315 if the agent’s shape is square (see Fig. 1).

After the TSAP, the ordered set of at most NK · NP action sequences
Pi = {p1, . . . , pNK ·NP

} is generated by sorting them in the ascending order by
total duration; clearly, its top element, i.e., the minimum-cost plan is the best
candidate but may not be selected owing to conflicts with other agents’ plans.
This is investigated in the next-stage CRCAS. As the resulting plan pi is gener-
ated to follow the corresponding path r, this relation is denoted by r = r(pi).

4.2 Conflict Resolution of Candidate Action Sequences (CRCAS)

In the CRCAS, agent i selects the first plan of Pi and tries to find conflicts
involved therein and the already approved plans of other agents. This conflict
detection is achieved by accessing the SBI. Then, the plan is modified to avoid
the conflicts, replaced with the modified one (and Pi is sorted). The basic policy
of this modification is that the already approved plans are not requested to be
modified. When the first element in Pi is collision-free, it is the output of the
CRCAS; thus, the associated reservation data are added to the RT in the SBI
and it is approved to be executed. The structure of the RT is explained below.
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We define a conflict as the situation wherein multiple agents occupy the same
node v ∈ V simultaneously. If i starts moving at time si

v from v to its neighboring
node u and i’s occupancy intervals for v and u are denoted by [si

v, ei
v] and [si

u, ei
u],

respectively, we then set ei
v = si

v + Tmo(l)/2 and si
u = ei

v, where l = dist(v, u).
Similarly, if i starts rotate, wait, load or unload at time si

v on v, the occupancy
intervals of v for the corresponding action can be denoted by [si

v, ei
v = si

v + T∗],
where T∗ is the duration of the action. Furthermore, as agents have physical
sizes, we add constant margin λ ≥ 0 to these intervals for safety; therefore, for
example, si

v ← si
v − λ, ei

v ← ei
v + λ. From these calculations, we can generate

the occupancy list from plan pk ∈ Pi

((v0, [sv0 , ev0 ], i), (v1, [sv1 , ev1 ], i), . . . , (v
i
d, [svi

d
, evi

d
], i)),

where r(pk) = {v0, v1, . . . , v
i
d} is the sorted set.

When two intervals of occupations of node v by two agents i, j ∈ A have
an intersection, [ts, te], a conflict occurs and it is represented by a tuple c =
(〈i, j〉, [ts, te], v). The occupancy lists of approved plans of other agents is stored
into the RT in the SBI. Agent i’s plan may have another conflict with the
approved plan of another agent k at the same node v; however, the intersection of
a conflict appears only between two agents since the plans stored in the SBI have
already been approved. Thus, if there exists two conflicts c1 = (〈i, j〉, [t1s, t1e], v)
and c2 = (〈i, k〉, [t2s, t2e], v), then [t1s, t

1
e] ∩ [t2s, t

2
e] = ∅.

The RT is a collection of lists (v, [si
v, ei

v], i) that is an element in the occupancy
list of the approved plan and is not expired yet; thus, when ei

v < tc (tc is the
current time), the element is removed from the RT. When the plan p of agent i
is approved, i will register all elements in the occupancy list to the RT.

We describe the overall flow of the algorithm of the CRCAS to using the
pseudocode in Algorithm 1. We assume that agents can exclusively access the
RT in the SBI during function execution. When agent i has generated Pi in the
TSAP, for the first element p1 in Pi, i calculates its occupancy list and then
according to the order of visiting nodes, r(p1) = {v1, v2, · · · , }, agent i retrieves
the lists whose first element is vl from the RT and tries to detect the conflicts
by comparing these lists. If no conflicts are found, p1 is the result of the CRCAS
and will be registered into the RT as the approved plan (line 11). Suppose that
c is the first conflict detected at v in the order of visit, where c is represented by
c = (〈i, j〉, [tcs, tce], v), j is the agent that has the approved plan conflicting with
p1 and [tcs, t

c
e] is the intersection of both agents’ stay at v. As another conflict

with another agent at v is possible, we denote the set of all conflicts at v by C.
Subsequently, i sorts C by chronological order and set cf to the final element
of C (line 14). Then, i inserts wait action into p1 using a plan modification
strategy, which will be explained in the next subsection so that i arrives at v
after k departs from v (lines 15 and 19, where ek

v is the time when k departs
from v); therefore, at least the detected conflicts can be avoided. However, if the
duration the modified plan is too large to implement the plan by adding the wait
action, p1 is abandoned (lines 16 and 17), where β is the tolerance parameter to
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Algorithm 2. Path and Action Planning with Orientation
1: function PAPO(i, vs, vd) // in agent i
2: // vs: current location, vd: destination.
3: while true do
4: Pi ← TSAP(NK , NP )
5: p ← CRCAS(Pi)
6: if p �= false then return p
7: end if
8: (NK , NP , β) ← RelaxParam(NK , NP , β)
9: end while

10: end function

retain the selected plan. Subsequently, Pi is sorted by the duration again and i
repeats the same process until no conflict occurs in p1, the first element of Pi.

This process eventually stops. This is because if this process continues forever,
the duration for performing the plan increases over Cmax + β, and the plan is
removed from Pi; then, finally Pi becomes empty. At this point, the function
CRCAS returns a false value, i.e., it cannot generate the path from the Pi using
the parameters NK , NP , and β. In this case, agent i calls the CRCAS again
under a relaxed condition, i.e., by providing Pi generated with the increased
values of NK , NP and/or β.

4.3 Plan Modification Strategy

The plan modification strategy in our context is to decide where action wait(u)
is inserted before node v′ at which the first conflict is expected in the plan pi. By
denoting r(pi) = {v0, . . . , vl(= v′), . . . , vn(= vi

d)}, the action can be added just
before exiting vk (0 ≤ k ≤ l − 1). For example, we can add it to vl−1, but this
may cause another conflict. As the added wait is not eliminated, some insertions
of wait to avoid another conflict, resulting in longer delay or failure owing to
the excessive long wait. Conversely, if it is inserted when i departs from v0, i
can avoid conflicts without failure because when i selected the current task τ
by the task selection process (to be described later), its loading and unloading
nodes are already stored in the TEST, and no other agents pass through node v0
by condition (c’) in the well-formed N-MAPD. However, this implies that other
agents’ activities are locked for a while and the entire performance may reduce.
The decision on this topic needs further discussion, but we tentatively adopted
the strategy in which wait(u) is added at vk, where k = max(0, l − 3).

4.4 Flows of Task Selection and PAPO Processes

The task selection process in agent i is performed only when T �= ∅; otherwise,
i returns to its parking location park i. Agent i exclusively accesses the current
TEST in the SBI during in this process. According to the assumption (c’) for
the well-formed N-MAPD, i only focuses on task τ = (νld

τ , νul
τ ,Wτ , Lτ , φτ ) such
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(a) Environment 1 (b) Environment 2

Fig. 2. Experimental environments (red: parking locations, blue: pickup and delivery
locations, green-filled: small nodes, hollow green: large nodes, gray: narrow edges, black:
wide edges) (Color figure online)

that its loading and unloading nodes, vld
τ and vul

τ , do not appear in the TEST
of the current SBI. Then, i chooses task τ∗ whose value of the heuristic function
h used in the A∗-search is the smallest. If i cannot find such tasks, i returns to
its parking node and stays there for a while; as other agents may complete their
tasks after this, i may be able to select a task after i refrains slightly.

After agent i selects task τi, it starts the PAPO process to generate a collision-
free action sequence. We show the pseudocode of the PAPO process in Algo-
rithm2, where vs is the current node and vd is vld

τ , vul
τ , or park i, depending on

the task progress. First, if i can successfully generate plan p via the TSAP and
CRCAS processes, i acts in accordance with p, and then (τ, vd, i) ∈ T ×V ×A is
removed from the TEST. Otherwise, i calls the relaxation functionRelaxParam
by which the threshold values of parameters NK , NP , and β are modified to relax
the plan generation condition and performs the planning process again. If i has
already relaxed the parameters a few times, this function gives up performing
τi (so it is returned to T ) and set vd = park i to return to the parking location;
this situation may occur when compared to the size of the current environment,
the number of agents is too large to move around in that environment.

We can consider a number of strategies to define the initial values of NK ,
NP , and β and how to increase these values. The small values of NK , NP , and β
are likely to generate effective plans, but are also likely to fail to generate a plan
altogether. Therefore, these initial values appear better in setting small values
and increasing them if the agents cannot build a collision-free plan. However, we
must consider that frequent changes in parameter values also reduce the planning
efficiency. If the parameters continue to increase, i can obtain the collision-free
plan (i.e., completeness is guaranteed); owing to the executions of the approved
plans progress in other agents, the occupancy list in the RT expires over time,
and the constraints are gradually removed.
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5 Experiments and Discussion

5.1 Experimental Setting

We evaluated the performance of our proposed method for executing the N-
MAPD problem. Depending on the task τ ∈ T of the N-MAPD, an agent carries
material that is either large or small, where the width and length of a small
material φτ are Wτ = 0.5, Lτ = 0.25 and those of a large material are Wτ =
1.0, Lτk = 0.25. All agent sizes are identical and specified by Wi = 0.5, Li = 0.5
and γ = 0.5. The numbers of large and small materials are both N/2.

Subsequently, we conducted the experiments in two different environments.
The first environment (Env. 1) is a maze-like environment assuming a construc-
tion site wherein there are several obstacles such as workspace for other tasks,
walls and columns; consequently, it has several environmental constraints such
as widths of paths and sizes of nodes (Fig. 2a). Nodes are set at intersections and
at ends of edges where the agents load/unload materials. We assume that agents
can rotate/wait only at nodes. There are two types of nodes: small nodes v whose
width and length are Wv = 1.0, Lv = 1.0 and is shown as green-filled squares in
Fig. 2, and large nodes v with Wv = 1.5, Lv = 1.5 shown as hollow green squares.
Thus, agents with large materials cannot rotate at small nodes. Similarly, there
are two types of edges; the width of narrow edge (u, v) is Wuv = 0.5, which are
shown by gray edges, and that of wide edge is Wuv = 1.0, which is shown by
black bold edges. Breaks in an edge represent its length; one block indicates a
length of 1. Thus, agents with large materials may need to rotate before passing
through narrow edges.

Table 1. Parameter values used in experiments

Description Parameter Value

No. of agents M 1 to 40

No. of tasks N 100

Orientation/direction increments D 90

Duration of move per length 1 Tmo(1) 10

Duration of rotate Tro(D) 20

Durations of load and unload Tld, Tul 20

Durations of wait Twa(t) t

Safety intervals λ 5

The second one (Env. 2)
is identical to Env. 1,
but we added more nodes
on the edges; these nodes
usually connect the nar-
row and wide edges and
agents with large mate-
rials may have to rotate
at this node to pass the
narrow edge (Fig. 2b).
These nodes on edges
can reduce the wait action
as rotation at an inter-
section may block other agents’ movement. The initial locations of agents are
randomly assigned from the parking locations. A hundred tasks are generated
and added to T initially whose pickup and delivery locations are also randomly
selected from blue squares.

To evaluate our proposed method, we measured the operational time per task,
i.e., the average time to complete one task (simply called operational time) and
total planning time for all tasks in T (simply called planning time). Operational
time is used to evaluate the quality of generated plans, and planning time denotes
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(a) Planning time (b) Operational time (c) Planning time (d) Operational time

Fig. 3. Comparison of Env. 1 and 2

the planning efficiency. Other parameter values in these experiments are listed in
Table 1. Our experiments were conducted on a 3.00-GHz Intel 8-Core Xeon E5
with 64-GB RAM. The data shown below are the average values of a hundred
trials using different random seeds.

5.2 Exp. 1: Performance Comparison

In the first experiment (Exp. 1), we compared the performance of the proposed
method with that of a naive centralized method in Envs. 1 and 2. This compara-
tive method is a centralized planner generating the optimal (shortest) collision-
free action sequences, in turn, by assuming that the nodes already reserved by
others’ plans are temporal obstacles during certain intervals of time. The gener-
ated sequence comprises {move, rotate,wait , load , unload}, so a state is expressed
by ν = (v, o, t), a tuple of the node, orientation of the agent, and time at which
the agent will reach orientation o at node v. All durations are set to be the same
as the proposed method. This algorithm can generate optimal plan by assum-
ing that the plans that are already being executed will not be revised. The
parameters for the proposed method are set to NK = 3, NP = 3, and β = 100
and the relaxation function RelaxParam increases the parameter values by
NK ← NK + 1, NP ← NP and β ← β ∗ 2.0 each time it is called.

We plotted the planning time and operational time in Envs. 1 and 2 in Figs. 3.
The data of the comparative method were the average of ten runs because it
took an extremely long time to complete all the tasks. Figures 3a and 3c indi-
cate that the planning time for all tasks using our proposed planning method
was considerably less than that using the comparative method in both environ-
ments, although Figs. 3b and 3d indicate that the operational time when using
the proposed method was approx. 10% more than that when using the com-
parative method. As the comparative method uses naive search to obtain the
optimal solution, the quality of the generated sequence of action may be high,
but the planning time is extremely long to use in actual environment. We can
also improve the operational time by changing the parameters; this is described
in the next section.

If we compare the results between Env. 1 and 2 (Figs. 3a and 3b), the opera-
tional time of the proposed method in Env. 2 was smaller than that of in Env. 1,
but the planning time was the opposite. This is caused by nodes added on some
edges. As actions rotate and wait stay at current nodes, they are likely to prevent
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(a) Planning time (b) Operational time (c) Number of conflicts

Fig. 4. Combinations of initial values of NK and NP

(a) Planning time (b) Operational time (c) Number of conflicts

Fig. 5. Initial value of β

other agents’ actions if the nodes are intersectional. However, by adding nodes
where agents can rotate and wait, agents can reduce such obstructive conditions.
In fact, in the proposed method when M = 25, the number of detected conflicts
in Env. 1 was 82135.07, and that in Env. 2 was 64743.1. This would have made
agent movement smoother and likely led to improved operational time approx.
82 (8%), although its planning time in Env. 2 is slightly larger by approx. 2 s
(11%) when M = 25. Note that Tmo(1) = 10, so this improvement 82 of the
operational time implies the additional running length of 8.2 blocks.

Figures 3c and 3d show that in the comparative method, the operational
time became smaller by approx. 90 (9%) in Env. 2 than that in Env. 1, but
the planning time in Env. 2 increased by approx. 971 s (27%) when M = 25. A
considerable increase in planning time also occurred when the number of agents
was small, e.g., M = 2 and 3. This implies that the increase in the number of
nodes considerably affected planning efficiency. In contrast, the proposed method
can improve the operational time with a small increase in planning time (Fig. 3a).
This discussion suggests that our proposed method is robust enough to increase
the number of nodes.

5.3 Exp. 2: Characteristics of the PAPO

In the second experiment (Exp. 2), we examined the impact of the initial values
of three parameters, NK , NP , and β, on the performance of our proposed method
to investigate the characteristics of PAPO. First, we experimented with different
combinations of the (initial) values of (NK , NP ) as (1, 4), (2, 2), and (4, 1) in
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Env. 2, so NK ×Np is identical. Note that β = 100 was fixed, and the relaxation
function RelaxParam was the same as Exp. 1.

We plotted the planning time, operational time, and number of detected
conflicts in Fig. 4. These results indicate that (4, 1) was the best combination of
values of (NK , NP ) in Env. 2. This indicates that NK appears to have a greater
impact on performance than NP . If the agent has no material or a small-sized
material, there are no constraints even in Env. 2. Only conflicts between its
plans and other agents’ plans are of concern and subject to checking. Thus, the
more paths that are generated, the more conflicts are prevented from occurring.
Clearly, if NP is fixed, a larger NK leads to lower operational time.

Even if NK is large, different paths to the destination may not be generated.
Probably, setting large NK is meaningful as specially designed environments
such as automated warehouses have many paths to the destination. However,
such parameter setting is not appropriate. In our experiments, we set NK = 4,
which was not so large and could generate NK different paths; thus, a larger NK

could contribute to reducing operational time by avoiding conflict occurrence.
Meanwhile, a large NP can generate various action sequences along each path
generated in the first stage of the TSAP by simply changing the timing of rota-
tion without taking long detours or waiting time. Therefore, obtaining collision-
free shorter action sequence by setting a larger NP is possible; of course, this
depends on the number of detours and the number of nodes where agents can
rotate/wait.

Furthermore, we conducted the same experiments by setting the values of
β to 50, 100, 200, 400, and 800. We fixed NK = 4, NP = 1 and the relaxation
function RelaxParam was the same as that in Exp. 1. From Fig. 5, as the
value of β increases, the planning time and the number of conflicts decrease.
A large value of β will reduce the frequency of calling the relaxation function
RelaxParam because the agent tries to add many wait actions to the given
set of candidate action sequences to resolve conflicts. As the wait is inserted
before the node where the conflict is detected, the agent is likely to wait at the
node added on some edges in Env. 2 before the intersection where the conflict is
likely to occur, or the start node, i.e., pickup or delivery location. As mentioned
in Exp. 1, waiting on nodes on the edge is less likely to prevent other agents
actions. Therefore, agents could reduce the number of conflicts, the planning
time was also consequently reduced. However, the operational time tends to
increase owing to the many uses of the synchronization strategy. Therefore, we
can weigh the operational time to improve the quality of generated plans, or the
planning time for the planning efficiency by changing the value of β.

6 Conclusion

This paper presented a planning method called path and action planning with
orientation (PAPO) that is able to generate collision-free plans for MAPD in
non-uniform environment (N-MAPD) problems. The N-MAPD problem models
a more complex, non-uniform environment where agent actions and orientations
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are strictly restricted owing to sizes of nodes (locations), agents, and material,
as well as path widths. We evaluated the proposed method by comparing it with
a naive comparative method. Our experiments demonstrated that the proposed
method could generate not optimal but acceptable paths with reasonable lengths
for actual applications and that it is sufficiently robust to the increase in the
number of nodes. In addition, we analyzed the characteristics of the proposed
method and observed that by changing the initial values of the parameters, it
can be determined whether to assign weight to the quality of the generated plan
or to the efficiency of the planning.

To improve the transportation efficiency even more, we will relax the con-
dition (c’) of well-formed N-MAPD. As agents cannot traverse the start/goal
locations of other agents owing to condition (c’), the maximum number of agents
that can simultaneously perform tasks in an environment depends on the number
of nodes where the task is generated.
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Abstract. Consumer preference studies in economics rest heavily on
the behavioural interpretation of preference especially in the form of
Revealed Preference Theory (RPT). Viewing purchasing decisions as a
species of human reasoning, in this paper we are interested in gener-
alising behaviourism to preference-based argumentation where existing
frameworks are universally governed by the opposing mentalistic inter-
pretation of preference. Concretely we re-construct and unify two main
approaches to RPT then develop a so-called Revealed Preference Argu-
mentation (RPA) framework which identifies preference as observed rea-
soning behaviour of an agent. We show that RPA subsumes RPT, by
showing that key RPT-based consumer analyses can be translated to
and solved as RPA computational tasks. It is argued that RPA may
pave the way for future applications of argumentation to behavioural
economics.

1 Introduction

There are two opposing views of preference [9]. Mentalism is the view that pref-
erence captures real phenomena of people’s mental states that shape people’s
behaviours (thus obtainable by communications provided people speak their
minds), while behaviourism is the view that preference is merely a mathemati-
cal construct used to describe regularities of human behaviours. Behaviourism is
very influential in economics, especially in the form of Revealed Preference The-
ory (aka consumer theory) pioneered by Nobel economic laureate P. Samuelson
back in 1938–1948 [26,27]. Intuitively if a collection of goods b could have been
bought by a consumer A within her budget but A in fact was observed to buy
another collection of goods a, it is to be presumed by revealed preference theo-
rists that A has revealed a preference for a over b [28]. This intuition provides the
basis for approaching such problems as rationality checks, i.e. checking whether
a consumer is “kind of” rational given what she bought, or extrapolating her
market behaviour to predict what she will buy under new budgets or market
conditions. For example, if the above consumer A also bought b while could
c© Springer Nature Switzerland AG 2021
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afford c, and bought c while could afford a (as depicted by the table below),
then she would not be viewed as regular rational - a kind of rationality that
demands transitive preference1. For an illustration of behaviour extrapolation,
consider another consumer B described by the second table: predictably if B can
afford any of five products a − e, B shall select either a or e because she ignored
c, d when she could afford b; and ignored b when she could afford a, e.

1. Consumer A
Budgets Bought products

a, b a
b, c b
a, c c

2. Consumer B
Budgets Bought products
a, b, e a, e
b, c b
b, d b

As purchasing decision is just a species of human reasoning, we might won-
der how RPT and behaviourism can be generalized with respect to various forms
of reasoning developed in general AI where mentalism dictates for now, as the
general objective here is to help agents to state their preferences and compute
decisions that maximize their stated preferences. In this paper we are interested
in generalizing RPT and behaviourism to AI reasoning using argumentation - a
form of reasoning inspired by how people reach conclusions via exchange of argu-
ments in daily life. To the best of our knowledge this problem remains unexplored
in the literature of argumentation where much of its recent development rests on
the Abstract Argumentation (AA) framework of Dung [10] which is defined sim-
ply as a pair (Arg,Att) with a set Arg of arguments and a binary attack relation
Att between arguments. Notably existing preference-based argumentation frame-
works [1,3,5,6,14] have been defined as triples of the form (Arg,Att, P ) where
binary relation P ⊆ Arg × Arg represents the preference over the arguments of
otherwise standard AA framework (Arg,Att). One can say that this model of
preference-based argumentation is an extension of standard AA with the mental-
istic interpretation of preference since relation P must be stated by the reasoning
agent (presumably via some form of dialogues), and hence it will be called Stated
Preference Argumentation (SPA) from now on. The rest of this paper is struc-
tured as follows. Section 2 recalls the preliminaries of AA and SPA. Section 3
recalls two main approaches to RPT: the rationalization approach makes sense
of an observed consumer behaviour through weak-preference relations “rational-
izing” it, while the motivation approach does so through strict-preference rela-
tions “motivating” the behaviour2. The three subsequent sections present our
contributions. First we re-construct and unify the two main approaches to RPT
using argumentation terms (Sect. 4). We then develop a so-called Revealed Pref-
erence Argumentation (RPA) framework (Sect. 5) and show that key RPT-based
consumer analyses such as different rationality checks of a consumer behaviour
and various kinds of behaviour extrapolations defined in RPT can be translated
into RPA computational tasks (Sect. 6). Due to the lack of space, we skip the
proofs of theorems and lemmas.
1 Intransitive preference, though seems odd, is not uncommon, see e.g. [25].
2 Intuitively, a weak preference of x over y is to mean “x is at least as good as y”

while a strict one means “x is strictly better than y”.
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2 Argumentation Frameworks

An Abstract Argumentation framework AAF is a pair (Arg,Att) of a set
Arg of arguments and an attack relation Att ⊆ Arg × Arg. S ⊆ Arg attacks
A ∈ Arg iff (B,A) ∈ Att for some B ∈ S. A ∈ Arg is acceptable wrt to S iff
S attacks every argument attacking A. Many “acceptability” semantics for AA
have been defined by strengthening this notion of acceptability. In this paper
we need just one of them called the admissibility semantics according to which
an argument A is (admissibly) acceptable in AAF , denoted AAF �ad A, if it is
acceptable wrt an admissible extension. An admissible extension is a conflict-free
set S of arguments such that each member of S is acceptable wrt to S.

An AA framework with sub-arguments is basically a standard AA
framework (Arg,Att) equipped with a reflexive, anti-symmetric and transi-
tive relation Sub ⊆ Arg × Arg representing the sub-argument relationships
between arguments. Further Att contains two (not necessarily disjoint) sub-
sets: Attpd consisting of so-called preference-dependent attacks (elements of
Att \ Attpd are called preference-independent attacks), and Attd consisting of
so-called direct attacks (elements of Att \ Attd are called indirect attacks),
where A attacks B iff A directly attacks some sub-argument B′ of B (i.e.
∀(A,B) ∈ Att : ∃(B′, B) ∈ Sub s.t. (A,B′) ∈ Attd). As an indirect attack (A,B)
is seen as the accumulation of possibly many direct attacks (A,B′) where B′ is a
sub-argument of B, it is assumed that if (A,B) is preference-dependent, then so is
(A,B′). Note that a standard AA framework (Arg,Att) can be viewed as an AA
framework with sub-arguments (Arg,Att, Sub) where Sub = {(A,A) | A ∈ Arg}
and Attd = Att. On the other hand without preference information the seman-
tics of (Arg,Att, Sub) is that of the standard AA framework (Arg,Att), and
hence in this paper we shall blur distinction between two kinds of frameworks.

A Stated Preference Argumentation (SPA3) framework SPAF is a
pair SPAF = (AAF,P ) consisting of an AA framework (possibly with sub-
arguments) AAF = (Arg,Att, Sub) and a binary relation P ⊆ Arg × Arg rep-
resenting the stated preference between arguments4. The semantics of SPAF
is defined by reducing SPAF to standard AA as follows [14]. We say that
(A,B) ∈ Attpd is effective if A directly attacks some sub-argument B′ of B
(i.e. (B′, B) ∈ Sub ∧ (A,B′) ∈ Attd) such that B′ is not strictly preferred to A
(i.e. (B′, A) �∈ P ∨ (A,B′) ∈ P ); ineffective if not effective. The AA reduction
of SPAF is the AA framework AAR obtained from AAF by removing inef-
fective preference-dependent attacks, i.e. AAR = (Arg,Att \ {(A,B) ∈ Attpd |
(A,B) is ineffective}). Define SPAF �as X iff AAR �as X (again, in this paper
we focus on as = ad - the admissibility semantics).

Note that the above semantics of SPA is different from the original one by
Amgoud and Cayrol [3] whereby an attack (A,B) is ineffective if (B,A) ∈
P ∧ (A,B) �∈ P . We do not use Amgoud and Cayrol’s semantics as it has
gone out of fashion now. Concretely recent accounts of structured argumen-

3 aka preference-based argumentation in [1,3,5,6,14].
4 We do not impose any constraints on P except that it is a binary relation over Arg.
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tation with preferences [11,12,23,24] all demand that preference-independent
attacks succeed irrespective of preferences. More seriously as shown in [23,24],
disregarding a preference-dependent attack, say (A,B), simply on the ground
that (B,A) ∈ P ∧ (A,B) �∈ P as in [3] may lead to violation of the rationality
postulates of sub-argument closure [2,23]5 and consistency [8]6. To avoid these
problems, the authors of [11,12,23,24] universally prescribe that a preference-
dependent attack (A,B) is disregarded only if for every sub-argument B′ of B
that A attacks directly, B′ is strictly preferred to A. The above semantics of
SPA [14] simply follows this finer application of preference in order to capture
[11,12,23,24] correctly (readers are referred to [14] more details). Note that SPA
is by no means the most general model of extended AA, for example it can be
seen as an instance of bipolar argumentation [1] which allows different kinds of
supports between arguments including sub-argument relation. Instead of stating
preference by a binary preference relation as in [1,3,6], one may consider the
case in which arguments are associated values as in [5,15], or arguments express
preferences between other arguments as in [4,7,13,22]. Still we can say that all
these extended models of AA are governed by the mentalistic interpretation of
preference since preference information in these models must be stated by the
reasoning agent and hence means to reflect her mental state. In this paper we use
SPA for simplicity but feel compelled to replace Amgoud and Cayrol’s semantics
by that of [14] for the above presented reason.

3 Revealed Preference Theory

Any approaches to RPT dutifully take the same input - a choice representing
observed market behaviour of a consumer. In this section we recall the motivation
approach and the rationalization approach [18,26,27].

Definition 1. 1. A budget space is a pair (X,B) where X is a universe of all
possible options and B ⊆ 2X \ {∅} is a set of budgets (aka menus).

2. A choice function (or choice, for short) c over a budget space (X,B) is a
function mapping each budget B ∈ B to a subset c(B) of B.

Intuitively c(B) is the set of options chosen (by a consumer) from all afford-
able options in B ⊆ X. For convenience for R ⊆ X × X, let greatestR(B)
denote {x ∈ B | ∀y ∈ B : (xR y)} - the set of R-greatest elements of B; and
maximalR(B) � {x ∈ B | ∀y ∈ B : (¬y R x)} - the set of R-maximal ele-
ments of B. Further δ(R) denotes the strict core (aka asymmetric core) of R,
i.e. x δ(R) y ⇔ xR y ∧ ¬(y R x); while ω(R) denotes the weak relation derived
from R as follows: x ω(R) y ⇔ ¬(yRx).

In RPT, preference is simply a binary relation over X. In the motivation
approach, such a relation makes sense of a choice by “motivating” it, while in
the rationalization approach it does so by “rationalizing” it in the following
technical sense.
5 A complete extension contains all sub-arguments of its arguments.
6 The set of conclusions of arguments in a complete extension is consistent.
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Definition 2. Let c be a choice function over a budget space (X,B) and R ⊆
X × X be a preference relation.

1. We say that R motivates (resp. rationalizes) c if for any B ∈ B, c(B) =
maximalR(B) (resp. c(B) = greatestR(B)).

2. A choice c is said to be a motivatable (resp. rationalizable) choice if it
can be motivated (resp. rationalized) by some preference relation R.

Example 1 (rationalizable vs non-rationalizable). Customer A’s behaviour in
Introduction is described by a choice function cA = {{a, b} �→ {a}, {b, c} �→
{b}, {a, c} �→ {c}}. It is clear that R = {(a, b), (b, c), (c, a)} ∪ {(x, x) | x ∈
X = {a, b, c}} rationalizes cA. Hence cA is a rationalizable choice. Similarly,
choice cB = {{a, b, e} �→ {a, e}, {b, c} �→ {b}, {b, d} �→ {b}}, which repre-
sents consumer B’s behaviour, is motivatable since it is motivated by R =
{(a, b), (e, b), (b, c), (b, d)}. Now consider another choice c = {B1 �→ {a}, B2 �→
{b}} where B1 = X and B2 = {a, b}. Assume a relation R rationalizing c. From
c(B1) = {a} it is clear that aR a and aR b. That is a ∈ greatestR(B2) and hence
a ∈ c(B2) but this is not the case. Hence c is not rationalizable.

Note that a preference relation that makes sense of a choice according to
one approach does not necessarily do so according to the other approach, simply
because it may motivate a choice but does not rationalize it or vice versa. How-
ever rationalizability and motivatability are equivalent properties of a choice.

Lemma 1 (Theorem 3 of [18]). A choice is rationalizable iff it is motivatable.

In other words, rationalizable choices and motivatable choices characterize
“the same kind” of consumer behaviour. From this equivalence and other equiv-
alences presented below, one can say that two approaches to RPT deliver the
same results though they postulate contradictory assumptions about preference.
To pin down these assumptions, consider a preference relation R: if R is reflexive
then maximalR(B) = ∅; and if R is irreflexive then greastedR(B) = ∅. Hence if
R is to motivate (resp. rationalize) a decisive choice7, it is presumably irreflexive
(resp. reflexive). It is clear that these assumptions have nothing to do with the
nature of preference being captured. Rather they are superfluously brought in
by the mathematical tools greatestR(.) and maximalR(.) the approaches deploy.
Lemma 2 below, which is given in [18,21], says that stating these assumptions
explicitly will not change the kind of consumer behaviour being described.

Lemma 2. 1. ( rationalizability ⇔ reflexive rationalizability) A choice is ratio-
nalizable iff it can be rationalized by a reflexive preference relation (for short,
reflexive rationalizable).

2. (motivatability ⇔ irreflexive motivatability) A choice is motivatable iff it is
irreflexive motivatable.

7 A choice c is decisive if c(B) �= ∅ for any menu B ∈ B.
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Note that many choices that are rationalizable (or equivalently reflexive ratio-
nalizable/motivatable/irreflexive motivatable) according to the above technical
sense are not really “rational” in common sense. For example, the choice c1
in Example 1 is rationalizable but clearly a rational consumer is not expected
to select c in menu {a, c} given that she ignored c when b was available (in
menu {b, c}), and ignored b when a was available (in menu {a, b}). Proponents
of RPT do not see this as a problem, since for them rationalizability (and its
equivalences: reflexive rationalizability, motivatability, etc.) aims to be the least
stringent in a spectrum of rationality criteria that RPT provides. More stringent
criteria can be obtained by assigning extra properties to the preference rela-
tion that rationalizes or motivates such a behaviour. Notably, the criteria called
regular rationalizability/motivatability defined below require that the rational-
izing/motivating preference relation is transitive. In addition they elevate the
reflexivity (resp. irreflexivity) assumption to slightly stronger assumption called
weak (resp. strict) preference.

Definition 3. 1. A strict preference relation � is an asymmetric (hence
irreflexive) relation over X. A weak preference relation � is a reflexive
and total relation over X.

2. A regular-weak (regular-strict) preference relation is a weak preference
(resp. strict preference) relation that is transitive. A regular preference
relation is a regular-weak or regular-strict preference relation.

3. A choice c is said to be regular rationalizable (resp. regular motivatable)
if it can be rationalized (resp. motivated) by a regular-weak preference relation
(resp. a regular-strict preference relation).

Example 2. Choice cB is also: 1) regular rationalizable because it is rational-
ized by R = {(a, b), (e, b), (b, c), (b, d), (a, c), (a, d), (e, c), (e, b), (a, e), (e, a), (c, d),
(d, c)} ∪ {(x, x) | x ∈ X}, which is regular-weak; and 2) regular motivatable
because it is motivated by the asymmetric core δ(R) of the above relation R,
i.e. δ(R) = {(a, b), (e, b), (b, c), (b, d), (a, c), (a, d), (e, c), (e, b)}, which is regular-
strict.

It is obvious that a regular rationalizable (resp. regular motivatable) choice
is also a rationalizable (resp. motivatable) choice but the reverse does not hold.

Example 3. The rationalizable choice cA is not regular rationalizable because for
any relation R, if R rationalizes cA then R ⊇ {aR b, bR c, cR a}. Hence if R is
regular-weak, then R = X×X, and hence cA(B) = B for any budget B - but this
is not the case. Note that we can obtain a regular rationalizable choice from cA by
selecting c from menu {a, c} instead of c. Clearly this new choice is rationalized
by R = {aR b, bR c, aR c, aR a, bR b, cR c}, a regular-weak preference relation.

Regular rationalizability and regular motivatability are equivalent properties
of a choice. That is, regular rationalizable choices characterize the same kind of
consumer behaviour as regular motivatable choices do.

Lemma 3 ( regular rationalizability ⇔ regular motivatability). Let c be a
choice.
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1. If c is rationalized by a regular-weak preference relation �, then c is motivated
by δ(�), which is a regular-strict preference relation (see Lemma4).

2. If c is motivated by a regular-strict preference relation �, then c is rationalized
ω(�), which is a regular-weak preference relation (see Lemma4).

Lemma 4. 1. If � is a regular-strict preference relation then ω(�) is a regular-
weak preference relation. If � is a regular-weak preference relation then δ(�)
is a regular-strict preference relation.

2. For any regular-strict preference relation �, it holds that �= δ(ω(�)); and
for any regular-weak preference relation �, it holds that �= ω(δ(�)).

The following box summarizes and also lists more equivalences and impli-
cations between rationality criteria for choices in RPT (see e.g. [18,21]). These
criteria are the focal point of the re-construction of RPT in Sect. 4.

motivatability ⇔ irreflexive motivatability ⇔ rationalizability ⇔ reflexive
rationalizability ⇐ �⇒total rationalizability ⇔ total and reflexive rationalizability
⇔ asymmetric motivatability ⇐ �⇒ regular motivatability ⇔ regular rationaliz-
ability

4 RPT in Argumentation

The previous section shows that a rationality criterion of RPT characterizes a
certain kind of observed consumer behaviours: the kind characterized by ratio-
nalizability is the same as the kind characterized by motivability; the kind char-
acterized by regular rationalizability is also the kind characterized by regular
motivability, and so on. Since purchasing decision is just a species of reason-
ing, one might expect some correspondence between rationality criteria of RPT
and argumentation semantics. To the best of our knowledge this correspondence
has never been explored so far, and hence in this section we want to fill this
gap. In particular we re-construct the elements of RPT in argumentation terms
using especially the admissibility semantics of argumentation. To establish the
“correctness” of this re-construction we show that it unifies two approaches to
RPT presented in Sect. 3. Let us start by viewing each budget not merely as a
collection of objects, but a collection of arguments and counter-arguments for
choosing those objects, i.e. an argumentation framework.

Definition 4. We say that an AA framework (possibly with sub-arguments)
AAF = (Arg,Att, Sub) represents a budget B ⊆ X if for each option x ∈ X,

1. Arg contains an argument for choosing x, denoted argx, and
2. if x ∈ B then AAF �ad argx, otherwise AAF ��ad argx.

Note that Arg may contain arguments other than those for selecting options.
For example, the figure below depicts two AAFs representing B = {x, y} where
the right contains naz which stands for “z is not available thus not selectable”.
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Notation 1. For convenience wrt a universe of options X, let ArgX denote the
set of arguments {argx | x ∈ X} and AttX denote {(argx, argy) | x, y ∈ X,x �=
y}. Moreover for a preference relation R ⊆ X×X, PR denotes the corresponding
argument preference relation, i.e. (argx, argy) ∈ PR iff xR y.

The rationale of Definition 4 is as follows. The definition does not spell out a
specific argumentation framework but a common “interface” of argumentation
frameworks that represent the same budget B. This interface models a minimal
introspection into the mind of an agent who is modelled as choosing between
the options of B. Concretely, it postulates that for each object x ∈ X, the
agent has an argument for choosing x (Property 1 of Definition 4), however does
not demand the causes (reasons) behind to be spelled out: argx is an abstract
argument without internal structure. It is however important that the argument
“refers” unambiguously to the option x (this is mechanically done by the sub-
script x in the notation argx). This reference is to prevent such a situation that
the agent is observed as choosing x but the agent itself does not believe it did
so. Obviously in a situation of this kind, one should not draw any inference
regarding the agent’s preference8. Now that argx exists in the agent’s mind, the
agent should determine whether the argument is acceptable or not when she
decides whether to choose option x. Recall that if AAF ��ad argx (argx is not
admissibly acceptable) then argx is also not acceptable under any other argu-
mentation semantics, and hence the agent should exclude x from consideration.
Clearly this is the case of each and every option x ∈ X \ B, as these options are
not available. For an available option x ∈ B, AAF �ad argx (Property 2) says
that the agent probably selects x. Since the agent does not necessarily select x,
argx must not be required to be acceptable under a more skeptical semantics.
Now let’s introduce a simple implementation of this interface, called the canon-
ical representation, denoted AAFB = (ArgB ,AttB). It is clear that Property
1 implies ArgB ⊇ ArgX . Since argx and argy for x �= y attack each other,
AttB ⊇ AttX .

8 For an illustration let’s borrow an example from [30]. An economist and her friend
visit a sushi restaurant for the first time. The economist has read about wasabi and
knows what it looks like. Her friend mistakes it for avocado and devours a whole
spoonful. That is, the friend was observed to choose wasabi but did not have an
argument for choosing it. If the economist models her friend’s choice options as
“eating a spoonful of wasabi” and “not doing that”, then as a revealed preference
theorist, she will conclude that her friend prefers “eating a spoonful of wasabi” to
“not doing that”, which is obviously wrong.
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Definition 5. The canonical (AA) representation of budget B ⊆ X is
AAFB � (ArgB ,AttB) where ArgB = ArgX ∪ {nax | x ∈ X \ B}, AttB =
AttX ∪ {(nax, argx) | x ∈ X \ B} where

1. nax stands for “x cannot be selected as it is not available”, and
2. each argument in ArgB is a sub-argument of itself only, and all attacks in

AttB are direct: attacks of the form (argx, argy) are preference-dependent
while (nax, argx) is preference-independent.

Apparently without further information AAFB is the obvious representation
of B, and hence it is assumed in our re-construction of RPT.

Now recall that in the motivation approach (resp. rationalization approach)
to RPT, an agent chooses an option x from budget B only if x is a maximal
(resp. greatest) element of B wrt a preference relation R ascribed to the agent.
It is worth noting that two conditions are contradictory: x ∈ maximalR(B)
implies that (x, x) �∈ R while x ∈ greatestR(B) implies that (x, x) ∈ R. The
following theorem asserts that when either of two conditions holds, argx would
be an admissibly acceptable argument wrt the SPA framework obtained from
AAFB and the argument preference relation PR.

Theorem 1 (greatest ∨ maximal ⇒ admissible). Let R ⊆ X × X be a prefer-
ence relation over options. For any option x and budget B, if x ∈ greatestR(B)
or x ∈ maximalR(B), then SPA framework (AAFB ,PR) �ad argx (where PR is
the argument preference relation corresponding to R).

It is important to note that in general the reverse of Theorem 1’s assertion
may not hold since it may be that (AAFB ,PR) �ad argx but x �∈ greatestR(B)∪
maximalR(B) as demonstrated by the example below.

Example 4. Consider B = {a, b} and R = {(a, b), (b, a)}. Clearly δ(PR) =
∅ and hence the AA reduction of (AAFB ,PR) coincides with AAFB . So
(AAFB ,PR) �ad argx for x ∈ {a, b} but greatestR(B) = maximalR(B) = ∅.

However if the underlying weak-preference/strict-preference assumptions of
the two presented approaches to RPT are brought up explicitly, the admissibility
of argx is equivalent to the disjunction x ∈ greatestR(B) ∨ x ∈ maximalR(B).

Theorem 2. Let B ⊆ X be a budget over a universe of options X and R ⊆
X × X be a weak-preference or strict-preference relation. For any option x ∈ B,
x ∈ greatestR(B) ∪ maximalR(B) if and only if (AAFB ,PR) �ad argx.

The above two theorems say that (AAFB ,PR) �ad argx is “the right” unifica-
tion of two conditions x ∈ greatestR(B) and x ∈ maximalR(B). Note that while
the two conditions are not intelligible without their underlying assumptions (i.e.
weak preference or strict preference), the admissibility of argx is always intelli-
gible. Now the next step of our RPT re-construction is to “lift” this scheme of
unification from the level of individual options wrt a fixed budget, to the level
of choice functions wrt a budget space. The following definition introduces the



64 N. D. Hung and V.-N. Huynh

notion of justification which, as will be shown by Lemma 6, unifies the notions of
rationalization and motivation. Note that technically the notion of justification
is defined in terms of the admissibility semantics.

Definition 6. Let c be a choice over a budget space (X,B) and R ⊆ X × X be
a preference relation. We say that R justifies c if for every budget B ∈ B,

1. for every x ∈ c(B), SPA framework (AAFB ,PR) �ad argx

2. for every x ∈ X \ c(B), SPA framework (AAFB ,PR) ��ad argx.

A choice is justifiable if it can be justified by some preference relation.

Justifiability aims to be the least stringent rationality criterion for a consumer
behaviour c based on argumentation semantics. As in RPT, more stringent cri-
teria are defined by assigning extra properties to the preference relations of c.

Definition 7. A choice c is said to be

1. transitive justifiable if it can be justified by a transitive preference relation.
2. regular (resp. regular-strict/regular-weak) justifiable if it can be justi-

fied by some regular (resp. regular-strict/regular-weak) preference relation9.

Of course in the first case we shall say that c is transitive-justified by R
and R is a transitive justification of c. And in the second case: c is regular-
justified by R and R is a regular justification of c, etc.

Lemma 5 below says that in fact transitive justifiability defined in the first
case is equivalent to all three kinds of regular justifiability defined in the second
case. In other words, the notion of regularity in our RPT re-construction does
not need to commit to either weak preference or strict preference as does the
notion of regularity in the two current approaches to RPT.

Lemma 5 (transitive justifiability ⇔ regular justifiability ⇔ regular-weak justi-
fiability ⇔ regular-strict justifiability). A choice is transitive justifiable iff it is
regular justifiable iff it is regular-weak justifiable iff it is regular-strict justifiable.

Lemma 6 below says that the notion of justification unifies the notions of
rationalization and motivation.

Lemma 6. Let c be a choice over budget space (X,B) and R ⊆ X × X be a
preference relation.

1. If R is a weak-preference relation, then R justifies c iff R rationalizes c.
2. If R is a strict-preference relation, then R justifies c iff R motivates c.

9 Recall that a regular preference relation is either a regular-weak preference relation
or regular-strict preference relation (Definition 3).
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Note that in general a preference relation R justifying a choice c may
not motivate nor rationalize c. For instance, R = {aR b, bR a} justifies a
choice c = {{a, b} �→ {a, b}} but R does not rationalize nor motivate c as
maximalR({a, b}) = greatestR({a, b}) = ∅. On the other hand, a preference
relation may motivate or rationalize a choice but does not justify it. For exam-
ple R = {aR b, bR a} rationalizes c′ = {{a, b} �→ ∅} but does not justify c′.

Now let’s establish the correspondence between justifiability-based rational-
ity criteria for evaluating choices defined in Definition 6 and Definition 7 and
different rationality criteria proposed in RPT.

Theorem 3 (justifiability ⇔ strict-preference motivatability ⇔ weak-preference
rationalizability). A choice is justifiable iff it can be motivated by a strict-
preference relation iff it can be rationalized by a weak-preference relation.

Theorem 4 ( regular justifiability ⇔ regular motivatability ⇔ regular ratio-
nalizability). Let c be a choice over budget space (X,B).

1. If c is motivated (resp. rationalized) by a regular-strict (resp. regular-weak)
preference relation R ⊆ X × X, then c is justified by R.

2. If c is justified by a regular preference relation R ⊆ X×X, then c is motivated
by δ(R) and rationalized by ω(R).

5 Revealed Preference Argumentation (RPA) Framework

Given that RPT is a particular form of behaviourism that focuses on consumer’s
preference, one might ask how behaviourism in general works on any agent’s pref-
erence. To answer this question for argumentative agents, we define a Revealed
Preference Argumentation framework as follows.

Definition 8. A Revealed Preference Argumentation (RPA) framework is
a pair RPAF = (Abs, Cbs) where

1. Abs, which is referred to as the argument base of RPAF, is an AA frame-
work (possibly with sub-arguments), and

2. Cbs, which is referred to as the choice base of RPAF, is a set {(Ai = vi |
AAFi)}m

1 of triples (Ai = vi | AAFi) (referred to as observations) where
AAFi is an AA framework, Ai is an argument in AAFi and vi ∈ {acc, rej}.

We restrict ourselves to a class of well-formed RPA frameworks defined below.

Definition 9. 1. We say that an AA framework (Argi,Atti) is a preference-
invariant extension of another AA framework (Arg,Att) if and only if
Argi ⊇ Arg, Atti ⊇ Att such that Att coincides with the projection of Atti
on Arg and Atti \ Att are all preference-independent attacks.

2. A RPA framework RPAF = (Abs, Cbs) is said to be well-formed if for each
observation (Ai = vi | AAFi) ∈ Cbs, AAFi is a preference-invariant extension
of the argument base Abs.
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Intuitively the argument base Abs of a well-formed RPA framework RPAF =
(Abs, Cbs) is supposed to represent the stable knowledge of a reasoning agent
whose preference is not yet known but remains unchanged during the period of
observations. The choice base Cbs is supposed to represent the agent’s observed
reasoning behaviour, where an observation (Ai = vi | AAFi) says that the agent
is observed to have accepted or rejected an argument Ai in a condition (exper-
iment) that results in the agent’s total knowledge base AAFi. That is AAFi

extends Abs with additional arguments and attacks that are specific to the con-
dition or the experiment the agent is going through. Moreover these additional
attacks are assumed to be preference-independent. For example, of our special
interest in the next section is the well-formed RPA framework RPTinRPAc rep-
resenting a given choice function c defined as follows.

Definition 10. For a choice c over a budget space (X,B), RPTinRPAc denotes
the well-formed RPA framework (AbsX , CbsB) where

1. AbsX = (ArgX ,AttX) with ArgX = {argx | x ∈ X}, AttX = {(argx, argy) |
x �= y ∈ X}, and

2. CbsB = {(argx = acc | AAFB) | x ∈ c(B), B ∈ B} ∪ {(argx = rej | AAFB) |
x ∈ B \ c(B), B ∈ B} where AAFB is the canonical AA representation of
budget B (Definition 5).

Intuitively an acceptance observation (argx = acc | AAFB) ∈ CbsB (resp.
rejection observation (argx = rej | AAFB) ∈ CbsB) represents that the option x
was chosen (resp. was not chosen) from budget B. For illustration, let’s revisit the
choice describing the consumer A’s behaviour cA = {B1 = {a, b} �→ {a}, B2 =
{b, c} �→ {b}, B3 = {a, c} �→ {c}}. The choice base of RPTinRPAcA representing
c should contain observations (arga = acc | AAFB1) and (argb = rej | AAFB1)
(where AAFB1 is obtained from AAFX by adding an attack (nac, argc)) repre-
senting that option a was chosen from B1 = {a, b}, but not option b.

Now come three definitions that lie at the heart of behaviourism in argu-
mentation. Definition 11 links observed reasoning behaviour (in the form of a
choice base) with revealed preference over arguments. That is, one may say that
this definition is the counter-part of Definition 2 which links observed market
behaviour (in the form of a choice function) with revealed preference over dif-
ferent products.

Definition 11. Let RPAF = (Abs, Cbs) be a RPA framework. A binary relation
P over the set of arguments in Abs is said to be a revealed preference relation
of RPAF iff for each observation (Ai = vi | AAFi) ∈ Cbs,

1. if vi = acc, then SPA framework (AAFi, P ) �ad Ai,
2. otherwise (i.e. vi = rej), (AAFi, P ) ��ad Ai.

We say that RPAF is a preferentially satisfiable (for short, p-satisfiable)
RPA framework if it has at least one revealed preference relation.
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Example 5. RPTinRPAcA (which represents the choice cA) is p-satisfiable
since it has a revealed preference relation P1 = {(arga, argb), (argb, argc), (argc,
arga)}. RPTinRPAcB (which represents cB) is p-satisfiable since it has a revealed
preference relation P2 = {(arga, argb), (arge, argb), (argb, argc), (argb, argd)}.

P-satisfiability aims to be the least stringent criterion for a RPA framework
to be preferentially satisfiable. More stringent criteria are obtained by associ-
ating extra properties to the revealed argumentation preference relations of the
concerned RPA framework as follows.

Definition 12. A RPA framework is said to be

1. transitive p-satisfiable if it has at least one revealed preference relation
that is transitive.

2. regular-weak p-satisfiable if it has at least one revealed preference relation
that is regular-weak (i.e. total, reflexive and transitive).

3. regular-strict p-satisfiable if it has at least one revealed preference relation
that is regular-strict (i.e. asymmetric and transitive).

4. regular p-satisfiable if it has at least one revealed preference relation that
is regular, where an argument preference relation is regular just in case it is
regular-weak or regular-strict.

Obviously if a RPA framework is transitive p-satisfiable then it is also p-
satisfiable but the reverse does not hold as exemplified by the following example.

Example 6. Continue Example 5, RPTinRPAcA is transitive p-satisfiable. To
see this assume on the contrary that it has a transitive revealed preference
relation P ′

1. It is easy to see that {(arga, argb), (argb, argc), (argc, arga)} ⊆
δ(P ′

1). Since δ(P ′
1) is transitive, (arga, argc) ∈ δ(P ′

1), which contradicts with
(argc, arga) ∈ δ(P ′

1).

Lemma 7. Let RPAF be a RPA framework. RPAF is transitive p-satisfiable iff
RPAF is regular p-satisfiable iff RPAF is regular-weak p-satisfiable iff RPAF is
regular-strict p-satisfiable.

Definition 13 extrapolates observed reasoning behaviour to new conditions.

Definition 13. Wrt a RPA framework RPAF = (Abs, Cbs), a potential
extrapolation e is a triple of the same form (A = v | AAF ) as an observation
of RPAF, and is said to be:

1. a credulous extrapolation of RPAF, written RPAF �cr e, iff there exists
some revealed preference relation P of RPAF such that (AAF,P ) �ad A if
v = acc; otherwise (AAF,P ) ��ad A.

2. a skeptical extrapolation of RPAF, written RPAF �sk e, iff the above
condition holds for any revealed preference relation of RPAF.

3. a regular extrapolation of RPAF, written RPAF �reg e, iff the above con-
dition holds for any regular revealed preference relation of RPAF.
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6 RPA as a Complete Computational Framework
for RPT-based Consumer Behaviour Analyses

In this section, we show that, given an observed consumer’s behaviour in the
form of a choice function c, the key RPT-based analyses described below can
be translated to and solved as computational tasks wrt the RPA framework
RPTinRPAc that represents c (defined in Definition 10).

– Rationality check : Does c satisfy a certain rationality criterion of RPT (e.g.
regular rationalizable)?

– Preference recovery : Compute the set of all preference relations of a certain
class (e.g. regular preference relations) motivating or rationalizing c.

– Extrapolation: Given an option x belonging to a new budget B, check-
ing whether for some (resp. any) recovered preference relation R, x ∈
maximalR(B) or x ∈ greatestR(B), i.e. if the agent is given budget B,
whether she would probably (resp. surely) choose option x?

Obviously three analyses are strongly related. For a given choice function c,
one first performs a rationality check. Passing such a check means that c has a
non-empty set of motivating/rationalizing preference relations of the class cor-
responding to the check. Only then one starts a preference recovery to compute
this non-empty “answer” set. Having computed this answer set, one can start
an extrapolation, asking whether for a given option x ∈ B where B is a new
budget, for some (resp. any) recovered preference relation R in the answer set,
x ∈ maximalR(B) or x ∈ greatestR(B)? Note that the computational task
here is called an extrapolation because conceptually it extends the given choice
function c from its original budget space (X,B) to (X,B ∪ {B}) by adding a
new mapping B �→ maximalR(B) or B �→ greatestR(B). Clearly checking if
x ∈ maximalR(B) (or x ∈ greatestR(B)) for some (resp. any) recovered pref-
erence relation R is conceptually equivalent to checking if option x belongs to
the set-union (resp. set intersection) of maximalR(B) (or greatestR(B)) where
R ranges over the set of all recovered preference relations.

Now let’s see how these RPT-based analyses can be translated into computa-
tional tasks wrt RPTinRPAc. Theorem 5 says that to check if a choice c is total
and reflexive rationalizable, one can check whether RPTinRPAc is p-satisfiable.

Theorem 5. Let c be a choice and RPTinRPAc be the RPA framework repre-
senting to c. Then c is total and reflexive rationalizable (or equivalently, asym-
metric motivatable) if and only if RPTinRPAc is p-satisfiable.

Theorem 6 says that to check whether a choice c is regular rationalizable, one
can check whether RPTinRPAc is regular p-satisfiable.

Theorem 6. Let c be a choice for a budget space (X,B) and RPTinRPAc be
the RPA framework representing c.

1. If c is rationalized (resp. motivated) by a regular-weak (resp. regular-strict)
preference relation R ⊆ X × X, then PR � {(argx, argy) | xR y} is a transi-
tive revealed preference relation of RPTinRPAc.
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2. If RPTinRPAc has a revealed preference relation P that is transitive, then c
is motivated by a regular-strict preference relation Rδ(P ) and rationalized by
a regular-weak preference relation Rω(δ(P )).10

It is worth noting that Theorem6 also offers a method for recovering all
regular preference relations motivating/rationalizing a choice c: first find all reg-
ular revealed preference-between-arguments relations of RPTinRPAc, and then
map each of these relations to a regular-strict (resp. regular-weak) preference
relation motivating (resp. rationalizing) c by using functions Rδ(.) and Rω(δ(.)),
respectively. Finally, Theorem7 below says that checking regular extrapolations
in RPT can be seen as an instance of checking regular extrapolations in RPA.

Theorem 7. For any option x ∈ B, RPTinRPAc �reg (argx = acc | AAFB) iff
x ∈ maximalR(B) for any regular-strict preference relation R that motivates c
iff x ∈ greatestR(B) for any regular-weak preference relation R rationalizing c.

7 Conclusions

As early as the beginning of twentieth century, neoclassical economists hypoth-
esize that consumption choices are made so as to maximize utility. Given this
hypothesis, it follows that each choice tells us something about the consumer. In
other words, choices reveal preferences, and thereby provide information about
an underlying utility function [29]. Revealed Preference Theory is formulated
along this line, but further cuts the ties with human mental states by interpret-
ing preference as merely a mathematical construct used to make sense of observed
behaviours, rather than a real mental phenomenon. Hence in RPT, preference
elicitation is not an investigation into the agent’s mental state (presumably by
listening what the agent says), but an analysis of the agent’s actions (It is not
what she says but it is what she does that tells what she prefers). As purchas-
ing decision is just a species of human reasoning, we might wonder how RPT
and behaviourism can be generalized with respect to various forms of reasoning
developed in AI where mentalism dictates for now. In this paper we answer this
question by developing a so-called Revealed Preference Argumentation (RPA)
framework. We show that RPA lends itself to a complete computational frame-
work for RPT-based consumer behaviour analyses. Given that RPT is one of
the most seminal consumer theories till today, we believe that RPA paves the
way for future applications of argumentation to behavioural economics - an area
unexplored so far to the best of our knowledge. This paper, however, can be
viewed as a continuation of our recent work on revealed preference [14], which
shares the same general interest with [16,17,19,20] in reversing the standard rea-
soning flow of SPA to learn about the preference of a SPA framework from a set
of accepted arguments or propositions. It is interesting to see how [16,17,19,20]
can be extended for consumer’s revealed preference.

10 Recall that for an argument preference relation Q, RQ � {(x, y) | (argx, argy) ∈ Q}
denotes the corresponding preference relation over options.
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Abstract. This work is motivated by a real-world problem of coordi-
nating B2B pickup-delivery operations to shopping malls involving mul-
tiple non-collaborative Logistics Service Providers (LSPs) in a congested
city where space is scarce. This problem can be categorized as a Vehicle
Routing Problem with Pickup and Delivery, Time Windows and Loca-
tion Congestion with multiple LSPs (or ML-VRPLC in short), and we
propose a scalable, decentralized, coordinated planning approach via iter-
ative best response. We formulate the problem as a strategic game where
each LSP is a self-interested agent but is willing to participate in a coor-
dinated planning as long as there are sufficient incentives. Through an
iterative best response procedure, agents adjust their schedules until no
further improvement can be obtained to the resulting joint schedule. We
seek to find the best joint schedule which maximizes the minimum gain
achieved by any one LSP, as LSPs are interested in how much benefit
they can gain rather than achieving a system optimality. We compare
our approach to a centralized planning approach and our experiment
results show that our approach is more scalable and is able to achieve
on average 10% more gain within an operationally realistic time limit.

Keywords: Vehicle routing problem · Multi-agent systems · Best
response planning

1 Introduction

B2B pickup-delivery operations to and from commercial or retail locations
involving multiple parties, commonly referred to as Logistics Service Providers
(LSPs), more often than not cannot be done in silos. Resource constraints at
these locations such as limited parking bays can cause congestion if each LSP
adopts an uncoordinated, selfish planning. Thus, some form of coordination is
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needed to deconflict the schedules of these LSPs to minimize congestion thereby
maximizing logistics efficiency. This research is motivated by a real-world prob-
lem of improving logistics efficiency in shopping malls involving multiple inde-
pendent LSPs making B2B pickups and deliveries to these locations in small,
congested cities where space is scarce.

Collaborative planning for vehicle routing is an active area of research and
had been shown to improve efficiency, service level and sustainability [9]. How-
ever, collaborative planning assumes that various LSPs are willing to collaborate
with each other by forming coalitions, exchanging of information and/or sharing
of resources to achieve a common objective. This is different from our problem
setting where LSPs are independent entities who can only make decision locally
in response to other LSPs’ decisions and they do not interact directly with each
other to collaborate or make joint decision.

Ideally if we have one single agent who can control the routes and sched-
ules of multiple LSPs with complete information and collaboration amongst the
LSPs, we may achieve some form of system optimality. However, an unintended
outcome is that some LSPs may suffer more loss than if they adopt their own
planning independently. Moreover, such centralized approach is not scalable and
not meaningful in solving the real-world problems, since LSPs may not always
be willing to collaborate with one another.

To address the above concern, this paper proposes a scalable, decentralized,
coordinated planning approach via iterative best response. The underlying prob-
lem can be seen as a Vehicle Routing Problem with Pickup and Delivery, Time
Windows and Location Congestion with multiple LSPs (or ML-VRPLC in short).

More precisely, we formulate the problem as a strategic game where each
LSP is a self-interested agent willing to participate in a coordinated planning
(without collaborating directly with other LSPs) as long as there are sufficient
incentives. [1] coined the term “loosely-coupled” agent to describe an agent which
exhibits such characteristics. Through an iterative best response procedure, mul-
tiple agents adjust their schedules until no further improvement can be obtained
to the resulting joint schedule. We seek to find the best joint schedule which max-
imizes the minimum gain achieved by any one LSP, since LSPs are interested
in how much benefit they can gain rather than achieving a system optimality.
To realize such gains, we propose to use maximum cost deviation from an ideal
solution (a solution that assumes no other LSPs exist to compete for the lim-
ited resources) as the performance measure. It is clear that the minimum gain
is equivalent to the cost deviation of the worst performing LSP from this ideal
solution.

This paper makes the following contributions:

– We define a new variant of VRP, ML-VRPLC and formulate the problem as
an n-player strategic game.

– We propose a scalable, decentralized, coordinated planning approach based
on iterative best response consisting of a metaheuristic as route optimizer
with a scheduler based on Constraint Programming (CP) model to solve a
large-scale ML-VRPLC.
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– We show experimentally that our approach outperforms a centralized app-
roach in solving large-scale problem within a operationally realistic time limit
of 1 h.

2 Related Works

VRPLC is essentially a variant of a classical VRP with Pickup and Delivery,
and Time Windows (VRPPDTW) but with cumulative resource constraint at
each location [13]. Resources can be in the form of parking bays, cargo storage
spaces or special equipment such as forklifts. In VRPLC, there are temporal
dependencies between routes and schedules that do not exist in classical VRPs.
In classical VRPs, arrival times of vehicles are merely used to ensure time window
feasibility. In VRPLC, changes to the time schedule of one route may affect
the time schedule of another routes in the form of wait time or time window
violation. Many existing approaches to VRP do not take into consideration this
relationship between routes and schedules.

[13] proposed a branch-and-price-and-check (BPC) approach to solve a single-
LSP VRPLC. It is inspired by a branch-and-cut-and-price method for VRP-
PDTW [20] and combines it with a constraint programming subproblem to check
the VRPPDTW solutions against the resource constraints. However, BPC app-
roach can only find feasible solutions for instances up to 150 pickup-delivery
requests and proves optimality for up to 80 requests given a time limit of 2 h.
Therefore, this approach is not scalable when applied directly to solve ML-
VPRLC since pickup-delivery requests are usually in the region of hundreds per
LSP and for our problem setting, solution is expected within a region of 1 h
due to operational requirement. In addition, a direct application of BPC to ML-
VRPLC assumes a fully centralized, collaborative planning approach which we
have concluded earlier that it may not be practical and not meaningful.

ML-VRPLC can be considered as a problem belonging to an intersection
between two main, well-studied research areas namely Multi-Party VRP and
Multi-Agent Planning (MAP). Existing approaches to Multi-Party VRP and
MAP can broadly be categorized based on the degrees of collaboration and
cooperation respectively.

2.1 ML-VRPLC as a Multi-Party VRP

To solve VRPs involving multiple parties similar to ML-VRPLC, many existing
works in the literature focus on collaborative planning approaches. [9] coined
the term collaborative vehicle routing and it is a big area of research on its own.
Collaborative vehicle routing can be classified into centralized and decentral-
ized collaborative planning. The extent of collaboration ranges from forming of
alliances or coalitions (for e.g. [6,11]) to sharing of resources such as sharing
of vehicles or exchanging of requests through auction (for e.g. [7,23]). We have
established earlier that existing works in this area are not directly applicable to
our problem due to the non-collaborative nature of the LSPs.
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2.2 ML-VRPLC as an MAP Problem

MAP is simply planning in an environment where there exist multiple agents
with concurrent actions. Approaches to MAP can be further categorized into
cooperative and non-cooperative domains although most MAP problems lie in
between the two domains.

Cooperative Domain. Cooperative MAP involves agents that are not self-
interested and are working together to form a joint plan for a common goal [22].
[1] introduced MA-STRIPS, a multi-agent planning model on which many coop-
erative MAP solvers are based on. [19] proposed a two-step approach consisting
of centralized planner to produce local plan for each agent followed by solving a
distributed constraint satisfaction problem to obtain a global plan. Meanwhile,
[2] introduced the concept of planning games and propose two models namely
coalition-planning games and auction-planning games. Those two models assume
agents collaborate with each other through forming of coalitions or through an
auction mechanism; similar to the approaches within the collaborative vehicle
routing domain. In general, the approaches in this domain essentially assume
cooperative agents working together to achieve a common goal.

Non-cooperative Domain. Planning in the context of multiple self-interested
agents where agents do not fully cooperate or collaborate falls into the domain
of non-cooperative game theory. MAP problem can be formulated as strategic
game where agents interact with one another to increase their individual payoffs.

[15] proposed a sampled fictitious play algorithm as an optimization heuristic
to solve large-scale optimization problems. Optimization problem can be formu-
lated as a n-player game where every pure-strategy equilibrium of a game is a
local optimum since no player can change its strategy to improve the objective
function. Fictitious play is an iterative procedure in which at each step, players
compute their best replies based on the assumption that other players’ actions
follow a probability distribution based on their past decisions [3]. This approach
had been applied to various multi-agent optimization problems where resources
are shared and limited such as dynamic traffic network routing [10], mobile units
situation awareness problem [14], power management in sensor network [4] and
multi-agent orienteering problem [5].

Meanwhile, [12] proposed a best-response planning method to scale up exist-
ing multi-agent planning algorithms. The authors used existing single-agent plan-
ning algorithm to compute best response of each agent to iteratively improve
the initial solution derived from an MAP algorithm. It is scalable compared to
applying the MAP algorithm directly to an MAP planning problem. However,
the authors evaluated their proposed approach only on standard benchmark
problems such as those found in the International Planning Competition (IPC)
domains. On the other hand, [8] applied a similar best-response planning app-
roach to a real-world power management problem.
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2.3 ML-VRPLC as a Non-cooperative MAP Problem

Given that the LSPs in ML-VRPLC are considered as “loosely-coupled” agents,
the approach to solve ML-VRPLC will be somewhere in between cooperative
and non-cooperative domains of MAP, although it tends to lean more towards
the non-cooperative domain since LSPs are still largely independent and self-
interested. Our proposed approach includes certain elements that are discussed
above such as non-cooperative game theory and best-response planning. Nev-
ertheless, our work differs mainly from other existing works in that we apply
techniques from other research fields (MAP and game theory) on a new variant
of a well-studied optimization problem (VRP) with a real-world problem scale.

3 Problem Description

Multiple LSPs have to fulfill a list of pickup-delivery requests within a day.
They have multiple vehicles which need to go to the pickup locations to load
up the goods and deliver them to various commercial or retail locations such as
warehouses and shopping malls. The vehicles need to return to their depot by
a certain time and every request has a time window requirement. A wait time
will be incurred if the vehicle arrives early and time violations if it serves the
request late. In addition, every location has limited parking bays for loading and
unloading, and a designated lunch hour break where no delivery is allowed. As
such, further wait time and time window violations will be incurred if a vehicle
arrives in a location where the parking bays are fully occupied or arrives during
the designated lunch hour.

The objective of each LSP is to plan for a schedule that minimizes travel
time, wait time and time window violations. Given that parking bays at every
location are shared among the multiple LSPs, some sort of coordination is needed
to deconflict their schedules to minimize congestion.

4 Model Formulation

4.1 ML-VRPLC as a Strategic Game

We formulate ML-VRPLC as an n-player game ΓML−V RPLC with LSPs repre-
sented as players i ∈ N having a finite set of strategies Si and sharing the same
payoff function i.e. u1(s) = ... = un(s) = u(s). s ∈ S1 × .... × Sn is a finite set
since Si is finite. Table 1 provides the set of notations and the corresponding
descriptions used in the model.

Strategy. In this paper, we will use the terms ‘strategy’, ‘solution’ and ‘sched-
ule’ interchangeably since a strategy of a player i.e. an LSP is represented in
the form of a schedule. A schedule is a solution of a single-LSP VRPLC which
consists of the routes (sequence of locations visited) of every vehicle and the cor-
responding time intervals (start and end service times) of every requests served
by each vehicle. si is represented as the following tuple:
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Table 1. Set of notations used in ΓML−V RPLC .

Notation Description

N A set of LSPs, N ∈ {1, 2, ..., n}
si A schedule of LSP i, i ∈ N, si ∈ Si

s A joint schedule of all LSP, s = (s1, s2, ..., sn), s ∈ S

s−i A joint schedule of all LSP except LSP i,
s−i = (s1, ..., si−1, si+1, ..., sn)

(si, s−i) A joint schedule where LSP i follows a schedule si

while the rest follows a joint schedule, s−i

ui(s) Payoff of LSP i when all LSP follows a joint schedule, s

Bi(s−i) Best response of LSP i when all other LSPs follow a joint
schedule, s−i

si = 〈si.routes, si.timeIntervals〉

Potential Function. We define a function, P (s) =
∑

i∈N ui(s) i.e. total
weighted sum of travel times, wait times and time violations when all LSP fol-
lows a joint schedule s. In this paper, we define the payoff function, ui(s) as cost
incurred (see Eq. (6) for the full definition). P (s) is an ordinal potential function
for ΓML−V RPLC since for every i ∈ N and for every s−i ∈ S−i

ui(si, s−i) − ui(s′
i, s−i) > 0 iff

P (si, s−i) − P (s′
i, s−i) > 0 for every si, s

′
i ∈ Si.

(1)

Proof.

P (si, s−i) − P (s′
i, s−i) > 0

⇒ ui(si, s−i)+
∑

j∈−i

uj(s−i) −
(
ui(s′

i, s−i) +
∑

j∈−i

uj(s−i)
)

> 0

⇒ ui(si, s−i) − ui(s′
i, s−i) > 0

Thus, ΓML−V RPLC is a finite ordinal potential game and it possesses a pure-
strategy equilibrium and has the Finite Improvement Property (FIP) [17]. Hav-
ing the FIP means that every path generated by a best response procedure in
ΓML−V RPLC converges to an equilibrium. We are able to show conceptually and
empirically that our approach converges into an equilibrium in the later sections.

Equilibrium and Local Optimality. s′ = (s′
i, s

′
−i) is an equilibrium if

ui(s′
i, s

′
−i) ≤ ui(si, s′

−i) for all i ∈ N where si ∈ Bi(s−i). (2)
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An equilibrium of ΓML−V RPLC is a local optimum since no player can improve
its payoff/reduce its cost by changing its individual schedule. Conversely, every
optimal solution, s∗ of ΓML−V RPLC is an equilibrium since ui(s∗) ≤ ui(si, s∗

−i)
for all i ∈ N where si ∈ Bi(s∗

−i).

Objective Function. The objective of this problem is to minimize the maxi-
mum payoff deviation of any one LSP from an ideal solution.

mins∈Sf(s) (3)
f(s) = maxi∈NDeviationLB(s, i) (4)

DeviationLB(s, i) =
ui(s) − ui(sideal)

ui(sideal)
× 100% (5)

where sideal is defined as the joint schedule where all other LSPs do not exist
to compete for parking bays. sideal is a Lower Bound (LB) solution since it
is a solution of a relaxed ΓML−V RPLC . We are essentially trying to search for
solutions where each LSP’s payoff is as close as possible to its corresponding LB
solution.

We do not define the objective function as mins∈S

∑
i∈N ui(s) because in

this game, the players are not concerned about the system optimality (total
payoffs of all players) but rather on how much benefit it can obtain by adopting
a coordinated planning instead of planning independently.

5 Solution Approach

The key idea of our proposed approach is to improve a chosen joint schedule
iteratively by computing the best responses of each player assuming the rest of
the players adopt the chosen joint schedule until no improvement can be obtained
to the resulting joint schedule or until a given time limit or maximum number
of iterations has been reached. Our approach is decentralized in nature because
each LSP is an independent agent which can compute its own route and schedule
i.e. a central agent does not dictate how each player determine their decisions.

Given that we have established that our problem is a potential game and
has an FIP, our approach will converge to an equilibrium which has been shown
earlier to be equivalent to a local optimal solution. Therefore, our approach seeks
to explore multiple local optimal solutions until the terminating conditions are
met and returns the best one found so far.

5.1 Iterative Best Response Algorithm

Algorithm 1 describes how the iterative best response algorithm works. At each
iteration (lines 3–22), a joint schedule is chosen from a sampling pool of previ-
ously obtained improved joint schedules or from the current best joint schedule
(line 7). We implement an epsilon greedy sampling policy to allow for exploration



Coordinating Multi-party Vehicle Routing with Best Response 79

Algorithm 1: Iterative Best Response Algorithm to solve ML-VRPLC
Input : Initial joint schedule sinitial, maximum iteration K, time limit T
Output: Best found joint schedule sbest

1 sbest := sinitial, fmin := f(sinitial), k = 0

2 Create a sampling pool of joint schedules, H = {sinitial}
3 while k < K and runT ime < T and H �= {∅} do
4 if k = 0 then

5 sk := sinitial

6 else

7 With probability ε, sk ∼ U(H) otherwise sk := sbest

8 end

9 Remove sk from H

10 Find new joint schedules {sk,1, sk,2, ..., sk,n} where

sk,i = (ski , sk−i), u
i(sk,i) < ui(sk) and ski ∈ Bi(s

k
−i)

11 if ui(sk) ≤ ui(sk,i) for all i ∈ N then
12 k+ = 1
13 continue

14 end

15 if mini∈Nf(sk,i) ≤ fmin then

16 sbest := sk,i
∗
, fmin := f(sk,i

∗
)

17 put {sk,i}i∈N\{i∗} in H

18 else

19 put {sk,i}i∈N in H
20 end
21 k+ = 1

22 end

23 return sbest

of multiple improvements paths (see Fig. 1 for an example of an improvement
path) to search for best joint schedule. An improvement step consisting of n − 1
best response computations is applied to the chosen joint schedule to obtain new
improved joint schedules (line 10). If no further improvement can be made to
the sampled joint schedule, we proceed to the next iteration (lines 11–13). We
update the current best joint schedule if any of the new joint schedules has a
lower f(s) value than fmin (lines 15–16). Otherwise, we place the new improved
joint schedules into the sampling pool for further improvement steps in the subse-
quent iterations (lines 17,19). We repeat the process until termination conditions
are met. Then, we return the current best joint schedule as the final output.

Initial Solution, Lower Bound and Upper Bound Solutions. The initial
joint schedule can be initialized to any random, feasible joint schedule. However,
in this paper, we use the uncoordinated joint schedule as the initial solution to
be improved by iterative best response algorithm. To compute the initial joint
schedule, sinitial, we first compute the best schedules for each LSP independently
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assuming no other LSPs exist to compete for the limited resources. This is akin
to solving a single-LSP VRPLC. The resulting joint schedule is in fact sideal and
is the LB solution to ΓML−V RPLC . Next, a scheduler consisting of a CP model
that incorporates the resource capacity constraint at each location is solved
for the combined routes of sideal. This forms an uncoordinated joint schedule,
suncoord which serves as an Upper Bound (UB) solution to ΓML−V RPLC as any
coordinated planning approaches should result in solutions that are better than
an uncoordinated one. We use the LB and UB solutions in the experiments to
evaluate the solution quality of our proposed approach.

Finite Improvement Paths and Convergence. Each improved joint sched-
ule can be represented as a node in a directed tree. A series of nodes with
parent-child relationship forms an improvement path as shown in Fig. 1 where
P (sk,i) < P (sk−1,i′) for all k ≥ 1 and i, i′ ∈ N . Every improvement path is
finite since S is a finite set. Every finite improvement path will converge to an
equilibrium and every terminal point is a local optimum. However, since the best
response is computed heuristically and there is no way to prove optimality, the
resulting equilibrium is just an approximate. Nevertheless, we can show empir-
ically in our experiments that our approach will converge to an approximated
equilibrium solution after a certain number of iterations.

Fig. 1. One example of an improvement path assuming n = 3.

In short, our approach explore multiple improvement paths to search for joint
schedule that return the best objective value, f(s) with the lowest total payoffs,
P (s) as a secondary objective.

5.2 Best Response Computation

At every iteration, best response to a chosen joint schedule, sk is computed for
each LSP (line 10 of Algorithm 1). The best response computation of single LSP
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is equivalent to solving a single-LSP VRPLC where the resource constraint is
determined by the resource utilization of each location by all other LSPs based
on sk−i. Table 2 shows the notations used in this single-LSP VRPLC model.

Table 2. Set of notations used in the single-LSP VRPLC model.

Notation Description

V A set of vehicles

R A set of all requests

M A set of all locations

Rv A set of requests served by vehicle v

Om A set of requests at location m ∈ M

Cm,t Resource capacity at location m at time t

er,v Lower time window of request r served by vehicle v

lr,v Upper time window of request r served by vehicle v

prev(r) Previous request served prior to request r, prev(r), r ∈ Rv

dx,y Travel time from location of request x to location of request y

timeIntervalr,v Time interval when request r in vehicle v is being served,

consisting of start and end time

T0, coolingRate Parameters for acceptance criteria in Simulated Annealing

We propose a heuristic consisting of Adaptive Large Neighbourhood Search
(ALNS) as route optimizer and a scheduler based on a CP model to solve this
single-LSP VRPLC. Heuristic is proposed as it is more scalable for a real-world
problem setting. ALNS is used to search for better routes and the CP model
based on the resulting routes is then solved to produce a schedule that meets
the resource and time-related constraints. ALNS is chosen because it is probably
the most effective metaheuristic for the VRPPDTW [16] and ALNS is widely
used to solve large-scale problem [24]. Algorithm 2 details the proposed best
response computation consisting of ALNS and CP model.

The ALNS algorithm implemented in this paper is adapted from the vanilla
version of ALNS proposed by [21] with differences in the choices of the remove
and insert operators and parameters used. However, the key difference in our
ALNS implementation lies in line 7 of Algorithm 2. To compute the time intervals
and the corresponding payoff of the updated solution, a CP model is solved. The
payoff is computed as follow:

ui(si) = w1 × totalTravelT ime(si.routes)

+ minimize
∑

v∈V

{
w2 × ∑

r∈Rv

waitT imer,v + w3 × ∑

r∈Rv

timeV iolationr,v

}
(6)
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Algorithm 2: Best Response Computation
Input : Chosen solution sk, initial temperature T0, coolingRate
Output: Bi(s

k
−i)

1 sbesti := ski , si := sinput
i , T = T0

2 while termination criteria are not met do
3 s′

i := si
4 Select removal and insert operators via roulette wheel mechanism
5 Apply the selected removal operator to remove the requests from s′

i.routes
6 Apply the selected insert operator to insert the orders into s′

i.routes

7 Calculate the cost/payoff, ui(s′
i, s

k
−i) and update s′

i.timeIntervals

8 if ui(s′
i, s

k
−i) < ui(sbesti , sk−i) then

9 sbesti := s′
i, si := s′

i

10 else

11 if ui(s′
i, s

k
−i) < ui(si, s

k
−i) then

12 si := s′
i

13 else

14 si := s′
i with probability, min{1, e(u

i(si,s
k
−i)−u(s′

i,s
k
−i))/T }

15 end

16 end
17 Update the weights and scores of the operators accordingly

18 T := T ∗ coolingRate

19 end

20 Bi(s
k
−i) := sbesti

21 return Bi(s
k
−i)

where

w1, w2, w3are predetermined set of weights,
waitT imer,v = min{0, (start(timeIntervalr,v)

− end(timeIntervalprev(r),v) − dprev(r),r)},
timeV iolationr,v = min{0, (end(timeIntervalr,v) − lr,v)},

si.timeIntervals = {timeIntervalr,v}r∈Rv,v∈V

The second term of Eq. (6) is the objective function of the CP model with
{timeIntervalr,v}r∈Rv,v∈V as the primary decision variables of the model. The
key constraints of the CP model are as follow:

CUMULATIV E({timeIntervalr,v : v ∈ V,
r ∈ Rv ∩ Om}, 1, Cm,t),∀m ∈ M

(7)

noOverlap({timeIntervalr,v : r ∈ Rv}),∀v ∈ V (8)

start(timeIntervalr,v) ≥ end(timeIntervalprev(r),v)
+ dprev(r),r,∀r ∈ Rv, v ∈ V

(9)

start(timeIntervalr,v) ≥ er,v,∀r ∈ Rv, v ∈ V (10)

Constraint (7) is used to model the resource capacity constraint at each location
at a given time t where start(timeIntervalr,v) ≤ t ≤ end(timeIntervalr,v) and
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Cm,t is determined by the resource utilization of all other LSPs based on sk−i.
Constraint (8) ensures that the time intervals of requests within a route do not
overlap. Constraints (9) and (10) ensure that the start time of a request must at
least be later than the end time of the previous request plus the corresponding
travel time and it should not start before its lower time window. Other con-
straints relating to operational requirements such as no delivery within lunch
hours, operating hours of the locations and vehicles are omitted to simplify the
discussion as it is fairly straightforward to incorporate these constraints.

Scalability and Flexibility. Our approach is scalable because the best
response computations for every LSP can be done in parallel since they are
independent of each other. Our approach is also flexible as it also allows any
other forms of solution approach to single-LSP VRPLC to be used to compute
the best response.

6 Experiments

The objective of the experiment is twofold. Firstly, we would like to empirically
verify whether our approach converges to an equilibrium for our problem setting
and secondly, to evaluate the solution quality produced by our decentralized
approach against a centralized approach with respect to sideal (LB) and suncoord

(UB). Intuitively, our approach should return solutions with lower payoff/cost
than UB solution and within a reasonable deviation from LB solution.

6.1 Experimental Setup

We synthetically generate 30 test instances to simulate a month’s worth of
pickup-delivery requests for 20 LSPs. These instances are generated based on
existing datasets of our trials with several local LSPs. Each test instances con-
sists of 100 requests per LSP and each LSP has 10 vehicles. To simulate con-
gestion at the delivery locations, we narrow down the delivery locations to 15
unique shopping malls with maximum capacity of 4 parking bays per location.
Our approach is implemented with K set at 300 with T = 60 min.

The solution approach is implemented in Java while CP Optimizer ver. 12.8
is used to solve the CP model. The experiments are run on a server with the
following configurations: CentOS 8 with 24 CPU Cores and 32 GB RAM.

Benchmark Algorithm. We chose a centralized, non-collaborative planning
approach as a benchmark algorithm. It is centralized since all LSPs are treated as
one single LSP and the central agent makes the routing and scheduling decision
on behalf of the LSPs. It is non-collaborative as no exchange of requests or
sharing of vehicles are allowed i.e. each vehicle can only serve requests from
the LSP they belong to. We use a heuristic approach combining ALNS and CP
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(a) The total payoffs converge for all 30 test
instances. Each coloured line represents the
result of one test instance.

(b) Our proposed approach outperforms the
centralized approach and its solutions are
well within the LB and UB solutions.

Fig. 2. Convergence plot and total payoffs across 30 test instances.

model similar to the one used to compute best response to solve this single-
LSP VRPLC. The initial solution is constructed via randomized Clarke-Wright
Savings Heuristics adapted from [18]. The algorithm is run for 1 h and 2 h for
each test instance.

Performance Measures. On top of f(s), we introduce other performance
measures to evaluate the two approaches. The other performance measures intro-
duced are as follow:

Maximum Payoff Deviation from an Uncoordinated Solution. f ′(s) measures the
payoff deviation of the worst performing LSP from the payoff if it follows a sched-
ule based on an uncoordinated planning. A negative deviation value indicates
reduction in cost and the lower the value, the higher the improvement gained
from the UB solution.

f ′(s) = maxi∈NDeviationUB(s, i) (11)

DeviationUB(s, i) =
ui(s) − ui(suncoor)

ui(suncoor)
× 100% (12)

Average Payoff Deviation from an Ideal Solution. The lower the value, the closer
the solution is to the LB solution.

g(s) =
1
n

×
∑

i∈N

DeviationLB(s, i) (13)

Average Payoff Deviation from an Uncoordinated Solution. Similar to Eq. (11),
a negative deviation value indicates reduction in cost.

g′(s) =
1
n

×
∑

i∈N

DeviationUB(s, i) (14)
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6.2 Experimental Results

Convergence. Figure 2a shows that the total payoffs of all players converged
after 200 iterations on average for all test instances. This supports our ear-
lier deduction that ΓML−V RPLC possesses an FIP and our proposed algorithm
explores multiple improvement path that will converge to an approximated equi-
librium. Meanwhile, the average run-time for 200 iterations is around 1 h.

Our Approach vs. Centralized. As shown in Fig. 2b, we intentionally present
the results as a line chart and sort the test instances based on increasing total
payoff of the ideal solution to better illustrate that our approach returns solutions
whose total payoffs are lower than the centralized approach and are well within
the UB and LB solutions in all 30 test instances.

Table 3 shows that our approach outperforms the centralized approach on
every performance measure even when the run-time for the centralized approach
is increased to 2 h. We include results in terms of average and percentiles for a
more extensive comparison. In terms of the performance of the worst LSP, our
approach is able to ensure that on average, the payoff of the worst performing
LSP is still within about 20.7% from the LB solution and at least gain about
2.6% improvement over uncoordinated solution. Meanwhile, even with doubling
of the run-time, the centralized approach can only manage to ensure that the
payoff of the worst performing LSP is within 31.6% from the LB solution while
incurring a 12.9% additional cost as compared to an uncoordinated planning.

On average, across all LSPs, our approach return solutions that are well
within 8.3% deviation from the LB solution and improve the payoff of the LSPs
by an average of 11.2% from an uncoordinated planning approach. This is con-
trasted with the centralized approach which can only manage to return solutions
that are within 14.4% of LB solution on average and an improvement of about
6.1% from the UB solution even when the run-time is doubled.

We observe that the worst performing LSP in centralized approach consis-
tently returns f ′ values that are positive (see Table 3) which indicates that the
solution for the worst performing LSP is even worse than that of an uncoordi-
nated planning approach. This is because the centralized approach only concerns
about the system optimality and not on the performance of each individual LSP.
This reiterates our point that a centralized approach may result in some LSPs
performing worse than if they are to plan independently.

Experiment Discussion. The experiments show that our proposed decentral-
ized approach outperforms a centralized approach given the available run-time
limit of 1 h in all 30 test instances and in all 4 performance measures. Fur-
thermore, we also found that the centralized approach is computationally more
expensive and therefore not as scalable as our decentralized approach as it needs
longer run-time (>2 h) to return solutions that are at least comparable to our
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Table 3. Our approach outperforms the centralized approach on every performance
measures across 30 test instances.

Performance measure Our approach Centralized (1 h) Centralized (2 h)

Max payoff Q1 16.7% 26.3% 24.0%

Deviation from LB Q2 21.1% 30.7% 27.5%

f(s) Q3 24.0% 36.5% 32.7%

Avg 20.7% 34.2% 31.6%

Max payoff Q1 −3.0% 9.9% 6.8%

Deviation from UB Q2 −1.9% 13.4% 10.1%

f ′(s) Q3 −1.1% 16.4% 15.4%

Avg −2.6% 12.9% 12.9%

Avg payoff Q1 5.1% 12.4% 10.3%

Deviation from LB Q2 8.1% 16.9% 14.2%

g(s) Q3 11.6% 21.5% 18.3%

Avg 8.3% 16.9% 14.4%

Avg payoff Q1 −12.4% −7.1% −9.5%

Deviation from UB Q2 −9.1% 1.9% 4.0%

g′(s) Q3 −6.3% 2.9% 0.5%

Avg −11.2% −4.1% −6.1%

approach. To verify the lack of scalability of the centralized approach, we run
another set of experiments with 5 LSPs and find that it indeed performs well with
smaller scale problems. Overall, even though there will be LSPs who gain more
and others who will gain less, based on our experiments, our approach ensures
that there are enough incentives for LSPs to adopt this coordinated planning as
compared to them performing their own selfish, independent planning.

7 Conclusion and Future Works

The key idea proposed in this paper is a scalable, decentralized, coordinated
planning approach that can be tailored to large-scale optimization problems
involving multiple “loosely coupled” entities competing for shared resources.
Our proposed iterative best response algorithm decomposes a multi-agent prob-
lem into multiple single-agent problems allowing existing single-agent planning
algorithms to be applied to a smaller problem.

Even though we assume that the best response algorithms and the payoff
functions of each LSP (or agent) are identical, our approach can be extended to
problems where each LSP adopts different best response algorithm and payoff
function. The best response computation algorithm is akin to a black-box which
can be replaced with any solution algorithm to solve single-LSP VRPLC (or
single-agent version of the problem). Moreover, even with non-identical payoff
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functions, the inequality condition in Eq. (1) will still be valid and therefore our
approach will still converge to an approximated equilibrium.

One key limitation of our approach is that we assume the environment is
static which may not be the case in real-world setting. We assume that every
LSP in the system is cooperative in the sense that it participates and adheres
to the coordinated planning without any possibility of plan deviation such as
dropping out of the system or making changes to their pickup-delivery requests.
It is interesting to investigate and enhance our approach to take into consider-
ation uncertainty in the environment and evaluate its robustness in a dynamic
environment, as well as to extend it to domains beyond logistics.

Another interesting direction for future work will be to go beyond the empir-
ical study that we did in this paper by further defining and analyzing the the-
oretical bounds of our approach to n-player game ΓML−V RPLC in terms of the
classical notions of Price of Stability (PoS) and Price of Anarchy (PoA).
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Abstract. Transportation services play a crucial part in the devel-
opment of modern smart cities. In particular, on-demand ridesharing
services, which group together passengers with similar itineraries, are
already operating in several metropolitan areas. These services can be
of significant social and environmental benefit, by reducing travel costs,
road congestion and CO2 emissions.

Unfortunately, despite their advantages, not many people opt to use
these ridesharing services. We believe that increasing the user satisfac-
tion from the service will cause more people to utilize it, which, in turn,
will improve the quality of the service, such as the waiting time, cost,
travel time, and service availability. One possible way for increasing user
satisfaction is by providing appropriate explanations comparing the alter-
native modes of transportation, such as a private taxi ride and public
transportation. For example, a passenger may be more satisfied from a
shared-ride if she is told that a private taxi ride would have cost her
50% more. Therefore, the problem is to develop an agent that provides
explanations that will increase the user satisfaction.

We model our environment as a signaling game and show that a ratio-
nal agent, which follows the perfect Bayesian equilibrium, must reveal all
of the information regarding the possible alternatives to the passenger. In
addition, we develop a machine learning based agent that, when given a
shared-ride along with its possible alternatives, selects the explanations
that are most likely to increase user satisfaction. Using feedback from
humans we show that our machine learning based agent outperforms
the rational agent and an agent that randomly chooses explanations, in
terms of user satisfaction.

1 Introduction

More than 55% of the world’s population are currently living in urban areas,
a proportion that is expected to increase up to 68% by 2050 [36]. Sustainable
urbanization is a key to successful future development of our society. A key
inherent goal of sustainable urbanization is an efficient usage of transportation
resources in order to reduce travel costs, avoid congestion, and reduce greenhouse
gas emissions.
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A. Rosenfeld and N. Talmon (Eds.): EUMAS 2021, LNAI 12802, pp. 89–107, 2021.
https://doi.org/10.1007/978-3-030-82254-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82254-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-82254-5_6


90 D. Zar et al.

While traditional services—including buses and taxis—are well established,
large potential lies in shared but flexible urban transportation. On-demand
ridesharing, where the driver is not a passenger with a specific destination,
appears to gain popularity in recent years, and big ride-hailing services such
as Uber and Lyft are already offering such services. However, despite the pop-
ularity of Uber and Lyft [35], their ridesharing services, which group together
multiple passengers (Uber-Pool and Lyft-Line), suffer of low usage [15,28].

In this paper we propose to increase the user satisfaction from a given shared-
ride, in order to encourage her to use the service more often. That is, we attempt
to use a form of persuasive technology [22], not in order to convince users to take
a shared ride, but to make them feel better with the choice they have already
made, and thus improve their attitude towards ride-sharing. It is well-known
that one of the most influencing factors for driving people to utilize a specific
service is to increase their satisfaction form the service (see for example, [46]).
Moreover, if people will be satisfied and use the service more often it will improve
the quality of the service, such as the waiting time, cost, travel time, and service
availability, which in turn further increase the user satisfaction.

One possible way for increasing user satisfaction is by providing appropriate
explanations [13], during the shared ride or immediately after the passenger has
completed it. Indeed, in recent years there is a growing body of literature that
deals with explaining decisions made by AI systems [24,27]. In our ridesharing
scenario, a typical approach would attempt to explain the entire assignment of all
passengers to all vehicles. Clearly, a passenger is not likely to be interested in such
an explanation, since she is not interested in the assignment of other passengers
to other vehicles. A passenger is likely to only be interested with her own current
shared-ride when compared to other alternative modes of transportation, such
as a private taxi ride or public transportation.

Comparing the shared-ride to other modes of transportation may provide
many different possible explanations. For example, consider a shared-ride that
takes 20 min and costs $10. The passenger could have taken a private taxi
that would have cost $20. Alternatively, the passenger could have used public
transportation, and such a ride would have taken 30 min. A passenger is not
likely to be aware of the exact costs and riding times of the other alternatives,
but she may have some estimations. The agent, on the other hand, has access
to many sources of information, and it can thus provide the exact values as
explanations. Clearly, the agent is not allowed to provide false information. The
challenge is to design an agent that provides the appropriate explanation in any
given scenario.

We first model our environment as a signaling game [47], which models the
decision of a rational agent whether to provide the exact price (i.e., the cost
or the travel time) of a possible alternative mode of transportation, or not. In
this game there are three players: nature, the agent and the passenger. Nature
begins by randomly choosing a price from a given distribution; this distribution
is known both to the agent and the passenger. The agent observes the price and
decides whether to disclose this price to the passenger or not. The passenger
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then determines her current expectation over the price of the alternative. The
goal of the agent is to increase the passenger satisfaction, and thus it would like
the passenger to believe that the price of the alternative is higher than the price
of the shared-ride as much as possible. We use the standard solution concept of
Perfect Bayesian Equilibrium (PBE) [23] and show that a rational agent must
reveal all of the information regarding the price of the possible alternative to the
passenger.

Interacting with humans and satisfying their expectations is a very com-
plex task. Research into humans’ behavior has found that people often deviate
from what is thought to be the rational behavior, since they are affected by a
variety of (sometimes conflicting) factors: a lack of knowledge of one’s own pref-
erences, framing effects, the interplay between emotion and cognition, future
discounting, anchoring and many other effects [5,14,33,49]. Therefore, algorith-
mic approaches that use a pure theoretically analytic objective often perform
poorly with real humans [6,37,43]. We thus develop an Automatic eXplainer for
Increasing Satisfaction (AXIS) agent, that when given a shared-ride along with
its possible alternatives selects the explanations that are most likely to increase
user satisfaction.

For example, consider again the setting in which a shared-ride takes 20 min
and costs $10. The passenger could have taken a private taxi that would have
taken 15 min, but would have cost $20. Alternatively, the passenger could have
used public transportation. Such a ride would have taken 30 min, but would
have cost only $5. A human passenger may be more satisfied from the shared-
ride if she is told that a private taxi would have cost her 100% more. Another
reasonable explanation is that a public transportation would have taken her
10 min longer. It may be even better to provide both explanations. However,
providing an explanation that public transportation would have cost 50% less
than the shared-ride is less likely to increase her satisfaction. Indeed, finding the
most appropriate explanation depends on the specific parameters of the scenario.
For example, if public transportation still costs $5 but the shared ride costs only
$6, providing an explanation that public transportation would have cost only $1
less than the shared-ride may now become an appropriate explanation.

For developing the AXIS agent we utilize the following approach. We collect
data from human subjects on which explanations they believe are most suitable
for different scenarios. AXIS then uses a neural network to generalize this data in
order to provide appropriate explanations for any given scenario. Using feedback
from humans we show that AXIS outperforms the PBE agent and an agent that
randomly chooses explanations. That is, human subjects that were faced with
shared-ride scenarios, were more satisfied from the ride given the explanations
selected by AXIS, than by the same ride when shown all explanations and when
the explanations were randomly selected.

The contributions of this paper are threefold:

– The paper introduces the problem of automatic selection of explanations in
the ridesharing domain, for increasing user satisfaction. The set of explana-
tions consists of alternative modes of transportation.
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– We model the explanation selection problem as a signaling game and deter-
mine the unique set of Perfect Bayesian Equilibria (PBE).

– We develop the AXIS agent, which learns from how people choose appropriate
explanations, and show that it outperforms the PBE agent an agent that
randomly chooses explanations, in terms of user satisfaction.

2 Related Work

Most work on ridesharing has focused on the assignment of passengers to vehicles.
See the comprehensive surveys by Parragh et al. [40,41], and a recent survey by
Psaraftis et al. [44]. In particular, the dial-a-ride problem (DARP) is traditionally
distinguished from other problems of ridesharing since transportation cost and
user inconvenience must be weighed against each other in order to provide an
appropriate solution [18]. Therefore, the DARP typically includes more quality
constraints that aim at capturing the user’s inconvenience. We refer to a recent
survey on DARP by Molenbruch et al. [34], which also makes this distinction.
In recent years there is an increasing body of works that concentrate on the
passenger’s satisfaction during the assignment of passengers to vehicles [30,32,
45]. Similar to these works we are interested in the satisfaction of the passenger,
but instead of developing assignment algorithms (e.g., [10]), we emphasize the
importance of explanations of a given assignment.

A domain closely related to ridesharing is car-pooling. In this domain, ordi-
nary drivers, may opt to take an additional passenger on their way to a shared
destination. The common setting of car-pooling is within a long-term commit-
ment between people to travel together for a particular purpose, where rideshar-
ing is focused on single, non-recurring trips. Indeed, several works investigated
car-pooling that can be established on a short-notice, and they refer to this
problem as ridesharing [2]. In this paper we focus on ridesharing since it seems
that our explanations regarding the alternative modes of transportation are more
suitable for this domain (even though they might be also helpful for car-pooling).

In our work we build an agent that attempts to influence the attitude of
the user towards ridesharing. Our agent is thus a form of persuasive technology
[38]. Persuasion of humans by computers or technology has raised great inter-
est in the literature. In his book [22], Fogg surveyed many technologies to be
successful. One example of such a persuasion technology (pg. 50) is bicycle con-
nected to a TV; as one pedals at a higher rate, the image on the TV becomes
clearer, encouraging humans to exercise at higher rates. Another example is the
Banana-Rama slot machine, which has characters that celebrate every time the
gambler wins. Overall, Fogg describes 40 persuasive strategies. Other social sci-
entists proposed various classes of persuasive strategies: Kellermann and Tim
provided over 100 groups [26], and Cialdini proposed six principles of influence
[17]. More specifically, Anagnostopoulou et al. [4] survey persuasive technologies
for sustainable mobility, some of which consider ridesharing. The methods men-
tioned by Anagnostopoulou et al. include several persuasive strategies such as
self-monitoring, challenges & goal setting, social comparison, gamification, tai-
loring, suggestions and rewards. Overall, unlike most of the works on persuasive
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technology, our approach is to selectively provide information regarding alterna-
tive options. This information aims at increasing the user satisfaction from her
action, in order to change her attitude towards the service.

There are other works in which an agent provides information to a human
user (in the context of the roads network) for different purposes. For example,
Azaria et al. [6–8] develop agents that provide information or advice to a human
user in order to convince her to take a certain route. Bilgic and Mooney [9]
present methods for explaining the decisions of a recommendation system to
increase the user satisfaction. In their context, user satisfaction is interpreted
only as an accurate estimation of the item quality.

Explainable AI (XAI) is another domain related to our work [16,19,24]. In
a typical XAI setting, the goal is to explain the output of the AI system to
a human. This explanation is important for allowing the human to trust the
system, better understand, and to allow transparency of the system’s output
[1]. Other XAI systems are designed to provide explanations, comprehensible
by humans, for legal or ethical reasons [20]. For example, an AI system for the
medical domain might be required to explain its choice for recommending the
prescription of a specific drug [25]. Despite the fact that our agent is required to
provide explanations to a human, our work does not belong to the XAI settings.
In our work the explanations do not attempt to explain the output of the system
to a passenger but to provide additional information that is likely to increase
the user’s satisfaction from the system. Therefore, our work can be seen as
one of the first instances of x-MASE [29], explainable systems for multi-agent
environments.

3 The PBE Agent

We model our setting with the following signaling game. We assume that there is
a given random variable X with a prior probability distribution over the possible
prices of a given alternative mode of transportation. The possible values of X
are bounded within the range [min,max]1.

The game is composed of three players: nature, player 1 (agent) and player 2
(passenger). It is assumed that both players are familiar with the prior distribu-
tion over X. Nature randomly chooses a number x according to the distribution
over X. The agent observes the number x and her possible action, denoted a1, is
either ϕ (quiet) or x (say). That is, we assume that the agent may not provide
false information. This is a reasonable assumption, since providing false informa-
tion is usually prohibited by the law, or may harm the agent’s reputation. The
passenger observes the agent’s action and her action, denoted a2, is any number
in the range [min,max]. The passenger’s action essentially means setting her
estimate about the price of the alternative. In our setting the agent would like
the passenger to think that the price of the alternative is as high as possible,

1 Without loss of generality, we assume that Pr(X = min) > 0 for a discrete distri-
bution, and FX(min + ε) > 0 for a continuous distribution, for every ε > 0.
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while the passenger would like to know the real price. Therefore, we set the util-
ity for the agent to a2 and the utility of the passenger to −(a2 − x)2. Note that
we did not define the utility of the passenger to be simply −|a2 − x|, since we
want the utility to highly penalize a large deviation from the true value.

We first note that if the agent plays a1 �= ϕ then the passenger knows that
a1 is nature’s choice. Thus, a rational passenger would play a2 = a1. On the
other hand, if the agent plays a1 = ϕ then the passenger would have some belief
about the real price, which can be the original distribution of nature, or any
other distribution. We show that the passenger’s best response is to play the
expectation of this belief. Formally,

Lemma 1. Assume that the agent plays a1 = ϕ, and let Y be a belief over
x. That is, Y is a random variable with a distribution over [min,max]. Then,
argmaxa2

E[−(a2 − Y )2] = E[Y ].

Proof. Instead of maximizing E[−(a2 − Y )2] we can minimize E[(a2 − Y )2]. In
addition, E[(a2−Y )2] = E[(a2)2]−2E[a2Y ]+E[Y 2] = (a2)2−2a2E[Y ]+E[Y 2].
By differentiating we get that

d

da2

(
(a2)2 − 2a2E[Y ] + E[Y 2]

)
= 2a2 − 2E[Y ].

The derivative is 0 when a2 = E[Y ] and the second derivative is positive; this
entails that

argmin
a2

(
(a2)2 − 2a2E[Y ] + E[Y 2]

)
= E[Y ]

��
Now, informally, if nature chooses a “high” value of x, the agent would like

to disclose this value by playing a1 = x. One may think that if nature chooses
a “low” value of x, the agent would like to hide this value by playing a1 = ϕ.
However, since the user adjusts her belief accordingly, she will play E[X|a1 = ϕ].
Therefore, it would be more beneficial for the agent to reveal also low values
that are greater than E[X|a1 = ϕ], which, in turn, will further reduce the new
E[X|a1 = ϕ]. Indeed, Theorem 1 shows that a rational agent should always
disclose the true value of x, unless x = min. If x = min the agent can play any
action, i.e., ϕ, min or any mixture of ϕ and min. We begin by applying the
definition of PBE to our signaling game.

Definition 1. A tuple of strategies and a belief, (σ1, σ2, μ2), is said to be a
perfect Bayesian equilibrium in our setting if the following hold:

1. The strategy of player 1 is a best response strategy. That is, given σ2 and x,
deviating from σ1 does not increase player 1’s utility.

2. The strategy of player 2 is a best response strategy. That is, given a1, deviating
from σ2 does not increase player 2’s expected utility according to her belief.

3. μ2 is a consistent belief. That is, μ2 is a distribution over x given a1, which
is consistent with σ1 (following Bayes rule, where appropriate).
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Theorem 1. A tuple of strategies and a belief, (σ1, σ2, μ2), is a PBE if and only
if:

– σ1(x) =

{
x : x > min

anything : x = min

– σ2(a1) =

{
a1 : a1 �= ϕ

min : a1 = ϕ

– μ2(x = a1|a1 �= ϕ) = 1 and μ2(x = min|a1 = ϕ) = 1.

Proof. (⇐) Such a tuple is a PBE: σ1 is a best response strategy, since the utility
of player 1 is x if a1 = x and min if a1 = ϕ. Thus, playing a1 = x is a weakly
dominating strategy. σ2 is a best response strategy, since it is the expected value
of the belief μ2, and thus it is a best response according to Lemma 1. Finally,
μ2 is consistent: If a1 = ϕ and according to σ1 player 1 plays ϕ with some
probability (greater than 0), then according to Bayes rule μ2(x = min|a1 =
ϕ) = 1. Otherwise, Bayes rule cannot be applied (and it is thus not required). If
a1 �= ϕ, then by definition x = a1, and thus μ2(x = a1|a1 �= ϕ) = 1.

(⇒) Let (σ1, σ2, μ2) be a PBE. It holds that μ2(x = a1|a1 �= ϕ) = 1 by Bayes
rule, implying that if a1 �= ϕ, σ2(a1) = a1. Therefore, when a1 = x the utility of
player 1 is x.

We now show that σ2(a1 = ϕ) = min. Assume by contradiction that σ2(a1 =
ϕ) �= min (or p(σ2(a1 = ϕ) = min) < 1), then E[σ2(ϕ)] = c > min. We now
imply the strategy of player 1. There are three possible cases: if x > c, then
a1 = x is a strictly dominating strategy. If x < c, then a1 = ϕ is a strictly
dominating strategy. If x = c, there is no advantage for either playing ϕ or x;
both options give player 1 a utility of c, and thus she may use any strategy, i.e.:

σ1(x) =

⎧
⎪⎨

⎪⎩

x : x > c

ϕ : x < c

anything : x = c.

Given this strategy, we need to apply Bayes rule to derive μ2(x|a1 = ϕ). By
σ1, it is possible that a1 = ϕ only if x ≤ c. That is, μ2(x > c|a1 = ϕ) = 0
and μ2(x ≤ c|a1 = ϕ) = 1. Therefore, the expected value of the belief,
c′ = E[μ2(x|a1 = ϕ)], and according to Lemma1, σ2(ϕ) = c′. However,
c′ = E[μ2(x|a1 = ϕ)] ≤ E[x|x ≤ c] which is less than c, since c > min. That is,
E[σ2(ϕ)] = c′ < c, which is a contradiction. Therefore, the strategy for player 2
in every PBE is determined. In addition, since σ2(ϕ) = E[μ2(x|a1 = ϕ)] accord-
ing to Lemma 1, then μ2(x|a1 = ϕ) = min, and the belief of player 2 in every
PBE is also determined.

We end the proof by showing that for x > min, σ1(x) = x. Since σ2 is
determined, the utility of player 1 is min if a1 = ϕ and x if a1 = x. Therefore,
when x > min, playing a1 = x is a strictly dominating strategy. ��
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The provided analysis can be applied to any alternative mode of transporta-
tion and to any type of price (e.g. travel-time or cost). We thus conclude that
the PBE agent must provide all of the possible explanations.

4 The AXIS Agent

The analysis in the previous section is theoretical in nature. However, several
studies have shown that algorithmic approaches that use a pure theoretically
analytic objective often perform poorly with real humans. Indeed, we conjecture
that an agent that selects a subset of explanations for a given scenario will per-
form better than the PBE agent. In this section we introduce our Automatic
eXplainer for Increasing Satisfaction (AXIS) agent. The AXIS agent has a set
of possible explanations, and the agent needs to choose the most appropriate
explanations for each scenario. Note that we do not limit the number of expla-
nations to present for each scenario, and thus AXIS needs also to choose how
many explanations to present. AXIS was built in 3 stages.

First, an initial set of possible explanations needs to be defined. We thus con-
sider the following possible classes of factors of an explanation. Each explanation
is a combination of one factor from each class:

1. Mode of alternative transportation: a private taxi ride or public transporta-
tion.

2. Comparison criterion: time or cost.
3. Visualization of the difference: absolute or relative difference.
4. Anchoring: the shared ride or the alternative mode of transportation perspec-

tive.

For example, a possible explanation would consist of a private taxi for class 1,
cost for class 2, relative for class 3, and an alternative mode of transportation
perspective for class 4. That is, the explanation would be “a private taxi would
have cost 50% more than a shared ride”. Another possible explanation would
consist of public transportation for class 1, time for class 2, absolute for class 3,
and a shared ride perspective for class 4. That is, the explanation would be “the
shared ride saved 10 min over public transportation”. Overall, there are 24 = 16
possible combinations. In addition, we added an explanation regarding the saving
of CO2 emission of the shared ride, so there will be an alternative explanation
for the case where the other options are not reasonable. Note that the first two
classes determine which information is given to the passenger, while the later
two classes determine how the information is presented. We denote each possible
combination of choosing form the first two classes as a information setting. We
denote each possible combination of choosing form the latter two classes as a
presentation setting.
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Presenting all 17 possible explanations with the additional option of “none
of the above” requires a lot of effort from the human subjects to choose the
most appropriate option for each scenario. Thus, in the second stage we col-
lected data from human subjects regarding the most appropriate explanations,
in order to build a limited subset of explanations. Recall that there are 4 pos-
sible information settings and 4 possible presentation settings. We selected for
each information setting the corresponding presentation setting that was chosen
(in total) by the largest number of people. We also selected the second most
chosen presentation setting for the information setting that was chosen by the
largest number of people. Adding the explanation regarding the CO2 emissions
we ended with 6 possible explanations.

In the final stage we collected again data from people, but we presented
only the 6 explanation to choose from. This data was used by AXIS to learn
which explanations are appropriate for each scenario. AXIS receives the following
7 features as an input: the cost and time of the shared ride, the differences
between the cost and time of the shared ride and the alternatives (i.e., the
private ride and the public transportation), and the amount of CO2 emission
saved when compared to a private ride. AXIS uses a neural network with two
hidden layers, one with 8 neurons and the other one with 7 neurons, and the
logistic activation function (implemented using Scikit-learn [42]). The number
of neurons and hidden layers was determined based on the performance of the
network. AXIS used 10% of the input as a validation set (used for early stopping)
and 40% as the test set. AXIS predicts which explanations were selected by the
humans (and which explanations were not selected) for any given scenario.

5 Experimental Design

In this section we describe the design of our experiments. Since AXIS generates
explanations for a given assignment of passengers to vehicles, we need to generate
assignments as an input to AXIS. To generate the assignments we first need a
data-set of ride requests.

To generate the ride requests we use the New York city taxi trip data-set 2,
which was also used by other works that evaluate ridesharing algorithms (see
for example, [11,31]). We use the data-set from 2016, since it contains the exact
GPS locations for every ride.

We note that the data-set contains requests for taxi rides, but it does not con-
tain a data regarding shared-rides. We thus need to generate assignments of pas-
sengers to taxis, based on the requests from the data-set. Now, if the assignments
are randomly generated, it may be hard to provide reasonable explanations, and
thus the evaluation of AXIS in these setting is problematic. We thus concentrate
on requests that depart from a single origin but have different destinations, since

2 https://data.cityofnewyork.us/Transportation/2016-Green-Taxi-Trip-Data/hvrh-
b6nb.

https://data.cityofnewyork.us/Transportation/2016-Green-Taxi-Trip-Data/hvrh-b6nb
https://data.cityofnewyork.us/Transportation/2016-Green-Taxi-Trip-Data/hvrh-b6nb
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a brute force algorithm can find the optimal assignment of passengers to taxis
in this setting.

We use the following brute force assignment algorithm. The algorithm
receives 12 passengers and outputs the assignment of each passenger to vehi-
cle that minimizes the overall travel distance. We assume that every vehicle can
hold up-to four passengers. The brute force assignment algorithm recursively
considers all options to partition the group of 12 passengers to subsets of up to
four passengers. We note that there are 3, 305, 017 such possible partitions. The
algorithm then solves the Travel Salesman Problem (TSP) in each group, by
exhaustive search, to find the cheapest assignment. Solving the TSP problem on
4 destinations (or less) is possible using exhaustive search since there are only
4! = 24 combinations. The shortest path between each combination is solved
using a shortest distance matrix between all locations. In order to compute this
matrix we downloaded the graph that represents the area of New York from
Open Street Map (using OSMnx [12]), and ran the Floyd-Warshall’s algorithm.

We set the origin location to JFK Station, Sutphin Blvd-Archer Av, and the
departing time to 11:00am. See Fig. 1 where the green location is the origin, and
the blue locations are the destinations.

Fig. 1. A map depicting the origin (in green) and destinations (in blue) of all rides
considered. (Color figure online)

In order to calculate the duration of the rides we use Google Maps (through
Google Maps API). Specifically, the duration of the private taxi ride was
obtained using “driving” mode, and the duration of the public transportation
was obtained using “transit” mode. The duration of the shared-ride was obtained
using “driving” mode with the last passenger’s destination as the final destina-
tion of the ride and the destinations of the other passengers as way-points. The
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duration for a specific passenger was determined by using the time required to
reach her associated way-point.

In order to calculate the cost of the private ride we use Taxi Fare Finder
(through their API)3. The cost for public transportation was calculated by the
number of buses required (as obtained through Google Maps API), multiplied
by $2.5 (the bus fare). The cost for the shared-ride was obtained from Taxi Fare
Finder. Since this service does not support a ride with way-points, we obtained
the cost of multiple taxi rides, but we included the base price only once. Note
that this is the total cost of the shared-ride. The cost for a specific passenger
was determined by the proportional sharing pricing function [21], which works
as follows. Let cpi

be the cost of a private ride for passenger i, and let totals be
the total cost of the shared ride. In addition, let f = totals∑

i cpi
. The cost for each

passenger is thus f · cpi.
We ran 4 experiments in total. Two experiments were used to compose AXIS

(see Sect. 4), and the third and fourth experiments compared the performance
of AXIS with that of non-data-driven agents (see below). All experiments used
the Mechanical Turk platform, a crowd-sourcing platform that is widely used
for running experiments with human subjects [3,39]. Unfortunately, since par-
ticipation is anonymous and linked to monetary incentives, experiments on a
crowd-sourcing platform can attract participants who do not fully engage in the
requested tasks [48]. Therefore, the subjects were required to have at least 99%
acceptance rate and were required to have previously completed at least 500
Mechanical Turk Tasks (HITs). In addition, we added an attention check ques-
tion for each experiment, which can be found in the full version of the paper [50].

In the first two experiments, which were designed for AXIS to learn what
people believe are good explanations, the subjects were given several scenarios
for a shared ride. The subjects were told that they are representatives of a
ride sharing service, and that they need to select a set of explanations that
they believe will increase the customer’s satisfaction. Each scenario consists of
a shared-ride with a given duration and cost.

In the third experiment we evaluate the performance of AXIS against the
PBE agent. The subjects were given 2 scenarios. Each scenario consists of a
shared-ride with a given duration and cost and it also contains either the expla-
nations that are chosen by AXIS or the information that the PBE agent provides:
the cost and duration a private ride would take, and the cost and the duration
that public transportation would have taken. The subjects were asked to rank
their satisfaction from each ride on a scale from 1 to 7.

In the forth experiment we evaluate the performance of AXIS against a ran-
dom baseline agent. The random explanations were chosen as follows: first, a
number between 1 and 4 was uniformly sampled. This number determined how
many explanations will be given by the random agent. This range was cho-
sen since over 93% of the subjects selected between 1 and 4 explanations in
the second experiment. Recall that there are 4 classes of factors that define an
explanation, where the fourth class is the anchoring perspective (see Sect. 4).

3 https://www.taxifarefinder.com/.

https://www.taxifarefinder.com/
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The random agent sampled explanations uniformly, but it did not present two
explanations that differ only by their anchoring perspective. The subjects were
again given 2 scenarios. Each scenario consists of a shared-ride with a given
duration and cost and it also contains either the explanations that are chosen by
AXIS or the explanations selected by the random agent. The subjects were asked
to rank their satisfaction from each ride. The exact wording of the instructions
for the experiments can be found in the full version of the paper [50].

953 subjects participated in total, all from the USA. The number of subjects
in each experiment and the number of scenarios appear in Table 1. Tables 2 and
3 include additional demographic information on the subjects in each of the
experiments. The average age of the subjects was 39.

Table 1. Number of subjects and scenarios in each of the experiments.

#1 #2 #3 #4 Total

Number of subjects 343 180 156 274 953

Scenarios per subject 2 4 2 2 –

Total scenarios 686 720 312 548 3266

Table 2. Gender distribution for each of the experiments.

#1 #2 #3 #4 Total

Male 157 66 52 117 392

Female 183 109 104 153 549

Other or refused 3 5 0 4 12

Table 3. Education level for each of the experiments.

#1 #2 #3 #4 Total

High-school 72 39 38 80 229

Bachelor 183 86 84 131 484

Master 60 29 37 46 172

PhD 15 2 0 10 27

Trade-school 8 4 5 10 27

Refused or did not respond 5 3 0 6 14
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Fig. 2. The percent of scenarios that every explanation was selected in the first exper-
iment. The explanations marked in green were selected for the second experiment.
(Color figure online)

6 Results

Recall that the first experiment was designed to select the most appropriate
explanations (out of the initial 17 possible explanations). The results of this
experiment are depicted in Fig. 2. The x-axis describes the possible explanations
according to the 4 classes. Specifically, the factor from the anchoring class is
denoted by s-p or p-s; s-p means that the explanation is from the shared-ride
perspective, while p-s means that it is from the alternative (private/public) mode
of transportation. The factor from the comparison criterion class is denoted by
Δ or %; Δ means that the explanation presents an absolute difference while %
means that a relative difference is presented. We chose 6 explanations for the
next experiment, which are marked in green.

As depicted by Fig. 2, the subjects chose explanations that compare the ride
with a private taxi more often than those comparing the ride with public trans-
portation. We believe that this is because from a human perspective a shared-ride
resembles a private taxi more than public transportation. Furthermore, when
comparing with a private taxi, the subjects preferred to compare the shared-ride
with the cost of a private taxi, while when comparing to public transportation,
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Fig. 3. The percent of scenarios that every explanation was selected in the second
experiment. The obtained data-set was used to train AXIS.

the subjects preferred to compare it with the travel time. This is expected, since
the travel time by a private taxi is less than the travel time by a shared ride, so
comparing the travel time to a private taxi is less likely to increase user satis-
faction. We also notice that with absolute difference the subjects preferred the
shared ride perspective, while with relative difference the subjects preferred the
alternative mode of transportation perspective. We conjecture that this is due to
the higher percentages when using the alternative mode prospective. For exam-
ple, if the shared ride saves 20% of the cost when compared to a private ride,
the subjects preferred the explanation that a private ride costs 25% more.

The second experiment was designed to collect data from humans on the
most appropriate explanations (out of the 6 chosen explanations) for each sce-
nario. The results are depicted in Fig. 3. This data was used to train AXIS.
The accuracy of the neural network on the test-set is 74.9%. That is, the model
correctly predicts whether to provide a given explanation in a given scenario in
almost 75% of the cases.

The third experiment was designed to evaluate AXIS against the PBE agent;
the results are depicted in Fig. 4. AXIS outperforms the PBE agent; the differ-
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ence is statistically significant (p < 10−5), using the student t-test. We note that
achieving such a difference is non-trivial since the ride scenarios are identical
and only differ by the information that is provided to the user.

The forth experiment was designed to evaluate AXIS against the random
baseline agent; the results are depicted in Fig. 4. AXIS outperforms the random
agent; the difference is statistically significant (p < 0.001), using the student
t-test. We note that AXIS and the random agent provided a similar number of
explanations on average (2.551 and 2.51, respectively). That is, AXIS performed
well not because of the number of explanations it provided, but since it provided
appropriate explanations for the given scenarios.

We conclude this section by showing an example of a ride scenario presented
to some of the subjects, along with the information provided by the PBE agent,
and the explanations selected by the random agent and by AXIS. In this scenario
the subject is assumed to travel by a shared ride from JFK Station to 102-3 188th
St, Jamaica, NY. The shared ride took 13 min and cost $7.53. The PBE agent
provided the following information:

– “A private ride would have cost $13.83 and would have taken 12 min”.
– “Public transportation costs $2.5 and would have taken 26 min”.

The random agent provided the following explanations:

– “A private taxi would have cost $6.3 more”.
– “A ride by public transportation would have saved you only $5.03”.

Fig. 4. A comparison between the performance of AXIS, the PBE agent and the ran-
dom agent. The bars indicate the 95% confidence interval. AXIS significantly outper-
formed both baseline agents (p < 0.001).
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Instead, AXIS selected the following explanations:

– “The shared ride had saved you $6.3 over a private taxi”.
– “A private taxi would have cost 83% more”.
– “The shared ride saved you 4 min over public transportation”.

Clearly, the explanations provided by AXIS seem much more compelling.

7 Conclusions and Future Work

In this paper we took a first step towards the development of agents that provide
explanations in a multi-agent system with a goal of increasing user satisfaction.
We first modeled the explanation selection problem as a signaling game and
determined the unique set of Perfect Bayesian Equilibria (PBE). We then pre-
sented AXIS, an agent that, when given a shared-ride along with its possible
alternatives, selects the explanations that are most likely to increase user satis-
faction. We ran four experiments with humans. The first experiment was used
to narrow the set of possible explanations, the second experiment collected data
for the neural network to train on, the third experiment was used to evaluate the
performance of AXIS against that of the PBE agent, and the fourth experiment
was used to evaluate the performance of AXIS against that of an agent that
randomly chooses explanations. We showed that AXIS outperforms the other
agents in terms of user satisfaction.

In future work we will consider natural language generation methods for
generating explanations that are likely to increase user satisfaction. We also plan
to extend the set of possible explanations, and to implement user modeling in
order to provide explanations that are appropriate not only for a given scenario
but also for a given specific user.
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Abstract. The Coalition Formation with Spatial and Temporal con-
straints Problem (CFSTP) is a multi-agent task allocation problem in
which few agents have to perform many tasks, each with its deadline
and workload. To maximize the number of completed tasks, the agents
need to cooperate by forming, disbanding and reforming coalitions. The
original mathematical programming formulation of the CFSTP is dif-
ficult to implement, since it is lengthy and based on the problem-
atic Big-M method. In this paper, we propose a compact and easy-
to-implement formulation. Moreover, we design D-CTS, a distributed
version of the state-of-the-art CFSTP algorithm. Using public London
Fire Brigade records, we create a dataset with 347588 tasks and a test
framework that simulates the mobilization of firefighters in dynamic envi-
ronments. In problems with up to 150 agents and 3000 tasks, compared
to DSA-SDP, a state-of-the-art distributed algorithm, D-CTS completes
3.79%± [42.22%, 1.96%] more tasks, and is one order of magnitude more
efficient in terms of communication overhead and time complexity. D-
CTS sets the first large-scale, dynamic and distributed CFSTP bench-
mark.

Keywords: Task allocation · Coalition formation · Distributed
constraint optimization problem · Large-scale · Dynamic · Disaster
response

1 Introduction

Consider the situation after a disaster, either natural, such as Hurricane Maria
in 2017, or man-made, such as the Beirut explosion in 2020. A complex response
phase takes place, which includes actions such as extinguishing fires, clearing the
streets and evacuating civilians. If the number of first responders is limited, they
need to cooperate to act as fast as possible, because any delay can lead to further
tragedy and destruction [1]. Cooperation is also necessary when tasks require
combined skills. For example, to extract survivors from the rubble of a collapsed
building, rescue robots detect life signs with their sensors, firefighters dig and
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paramedics load the injured into ambulances. In addition, at any moment new
fires could break out or other buildings could collapse, therefore first responders
must be ready to deploy to other areas.

Disaster response is a fundamental research topic for multi-agent and multi-
robot systems [17,29]. Within this field, we are interested in the Coalition For-
mation with Spatial and Temporal constraints Problem (CFSTP) [5,42]. In the
CFSTP, tasks (e.g., save victims or put out fires) have to be assigned to agents
(e.g., ambulances or fire brigades). The assignment is determined by the spatial
distribution of the tasks in the disaster area, the time needed to reach them,
the workload they require (e.g., how large a fire is) and their deadlines (e.g.,
estimated time left before victims perish). In addition to these constraints, the
number of agents may be much smaller than the number of tasks, hence the
agents need to cooperate with each other by forming, disbanding and reforming
coalitions. A coalition is a short-lived and flat organization of agents that per-
forms tasks more effectively or quickly than single agents [5]. The objective of
the CFSTP is to define which tasks (e.g., sites with the most victims and the
strongest fires) to allocate to which coalitions (e.g., the fastest ambulances and
fire trucks with the largest water tanks), in order to complete as many tasks as
possible.

Despite having similarities with classic problems such as Generalized Assign-
ment Problem [44] and Job-Shop Scheduling [4], the importance of the CFSTP
lies in the fact that it was the first generalization of the Team Orienteering Prob-
lem [42, Sect. 4.2] to consider coalition formation. For this reason, it has been
applied in contexts such as human-agent collectives [43], multi-UAV exploration
[2] and law enforcement [30].

There are two main issues in the CFSTP literature. First, its original math-
ematical programming formulation [42, Sect. 5] is based on 3 sets of binary
variables, 1 set of integer variables and 23 types of constraints, 8 of which use
the Big-M method. So many variables and constraints make implementation
difficult, while the Big-M method introduces a large penalty term that, if not
chosen carefully, leads to serious rounding errors and ill conditioning [11]. Sec-
ond, there is no algorithm that is simultaneously scalable, distributed and able
to solve the CFSTP in systems with a dynamic environment evolution1 (i.e.,
systems in which, at any time, agents can join in or leave, and new tasks can
appear) [10]. Below, we discuss this in detail.

The state-of-the-art CFSTP algorithm, Cluster-based Task Scheduling (CTS)
[5], transforms the CFSTP into a sequence of 1 − 1 task allocations. In other
words, instead of allocating each task to a coalition of agents, it forms coalitions
by clustering or grouping agents based on the closest and most urgent tasks. CTS
is anytime (i.e., it returns a partial solution if interrupted before completion),
has a polynomial time complexity and can be used in dynamic environments.
Its main limitation is being a centralized algorithm. In real-world domains such
as disaster response, this leads to three major issues. First, a centralized solver

1 Also referred to as open systems [13]. For brevity, we call them dynamic environ-
ments.
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is a single point of failure that makes the system fragile and not robust to
unexpected events, such as malfunctions or communication disturbances between
agents far apart [35]. Second, if the agents have limited computational resources
and the problem is not small, electing a centralized solver might not be possible,
while distributing computations always improves scalability. Third, a centralized
approach might not be as effective as a distributed approach, given that the
situation can evolve rapidly and there could be significant communication delays
[27].

To date, only Ramchurn et al. [41] have proposed a dynamic and dis-
tributed solution to the CFSTP. They reduced it to a Dynamic Distributed Con-
straint Optimization Problem (DynDCOP) [10] and solved it with Fast Max-Sum
(FMS), a variant of the Max-Sum algorithm [9] specialized for task allocation.
However, unlike CTS, FMS is not guaranteed to convergence, it is not anytime,
and its runtime is exponential in the number of agents. Pujol-Gonzalez et al. [37]
proposed another Max-Sum variant called Binary Max-Sum (BinaryMS), which,
compared to FMS, lowers the runtime to polynomial and achieves the same solu-
tion quality. Nonetheless, even BinaryMS is not guaranteed to converge and not
anytime. In addition, it requires a preprocessing phase with exponential run-
time to transform the problem constraints into binary form, which makes it not
suitable for dynamic environments. Against this background, we propose the
following contributions:

1. A novel mathematical programming formulation of the CFSTP, based only
on binary variables and 5 types of constraints, which do not use the Big-M
method.

2. D-CTS, a distributed version of CTS that preserves its properties, namely
being anytime, scalable and guaranteed to convergence [5].

3. The first large-scale and dynamic CFSTP test framework, based on real-world
data published by the London Fire Brigade [22,23].

The rest of the paper is organized as follows. We begin with a discussion of
related work in Sect. 2, then we give our formulation of the CFSTP in Sect. 3 and
present D-CTS in Sect. 4. Finally, we evaluate D-CTS with our test framework
in Sect. 5 and conclude in Sect. 6.

2 Related Work

The CFSTP is NP-hard [42], while CTS is an incomplete or non-exact algorithm
with a search-based approach [5]. Since we reduce the CFSTP to a DynDCOP in
Sect. 4 and propose a realistic test framework in Sect. 5, we briefly recall incom-
plete search-based algorithms and realistic test frameworks, for both DCOPs
and DynDCOPs. For a more in-depth look, see [10,19].

2.1 Incomplete Search-Based Algorithms

Among the most popular incomplete search-based DCOP algorithms are MGM
[24] and DSA [53]. In MGM, each agent iteratively chooses its assignment based
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on the current neighbor assignments. DSA is an extension of MGM where, to
escape from local minima, assignments are chosen stochastically. Both algorithms
are efficient, and although they have no quality guarantees on the solutions
found, numerous studies have proven their efficacy in many domains. In partic-
ular, DSA is a touchstone for novel DCOP algorithms [10]. We use DSA-SDP
[54], the state-of-the-art DSA variant, as the baseline in our tests.

Other notable algorithms are k-optimal [34], SBDO [3] and GDBA [33]. The
class of k-optimal algorithms decomposes a DCOP into a set of subproblems,
each of which involves at most k agents. The solution process continues until no
subset of k or fewer agents can improve the global solution. These algorithms are
anytime and guaranteed to find a lower bound on the solution quality. However,
to eliminate conflicts between partial solutions, each agent may need to com-
municate with every other agent. Consequently, communication is not local, and
both time and space complexity are exponential. Such limitations are also present
in the variants proposed in [15,49]. SBDO is a DynDCOP algorithm in which
agents exchange arguments about partial solutions. More precisely, each agent
tries to send stronger arguments over time to influence its neighbors. Despite
being anytime, SBDO has an exponential runtime [10]. GDBA is an extension of
the Distributed Breakout Algorithm [51] aimed at solving DCOPs. It is not any-
time, but it can be made so by using the Anytime Local Search framework [54].
Moreover, it has polynomial space and time complexity. The results reported in
[26,54] suggest that GDBA has similar performance to DSA-SDP.

Dynamic environments pose a challenge to the DCOP research community
[19,20,35], to the extent that SBDO and FMS are the only incomplete DynD-
COP algorithms proposed to date [10].

2.2 Realistic Test Frameworks

Although the DCOP model can capture numerous real-world problems,
researchers usually perform their empirical evaluations on hard random prob-
lems or classic combinatorial problems, such as graph coloring and resource
allocation [10]. To the best of our knowledge, to date only the following works
have conducted tests based on real-world data. Mahesrawan et al. [25] considered
resource-constrained multiple-event scheduling problems occurring in office envi-
ronments. Junges and Bazzan [14] evaluated the performance of complete DCOP
algorithms in traffic light synchronization problems. Kim et al. [16] developed
heuristics for applying Max-Sum to problems based on the real-time sensor sys-
tem NetRad. Amador Nelke et al. [30] studied law enforcement problems inspired
by police logs. However, none of these test frameworks is as large as ours.

3 Problem Formulation

We formulate the CFSTP as a Binary Integer Program (BIP) [50]. After giv-
ing our definitions, we detail our decision variables, constraints and objective
function. For constraint programming formulations of the CFSTP, see [5,42].
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3.1 Definitions

Let V = {v1, . . . , vm} be a set of m tasks and A = {a1, . . . , an} be a set of n
agents. Let L be the finite set of all possible task and agent locations. Time is
denoted by t ∈ N, starting at t = 0, and agents travel or complete tasks with
a base time unit of 1. The time units needed by an agent to travel from one
location to another are given by the function ρ : A × L × L → N. Having A
in the domain of ρ allows to characterize different agent features (e.g., speed or
type). Let lv be the fixed location of task v, and let lta ∈ L be the location of
agent a at time t, where l0a is its initial location and is known a priori.

Task Demand. Each task v has a demand (γv, wv) such that γv is the deadline
of v, or the time until which agents can work on v [32], and wv ∈ R≥0 is
the workload of v, or the amount of work required to complete v [5]. We call
tmax = maxv∈V γv the maximum problem time.

Coalition and Coalition Value. A subset of agents C ⊆ A is called a coalition.
For each coalition and task there is a coalition value, given by the function
u : P (A) × V → R≥0, where P (A) is the power set of A. The value of u(C, v) is
the amount of work that coalition C does on task v in one time unit. In other
words, when C performs v, u(C, v) expresses how well the agents in C work
together, and the workload wv decreases by u(C, v) at each time.

3.2 Decision Variables

Similar to [42, Sect. 5], we use the following indicator variables:

∀v ∈ V, ∀t ≤ γv, ∀C ⊆ A, τv, t, C ∈ {0, 1} (1)
∀v ∈ V, δv ∈ {0, 1} (2)

where: τv, t, C = 1 if coalition C works on task v at time t, and 0 otherwise;
δv = 1 if task v is completed, and 0 otherwise. Specifying indicator variables for
individual agents is not necessary, since they can be inferred from Eq. 1.

3.3 Constraints

There are 3 types of constraints: structural, temporal and spatial.

Structural Constraints. At each time, at most one coalition can work on each
task:

∀v ∈ V, ∀t ≤ γv,
∑

C⊆A

τv, t, C ≤ 1 (3)
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Temporal Constraints. Tasks can be completed only by their deadlines:

∀v ∈ V, δv ≤ 1 (4)

∀v ∈ V,
∑

t≤γv

∑

C⊆A

u(C, v) · τv, t, C ≥ wv · δv (5)

Spatial Constraints. An agent cannot work on a task before reaching its
location. This identifies two cases: when an agent reaches a task from its initial
location, and when an agent moves from one task location to another. The first
case imposes that, for each task v, time t ≤ γv and coalition C, the variable
τv, t, C can be positive only if all agents in C can reach location lv at a time
t′ < t:

∀v ∈ V, ∀C ⊆ A, if λ = max
a∈C

ρ(a, l0a, lv) ≤ γv then
∑

t≤λ

τv, t, C = 0 (6)

λ is the maximum time at which an agent a ∈ C reaches lv, from its initial loca-
tion at time t = 0. Conditional constraints are usually formulated using auxiliary
variables or the Big-M method [50]. However, such approaches further enlarge
the mathematical program or can cause numerical issues (Sect. 1). Consequently,
in the preprocessing step necessary to create our BIP, we can implement Eq. 6
simply by excluding the variables that must be equal to zero.

The second case requires that if an agent cannot work on two tasks consec-
utively, then it can work on at most one:

∀v1, v2 ∈ V, ∀C1, C2 ⊆ A such that C1 ∩ C2 	= ∅,

∀t1 ≤γv1 , ∀t2 ≤ γv2 such that t1 + max
a∈C1∩C2

ρ(a, lv1 , lv2) ≥ t2,

τv1, t1,C1 + τv2, t2,C2 ≤ 1

(7)

Hence, coalition C2 can work on task v2 only if all agents in C1 ∩ C2 can reach
location lv2 by deadline γv2 . Eq. 7 also implies that an agent cannot work on
multiple tasks at the same time.

There are no synchronization constraints [32]. Thus, when a task v is allo-
cated to a coalition C, each agent a ∈ C starts working on v as soon as it
reaches its location, without waiting for the remaining agents. This means that
v is completed by a temporal sequence of subcoalitions of C: ∃S ⊆ P (C) such
that ∀C ′ ∈ S, ∃t ≤ γv, τv, t, C′ = 1, where P (C) is the power set of C.

3.4 Objective Function

Let τ be a solution, that is, a value assignment to all variables, which defines
the route and schedule of each agent. The objective is to find a solution that
maximizes the number of completed tasks:

arg max
τ

∑

v∈V

δv subject to Equations 1−7 (8)
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Both creating all decision variables (Sect. 3.2) and finding an optimal solution
exhaustively (Eq. 8) may require to list all L-tuples over P (A), where L =
|V | · tmax. This implies a worst-case time complexity of:

O

((
2|A|

)L)
= O

(
2|A|·|V |·tmax

)
(9)

Theorem 1. Equation 8 is equivalent to the original mathematical program of
the CFSTP [42, Sect. 5].

Proof sketch. Since we use the original objective function [42, Eq. 9], it suffices
to verify that our constraints imply the original ones [42, Eqs. 10–32] as follows.
Equations 4 and 5 imply [42, Eqs. 10 and 11]. Equation 3 implies [42, Eqs. 12
and 16]. We do not need [42, Eq. 13] because t ≤ γv for each τv, t, C (Eq. 1).
Equations 6 and 7, combined with the objective function, imply [42, Eqs. 14,
15, 17–19]. Equation 7 implies [42, Eqs. 20–22]. Equations 5–7 imply [42, Eqs.
25–30]. Equations 3 and 7 imply [42, Eq. 31]. Equation 6 implies [42, Eq. 32].�


Having significantly fewer constraints than the original, our BIP can be used
more effectively by exact algorithms based on branch-and-cut or branch-and-
price [47, Sect. 3.1.1]. A trivial way to solve the CFSTP would be to implement
Eq. 8 with solvers such as CPLEX or GLPK. Although this would guarantee
anytime and optimal solutions, it would also take exponential time to both create
and solve our BIP (Eq. 9). This limits this practice to offline contexts or very
small problems. For example, using CPLEX 20.1 with commodity hardware and
the test setup of [42], we can solve problems where |A| · |V | ≤ 50 in hours. With
bigger problems, the runtime increases rapidly to days.

Another major issue with centralized generation of optimal solutions is that,
in real-time domains such as disaster response, it can be computationally not fea-
sible (Sect. 1) or economically undesirable, especially when the problem changes
frequently [5]. For these reasons, the next section presents a scalable, dynamic
and distributed algorithm.

4 A Scalable, Dynamic and Distributed CFSTP
Algorithm

We reduce the CFSTP to a DynDCOP, then we show how CTS, the state-of-the-
art CFSTP algorithm [5], can solve it. We use the DynDCOP formalism because
it has proven largely capable of modeling disaster response problems [10].

4.1 Reduction of the CFSTP to a DynDCOP

Following [10], we formalize a DynDCOP as a sequence D = {Dt}t≤tmax
, where

each Dt = (At,Xt,Dt, F t) is a DCOP such that At ⊆ A and:

– Xt = {xt
1, . . . , x

t
k} is a set of k = |At| ≤ n variables, where xt

i is the task
performed by agent at

i ∈ At.
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– Dt = {Dt
1, . . . , D

t
k} is a set of k variable domains, such that xt

i ∈ Dt
i . A set

d = {d1, . . . , dk}, where di ∈ Dt
i , is called an assignment. Each di ∈ d is called

the i-th variable assignment and is the value assigned to variable xt
i.

– F t = {f t
1, . . . , f

t
h} is a set of h ≤ m functions, where f t

i represents the con-
straints on task vt

i . In particular, each f t
i : Dt

i1
× · · · × Dt

ihi
→ R≥0 assigns a

non-negative real cost to each possible assignment to the variables Xt
hi

⊆ Xt,
where hi ≤ h is the arity of f t

i .

The objective is to find an assignment that minimizes all costs:

∀t ≤ tmax, arg min
d∈Dt

∑

ft
i ∈F t

f t
i (di1 , . . . , dihi

) (10)

It is typically assumed that if xt
i is in the scope of f t

j , then agent at
i knows

f t
j [10, Sect. 4.2]. To reduce the CFSTP to a DynDCOP, we define At, Dt and

F t as follows. At time t, let At be the set of agents that are not working on nor
traveling to a task (i.e., free or idle agents [5]), and let V t

allocable be the set of
tasks that have not yet been completed. The domain of each variable xt

i is:

Dt
i =

{
v ∈ V t

allocable such that t + ρ(at
i, lat

i
, lv) ≤ γv

}
∪ {∅} (11)

where ∅ means that no task is allocated to agent at
i. Hence, At satisfies the

structural constraints, while Dt
i contains the tasks that at time t can be allocated

to at
i satisfying the spatial constraints (Sect. 3.3). Let τi ⊆ τ be a singleton

solution, that is, a solution to task vi. At time t, let τ t
i ⊆ τi be a singleton

solution corresponding to f t
i (di1 , . . . , dihi

), defined as follows. Each τvi, t, C ∈ τ t
i

is such that C is a subset of the agents that control the variables in the scope
of f t

i , while τvi, t, C = 1 if dihi
= vi, for each hi-th agent in C, and 0 otherwise.

To satisfy the temporal constraints (Sect. 3.3), each i-th function is defined as
follows:

f t
i (di1 , . . . , dihi

) = min
τ t
i , t′≤γvi

∑

s≤t′, τvi, s, C∈τ t
i

u(C, v) ≥ wv (12)

with the convention that f t
i (di1 , . . . , dihi

) = +∞ if vi cannot be completed by
deadline γv. Hence, the solution space of D satisfies all CFSTP constraints, while
minimizing all costs implies minimizing the time required to complete each task
(Eqs. 10 and 12), which implies maximizing the total number of completed tasks,
as required by the objective function of the CFSTP (Eq. 8).

4.2 Distributed CTS

At each time, CTS executes in sequence the following two phases [5]:

1. For each free agent a, associate a with an uncompleted task v such that v is
the closest to a and deadline γv is minimum.

2. For each uncompleted task v, allocate v to a coalition C such that |C| is
minimum and each agent a ∈ C has been associated with v in Phase 1.
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f 1

f 2

f 3

f 4

x 1

x 2

Fig. 1. The factor graph of a DCOP with 2 agents and 4 tasks. In our formulation, a
DCOP represents the state of a CFSTP at a certain time, in which circles are variables
of free agents, squares are cost functions of uncompleted tasks, and each edge connects
an agent to a task it can reach by its deadline.

To represent a DCOP, we use a factor graph [18,21], which decomposes the
problem into three parts: variable nodes, representing the variables; factor nodes,
representing the constraints; undirected edges between each factor node and the
variable nodes in its scope. As an example, Fig. 1 shows the factor graph of the
function F (X) = f1(x1) + f2(x1, x2) + f3(x1, x2) + f4(x2).

In a factor graph G, a solution is found by allowing nodes to exchange mes-
sages. Hence, to execute CTS on G, we have to define how the nodes communi-
cate and operate. Below, we present a communication protocol and algorithms
for both variable and factor nodes. Based on the well-established formalism of
Yokoo et al. [52], the nodes communicate in the following way:

– Node i can message node j only if i knows the address of j. In our context,
if xt

i is in the scope of f t
j , then xt

i knows the address of f t
j , and vice versa.

– Each node i has a message queue Qi, to which messages are delivered with a
finite delay.

– Node i can use the function receive() to dequeue a message from Qi, and
the function send(j, illoc force, [args]) to send a message to j. Node j
will receive a message in the format (sender, illoc force, [args]), where
sender is the identifier of node i, illoc force is its illocutionary force, and
[args] is an optional list of arguments. By illocutionary force, we mean either
an information or a command [48].

We assume that the node of each function is controlled by an agent in its
scope. Algorithm 1 presents the operation of variable node xt

i. If there is an
uncompleted task vt

j that can be allocated to free agent at
i (lines 1–3), then

variable node xt
i communicates to factor node f t

j the ability of at
i to work on

vt
j , also specifying the time at which it can reach and start working on it (lines

4–6). After that, it waits until it gets a reply from f t
j or a predetermined time

interval expires (lines 7–9). If it receives the approval of f t
j , then vt

j is allocated
to at

i (lines 10–11). At line 2, vt
j is chosen such that it is the closest to at

i and
γvt

j
is the shortest deadline [5]. Phase 1 is completed after that each xt

i executes
line 6.
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Algorithm 1: CTS node of variable xt
i

1 xt
i ← ∅ � initialize to idle

2 dj ← get task allocable to agent at
i at time t � [5, Algorithm 5]

3 if dj �= ∅ then
4 si ← time at which agent at

i can start working on task dj

5 f t
j ← factor node of dj

6 send(f t
j , assignable, si)

7 msg ← nil
8 while msg not received from f t

j or not time out do
9 msg ← receive()

10 if msg = (f t
j , allocate) then

11 xt
i ← dj

Algorithm 2: CTS node of factor f t
j

1 while not all neighbors sent an assignable message or not time out do
2 msg ← receive()

3 Πt
vj ← list of all assignable agents sorted by arrival time to vj

4 C∗ ← minimum coalition in Πt
vj that can complete vj by γv � Equation 12

5 for at
i ∈ C∗ do

6 send(xt
i, allocate)

7 Ct
vj ← all agents working on vj at time t

8 if Ct
vj �= ∅ then

9 wvj ← wvj − u(Ct
vj , vj)

Algorithm 2 presents the operation of factor node f t
j . The loop at lines 1–2 is

a synchronization step that allows f t
j to know which agents in its neighborhood

can work on vt
j . Lines 3–6 enacts Phase 2, while lines 7–9 update workload wvj

.
We call Distributed CTS (D-CTS) the union of Algorithms 1 and 2. The size

of each message is O(1), since it always contains a node address, a message flag
and an integer. At time t, each variable node xt

i sends at most 1 message (line
6 in Algorithm 1), while each factor node f t

j sends O(|A|) messages (lines 5–6
in Algorithm 2). Assuming that all tasks can be completed, the total number of
messages sent is O(|A| + |V | · |A|) = O(|V | · |A|).

The runtime of Algorithm 1 is O(|V |), because line 2 selects a task in the
neighborhood of an agent. The runtime of Algorithm 2 is O(|A| log |A|), due to
the sorting at line 3 [8]. Since both algorithms are executed up to tmax times,
the overall time complexity of D-CTS is the same as CTS [5, Eqs. 10 and 11]:

Ω (tmax · (|V | + |A| log |A|)) and O (tmax · |V | · |A| log |A|) (13)

where the lower bound represents the case in which the operations of each phase
are executed in parallel. The advantages of D-CTS are as follows:
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1. It is anytime, since it decomposes a CFSTP into a set of independent sub-
problems (Sect. 1). This property is not trivial to guarantee in distributed
systems [54], and is missing in main DCOP algorithms (e.g., ADOPT, DPOP,
OptAPO and Max-Sum [10, Table 4]).

2. It is self-stabilizing [10, Definition 6], being guaranteed to converge [5, The-
orem 1], and given that each agent can only work on a new task after com-
pleting the one to which it is currently assigned (Algorithm 1).

3. The phase-based design has two performance benefits. First, the algorithm
is not affected by the structure of factor graphs. For instance, in a cyclic
graph like the one in Fig. 1, where the same a > 1 tasks can be allocated
to the same b > 1 agents, inference-based DCOP algorithms (e.g., Max-Sum
and BinaryMS) in general are not guaranteed to converge, unless they are
augmented with specific techniques (e.g., damping [7] or ADVP [55]). Second,
the algorithm is robust to disruptions, that is, to the addition or removal of
nodes from a factor graph [41, Sect. 6.2]. Disruptions are typical of real-world
domains [5]. For instance, in disaster response, tasks are removed if some
victims have perished, and are added if new fires are discovered. Likewise,
new agents are added to reflect the availability of additional workforce, while
existing ones are removed when they deplete their resources or are unable to
continue due to sustained damages. Unlike D-CTS, the majority of DCOP
algorithms (e.g., Max-Sum and DPOP) cannot handle disruptions, unless
they are properly modified or extended (e.g., FMS and S-DPOP [10]). Hence,
besides being a DynDCOP algorithm, D-CTS can also cope with runtime
changes in a DCOP formulation.

4. Unlike most DCOP algorithms (e.g., ADOPT and DPOP), the communica-
tion overhead (i.e., the number of messages exchanged) is at most linear, and
each agent does not need to maintain an information graph of all other agents.

5. Finally, performance does not depend on any tuning parameters, as is the
case with other algorithms (e.g., DSA variants).

5 Empirical Evaluation in Dynamic Environments

We created a dataset2 with 347588 tasks using open records published by the
London Fire Brigade over a period of 11 years. Then, we wrote a test frame-
work in Java3 and compared D-CTS against DSA-SDP [54], a state-of-the-art
incomplete, synchronous and search-based DCOP algorithm.

We adapted DSA-SDP to solve our DynDCOP formulation (Sect. 4.1), which
decomposes the CFSTP into a sequence of independent subproblems. Hence,
although originally a DCOP algorithm, its performance is not penalized in our
test framework. We chose it as our baseline because, similarly to D-CTS, it has a
polynomial coordination overhead and is scalable (Sect. 2). We kept the param-
eters of [54] and ran |V t

allocable| iterations at each time t, since we found that,
in our test framework, running more iterations can only marginally improve the
2 https://zenodo.org/record/4728012.
3 https://zenodo.org/record/4764646.

https://zenodo.org/record/4728012
https://zenodo.org/record/4764646
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solution quality, while requiring a significant increase in communication overhead
and time complexity. Below, we detail our setup and discuss the results.

5.1 Setup

Let N and U denote the normal and uniform distribution, respectively. A test
configuration consists of the following parameters:

– Since there are currently 150 identical London fire engines in operation, |A| =
150 for each problem. All agents have the same speed, but each may perform
differently in different coalitions.

– |V | = |A| · k, where k ∈ N
+ and k ≤ 20. Thus, problems have up to 3000

tasks.
– Each task v is a fire or a special service, and its demand is defined by a record

dated between 1 January 2009 and 31 December 2020. More precisely, γv is the
attendance time (in seconds) of the firefighters, and since the median atten-
dance time in the whole dataset is about 5 minutes, we set wv ∼ U(10, 300)
to simulate wide ranging workloads.

– For each task-to-agent ratio |V |/|A|, the nodes of a problem are chosen in
chronological order. That is, the first problem always starts with record 1,
and if a problem stops at record q, then the following one will use records
q + 1 to q + 1 + |V |.

– The locations are latitude-longitude points, and the travel time ρ(a, l1, l2) is
given by the distance between locations l1 and l2 divided by the (fixed) speed
of agent a.

– In addition to task locations, L contains the locations of the 103 currently
active London fire stations. In each problem, each agent starts at a fire station
defined by the record of a task.

– To generate coalition values, we start by taking from [38, Sect. 4] the following
well-known distributions:
1. Normally Distributed Coalition Structures (NDCS): u(C, v) ∼ N (|C|,

4
√|C|).

2. Agent-based : each agent a has a value pa ∼ U(0, 10) representing its indi-
vidual performance and a value pC

a ∼ U(0, 2 · pa) representing its perfor-
mance in coalition C. The value of a coalition is the sum of the values of
its members: u(C, v) =

∑
a∈C pC

a .
Then, we decrease each μv = u(C, v) by r ∼ U(μv/10, μv/4) with probability
γv/(tmax +1), and by q ∼ U(μv/10, μv/4) with probability |C|/(|A|+1). The
perturbation r simulates real-time domains, where the earlier the deadline for
a task, the higher the reward [45]. The perturbation q simulates situations
where the more agents there are, the greater the likelihood of congestion and
thus of reduced performance, as it can happen in large-scale robot swarms [12].
We call the resulting distributions UC NDCS and UC Agent-based, where UC
means Urgent and Congested. NDCS does not to favor solutions containing
fewer coalitions [40], while Agent-based tends to do the opposite. By using
them, we obtain solution spaces in which higher values are first associated



120 L. Capezzuto et al.

Fig. 2. Performance of DSA-SDP and D-CTS in our test framework. Each subfigure
denotes a coalition value distribution, while each point is the median and 95% confi-
dence interval over 100 problems of the percentage of tasks completed. The X-axis is
the task-to-agent ratio.

with smaller coalitions and then with larger coalitions. Both distributions are
neither superadditive nor subadditive [39]. Hence, it is not possible to define
a priori an optimal coalition for each task.

During the solution of each problem, we gradually removed agents to simulate
degradation scenarios. The removal rate was calculated with a Poisson cumula-
tive distribution function PoisCDF (a, λ), where a contains all firefighter arrival
times in the dataset, and the rate λ is the average number of incidents per hour
and per day. For each test configuration and algorithm, we solved 100 problems
and measured the median and 95% confidence interval of: number of messages
sent; network load, or the total size of messages sent; number of Non-Concurrent
Constraint Checks (NCCCs) [28]; percentage of tasks completed, and CPU time4.

5.2 Results

Figure 2 and 3 show our results. D-CTS completes 3.79% ± [42.22%, 1.96%]
more tasks than DSA-SDP (Fig. 2). For both algorithms, the performance drops
rapidly as the task-to-agent ratio increases. This is due to the Urgent compo-
nent in the coalition value distributions: the higher the ratio, the higher the
median task completion time. Conversely, the Congested component can reduce
the percentage of tasks completed more in problems with smaller task-to-agent
ratios, where agents can form larger coalitions and thus increase the likelihood
of congestion.

4 Based on an Intel Xeon E5-2670 processor (octa-core 2.6 GHz with Hyper-
Threading).
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Fig. 3. Ratio of DSA-SDP performance to D-CTS performance. Each subfigure denotes
a performance metric m, while each point is the median and 95% confidence interval
over 100 problems of ma/mb, where ma (resp. mb) is the value of DSA-SDP (resp.
D-CTS) for m. The X-axis is the task-to-agent ratio.

The network load of DSA-SDP is 0.59 ± [0.41, 0.02] times that of D-CTS
(Fig. 3b). This is because a DSA-SDP message contains only a task address,
while a D-CTS message also contains a binary flag and an integer (Sect. 4.2). In
Java, an address requires 8 bytes, a flag requires 1 byte, and an integer requires
1–4 bytes. Hence, while a DSA-SDP message always requires 8 bytes, a D-CTS
message requires 10–13 bytes. This is line with the results obtained. However,
the situation would be reversed if we performed 1000 DSA-SDP iterations as
suggested in [53], since median({|V t

allocable|}t≤tmax
) � 1000 in our tests.

The remaining metrics put DSA-SDP at a distinct disadvantage (Fig. 3a, c,
d). The overload compared to D-CTS is 41.72 ± [12.45, 0.42] times more messages
sent, 72.78 ± [34.79, 27.79] times more NCCCs, and 13.82 ± [4.52, 3.71] times
more CPU time. This is explained as follows. While the number of messages sent



122 L. Capezzuto et al.

is O(|V |·|A|) in D-CTS (Sect. 4.2), it is O(|V |·|A|2) in DSA-SDP, since the agents
exchange their assignments [54]. In D-CTS, analyzing in sequence the agents that
can be assigned to each task (line 4 in Algorithm 2) requires O(|V | · |A|) NCCCs.
DSA-SDP does a similar analysis, but for each message exchanged between two
agents, which requires O(|V |2 · |A|2) NCCCs. Finally, the time complexity of
DSA-SDP is O(tmax · |V | · |A|2), where O(|V | · |A|) is required by the message
exchange phase at each time, and O(|A|) is required by each agent to calculate
the assignment costs (Eq. 12). Hence, DSA-SDP is asymptotically slower than
D-CTS (Eq. 13). Overall, D-CTS took 525± [281, 482] ms, while DSA-SDP took
6.97 ± [5.84, 6.2] seconds. In accordance with the above, the ratio of DSA-SDP
performance to D-CTS performance tends to increase with regard to CPU time,
and to decrease with regard to the other metrics.

In a dynamic environment, desirable features of a distributed algorithm
include being robust to disruptions and minimizing communication overhead
(Sect. 4.2). The latter feature is particularly important in real-world domains
such as disaster response, where agent communication can be costly (i.e., non
free-comm environment [36]) or there might be operational constraints, such as
low bandwidth or limited network topology (e.g., sparse robot swarms searching
for shipwrecks on the seabed or monitoring forest fires [46]). In our tests, com-
pared to DSA-SDP, D-CTS achieves a slightly better solution quality (Fig. 2),
and is one order of magnitude more efficient in terms of communication over-
head and time complexity (Fig. 3). This affirms its effectiveness as a scalable
and distributed CFSTP algorithm for dynamic environments.

6 Conclusions

We gave a novel mathematical programming formulation of the CFSTP, which
is significantly shorter and easier to implement than the original [42]. By reduc-
ing the CFSTP to a DynDCOP, we also designed D-CTS, the first distributed
version of the state-of-the-art CFSTP algorithm. Finally, using real-world data
provided by the London Fire Brigade and a large-scale test framework, we com-
pared D-CTS against DSA-SDP, a state-of-the-art distributed algorithm. In sit-
uations where the number of agents monotonically decreases over time, D-CTS
has slightly better median performance, as well as significantly lower communi-
cation overhead and time complexity. Future work aims at extending our test
framework by:

1. Comparing D-CTS with other state-of-the-art distributed algorithms, such as
DALO [15], SBDO [3], GDBA [33], D-Gibbs [31] and FMC TA [30].

2. Adding more realistic coalition value distributions.
3. Studying exploration scenarios [10], that is, designing tests in which tasks are

gradually added to the system.

We also want to transfer our work to the MARSC model [6], which, unlike the
CFSTP, can capture situations where there are soft deadlines, tasks are not all
equally important, and there may be an order of completion.
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Finally, given its advantages (Sect. 4.2) and the scarcity of incomplete Dyn-
DCOP algorithms (Sect. 2), we want to design a D-CTS extension with provable
bounds on solution quality and able to solve general DynDCOPs.
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Abstract. Norms and conventions enable coordination in populations of
agents by establishing patterns of behaviour, which can emerge as agents
interact with their environment and each other. Previous research on
norm emergence typically considers pairwise interactions, where agents’
rewards are endogenously determined. In many real-life domains, how-
ever, individuals do not interact with one other directly, but with their
environment, and the resources associated with actions are often con-
gested. Thus, agents’ rewards are exogenously determined as a function
of others’ actions and the environment. In this paper, we propose a frame-
work to represent this setting by: (i) introducing congested actions; and
(ii) adding a central authority, that is able to manipulate agents’ rewards.
Agents are heterogeneous in terms of their reward functions, and learn
over time, enabling norms to emerge. We illustrate the framework using
transport modality choice as a simple scenario, and investigate the effect
of representative manipulations on the emergent norms.

Keywords: Norm emergence · Conventions · Congestion games

1 Introduction

Norms and conventions enable populations of agents to interact in complex envi-
ronments, by establishing patterns of behaviour that are beneficial, and enabling
coordination. Norms are viewed as equilibria, in which the interacting agents
act in some expected way [38], either choosing the same action (in coordination
games) or different actions (in anti-coordination games).1 Existing norm emer-
gence research often focuses on the population level phenomena that result from
pairwise interactions between individual agents [16,28].

In many real-life scenarios, however, individuals do not interact with one
another through pairwise interactions, but instead select actions (which have
a cost) according to some individual strategy, and receive rewards which are,
at least in part, determined by the action choices of others. Thus, individu-
als interact with their environment, rather than directly with others. Further-
more, resources are often congested, meaning that an individual’s valuation of a
1 Note that such equilibria are not necessarily Nash equilibria.
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resource (and consequently their reward) is not endogenously determined, but
rather depends on the number of others using the resource (i.e., it is a func-
tion of others’ actions) [26]. This congestion effect manifests in many economic
and social environments, where individuals ‘compete’ for some resource, with
such congestion games being widely studied from a game theoretic perspective.
However, in such environments, while it is often desirable to establish norms to
facilitate coordination, the number of individuals who can benefit from choos-
ing a particular action is limited. Examples include transport modality or route
choices, bandwidth or compute allocation, and public service consumption.

One important aspect of many economic and social environments, in addition
to congested resources and which is not accounted for by traditional congestion
games, is that of an authority figure with preferences about the distribution of
individuals’ action choices, and having some (but not complete) control over the
payoffs they receive. While norms often emerge in the absence of an authority,
the authority may manipulate the rewards of individuals or groups of individuals
in order to ‘nudge’ the system towards a particular state. Consider, for example,
the scenario of commuters choosing a transport modality (e.g., bus, car or walk)
and route. Such choices are made individually, but rewards are determined by the
current state of the environment and are affected both by others’ choices and the
city authority. Many individuals choosing the bus may result in overcrowding and
low rewards, but few individuals choosing the bus may cause the city authority
to increase prices. Moreover, the city authority may have preferences in terms
of reducing car use and increasing active travel, and so may impose charges for
car use or offer rewards for walking. In London, for example, the city authority
facilitates bike loans, encourages employers to offer financial or holiday incentives
for employees who do not drive, and imposes charges for private car use.2

The way a norm is evaluated depends on the perspective and associated
preferences, either that of an individual agent or of the authority. Behaviours
and norms that are beneficial from one perspective may not be beneficial from
another, a factor not typically considered in congestion games. Individual agents
evaluate a norm by considering its impact on their own rewards, which are influ-
enced by others’ actions. Alternatively, the authority may evaluate it from a
system level, considering whether it is appropriate for the system as a whole,
potentially considering factors such as the long-term or indirect effects of a
norm [16]. While the authority may aim to maximise social welfare (i.e., the
sum of individuals’ rewards), it may have its own preferences regarding resource
utilisation, namely, which actions are selected and by what proportion of agents.

To illustrate this difference in perspectives, consider the example of transport
modality choice and the possible norms of driving and walking. From an individ-
ual’s perspective, choosing to drive may broadly result in two possible scenarios:
either a high individual reward (if relatively few others choose to drive and so
traffic is light), or a low individual reward (if many others choose to drive, result-
ing in congestion). Similarly, from an individual’s perspective walking may have
a medium reward, regardless of others’ transport choices. From the authority’s

2 See, for example, http://content.tfl.gov.uk/tfl-active-recovery-toolkit.pdf.

http://content.tfl.gov.uk/tfl-active-recovery-toolkit.pdf
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perspective, assuming a preference of decreasing car use and encouraging active
travel, the situation is independent of the individual rewards: there is higher
value to the authority when fewer individuals choose to drive, and the highest
value would be for all individuals to walk and not drive. Other norms may be
more complex, for example, individuals may prefer to be on buses with a rea-
sonable number of other passengers (for perceived personal safety), but not so
many that they have to sit next to a fellow traveller, while the authority might
prefer the bus to be full to capacity (i.e., full utilisation of the resource).

In this paper, we propose a framework that: (i) introduces congested actions
into the norm emergence setting; (ii) adds a central authority to such congestion
games, such that the authority is able to manipulate (but not fully control) the
rewards of agents and groups of agents; and (iii) accounts for the different per-
spectives of the agents and authority in terms of their preferences. We illustrate
the framework using a simplified transport modality choice example, and show
the impact of manipulations on the emergent norms in the population.

2 Related Work

Norm emergence has been widely studied in the context of agents who learn
(or reproduce) based on the rewards received from their interactions with oth-
ers. Such interactions typically take the form of an n-player m-action game,
in which each agent’s reward is a discrete function of others’ actions and is
determined according to a payoff matrix, which is typically common knowl-
edge. Most literature on norm emergence either models cooperation using the
Prisoner’s Dilemma [3,17,18] or learning to choose common actions in a coor-
dination game [16,19,28,35,36,39,44]. Such work typically focuses on pairwise
interactions where agents select from two possible actions, i.e., n = 2 and m = 2.
In this paper, we consider norm emergence from a more general perspective, in
which individual agents select from a wider set of actions (m ≥ 2) and receive
rewards which are only partially determined by other agents’ choices (i.e., inter-
actions are not pairwise). While some studies have considered the more general
setting of n ≥ 2 and m ≥ 2, they have typically focused on cases with small num-
bers of agents and actions per interaction [1,27] and do not consider congested
resources or the inclusion of an authority figure. Other work has considered
the impact of large action spaces [31], but only from the perspective of agents
learning common actions, rather than the more general setting.

Our setting is similar to the El-Farol Bar Problem (EFBP), a well-known
congestion game which shares some characteristics with norm emergence [4,12,
33]. In the EFBP, a group of n agents, representing people, independently decide
whether to visit a bar on a certain evening, with the most enjoyable visits being
when the bar is not too crowded, i.e., when the number of visitors is less than
some (unknown) threshold. Choices are unaffected by previous visits and there is
no communication or information on others’ choices. Each agent only knows its
own choice and the subsequent reward. The EFBP illustrates the key features of
our setting, namely that agents compete for a resource (space in the bar), agents
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are rational (their rewards provide information on attendance, and they use
this strategically), and there is limited information (agents do not know others’
strategies, but their rewards provide information on other agents’ actions). In
this paper, we introduce an authority figure that can influence agents’ rewards,
which can be viewed as adding a bar owner to the EFBP, and considering rewards
from both the owner and customer perspectives.

Our setting is also similar to the Multi-Armed Bandit (MAB) problem, where
each individual sequentially pulls one of several arms (representing choosing
actions), with each pull resulting in a reward from some distribution (which is
unknown to the agent and may differ over time) [5,7,15,22]. While we could
represent rewards in a MAB setting as being influenced by other agents’ action
choices through the use of a non-stationary distribution, such a representation
is not intuitive. Moreover, it is less clear how an authority that can reward or
penalise certain action choices might be introduced into the MAB setting.

Various forms of intervention have been considered to encourage norm emer-
gence. One of the earliest studies was Axelrod’s Norms Game [8], in which a
population of agents repeatedly make decisions about whether to comply with
a desired norm or defect, and whether to punish those who are seen to defect.
More informed punishment methods, such as experience based punishment, have
been developed for the Norms Game [24,25], but these are peer-based and do
not consider an authority figure. Other approaches have considered incentives
and sanctions [30,32], or the use of non-learning fixed strategy agents [13,27,36]
to influence the emergence of norms, but typically in settings where rewards are
a direct function of the choices of those involved in an interaction, and so can be
represented as a simple payoff matrix. In this paper, we introduce an authority
that is able to influence agents’ rewards, by changing the costs of performing
actions and the sensitivities of agents to the results. Similar manipulations have
been considered in non-stationary MABs, for example adding constant noise [14],
using adversarial (arbitrary) rewards [2,6,20,34], varying the expected values of
the reward distributions [45], or assuming arms are contextual (i.e., no prior
knowledge about the arms exists except for some historical data or some action
features) [23,37,42]. To the best of our knowledge, we are the first to consider
such a perspective in the context of norm emergence with congested actions,
where rewards are partially determined by the actions of others.

3 Modelling Norm Emergence with Congested Actions

We consider a population of n agents, or players, P = {p1, ..., pn} and a single
centralized authority, ψ. Agents are heterogeneous and may be of different types,
or belong to different groups, which determine their preferences over actions and
influence the rewards they receive. Agents interact with their environment by
playing a repeated game in which they select an action, or option, o from a
set of m ≥ 2 alternatives, O = {o1, ..., om}. At a given time t each agent p
simultaneously interacts with the environment by choosing an action op,t for
which it receives a reward (which could be positive or negative). For simplicity,
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unless it is ambiguous, we assume that t refers to the current time and write op

for the action selected by p.
Each action is viewed as requiring some resource, and we assume that

resources are congested, meaning that there is a limit to how many agents
can simultaneously use the resource and receive maximal individual reward. Let
ω∗

o ∈ (0, 1] denote the maximum proportion of agents in the population who can
simultaneously select o and receive maximal reward, i.e., ω∗

o represents the capac-
ity of the resource associated with action o. Thus, if ω∗

o = 1/n then only a single
agent can receive maximal reward for selecting the action at any time, while if
ω∗

o = 1 then all agents would receive the maximal reward if they simultaneously
selected the action. We assume that agents are fully rational, self-interested and
act independently and simultaneously at any given time, without any knowledge
of others choices or strategies.

3.1 Actions and Congested Resources

The reward an agent receives for selecting an action is determined both by its
individual preferences, represented by its type, and the value associated with the
action, which is a function of the environment and others’ action choices. We
use the terms value and reward respectively to distinguish between the benefit
resulting from an action in the current setting, independent of an agent’s pref-
erences, and the benefit an agent receives taking into account its preferences.
Let vo,t denote the value that is associated with selecting action o in time step
t. Again, unless it is ambiguous in the current context, we assume that t refers
to the current time, and so we simply write vo. For generality, we assume that
the value of an action o is determined by some valuation function Vo(ωo) which
maps the proportion of agents, ωo, selecting action o to the value of the action,

vo = Vo(ωo). (1)

The proportion of agents, ωo ∈ [0, 1], who select action o in the current time
step, is defined as

ωo =
|{p|p ∈ P ∧ op = o}|

|P | (2)

where op is the action selected by p.
Some actions might not be congested, or have sufficient capacity that ω∗

o = 1,
and so the value vo associated with such actions is independent of the proportion
of agents selecting that action, so

Vo(ωo) = y (3)

meaning that the value associated with o has a constant value of y.
For actions associated with congested resources, the capacity of the resource

plays an important role in determining the value of such actions. There are
two cases: the resource associated with action o is in-capacity if ωo ≤ ω∗

o or is
over-capacity if ωo > ω∗

o . For such actions, we assume that Vo(ωo) appropriately
reflects the valuation function in both situations.
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In the simplest case, the valuation function can be modelled in the same
manner for the in- and over-capacity cases. For example, we might use a uni-
modal Normal function with mean μo = ω∗

o and variance σ2
o (with σo being

the standard deviation), such that agents receive the maximal value when the
resource is at capacity, i.e., ωo = ω∗

o ,

Vo(ωo) =
1√

2πω∗
o

e
−(ωo−ω∗

o )2

2σ2
o . (4)

In the more general case, the distributions defining the value for the in-
capacity and over-capacity cases may be different. For example, if we use a
uni-modal Normal distribution for both cases this could be represented using σ2

o

and σ′2
o to represent the variance for the in- and over-capacity cases respectively

(noting that the mean is fixed at the capacity),

Vo(ωo) =

⎧
⎪⎨

⎪⎩

1√
2πω∗

o

e
−(ωo−ω∗

o )2

2σ2
o , if ωo ≤ ω∗

o

1√
2πω∗

o

e
−(ωo−ω∗

o )2

2σ′2
o , otherwise, i.e., ωo > ω∗

o .

(5)

We might also model the in- or over-capacity cases using constant values if they
do not depend on ωo.

3.2 Agent Types: Mapping Values to Rewards

Each individual agent’s reward from choosing action o is a function of the value,
vo, of the action and the agent’s type. We assume that the agents are partitioned
into a set G of disjoint types, or groups, G = {g1, g2, . . . , gl} such that ∀gi ∈
G, gi ⊆ P , g1 ∪ g2 ∪ . . . ∪ gl = P and ∀gi, gj ∈ G, gi ∩ gj = ∅. We use agent types
to represent that the cost and relative reward associated with a given action
may vary for different agents. For example, in the context of selecting transport
modalities in a city, the relative cost of a congestion charge for car use may be
low for wealthy individuals compared to those on low incomes, while the relative
reward of using a low polluting mode of transport may be higher for individuals
who are concerned about environmental issues.

We model such differences by associating each agent type g with a cost, co,g,
and sensitivity, so,g, for each action o. For simplicity, we assume that the cost
and sensitivity of each action for each agent type is predetermined and fixed
over time, unless subject to manipulation by the authority. Rewards are defined
at the group level, such that any agent in group g will receive reward ro,g for
selecting action o, determined by multiplying the value vo of the action by the
corresponding sensitivity and subtracting the corresponding cost,

ro,g = so,g · vo − co,g (6)

where so,g represents the sensitivity for action o, and co,g the cost of action o for
group g. Thus, the reward ro,p that an individual agent p receives for selecting
action o is determined by p’s group g, namely,

ro,p = ro,g � p ∈ g. (7)
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3.3 Authority Preferences and Influence on Rewards

We assume that the system contains an authority that has preferences over the
state of the system in terms of the proportions of agents selecting each of the
actions, and is able to influence the rewards agents receive by manipulating the
sensitivities and costs of agent types. The authority’s preferences with respect
to a given action o are determined by the overall proportion of agents it desires
to choose the action, ω̂o, along with a utility function Uo(ωo) mapping the pro-
portion of agents who choose the action, ωo, to the utility from the authority’s
perspective. We assume that the utility function accounts for the potentially
different distributions in the cases where ωo ≤ ω̂o and ωo > ω̂o. We use the
term utility for the authority’s perspective to distinguish from individual agent’s
rewards and action values. The utility uo of action o from the authority’s per-
spective is therefore

uo = Uo(ωo). (8)

The authority’s utility function for a given action can be modelled in a similar
manner to the valuation functions in Eqs. 3, 4 and 5, using a constant value (ŷ),
variance (σ̂2

o), or pair of variance values (σ̂2
o and σ̂′2

o ) for the in- and over-capacity
cases respectively.

The overall utility u to the authority of the current action choices of the pop-
ulation is simply the aggregation of the utility (from the authority’s perspective)
of each individual agent’s choice,

u =
∑

p∈P

uop
(9)

where uop
represents the utility to the authority of agent p selecting action o.

While the authority is not able to directly control the action choices of agents,
or the values associated with those actions, we assume that it is able to exert
influence over the rewards agents receive, which in turn may cause agents to
adopt different strategies. There are two methods we consider through which
the authority can affect rewards, namely, modifying the cost or the sensitivity
associated with an action for a group of agents. Thus, the authority is able to
replace the default sensitivity so,g, or cost co,g, of group g for action o with
modified values s̃o,g and c̃o,g respectively. The reward is then calculated using
these updated values in Eq. 6, i.e.,

ro,g = s̃o,g · vo − c̃o,g. (10)

3.4 Agent Learning

Norms can emerge through social learning [11], such that an individual’s estimate
of the desirability of each possible action is affected by others’ actions in the envi-
ronment. To illustrate our framework, we assume that agents use Q-learning [41],
since this has been shown as effective for norm emergence [1,9,29,36,40,43],
although other methods such as HCR [38] or WoLF-PHC [10] can also be used.
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Fig. 1. Value functions of (a) agents and (b) authority.

For each action o ∈ O, each agent maintains a Q-value that estimates the benefit
of choosing that action. The Q-values are initially set to zero and are updated
based on the rewards received. Whenever agent p selects action o and receives
reward ro,p, it will update its Q-value for o using

Q(o) ← (1 − α)Q(o) + α
(
ro,p + γ max

o′
Q(o′)

)
(11)

where 0 < α ≤ 1 is the learning rate and γ is the discount factor.
We assume that agents use ε-greedy action selection (0 ≤ ε ≤ 1), such that

an agent selects a random action with probability ε, and with probability 1 − ε
selects the action with the highest Q-value.

4 Experimental Methodology

In this section, we describe our simulation and experimental methodology using
transport modality choice as an illustrative example. The environment contains
n = 3, 000 agents who select from actions O = {Car,Bus,Walk}, i.e., m = 3,
representing the available transport modalities. In each iteration (i.e., time step)
every agent selects an action, receives a reward, and updates its Q-values. We ran
the simulation for 10, 000 iterations and averaged our results over 10 runs. We
used ε = 0.05, α = 0.1 and γ = 0.75 as representative values for the exploration
rate, learning rate and discount factor respectively.

We assume that the Walk action is not associated with a congested resource,
and so for simplicity we define its value as VWalk(ωWalk) = 1, while both the
Car and Bus actions are assumed to be congested. We define VCar(ωCar) using
a uni-modal Normal function with ω∗

Car = 0 and σ2
Car = 0.4 (see Eq. 4), which

represents that an agent obtains the highest value when no other agents choose
Car. We represent VBus(ωBus) as

VBus(ωBus) =

⎧
⎨

⎩

yBus, if ωBus ≤ ω∗
Bus

1√
2πω∗

Bus

e
−(ωBus−ω∗

Bus)2

2σ′2
Bus , otherwise, i.e., ωBus > ω∗

Bus.
(12)
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Table 1. Action costs and sensitivities for each group and each action.

g1 g2 g3

co,g1 so,g1 co,g2 so,g2 co,g3 so,g3

o =Car 0 1.3 0.1 1 −0.2 1.4

o =Bus 0 1 0.11 1.35 0 0.7

o =Walk 0 1 0 1.4 0 0.8

where ω∗
Bus = 0.4, yBus = 1.14, and σ′2

Bus = 0.35, meaning that for the in-
capacity case the value is constant, while the over-capacity case is modelled as
a uni-model Normal function. These value functions are illustrated in Fig. 1(a),
which shows that: (i) the value of choosing Walk is independent of others’ choices,
(ii) the value of choosing Car reduces as more agents select the Car action, rep-
resenting an increase in congestion and journey time, and (iii) an agent obtains
the highest reward when choosing Bus, provided that only a small proportion of
others make the same choice, with the value reducing when higher proportions
cause the resource to be over-capacity. From the agents’ perspective, the highest
utility possible is for 60% of the agents to choose Bus and 40% to choose Walk.

We assume that the authority prefers fewer agents to select Car, more agents
to select Walk, and that there is some preferred proportion of agents who select
Bus. This represents a desire to reduce car use, increase active travel, and ensure
that investment in providing a bus service is fully utilised (e.g., to cater for
groups of individuals with restricted mobility, who might have very high values
for cWalk,g). From the authority’s perspective we represent the utility for the
actions as: UWalk(ωWalk) = 1.2, with UCar(ωCar) and UBus(ωBus) being uni-
modal Normal functions with ω̂Car = 0, σ̂′2

Car = 0.45 and ω̂Bus = 0.3, σ̂2
Bus =

0.32, which are illustrated in Fig. 1(b). For the authority, the highest utility
occurs when 17% of the agents choose Bus and the remainder choose Walk.

We divide the agents into three equal size groups, G = {g1, g2, g3}, where g1
corresponds to a baseline agent type, g2 has strong environmental concerns, and
g3 represents affluent agents. For simplicity, since groups are disjoint, we do not
consider affluent agents who also have strong environmental concerns, as this
would require an additional group to be defined. An agent’s group defines the
cost and sensitivity associated with each action which, along with the proportion
of other agents choosing the action (in the case of congested actions), determines
the reward received for selecting an action.

The costs and sensitivities associated with each action for each group in our
simulation are given in Table 1 where co,g and so,g denote the cost and sensitivity
associated with action o for group g respectively. These costs and sensitivities
determine the shape of the reward function (see Eqs. 6 and 7) for each group, as
illustrated in Fig. 2. They are not intended to be realistic models of the costs and
sensitivities associated with the actions for each group, but rather are intended
to illustrate how our framework models congested resources. The baseline group
g1 (Fig. 2(a)) receives the highest reward when choosing Car if few other agents
make the same choice. When more agents choose Car the reward decreases. If a
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Fig. 2. Reward functions for each group.

high proportion of agents choose Car, then agents of type g1 can obtain a high
reward by choosing Bus, again provided that not too many others make the same
choice. The reward associated with the Walk action does not depend on other
agents’ choices, and if a high proportion of agents choose Car or Bus, then Walk
provides the highest reward. Group g2 (Fig. 2(b)) receives significantly higher
rewards from the Walk and Bus actions, and lower rewards from Car, reflecting
their environmental concerns. Finally, the affluent agents in g3 (Fig. 2(c)) receive
the highest reward from selecting Car, as they have both higher sensitivity and
lower (relative) costs associated with this action.

To illustrate our framework, we performed several experiments, the results of
which are presented in the following section. First, as a baseline, we consider the
effect of the different costs and sensitivities associated with each group, with no
interventions from the authority. Second, we consider introducing fixed strategy
agents into the population, and show that this is not an effective intervention
in our setting. Third, we investigate the impact of manipulating the sensitivity
to different actions, allowing us to model, for example, the effect of a targeted
behavioural change intervention. Finally, we investigate the effect of modifying
the cost associated with different actions, i.e., we consider different values of c̃o,g.
This allows us to model interventions such as means-tested charging for private
car use, or exemption from congestion charges for certain groups.

5 Results

All results are averaged over 10 runs for each configuration, with n = 3, 000
agents. In this section, we consider agents’ behaviour under different interven-
tions assuming, for illustration, that the authority’s aim is to encourage the
population to choose Walk. Due to space limitations, we discuss representative
manipulations, however other alternative manipulations are possible.

5.1 Baseline Setting

As a baseline, we begin by considering agents’ behaviour without any inter-
vention. Figure 3 shows that agents’ choices in each group are in accordance
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Fig. 3. Average number of agents choosing each of the actions along time. Baseline
setting.

with their corresponding reward functions given in Fig. 2. A common measure
of norm emergence is the Kittock criteria [21], where a norm is considered to
emerge if some proportion of the population (often 90%) adopts a particular
action. While this is an effective measure in populations of homogeneous agents
playing a coordination or Prisoner’s Dilemma game, in our setting of heteroge-
neous agent groups and congested actions, we do not typically expect to see such
large, population wide, adoption. Therefore, for simplicity, rather than specify-
ing a convergence threshold we consider any dominant action in a group (or the
population) as being a norm. Thus, we see the norms emerge of choosing Bus in
group g1, Walk in g2, Car in g3, and Bus being the overall population norm.

5.2 Fixed-Strategy Agents

Fixed-strategy agents perform the same action regardless of others’ choices, and
small numbers of such agents can cause particular norms to emerge [1]. Fixed
strategy agents have been shown to be effective in coordination and Prisoner’s
Dilemma games, and so it is natural to explore whether they are effective in
our setting. Figure 4 shows that introducing 300 fixed-strategy agents (10% of
each group selected at random, i.e., 10% of the population) who always select
Walk, is not sufficient to cause a norm of Walk to emerge. Introducing such a set
of fixed-strategy agents (Fig. 4(b)) gives similar results to the baseline setting
(Fig. 4(a)). While Airiau et al. [1] show that it is sufficient for only 1% of the
population to be fixed strategy agents to influence the whole population [1], our
results show that even a large number of such agents (10% of the population)
is not sufficient. We therefore conclude that in our setting there is need for new
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Fig. 4. Average number of agents choosing each of the actions in (a) our baseline
setting and (b) with 10% fixed-strategy agents.

interventions, such as manipulating agents’ sensitivities or costs (for one or more
groups).

5.3 Manipulating Agents’ Sensitivities

We now consider the effect of manipulating agents’ sensitivities which, for exam-
ple, can model the impact of an advertising campaign on the health benefits of
walking. Suppose that the manipulation is to increase the proportion of agents
from g3 that choose Walk, and receive high reward, by reducing the proportion
of agents who can choose Car and receive maximal reward from 53% in the base-
line setting to 19%. We do this by setting s̃Walk,3 = 1.8 · sWalk,3.3 The resulting
behaviour, depicted in Fig. 5, shows that agents from g3 converge to the norm
of Walk (i.e., fewer agents choose Car), which leads to an increase in the num-
ber of agents from g1 choosing Car and a decrease in those choosing Bus. This
consequently leads to more agents in g2 choosing Bus and fewer choosing Walk,
however at the population level Walk increases overall.

Although this basic manipulation has caused a shift in behaviour towards
Walk, it is not enough to cause the whole population to adopt a norm of Walk.
For this reason we look at two possible alternatives, each one a combination of
the basic intervention (depicted in Fig. 5) with an additional one.

First, suppose that agents from g1 are able to choose Walk and receive a
higher reward than Bus. This can be modelled by decreasing the sensitivity of
g1 towards Bus, i.e., s̃Bus,1 = 0.86 · sBus,1. As can be seen in Fig. 6, applying
this intervention, together with reducing the proportion of agents from g3 who
can choose Car and receive maximal reward, shifts g1 towards Car (instead of
Bus), leading agents from g2 to shift towards Bus instead of Walk. Overall, the
whole population changes its preferences, with many choosing Walk.

Second, we decrease the proportion of agents from g1 that receive a small
reward when choosing Walk by increasing their sensitivity, such that s̃Walk,1 =

3 A similar manipulation (with similar effect) is decreasing the sensitivity of g3 towards
Car.
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Fig. 5. Average number of agents choosing each of the actions along time. Intervention
applied: s̃Walk,3 = 1.8 · sWalk,3.
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Fig. 6. Average number of agents choosing each of the actions along time. Interventions
applied: s̃Walk,3 = 1.8 · sWalk,3 and s̃Bus,1 = 0.86 · sBus,1.

1.14 ·sWalk,1. This manipulation, applied with reducing the proportion of agents
from g3 who can choose Car and receive maximal reward, causes agents from g1
and g3 to change their behaviour, while g2 continues to choose Bus. Overall, the
population shifts towards Walk, as can be seen in Fig. 7.
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Fig. 7. Average number of agents choosing each of the actions along time. Interventions
applied: s̃Walk,3 = 1.8 · sWalk,3 and s̃Walk,1 = 1.14 · sWalk,1.

5.4 Manipulating Agents’ Costs

We now consider manipulating agents’ costs, which models interventions such
as charging individuals who have polluting vehicles or subsidising the costs of
electric vehicles. Suppose that the authority increases the cost of Car for g3 such
that other actions have a lower cost (specifically, c̃Car,3 = 0.8 + cCar,3). As can
be seen in Fig. 8, this results in g3 adopting a norm of Walk, while the population
overall still adopts Bus as most common action choice.

In order to achieve population wide shift, we consider an alternative manip-
ulation: increasing the cost of g2 when choosing Bus such that a higher reward
is associated with Walk (specifically, c̃Bus,2 = 0.03+cBus,2). This manipulation,
applied with increasing the cost of g3 from Car, gives a significant change in
individuals’ preferences with Walk emerging as a norm, as depicted in Fig. 9.
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Fig. 8. Average number of agents choosing each of the actions along time. Intervention
applied: c̃Car,3 = 0.8 + cCar,3.
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Fig. 9. Average number of agents choosing each of the actions along time. Interventions
applied: c̃Car,3 = 0.8 + cCar,3 and c̃Bus,2 = 0.03 + cBus,2.

6 Conclusions and Future Work

In this paper, we presented a framework for modeling norm emergence where
actions are associated with congested resources. We considered a general setting
in which agents are heterogeneous, comprised of groups differing in their pref-
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erences regarding actions. Unlike previous research on norm emergence, which
typically assumes pairwise interactions, we introduced congested actions with
rewards determined exogenously. We also introduced an authority figure which
is able to manipulate agents’ rewards. Using a simplified transport modality
choice illustration, we demonstrated the impact of manipulations on the emer-
gent norms in the population, showing that in the presence of heterogeneous
agents different interventions may be required, targeted to the different groups.

There are several directions for future work, including relaxing assumptions
about the knowledge available to agents and further exploring agent heterogene-
ity. We also plan to investigate dynamic populations, and situating agents on an
underlying network.
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Abstract. The PowerTAC competition provides a multi-agent simula-
tion platform for electricity markets, in which intelligent agents acting
as electricity brokers compete with each other aiming to maximize their
profits. Typically, the gains of agents increase as the number of their cus-
tomers rises, but in parallel, costs also increase as a result of higher trans-
mission fees that need to be paid by the electricity broker. Thus, agents
that aim to take over a disproportionately high share of the market, often
end up with losses due to being obliged to pay huge transmission capacity
fees. In this paper, we present a novel trading strategy that, based on this
observation, aims to balance gains against costs; and was utilized by the
champion of the PowerTAC-2020 tournament, TUC-TAC. The approach
also incorporates a wholesale market strategy that employs Monte Carlo
Tree Search to determine TUC-TAC’s best course of action when par-
ticipating in the market’s double auctions. The strategy is improved by
making effective use of a forecasting module that seeks to predict upcom-
ing peaks in demand, since in such intervals incurred costs significantly
increase. A post-tournament analysis is also included in this paper, to
help draw important lessons regarding the strengths and weaknesses of
the various strategies used in the PowerTAC-2020 competition.

Keywords: Electricity brokers · Trading agents · Bidding strategies

1 Introduction

The rise of renewable energy production in the residential market along with
the latest popularization of electric vehicles is gradually creating needs for a
“smarter” grid. The necessity of this new Grid is indisputable because of the
unique features it will be consisted of. In Smart Grid settings, one of the main
purposes is to reduce fossil fuel consumption. This is especially important since
fossil fuels will be depleted at some point in the future, so alternative energy
sources will be eventually required; and since the burning of fossil fuels has a
major negative impact to the climate.
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Thus, a feature of the new Smart Grid will be an energy market dealing
largely in renewable energy, which will consist of a lot of more “prosumer” par-
ticipants, with most of them being able to buy and sell energy at the same time.
Hence, researchers need tools and platforms that will help them to experiment in
novel ways to make this new market viable. The Power Trading Agent Competi-
tion (PowerTAC) is a rich simulation platform that can provide researchers with
efficient ways to try and test different strategies and approaches before actually
deploying them in the future Smart Grid. PowerTAC already has most features a
smart electricity grid can possess (e.g., interruptible consumption, electric vehi-
cles, renewable energy) so the simulations can be as realistic as possible. Every
year, since 2012, a PowerTAC competition is organized. Agents from research
teams from around the globe are pitted against each other, and try to generate
the highest profit by harnessing the energy supply and demand of the simulation
environment. The agent that won PowerTAC 2020 was TUC-TAC.

Now, contemporary MAS research often builds on solid game-theoretic foun-
dations, since game theory provides a compelling framework for strategic deci-
sion making in multi-agent environments [8]. TUC-TAC also gets inspiration
from a known theoretical result in order to design the winning strategy of the
PowerTAC 2020 competition. More specifically, TUC-TAC’s basic goal is to get
half of the available retail market share, leaving the rest to the others. By so
doing, TUC-TAC expects to always have the highest income, while sharing the
fees with the other agents. This basic principle underlying TUC-TAC’s strategy
has certain analogies to the equilibrium strategy used by the winning agent of
the 2010 Lemonade Stand Game tournament [10], as will be explained below.
TUC-TAC also employs Monte Carlo Tree Search (MCTS) for bidding in the
double auctions of the wholesale market, similarly to the approach of Chowd-
hury et al. [1]. Moreover, TUC-TAC’s post-competition strategy is enhanced by
a consumption forecasting module (using linear regression and neural networks)
to predict demand peaks.

In what follows, we first provide the necessary background for the problem
domain; next we present TUC-TAC’s architecture and strategy in detail; and
then proceed to provide an extensive post-tournament analysis, along with an
evaluation of the forecasting module built after the PowerTAC 2020 competition.

2 Background and Related Work

In this section we discuss PowerTAC and some past agent approaches.

2.1 The Power Trading Agent Competition

PowerTAC [3] is a rich competitive economic simulation of future energy mar-
kets, featuring several Smart Grid components. With the help of this simulator,
researchers are able to better understand the behavior of future customer models
as well as experiment with retail and wholesale market decision-making, by cre-
ating competitive agents and benchmarking their strategies against each other.
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In this way, a host of useful information is extracted which can be used by poli-
cymakers and industries in order to prepare for the upcoming market changes.

2.2 Past Agent Strategies

In this section, some of the most significant broker-agent strategies will be intro-
duced. Every agent design, in these many years of competition, can be broadly
separated into two different, almost distinct, parts. The first part is the Retail
Market Module which tries to find the best tariff strategy, i.e. to decide which
tariffs to offer to retail customers and to what price; and the second is the whole-
sale market module, whose main responsibilities are to submit bid and asks in
periodic double auctions. Specifically, this module is very important, because
the wholesale market is the main place that brokers can buy and sell energy.

Many agents in the past, like COLD [7] used reinforcement learning [9] in
order to find the best tariff strategy. Recent agents tried similar strategies. For
instance, Mertacor2020 employs Q-Learning techniques in order to maximize the
profits from the retail market. The VidyutVanika [2] agent also used a combina-
tion of dynamic programming and Q-learning assisted by a Deep Neural Network
predictor. However, AgentUDE [5], one of the most successful agents in Power-
TAC history, which won the tournaments of 2014, 2017, 2018 and was in the top
three brokers in 2016, and 2019, used a much simpler tariff strategy. Specifically,
its strategy was based mainly on decision trees and it was being enhanced with
some general principles. In addition to that, AgentUDE2017 [6] had a genetic
algorithm module to further improve its tariff generation. TUC-TAC 2020 too,
uses decision trees in order to find the best tariffs to offer in the retail market;
but enhances them with some unique heuristics.

The complexity of the wholesale market actions space, requiring as it does
participation in multiple auctions with agent preferences changing dynamically,
calls for a very careful design of an agent’s respective strategy, in order for it to
be profitable. One of the first and most important works in this field was that of
TacTex [11] agent in 2013. That team used an MDP price predictor which is the
foundation of almost all modern brokers in PowerTAC. Specifically, SPOT [1]
agent further improved the previous strategy using MCTS to find the best bids
and asks at the best possible times. Another especially efficient wholesale market
agent was VidyutVanika [2], which also uses the MDP based price predictor
which was firstly implemented by TacTex 2013. Another interesting work, among
many, is that of Nativdad et al. (2016) [4], which was using machine learning
techniques to reduce the complexity of the wholesale market action space.

3 TUC-TAC’s Architecture

TUC-TAC 2020 is an autonomous agent developed to compete in the 2020 Power
Trading Agents Competition (PowerTAC-2020). Its main strategy—more specif-
ically, the part of TUC-TAC’s strategy that is used in the key for the game retail
market—is based on the principle that, acquiring half of the market share will
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give TUC-TAC half of the total profits, but also only half of the inevitable trans-
mission capacity fees (a notion we will explain later) will have to be paid by our
agent. Early on in TUC-TAC’s development it was realized that greedy strategies
would not work in the competitive PowerTAC environment; and the main inspi-
ration for the aforementioned principle came from an interesting equilibrium
strategy employed in the context of the “Lemonade Game” competition, and
which is briefly presented in Sect. 3.1 below. In order to achieve that, TUC-TAC
uses decision trees enhanced with many heuristics and non-heuristics functions
that help in the evaluation of the game state. It also employs MCTS for bidding
in the double auctions of the wholesale market, adapting it to this setting. In
this chapter, we will break down the agent into modules to easier understand
how it was designed. Figure 1 below depicts the main components of the agent;
these will be analyzed in turn later in this section.

Fig. 1. TUC-TAC’s architecture

3.1 An Interesting Equilibrium Strategy for Repeated Multiagent
Zero-Sum Game Settings

The Lemonade Stand Game (LSG) is a game-theoretic setting with important
real-life applications. Specifically, it is a game that can provide important intu-
itions regarding the choices facing online advertisers, regarding which spot to
bid for when participating in real-time online auctions for slots showing up in
sponsored search results. In its simplest form, LSG involves N lemonade vendors
choosing a location to place their counter at, on the perimeter of a circular island.
The utility of each vendor is determined by the distance between her, the neigh-
bor vendors, and the defined space boundaries. In 2010 the first LSG tournament
involving artificial intelligent agents took place, sponsored by Yahoo! Research,
and the strategy of the winning team was shown to be the LSG equilibrium
strategy [10]. In short, the strategy demands that one should always sit opposite
some opponent, with the purpose of ensuring that they both maximize their
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profits via exploiting the third one in this specific iteration; over time, the agent
employing this strategy gains most of the profits (across all game iterations),
leaving the other two to share the rest of the “pie”.

In general, a lesson learned from this equilibrium strategy is that in such
settings we should seek to always, at each iteration, claim a large enough slice of
the pie available, but without being too greedy. This strategy will ensure that
any other player will be over time getting lower payoffs than ourselves. In our
setting, we are inspired by this equilibrium strategy and develop a strategy for
the retail market that seeks to control a high portion of the market share by
subscribing a large number of consumers to our services, but also restrain our
“greediness” to avoid suffering huge penalties due to transmission capacity fees.

3.2 The Retail Market Module

This component’s main responsibility is to publish and revoke tariffs in a way
that would be profitable for the agent. Publishing and revoking tariffs alone
might sound simple, but there are many aspects of the game that have to be
considered before even taking any of these actions. In the following subsections,
all these different aspects of the TUC-TAC agent are described in detail.

Preferred Tariff Types. A PowerTAC game has a specified amount of dif-
ferent types of power consumers, thus some distinct types of tariffs should be
offered. In TUC-TAC’s case, strategies for only 4 different tariff types are imple-
mented. These tariffs are about Consumption, Thermal Storage Consumption,
Solar Production and Wind Production costumers.

To summarize, simple Consumption tariffs were selected to be implemented
and offered by our agent, because they provided TUC-TAC with an amount
of profit that was in expectation significantly higher than that of other tariff
types. Also, the two different sustainable energy production tariffs were selected,
not for their potential of making a profit, but for their ability to reduce the
transmission capacity fees. This will be further explained later. Finally, Thermal
Storage consumption tariffs were selected because they provided a considerable
stable income. Specifically, the income from these tariffs were several thousand
“euros” from customers and the balancing market. Moreover, these tariffs were
considered, because it was necessary to prohibit TUC-TAC’s competitors from
having an advantage by being uncontested in these non-Consumption tariffs.

Objective Value of a Tariff. One of the main problems a PowerTAC agent
has to solve, is the evaluation of its opponents’ tariffs, with the purpose to offer
better ones. (Note that when a broker publishes a new tariff all customers and
brokers are notified about its parameters.)

The difficulty of this problem derives from the complexity of the customers’
evaluation model itself. A tariff has many parameters to consider while evaluating
its objective value. For example some of these parameters are periodic payment,
rates, early withdrawal penalties, sign up bonuses and so on.



Aiming for Half Gets You to the Top: Winning PowerTAC 2020 149

The average value of rates was calculated using three different methods.1

The first method tries to find the average value of the rates with the help of
the weights which were produced from the time-of-use-technique [5]. In that
publication the authors tried to shift the net demand peaks by offering time of
use tariffs, so by using their formulas TUC-TAC tried to calculate the objective
value of a tariff. The second method calculates the average directly by using the
values of the rates without any normalization. The third method calculates the
average after normalizing the values of every rate in the tariff. In the end, the
second method was selected for the final version of TUC-TAC 2020, because it
attracted more customers with the current settings.

Main Tariff Strategy. Since the basics of the game and some“peripheral”
strategy aspects have been explained, it is time now to describe in detail the
strategy which was responsible for TUC-TAC’s success. As mentioned earlier,
the basic principle that was applied has certain analogies to the equilibrium
strategy used by the winning agent of the 2010 LSG tournament [10]. TUC-
TAC’s strategy is quite similar to that since its basic goal is to get half the
available market share leaving the rest to the others. So by doing that, TUC-TAC
expects to always have the highest income, while it shares all the fees with the
other agents. Figure 2 below outlines the main TUC-TAC strategy components.

In the beginning, TUC-TAC publishes the initial tariffs and then waits for
the assessment timeslots. When it is time for a reassessment of the market state,
that agent first checks if any of its current tariffs are exceeding some specific
dynamic bounds. The tariffs that are out of bounds get revoked, the others
remain. Then it checks the number of customers that are subscribed in the
total of a tariff type. If the number of subscribed customers is higher than some
MIDDLE-BOUND value, it instantly revokes its cheapest tariff and creates a
new one with the purpose to share the customers with the other brokers. If the
amount of the subscribed customers is not higher than MIDDLE-BOUND, TUC-
TAC checks a LOWER-BOUND. The purpose of having a LOWER-BOUND, is
to remain competitive throughout a game, so, if the amount of the subscribed
customers is lower than the LOWER-BOUND, it tries to create and publish
a tariff that is more attractive than that of its opponents. The aforementioned
bounds change dynamically during the games according to weather, time of year,
and game state; however, the value of MIDDLE-BOUND remains rather close
to 50% of the available customers base (more specifically, it ranges between 50%
and 62.5%). The whole process is repeated until the game ends.

3.3 The Wholesale Market Module

The second but equally important module of TUC-TAC agent is the Wholesale
Market one. Its main responsibilities are to buy and sell energy in the double
1 It has to be clarified that opponent tariffs with unusual features were considered as

“baits” and were not evaluated. Such features could be very high early withdrawal
penalties, unusually high periodic payments, or values of rates.
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Fig. 2. Main Consumption Tariff strategy flowchart

auctions of the wholesale market. In order to be effective though, it requires
finding the best bids so the customers would not have to resort to Balancing
Utility to get their energy; in which case TUC-TAC would be charged higher for
every single KWh that was not reserved by the agent.

The main algorithm implemented in this module was a variation of the Monte
Carlo Tree search method previously developed by Chowdbury et al. [1]. In Pow-
erTAC’s case, the double auctions of the wholesale market constitute a complex
action-space which requires fast and precise actions in order to be profitable.
So, MCTS was selected for its ability to rapidly traverse through huge decision
trees and find the best action. Though the concept of this algorithm is indeed
suitable for this setting, and can be especially useful, judging by the results of
Chowdhury et al. [1], the lack of a proper predictor in TUC-TAC’s case makes
the current wholesale market approach completely naive. For this reason, we are
already working towards creating a limit price predictor for PowerTAC 2021.

3.4 Net Demand Predictor Module

At the beginning of each simulated day, TUC-TAC must decide the amount of
energy it has to buy for its customers. However, demand changes dynamically
and this information is not available in advance. TUC-TAC’s net demand pre-
dictor estimates the net demand of the customers for the upcoming 24 timeslots,
based on the given weather forecast and the past net demand values. We tested
two predictors: a classic linear regression method, and a deep learning one.
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Dataset Construction. In order for TUC-TAC to make a good prediction,
a dataset with features that are relevant to the target value is required. The
features we used according to the information available to the agent during the
competition, are (i) the hour of day, (ii) the day of the week, (iii) the month,
(iv) the year, (v) the temperature, (vi) the wind speed, (vii) the wind direction,
and (viii) the cloud coverage. Also, we chose to include lags of the target variable
(i.e., net demand value) for the previous time slot, as is common in time-series
regression tasks; this was shown to improve our results. Formally, the input
vector is represented as

x = [ht+1, dt+1,mt+1, yt+1, tempt+1, wSpeedt+1, wDirctt+1, cloudCovt+1,mwht]

denoting the hour, date, and weather forecasts and demand at timeslot t.
All data used for the training datasets arise from the log files of the 2020

PowerTAC final’s games. This data was divided into different datasets, one for
each geographical area from which weather data originate from, i.e. Denver, Min-
neapolis, and Phoenix. Note, however, that the particular area is not known to
the agent during the game, and thus, data from every site was selected randomly
to form a fourth dataset without geographical distinctions.

Linear Regression (LR) Predictor. Our first approach on constructing the
predictor was linear regression because it is a classical method for modeling rela-
tionships, which in our case is the one between the features in the algorithm’s
input and the prediction values in the output. To evaluate the method we incor-
porated the implementation of the scikit learn library in Python.

Deep Learning Regression (DLR) Predictor. This approach uses a neural
network to discover hidden patterns between the features and the target value.
The neural network consists of 2 hidden layers of 24 neurons each, with 10 epochs
of training over the training data. The input dataset consists of the features
above, and the target variable is net demand in MWh for the next interval.

4 Experiments and Results

This section presents (a) a post-tournament analysis of the PowerTAC 2020
finals; and (b) experiments evaluating the TUC-TAC’s demand predictor
module.

4.1 PowerTAC 2020 Post-Tournament Analysis

There were 8 agents participating in the 2020 PowerTAC finals. Each agent
participated in 40 eight-player games, 105 five-player games, and 63 three-player
games. The scoreboard can be seen in Fig. 3 below2. The vertical axis shows
2 The complete results of PowerTAC 2020 are in https://powertac.org/log archive/

PowerTAC 2020 finals.html. An executable version of the TUC-TAC 2020 agent can
be retrieved from https://www.powertac.org/wiki/index.php/TUC TAC 2020.

https://powertac.org/log_archive/PowerTAC_2020_finals.html
https://powertac.org/log_archive/PowerTAC_2020_finals.html
https://www.powertac.org/wiki/index.php/TUC_TAC_2020
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the score, while the horizontal axis presents the name of the broker in each of
the three different scenarios: games with three, five, and eight players. We now
proceed with an overview and details of our post-tournament analysis.

Fig. 3. Final Results of PowerTAC 2020 (Normalized wrt. average agent performance)

PowerTAC 2020 Post-tournament Analysis Overview. In PowerTAC
2020, most agents used similar technologies, like Markov Decision Processes or
Q-Learning, but in the end they appear to have had strategies that corresponded
to different “aggression” levels.3

TUC-TAC and Mertacor2020 were quite aggressive in the retail market,
regardless of the number of players in the game. Specifically, Mertacor used
an aggressive decision-making strategy informed by offline reinforcement learn-
ing. In the end, TUC-TAC’s adherence to its central, though properly adjusted,
strategy principle, its faster response times, and the offering of more attractive
tariffs, allowed it to have an advantage over Mertacor, and thus TUC-TAC won
most of the games it participated in. CrocodileAgent2020 was especially aggres-
sive in 3-player games, but not so much in the more-than-three player categories.
Moreover, ColdPower, Spot, VidyutVanika, and EWIIS3 2020 had a “conserva-
tive” behavior in the retail market, judging by their lower average scores in most
games. It is also important to note here that apart from the retail market strat-
egy failure of Spot and VidyutVanika, these agents were the ones performing best
in the wholesale market, apparently having focused on that market, something
that will not be further investigated in this work. On the other hand, Xameleon
implemented a greedy strategy that did not perform well, probably because of
the high fees it had to pay and some flaws in its design.

3 Some specifics of their strategies were revealed during a post-tournament workshop.
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TUC-TAC’s Stability with Respect to Transmission Capacity Fees.
Transmission capacity fees represent the amount of money a broker should pay
for its customers’ contribution to demand peaks. This means that when there
is a demand peak each broker will have to pay for a portion of the exceeding
energy(MWh). In the current PowerTAC competition these fees are the main
problem an agent faces when it tries to dominate in the retail market. So after
understanding how important those fees are and how these generally affect the
game in theory, we present below the results of PowerTAC 2020 for each tier
sorted by the total exceeding MWh paid by the brokers as transmission capacity
fees. Figure 4 thus demonstrates that TUC-TAC’s retail market strategy is the
most stable, regardless of the amount of the fees imposed.4

Fig. 4. Categorization by Transmission Capacity Fees: each color bar’s area represents
the average score for each agent in the games corresponding to different fee levels paid

Thus, we believe one can safely infer that TUC-TAC’s retail market strategy
achieved its goals. As mentioned earlier in the paper, this strategy was created
to mitigate the costs of the transmission capacity fees across more than one
agent while TUC-TAC could still take the highest share of the tariff profits.
This strategy worked exceptionally well when the majority of agents were in the
game, specifically in 8-player and 5-player games. At the same time, this strategy
resulted in a very profitable stable performance throughout the 3-player games.

TUC-TAC’s Tariff Profits. There are 4 different tariff types offered by TUC-
TAC, namely Consumption tariffs, Thermal Storage Consumption Tariffs, Solar
Production Tariffs, and Wind Production Tariffs. The left plot of Fig. 5 demon-
strates the net profits from Consumption and Thermal Storage Consumption
tariffs, while the right plot of Fig. 5 shows the losses deriving from the use of
Solar Production and Wind Production tariffs.
4 This and subsequent figures (apart from Fig. 8) exclude the results of “Phoenix

games” (see “categorization by balancing fees” below). The extraordinarily high fees
paid by the agents in those games would just have added noise to the analysis.



154 S. Orfanoudakis et al.

Fig. 5. TUC-TAC’s tariffs profits and losses

As observed, the main source of income for TUC-TAC comes from the (elec-
tricity) Consumption tariffs, while a smaller but substantial income portion is
the result of Thermal Storage Consumption tariffs.

Figure 5 cannot show the real effect that renewable energy has on PowerTAC.
The only thing visible is the amount of money spent in each case to acquire the
useful effects of that power type; besides that, it is visible that the losses in each
case are very small to be considered harmful. Some of these useful effects of Pro-
duction Costumers, have to do with the transmission capacity fees. Specifically,
when calculating the fees that each agent has to pay, the Balancing Utility of
PowerTAC charges each agent according to its contribution to the net demand.
So, if an agent has customers that produced energy in that timeslot, that will
greatly reduce the transmission capacity fees that the agent will have to pay.
In addition to that, it was necessary to compete and increase the tariff prices
for production customers, especially in 3-player games, because other agents
like EWIIS3 2020 had increased amounts of profits when they could get low-
cost energy. Also, an agent can sell or provide immediately to its customers the
produced energy, but this technique usually does not generate enough profit.

We believe it is clear how important the Consumption Tariffs are for the
profitability of a PowerTAC agent. At the same time, there are other sources
of income that are not equally important, but can be considered when deciding
the tariff types to offer. We found that the Thermal Storage Consumption tariffs
can also be key to making substantial profits in a game (Fig. 5).

Interactions Among the Main Competitors. Figure 6 demonstrates how
each of the three best (in 3-player games) agents perform when their main
competitors are not part of a game. The most impressive graph is that of
CrocodileAgent. As it seems when both TUC-TAC and Mertacor are absent,
Crocodile’s average score is over 1 million higher, while when only one of the
main competitors is absent its average score is almost half a million higher. As
such, it is fair to say that Crocodile performs better when the competition is
weaker, thus that is the reason it got the second place in type 3 games (see
Fig. 3).
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Fig. 6. Impact of TUC-TAC on 3-player games (rewards shown correspond to averages
in “regular” games—see Fig. 8).

In addition, Mertacor appears to have a better performance when TUC-TAC
was not part of a 3 player game (half a million higher than the total average),
while its average score dropped by half a million when Crocodile was not part
of the game. Still, Mertacor’s average score in every case was higher than every
other broker in the 3-player games.

However, TUC-TAC’s performance was not that much affected by the
absence of its main competitors. This of course is a plus in the sense the agent’s
performance is stable, but at the same time it signifies that TUC-TAC cannot
exploit weaker agents that well, unlike CrocodileAgent and Mertacor. Neverthe-
less, TUC-TAC’s stability allowed it to get third place in the 3 player games.

Fig. 7. Impact of TUC-TAC on 5-player games

Figure 7 depicts the performance of the three best agents in the Regular 5-
player games when their main competitors are not part of a game. At first, it
is visible that TUC-TAC’s performance is quite stable. In addition to that, it
is inferred that TUC-TAC has better results when Mertacor is part of a game.
This happens because the combination of these two highly competitive agents
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greatly reduces the market share of the other participating agents, thus resulting
in higher profits for TUC-TAC and Mertacor. In Mertacor’s case it is visible
that the presence of TUC-TAC and CrocodileAgent greatly reduces his average
income in a 5-player game. On the other hand, this fact shows that Mertacor is
better at exploiting the rest of the agents when there is no direct competition
(like when TUC-TAC and Crocodile are participating). Lastly, Crocodile seems
to depend on TUC-TAC being present to generate profit in this game type. Its
strategy in general is problematic in 5-player games, judging by the fact that its
average score in every category (of 5-player games) is very low.

Categorization by Balancing Fees. Balancing fees are the fees that are
applied to the agents by the balancing market when they fail to procure the
required energy. The most common reason a broker might fail to accumulate the
required by its customers energy, is very high wholesale market prices.

There were two distinct types of games in this year’s finals. The “regular
games” and the “special Phoenix games”. We term as “special Phoenix games”
the games that have extended periods of timeslots with unusually high whole-
sale market prices. In such situations, agents that have not been careful to buy
substantial amounts of energy early on, would have to buy energy in very high
prices in the wholesale market. As it was observed in PowerTAC 2020, the lead-
ing agents were not prepared for this scenario, thus they could not obtain the
required energy during these time periods, and resulting in very high balanc-
ing fees for each one of them. This phenomenon usually occurred during the
summertime of games located in Phoenix.

Table 1. Total wins of TUC-TAC

Type 8 Type 5 Type 3

“Regular” Games 28/34 81/102 47/57

“Phoenix” Games 0/6 0/3 0/6

Total 28/40 (70%) 81/105 (77%) 47/63 (74%)

TUC-TAC won the majority of games in every “classic” category, though it
had the best overall score in the 5-player games, while being third in the other
two game types as we have already seen in Fig. 3. The number of TUC-TAC’s
wins in each game type, depicting performance in “Phoenix” games also, are
shown in Table 1.

By comparing the two graphs in Fig. 8 it is clear how different “Phoenix”
games are compared to regular ones, for almost all agents but especially for TUC-
TAC and Mertacor. The main reason TUC-TAC was under-performing in these
games was a flaw in the design of the wholesale module: as mentioned earlier,
this flaw rendered TUC-TAC unable to buy enough energy from the wholesale
market to provide to its customers, thus resulting in high penalties for the agent.
As is apparent in Fig. 8, almost none of the other participants was prepared for
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Fig. 8. Differences between Average Scores of “Regular” and “Phoenix” games

these games as well. However, it seems like these exact same scenarios were very
profitable for EWIIS3 2020. Even though EWIIS3 was apparently well-prepared
for extreme situations, and its performance was generally stable across games,
this was not enough to win the tournament. This shows that in order for an
agent to win the tournament some aggressive actions should be taken.

4.2 Predictor Evaluation and Impact

In this section we describe experiments that compare our two net demand pre-
dictors, with the purpose of identifying the one with the best execution time to
error rate ratio. To test the LR and DLR predictors, we perform three types of
experiments. In the first one, we take the three geographically divided datasets,
fit the 90 % of the datapoints to the linear regression model and predict the rest
10 % of them. In the second one, we combine datasets from 2 out of 3 areas, fit
them to the model and predict the target values of the other area. In the third
one, we combine all three datasets, shuffle the datapoints, fit 90 % of them to
the model and predict the rest 10 % of it. All experiments were performed in a
5-fold validation scheme.

We report that in a preliminary evaluation, we examined the number of
lag features that can be used to improve predicting performance. Results (not
depicted here due to space restrictions) show that incorporating at least one lag
feature leads to lower error rates, but adding more lag features does not help
increasing profits significantly.

Now, comparing the two different predictor implementations in terms of exe-
cution time is very important, since TUC-TAC is obliged by PowerTAC rules to
take decisions within the specific round duration. Results indicate that the exe-
cution of the linear regression predictor is about 20 times faster than DLR, which
is a significant merit. Specifically, the LR execution time is only 0.69 seconds,
as opposed to 655.55 seconds for DLR.

Moreover, the performance of LR in terms of accuracy is very close to that of
DLR, as depicted in Fig. 9 which compares the methods in terms of mean absolute
error, root mean square error and coefficient of determination (R2) values. Thus,
results indicate that the simpler and faster LR method is the most appropriate to
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Fig. 9. Error rates comparison between Linear and Deep Learning Regression

incorporate in TUC-TAC. Further experimentation with alternative predictors
is in order, and is currently under way.

5 Conclusions and Future Work

The importance of testing the aspects of the emerging Smart Grid before deploy-
ing is essential; this is why simulation environments such as PowerTAC are
important. This paper presented the strategy of TUC-TAC 2020, the cham-
pion of The PowerTAC 2020 competition. A novelty which was arguably key to
TUC-TAC’s success, is the basic principle underlying its strategy. That princi-
ple resembles to some extent the winning, equilibrium strategy of the Lemon-
ade Stand multiagent zero-sum repeated game, in which agents try to acquire
approximately half of the market share, leaving the other half to their oppo-
nents. However, because of the nature and complexity of PowerTAC, it is next
to impossible, in our view, to solve for an actual equilibrium strategy in this
domain.

Though TUC-TAC won PowerTAC 2020, there is much room for improve-
ment for the agent. For instance, the wholesale market module has certain draw-
backs that need to be overcome. Our first priority is to add a wholesale market
limit price predictor. In addition, the MCTS part of the wholesale module needs
to be reworked to exploit information accumulated during the 2020 finals. At
the same time, it is important to improve the retail market module. Thus, we
will look for new ways to improve the agent in the retail market too, having as a
first priority to reduce the transmission capacity fees as much as possible. Also,
we are looking into ways to support more tariff types to increase profits.

More broadly, we anticipate that the techniques developed for TUC-TAC
2020, can also be applied in a multitude of other multi-agent domains as well.
For instance, the generic “equilibrium” strategy for the Retail Market of this
competition is conceivably a simple but powerful strategy to use in a host of
alternative competitive domains as well.
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Abstract. The Assignment problem is a fundamental and well-studied
problem in the intersection of Social Choice, Computational Economics
and Discrete Allocation. In the Assignment problem, a group of agents
expresses preferences over a set of items, and the task is to find a pareto
optimal allocation of items to agents. We introduce a generalized version
of this problem, where each agent is equipped with multiple incomplete
preference lists: each list (called a layer) is a ranking of items in a pos-
sibly different way according to a different criterion. We introduce the
concept of global optimality, which extends the notion of pareto optimal-
ity to the multi-layered setting, and we focus on the problem of deciding
whether a globally optimal assignment exists. We study this problem
from the perspective of Parameterized Complexity: we consider several
natural parameters such as the number of layers, the number of agents,
the number of items, and the maximum length of a preference list. We
present a comprehensive picture of the parameterized complexity of the
problem with respect to these parameters.

1 Introduction

The field of resource allocation problems has been widely studied in recent years.
A fundamental and one of the most well-studied problems in this field is the
Assignment problem1 [1–3,5,6,9,19,24,35]. In the Assignment problem we
are given a set of n agents, and a set of m items. Each agent (human, company,
or any other entity) has strict preferences over a subset of items, and the objective
is to allocate items to agents in an “optimal” way. Different notions of optimality
have been considered in the literature, but the one that has received the most
attention is pareto optimality (see, e.g., [2,5,6]). Intuitively, an assignment p is
called pareto optimal if there is no other assignment q that is at least good as p
for all the agents and also strictly better than p for at least one agent.

Besides its theoretical interest, the problem has also practical importance.
Algorithms for the Assignment problem have applications in a variety of real-
world situations, such as assigning jobs to workers, campus houses to students,
1 The problem is called Assignment in all relevant literature. Although this name is

somewhat generic, to be consistent with the literature, we use it here as well.

A full version of this paper, including full proofs and examples, can be found in https://
arxiv.org/abs/2004.00655.
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time stamps to users on a common machine, players to sports teams, graduating
medical students to their first hospital appointments, and so on [17,23,30,36].

In the Assignment problem, each agent has exactly one preference list. The
preference lists may represent a single subjective criterion according to which
each agent ranks the items. However, they may also represent a combination of
different such criteria: each agent associates a score to each item per criterion,
and a single preference list is derived from some weighted sum of the scores.
In many cases, it is unclear how to combine scores associated with criteria of
inherently incomparable nature - that is like “comparing apples with oranges”.
Additionally, even if a single list can be forcefully extracted, most data is lost.2

Thus, the classic model seems somewhat restrictive in real world scenarios
where people rely on highly varied aspects to rank other entities. For example,
suppose that there are n candidates who need to be assigned to n positions.
The recruiters may rank the candidates for each position according to different
criteria, such as academic background, experience, impression, and so on [4,22].
Moreover, when assigning campus houses to students, the students may rank
the houses by multiple criteria such as their location, rent, size etc. [33]. This
motivates the employment of multiple preference lists where each preference list
(called a layer) is defined by a different criterion.

In many real-world scenarios, the preferences of the agents may sometimes
depend on external circumstances that may not be completely known in advance
such as growth of stocks in the market, natural phenomena, outbreak of pan-
demics [32,34] and so on. In such cases, each layer in our generalized model can
represent a possible “state” of the world, and we may seek an assignment that
is optimal in as many states as possible. For instance, suppose that there is a
taxi company with n taxis and m costumers (n > m) that want to be picked
at a specific time in future. The “cost” of each taxi depends on the time taken
to reach the costumer from the starting location of the taxi. Many factors (that
may not be completely known a-priori) may affect the total cost such as road
constructions, weather, car condition and the availability of the drivers [15,29].
The firm may suggest different possible scenarios (each represents a layer). For
each scenario, the costumers may be ranked differently by the taxis, and an
assignment that is pareto optimal in as many layers as possible will cover most
of the scenarios and will give the lowest expected total cost.

Furthermore, it is not always possible to completely take hold of preferences
of some (or all) agents due to lack of information or communication, as well
as security and privacy issues [10,27]. In addition, even if it is technically and
ethically feasible, it may be costly in terms of money, time, or other resources to
gather all information from all the agents [26]. In these cases, we can “complete
the preferences” using different assumptions on the agents. As a result, we will
have a list of preference profiles that represent different possible states of the
world. An assignment that is pareto optimal in as many preference profiles as
possible will be pareto optimal with high probability.

2 Our new generalized model allows us to limit the amount of data that can be ignored
using the parameter α.
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Table 1. Summary of our results. Results marked with † are proved to be optimal
under the exponential-time hypothesis.

Parameter Complexity class Running time Polynomial kernel?

� + d para-NP-hard [Theorem 8] – –

� + (m − d) para-NP-hard [Theorem 8] – –

n FPT O∗(n!)† [Theorem 1 + Theorem 5] No [Theorem 9]

m XP, W[1]-hard [Theorem 6] (nm)O(m) [Theorem 4] –

m + α XP, W[1]-hard [Theorem 6] (nm)O(m) [Theorem 4] –

n + m + α FPT O∗(n!)† [Theorem 1 + Theorem 5] No [Theorem 9]

m + (� − α) XP, W[1]-hard [Theorem 6] (nm)O(m) [Theorem 4] –

n + m + (� − α) FPT O∗(n!)† [Theorem 1 + Theorem 5] No [Theorem 9]

m + � FPT O∗(((m!)�+1)!) [C.1] No [Theorem 9]

n + � FPT O∗(n!) [Theorem 1] Yes [Theorem 2]

n + m + � FPT O∗(n!) [Theorem 1] Yes [Theorem 2]

Our work is inspired by that of Chen et al. [12], who studied the Stable
Marriage problem under multiple preferences.3 Chen et al. [12] considered an
extension where there are � layers of preferences, and adapted the definition
of stability accordingly. Specifically, three notions of stability were defined: α-
global stability, α-pair stability, and α-individual stability. The authors studied
the algorithmic complexity of finding matchings that satisfy each of these sta-
bility notions. Their notion of α-global stability extends the original notion of
stability in a natural way, by requiring the sought matching to be stable in (at
least) some α layers. Our notion of α-global optimality extends pareto optimal-
ity in the same way, by requiring an assignment to be pareto optimal in some α
layers.

Although the Assignment problem can be solved in polynomial time using
a mechanism called “serial dictatorship” [2], we show that the problem becomes
much harder when multiple preference lists are taken into account. So, in this
paper, we study the parameterized complexity of deciding whether a globally
optimal assignment exists with respect to various parameters.

Our Contributions. One important aspect of our contribution is conceptual:
we are the first to study pareto optimality (in the Assignment problem) in the
presence of multiple preference lists. This opens the door to many future studies
(both theoretical and experimental) of our concept, as well as refinements or
extensions thereof (see Sect. 6). In this work, we focus on the classical and
parameterized complexity of the problem.

We consider several parameters such as the number of layers �, the number
of agents n (also denoted by #agents), the number of items m (also denoted by
#items), the maximum length of a preference list d, and the given number of
layers α for which we require an assignment to be pareto optimal. The choice
of these parameters is sensible because in real-life scenarios such as those men-
tioned earlier, some of these parameters may be substantially smaller than the

3 In the full version, we further argue that the Assignment and Stable Marriage
problems, being based on different concepts of stability, are very different problems.
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input size. For instance, �, α and � − α are upper bounded by the number of
criteria according to which the agents rank the items. Thus, they are likely to be
small in practice: when ranking other entities, people usually do not consider a
substantially large number of criteria (further, up until now, attention was only
given to the case where � = α = 1). For instance, when sports teams rank candi-
date players, only a few criteria such as the player’s winning history, his impact
on his previous teams, and physical properties are taken into account [18]. In
addition, the parameter � − α may be small particularly in cases where we want
to find an assignment that is optimal with respect to as many criteria as possi-
ble. Moreover, in various cases concerning ranking of people, jobs, houses etc.,
people usually have a limited number of entities that they want or are allowed
to ask for [14]. In these cases, the parameter d is likely to be small. Moreover,
in small countries (such as Israel), the number of universities, hospitals, sports
teams and many other facilities and organizations is very small [13,31]. Thus, in
scenarios concerning these entities, at least one among n and m may be small.
A summary of our results is given in Table 1.

Fixed-Parameter Tractability and ETH Based Lower Bounds. We prove
that α-Globally Optimal Assignment is fixed-parameter tractable (FPT)
with respect to n by providing an O∗(n!) time algorithm that relies on the
connection between pareto optimality and serial dictatorship. We then prove that
the problem admits a polynomial kernel with respect to n+ � and that it is FPT
with respect to #items+� by providing an exponential kernel. We also prove that
the problem is slice-wise polynomial (XP) with respect to #items by providing an
mO(m) ·nO(n) time algorithm. In addition, we prove that O∗(2O(t log t)) is a tight
lower bound on the running time (so, our O∗(n!) time algorithm is essentially
optimal) under ETH (defined in Sect. 2) for even larger parameters such as
t = n+m+α and t = n+m+(�−α) using two linear parameter reductions from
the k × k Permutation Clique problem. Lastly, we prove that the problem
is W[1]-hard with respect to m + α and m + (� − α) using two parameterized
reductions from Multicolored Independent Set.

NP-Hardness. We prove that the problem is NP-hard for any fixed α and � such
that 2 ≤ α ≤ � using a polynomial reduction from the Serial Dictatorship
Feasibility problem that relies on a reduction by Aziz el al. [6]. We also define
three polynomial-time constructions of preference profiles given an instance of 3-
SAT, and we rely on them in two polynomial reductions from 3-SAT, such that
in the resulting instances � + d and � + (m − d) are bounded by fixed constants.
This proves that the problem is para-NP-hard for � + d and � + (m − d).

Non-existence of Polynomial Kernels. We prove that the problem does not
admit polynomial kernels unless NP⊆ coNP/poly w.r.t. n+m+α, n+m+(�−α),
and m + � using three cross-compositions (defined in Sect. 2) from 3-SAT that
rely on the aforementioned reduction to prove para-NP-hardness.
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2 Preliminaries

For any natural number t, we denote [t] = {1, . . . , t}. We use the O∗ and the Ω∗

notations to suppress polynomial factors in the input size, that is, O∗(f(k)) =
f(k) · nO(1) and Ω∗(f(k)) = Ω(f(k)) · nO(1).

The Assignment Problem. An instance of the Assignment problem is a
triple (A, I, P ) where A is a set of n agents {a1, . . . , an}, I is a set of m items
{b1, . . . , bm}, and P = (<a1 , . . . , <an

), called the preference profile, contains the
preferences of the agents over the items, where each <ai

is a linear order over
a subset of I. We refer to such linear orders as preference lists. If bj <ai

br,
we say that agent ai prefers item br over item bj , and we write bj ≤ai

br if
bj <ai

br or bj = br. Item b is ac We use the O∗ and the Ω∗ notations to
suppress polynomial factors in the input size, that is, O∗(f(k)) = f(k) · nO(1)

and Ω∗(f(k)) = Ω(f(k)) · nO(1).ceptable by agent a if b appears in <a. An
assignment is an allocation of items to agents such that each agent is allocated
at most one item, and each item is allocated to at most one agent. We define a
special item b∅, seen as the least preferred item of each agent, and will be used
as a sign that an agent is not assigned to an item. We assume that b∅ is not
part of the input item set, and that it appears at the end of every preference
list (we will not write it explicitly). Formally, an assignment p : A → I ∪ {b∅} is
a mapping between agents to items, s.t. for each i ∈ [n]: (1) p(ai) = b∅, or (2)
both p(ai) ∈ I and for each j ∈ [n] \ {i}, p(ai) �= p(aj). We refer to p as legal
if each item is assigned to an agent who accepts it. For brevity, we will usually
omit the term “legal”.4 Moreover, when we write a set in a preference list, we
assume that its elements are ordered arbitrarily, unless stated otherwise.

Optimality. An assignment p is pareto optimal if there does not exist
another assignment q such that both p(ai) ≤ai

q(ai) for every i ∈ [n], and
there exists i ∈ [n] such that p(ai) <ai

q(ai); p admits a trading cycle
(ai0 , bj0 , ai1 , bj1 , . . . , aik−1 , bjk−1) if for each r ∈ {0, . . . , k − 1}, we have that
p(air

) = bjr
and bjr

<air
bjr+1 (mod k) . We say that p admits a self loop if there

exist an agent ai and an item bj such that bj is not allocated to any agent, and ai

prefers bj over its own item. We now provide a simple characterization of pareto
optimality that is defined with respect to trading cycles and self loops:

Proposition 1 (Folklore; see, e.g., Aziz et al. [5,6]). An assignment is
pareto optimal if and only if it does not admit trading cycles and self loops.

For an instance (A, I, P ) and an assignment p, the corresponding trading
graph is the directed graph over A∪ I, constructed as follows: (1) for each a ∈ A
s.t. p(a) �= b∅, p(a) points to a; (2) each a ∈ A points to all the items it prefers
over its assigned item p(a); (3) each b ∈ I with no owner points to all the agents
that accept it. An assignment is pareto optimal if and only if its corresponding
trading graph does not contain cycles (see, e.g., Aziz et al. [5,6]).

4 All the “optimal” assignments that we construct in this paper will be legal in a
sufficient number of layers, where they are claimed to be pareto optimal.
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A simple assignment mechanism is the greedy serial dictatorship mechanism.
For a given permutation over the agents, the agent ordered first allocates its
most preferred item, then the agent ordered second allocates its most preferred
item among the remaining items, and so on. If at some point, an agent has
no available item to allocate, it allocates b∅. We say that an assignment p is a
possible outcome of serial dictatorship if there exists a permutation π such that
applying serial dictatorship with respect to π results in p.

Proposition 2 (Abdulkadiroglu and Tayfun [2]). An assignment is pareto
optimal if and only if it is a possible outcome of serial dictatorship.

This implies that the Assignment problem is solvable in polynomial time.

Generalization of the Assignment Problem. We introduce a generalized
version of the Assignment problem where there are � layers of preferences. For
each j ∈ [�], we refer to <

(j)
ai as ai’s preference list in layer j. The preference

profile in layer j is the collection of all the agents’ preference lists in layer j,
namely, Pj = (<(j)

a1 , . . . , <
(j)
an ).

Definition 1. An assignment p is α-globally optimal for an instance
(A, I, P1, . . . , P�) if there exist α layers i1, . . . , iα ∈ [�] such that p is pareto
optimal in layer ij for each j ∈ [α].

α-Globally Optimal Assignment
Input: (A, I, P1, . . . , P�, α), where A is a set of n agents, I is a set of m items,
Pi is the preference profile in layer i for each i ∈ [�], and α ∈ [�].
Question: Does an α-globally optimal assignment exist?

Notice that this problem is solvable in polynomial time when α = 1 by apply-
ing serial dictatorship in some arbitrary layer. We study α-Globally Optimal
Assignment from the perspective of parameterized complexity.

Parameterized Complexity. In the framework of parameterized complexity,
each instance of a problem Π is associated with a parameter k. We say that Π
is fixed-parameter tractable (FPT) or slice-wise polynomial (XP) if any instance
(I, k) of Π is solvable in time f(k) · |I|O(1) or |I|f(k), respectively, where f is an
arbitrary computable function of k. We say that a problem is W[1]-hard if it is
unlikely to be FPT, and the main technique to prove so is by using parameter-
ized reductions. A polynomial compression from Π to Π ′ is a polynomial-time
algorithm that given an instance (I, k) of Π, outputs an equivalent instance I ′

of Π ′ such that |I ′| ≤ poly(k). If Π ′ = Π, we say that Π admits a polynomial
kernel. A cross-composition from Π to Π ′ is a polynomial-time algorithm that
given instances I1, I2, . . . , It of Π for some t ∈ N that are of the same size s ∈ N,
outputs an instance (I, k) of Π ′ such that (1) k ≤ poly(s + log t); and (2) (I, k)
is a Yes-instance of Π ′ if and only if at least one of I1, I2, . . . , It is a Yes-instance
of Π. By [7,8], the existence of a cross-composition from an NP-hard problem
Π to a parameterized problem Π ′ implies that Π ′ does not admit a polynomial
compression, unless NP⊆ coNP/poly. To obtain (essentially) tight conditional



166 B. Steindl and M. Zehavi

lower bounds for the running times of algorithms, we rely on the Exponential-
Time Hypothesis (ETH) [11,20,21]. Informally, ETH asserts that 3-SAT cannot
be solved in time 2o(n) where n is the number of variables.

3 Fixed-Parameter Tractability and ETH Based Bounds

We first prove that α-Globally Optimal Assignment is FPT with respect
to the parameter n = #agents.

Theorem 1 (*).5 There exists an O∗(n!) algorithm for α-Globally Optimal
Assignment.

Proof (sketch). We provide a brute-force algorithm. The algorithm enumerates
all possible pareto optimal assignments in each layer, using serial dictatorship
with respect to all possible permutations on the agents. For each assignment p,
it constructs the corresponding trading graphs for all the layers with respect to
p, and checks whether there exist α graphs with no cycles. The running time
of the algorithm is O∗(n!), since it iterates over O(�n!) assignments (each layer
may have at most n! different pareto optimal assignments by Proposition 2), and
for each assignment, it takes polynomial time to construct the trading graphs,
and to count how many contain no cycles. �	

We now provide a simple lemma that will help us to design a polynomial
kernel for α-Globally Optimal Assignment with respect to n + �.

Lemma 1. Let (A, I, P ) be an instance of the Assignment problem where
|A| = n. Then, for any agent a ∈ A and pareto optimal assignment, a is assigned
to b∅ or to one of the n most preferred items in its preference list.

Proof. By Proposition 2, each pareto optimal assignment is a possible outcome
of serial dictatorship. Observe that for each i ∈ [n], when the mechanism is in the
i-th step, it has already allocated at most i − 1 items. Thus, the i-th allocated
item must be either: (i) b∅ (if all the items in the current preference list has
already been allocated); or (ii) one of the i first ranked items in the current
preference list. �	
Theorem 2 (*). α-Globally Optimal Assignment admits a kernel of size
O(�n2). Thus, it admits a polynomial kernel w.r.t. n + �.

Proof (sketch). Given an instance of α-Globally Optimal Assignment I1 =
(A, I, P1, . . . , P�, α), the kernel reduces each preference profile Pi to a preference
profile P ′

i by keeping only the (at most) n first-ranked items in each preference
list. Let I ′ be a set containing the items ranked in the first n positions in some
preference list in I1. The resulting instance is I2 = (A, I ′, P ′

1, . . . , P
′
� , α), which

satisfies |I2| = O(�n2). We prove that I1 is equivalent to I2 using Lemma 1. �	
5 Proofs of statements marked by * are omitted due to lack of space; full proofs can

be found in the full version.
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Before we present an exponential kernel for α-Globally Optimal Assign-
ment with respect to the parameter m + �, let us define the following.

Definition 2. Let Q = (A, I, P1, . . . , P�, α) be an instance of α-Globally
Optimal Assignment and u ∈ A. The agent class of u in Q, C(u,Q),
is the tuple that contains the preference lists of u in all the layers, namely,
C(u,Q) = (<1

u, . . . , <�
u). Define D = {B ⊆ I × I|B is a linear order}. For a

given tuple of length � consisting of linear orderings on subsets of I, C ⊆ D�,
define A(C,Q) = {a ∈ A | C(a,Q) = C}.
Theorem 3 (*). α-Globally Optimal Assignment admits a kernel of size
O((m!)�+1). Thus, it is FPT with respect to m + �.

Proof (sketch). Given an instance of α-Globally Optimal Assignment
Q = (A, I, P1, . . . , P�, α), the kernelization algorithm works as follows (formally
described in the full version): It removes from A agents which share the same
agent class together with all their preference lists, such that in the resulting
instance there will be at most m + 1 agents in the set A(C(a,Q), Q), for each
a ∈ A. Intuitively, since there are m items, at most m agents in A(C(a,Q), Q)
will be assigned to items; we keep at most m + 1 agents (rather than m) in
each agent class to cover the case where an agent is assigned to b∅ and admits a
self-loop.

Assume that we run the kernel on I1 = (A1, I, P1, . . . , P�, α) to obtain an
instance I2 = (A2, I,Q1, . . . , Q�, α). We first show that |I2| = O((m!)�+1). There
exist

∑m
j=0

(
m
j

) · j! =
∑m

j=0
m!

j!(m−j)!j! = m!
∑m

j=0
1
j! ≤ e · m! = O(m!) possible

orderings of subsets of I. Then, there exist O((m!)�) different combinations of
such � orderings, implying that there exist O((m!)�) possible agent classes over
the item set I. Since for each agent class C, |A2(C, I2)| ≤ m + 1, we have that
|A2| = Σagent class C|A2(C, I2)| ≤ (m!)� ·(m + 1). Thus, |I2| = O((m!)� ·(m+1)) =
O((m!)�+1).

We now prove that I1 is a Yes-instance if and only if I2 is a Yes-instance.
(⇒): Assume that there exists an α-globally optimal assignment p for I1.

Then, there exist α layers i1, . . . , iα of I1 in which p is pareto optimal. We create
an assignment q : A2 → I ∪ {b∅} for the reduced instance as follows: For each
a ∈ A2, let p(A1(C(a, I1), I1)) denote the set of items allocated to the agents
from A1(C(a, I1), I1) by p. We allocate the items in p(A1(C(a, I1), I1)) to agents
in A2(C(a, I2), I2) arbitrarily (observe that C(a, I1) = C(a, I2)). Agents that do
not have available items are assigned to b∅. First, observe that q allocates all the
items which are allocated by p since there are at most m items, and the algorithm
keeps all or exactly m + 1 agents from each set A1(C(a, I1), I1). As a result, q
cannot admit self loops in layers i1, . . . , iα of I2. Formally, the sets A1(C(a, I1), I1)
and A2(C(a, I2), I2) satisfy |A2(C(a, I2), I2)| ≤ |A1(C(a, I1), I1)|. Since the agents
in these sets are allocated the same number of items by p and q, if there exists an
agent in A2(C(a, I2), I2) that admits a self loop in I2, there must exist an agent
in A1(C(a, I1), I1) that admits a self loop in I1. Second, we claim that q does
not admit trading cycles in these layers. For the sake of contradiction, suppose
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there exists a layer ij in I2, and t agents a′
1, . . . , a

′
t ∈ A2 that admit a trading

cycle (a′
1, q(a

′
1), . . . , a

′
t, q(a

′
t)) in Qij

. By the construction of q, notice that there
exist t agents a1, . . . , at ∈ A1, such that for each i ∈ [t], C(ai, I1) = C(a′

i, I2),
and q(a′

i) = p(ai). Then, p admits the trading cycle (a1, p(a1), . . . , at, p(at)) in
Pij

. This gives a contradiction to Proposition 1.
(⇐): Assume that there exists an α-globally optimal assignment q for I2.

Then there exist α layers i1, . . . , iα in I2 in which q is pareto optimal. We denote

an assignment p for I1 by p(a) =

{
q(a) a ∈ A2

b∅ otherwise
, and we claim that p is pareto

optimal in layers i1, . . . , iα in I1. By the construction of p, for each a1 ∈ A1 \A2,
there exists an agent a2 ∈ A2 such that C(a1, I1) = C(a2, I2) and p(a1) = q(a2).
Namely, there exists a mapping f from agents in A1 to agents in A2 such that
for each a1 ∈ A1, C(a1, I1) = C(f(a1), I2) and p(a1) = q(f(a1)). If p admits a
trading cycle (a1, p(a1), . . . , ar, p(ar)) in some layer ij of I1, then q admits the
trading cycle (f(a1), q(f(a1)), . . . , f(ar), q(f(ar))) in layer ij of I2. If p admits a
self loop in layer ij of I1 with agent a1 ∈ A1, then q admits a self loop with agent
f(a1) in layer ij of I2. Thus by Proposition 1, we conclude that p is α-globally
optimal in I1. �	
Corollary 1 (of Theorems 1 and 3). α-Globally Optimal Assignment
is solvable in time O∗(((m!)�+1)!).

Theorem 4. α-Globally Optimal Assignment is solvable in time
(nm)O(m). Thus, it is XP with respect to m.

Proof. We present a simple brute-force algorithm. The algorithm simply iterates
over all subsets of items I ′ ⊆ I. For each subset, it iterates over all subsets A′ ⊆ A
such that |A′| = |I ′|. For each a /∈ A′, the algorithm allocates b∅, and it tries
all possible |I ′|! different ways to allocate the items in I ′ to the agents in A′ (it
skips allocations that allocate items that are not acceptable by their owners in
more than �−α+1 layers). The algorithm constructs the corresponding trading
graphs, and verifies in polynomial time whether the current assignment is α-
globally optimal. Hence, the running time of the algorithm is

∑m
t=0

(
m
t

) · (n
t

) · t! ·
(n + m)O(1) ≤ m · 2m · n

m
2 · m! · (n + m)O(1) = (nm)O(m). �	

Before we continue with our next results, let us discuss a simple property
that will help in many of our proofs.

Definition 3. Let (A, I, P ) be an instance of the Assignment problem and
suppose that P = {<a| a ∈ A}. We say that agents a1, a2 ∈ A respect each
other if there exists a linear order on a subset of I, � ⊆ I × I, such that both
<a1⊆ � and <a2⊆ �.

Lemma 2. Let (A, I, P ) be an instance of the Assignment problem such that
there exist agents a1, . . . , ar ∈ A where for each i, j ∈ [r], ai and aj respect each
other. Then, for every assignment p : A → I ∪ {b∅}, p does not admit a trading
cycle among the agents a1, . . . , ar.



Parameterized Analysis of Assignment Under Multiple Preferences 169

Proof. Towards a contradiction, suppose there exist an assignment p which
admits a trading cycle (a1, p(a1), . . . , ar, p(ar)) whose agents pairwise respect
each other. Then, there exists a linear order � ⊆ I×I, such that for each i ∈ [r],
<ai

⊆ �. This implies that p(a1)�p(a2)� . . .�p(ar). Since p(ar) <ar
p(a1),

we have that p(ar)�p(a1), a contradiction to � being a linear order. �	
We now prove that Ω∗(k!) is a (tight) lower bound on the running time of

any algorithm for α-Globally Optimal Assignment under the ETH, even
for larger parameters than n such as k = n + m + α and k = n + m + (� − α).
So, the algorithm in Theorem 1 is optimal (in terms of running time).

Theorem 5 (*). Unless ETH fails, there does not exist an algorithm for
α-Globally Optimal Assignment with running time O∗(2o(k log k)) where
k = n + m + α or k = n + m + (� − α).

Proof (sketch). We provide a proof sketch for the parameter k = n+m+α (the
proof for the second parameter is provided in the full version). We use the tech-
nique of linear parameter reduction (for more information, see the proposition
by Cygan et al. [16] in the full version) from k × k Permutation Clique to
α-Globally Optimal Assignment. In k × k Permutation Clique, we are
given a graph G where the vertices are elements of a k×k table (V (G) = [k]×[k]).
The task is to decide whether there exists a k×k-permutation clique in G, which
is a clique of size k in G that contains exactly one vertex from each row and
exactly one vertex from each column, i.e. there exists a permutation π on [k] such
that the vertices of the clique are (1, π(1)), . . . , (k, π(k)). Lokshtanov et al. [25]
proved that there is no O∗(2o(k log k))-time algorithm for k × k Permutation
Clique, unless ETH fails.

Let (G, k) be an instance of k × k Permutation Clique. We create an
agent ai for each row i ∈ [k], and an item bj for each column j ∈ [k]. We
construct an instance of α-Globally Optimal Assignment with k2 layers,
each corresponds to a row-column pair (i, j), containing the preference profile
P(i,j) defined as follows: (i) ai : bj (ii) ar : {bq | {(i, j), (r, q)} ∈ E(G), q �= j}
(sorted in ascending order by q) ∀r ∈ [k] \ {i}.

We finally set α = k. We prove that there exists a k × k-permutation clique
in G if and only if there exists a k-globally optimal assignment for the instance.

(⇒) Suppose there exists a permutation π for [k] such
that (1, π(1)), . . . , (k, π(k)) form a clique in G. We define an assignment p by
p(ai) = bπ(i) for each i ∈ [k] (each row agent is assigned to its corresponding
column item). Observe that for each i ∈ [k], bπ(i) is acceptable by ai in P(i,π(i))

and in all profiles P(j,π(j)) such that j ∈ [k] \ {i} since there is an edge between
(i, π(i)) and each (j, π(j)). Moreover, each P(j,π(j)) contains no self loops because
all the items are allocated. Since we sorted each preference list in an ascending
order by the item indices, all the agents respect each other in each preference
profile and by Lemma 2, p does not admit trading cycles in any layer.

(⇐) Suppose there exists a k-globally optimal assignment p for the con-
structed instance. Note that if p is pareto optimal in some profile P(i,j), it must
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satisfy p(ai) = bj , as otherwise, ai would admit a self loop. Hence, we have that
for each i ∈ [k], p is pareto optimal in at most one profile among P(i,1), . . . , P(i,k)

and in at most one profile among P(1,i), . . . , P(k,i). Since α = k, we have that
there exists a permutation π on [k] such that p is pareto optimal in P(i,π(i)) for
each i ∈ [k]. It can be proved that {(i, π(i)) | i ∈ [k]} is the vertex set of a
k × k-permutation clique in G.

It holds that n+m+α = O(k). Thus, by Cygan et al. [16], we conclude that
there is no O∗(2o(k log k))-time algorithm for α-Globally Optimal Assign-
ment, unless ETH fails. �	
Theorem 6 (*). α-Globally Optimal Assignment is W[1]-hard for the
parameters m + α and m + (� − α).

Proof (sketch). We provide a proof sketch for m + (� − α) (the proof for the
parameter m + α is provided in the full version). We present a parameterized
(and also polynomial) reduction from the W[1]-hard problem Multicolored
Independent Set to α-Globally Optimal Assignment. The input of Mul-
ticolored Independent Set consists of an undirected graph G = (V,E), and
a coloring c : V → [k] that colors the vertices in V with k colors. The task is to
decide whether G admits a multicolored independent set of size k, which is an
independent set V ′ ⊆ V that satisfies {c(v′) | v′ ∈ V ′} = [k] and |V ′| = k.

Given an instance (G = (V,E), c), assume that V = {v1, . . . , vn}. We con-
struct an instance of α-Globally Optimal Assignment with the agent set
A = {a1, . . . , an} and the item set I = {b1, . . . , bk}, consisting of � = n + 1
layers. Informally, the agents that will allocate the items from I in an �-globally
optimal assignment will correspond to vertices that form a multicolored inde-
pendent set in G. The first layer enforces each agent to allocate either the item
that corresponds to its color, or b∅ and it is defined by: ai : bc(i) ∀i ∈ [k]. For
each i ∈ [n], the goal of layer 1 + i is to admit trading cycles if both vi and one
of its neighbors are included in the independent set (this happens when both of
their agents allocate items). It is defined as follows:

(i) ai : {bj | j ∈ [k]}\{bc(vi)} (ordered arbitrarily) > bc(vi) (ii) aj : bc(vj) ∀j ∈
[n]\{i} such that (1) {vi, vj} ∈ E and c(vj) = c(vi) or (2) {vi, vj} /∈ E (iii) aj :
bc(vi) > bc(vj) ∀j ∈ [n]\{i} such that {vi, vj} ∈ E and c(vj) �= c(vi) . We finally
set α = �. We claim that G admits a multicolored independent set of size k
if and only if there exists an �-globally optimal assignment for the constructed
instance.

(⇒): Suppose that G admits a multicolored independent set of size k, V ′ =
{vi1 , . . . , vik

}. Denote an assignment p by p(aij
) = bc(vij

) for each j ∈ [k], and
p(ai) = b∅ for each i /∈ {i1, . . . , ik}. Observe that for each i ∈ [k], p(ai) is
acceptable by ai in each layer, and each layer cannot admit self loops since all
the items are allocated. Moreover, notice that p is pareto optimal in the first layer
since no trading cycles can be performed. We prove that p is pareto-optimal in
layer 1 + i for each i ∈ [n]. Towards a contradiction, suppose that there exists
i ∈ [n] such that p is not pareto optimal in layer 1 + i. Observe that the only
possible trading cycle in this layer consists of the agent ai and an agent ar such
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that p(ai) = bc(vi), c(vi) �= c(vr), {vi, vr} ∈ E, and p(ar) = bc(vr). Then, we have
that vi, vr ∈ V ′, a contradiction.

(⇐): Provided in the full version. �	

4 NP Hardness

Theorem 7 (*). For any 2 ≤ α ≤ �, α-Globally Optimal Assignment is
NP-hard.

Proof (sketch). We extend a polynomial reduction by Aziz et al. [6] from the
Serial Dictatorship Feasibility problem, which was proved to be NP-hard
by Saban and Sethuraman [28]. In the Serial Dictatorship Feasibility prob-
lem, the input is a tuple (A, I, P, a, b) where A is a set of n agents, I is a set of
n items, P is the preference profile in which each agent has a complete linear
order on the items, a ∈ A, and b ∈ I. The task is to decide whether there exists
a permutation for which serial dictatorship (defined in Sect. 2) allocates item b
to agent a. Given such (A, I, P, a, b), Aziz et al. [6] constructed two preference
profiles, P1 and P2, such that (A, I, P, a, b) is a Yes-instance if and only if there
exists an assignment that is pareto optimal in both P1 and P2.

We add � − α additional new items c1, . . . , c�−α and we define I ′ = I ∪
{c1, . . . , c�−α}. We construct an instance of α-Globally Optimal Assign-
ment over A and I ′, consisting of � layers. The first two layers are P1 and P2,
the next α−2 layers are copies of P1, and the next � − α layers are P ′

1, . . . , P
′
�−α,

where for each i ∈ [�−α], P ′
i is defined as follows: (i) a : ci (ii) a′ : ∅ ∀a′ ∈ A\{a}.

Notice that the only pareto optimal assignment for P ′
i is the assignment that

allocates ci to a, and b∅ to each a′ ∈ A\{a}. Using this observation, we prove
that an assignment is α-globally optimal for the constructed instance if and only
if it is pareto optimal in both P1 and P2. �	

We define three constructions of preference profiles given an instance of 3-
SAT and we consider their connections to the satisfiability of the formula. We
will rely on these connections to design a polynomial reduction from 3-SAT to
α-Globally Optimal Assignment that shows that α-Globally Optimal
Assignment is para-NP-hard with respect to � + d. We will also rely on these
results in Sect. 5 to prove that the problem is unlikely to admit polynomial
kernels with respect to n + m + α, n + m + (� − α), and m + �.

Let n,m ∈ N be positive integers. Denote the agent set A(m,n) = {ai,j , ai,j |
i ∈ [m], j ∈ [n]}, and the item set I(m,n) = {bi,j , bi,j | i ∈ [m], j ∈ [n]}. We
provide two preference profiles over A(m,n) and I(m,n): P1(m,n) and P2(m,n).
Intuitively, given a 3-SAT instance with n variables and m clauses, the way the
agents and the items are assigned to each other in an assignment that is pareto
optimal in both P1(m,n) and P2(m,n) will encode a boolean assignment for the
variable set of the instance. P1(m,n) is defined as follows: ∀i ∈ [m], j ∈ [n]: (i)
ai,j : bi,j > bi,j (ii) ai,j : bi,j > bi,j . P2(m,n) is defined as follows:
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• ∀j ∈ [n]: (i) am,j : bm,j > bm−1,j > bm,j (ii) am,j : bm,j > bm−1,j > bm,j

• ∀i ∈ {2, . . . , m − 1}, j ∈ [n]: (i) ai,j : bi−1,j > bi,j > bi+1,j > bi,j (ii) ai,j :
bi−1,j > bi,j > bi+1,j > bi,j

• ∀j ∈ [n]: (i) a1,j : b1,j > b2,j > b1,j (ii) a1,j : b1,j > b2,j > b1,j

Claim 1 (*). An assignment p : A(m,n) → I(m,n)∪{b∅} is pareto optimal in
P1(m,n) if and only if {p(ai,j), p(ai,j)} = {bi,j , bi,j} for each i ∈ [m] and j ∈ [n].

We denote P true
j = {(ai,j , bi,j), (ai,j , bi,j) | i ∈ [m]}, and P false

j =
{(ai,j , bi,j), (ai,j , bi,j) | i ∈ [m]}. Intuitively, P true

j and P false
j will correspond

to setting the variable xj to true or false, respectively.

Claim 2 (*). An assignment p : A(m,n) → I(m,n) ∪ {b∅} is pareto optimal in
both P1(m,n) and P2(m,n) if and only if for each j ∈ [n], either P true

j ⊆ p or
P false

j ⊆ p.

Proof (sketch). (⇒): Assume that p is pareto optimal in both P1(m,n) and
P2(m,n). Towards a contradiction, suppose that there exists j ∈ [n] satisfying
that both P true

j � p and P false
j � p. By Claim 1, there exist i1, i2 ∈ [m] such

that i1 < i2, satisfying that either (1) p(ai1,j) = bi1,j and p(ai2,j) = bi2,j ,
or (2) p(ai1,j) = bi1,j and p(ai2,j) = bi2,j . We have that there must exist
i1 ≤ i < i2 such that either (1) p(ai,j) = bi,j and p(ai+1,j) = bi+1,j , or (2)
p(ai,j) = bi,j and p(ai+1,j) = bi+1,j . This implies that p admits the trading cycles
(ai,j , bi,j , ai+1,j , bi+1,j) or (ai,j , bi,j , ai+1,j , bi+1,j) in P2(m,n), a contradiction.

(⇐): Assume that for each j ∈ [n], either P true
j ⊆ p or P false

j ⊆ p. By
Claim 1, p is pareto optimal in P1(m,n). Then by the construction of P2(m,n),
observe that every possible trading cycle in P2(m,n) has one of the forms:
(1) (ai,j , bi,j , ai−1,j , bi−1,j) or (2) (ai,j , bi,j , ai−1,j , bi−1,j), where i ∈ {2, . . . , m}.
Then, there exist j ∈ [n] and i ∈ {2, . . . , m} such that either (1) p(ai,j) = bi,j and
p(ai−1,j) = bi,j or (2) p(ai,j) = bi,j and p(ai−1,j) = bi,j . Thus, both P true

j � p

and P false
j � p, a contradiction. �	

Let D = (X , C) be an instance of 3-SAT where X = {x1, . . . , xn} is the set of
variables, and C = {C1, . . . , Cm} is the set of clauses, each of size 3. In order
to construct the third preference profile P3(D), order the literals in each clause
arbitrarily, such that Ci = �1i ∨ �2i ∨ �3i for each i ∈ [m]. The third preference pro-
file is responsible for the satisfiability of the formula. We define indD(i, j) as the
index of the variable which appears in the j-th literal in Ci for each j ∈ [3], and

we define bD(i, j) =

{
bi,indD(i,j) �j

i is negative
bi,indD(i,j) �j

i is positive
. Intuitively, when ai,indD(i,j)

gets bD(i, j) and ai,indD(i,j) gets bD(i, j), it means that �j
i is “satisfied”. Define

the preference profile P3(D) as follows:

• ∀i ∈ [m]: (i) ai,indD(i,3): bD(i, 3) > bD(i, 2) > bD(i, 3)
(ii) ai,indD(i,2) : bD(i, 2) > bD(i, 1) > bD(i, 2)
(iii) ai,indD(i,1) : bD(i, 1) > bD(i, 3) > bD(i, 1)
(iv) ai,indD(i,r) : bD(i, r) > bD(i, r) ∀r ∈ [3]
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• ∀i ∈ [m], j ∈ [n] such that xj does not appear in Ci: (i) ai,j : bi,j > bi,j (ii)
ai,j : bi,j > bi,j

Claim 3 (*). An assignment p : A(m,n) → I(m,n) ∪ {b∅} is pareto optimal in
P1(m,n), P2(m,n), and P3(D) if and only if: (1) for each j ∈ [n], either P true

j ⊆ p

or P false
j ⊆ p; and (2) for each clause Ci = �1i ∨ �2i ∨ �3i ∈ C, there exists at least

one j ∈ [3] such that p(ai,indD(i,j)) = bD(i, j).

Proof (sketch). (⇒): Assume that p is pareto optimal in P1(m,n), P2(m,n) and
P3(D). By Claim 2, p satisfies the first condition. Observe that the only pos-
sible trading cycles in P3(D) are of the form (ai,indD(i,3),bD(i, 3), ai,indD(i,2),

bD(i, 2), ai,indD(i,1) ,bD(i, 1)). Then by Claim 1, for each i ∈ [m], there must
exists j ∈ [3] such that p(ai,indD(i,j)) = bD(i, j). The opposite direction is pro-
vided in the full version. �	
Lemma 3 (*). An instance D = (X , C) of 3-SAT such that |X | = n and
|C| = m, is a Yes-instance if and only if there exists an assignment p : A(m,n) →
I(m,n) ∪ {b∅} that is pareto optimal in P1(m,n), P2(m,n), and P3(D).

Theorem 8 (*). 3-SAT is polynomial-time reducible to α-Globally Opti-
mal Assignment where α = � = 3 and d = 3 or where α = � = 4 and d = m.

5 Non-existence of Polynomial Kernels

In this section, we prove (using three cross-compositions) that α-Globally
Optimal Assignment is unlikely to admit polynomial kernels with respect to
n + m + α, n + m + (� − α), and m + �.

Theorem 9 (*). There does not exist a polynomial kernel for α-Globally
Optimal Assignment with respect to n + m + α, n + m + (� − α), and m + �
unless NP⊆ coNP/poly.

Proof (sketch). We provide a proof sketch for the parameter m + � (the proofs
for the other parameters are provided in the full version). We provide a
cross-composition from 3-SAT to α-Globally Optimal Assignment. Given
instances of 3-SAT D0 = (X0, C0), . . . , Dt−1 = (Xt−1, Ct−1) of the same size
n ∈ N for some t ∈ N, we first modify each instance Di to have Xi = {x1, . . . , xn}
and |Ci| = n. We define an agent set Ai(n, n) = {ai

r,j , a
i
r,j | r, j ∈ [n]} for

each i ∈ {0, . . . , t − 1}. The constructed instance is defined over the agent set
A =

⋃t−1
i=0 Ai(n, n) and the item set I = I(n, n) (defined in Sect. 4); and it

consists of 2�log t� + 2 layers. Intuitively, the goal of the first 2�log t� layers is
to enforce each α-globally optimal assignment to allocate all the items only to
agents that correspond to the same Yes-instance (if one exists). Let i ∈ [�log t�],
the preference profile in layer i (or �log t� + i) requires an assignment to assign
the items in I only to agents whose corresponding instance is Dj such that the
i-th bit in the binary representation of j is 0 (or 1), and to assign b∅ to all other
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agents. These layers are constructed as a composition of P1(n, n) over Ar(n, n)
and I(n, n) for every r ∈ {0, . . . t − 1} such that the i-th bit in the binary rep-
resentation of r is 0 (or 1), together with empty preferences for all the other
agents. Layer 2�log t� + 1 is constructed as a composition of the profile P2(n, n)
over Ai(n, n) and I(n, n) for each i ∈ {0, . . . , t−1}, and the last layer is a compo-
sition of the profiles P3(Di) over Ai(n, n) and I(n, n) for each i ∈ {0, . . . , t − 1}.
We finally set α = �log t� + 2. Notice that every assignment can be pareto opti-
mal in at most one among layers i and �log t�+i for each i ∈ [�log t�]. Then, each
α-globally optimal assignment is pareto optimal in exactly �log t� layers among
the first 2�log t� layers, and must be pareto optimal in the last two layers. There-
fore, we have that each such assignment “encodes” some i ∈ {0, . . . , t − 1} in
the first 2�log t� layers (if it is pareto optimal in layer j or �log t� + j, then the
j-th bit of i is 0 or 1, respectively). The optimality in the last two layers implies
that p is pareto optimal in both P2(n, n) and P3(n, n) over Ai(n, n) and I(n, n).
Thus, by Lemma 3, Di is a Yes-instance. The opposite direction follows from
Lemma 3 as well. �	

6 Conclusion and Future Research

In this paper, we introduced a new variant of the Assignment problem where
each agent is equipped with multiple incomplete preference lists, and we defined
the notion of global optimality, that naturally extends pareto optimality. We
considered several natural parameters, and presented a comprehensive picture
of the parameterized complexity of the problem with respect to them.

The results show that the problem of finding an α-globally optimal assign-
ment is, in general, computationally hard, but that it admits more positive
results when the parameter depends on n = #agents (and α or �) than when it
depends on m = #items (and α or �). We proved that the problem admits an
XP algorithm with respect to m, but is unlikely to admit one with respect to
�+d and �+(m−d). We provided an O∗(n!)-time algorithm and an exponential
kernel with respect to m + �. Both results showed that the problem is FPT with
respect to these parameters. In addition, we proved that O∗(k!) is essentially a
tight lower bound on the running time under ETH for even larger parameters
than n such as k = n+m+α and k = n+m+(�−α). Moreover, we proved that
the problem admits a polynomial kernel with respect to n + �, but is unlikely to
admit one with respect to all the other parameters that we considered. We also
proved that the problem is W[1]-hard with respect to m + α and m + (� − α).
However, two questions are still open: (1) Is it possible to obtain a (not polyno-
mial) better kernel for m + � with size substantially smaller than O∗((m!)�+1)?
(2) Is it possible to obtain a better running time than O∗(k!) for k = n+m+ �?

Continuing our research, it might be interesting to study “weaker” defini-
tions of optimality, for example: finding an assignment such that every group
of k agents has some α layers where they (1) do not admit trading cycles; (2)
are not parts of larger trading cycles; or (3) do not admit the same trading
cycle. Verification variants of these problems can also be suggested, i.e. given an
assignment p, check whether it is optimal.
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Another direction is to study the particular case where the preferences of the
agents are complete since it may provide more positive algorithmic results under
some parameterizations. In addition, notice that a solution to α-Globally
Optimal Assignment can be seen as an approximation to the “optimal” solu-
tion in which an assignment is pareto optimal in a maximum number of layers
(this is similar to the Vertex Cover problem, where the parameter k is some-
what an “approximation” to the size of the minimum vertex cover). In this
approach, we can define the problem as an approximation problem and study it
from the perspective of parameterized approximability.

In this paper, we considered the basic “unweighed” model of the problem
(since this is the first study of this kind). Another direction is to consider a
weighted version in which some criteria (layers) may have higher importance
than others. A straightforward way to model this is by having several copies of
layers. However, if weights are high and varied, this might lead to inefficiency.

References

1. Abdulkadirog, A.: House allocation with existing tenants 1 (1999)
2. Abdulkadiroglu, A., Sonmez, T.: Random serial dictatorship and the core from

random endowments in house allocation problems. Econometrica 66(3), 689–702
(1998). https://ideas.repec.org/a/ecm/emetrp/v66y1998i3p689-702.html
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Abstract. In this paper, we propose solid admissibility that is a
strengthened version of Dung’s admissibility to obtain the most accept-
able set of arguments. Besides, other solid extensions based on solid
admissibility are defined. Such extensions not only include all defenders
of its elements but also exclude all arguments indirectly attacked and
indirectly defended by some argument(s). Furthermore, we characterize
solid extensions with propositional formulas. Using these formulas, we
aggregate solid extensions by using approaches from judgment aggrega-
tion. Especially, although no quota rule preserves Dung’s admissibility
for any argumentation framework, we show that there exist quota rules
that preserve solid admissibility for any argumentation framework.

Keywords: Abstract argumentation · Solid semantics · Social choice
theory

1 Introduction

In Dung’s work [12], an argumentation framework (AF) is a directed graph,
where nodes represent arguments and edges represent elements of a binary rela-
tion. It has been studied widely over the last decades. One of the core notions of
AFs is admissibility. An admissible extension is a set of arguments that contains
no internal conflict and defends its elements against any attacker.

In this paper, we mainly focus on obtaining the most acceptable arguments in
AFs by strengthening Dung’s admissibility. Before discussing this idea, we first
illustrate two problems (or drawbacks) observed from the literature. The first one
is observed from graded acceptability [14] which provides an approach to rank
arguments from the most acceptable to the weakest one(s) by parameterizing
the numbers of attackers and counter-attackers. Hence, we can require that a
set of arguments is graded-acceptable if it contains at least n counter-attackers
for each attacker of its elements. Graded acceptability is flexible as we can tune
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the parameter n. What if we want to find out in an AF the sets of arguments
such that they exactly contain all counter-attackers for each attacker of their
elements? It is impossible to achieve this goal by tuning the parameter n, as
different attackers may have different numbers of counter-attackers. Consider
the following example.

A2 B2 C2

B1 C1A1

(a) AF1

A B C

E FD

(b) AF2

A B

(c) AF3

Fig. 1. Three problematic argumentation frameworks

Example 1. In Fig. 1a, {A1, C1}, {A2, C2} and {A1, A2, C2} are acceptable under
graded semantics when we require that a set of arguments is acceptable if it
contains at least one counter-attacker for each attacker of its elements. We
should notice that although {A1, A2, C2} contains all counter-attackers when
its elements are attacked, {A2, C2} fails to contain all counter-attackers when-
ever its elements are attacked. When the requirement is more demanding in the
sense that a set of arguments is acceptable if it contains at least two counter-
attackers for each attacker of its elements, {A1, A2, C2} is still acceptable under
this requirement. Although {A1, C1} contains all counter-attackers when its ele-
ments are attacked, it fails to satisfy this requirement.

The other problem is observed from the situation where some argument indi-
rectly attacks and indirectly defends some argument. There are other semantics
[1,7] that also provide approaches to rank arguments. But their approaches rely
on conjectures regarding the processing of cycles. However, Dung indicates in
[12] that the presence of cycles could be a problem. In this work, an argument
A is controversial w.r.t. an argument B if A indirectly attacks and indirectly
defends B. Such arguments could lead to problematic situations. Consider the
following example.

Example 2. In Fig. 1b, A is controversial w.r.t. C as A indirectly attacks and
indirectly defends C. From a skeptical view, A and C should not occur in the
same set of acceptable arguments. But {A,C, F} is admissible in Dung’s seman-
tics.

There is no consensus on whether to accept or reject such arguments. Note
that any argument in an odd-length cycle is controversial w.r.t. any argument
in this cycle. There are many articles aiming to address this problem [3,4,6,11].
For example, Baumann et al. [4] argue that in Fig. 1c, A should be rejected
while B should be accepted, since the attack from the self-defeat argument A
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is not valid. However, Jakobovits and Vermeir [15] state that A and B can be
labeled as “undecided” and “rejected”, resp. They argue that since A is “strong
enough” to attack A, surely it is strong enough to do the same with B. Compared
with these approaches directly facing these disputable situations, our approach
is more like bypassing such situations.

Considering the emergence of the problems above, we argue that the most
acceptable arguments should satisfy two criteria: (i) they should have defend-
ers as many as possible, and (ii) they should avoid the undesirable interference
of some arguments. Dung’s admissibility only requires a weak defense in the
sense that only one mandatory defender is enough. An interesting fact is that
some problematic situations disappear after Dung’s admissibility is strength-
ened. In this paper, we propose solid admissibility which satisfies the two crite-
ria. Roughly speaking, a solidly admissible extension is a set of arguments that
contains no internal conflict, defends its elements against any attackers, and
contains all the defenders. We will show that if an argument A is controversial
w.r.t. an argument B, then B will never occur in any solid extension based on
solid admissibility. To sum up, such extensions not only contain all defenders of
their elements, but also avoid the interference of any argument that is indirectly
attacked and indirectly defended by some argument. This conforms to the intu-
ition in practical reasoning or real life in the sense that if an argument has more
defenders, then surely it has less controversy.

We apply solid semantics in the field of judgment aggregation, a branch of
social choice theory. When a group of agents evaluates which arguments are
acceptable in an AF, each of them may report a different extension under a
specific solid semantics that represents a individual viewpoint about which argu-
ments are acceptable. We study whether their collective outcome is also a solid
extension under this semantics when quota rules are applied. Especially, we show
that there exist quota rules that preserve solid admissibility for any AF.

Contribution. Firstly, we propose a family of new semantics for abstract argu-
mentation. Such semantics provide an approach to circumvent a controversial
situation in AFs and also capture a feature that graded semantics fail to cap-
ture. Secondly, the new semantics have more possibility results for extension
aggregation than Dung’s semantics do.

Paper Outline. The rest of this paper is organized as follows. Section 2 reviews
the background of abstract argumentation and judgment aggregation. Section 3
defines solid admissibility and shows how the problems are addressed. Section 4
develops more solid semantics and shows the connections among them. Besides,
we compare solid semantics with Dung’s semantics. Furthermore, we present
propositional formulas that characterize the solid semantics and pave the way
for solid extensions aggregation. Section 5 shows preservation results for the
solid semantics. Section 6 mainly compares solid semantics with other related
semantics. Section 7 concludes this paper and points out future work.
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2 Preliminary

2.1 Abstract Argumentation

This part reviews some notions of abstract argumentation [12]. Some definitions
are adopted from [14].

Definition 1 (Argumentation framework). An argumentation framework
is a pair AF = 〈Arg,⇀〉, where Arg is a finite and non-empty set of arguments,
and ⇀ is a binary relation on Arg.

For any A,B ∈ Arg, A ⇀ B (or A attacks B) denotes that (A,B) ∈⇀.
For any B ∈ Arg, B = {A ∈ Arg | A ⇀ B}, namely, B denotes the set of
the attackers of B. A is an initial argument iff A = ∅. For any Δ ⊆ Arg and
any B ∈ Arg, Δ ⇀ B denotes that there exists an argument A ∈ Δ such that
A ⇀ B. For any Δ ⊆ Arg and any A ∈ Arg, A ⇀ Δ denotes that there exists
an argument B ∈ Δ such that A ⇀ B. For any A,C ∈ Arg, A is a defender of
C iff there exists an argument B ∈ Arg such that A ⇀ B and B ⇀ C.

An argument A indirectly attacks an argument B iff there exists a finite
sequence A0, . . . , A2n+1 such that (i) B = A0 and A = A2n+1, and (ii) for each
i, 0 � i � 2n, Ai+1 ⇀ Ai. An argument A indirectly defends an argument B iff
there exists a finite sequence A0, . . . , A2n such that (i) B = A0 and A = A2n,
and (ii) for each i, 0 � i < 2n, Ai+1 ⇀ Ai. An argument A is controversial w.r.t.
an argument B iff A indirectly attacks and indirectly defends B. Note that direct
attackers (resp. defenders) are also indirect attackers (resp. defenders).

Definition 2 (Dung’s defense). Given AF = 〈Arg,⇀〉. Δ ⊆ Arg defends
C ∈ Arg iff for any B ∈ Arg, if B ⇀ C then Δ ⇀ B.

Definition 3 (Defense function). Given AF = 〈Arg,⇀〉. The defense func-
tion d : 2Arg −→ 2Arg of AF is defined as d(Δ) = {C ∈ Arg | Δ defends C}.
Definition 4 (Neutrality function). Given AF = 〈Arg,⇀〉. The neutrality
function n : 2Arg −→ 2Arg of AF is defined as n(Δ) = {B ∈ Arg | not Δ ⇀ B}.
Definition 5 (Dung’s semantics). Given AF = 〈Arg,⇀〉. For any Δ ⊆
Arg, (i) Δ is a conflict-free extension iff Δ ⊆ n(Δ); (ii) Δ is a self-defending
extension iff Δ ⊆ d(Δ); (iii) Δ is an admissible extension iff Δ ⊆ n(Δ) and
Δ ⊆ d(Δ); (iv) Δ is a complete extension iff Δ ⊆ n(Δ) and Δ = d(Δ); (v)
Δ is a preferred extension iff Δ is a maximal admissible extension; (vi) Δ is a
stable extension iff Δ = n(Δ); (vii) Δ is the grounded extension iff Δ is the
least fixed point of the defense function d.

Theorem 1 (Dung, 1995). Given AF = 〈Arg,⇀〉. (i) If Δ ⊆ Arg is a pre-
ferred extension, then Δ is complete extension, but not vice versa; (ii) If Δ ⊆ Arg
is an admissible extension, then there exists a preferred extension Γ such that
Δ ⊆ Γ .
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2.2 Integrity Constraints and Judgment Aggregation

Given AF = 〈Arg,⇀〉, Dung’s semantics can be captured by propositional lan-
guage (denoted as LAF), whose literals are arguments in Arg [5]. A model is
represented by the set of the literals which it satisfies. In other words, a model
of a formula is a subset of Arg: (i) for any A ∈ Arg, Δ � A iff A ∈ Δ; (ii) Δ � ¬ϕ
iff Δ � ϕ does not hold; (iii) Δ � ϕ ∧ ψ iff Δ � ϕ and Δ � ψ.

A property σ of extensions can be regarded as a subset of 2Arg, namely,
σ ⊆ 2Arg. Then the set of the extensions under a semantics is a property, e.g.,
completeness is the set of the complete extensions of AF. For any formula ϕ in
LAF, we let Mod(ϕ) = {Δ ⊆ Arg | Δ � ϕ}, namely, Mod(ϕ) denotes the set of
all models of ϕ. Obviously, σ = Mod(ϕ) is a property. When using a formula ϕ
to characterize such a property, ϕ is referred to as an integrity constraint.

We next introduce a model for the aggregation of extensions [10,13]. Given
AF = 〈Arg,⇀〉. Let N = {1, · · · , n} be a finite set of agents. Imagining that
each agent i ∈ N reports an extension Δi ⊆ Arg. Then Δ = (Δ1, · · · ,Δn) is
referred to as a profile. An aggregation rule is a function F : (2Arg)n −→ 2Arg,
mapping any given profile of extensions to a subset of Arg.

Definition 6 (Quota rules). Given AF = 〈Arg,⇀〉, let N be a finite set of
n agents, and let q ∈ {1, · · · , n}. The quota rule with quota q is defined as
the aggregation rule mapping any given profile Δ = (Δ1, · · · ,Δn) ∈ (2Arg)n of
extensions to the set including exactly those arguments accepted by at least q
agents: Fq(Δ) = {A ∈ Arg | #{i ∈ N | A ∈ Δi} � q}.

The quota rule Fq for n agents with q = 	n+1
2 
 (resp., q = 1, q = n) for AF

is called the strict majority (resp., nomination, unanimity) rule.

Definition 7 (Preservation). Given AF = 〈Arg,⇀〉. Let σ ⊆ 2Arg be a prop-
erty of extensions. An aggregation rule F : (2Arg)n −→ 2Arg for n agents is said
to preserve σ if F (Δ) ∈ σ for every profile Δ = (Δ1, · · · ,Δ1) ∈ σn.

Lemma 1 (Grandi and Endriss, 2013). Given AF = 〈Arg,⇀〉. Let ϕ be a
clause (i.e., disjunctions of literals) in LAF with k1 positive literals and k2 neg-
ative literals. Then a quota rule Fq for n agents preserves the property Mod(ϕ)
for AF iff the following inequality holds: q · (k2 − k1) > n · (k2 − 1) − k1.

Lemma 2 (Grandi and Endriss, 2013). Given AF = 〈Arg,⇀〉. Let ϕ1

and ϕ2 be integrity constraints in LAF. If an aggregation rule F preserves both
Mod(ϕ1) and Mod(ϕ2), then F preserves Mod(ϕ1 ∧ ϕ2), but not vice versa.

3 Solid Admissibility

To obtain the most acceptable arguments that satisfy the two criteria proposed
in the introduction, we formally introduce solid admissibility in this section.
Arguments in admissible extensions satisfy the criteria. Firstly, we strengthen
Dung’s defense. Definition 8 states that a set of arguments solidly defends an
argument iff this set defends (in Dung’s sense) this argument and contains all
the defenders of each element of this set.
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Definition 8 (Solid defense). Given AF = 〈Arg,⇀〉. Δ ⊆ Arg solidly
defends (or s-defends) C ∈ Arg iff for any B ∈ Arg, if B ⇀ C, then Δ ⇀ B
and B ⊆ Δ.

Definition 9 (Solid defense function). Given AF = 〈Arg,⇀〉. The solid
defense function ds : 2Arg −→ 2Arg of AF is defined as follows. For any Δ ⊆ Arg,

ds(Δ) =
{
C ∈ Arg | Δ s-defends C

}
(1)

Next we show an important property of the solid defense function. It is easy
to see that, if a set of arguments s-defends an argument, then any superset of
this set also s-defends this argument by Definition 8.

Theorem 2. The solid defense function ds is monotonic.

Proposition 1. Given AF = 〈Arg,⇀〉. For any Δ ⊆ Arg, ds(Δ) ⊆ d(Δ), but
not vice versa.

Proposition 1 states that solid defense strengthens Dung’s defense since, if a
set of arguments s-defends an argument, then this set also defends this argument.
To show the converse does not hold, consider AF1 in Fig. 2a. Δ defends C. But
the attackers of B are not fully included in Δ. So Δ does not s-defend C.

Definition 10. Given AF = 〈Arg,⇀〉. For any Δ ⊆ Arg, Δ is a s-self-defending
extension iff Δ ⊆ ds(Δ).

In graded semantics [14], a set of arguments Δ mn-defends an argument C
iff there are at most m − 1 attackers of C that are not counterattacked by at
least n arguments in Δ, where m and n are positive integers. A set of arguments
is mn-self-defending iff it mn-defends each element. We can tune the param-
eters to obtain defenses with different levels of strength. For example, when
n = 1, the larger m is, the stronger the defense is. In Fig. 1a, {A1, C1}, {A2, C2}
and {A1, A2, C2} are 11-self-defending. But {A2, C2} fails to contain all defend-
ers of C2. One might be tempted to tune the parameters to obtain a stronger
defense. Then only {A1, A2, C2} is 12-self-defending. Although {A1, C1} con-
tains all defenders of C1, it is not 12-self-defending. Hence, graded defense can
not capture sets of arguments that exactly contain all defenders of their elements
by tuning the parameters. However, solid defense can accomplish this, since it is
identified that {A2, C2} is not s-self-defending while {A1, C1} and {A1, A2, C2}
are s-self-defending.

Definition 11. Given AF = 〈Arg,⇀〉. For any Δ ⊆ Arg, Δ is a s-admissible
extension iff Δ ⊆ n(Δ) and Δ ⊆ ds(Δ).

Definition 11 states that a set of arguments is a s-admissible extension iff the
set is a conflict-free and s-self-defending extension. Next we show that Dung’s
Fundamental Lemma has a counterpart in our semantics. The following lemma
states that whenever we have a s-admissible extension, if we put into this exten-
sion an argument that is s-defended by this extension, then the new set is still
a s-admissible extension. The proof is similar to Dung’s proof [12].
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Lemma 3 (s-fundamental lemma). Given AF = 〈Arg,⇀〉, a s-admissible
extension Δ ⊆ Arg, and two arguments C, C ′ ∈ Arg which are s-defended by Δ.
Then (i) Δ′ = Δ ∪ {C} is s-admissible and (ii) Δ′ s-defends C ′.

As we have strengthened Dung’s admissibility, the second problem mentioned
in the introduction can be addressed now. From a skeptical view, it is not cau-
tious to accept an argument that is indirectly attacked and indirectly defended
by some argument. The following theorem states that such arguments never
occur in s-admissible extensions.

Theorem 3. Given AF = 〈Arg,⇀〉 and a s-admissible extension Δ ⊆ Arg. If
an argument A ∈ Arg is controversial w.r.t. an argument B ∈ Arg, then B /∈ Δ.

Proof. Assume that A is controversial w.r.t. B. Suppose for the sake of a con-
tradiction that B ∈ Δ. Since A indirectly defends B and Δ is s-self-defending,
we also have A ∈ Δ. Besides, since A indirectly attacks B, there exists a finite
sequence A0, . . . , A2n+1 such that (i) B = A0 and A = A2n+1, and (ii) for each
i, 0 � i � 2n, Ai+1 ⇀ Ai. If n = 0, then A1 ⇀ A0, namely, A ⇀ B. This con-
tradicts the conflict-freeness of Δ. If n �= 0, then A2n indirectly defends B. Since
Δ is s-self-defending, A2n ∈ Δ . Again, the fact A2n+1 ⇀ A2n (i.e., A ⇀ A2n)
contradicts the conflict-freeness of Δ. So we conclude that B /∈ Δ.

Note that in Theorem 3, A is not excluded from Δ, since A could be an initial
argument. It is not reasonable to reject an unattacked argument. Consider AF2 in
Fig. 1b. We can see that {A,C, F} is admissible. However, since A is controversial
w.r.t. C, {A,C, F} is not s-admissible. {A} is still s-admissible. The problem of
odd-length cycles has been widely studied. It is thorny to assign a status to an
argument in an odd-length cycle, since any argument in an odd-length cycle is
controversial w.r.t. any argument in this cycle. There is no consensus on this
problem. Interestingly, the following corollary states that such arguments never
occur in s-admissible extensions. Moreover, once there is a path from an odd-
length cycle to some argument, this argument will never occur in any s-admissible
extension since any argument in the odd-length cycle is controversial w.r.t. it.

Corollary 1. Given AF = 〈Arg,⇀〉 and a s-admissible extension Δ ⊆ Arg. If
an argument A ∈ Arg is in an odd-length cycle, then A /∈ Δ.

4 Solid Semantics

We start by developing some solid semantics based on solid admissibility in this
section. These semantics strengthen Dung’s semantics in the sense that for a
solid extension Δ, there exists a Dung’s extension Γ such that Δ is a subset of
Γ . Moreover, we will show connections among solid extensions and compare solid
extensions with Dung’s extensions. These solid semantics can be characterized
by propositional formulas.
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Definition 12 (Solid semantics). Given AF = 〈Arg,⇀〉. For any Δ ⊆ Arg,
(i) Δ is a s-complete extension iff Δ ⊆ n(Δ) and Δ = ds(Δ); (ii) Δ is a
s-preferred extension iff Δ is a maximal s-admissible extension; (iii) Δ is a s-
stable extension iff Δ = n(Δ) and for any argument A /∈ Δ, A ⊆ Δ; (iv) Δ is
the s-grounded extension iff Δ is the least fixed point of ds.

Here are some comments for the definition above. We define these solid exten-
sions by using the neutrality function n and the solid defense function ds, like
Dung’s extension in Definition 5. A s-complete extension is a fixed point of ds

which is also a conflict-free extension. In other words, a s-complete extension
is a s-admissible extension that contains all arguments s-defended by it. A s-
preferred extension has maximality and solid admissibility. A set of arguments
Δ is a s-stable extension whenever it is a fixed point of n and all attackers of
any argument outside of Δ are in Δ. The s-grounded extension is unique.

C
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(a) AF AF AF AF1
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B C
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B A
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Fig. 2. Four argumentation frameworks

Next we present some connections among solid semantics. A s-stable exten-
sion is a s-preferred extension. And a s-preferred extension is a s-complete exten-
sion. Besides, the s-grounded extension is the least s-complete extension.

Theorem 4. Given AF = 〈Arg,⇀〉. For any Δ ⊆ Arg, (i) if Δ is a s-preferred
extension, then Δ is a s-complete extension, but not vice versa; (ii) if Δ is a
s-stable extension, then Δ is a s-preferred extension, but not vice versa; (iii) The
s-grounded extension is the least s-complete extension.

Proof. Take a set of arguments Δ ⊆ Arg. (i) Suppose that Δ is a s-preferred
extension. Then according to Definition 11 and the second item of Definition 12,
we have Δ ⊆ n(Δ) and Δ ⊆ ds(Δ). It suffices to show ds(Δ) ⊆ Δ. Suppose
that an argument C ∈ ds(Δ), namely, Δ s-defends C. Then Δ ∪ {C} is s-
admissible by Lemma 3. Suppose for the sake of a contradiction that C /∈ Δ.
This contradicts the maximality of Δ. Hence, C ∈ Δ. It follows that Δ = ds(Δ).
So Δ is s-complete extension by the first item of Definition 12. Next we show
the converse does not hold. Consider AF2 in Fig. 2b. Take two sets Δ = {A}
and Γ = {A,C}. Then Δ is a s-complete extension. However, we can see that
Γ is s-admissible and Δ ⊂ Γ . Hence, Δ is not a maximal s-admissible extension
(i.e., not s-preferred).
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(ii) Suppose that Δ is a s-stable extension. Then applying the third item
of Definition 12 yields Δ = n(Δ). We next verify Δ ⊆ ds(Δ). Assume that
an argument C ∈ Δ. To demonstrate C ∈ ds(Δ), suppose that an argument
B ∈ Arg attacks C. Then B /∈ Δ as Δ is conflict-free. It follows that B /∈ n(Δ).
Thus, Δ ⇀ B by Definition 4. Again, using the third item of Definition 12 yields
B ⊆ Δ. Hence, Δ s-defends C by Definition 8. Then C ∈ ds(Δ) by Definition 9. It
follows that Δ is a s-admissible extension. At last, we prove the maximality of Δ.
Suppose for the sake of a contradiction that there exists a s-admissible set Γ such
that Δ ⊂ Γ . Then there exists an argument C ′ such that C ′ ∈ Γ but C ′ /∈ Δ.
Immediately, we have Δ ⇀ C ′ as C ′ /∈ Δ. This contradicts conflict-freeness of Γ .
So Δ is a maximal s-admissible extension. To show that the converse does not
hold, let us consider AF3 in Fig. 2c. Let Δ = {A,C}. Then Δ is a s-preferred
extension. We can see that D /∈ Δ. But the attackers of D are not fully included
in Δ. Hence, Δ is not a s-stable extension.

(iii) As Arg is finite, the least fixed point of ds (i.e., the grounded extension)
can be computed as dimin

s (∅) where imin is the least integer i such that di+1
s (∅) =

di
s(∅). Moreover, di

s(∅) is s-admissible by induction on natural number i and
Lemma 3. Hence, the least fixed point of ds is a s-complete extension according
to the first item of Definition 12. Thus, the least fixed point of ds is a subset of
any s-complete extension as as any s-complete extension is a fixed point of ds.

Recall that any s-admissible extension contains no argument that is indirectly
attacked and indirectly defended by some argument. Since we have showed that
the solid extensions in Definition 12 are also s-admissible, they contain no such
argument either, according to Theorem 3. Next we present an interesting prop-
erty that the set of arguments outside of a s-stable extension is conflict-free.

Proposition 2. Given AF = 〈Arg,⇀〉. For any Δ ⊆ Arg, if Δ is a s-stable
extension, then Arg \ Δ is a conflict-free extension.

In the following, we show that solid semantics can be interpreted as a class
of strengthenings of Dung’s semantics. In other words, for any solid extension,
there exists a Dung’s counterpart such that it is a superset of the solid extension.

Proposition 3. Given AF = 〈Arg,⇀〉. For any Δ ⊆ Arg, (i) if Δ is a s-
self-defending extensions, then Δ is self-defending extension; (ii) if Δ is a s-
admissible extension, then Δ is an admissible extension; (iii) if Δ is a s-complete
extension, then there exists a complete extension Γ such that Δ ⊆ Γ ; (iv) if Δ
is a s-preferred extension, then there exists a preferred extension Γ such that
Δ ⊆ Γ ; (v) if Δ is a s-stable extension, then Δ is a stable extension; (vi) if Δ
is the s-grounded extension, then Δ is a subset of the grounded extension.

Proof. Take a set of arguments Δ ⊆ Arg. (i) Suppose Δ is s-self-defending.
Then from Definition 10 we have Δ ⊆ ds(Δ). We also have ds(Δ) ⊆ d(Δ) by
Proposition 1. It follows that Δ ⊆ d(Δ). (ii) This item is easily obtained from the
first item. (iii) Suppose that Δ is s-complete. Then Δ is s-admissible. Hence, Δ
is admissible. Therefore, there exists a preferred extension Γ such that Δ ⊆ Γ by
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Theorem 1. Besides, Γ is also a complete extension by Theorem 1. (iv) Suppose
that Δ is s-preferred. Then Δ is s-admissible. Hence, Δ is admissible. Therefore,
there exists a preferred extension Γ such that Δ ⊆ Γ by Theorem 1. (v) This
item follows from the third item of Definition 12 and the fifth item of Definition 5.
(vi) Recall that the least fixed point of ds (resp., d) is found by iterating the
application of ds (resp., d) from the empty set. Besides, we have di

s(∅) ⊆ di(∅)
by induction on natural number i. And we also have di(∅) ⊆ di+1(∅). Therefore,
during the process of iteration, the s-grounded extension will be found no later
than the grounded extension. So the former is a subset of the latter.

a s-stable extension

a s-preferred extension

a s-grounded
extension

a s-complete extension

a s-admissible extension

a conflict-free extension

⊆
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Fig. 3. An overview of solid semantics and Dung’s semantics. We can see that for any
solid extension, there exists a superset that is also a Dung’s extension.

To gain a better understanding of differences between Dung’s extensions and
solid extensions, we provide two examples. Example 3 shows that if a set of
arguments is a self-defending (resp., a complete, a preferred, a stable, or the
grounded) extension, then it may fail to be a s-self-defending (resp., s-complete,
a s-preferred, a s-stable or the s-grounded) extension. Example 4 shows that
if a set of arguments is a s-complete (resp., a s-preferred or the s-grounded)
extension, then it may fail to be a complete (resp., a preferred or the grounded)
extension. However, it is easy to see that a s-stable extension must be a stable
extension by Definition 5 and Definition 12. We illustrate in Fig. 3 an overview
of how the solid extensions are related to each other and Dung’s extensions.

Example 3. Let us consider AF1 in Fig. 2a. Take a set of arguments Δ = {A,C}.
Then it is easy to see that Δ is a self-defending extension but not a s-self-
defending extension. Besides, Δ is a complete, a preferred, a stable and the
grounded extension. However, according to Theorem 3, C can not be included
in any s-admissible extension, since B is controversial w.r.t. C. Hence, Δ is
neither a s-complete, a s-preferred, a s-stable, nor the s-grounded extension.
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Example 4. Let us consider AF4 in Fig. 2d. Let Δ = {A,D,F}. Then Δ is a s-
complete, a s-preferred and the s-grounded extension. However, we can see that
argument C which is defended by Δ is not included in Δ. Hence, Δ is neither a
complete, a preferred, a stable nor the grounded extension.

Before moving to the next section, we characterize the solid semantics in
terms of integrity constraints (i.e., propositional formulas) expressed in LAF.
We say that a set of arguments is a s-reinstating extension iff each argument s-
defended by this set belongs to this set. It is worth mentioning that the integrity
constrain of conflict-freeness [5] is ICCF ≡ ∧

A,B∈Arg
A⇀B

(¬A ∨ ¬B
)
.

Proposition 4. Given AF = 〈Arg,⇀〉. Δ ⊆ Arg is a s-self-defending, s-
reinstating, s-stable, s-admissible, s-complete, s-preferred and s-grounded exten-
sion, resp. iff

– Δ � ICSS where ICSS ≡ ∧

C∈Arg

[
C → ∧

B∈Arg
B⇀C

(
(

∨

A∈Arg
A⇀B

A) ∧ (
∧

A∈Arg
A⇀B

A)
)]

;

– Δ � ICSR where ICSR ≡ ∧

C∈Arg

[ ∧

B∈Arg
B⇀C

(
(

∨

A∈Arg
A⇀B

A) ∧ (
∧

A∈Arg
A⇀B

A)
) → C

]
;

– Δ � ICSST where ICSST ≡ ∧

B∈Arg

[(
B ↔ ∧

A∈Arg
A⇀B

¬A
) ∧ (¬B → ∧

A∈Arg
A⇀B

A
)]

;

– Δ � ICSA where ICSA ≡ ICCF ∧ ICSS;
– Δ � ICSC where ICSC ≡ ICSA ∧ ICSR;
– Δ is a maximal model of ICSA;
– Δ is the least model of ICSC.

5 Preservation of Solid Semantic Properties

Quota rules are natural rules to be considered when contemplating mechanisms
to perform aggregation. They have low computational complexity and satisfy
some appealing properties. For instance, they are monotonic and strategy-proof
as studied in judgment aggregation. The problem of aggregating extensions sub-
mitted by several agents on a given AF is an important and interesting topic.
Especially, no quota rule preserves Dung’s admissibility for all AFs [10]. So we
wonder what admissible extensions can be preserved. In light of the integrity con-
straints for solid semantics in Proposition 4, we can investigate the preservation
results for solid semantic properties by using the model defined in Sect. 2.2 and
quota rules. We analyze that in the scenarios where a set of agents each provides
us with a set of arguments that satisfies a specific solid semantics, under what
circumstance such solid semantic property will be preserved under aggregation.

5.1 Preserving Solid Self-defence and Solid Admissibility

We start by exploring the circumstances where the s-self-defending property
can be preserved. Theorem 5 presents a positive result that every quota rule
preserves the s-self-defending property for all AFs.
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Theorem 5. Given AF = 〈Arg,⇀〉. Every quota rule Fq for n agents preserves
the property of being s-self-defending for AF.

Proof. Recall from Proposition 4 that ICSS is a conjunction of formulas of the
form: ϕ ≡ C → ∧

B∈Arg
B⇀C

(
(
∨

A∈Arg
A⇀B

A) ∧ (
∧

A∈Arg
A⇀B

A)
)
. Note that this formula is

indexed by argument C, let us study the preservation of such formula. If C is an
initial argument (an argument not receiving attacks in AF), then ϕ ≡ C → �,
which can be simplified to ϕ ≡ �. It follows that in this case, every quota rule
Fq for n agents preserves Mod(ϕ) for AF. If C has at least one attacker, then
we need to take into account the following two cases. The first case is that there
exists an attacker B of C such that B is an initial argument. In this case, we
have ϕ ≡ ¬C (this can be easily obtained as

∧
B∈Arg
B⇀C

(
(
∨

A∈Arg
A⇀B

A)∧ (
∧

A∈Arg
A⇀B

A)
)

is
always false if there is an attacker B of C that has no attacker). Then, according
to Lemma 1, every quota rule Fq for n agents preserves Mod(ϕ) for AF, as the
inequality q · (1 − 0) > n · (1 − 1) − 0, which can be simplified to q > 0, always
holds. The other case is that all attackers of C are not initial. Then, we let
{B1, . . . , Bp} be the set of attackers of C, and let {Ai

1, . . . , A
i
�i

} be the set of
attackers of Bi where 1 � i � p and �i = |Bi|. Then ϕ can be rewritten as
follows: ϕ ≡ (

(¬C ∨A1
1)∧· · ·∧ (¬C ∨A1

�1
)
)∧· · ·∧(

(¬C ∨Ap
1)∧· · ·∧ (¬C ∨Ap

�p
)
)
.

Thus, in this case, ϕ is a conjunction of clauses with one negative literal and one
positive literal. We take one such clause ψ = ¬C ∨ Ai

lj
. According to Lemma 1,

every quota rule Fq preserves ψ in this case. Thus, every quota rule for n agents
preserves ϕ. It follows that all clauses of ICSS can be preserved by all quota
rules. We conclude that every quota rule Fq for n agents preserves the property
Mod(ICSS) for AF by Lemma 2.

Obviously, the strict majority rule, the nomination rule and the unanimity
rule as specific quota rules, will preserve s-self-defense. Note that different from
the property of being s-self-defending, Dung’s self-defense cannot be preserved
by some quota rule. One example is the strict majority rule [10].

We now turn to consider the preservation of solid admissibility. Recall that a
set of arguments is s-admissible if it satisfies conflict-freeness and s-self-defense.
With Lemma 2, we know that if an aggregation rule preserves both conflict-
freeness and s-self-defense, then solid admissibility will be preserved by such
rule. The following proposition restates a result for conflict-freeness in [10].

Proposition 5. Given AF = 〈Arg,⇀〉. A quota rule Fq for n agents preserves
conflict-freeness for AF if q > n

2 .

Theorem 6. Given AF = 〈Arg,⇀〉. Any quota rule Fq for n agents with q > n
2

preserves solid admissibility for AF.

Applying Theorem 5 and Proposition 5 immediately yields Theorem 6, which
shows that any quota rule higher than or equal to the strict majority rule can
preserve solid admissibility for arbitrary AF. Recall that no quota rule preserves
Dung’s admissibility for all AFs [10]. Thus, we have obtained a positive result,
i.e., we know that there exist quota rules that preserve solid admissibility for
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all AFs. Notably, Chen [9] uses a different model to show that the majority
rule guarantees Dung’s admissibility on profiles of solid admissible sets during
aggregation of extensions. Theorem 6 entails this result, but not vice versa.

5.2 Preserving Solid Reinstatement and Solid Completeness

We turn to explore solid reinstatement. For convenience, we provide three nota-
tions. Given AF = 〈Arg,⇀〉. Firstly, for any C ∈ Arg, DAF(C) denotes the set
of C’s defenders, i.e., DAF(C) = {A ∈ Arg | A is a defender of C}. Secondly,
we let E(AF) denote the set of arguments which are not initial arguments and
whose attackers are not initial arguments either, i.e., E(AF) =

{
C ∈ Arg | C �=

∅ and for any B ∈ C, B �= ∅}. Thirdly, we let M(AF) denote the maximal num-
ber of the defenders of an argument in E(AF), i.e., M(AF) = max

C∈E(AF)
|DAF(C)|.

Theorem 7. Given AF = 〈Arg,⇀〉. A quota rule Fq for n agents preserves the
property of being s-reinstating for AF if q · (M(AF) − 1) > n · (M(AF) − 1) − 1.

Proof. Assume that q ·(M(AF)−1) > n ·(M(AF)−1)−1. ICSR is a conjunction
of formulas of the form of ϕ ≡ ∧

B∈Arg
B⇀C

(
(
∨

A∈Arg
A⇀B

A) ∧ (
∧

A∈Arg
A⇀B

A)
) → C from

Proposition 4. Take an argument C ∈ Arg. If C is an initial argument, then
ϕ ≡ C, which can be regarded as a 1-clause (with 1 positive literal and no
negative literal). Applying Lemma 1, any quota rule Fq for n agents preserves
Mod(ϕ) for AF in this case, as the inequality q · (0 − 1) > n · (0 − 1) − 1 (which
can be simplified to q < n + 1) always holds.

If C is not an initial argument, then we need to consider two cases. The first
case is that there exists a C’s attacker B such that B is an initial argument,
then ϕ ≡ �. It follows that in this case, any quota rule Fq for n agents preserves
Mod(ϕ) for AF. The second case is that any C’s attacker B is not an initial
argument. Then we can let {B1, · · · , Bp} be the set of C’s attackers, and let
{Ai

1, · · · , Ai
�i

} be the set of Bi’s attackers where 1 � i � p and �i = |Bi|. we can
reformulate ϕ as follows: ϕ ≡ (

(¬A1
1 ∨· · ·∨¬A1

�1
)∨· · ·∨ (¬Ap

1 ∨· · ·∨¬Ap
�p

)
)∨C.

Hence, ϕ is a (
p∑

i=1

�i + 1)-clause (with
p∑

i=1

�i negative literals and 1 positive

literal). By Lemma 1, a quota rule Fq for n agents preserves Mod(ϕ) if the
following inequality holds: q·(∑p

i=1 �i−1) > n·(∑p
i=1 �i−1)−1. Doing so becomes

harder as
∑p

i=1 �i increases. Note that C ∈ E(AF) in this case and
∑p

i=1 �i is
the number of the defenders of C. Recall that the maximal number of defenders
of an argument in E(AF) is M(AF). Hence, the maximal value of

∑p
i=1 �i is

M(AF). Thus, by Lemma 1, a quota rule Fq for n agents preserve Mod(ϕ) for
AF in this case, if the inequality holds for the maximal value of

∑p
i=1 �i (i.e.,

M(AF)). As we have assumed that q · (M(AF) − 1) > n · (M(AF) − 1) − 1,
it follows that a quota rule Fq for n agents preserves Mod(ϕ) for AF. Finally,
using Lemma 2, we can conclude that a quota rule Fq for n agents preserves
Mod(ICSR) for AF if q · (M(AF) − 1) > n · (M(AF) − 1) − 1.
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Recall that the unanimity rule is a quota rule Fq for n agents with q = n. It
is easy to see that the inequality n · (M(AF) − 1) > n · (M(AF) − 1) − 1 always
holds. Then according to Theorem 7, the unanimity rule preserves the property
of being s-reinstating for any AF. The theorem below for s-completeness is a
direct consequence of Theorem 6 and Theorem 7.

Theorem 8. Given AF = 〈Arg,⇀〉. A quota rule Fq for n agents preserves
s-completeness for AF if q > n

2 and q · (M(AF) − 1) > n · (M(AF) − 1) − 1.

5.3 Preserving Solid Groundedness, Solid Preferredness and Solid
Stability

As the s-grounded extension is unique in any AF, any quota rule preserves s-
groundedness for any AF. We say that a property σ is inclusion maximal if
for any Δ1, Δ2 ∈ σ, if Δ1 ⊆ Δ2 then Δ1 = Δ2. It is easy to see that both
the solid preferredness and solid stability are inclusion maximal. Hence, we can
investigate these two properties together. Given AF = 〈Arg,⇀〉, let σ be an
inclusion maximal property of extensions such that |σ| � 2, and let n be the
number of agents. If n is even, then no quota rule preserves σ for AF. If n is
odd, then no quota rule different from the strict majority rule preserves σ for
AF. Such results are highly analogous to Theorem 15 in [10]. We omit the proof
for this reason.

6 Related Work

Various notions of admissibility are proposed since Dung’s admissibility was
introduced in [12]. Baroni and Giacomin introduce the notion of strong admis-
sibility [2] which is stronger than Dung’s admissibility. It captures the idea that
any argument in a strongly admissible set neither defend itself nor involve in
its own defense. Grossi and Modgil propose Graded admissibility [14], whereby
Dung’s admissibility can be strengthened or weakened by parameterizing the
numbers of attackers and defenders. Chen [8] proposes concrete admissibility.
Differently from solid admissibility, concrete admissibility does not require the
existence of defenders, although both of them require containing all defenders.
Prudent semantics [11] is another semantics that aims at dealing with controver-
sial arguments. Whenever an argument A is controversial w.r.t. an argument B,
both prudent semantics and solid semantics can prevent A and B from occur-
ring in the same extension. But there is a difference between these two seman-
tics: both A and B can occur in a prudent extension independently, however,
B is excluded from any s-admissible extension, while A might occur in some
s-admissible extension (e.g., A is an initial argument).

7 Conclusion and Future Work

This paper mainly makes contributions to the field of abstract argumentation
theory. To address the problems observed in ranking-based argumentation and
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controversial arguments, we develop solid semantics by strengthening Dung’s
semantics. By applying the technique in [5], we capture solid semantics by using
propositional formulas. Finally, in virtue of these formulas, we aggregate solid
extensions by using quota rules and obtain positive preservation results.

Recall that solid defense requires that all the defenders of an argument C
are included in a set of arguments Δ. It would be interesting to characterize the
idea that any percent of the defenders of C are included in a set of arguments Δ.
Moreover, we can also allow a part of attackers to be not attacked. For example,
we can try to capture the idea that Δ defends C if more than fifty percent of C’s
attackers have more than fifty percent of their attackers in Δ (i.e., if the majority
of C’s attackers have the majority of their attackers in Δ). Future work could
focus on introducing proportionality to the defense of arguments of abstract
argumentation. Furthermore, the complexity of reasoning tasks involving solid
semantics should be studied.
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Verification of Multi-layered Assignment
Problems

Barak Steindl(B) and Meirav Zehavi

Ben Gurion University of the Negev, Beer-Sheva, Israel

Abstract. The class of assignment problems is a fundamental and well-
studied class in the intersection of Social Choice, Computational Eco-
nomics and Discrete Allocation. In a general assignment problem, a group
of agents expresses preferences over a set of items, and the task is to allo-
cate items to agents in an “optimal” way. A verification variant of this
problem includes an allocation as part of the input, and the question
becomes whether this allocation is “optimal”. In this paper, we general-
ize the verification variant to the setting where each agent is equipped
with multiple incomplete preference lists: Each list (called a layer) is a
ranking of items in a possibly different way according to a different cri-
terion.

In particular, we introduce three multi-layer verification problems,
each corresponds to an optimality notion that weakens the notion of
global optimality (that is, pareto optimality in multiple layers) in a dif-
ferent way. Informally, the first notion requires that, for each group of
agents whose size is exactly some input parameter k, the agents in the
group will not be able to trade their assigned items among themselves
and benefit in at least α layers; the second notion is similar, but it con-
cerns all groups of size at most k rather than exactly k; the third notion
strengthens these notions by requiring that groups of k agents will not be
part of possibly larger groups that benefit in at least α layers. We study
the three problems from the perspective of parameterized complexity
under several natural parameterizations such as the number of layers,
the number of agents, the number of items, the number of allocated
items, the maximum length of a preference list, and more. We present
an almost comprehensive picture of the parameterized complexity of the
problems with respect to these parameters.

1 Introduction

The field of resource allocation problems has been widely studied in recent years.
A central class of problems in this field is the class of assignment problems [1–
3,6,7,10,19,21,26]. In the most general, abstract formulation of an assignment
problem (to which we will refer as the general assignment problem), an instance
consists of a set of n agents and a set of m items. Each agent (human, company, or

A full version of this paper, including an extended preliminaries, full proofs and exam-
ples, can be found in https://arxiv.org/abs/2105.10434.
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any other entity) expresses preferences over a subset of items, and the objective
is to allocate items to agents in an “optimal” way. A verification variant of the
general assignment problem includes, in addition, some allocation as part of the
input, and the question becomes whether this allocation is “optimal”.

Different notions of optimality have been considered in the literature, but
the one that has received the most attention is pareto optimality (see, e.g., [2,
6,7]). Intuitively, an assignment p is called pareto optimal if there is no other
assignment q that is at least good as p for all agents and also strictly better than p
for at least one agent. An equivalent requirement for an assignment to be pareto
optimal is to admit no trading cycle (see, e.g., Aziz et al. [6,7]). Intuitively, an
assignment admits a trading cycle if there exists a set of agents who all benefit by
exchanging their allocated items among themselves (as indicated by the cycle).
It is known to imply that the problem of verifying whether an assignment is
pareto optimal can be solved efficiently in polynomial time (see, e.g., Aziz et
al. [6,7]). Even the seemingly more difficult problem of finding a pareto optimal
assignment can be solved in polynomial time by Abdulkadiroglu and Sönmez [2].

Besides their theoretical interest, these problems (both decision and verifica-
tion variants) have also practical importance. Algorithms for both variants are
applied in a variety of real-world situations, such as assigning jobs to workers,
campus houses to students, time stamps to users on a common machine, players
to sports teams, graduating medical students to their first hospital appoint-
ments, and so on. In particular, algorithms for verifying whether an assignment
is optimal are useful in cases where we already have an assignment and we want
to check whether it is pareto optimal; if it is not, we may seek a “strategy” to
improve the assignment (e.g., a trading cycle). For example, when the input is
large, finding an optimal assignment may be computationally expensive, so a
better choice will be to use some heuristic to find an initial assignment, verify
whether it is optimal or not, and proceed accordingly.

In the general assignment problem, each agent has exactly one preference
list. The preference lists may represent a single subjective criterion according
to which each agent ranks the items. However, they may also represent a com-
bination of different such criteria: each agent associates a score to each item
per criterion, and a single preference list is derived from some weighted sum of
the scores. In many cases, it is unclear how to combine scores associated with
criteria of inherently incomparable nature - that is like “comparing apples with
oranges”. Even if a single list can be forcefully extracted, most data is lost.1

Thus, the classic model seems somewhat restrictive in real world scenarios
where people rely on highly varied aspects to rank other entities. For example,
suppose that there are n candidates who need to be assigned to n positions. The
recruiters may rank the candidates for each position according to different crite-
ria, such as academic background, experience, impression by the interview, and
so on [4,20]. Moreover, when assigning campus houses to students, the student
may rank the houses by multiple criteria such as their location (how close the

1 Our new generalized model allows us to limit the amount of data that can be ignored
for each agent group using the parameter α.



196 B. Steindl and M. Zehavi

house is to their faculty), rent, size etc. [25]. This motivates the employment of
multiple preference lists where each preference list (called a layer) is defined by
a different criterion.

Our work is inspired by the work of Chen et al. [11], who studied the Stable
Marriage problem under multiple preference lists. In our recent work [23], we
defined the notion of global optimality, which (similarly to global stability defined
by Chen et al. [11]) extends the notion of pareto optimality to the case where
there are multiple layers by requiring an assignment to be pareto optimal in a
given number of layers. They studied the parameterized complexity of the prob-
lem of finding a globally optimal assignment (in the presence of multiple pref-
erence lists), and they showed that it is an extremely hard computational task
with no efficient parameterized algorithms (with respect to almost any param-
eter combination). Two factors cause this hardness: First, in general, finding
an optimal assignment is harder than verifying whether an assignment is opti-
mal. Second, the concept of global optimality, which requires “global agreement”
among the agents on the layers where beneficial trading cannot be performed,
may seem too strong. Thus, a natural direction is to consider an adaptation of
the verification variant to the multi-layer model, and to weaken the notion of
global optimality.

We define three new notions of optimality: (k, α)-optimality, (k, α)-upper-
bounded optimality, and (k, α)-subset optimality. Intuitively, the first notion
requires that each subset of agents of size k does not admit trading cycles (with-
out additional agents) in at least α layers. The second notion is similar, but it
additionally applies this condition on all subsets of size at most k rather than
only exactly k. The third notion requires that each subset of k agents does not
appear in trading cycles, together with possibly other agents, in at least α layers.
In contrast to global optimality, these notions do not require having the same α
layers where all agents cannot trade and benefit - each “small” subset of agents
may have different α layers where the its agents do not admit trading cycles.

The consideration of the parameter k is reasonable: indeed, suppose that
some assignment can be improved but only if a large group of agents would
exchange their items among themselves. In many cases, such trading may not
be feasible since it may require a lot of efforts and organization [14,15]. Thus,
we define k as a fixed size or as an upper bound on the size of agent groups
for which trading can be performed (in (k, α)-optimal and (k, α)-upper-bounded
optimal). In contrast, in the definition of (k, α)-subset optimality, the parameter
k is, essentially, a “lower bound” on the size of subsets which do not admit
trading cycles. This notion was designed to represent real scenarios where (i) we
are not interested in finding short trading cycles but only in finding large ones
since they would gain the most benefit and only they might justify changing the
status quo, and where (ii) large and complicated cycles can be performed [5].

Although the verification variant of the assignment problem can be solved
in polynomial time in the single-layer model (see, e.g., Aziz et al. [6,7]), simi-
larly to the decision variant in [23], the problem becomes harder when multiple
preference lists are taken into account. However, we show that, while some verifi-
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cation variants are still hard with respect to various parameters, they also admit
fixed-parameter algorithms rather than mainly hardness results (as in [23]). A
comparison between running times of algorithms is included in the full version.

Table 1. Summary of our results for the problems Verify Optimal Assignment,
Verify Upper-Bounded Optimal Assignment, and Verify Subset Optimal
Assignment. The results are applicable to the three problems, unless stated other-
wise.

Parameter Complexity class Running time Polynomial kernel?

α para-coNP-hard (Theorem 6) – –

VUOA: P when α = � Polynomial Yes

� para-coNP-hard (Theorem 6) – –

k coW[1]-hard (Theorem 5) O∗(nO(k)) (Theorem 3) –

VOA, VUOA: XP (Theorem 3) O∗(nO(k)) (Theorem 3) –

k + � coW[1]-hard (Theorem 5) O∗(nO(k)) (Theorem 3) –

VOA,VUOA: XP (Theorem 3) O∗(nO(k)) (Theorem 3) –

k + d VOA,VUOA: FPT (Theorem 4) O∗(dk) (Theorem 4) No (Theorem 7)

(n − k) + � + d para-coNP-hard (Theorem 6) – –

#alloc FPT (Theorem 2) O∗(2#alloc) (Theorem 2) No (Theorem 7)

#alloc + � FPT (Theorem 2) O∗(2#alloc) (Theorem 2) Yes (Theorem 1)

n + m + α FPT (Theorem 2) O∗(2#alloc) (Theorem 2) No (Theorem 7)

n + m + (� − α) FPT (Theorem 2) O∗(2#alloc) (Theorem 2) No (Theorem 7)

Our Contributions. We consider several parameters such as the number of lay-
ers �, the number of agents n = #agents, the number of items m = #items, the
maximum length of a preference list d, the number of allocated items #alloc,
and the parameters α and k that are related to the optimality concepts (see
Sect. 2 for the formal definitions). In particular, we present an almost compre-
hensive picture of the parameterized complexity of the problems with respect
to these parameters. The choice of these parameters is sensible because in real-
life scenarios such as those mentioned earlier, some of these parameters may be
substantially smaller than the input size. For instance, �, α and � − α are upper
bounded by the number of criteria according to which the agents rank the items.
Thus, they are likely to be small in practice: when ranking other entities, people
usually do not consider a substantially large number of criteria. For instance,
when sports teams rank candidate players, only a few criteria such as the player’s
winning history, his impact on his previous teams, and physical properties are
taken into account [16]. In addition, the parameter � − α may be small particu-
larly in cases where we want each group of agents to admit no conflicts in a large
number of layers. Moreover, in various cases concerning ranking of people, jobs,
houses etc., people usually have a limited number of entities that they want or
are allowed to ask for [13]. In these cases, the parameter d is likely to be small. In
addition, in small countries (such as Israel), the number of universities, hospitals,
sports teams and many other facilities and organizations is very small [12,24].
Thus, in scenarios concerning these entities, at least one among n and m (and
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thus also #alloc) may be small. Furthermore, when assigning students to uni-
versities, workers to companies, and players to sports teams since the number of
universities, companies and sports teams are usually substantially smaller than
the number of students, workers and players, respectively. The consideration of k
is justified by previous arguments. A summary of our results is given in Table 1.

Fixed-Parameter Tractability. We first provide some simple properties of
the problems Verify Optimal Assignment (Verify-OA), Verify Upper-
Bounded Optimal Assignment (Verify-UOA), and Verify Subset Opti-
mal Assignment (Verify-SOA). We then prove that the three problems are in
coNP and that Verify-UOA is solvable in polynomial time when α = �. After-
ward, we prove that the problems admit polynomial kernels when parameterized
by #alloc + � and that they are fixed-parameter tractable (FPT ) with respect to
#alloc by providing O∗(2#alloc)-time dynamic programming algorithms that are
inspired by Björklund et al. [9] and by the Floyd–Warshall algorithm [18]. We
then prove that Verify-OA and Verify-UOA are slice-wise polynomial (XP)
with respect to k by providing an O∗(nO(k))-time algorithm, and that they are
FPT with respect to k + d by providing an O∗(dk)-time algorithm. Finally, we
prove that the three problems are coW[1]-hard when parameterized by k + �
using a parameterized reduction from Multicolored Independent Set.

coNP-Hardness. We prove that the problems are para-coNP-hard with respect
to � + d + (n − k). This is done using a polynomial reduction from the Hamil-
tonian Cycle problem on directed graphs with maximum degree 3 (proved to
be NP-hard by Plesńik [22]) to the complements of the problems.

Non-existence of Polynomial Kernels. We prove that Verify-OA and
Verify-SOA do not admit polynomial kernels with respect to n + m + α and
n + m + (� − α) using two cross-compositions from Hamiltonian Cycle on
directed graphs with maximum degree 3, which rely on the aforementioned reduc-
tion to prove para-coNP-hardness. We then extend these cross-compositions to
have the same results for Verify-UOA.

2 Preliminaries

For any t ∈ N, let [t] = {1, . . . , t}. The O∗-notation suppresses polynomial factors
in the input size, that is, O∗(f(k)) = f(k) · nO(1).

Assignment Problems. An instance of the (general) assignment problem is a
triple (A, I, P ) where A is a set of n agents {a1, . . . , an}, I is a set of m items
{b1, . . . , bm}, and P = (<a1 , . . . , <an

), called the preference profile, contains
the (possibly incomplete) preferences of the agents over the items, where each
<ai

encodes the preferences of ai and is a linear order over a subset of I. We
refer to such linear orders as preference lists. If bj <ai

br, we say that agent ai

prefers item br over item bj , and we write bj ≤ai
br if bj <ai

br or bj = br. An
assignment is an allocation of items to agents such that each agent is allocated
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at most one item, and each item is allocated to at most one agent. Since the
preferences of the agents may be incomplete, or the number of items may be
smaller than the number of agents, some agents may not have available items to
be assigned to. To deal with this case, a special item b∅ is defined, seen as the
least preferred item of each agent, and will be used as a sign that an agent is
not allocated an item. Thus, a mapping p : A → I ∪{b∅} is called an assignment
if for each i ∈ [n], it satisfies (i) p(ai) = b∅, or (ii) both p(ai) ∈ I and for each
j ∈ [n] \ {i}, p(ai) �= p(aj). We refer to p as legal if it satisfies p(ai) = b∅ or
that p(ai) ∈ I appears in ai’s preference list for each layer i ∈ [n]. Throughout
this paper, we assume that b∅ is not part of the input item set, and that it
appears at the end of every preference list (we will not write b∅ explicitly in the
preference lists). We will omit the term “legal” and refer to a legal assignment
just as an assignment.2 Moreover, when we write a set in a preference list, we
assume that its elements are ordered arbitrarily, unless stated otherwise. In the
general assignment problem, given such a triple (A, I, P ), we seek an assignment
which is “optimal” according to some criterion.

Pareto Optimality. An assignment p : A → I ∪ {b∅} is pareto optimal if there
does not exist another assignment q : A → I ∪ {b∅} that satisfies: (i) p(ai) ≤ai

q(ai) for every i ∈ [n], and (ii) there exists i ∈ [n] such that p(ai) <ai
q(ai).

That is, there does not exist another assignment q that is “at least as good” as
p for all the agents, and is “better” for at least one agent. The Assignment
problem is a special case of the general assignment problem where the criterion
of optimality is pareto optimality.

An assignment admits a trading cycle (ai0 , bj0 , ai1 , bj1 , . . . , aik−1 , bjk−1) if for
each r ∈ {0, . . . , k − 1}, we have that p(air ) = bjr and bjr <air

bjr+1 (mod k) .
Moreover, we say that p admits a self loop if there exist an agent ai and an
item bj such that bj is not allocated to any agent by p, and p(ai) <ai

bj . It
is known that an assignment is pareto optimal if and only if it does not admit
trading cycles and self loops (see, e.g., Aziz et al. [6,7]). The problem of checking
whether an assignment admits trading cycles or self loops can be reduced to
checking whether a directed graph contains cycles. For an instance (A, I, P ) and
an assignment p, the corresponding trading graph is the directed graph over A∪I,
containing three types of edges: (i) For each a ∈ A such that p(a) �= b∅, p(a)
points to a; (ii) each agent a ∈ A points to all the items it prefers over its item
p(a); (iii) each item with no owner points to all the agents that accept it. It
is known that an assignment is pareto optimal if and only if its corresponding
trading graph does not contain cycles (see, e.g., Aziz et al. [6,7]).

Generalization of the Assignment Problem. We introduce a generalized
assignment problem where there are � layers of preferences. For each j ∈ [�], we
refer to <

(j)
ai as ai’s preference list in layer j. The preference profile in layer j

is the collection of the agents’ preference lists in the layer, namely, Pj = (<(j)
a1

, . . . , <
(j)
an ). Thus, the new problem is defined as follows.

2 All the “optimal” assignments that we construct in this paper will be legal for each
agent group in a sufficient number of layers.
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Multi-Layered Assignment (ML-Assignment)
Input: (A, I, P1, . . . , P�), where A is a set of n agents, I is a set of m items, Pi

is the preference profile in layer i for each i ∈ [�].
Question: Does an “optimal” assignment exist?

New Concepts of Optimality. In [23], we introduced a new concept of opti-
mality that naturally extends pareto optimality by requiring an assignment to
be pareto optimal in a given number of layers. It is defined as follows: For an
instance (A, I, P1, . . . , P�), we say that an assignment p is α-globally optimal if
there exist α layers i1, . . . , iα ∈ [�] such that p is pareto optimal in layer ij , for
each j ∈ [α]. Thus, in the new problem, α-Globally Optimal Assignment,
we are given � preference profiles and a parameter α, and we ask whether there
exists an α-globally optimal assignment. Here, we “weaken” this notion. Notice
that global optimality requires that there exist α layers with no trading cycles
or self loops. That is, there is a “global agreement” among the agents on the
layers where they cannot trade and benefit. This requirement seems too strong,
thus, instead of requiring the same α layers for all the agents, we will require
that each group of agents of a bounded size will have its own α layers where the
group cannot exchange their items and benefit. We say that a subset of agents
K admits a trading cycle in layer j ∈ [�] if all the agents in K appear (without
additional agents) in a trading cycle in Pj . Then, we define three new concepts
of optimality as follows.

Definition 1 ((k, α)-optimality). An assignment is (k, α)-optimal for an
instance (A, I, P1, . . . , P�) if it satisfies that: (i) If k ≥ 2, then for each sub-
set of agents K ⊆ A such that |K| = k, there exist α layers i1, . . . , iα such that
K does not admit a trading cycle in layer ij, for each j ∈ [α]; and (ii) if k = 1,
then for each a ∈ A, there exist α layers where a does not admit a self loop.

The definition for (k, α)-upper-bounded optimality is similar, but it applies
the first condition on all subsets K such that |K| ≤ k; and the second condition is
always required. Intuitively, these concepts require that each group of (at most)
k agents cannot trade and benefit in at least α layers (that may depend on the
specific group). In order to show that an assignment p is not (k, α)-optimal (or
not (k, α)-upper-bounded optimal), we will provide a set K ⊆ A of (at most) k
agents which admits “conflicts” (trading cycles or self loops) in at least �−α+1
layers. The third definition further does not allow small groups of agents to be
part of larger trading cycles:

Definition 2 ((k, α)-subset optimality). An assignment is (k, α)-subset
optimal for an instance (A, I, P1, . . . , P�) if it satisfies that: (i) For each sub-
set of agents K ⊆ A such that |K| = k, there exist α layers i1, . . . , iα such that,
for each j ∈ [α], there does not exist K ′ ⊆ A that contains K (K ⊆ K ′ ⊆ A)
and admits a trading cycle in layer ij; and (ii) if k = 1, then for each a ∈ A,
there exist α layers where it does not admit a self loop.

Notice that when k = 1, both conditions need to be satisfied (we mentioned
them separately since the notions of trading cycle and self loop are different).
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Clearly, a (k, α)-upper-bounded optimal assignment is also (k′, α)-optimal for
every k′ ∈ [k], and a (k, α)-subset optimal assignment is also (k, α)-optimal. In
the new decision problems, Optimal Assignment, Upper-Bounded Opti-
mal Assignment, and Subset Optimal Assignment, we are given an input
as in the ML-Assignment problem and we ask whether an optimal assignment
exist with respect to each one of the definitions above.

Verification Variants. In this paper, we focus on the verification variants of
these problems, in which we are additionally given an assignment, and we ask
whether it is optimal.

Verify Optimal Assignment (Verify-OA)
Input: (A, I, P1, . . . , P�, α, k, p), where A is a set of n agents, I is a set of m
items, Pi is the preference profile in layer i for each i ∈ [�], α ∈ [�], k ∈ [n] and
p is an assignment p : A → I ∪ {b∅}.
Question: Is p (k, α)-optimal?

The other verification problems, Verify Upper-Bounded Optimal
Assignment (Verify-UOA) and Verify Subset Optimal Assignment
(Verify-SOA), are defined analogously. We study these problems from the
perspective of parameterized complexity.

3 Properties of the Concepts of Optimality

We start with some simple properties regarding the notions of (k, α)-optimality,
(k, α)-upper-bounded optimality, and (k, α)-subset optimality. Additionally, we
prove that Verify-OA, Verify-UOA, and Verify-SOA are in coNP, and that
Verify-UOA is solvable in polynomial time when α = �.

Observation 1. Let (A, I, P1, . . . , P�) be an instance of ML-Assignment with
� layers, and let p : A → I ∪ {b∅} be an assignment. Then, for every k ∈ [|A|]
and α ∈ [�], p is (k′, α)-optimal for all k′ ∈ [k] (simultaneously) if and only if p
is (k, α)-upper-bounded optimal.

Lemma 1 (*).3 Let (A, I, P1, . . . , P�) be an instance of ML-Assignment with
� layers. Let p : A → I ∪ {b∅} be an assignment. Then, the following properties
are equivalent: (i) p is (k, �)-optimal for all k ∈ [n] (simultaneously); (ii) p is
(n, �)-upper-bounded optimal; (iii) p is (1, �)-subset optimal; (iv) p is �-globally
optimal.

Lemma 2 (*). The problems Verify-OA, Verify-UOA, and Verify-SOA
are in coNP.

Observation 2 (*). Let (A, I, P1, . . . , P�) be an instance of ML-Assignment
with � layers, and let p : A → I ∪ {b∅} be an assignment. Assume that for each
i ∈ [�], Pi does not contain trading cycles containing more than k agents with
respect to p. Then, p is (k, α)-optimal if and only if it is (k, α)-subset optimal.
3 Proofs of statements marked by * are (partially or completely) omitted due to lack

of space; full proofs can be found in the full version.
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Lemma 3 (*). Let (A, I, P1, . . . , P�) be an instance of ML-Assignment, let p
be an assignment, and let k ∈ [n]. Then: (i) deciding whether p is (k, �)-upper-
bounded optimal takes a polynomial time; (ii) deciding whether p is (k′, �)-subset
optimal for all k′ ∈ [k] (simultaneously) takes a polynomial time.

4 Fixed-Parameter Tractability

Theorem 1 (*). Verify-OA, Verify-UOA, and Verify-SOA admit ker-
nels of size O(� · (#alloc)2).

Proof (Sketch). The kernels rely on the fact that only agents assigned to items
different than b∅ can appear in trading cycles. If k = 1, or the input is an instance
of Verify-UOA, the kernels start with a preprocessing step to verify whether
each agent does not admit self loops in (at least) α layers. If some agent admits
self loops in �−α+1 layers, they return No. Afterwards, the kernels remove from
the input all the agents and the items that are unmatched by the assignment.
Notice that the resulting instance cannot contain self loops and it is equivalent
to the original instance since the trading cycles in each layer remains the same.

	

Theorem 2. Verify-OA and Verify-SOA are solvable in time O∗(2#alloc).

Proof. We provide dynamic programming algorithms. Each begins by running
the kernel in Theorem 1, and then it constructs � tables with boolean values.
We first define the following:

Definition 3. Let (A, I, P1, . . . , P�, α, k, p) be an instance of Verify-OA,
Verify-UOA or Verify-SOA, and let s, t ∈ A. We say that there is a trading
path from s to t in layer i if there exist agents a1, . . . , ar ∈ A such that the
trading graph of Pi with respect to p contains the path p(s) → s → p(a1) →
a1 → . . . → p(ar) → ar → p(t) → t.

Notice that a trading cycle is a trading path from an agent
to itself. For an agent s ∈ A, we denote Ni(s) = {a ∈
A|(s, p(a)) is an edge in the trading graph ofPi}. Notice that the trading graph
of Pi contains the path p(s) → s → p(a) → a for each a ∈ Ni(s). We now
describe each algorithm separately.

Verify-OA and Verify-UOA: Given an instance (A, I, P1, . . . , P�, α, k, p), the
algorithm first performs the kernelization algorithm in Theorem 1 to reduce
the number of agents to #alloc. If the kernel returns No, then the algorithm
returns false. It initializes � tables with boolean values M1, . . . ,M�, defined
as follows. For each i ∈ [�], agents s, t ∈ A and a subset of agents X ⊆ A:
Mi[s, t,X] = true if there exists a trading path from s to t that contains only
the agents from X ∪ {s, t} and their assigned items; and Mi[s, t,X] = false

otherwise. Notice that Mi[s, t, ∅] =
{

true if (s, p(t)) is an edge inGi

false otherwise , where
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Gi is the trading graph of Pi, and that for each X ⊆ A such that X �= ∅,
Mi[s, t,X] =

∨
s′∈Ni(s)

Mi[s′, t,X \ {s′}]. This is because each trading path from

s to t must start with an item of some agent from Ni(s). Each table Mi contains
(#alloc)2 · 2#alloc entries and can be constructed in the same running time. The
algorithm constructs the � tables, then, it verifies if for each subset of agents
K ⊆ A of size k (or at most k for Verify-UOA), there exist α layers where
it does not admit trading cycles. To perform this, for each such subset K, the
algorithm picks a random agent a ∈ K and verifies whether at least α values
among M1[a, a,K\{a}], . . . ,M�[a, a,K\{a}] are true. In this case, the algorithm
returns true, otherwise, it returns false. The total running time is O∗(2#alloc).

Verify-SOA: Here, we first run the algorithm for Verify-OA. If it returns
false, then we return false as well. Otherwise, we have the � tables M1, . . . ,M�.
We need to verify that for each K ⊆ A such that |K| = k, the agents from K do
not admit trading cycles possibly together with other agents in at least α layers.
To adapt to this notion of subset optimality, we define � new tables N1, . . . , N�.
For each i ∈ [�], agents s, t ∈ A, and subset X ⊆ A, Ni[s, t,X] = true if there
exists a trading path in layer i from s to t that containing all the agents from
X ∪ {s, t} with their assigned items and possibly additional agents with their
assigned items; and Ni[s, t,X] = false otherwise. Notice that for each i ∈ [�]:
Ni[s, t,X] =

∨
Y ⊆A s.t. X⊆Y

Mi[s, t, Y ] =
∨

Z⊆A\X

Mi[s, t,X ∪ Z]. To construct the

tables efficiently, we perform the following. Assume that A = {a1, . . . , ar} where
r = #alloc. We represent each subset X ⊆ A as a vector of r bits (x1, . . . , xr)
such that for each i ∈ [r], xi = 1 if ai ∈ X, and xi = 0 otherwise. Observe that
X = (x1, . . . , xr) and Y = (y1, . . . , yr) satisfy X ⊆ Y if and only if for each
i ∈ [r]: xi ≤ yi. Thus, for every subset X = (x1, . . . , xr) ⊆ A, and agents s, t ∈
A, we have that: Ni[s, t, (x1, . . . , xr)] =

∨
y1,...,yr∈{0,1}

δ[x1 ≤ y1 ∧ . . . ∧ xr ≤ yr] ·
Mi[s, t, (y1, . . . , yr)], where δ is an indicator that equals 1 if the expression in
it is true, and 0 otherwise. For each j ∈ [r], we define: N

(j)
i [s, t, (x1, . . . , xr)] =∨

y1,...,yj∈{0,1}
δ[x1 ≤ y1 ∧ . . . ∧ xj ≤ yj ] ·Mi[s, t, (y1, . . . , yj , xj+1, . . . , xr)]. We also

define: N
(0)
i [s, t, (x1, . . . , xr)] = Mi[s, t, (x1, . . . , xr)].

Notice that Ni[s, t, (x1, . . . , xr)] = N
(r)
i [s, t, (x1, . . . , xr)]. We can compute

the values N
(j)
i [s, t, (x1, . . . , xr)] efficiently by the following observation:

N
(j)
i [s, t, (x1, . . . , xr)] =

⎧
⎪⎨

⎪⎩

N
(j−1)
i [s, t, (x1, . . . , xr)] if xj = 1

N
(j−1)
i [s, t, (x1, . . . , xj−1, 1, xj+1, . . . , xr)] ∨ if xj = 0

N
(j−1)
i [s, t, (x1, . . . , xj−1, 0, xj+1, . . . , xr)]

Each table N j
i can be constructed in time O(2#alloc+2), thus the total running

time is O(� ·#alloc ·2#alloc) = O∗(2#alloc). Then, the algorithm verifies whether
each subset K does not admit trading cycles with possible other agents similarly
as in the algorithm for Verify-OA and returns an answer accordingly. Since
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the parameter #alloc is smaller or equal than min{n,m}, we conclude that the
problems are FPT w.r.t #alloc, n and m. 	

Theorem 3 (*). Verify-OA and Verify-UOA are solvable in time
O∗(nO(k)).

Theorem 4 (*). Verify-OA and Verify-UOA are solvable in time O∗(dk).

Proof (Sketch). The algorithm is based on the observation that, since each agent
prefers at most d − 1 items over its own assigned item (or at most d if it not
allocated an item), the number of possible trading cycles with exactly k agents
(or at most k agents if the input is an instance of Verify-UOA) is at most
O(n ·dk). The algorithm first performs the kernelization algorithm in Theorem 1
to test whether each agent does not admit self loops in at least α layers, and to
reduce the instance size to O(� · (#alloc)2). Then, for each i ∈ [�], it considers all
the trading cycles in layer i with k (or at most k) agents. For each such trading
cycle C, it checks in which other layers the agents in C admit trading cycles
(using an O∗(2n)-time algorithm for Hamiltonian Cycle on directed graphs
by Bellman [8]). If it finds that there are at least � − α + 1 layers where the
agents admit trading cycles, then it returns No. 	

Theorem 5 (*). Verify-OA and Verify-UOA are coW[1]-hard with respect
to the parameter k + �.

Proof (Sketch). We provide a parameterized reduction from Multicolored
Independent Set (proved to be W[1]-hard by Fellows et al. [17]) to the com-
plements of Verify-OA and Verify-UOA. The input of Multicolored
Independent Set consists of an undirected graph G = (V,E), an integer
2 ≤ k̃ ≤ |V |, and a coloring c : V → [k̃] that colors the vertices in G with k̃ colors.
The task is to decide whether G admits a multicolored independent set of size k̃,
which is an independent set of size k̃ whose vertices are colored with all the col-
ors. Given an instance (G = (V,E), k̃, c), denote V = {v1, . . . , vn}. We construct
an instance with n agents, n items,

(
˜k
2

)
layers, α = 1, k = k̃, and an assignment

p. We will prove that there exists a subset of agents of size k that admits trading
cycles in all the the layers with respect to p if and only if G contains a mul-
ticolored independent set of size k̃. We first create an agent ai and an item bi

for each vertex vi ∈ V . Thus, the agent set and the item set of the constructed
instance are A = An and I = In, respectively. We also set p = pn (recall that
p(ai) = bi for each i ∈ [n]). Intuitively, if there exists a multicolored independent
set in G, then the agents corresponding to the vertices in the multicolored inde-
pendent set will admit trading cycles in all the layers. Each layer corresponds
to a pair of colors {u,w}, and ensures that (i) every trading cycle contains
exactly k agents which correspond to vertices colored by all the colors; and (ii)
the vertices with the colors u and w whose agents appear in a trading cycle
will not be adjacent in G. For each s ∈ [k̃], denote A(s) = {ai ∈ A|c(vi) = s}
and I(s) = {bi ∈ I|c(vi) = s}, namely, the agents and the items that cor-
respond to vertices colored with s by c. Let u,w ∈ [k̃] be two different col-
ors such that u < w; and assume that s1, . . . , s˜k−2 ∈ [k̃] \ {u,w} such that
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s1 < . . . < s
˜k−2 (i.e. we sort the colors different than u and w). The preference

profile PMCIS
{u,w} is defined as follows: (i) ar : I(sj+1) > br ∀vr ∈ V, j ∈ [k̃ − 3]

s.t. c(vr) = sj ; (ii) ar : I(u) > br ∀vr ∈ V s.t. c(vr) = s
˜k−2; (iii)

ar : I(w) ∩ {ai|{vi, vr} /∈ E} > br ∀vr ∈ V s.t. c(vr) = u; (iv)
ar : I(s1) > br ∀vr ∈ V s.t. c(vr) = w. We prove that every trading
cycle (if exists) in PMCIS

{u,w} must begin with a sequence (ai1 , bi1 , . . . , ai
˜k−2

, bi
˜k−2

),

such that aij corresponds to a vertex colored with sj for each j ∈ [k̃ − 2]; and
after that, it contains a sequence (ai

˜k−1
, bi

˜k−1
, ai

˜k
, bi

˜k
) such that ai

˜k−1
and ai

˜k

correspond to non-adjacent vertices colored with u and w, respectively. By this
claim, we show that a subset of agents of size (at most) k admits trading cycles
in all the layers if and only if the corresponding vertices of these agents admit a
multicolored independent set of size k̃ in G (by the form of the trading cycles,
this subset must contain agents that correspond to vertices colored with all the
colors, and each pair of agents correspond to a non-adjacent pair of vertices
of different colors). This proves the correctness of the reduction. Since k + �

depends only on the parameter k̃, we have that the two problems are W[1]-hard
with respect to k + �. 	


5 coNP-Hardness

In this section, we prove that the problems Verify-OA, Verify-UOA, and
Verify-SOA are para-coNP-hard for � + d + (n − k). Before that, let us define
two preference profiles that we will use in our next proofs. Let G = (V,E) be a
directed graph, and suppose that V = {v1, . . . , vn}. For each vertex in G, we cre-
ate one agent and one item. We denote the agent set An = {a1, . . . , an}, the item
set In = {b1, . . . , bn}, and the assignment pn by pn(ai) = bi for each i ∈ [n]. We
construct the first preference profile, P1(G), over An and In, so that its trading
graph with respect to pn will be derived from the graph G. For each i ∈ [n], the
preference list of ai in P1(G) is: ai : {bj |(vi, vj) ∈ E} (in arbitrary order) > bi.

Lemma 4. A directed graph G contains a cycle (vi1 , . . . , vit) if and only if P1(G)
contains the trading cycle (ai1 , bi1 , . . . , ait , bit) with respect to pn.

Proof. ⇒: Suppose that (vi1 , . . . , vit) is a cycle in G. Note that there exists a
directed edge from vij to vij+1 for each j ∈ [t − 1] and from vt to v1. Thus, by
the construction of P1(G), aij prefers bij+1 over its assigned item pn(aij ) = bij ,
and ait prefers bi1 over its assigned item pn(ait) = bit . This yields the trading
cycle (ai1 , bi1 , . . . , ait , bit).

⇐: Suppose that (ai1 , bi1 , . . . , ait , bit) is a trading cycle in P1(G) with respect
to pn. Then, for each j ∈ [t − 1], aij prefers bij+1 over bij , and ait prefers bi1

over bit . By the construction of P1(G), (vij , vij+1) ∈ E for each j ∈ [t − 1], and
(vit , vi1) ∈ E. This implies that G contains the cycle (vi1 , . . . , vit). 	

The second preference profile, P2(n), is constructed so that its trading graph
with respect to pn will contain a single trading cycle over all the agents in An.
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For each i ∈ [n − 1], the preference list of ai in P2(n) is ai : bi+1 > bi, and the
preference list of an in P2(n) is an : b1 > bn. Observe that the only trading
cycle in P2(n) is (a1, b1, . . . , an, bn). Intuitively, the goal of P2(n) is to ensure
that if there exists a subset of agents that admit trading cycles in both P1(G)
and P2(n), then this subset must be equal to An. Thus, by Lemma 4, we will
conclude that G contains a cycle over all the vertices, i.e. a Hamiltonian cycle.

Lemma 5 (*). A set K ⊆ An admits trading cycles in both P1(G) and P2(n)
with respect to pn if and only if K = An and G contains a Hamiltonian cycle.

Proof (Sketch). Since the only trading cycle in P2(n) consists of all the agents
in An, we have that K = An. Lemma 4 implies that G contains a cycle on all
the vertices, i.e. a Hamiltonian cycle. 	


Using these constructions, we provide a polynomial reduction from Hamil-
tonian Cycle on directed graphs with maximum degree 3 (NP-hard by Plesńik
[22]) to the complements of the three problems. This proves the following result.

Theorem 6 (*). Verify-OA, Verify-UOA, and Verify-SOA are coNP-
hard when k = n, � = 1 (� = 2 for Verify-UOA), α = 1, and d = 3.

6 Non-existence of Polynomial Kernels

In this section, we prove that the three problems are unlikely to admit polynomial
kernels with respect to n+m+α and n+m+(�−α). So, considering α or (�−α)
rather than �, even while considering the larger parameter n + m rather than
#alloc, yields negative results. So, our classification is complete in this sense.

Theorem 7 (*). Verify-OA, Verify-UOA, and Verify-SOA do not admit
polynomial kernels with respect to n + m + α and n + m + (� − α), unless
NP⊆ coNP/poly.

Proof (Sketch). For Verify-OA and Verify-SOA, we provide a cross-
composition from Hamiltonian Cycle on directed graphs with maximum
degree 3 to the complements of the problems. Given t directed graphs with
the same number of vertices n and maximum degree 3, G1, . . . , Gt. Suppose that
V (Gi) = {v1, . . . , vn} for each i ∈ [t]. We construct an instance of Verify-OA
(or Verify-UOA) with � = t layers over the agent set An and the item set
In, such that for each i ∈ [t], layer i contains the preference profile P1(Gi)
(defined in Sect. 5). By Lemma 4, a subset of k agents admits a trading cycle
in some layer i ∈ [t] if and only if Gi is a Yes-instance. So, for the parameter
n + m + α, we set k = n and α = 1, and we treat the cross-composition as
an AND-cross-composition. Notice that there exists a subset of k agents that
admits trading cycles in all the layers if and only if all the input graphs are Yes-
instances. For the parameter n + m + (� − α), we set k = n, α = �, and we treat
the cross-composition as an OR-cross-composition since there exists a subset of
k agents that admits trading cycles in at least one layer if and only if at least
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one input graph is a Yes-instance. Since the parameters n + m + α (in the first
cross-composition) and n + m + (� − α) (in the second cross-composition) are
polynomial in maxt

i=1 |Gi|, we conclude that Verify-OA and Verify-SOA do
not admit polynomial kernels with respect to them, unless NP⊆ coNP/poly.

Verify-UOA: We focus on the parameter n + m + (� − α). We provide an OR-
cross-composition from Hamiltonian Cycle on directed graphs with maximum
degree 3 to Verify-UOA, which extends the previous cross-compositions. Given
t directed graphs with n vertices and maximum degree 3, G1, . . . , Gt, we con-
struct an instance of Verify-UOA that is a Yes-instance if and only if at least
one of the input graphs admits a Hamiltonian cycle. Assume that V (Gi) = V =
{v1, . . . , vn} for each i ∈ [t]. Denote the agent set C = {ci|i ∈ [�log t�+1]}∪{ci|i ∈
[�log t� + 1]} and the item set D = {di|i ∈ [�log t� + 1]} ∪ {di|i ∈ [�log t� + 1]}.
Intuitively, these sets will “encode” the index of each input graph, and will be
parts of unique trading cycles for each input graph. The agent set and the item
set of the constructed instance are A = An ∪C and I = Bn ∪D, respectively. We
define the assignment p : A → I by p(ai) = bi for each i ∈ [n]; and p(ci) = di,
p(ci) = di for each i ∈ [�log t� + 1]. Notice that p restricted to An is equal
to pn. We construct 2t layers: informally, each input graph Gi will have two
corresponding layers, 2i − 1 and 2i, which are compositions of the preference
profiles P1(Gi) or P2(n) for each graph Gi together with unique 2(�log t� + 1)
preference lists for the agents in C. Intuitively, the goal of the agents and items
in C ∪ D is to ensure that for each i ∈ [t], there is a unique subset C ′ ⊆ C
of size �log t� + 1 that is part of trading cycles in both layers 2i − 1 and 2i.
This will imply that if there exists a subset of agents from An ∪ C that admits
trading cycles in both trading graphs of these layers, then this subset is a unique
subset of size n + �log t� + 1 that does not admit trading cycles in the rest of
the layers. If Gi contains a Hamiltonian cycle, then we will have in layers 2i − 1
and 2i similar trading cycles as in the trading graphs of P1(Gi) and P2(n), but
appended with a chain of �log t� + 1 agents from C. For i ∈ [t], we denote by
i[j] the j’th bit in the binary representation of i, for each j ∈ [�log t� + 1]. For
each i ∈ [t] and j ∈ [�log t� + 1], denote ci

j = cj if i[j] = 1 and ci
j = cj if i[j] = 0.

Similarly, di
j = dj if i[j] = 1 and di

j = dj if i[j] = 0. Notice that p(ci
j) = di

j .
Assume that cj = cj for each j ∈ [�log t� + 1]. For each i ∈ [t], we create two
preference profiles Q2i−1 and Q2i, appearing in layers 2i− 1 and 2i, respectively
(the preference profiles are given formally in the full version). We finally set
k = n + �log t� + 1 and α = � − 1 = 2n − 1, so � − α + 1 = 2. We prove that
W = (aj1 , bj1 , . . . , ajn , bjn) is a trading cycle in P1(Gi) with respect to pn (when
jn = n) if and only if W ′ = (aj1 , bj1 , . . . , ajn , bjn , ci

1,d
i
1, . . . , c

i
�log t	+1,d

i
�log t	+1)

is a trading cycle in Q2i−1 with respect to p; and that the only trading cycle
in Q2i with respect to p is (a1, b1, . . . , an, bn, ci

1,d
i
1, . . . , c

i
�log t	+1,d

i
�log t	+1). The

correctness of the cross composition is derived by using these claims. The con-
struction can be clearly implemented in polynomial time in

∑t
i=1 |Gi|. Notice

that n+m+(�−α) = 2n+4(�log t�+1)+1 = poly(maxt
i=1 |Gi|+log(t)) for the

constructed instance. Thus, Verify-UOA does not admit a polynomial kernel
with respect to n + m + (� − α), unless NP⊆ coNP/poly. 	
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7 Conclusion and Future Research

In this paper, we introduced a generalization of the verification variant of the
general assignment problem where each agent is equipped with multiple incom-
plete preference lists. We defined three natural concepts of optimality, we con-
sidered several natural parameters and we presented an almost comprehensive
picture of the parameterized complexity of the corresponding problems with
respect to them. We proved that the problems are para-coNP-hard with respect
to �+d+(n−k). We also proved that the three problems admit polynomial kernels
when parameterized by #alloc + �, but that they are unlikely to admit polyno-
mial kernels with respect to n+m+α and n+m+(�−α). Additionally, we proved
that the problems are coW[1]-hard with respect to k + �. However, we showed
that Verify-OA and Verify-UOA admit XP algorithms with respect to k,
and even FPT algorithms with respect to k + d. We also provided O∗(2#alloc)-
time algorithms for the three problems. This proved that the problems are FPT
with respect to the parameters #alloc, n, and m. Still, two questions remained
open: (1) Is it possible to obtain an O∗((2 − ε)#alloc)-time algorithm, for some
fixed ε > 0, for each one of the problems? (2) Does Verify-UOA admit XP
algorithms with respect to the parameters k, k + �, and k + d?

Additional Directions for Future Research. Continuing our research, it
may be interesting to consider a new concept of optimality: in the full ver-
sion, we formally define the new notion of (k, α)-ordered optimality, which
weakens the notion of (k, α)-optimality as follows. Consider an instance
(A, I, P1, . . . , P�, k, α, p) of Verify-OA for which p is not (k, α)-optimal. Thus,
there exists a group of k agents which admits trading cycles (where agents may
appear in any order) in some � − α + 1 layers. Since the trading cycles in these
layers are not necessarily the same, there may not exist one “strategy” that
solves all these conflicts and improves the status of the agents in K at once. In
particular, if the agents in the group perform a possible beneficial trade in one
layer, their status may get worse in other layers. Thus, one can claim that p can
be “optimal” since each “small” group cannot benefit in some �−α+1 layers in
parallel. Informally, (k, α)-ordered optimality considers the order of the trading
cycles and requires that for each subset of agents of size k, there exist some α
layers where the agents in the subset cannot perform the same beneficial trade.
Thus, as a direction for future research we propose to study the new decision and
verification problems: Ordered Optimal Assignment and Verify Ordered
Optimal Assignment (which correspond to (k, α)-ordered optimality).

We remark that no notion of optimality is better or worse, but the choice
depends on the scenario at hand. For example, will a subset of k agents rebel if it
finds many layers where it is dissatisfied, or only if it actually has a strategy that
improves its situation? More philosophically, how do we know if our assignment
is good or bad? From a public opinion point of view, the unordered variant may
make more sense, but from a practitioner’s point of view (who should actually
improve an assignment if need be), the ordered variant might make more sense.
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We also remark that when k = n, the unordered version corresponds to global
optimality, while the ordered version does not.

Another direction is to consider weighted versions of the problems. In this
paper, we considered the basic “unweighed” model of the problems (since this
is the first study of this kind). That is, all the criteria (layers) have the same
importance. There are cases where some criteria may have higher importance
than others, and we would like to give them a higher weight. A straightforward
way to model these cases is by having several copies of layers. However, if weights
are high and varied, this might lead to inefficiency.

Lastly, we suggest to test our results practically, i.e. implementing the algo-
rithms for the problems, and testing them on real data sets. Besides the analysis
of running times in practice, we find it interesting to see how much effect does
using different notions of optimality has on the solutions.
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Abstract. Stochastic multi-agent systems raise the necessity to extend
probabilistic model checking to the epistemic domain. Results in this
direction have been achieved by epistemic extensions of Probabilistic
Computation Tree Logic and related Probabilistic Interpreted Systems.
The latter, however, suffer of an important limitation: they require the
probabilities governing the system’s behaviour to be fully specified. A
promising way to overcome this limitation is represented by imprecise
probabilities. In this paper we introduce imprecise probabilistic inter-
preted systems and present a related logical language and model-checking
procedures based on recent advances in the study of imprecise Markov
processes.

Keywords: Probabilistic Interpreted Systems · Imprecise Markov
chains · Imprecise probabilities · Model checking

1 Introduction

Probabilistic model checking arises in connection with the specification and ver-
ification of computational systems of stochastic nature. Broadly speaking, it
includes a series of languages for specifying probabilistic properties of stochas-
tic systems and relative semantics based on Markov models [3]. Notable exam-
ples of logical languages for property specification are PCTL [14], its extensions
(PCTL∗, PRCTL) and CSL [3]. Probabilistic model checking has been applied to
many different fields, such as software verification [7], communication protocols
[6], and even computational biology [5,8].

In recent years, the increasing relevance of stochastic multi agent systems
(MAS for short) has raised the necessity of extending probabilistic model check-
ing to languages endowed with epistemic modalities. Given its popularity, it has
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been natural to propose epistemic extensions of probabilistic model checking,
in particular within the field of MAS verification. Regarding property specifica-
tion, these extensions result in a series of languages merging PCTL and standard
epistemic operators for both single and multi-agent knowledge and belief (e.g.
in [9,26]). Regarding model specification, these extensions exploit the formal-
ism of so-called Probabilistic Interpreted Systems (PIS), a class of structures
obtained by merging standard interpreted systems [24] with Markov models [3].
For example, [26] introduces the logic PCTLK to represent probabilistic knowl-
edge in stochastic MASs. The logic is conceived to merge PCTL and epistemic
operators, the former modelled through a probabilistic state-transition matrix,
as in standard PCTL, the latter modelled by epistemic accessibility relations as
in canonical interpreted systems. Furthermore, the paper proves the reducibility
of relevant model-checking tasks for PCTLK to more standard model-checking
procedures implementable in PRISM, the canonical software tool to model-check
probabilistic systems [18].

Despite their success, standard probabilistic model-checking and its epis-
temic extensions suffer the limitation of requiring the probabilities describing
the system behaviour to be precisely defined. This represents a problem espe-
cially for epistemic domains, because it is tantamount to assuming that an agent
always knows precisely all the probability values describing each possible state-
transition of the system. In other words, it is impossible to model agents with
an high-order uncertainty about transition probabilities. This is the case, for
instance, when agents in a MAS (partially) ignore the stochastic behaviour of
other agents in the system. A possible way to overcome this limitation is rep-
resented by so-called parametric Markov models [2,10], which replace precise
probabilities with unknown parameters. In [2] for instance, the authors introduce
an extension of PCTL specific for parametric Markov chains. The complexity of
the corresponding model-checking procedure, based on fraction-free Gaussian
elimination, is however exponential in the number of states of the models, hence
limiting its applicability only to models of small size.

An alternative, but poorly explored, approach is offered by the formalism
of imprecise probabilities [25] and, for what interests us here, related imprecise
Markov models such as imprecise Markov chains (IMC) [13,16,23]. Roughly,
IMCs are the imprecise counterparts of precise Markov chains obtained by replac-
ing precise probability distributions with so-called Credal sets, i.e., sets of prob-
ability distributions describing the model and compatible with some specific
constraints given by the agents [11].

A first attempt to extend probabilistic model-checking to imprecise proba-
bilities has been proposed in [23], which introduces an imprecise PCTL with a
semantics based on discrete-time imprecise Markov chains (IMC). The language
for properties specification is obtained by replacing the standard probability
operator with an operator for representing lower and upper bounds of imprecise
probability distributions. Model checking with respect to the new probability
operators is reduced to the computation of lower and upper bounds of marginal
probabilities on an IMC. These bounds are computed efficiently by means of
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specific transition operators whose applicability is an optimisation task solvable
through linear programming. This approach enables the authors to verify that
shifting from precise to imprecise probabilistic models does not affect the overall
complexity of the most relevant model-checking procedures. Another example of
imprecise probabilistic model-checking is offered in [21], which proposes a seman-
tics and corresponding model-checking procedures based on imprecise Markov
reward models. Differently from [23], the model-checking procedures outlined by
[21] are based on an algorithm proposed by [22] for computing, among others,
lower and upper bounds of hitting probabilities. The present work extends the
results presented in [21] with the as yet unexplored application of model-checking
with imprecise probabilistic models to the epistemic domain.

The paper is structured as follows. In Sect. 2 we recap some background
knowledge about Markov models and their imprecise counterparts. In Sect. 2.2
we introduce imprecise probabilistic interpreted systems, a new kind of struc-
tures conceived as the imprecise counterparts of the probabilistic interpreted
systems proposed in [26]. In Sect. 3 we introduce a new language, called epistemic
imprecise PCTL (EIPCTL) extending standard PCTL with new imprecise-
probabilistic, epistemic and doxastic operators. In Sect. 3.2 we introduce a proper
semantics for EIPCTL based on imprecise probabilistic interpreted systems. In
Sect. 4 we discuss relevant procedures for model checking imprecise probabilis-
tic interpreted systems against EIPCTL formulae. Interestingly, we verify that
shifting to imprecise probabilities does not affect the overall computational com-
plexity of the relevant model-checking tasks, which therefore remains polynomial
in the number of states of the models. In Sect. 5, we propose a simple illustrative
example. Finally, in Sect. 6 we underline some conclusive remarks about future
extensions.

2 Background

Let S denote a finite non-empty set of possible states and S a variable taking
its values from S. A probability mass-function (PMF) over S, denoted as P (S),
is a non-negative normalized real map defined over S. Furthermore, given a
real-values function f of S, its expectation based on P (S), denoted EP [f ], is
defined as: E[f ] :=

∑
sPS f ·P (S). A joint PMF P (S′, S) is a PMF that gives for

each pair of states s, s′ the probability that s and s′ jointly occur. A conditional
PMF instead, defined as P (S′|s) := {P (s′, s)/P (s)}∀s′PS , is a PMF that assigns
to each s′ P S the probability of s′ to occur given that s occurred. Furthermore,
if P (s′|s) = P (s′) for each s′ P S, we say that S′ is (stochastically) irrelevant to
s. It is easy to check that stochastic irrelevance and independence are equivalent.

A Credal Set (CS) over S, denoted by K(S), is a collection of PMFs over
S compatible with some given constraints. We consider here only finitely gen-
erated CSs, i.e., CSs whose convex hull has only a finite number of extreme
points. Given a function f of S, its upper expectation with respect to K(S) is
defined as EP [f ] := supP (S)PK(S) EP [f ] while the lower expectation is defined
as E := infP (S)PK(S) EP [f ]. Furthermore, as stated by [11], suprema (infima)
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of upper (lower) expectations can be equivalently reduced to maxima (mimima)
over the extreme points of the CS convexification. Consequently, we can identify a
CS with the extreme points of its convex hull. Given a joint CS K(S, S′), defined
as a collection of joint PMFs P (S, S′), the (marginal) CS K(S′) is obtained by
element-wise marginalization of S on its elements. At the same time, if P (s) > 0
for each P (S) P K(S), the conditional CS K(S′|s) can be obtained by element-
wise conditioning. Finally, we say that S is epistemically irrelevant to S′ if and
only if K(S′|s) = K(S′) for each s P S. It is easy to check that epistemic irrel-
evance is the generalization to the formalism of CSs of the standard notion of
stochastic irrelevance. Although in the present paper we decide to adopt epis-
temic irrelevance as the standard generalization of stochastic irrelevance, other
possible ways of representing it are based on stochastic independence of the
CS elements, or of the CS extreme points (usually called, respectively, strict
and strong irrelevance) [12]. All these notions are equivalent for unconditional
queries [17], as it is the case for most of the inferential tasks considered in this
work.

2.1 Markovian Models

Precise Markov Chains. A precise discrete-time Markov Chain (MC, for short)
is a family of categorical stochastic variables {St}tPN taking their values from
S, that satisfies the Markov property, i.e., P (St+1|St) = P (St+1|St, . . . , S0), and
the stationarity assumption, i.e. P (St+1|St) is the same for each t P N. Given the
Markov property and the stationarity assumption, a MC can be fully described
by a single transition matrix T : S2 �→ [0, 1] such that T (s, s′) := P (St+1 =
s′|St = s) for each (s, s′) P S2 and a t P N whose choice is arbitrary because of
stationarity.

To compute relevant inferences in MCs it is useful to introduce a transition
operator T̂ and its dual T̂ †. The former maps a non-negative real function f
defined over S to its left scalar product, i.e.:

(T̂ f)(s) :=
∑

s′PS
T (s′, s) · f(s′); (1)

for each s P S; while the latter maps the same function on the right scalar
product, i.e.:

(T̂ †f)(s) :=
∑

s′PS
T (s, s′) · f(s′); (2)

for each s P S. It is easy to check that T̂P (St) = P (St+1) hence, by the well-
known total probability theorem, T̂ tP (S0) = P (St). Similarly, it is also easy to
check that T̂ †f(St) = E[f(St+1)|St] hence, by definition of conditional expecta-
tion, ((T̂ †))tf(S0))(s) = E[f(St)|S0 = s].

Notice that, given an event B Ď S and the indicator vector IB of B, the
T̂ operator allows to efficiently compute the marginal probability of B, i.e.,
P (St P B) := T̂ tIB . Similarly, its dual T̂ † is useful for computing the hitting
probability vector hB , i.e. the vector that provides for each s P S the probability
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of reaching a given event B Ď S from s eventually in the future. According to
standard literature [3,19], hB is defined as the vector of the minimal solutions,
for each s P S, of the following system of linear equations:

hB(s) :=

{
1 if s P B,
∑

s′PS hB(s′) otherwise
(3)

For MCs with a finite time-horizon t P N an efficient algorithm to solve
the above system in time polynomial in |S| is the following. Let ht

B denote the
bounded-time hitting probability vector providing, for each s P S, the probability
of reaching B until a number of time-steps less than or equal to t. Let IB denote
the indicator function of B returning, for each s P S, 1 if s P B and 0 otherwise.
For t = 0, ht

B is given by
ht=0

B = IB . (4)

The probability of reaching B in 0 time-steps can corresponds only to 1 or 0
depending on whether the actual state is included in the event B or not. Given
IB and IBc , respectively the indicator vector of B and of the complement of B,
the algorithm proceeds by computing hτ

B for increasing values of τ := 0, 1, . . . , t
as follows:

hτ
B = IB + IBc · [T̂ †hτ−1

B ], (5)

where the sums and the products are intended as element-wise operations on the
vector arrays.

Obviously, this procedure allows to compute ht
B only for finite time horizons

t P N. The standard definition of hitting probability, however, is conceived for
MCs of possibly infinite time-length and refers to the probability of reaching
B eventually in the future. Intuitively, the computation of hB corresponds to
compute limτ→+∞ hτ

B. As under the stationary hypothesis it has been proved
that limτ→+∞ hτ

B is always defined [19], it is possible to approximate the values
of hB through Eq. 5 by iterating hτ

B over increasing values of τ until convergence.

Imprecise Markov Chains. An imprecise Markov chain (IMC) is the imprecise
counterpart of a MC. It is obtained replacing the initial PMF P (S0) with a
CS K(S0) and all the conditional PMFs {P (St+1|st)}stPS with conditional CSs
{K(St+1|st)}sPS . The imprecise counterpart of the stationarity hypothesis con-
sists of assuming the specification of the collections of CSs K(St+1|St) indepen-
dent of t. As for standard MCs, under the stationarity hypothesis, a compact
specification of the CSs can be achieved in terms of an initial CS K(S0) and
a collection {K(S′|s)}sPS of transition CSs. The collection of CSs can be seen
as an imprecise transition matrix T := {K(S′|s)}sPS whose rows consist of the
transition CSs K(S′|s) for each s P S. This matrix provides a full specification
of the stochastic behaviour of the system modelled by the IMC [12]. Similarly,
the linear transition operator in Eqs. (1) and its dual in (2) are replaced in
IMCs with analogous non-linear operators for modelling, respectively, the lower
and upper bounds of transition probabilities. Following [23, Definition 14], in
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particular, the upper transition operator, denoted by T , is defined as follows:

(T f)(s) := sup
T (S′,s)PK(S′|s)

∑

∀s′PS
T (s′, s) · f(s′) (6)

while its dual [22, Eq. 1], denoted by T †
, is defined as follows:

(T †
f)(s) := sup

T (s,S′)PK(S′|s)

∑

∀s′PS
T (s, s′) · f(s′) (7)

The analogous lower operators, denoted respectively by T and T † can be
defined by replacing the supremum in Eqs. (6) and (7) with an infimum. Notice
that, the optimization for (7) is a linear programming task whose feasible region
is the convex hull generated by K(S′|s) that can be described by a finite number
of linear constraints, see [25].

Similarly to precise MCs, these operators can be used to compute lower and
upper bounds of, respectively, marginal and hitting probabilities. In particular,
as recently proved in [23, Eq. 34, 35], the lower P (St P B) and upper P (St P B)
bounds of the marginal probability P (St P B) for a number t P N of time-steps
can be computed by t application of the lower (upper) transition operator to the
indicator vector IB of B, i.e.:

P (St P B) := T tIB (8)

P (St P B) := T t
IB (9)

Similarly, [16, Lemma 14] and [22] proved that a recursive schema analogous
to 5 can be used to compute, respectively, the lower ht

B and the upper h
t

B hitting
probability vectors for IMCs of a finite time length t P N. As in the precise case,
the initialization for both ht=0

B and h
t=0

B is given by the indicator vector of B,
while the recursive steps are defined as follows:

hτ
B = IB + IBcT †hτ−1

B , (10)

h
τ

B = IB + IBcT †
h

τ−1

B ; (11)

These definitions, similarly to their analogous for precise MCs in Eq. (5),
allow to compute the lower and upper hitting probability vectors only for IMCs
of finite time length. As in the precise case, however, the generalization to
IMCs of infinite time length can be obtained by computing the respective lim-
its: limτ→+∞ hτ

B and limτ→+∞ h
τ

B . As proved in [16, Prop 16], these limits are
defined. Consequently, the values of the lower hB and the upper hB hitting prob-
ability vectors for IMCs of infinite time length can be approximated by iterating
both (10) and (11) for increasing values of τ until converge.
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Labelled Markov Chains. When dealing with model-checking tasks, we need
to refer to labelled MCs (respectively, labelled IMCs), which are standard
MCs (respectively, IMCs) augmented with a set of atomic propositions AP :=
{p, q, . . . } and a labelling function l : S �→ 2AP that assigns to each s P S a
set l(s) Ď AP . From now on, when talking about MCs (respectively, IMCs) we
always refer to their labelled extensions.

2.2 Probabilistic Interpreted Systems

Precise PISs. In computational logic, probabilistic interpreted systems (PIS) are
usually considered the reference formalism for representing knowledge and beliefs
in stochastic MASs [26]. A PIS is a tuple:

MPIS := 〈S,A, {„i}iPA, {T i}iPA, AP, l(s)〉; (12)

consisting of a finite non-empty set of states S, a finite non-empty set of agents
A := {i, j, . . . , n}, a set of atomic propositions AP , a labelling function l : S �→
2AP , a transition matrix T i for each i P A describing the stochastic behaviour
of the single agent i and an epistemic equivalence relation (EER) „iĎ 2S×S for
each agent i P A such that „i associates to each s P S all the states s′ P S
that are epistemically equivalent (or indistinguishable) from s according to i.
Given a state s P S, the set of all the states s′ P S such that s „i s′ is called
the equivalence class of s for i, denoted as Eqi(s). Given a group of agents
Γ Ď A, specific EERs for different kinds of multi-agent knowledge can be defined,
including:

– Everybody Knows: „Γ
E :=

⋃
∀iPΓ „i

– Common Knowledge: „Γ
C := it(

⋃
∀iPΓ „i), where it denotes the iterative clo-

sure
– Distributed Knowledge: „Γ

D:=
⋂

∀iPΓ „i.

Each EER induces a respective epistemic equivalence class (EEC) for Γ . In
the following, by EqΓ

E , EqΓ
C , EqΓ

D, we denote the equivalence classes respec-
tively for Everybody Knows, Common Knowledge and Distributed Knowledge.
Finally, while each individual transition matrix T i, i P A describes the stochas-
tic behaviour of a single agent, a global transition matrix TPIS describing the
stochastic behaviour of the whole MAS can be generated computing, for each
s, s′ P S × S, the logarithmic pooling of the transitions:

TPIS(s, s′) := η
∏

iPA
T i(s, s′) (13)

where η is a normalizing factor given by

η :=
1

∑
s′′PS: s′′ �=s′ T i(s, s′′)
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that forces the transitions to satisfy the condition:
∑

∀s′PS TPIS(s, s′) = 1 for each
s P S. The global transition matrix TPIS also describes a specific MCs. This is
typically called the embedded MC of the PIS and describes the overall stochastic
behaviour of the whole MAS.

Imprecise Probabilistic Interpreted Systems. An imprecise probabilistic inter-
preted systems (IPIS) is the imprecise counterpart of a PIS. For each agent i P A,
let {Ki(S′|s)}sPS denote a family of (credal) sets including, for each s P S, all
the transition PMFs P i(S′|s) that are compatible with some agent’s beliefs. By
replacing in a standard PIS, for each i P A, the transition matrices T i with the
imprecise transition matrices T i := {Ki(S′|s)}sPS , whose rows correspond to
the transition CSs: Ki(S′|s), s P S, we obtain an IPIS. Since transition CSs are
sets of PMFs, admitting such sets is tantamount to admit agents’ high-order
(non-quantified) uncertainty about transition probabilities.

Similarly to PISs, in the case of IPISs a global imprecise transition matrix
TIPIS can be obtained computing, for each transition s, s′ P S × S, the credal
logarithmic pooling of the family of conditional CSs {Ki(S′|s) : i P A} defined
as the element-wise application of the standard logarithmic pooling to the ele-
ments of the credal sets. This element-wise approach, however, might comport
exponential complexity with respect to the number of agents in the model. A
similar problem also occurs when considering alternative strategies, such as the
one proposed in [1] within the framework of general credal networks. An efficient
way to overcome the problem, here adopted, consists of considering a so-called
outer approximation of the lower and upper bounds of the credal logarithmic
pooling. This is achieved by defining:

T IPIS(s, s
′) :=

∏
iPA T IPIS(s, s

′)
∏

iPA T IPIS(s, s′) +
∑

s′′ �=s′
∏

iPA T IPIS(s, s′′)
; (14)

and similarly for the upper bound:

T IPIS(s, s′) :=
∏

iPA T IPIS(s, s′)
∏

iPA T IPIS(s, s′) +
∑

s′′ �=s′
∏

iPA T IPIS(s, s′′)
; (15)

The obtained global transition matrix TIPIS consists of an interval-valued tran-
sition matrix TIPIS whose entries are intervals (a, b) Ď [0, 1] with a and b rep-
resenting, respectively, the lower T IPIS(s, s

′) and the upper T IPIS(s, s′) bounds
of the transition probabilities. Similarly to the precise case, the global matrix
describes a specific IMC called the embedded IMC of the IPIS. As we show in
the following, this can be used to compute inferences arising with the overall
stochastic behaviour of the whole MAS modelled by the IPIS.
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3 Imprecise Epistemic PCTL

3.1 EIPCTL Syntax

The EIPCTL syntax is defined as follows:

A := {i, j, . . . , n},

∇ := {<, ď,=, ě, >},

φ := � | p | ¬φ | φ1 ∧ φ2 | PJψ | P∇bψ | P∇bψ | Kiφ | EΓ φ | CΓ φ | DΓ φ,

ψ := ©φ | φ1

⋃
φ2 | φ1

ďt⋃
φ2,

ε := Bi
∇bφ | Bi

∇b
φ;

The language is an epistemic extension of the well-known PCTL able to cope
with agents’ high-order uncertainty about transition probabilities. To this aim,
the canonical PCTL probability operator is replaced with three new operators,
for the following formulas with b P [0, 1], J Ď [0, 1]:

1. P∇bψ: The lower bound of the probability of reaching a path that satisfies ψ
is ∇b;

2. P∇bψ: The upper bound of the probability of reaching a path that satisfies ψ
is ∇b;

3. PJψ:The probability of reaching a path that satisfies ψ belongs to the interval
J .

In addition, we extend standard PCTL language including a (single-agent)
knowledge operator and canonical multi-agent operators for Everybody Knows,
Common Knowledge and Distributed Knowledge. Finally, we also include in the
language two weighted-belief operators:

– Bi
∇bφ: The agent i believes that the lower bound of the probability to reach φ

eventually in the future is ∇b;
– Bi

∇b
φ:The agent i believes that the upper bound of the probability to reach φ

eventually in the future is ∇b.

In the following, the doxastic formulae including these operators are called impre-
cise probabilistic beliefs.

3.2 Semantics of EIPCTL

Semantics of Boolean Formulae. Given an IPIS MIPIS and a state s P S, the
following conditions hold:

MIPIS, s |= p iff p P l(s),
MIPIS, s |= ¬φ iff MIPIS, s ||=φ,

MIPIS, s |= φ1 ∧ φ2 iff MIPIS, s |= φ1 and MIPIS, s |= φ2.
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Semantics of ψ formulae. Given an IPIS MIPIS and a path π, the following
conditions hold:

MIPIS, π |= ©φ iff M,π(1) |= φ,

MIPIS, π |= φ1

ďt⋃
φ2 iff ∃τ ď t :

MIPIS, π(τ) |= φ2

∀τ ′ : 0 ď τ ′ < τ : MIPIS, π(τ) |= φ1
,

MIPIS, π |= φ1

⋃
φ2 iff ∃τ ě 0 :

MIPIS, π(τ) |= φ2

∀τ ′ : 0 ď τ ′ < τ MIPIS, π(τ ′) |= φ1.

Semantics of Probabilistic Formulae. Given a model MIPIS and a state s P S, let
Paths(s) denote the set of all the paths π := (π(0), π(1), . . .) such that π(0) = s.
We denote by PIPIS(π P Paths(s)|π |= ψ) the overall1 probability that a path π
satisfying the property ψ belongs to Paths(s). Similarly, we denote by P IPIS(π P
Paths(s)|π � ψ) and P IPIS(π P Paths(s)|π � ψ), respectively the lower and upper
bounds of PIPIS(π P Paths(s)|π |= ψ).

The satisfiability conditions for probabilistic-until formulae are hence defined
as follows:

MIPIS, s |= P∇bψ iff P IPIS(π P Paths(s)|π � ψ)∇b,

MIPIS, s |= P∇bψ iff P IPIS(π P Paths(s)|π � ψ)∇b,

MIPIS, s |= PJψ iff MIPIS, s |= P=(inf J)ψ and MIPIS, s |= P=(sup J)ψ.

Notice that, similarly to standard PCTL [3], the computation of the lower and
upper bounds of PIPIS(π P Paths(s)|M,π � ψ) varies depending on ψ. We analyse
further this point in the next section focused on model-checking procedures.

Semantics of Epistemic Formulae. Given an IPIS MIPIS, an agent i P A or a
group of agents Γ Ď A and a state s P S, the following conditions hold:

MIPIS, s |= Kiφ iff ∀s′, s „i s′ : s′ |= φ,

MIPIS, s |= EΓ φ iff ∀s′, s „Γ
E s′ : s′ |= φ,

MIPIS, s |= CΓ φ iff ∀s′, s „Γ
C s′ : s′ |= φ,

MIPIS, s |= DΓ φ iff ∀s′, s „Γ
D s′ : s′ |= φ.

Semantics of Imprecise Probabilistic Beliefs. The weighted-belief operators of
EIPCTL model the lower and upper bounds of the probability that a single agent
i P S eventually reaches a state satisfying φ. Following the probabilistic until
semantics (Sect. 3.2), this probability can be written as P i(π P Paths(s)|π |=
�

⋃
φ), that is, the probability that φ is satisfied eventually in the future accord-

ing to agent i. This probability is computed analogously to P (π P Paths(s)|π |=
�

⋃
φ), see Sect. 3.2, but replacing the global imprecise transition matrix TIPIS,

describing the overall stochastic behaviour of the whole MAS, with the transi-
tion matrix T i that describes the specific behaviour of the agent i P A. As here
1 i.e., computed through the global transition matrix TIPIS.



Logic and Model Checking by Imprecise Probabilistic Interpreted Systems 221

we consider imprecise models, as usual, we are interested in computing the lower
and upper bounds of P i(π P Paths(s)|π |= �

⋃
φ) that we denote, respectively,

by P (π P Paths(s)|π |= �
⋃

φ) and P (π P Paths(s)|π |= �
⋃

φ). The procedure
to compute those bounds is further detailed in Sect. 4. Here we limit to introduce
the satisfiability conditions for imprecise probabilistic belief formulae as follows:

MIPIS, s |= Bi
∇bφ iff ∀s′ : s „i s′ P i(π P Paths(s′)|π � �

⋃
φ)∇b,

MIPIS, s |= Bi
∇b

φ iff ∀s′ : s „i s′ P
i
(π P Paths(s′)|π � �

⋃
φ)∇b.

4 Model Checking

The present section describes specific procedures to model-check an IPIS against
properties specified in the EIPCTL language. In particular, it aims to prove that
relevant model-checking tasks can be solved using slightly modified versions of
the algorithms described in Sect. 2.1. Here we consider only procedures relevant
for probabilistic and epistemic formulae of EIPCTL. The checking procedures
against Boolean and CTL formulae are standard and a detailed explanation of
them can be found in [3].

Probabilistic Formulae. Given the semantics introduced in Sect. 3.2, to check
whether a model satisfies a given probabilistic formula requires to compute the
lower and upper bounds of PIPIS(π P Paths(s)|M,π � ψ). These, in turn, vary
depending on ψ.

Probabilistic Next. We first consider the case when ψ := ©φ. Let Φ denote the
set of all the states satisfying φ. Thus, PIPIS(π P Paths(s)|M,π � ψ) corresponds
to the marginal probability PIPIS(S1 P Φ|S0 = s). The first step for determining
such probability consists in generating the indicator vector IΦ computing, for
each s P S, the indicator function

IΦ(s) :=

{
1 if s P Φ,

0 else.
.

This step requires a time linear in |S|. The second step requires to introduce the
lower T IPIS or the upper T IPIS transition operator. Given the global transition
matrix TIPIS, these can be defined following Eq. (6) and used for computing the
lower and upper bounds of PIPIS(S1 P Φ|S0 = s) as follows:

P IPIS(S1 P Φ|S0 = s) = (T IPISIΦ)(s). (16)

P IPIS(S1 P Φ|S0 = s) = (T IPISIΦ)(s). (17)
As stated in Sect. 2.1, each application of either the lower or the upper tran-

sition operator requires to solve, for each s P S, a linear programming task
whose feasible region is the convex hull obtained by convex closure of the local
CS K(S′|s). By definition, the time complexity of each linear programming task
is, at most, polynomial in |S|. Hence, since the computation requires to solve
at most |S| linear programming tasks, the overall time complexity is at most
polynomial in |S|.
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Probabilistic Bounded Until. For ψ = φ1

⋃ďt
φ2, let us first define Φ1 and Φ2 as

the subsets of S satisfying, respectively, φ1 and φ2. The probability in Eqs. (16)
and (17) can be seen as a bounded-time hitting probability of Φ2 with the addi-
tional condition that all the states visited before reaching Φ2 are in Φ1. We
denote such conditional hitting probability by ht

Φ2|Φ1
(s), s P S. A recursive algo-

rithm analogous to Eqs. (10) and (11) can be formulated to compute the values
of the lower ht

Φ2|Φ1
and upper h

t

Φ2|Φ1
hitting probability vectors. Let IΦ2 denote

the indicator vector of Φ2. Let IΦ1\Φ2 denote the indicator vector giving 1 to all
the states that are in Φ1 but not in Φ2 and 0 otherwise. Finally, let TIPIS denote
the global transition matrix describing the overall behaviour of the whole MAS,
and let T †

IPIS, T †
IPIS denote, respectively, the lower and the upper dual transition

operators obtained as by definitions (10) and (11). A slightly modified version of
the algorithms in (10), (11) for computing, for each 0 < τ ď t, the above lower
and upper hitting probability vectors can be achieved as follows:

hτ
Φ2|Φ1

:= IΦ2 + IΦ1\Φ2(T
†
IPIS hτ−1

Φ2|Φ1
), (18)

h
τ

Φ2|Φ1
:= IΦ2 + IΦ1\Φ2(T

†
IPIS h

τ−1

Φ2|Φ1
). (19)

Notice that, exactly as in Eqs. (10) and (11) the initialization is given by the
indicator function of Φ2 while the recursive steps consist of iterated applications
of the lower (upper) transition operator to the hitting vector computed at the
precedent time-step τ − 1, for each 0 < τ ď t. The only relevant difference
with the analogous scheme presented in Sect. 2.1 consists of the indicator vector
IΦ1\Φ2 that replaces IBc , i.e., the indicator vector of the complement of the
hitting event B. In the general scheme, IBc limits the iteration considering only
paths that have not already visited an s P B. Here, by IΦ1\Φ2 we limit the
iteration considering only paths whose actual and previous states are all in Φ1

and that have not already reached a state s P Φ2. This constraint follows from
the semantics of probabilistic until, see Sect. 4.

The time complexity remains polynomial with respect to |S|. In fact, the
solution of the schema (18) requires: (i) to generate the indicator vectors for Φ2

and Φ1\Φ2, (ii) to execute element-wise sums and products on the vectors arrays,
(iii) to execute t − 1 applications of the lower (respectively, upper) transition
operator. (i) requires a number of time-steps linear in |S| and (ii) requires a
number of time-steps linear in |S| for each recursive step 0 < τ ď t. Both, hence,
do not affect the overall time complexity of the procedure. Finally, remember
that each application of the lower (upper) dual operator has a time complexity
at most polynomial in |S|, see Sect. 2.1. As the overall procedure requires a
finite number t − 1 P N of successively recursive applications of the respective
transition operator, one for each recursive step 0 < τ ď t, the overall time
complexity results being polynomial in |S|. To conclude, notice that here we
consider the CSs KIPIS(S′|s), s P S describing the global transitions of the whole
MAS. By the definition of global transition matrix TIPIS in Sect. 2.2, these CSs
are given by the rows of TIPIS.
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Probabilistic Until. The strategy to solve model-checking tasks for probabilistic
(unbounded) until formulae, i.e. formulae composed by a probabilistic operator
ranging over ψ := φ1

⋃
φ2, is the same as for probabilistic bounded until but

considering, in place of IMCs of a finite time length t P N, IMCs of infinite time
length. Recall that the existence of the limits limτ→+∞ hτ

B and limτ→+∞ hτ
B

defined in Sect. 2.1 has been proved, see [16, Lemma 14]. The slightly modifica-
tion introduced in 10 and 11, consisting of replacing IB in the general schema
with the indicator vector IΦ1\Φ2 , does not affect the validity of the proof outlined
in [16]. Consequently, the values of the lower and upper hitting probability vec-
tors hΦ2|Φ1

and hΦ2|Φ1 can be approximated by iterating the schema 10, respec-
tively, the schema 11, over increasing values of τ until convergence. Regarding
the overall time complexity of the procedure, the same reasoning outlined above
for probabilistic bounded until formulae holds.

Epistemic Formulae. The model-checking for epistemic formulae requires an
iterative procedure. In practice, it consists of computing the epistemic equiva-
lence class (EEC) relative to the specified agent (respectively, group of agents)
and the actual state of the system, hence checking for each state in the EEC
whether it satisfies the formula nested by the epistemic operator.

Let κ := Ki, EΓ , CΓ ,DΓ , κφ and let Eqi,Γ
E,C,D be a generic notation for one of

the possible EEC Eqi(s), EqΓ
E(s), EqΓ

C(s), EqΓ
D(s). Given a state s P S, our task

consists of defining a procedure for checking whether s |= κφ. Step (i) consists
of deciding which states s′ P S belong to the EEC Eqi,Γ

E,C,D(s). This can be
obtained in time linear in |S| by simply computing the characteristic function
of Eqi,Γ

E,C,D, i.e.:

IEqi,Γ
E,C,D

(s) :=

{
1 if s′ P Eqi,Γ

E,C,D(s),
0 otherwise.

(20)

Step (ii) consists of selecting the appropriate model-checking procedure for φ,
else check, for each s′ P Eqi,Γ

E,C,D(s), whether s′ |= φ. If φ is an epistemic formula,
(i.e., φ := κ′φ′) we return to step (i) and repeat the same procedure for each
s′ P Eqi,Γ

E,C,D. Steps (i) and (ii) are successively iterated until all the resting
nested formulae φ are all non-epistemic formulae. The time complexity of the
whole procedure is polynomial in |S|. In fact, (i) consists of computing an EEC,
a task that can be solved in time linear in |S| while (ii) requires the execution of
a checking procedure for each state in the EEC. As all the checking tasks relative
to any kind of EIPCTL non-epistemic formulae are solvable in time polynomial
in |S|, also (ii) will be solvable in time at most polynomial in |S|.

Imprecise Probabilistic Belief. The model-checking procedure for imprecise prob-
abilistic beliefs formulae requires to compute P i(π P Paths(s)|π |= �

⋃
φ)

and P
i
(π P Paths(s)|π |= �

⋃
φ). As the semantics of imprecise probabilis-

tic belief formulae is analogous to the semantics of probabilistic until formu-
lae, we can reduce the computation of P i(π P Paths(s)|π |= �

⋃
φ) and
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P
i
(π P Paths(s)|π |= �

⋃
φ) to the computation of, respectively, hi

Φ and h
i

Φ.
These are the lower and upper bounds of the hitting probability of Φ computed
through the i’s transition matrix T i instead of the global transition matrix TIPIS.
Let T †

i and T †
i denote respectively the lower and the upper dual transition

operators obtained from T i as by definitions (10), (11). The model-checking
procedure is analogous to (18) with the only difference that we replace the dual
transition operators T †

IPIS, T †
IPIS with the analogous dual transition operators

T †
i T †

i . Regarding the time complexity of the procedure, the same reasoning
outlined above for probabilistic until formulae holds.

5 Example

We now validate the applicability of the proposed model-checking tasks on a
simple example. Consider an IPIS MIPIS made of three agents A := {i, j, k} and
three states S := {1, 2, 3} labelled as: p := {1, 2}, q := {3}. The EER for each
agent are defined as:

„i: {1, 2}, {3}; „j : {1, 2}, {3}; „k: {1}, {2}, {3}. (21)

while the stochastic behaviours of the single agents are described by the following
imprecise, interval-valued, transition matrices:

i :=
[

0 0.4−0.9 0.1−0.6
0.2−0.8 0 0.2−0.8
0.3−0.5 0.7−0.5 0

]
, j :=

[
0 0.45−0.95 0.05−0.55

0.25−0.88 0 0.12−0.75
0.32−0.5 0.5−0.78 0

]
,

k :=
[

0 0.55−0.95 0.05−0.45
0.15−0.95 0 0.05−0.85
0.32−0.5 0.5−0.78 0

]
.

The task consists in checking whether the following formula holds for s = 1:

M, s |= KiP0.99−1�
ď150⋃

(3); (22)

First, we derive the global transition matrix TIPIS from the subjective transition
matrices stated above. Applying Eqs. (14) and (15) to each row of the matrix,
and rounding to the fourth digit, we obtain:

[
0 0.4−0.9997 0.0003−0.6

0.0145−0.9982 0 0.0018−0.9855
0.0673−0.5 0.5−0.9327 0

]
.

Second, we compute for each s′ P S : 1 „i s′ whether:

MIPIS, s
′ |= P ě0.99�

ď150⋃
(3).

Since the only states equivalent to 1 for i are 1 and 2, we check the above formula
with respect to both these two states. Following Eq. (16), this corresponds to
calculate the lower h150

(3) and upper h
150

(3) bounded-time hitting probability vectors
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Fig. 1. Hitting probability ranges w.r.t. increasing time horizon 0 < τ ď 150 for
starting state 1 (left) and 2 (right). The horizontal dotted line denote the threshold
level h(3) = 0.99, while the vertical dotted line show the first time step for which such
threshold is exceeded.

relative to event {3} by means of the recursive scheme in Eqs. (10) and (11) for
a time horizon t = 150. These lower and upper bounds are reported in Fig. 1.
Finally, we extract from the vector the respective values for states 1 and 2 and
check for both if the probability conditions specified in the formula are satisfied.
As showed in Fig. 1, both for states 1 and 2 the lower bound reached value 0.99
as well as the upper bounds converges to 1 before t = 150. The above formula
is hence satisfied for s = 1.

6 Conclusions

In this paper we define a logic and relative model-checking procedures to model-
check stochastic MASs characterized by agents’ high-order (not quantified)
uncertainty about transition probabilities. Here we limit to consider agents whose
stochastic behaviour can be described by discrete-time models. Recent develop-
ments [15] in the study of imprecise continuous-time Markov chains (ICTMC)
strongly suggest that an analogous extension for agents whose behaviour is
described by continuous-time models is possible. These models are particularly
relevant for applications in fields like computational and systems biology, see
[5,8]. Other important extensions we would consider are multi-agent imprecise
Markov decision-processes because they offer a natural connection with the field
of Reinforcement Learning [20]. Finally, we aim to consider possible connections
with other logical formalism developed within the theory of imprecise probabil-
ities, such as depth-bounded belief functions [4].
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Abstract. When dealing with election data it is reasonable to assume
that the votes are incomplete or noisy. The reasons are manifold and
range from cost-intensive elicitation to manipulation. We study the prob-
lems of evaluating elections with incomplete data and determining the
robustness of elections with noisy data from a computational point of
view. To capture a wide variety of motivations, we consider three differ-
ent models for the distribution of preferences: the uniform distribution
over the completions of incomplete preferences inspired by the possible
winner problem, the dispersion around complete preferences, also called
Mallows noise model, and a model in which the distribution over the
votes of each voter is explicitly given. We consider both approval vector
preferences and linear order preferences and show that the complexity
of the problems can vary greatly depending on the voting rule, the dis-
tribution model, and the parameterization. We investigate the problems
both in terms of counting complexity as well as decision complexity and
discuss the effects of the winner model and tie-breaking on the results.

Keywords: Probabilistic social choice · Computational complexity ·
Voting · Election robustness · Election prediction

1 Introduction

Elections are an integral part of any democracy, be it for the collective decision-
making of a whole country or just for any group of people, a sports club or
employees of a company. In addition to these classic applications, elections are
also considered in connection with software agents and automation. Here, the
applications of elections range from multi-agent planning (see, e.g., Ephrati and
Rosenschein [16]) and meta-search engines (see, e.g., Dwork et al. [15]) to rec-
ommender systems (see, e.g., Ghosh et al. [18]) and email classification (see, e.g.,
Cohen et al. [11]). In the classic case, we assume that we have perfect knowledge
about the preferences of the voters and are able to use a voting rule to determine
the rightful winners with respect to the specific rule.

A preliminary version of this work was published as an extended abstract in the pro-
ceedings of AAMAS 2020 (see Baumeister and Hogrebe [3]).
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However, in many realistic scenarios, we can not assume that we have perfect
information about voter preferences. Nevertheless, a decision must often be made
or at least in some way a result of the election must be presented, for example in
the form of the winning probabilities considered here. The reasons for imperfect
election data are manifold. First, we often cannot assume that the election data
we receive is complete. In the case of actual elections, the collection of complete
election data is often cost-intensive, complicated, or simply not possible under
the given circumstances. The same holds for the creation of election forecasts
based on partial data aggregated from social networks or polls, where a complete
collection of election data is not appropriate. On the other hand, even if we
receive complete election data, in many situations we cannot assume that it has
not been corrupted in transmission, by manipulation, or through the elicitation
itself. In these situations the question arises how robust and thereby justified a
candidate’s victory is if the data has been corrupted to a certain degree.

Therefore, we study the problem of determining the probability that a par-
ticular candidate wins an election for a given distribution over the preferences of
the voters. Conitzer and Sandholm [12] were the first to study this problem and
referred to it as the evaluation problem. The relevance of the problem is immense,
as it captures many different, and in particular the previously presented, sce-
narios, such as the winner determination on incomplete data, the creation of
election forecasts, and the examination of the justification or robustness of a
candidate’s victory if corruption of the data is possible. To cover those different
motivations, we consider three models for the distribution of preferences: the
uniform distribution over the completions of incomplete preferences inspired by
the possible winner problem, the dispersion around complete preferences, also
called Mallows noise model, and a model in which the distribution over the
votes of each voter is explicitly given. The basic definitions of formal elections as
well as the formal definition of the evaluation problem, the preference distribu-
tions, and computational complexity will be introduced in Sect. 2. In Sect. 3, we
study the computational complexity of the evaluation problem regarding those
distributions and consider both voting rules on approval vector preferences and
linear order preferences, namely positional scoring rules. Our results include both
hardness results for #P as well as polynomial-time algorithms. We show that
the complexity of the problem can vary greatly depending on the voting rule,
the distribution model, and the parameterization. Especially, we investigate the
problem both in terms of counting complexity as well as decision complexity in
Sect. 3.4. Finally, we will examine the relation between our and related work in
Sect. 4 and discuss our results in Sect. 5.

2 Preliminaries

Formally an election is given by a tuple E = (C, V ), with C = {c1, . . . , cm}
with m ≥ 2 denoting the set of candidates and V = (v1, . . . , vn) with n ≥ 1
denoting the preference profile consisting of n votes over C. We consider the two
most prominent types of votes: approval vectors and linear orders. In the case of
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approval vectors, each vote is represented by a vector vi ∈ {0, 1}m in which voter
i expresses approval for the candidate cj by setting the respective entry, denoted
by appvi

(cj), to 1. In the case of linear orders, each vote vi is represented by a
complete strict linear order >i over C. By L(C) we denote the set of all strict
linear orders over C.

We consider the following voting rules for winner determination. For approval
vectors, we use the canonical approval voting (AV). That is, the candidates with
the most approvals win. The common variant in which the voters must distribute
exactly k approvals is denoted by k-AV with fixed k ≥ 1 for m > k. For linear
orders, we focus on positional scoring rules. A positional scoring rule (or scoring
rule for short) is characterized by a scoring vector α = (α1, . . . , αm) ∈ N

m
0 with

α1 ≥ α2 ≥ · · · ≥ αm and α1 > αm, where αj denotes the number of points
a candidate receives for being placed on position j by one of the voters. Those
candidates with the maximum number of points are the winners of the election. A
scoring rule covering an arbitrary number of candidates is given by an efficiently
evaluable function determining a scoring vector for each number of candidates
above a certain minimum. Note that without loss of generality of our results we
assume that αm = 0 holds. The most prominent scoring rules are Borda with
α = (m−1,m−2, . . . , 1, 0), the scoring rule characterized by α = (2, 1, . . . , 1, 0),
k-approval with fixed k ≥ 1 for m > k characterized by α = (α1, . . . , αm) with
α1 = · · · = αk = 1 and αk+1 = · · · = αm = 0, and k-veto with fixed k ≥ 1
for m > k characterized by α = (α1, . . . , αm) with α1 = · · · = αm−k = 1 and
αm−k+1 = · · · = αm = 0. More specifically, 1-approval is also refereed to as
plurality and 1-veto as veto. Note, that k-AV and k-approval essentially describe
the same voting rule and differ only in the amount of information we are given
about the preferences of the voters. Interestingly, this very distinction leads to
differing complexity results in some cases, as we will see later.

In the course of this work we will also encounter elections with partial infor-
mation. A partial profile Ṽ = (ṽ1, . . . , ṽn), in contrast to a normal profile, may
contain partial votes. In the case of approval vectors, a partial vote is repre-
sented by a partial approval vector ṽi ∈ {0, 1,⊥}m, where ⊥ indicates that the
approval for the respective candidate is undetermined. An approval vector vi is
a completion of a partial approval vector ṽi if for all j ∈ {1, . . . ,m} it holds
appṽi

(cj) ∈ {0, 1} ⇒ appvi
(cj) = appṽi

(cj). In the case of linear orders, a par-
tial vote consists of a partial order ṽi : �i over C that is, an irreflexive and
transitive, but on the contrary to linear orders, not necessarily connex relation.
A linear order >i is a completion of a partial order �i if for all cs, ct ∈ C it
holds cs �i ct ⇒ cs >i ct. For both types of votes, a profile V = (v1, . . . , vn) is
a completion of a partial profile Ṽ = (ṽ1, . . . , ṽn), if vi is a completion of ṽi for
1 ≤ i ≤ n. The set of all completions of a vote ṽi or a profile Ṽ is denoted by
Λ(ṽi) or Λ(Ṽ ) respectively.

As mentioned earlier, there may be uncertainty about the votes in elections
due to several reasons. Thus we assume some distribution over possible profiles,
and investigate the problem of determining the winning probability of a certain
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candidate. This is formalized in the problem E-Evaluation for a given voting
rule E as follows.

E-Evaluation
Given: Set of candidates C, profile distribution P over C, and candidate p ∈ C.

Question: What is the probability Φ that p is a winner of the election with respect
to E assuming P?

Here we mainly focus on the non-unique winner case where p is considered
a winner of election (C, V ) with respect to voting rule E , if and only if p is
contained in the set of winners E(C, V ). In the unique winner case, we require
E(C, V ) = {p} for p to be considered a winner of the election. In addition, we also
consider random and lexicographic tie-breaking, where in the former the victory
of a candidate is weighted according to the total number of winners and in the
latter a tie is resolved according to a given order. Unless stated otherwise, the
results presented here hold for all four models. Note that regarding the definition
of Evaluation, the distribution as part of the input means that the respective
distribution is specified by the necessary parameters as part of the input.

In the following we will present the three distribution models for profiles
considered in this paper. Note that all the models presented here are products
of independent distributions over the preferences for each voter. For a discussion
of the properties and relevance of those models considered here and comparable
models, we refer to the overview by Boutilier and Rosenschein [8].

PPIC. The first model we consider is the normalized variant of the possible win-
ner motivated model of Bachrach et al. [2]. We will refer to this model as partial
profile impartial culture model (PPIC). Given a set of candidates C, a partial
profile Ṽ = (ṽ1, . . . , ṽn) over C. The probability of a profile V = (v1, . . . , vn)
over C according to PPIC is given by PrPPIC(V | Ṽ ) = 1/|Λ(Ṽ )|. Thereby, each
completion of the partial profile is equally likely, hence the name ‘impartial cul-
ture’. Note, that for partial linear orders, the computation of the probability of a
given profile is #P-hard, since the calculation of the normalization |Λ(Ṽ )| itself
is already a #P-hard problem as shown by Brightwell and Winkler [9] whereby
the normalized variant and the variant considered by Bachrach et al. [2] are not
immediately equivalent under polynomial-time reduction. For AV and k-AV, on
the other hand, the probability of a given profile can be calculated in polynomial
time. For AV it holds that |Λ(Ṽ )| = 2N⊥ where N⊥ denotes the total number
of undetermined approvals in Ṽ . For k-AV it holds that |Λ(Ṽ )| =

∏n
i=1

(
u(ṽi)

k−a(ṽi)

)

where u(ṽi) = |{c ∈ C | appṽi
(c) = ⊥}| and a(ṽi) = |{c ∈ C | appṽi

(c) = 1}|.
For Evaluation under PPIC the parameter is the partial profile Ṽ . Referring
back to the motivations stated at the beginning, PPIC can be used in relation to
the evaluation problem to create election forecasts based on partial data about
the preferences aggregated from social networks or polls. In terms of robustness,
PPIC can be motivated by the possibility that data was partially lost during
the collection or transmission. In both scenarios there is a reasonable interest in
finding out with which probability which candidate is the winner of the election.
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Example 1. Suppose we are in the run-up to a plurality (1-approval) election
over the set of candidates C = {a, b, c} and we have received the partial profile
Ṽ over C shown in Fig. 1 from aggregating social network data. The evaluation
problem assuming PPIC with distinguished candidate a asks for the probability
that a is a winner, when all possible completions are considered with equal
probability. In this case a is only a winner in one of the six possible completions
of Ṽ , whereby the answer to the Evaluation instance is Φ = 1/6.

Ṽ

v1 : {a > c, b > c}
v2 : {b > c}
v3 : {b > c > a}v1 : a > b > c

v2 : a > b > c
v3 : b > c > a

v1 : a > b > c
v2 : b > a > c
v3 : b > c > a

v1 : a > b > c
v2 : b > c > a
v3 : b > c > a

v1 : b > a > c
v2 : a > b > c
v3 : b > c > a

v1 : b > a > c
v2 : b > a > c
v3 : b > c > a

v1 : b > a > c
v2 : b > c > a
v3 : b > c > a

Fig. 1. Example for an Evaluation instance assuming PPIC with distinguished can-
didate a. All possible completions of Ṽ , each with probability 1/6. Profiles for which a
is not a winner are grayed out.

We now use Example 1 to illustrate the difference between k-approval and k-
AV regarding Evaluation. They are essentially the same voting rule and differ
only in the amount of information we are given about the preferences and thereby
in the expressiveness of the partial preferences. For v1 with partial preference
{a > c, b > c} an equivalent partial 1-AV preference could be given by (⊥,⊥, 0)
over (a, b, c). However, for v2 with partial preference {b > c} it is not possible
to construct a partial approval vector such that b receives the approval with a
probability of 2/3 and a with a probability of 1/3. It is precisely this difference in
the underlying preferences that leads to different complexities for the evaluation
problem in Theorem 1 and Theorem 3 for the essentially one and the same voting
rule described by k-approval and k-AV.

Mallows. The second model we are considering is the Mallows noise model [28]
which is hereinafter mostly referred to as Mallows for short. The basic idea
is that some reference profile is given, and the probability of another pro-
file is measured according to its distance to the reference profile. Since the
Mallows model is originally defined for linear orders, we will also present a
version that applies to approval vectors. Given a set of candidates C, a pro-
file V̂ = (v̂1, . . . , v̂n) over C and dispersion ϕ ∈ (0, 1). The probability of a
profile V = (v1, . . . , vn) over C according to the Mallows model is given by
PrMallows(V | V̂ , ϕ) = ϕd(V,V̂ )

/Zn with distance d and normalization constant Z
chosen according to the vote type. Note, that it is assumed that the dispersion
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is the same for all voters. In the original case of linear orders, the total swap dis-
tance (also known as the Kendall tau distance) d(V, V̂ ) =

∑n
i=1 sw(vi, v̂i) is used,

where sw(vi, v̂i) is the minimum number of swaps of pairwise consecutive candi-
dates that are needed to transform vi into v̂i. The normalization can be written
as Z = Zm,ϕ = 1 · (1 + ϕ) · (1 + ϕ + ϕ2) · · · (1 + · · · + ϕm−1) (see, e.g., Lu and
Boutilier [27]). In the case of approval vectors, we propose to use the total Ham-
ming distance d(V, V̂ ) =

∑n
i=1 H(vi, v̂i) with H(vi, v̂i) = |{c ∈ C | appvi

(c) �=
appv̂i

(c)}|. The normalization factor is Z = Zm,ϕ =
∑m

j=0

(
m
j

) · ϕj . Addition-

ally, for k-AV vectors, the normalization becomes Z = Zm,k,ϕ =
∑�m/2�

j=0

(
k
j

) ·
(
m−k

j

) · ϕ2j . For Evaluation under Mallows, the parameters are the reference

profile V̂ over C and dispersion ϕ. Referring to the motivations, Mallows model
captures the scenarios in which the data was corrupted in transmission, by small-
scale manipulation, through the elicitation, or the preferences of the voters have
changed over time. While the profile obtained in this scenario is the most likely,
we have to assume that there is a statistical dispersion. Again, it is natural that,
in such scenario, we are interested in how likely and thereby justified and robust
the victory of a candidate is.

Example 2. Suppose we perform a 1-AV election over the set of candidates C =
{a, b} and the profile V̂ over C shown in Fig. 2. We assume that it has been
slightly corrupted in transmission with dispersion ϕ = 1/2. Now, Evaluation
assuming Mallows with distinguished candidate b asks for the probability that b
is a winner of the election. The profile V̂ over (a, b) and the surrounding profiles
with their respective total Hamming distance to V̂ and probabilities are shown
in Fig. 2. The probability that b is a winner, and thereby the answer to the
Evaluation instance, is Φ = (0.25+0.25+0.0625+0.015625)/Z3 = 0.296 with Z3 =
1.953125. Whereby, candidate b or the voters could have legitimate concerns
about the robustness and thereby the legitimacy of the victory of candidate a
under those circumstances.

V̂

v1 : (1, 0)
v2 : (0, 1)
v3 : (1, 0)

1/Z3

d(·, V̂ ) = 2

0.25/Z3

v1 : (1, 0)
v2 : (1, 0)
v3 : (1, 0)

v1 : (1, 0)
v2 : (0, 1)
v3 : (0, 1)

v1 : (0, 1)
v2 : (0, 1)
v3 : (1, 0)

d(·, V̂ ) = 4

0.0625/Z3

v1 : (1, 0)
v2 : (1, 0)
v3 : (0, 1)

v1 : (0, 1)
v2 : (1, 0)
v3 : (1, 0)

v1 : (0, 1)
v2 : (0, 1)
v3 : (0, 1)

d(·, V̂ ) = 6

0.015625/Z3

v1 : (0, 1)
v2 : (1, 0)
v3 : (0, 1)

Fig. 2. Example for an Evaluation instance assuming Mallows with distinguished
candidate b. The probability for each profile is given with respect to its Hamming
distance to V̂ . Profiles for which b is not a winner are grayed out.
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EDM. Finally, we consider the model introduced by Conitzer and Sandholm [12]
and later studied by Hazon et al. [19]. Due to its nature, we refer to it as the
explicit distribution model (EDM). Given a set of candidates C, for each voter
i ∈ {1, . . . , n} we are given a probability distribution πi over the votes over C
through a list of votes paired with their non-zero probabilities. Each unspecified
vote has probability 0. The probability of a profile V = (v1, . . . , vn) over C
according to EDM for π = (π1, . . . , πn) is given by PrEDM(V | π) =

∏n
i=1 πi(vi).

The parameters needed for Evaluation under EDM is the list of votes over C
paired with their probabilities for each voter. In practice, it can be quite difficult
to determine meaningful probabilities for the individual preferences required for
EDM. On the other hand, using EDM, one can replicate both PPIC, Mallows
and other models by explicitly stating the respective probability distribution for
each voter. However, this may require high computational effort as well as a list
of exponential length depending on the number of candidates for each voter.
Nevertheless, EDM in its generality and flexibility covers the motivations and
scenarios of the other models.

Example 3. Suppose we focus on a Borda election over the set of candidates
C = {a, b, c} and the probability distribution π shown in Fig. 3. The evaluation
problem assuming EDM with distinguished candidate b asks for the probability
that b is a winner of the election. Here b wins in two profiles with positive
probability, 12/20 and 3/20, so the answer to the Evaluation instance is Φ = 3/5.

π

v1 : a > b > c 4/5
b > a > c 1/5

v2 : a > c > b 1/4
b > c > a 3/4

v3 : c > b > a 1

v1 : a > b > c
v2 : a > c > b
v3 : c > b > a

4/20

v1 : a > b > c
v2 : b > c > a
v3 : c > b > a

12/20

v1 : b > a > c
v2 : a > c > b
v3 : c > b > a

1/20

v1 : b > a > c
v2 : b > c > a
v3 : c > b > a

3/20

Fig. 3. Example for an Evaluation instance assuming EDM with distinguished can-
didate b. The probability for each profile is given with respect to π. Profiles for which
b is not a winner are grayed out.

Computational Complexity. We assume that the reader is familiar with the basics
of computational complexity, such as the classes P, NP, FP, and #P. For further
information, we refer to the textbooks by Arora and Barak [1] and Papadim-
itriou [30]. We examine the complexity of the problems presented here mainly in
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Table 1. Complexity results for E-Evaluation in the non-unique winner case. The
number of voters is denoted by n. For a constant number of candidates, see Theorem 11.

PPIC Mallows EDM

General Const. n General Const. n General Const. n

AV FP,

Theorem 2

FP,

Theorem 9

#P-hard,

Theorem 10

FP,

Theorem 10

k-AV (k ≥ 1) #P-hard,

Theorem 3

FP,

Theorem 3

? FP,

Theorem 9

#P-hard,

Theorem 10

FP,

Theorem 10

k-appr. (k ≥ 1),

k-veto (k ≥ 1),

(2, 1, . . . , 1, 0)

#P-hard,

Theorem 1

#P-hard

(n = 1),

Theorem 1

#P-hard,

Theorem 6, 7

FP,

Theorem 5

#P-hard,

Theorem 10

FP,

Theorem 10

Borda #P-hard,

Theorem 6

FP (n = 1),

Theorem 4

terms of counting complexity as introduced by Valiant [34] using polynomial-time
Turing reductions from #P-hard counting problems to show the hardness of the
problems or by presenting polynomial-time algorithms to verify their member-
ship in FP. Comparing the complexity of #P-hard problems to the complexity
of decision problems in the polynomial hierarchy, we recognize the immense
complexity of just those. According to the theorem of Toda [33], the whole poly-
nomial hierarchy is contained in P#P. Therefore, a polynomial-time algorithm
for a #P-hard problem would implicate the collapse of the whole polynomial
hierarchy, including NP, to P.

3 Results

In this section we present our results regarding the evaluation problem. Table 1
summarizes our main results for the non-unique winner case. Note that we have
omitted several proofs due to the length restrictions but briefly address the ideas.

3.1 PPIC

In the following, we present our results regarding PPIC. We start with the results
for profiles consisting of linear order votes. Bachrach et al. [2] have shown that
the evaluation problem for the non-normalized variant of PPIC is #P-hard for
plurality and veto, even though each preference has at most two completions. It is
precisely the latter limitation that makes it possible to easily transfer this result
to the normalized variant considered here. Furthermore, by using the circular
block votes lemma of Betzler and Dorn [6] it is possible to extend the result to
all scoring rules. Note, however, that all these proofs require a variable number
of voters. Therefore, we start by showing that E-Evaluation assuming PPIC
is #P-hard for all scoring rules in the non-unique winner case, even if only one
voter is participating in the election.

Theorem 1. E-Evaluation is #P-hard for each scoring rule assuming PPIC,
even for one voter.
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Proof. We show the #P-hardness by a polynomial-time Turing reduction from
the problem #Linear-Extension, the problem of counting the number of com-
pletions (also referred to as linear extensions) of a partial order �X over a set
of elements X, which was shown to be #P-hard by Brightwell and Winkler
[9]. Assume we are given a #Linear-Extension instance consisting of a set
X = {x1, . . . , xt} and a partial order �X over X. First, we determine one com-
pletion >∗

X of �X through topological sorting. Set X0 = X. For i = 0, . . . , t − 2
we perform the following routine.

In the following, we construct an instance for a query to the E-Evaluation
oracle. Note that Xi contains t−i elements. Set C = Xi∪{bj | 1 ≤ j ≤ t+i} with
m = 2t. We assume that the given scoring rules is defined for 2t candidates. If
not, the given linear extension instance can be enlarged using padding elements.
Let α = (α1, . . . , αm) with αm = 0 be the scoring vector for m candidates and
k = min{j ∈ {1, . . . ,m − 1} | αj > αj+1}. We distinguish between two cases.

Case 1 (k < t − 1): Let Ṽ be a partial profile over C consisting of one partial
vote ṽ : b1 � · · · � bk−1 � X�X

i � bk � · · · � bt+i with X�X
i being the

elements in Xi partially ordered by �X . Let xs be the element in Xi for
which ∀xj ∈ Xi \ {xs} : xs >∗

X xj holds.
Case 2 (k ≥ t − 1): Let Ṽ be a partial profile over C consisting of one partial
vote ṽ : b1 � · · · � bk−t+1 � X�X

i � bk−t+2 � · · · � bt+i with X�X
i being

the elements in Xi partially ordered by �X . Let xs be the element in Xi for
which ∀xj ∈ Xi \ {xs} : xj >∗

X xs holds.

We subsequently set Θi = Φ (Case 1) or Θi = 1−Φ (Case 2) with Φ denoting
the answer of the E-Evaluation oracle regarding the previously constructed
instance consisting of the set of candidates C, partial profile Ṽ , and candidate
p = xs. The routine ends with setting Xi = Xi \ {xs}.

Finally, after considering each value of i, we return
∏t−2

i=0 Θ−1
i as the num-

ber of completions of �X . We now show the correctness of the reduction.
By �Xi

we denote the partial order over Xi induced by �X . We show that
Θi = |Λ(�Xi+1)|/|Λ(�Xi

)| for i ∈ {0, . . . , t − 2} holds. For this we consider
an arbitrary step i. It holds that α1 = · · · = αk > αk+1. Note that in both
cases, the partiality of ṽ is limited to the partial order �Xi

embedded in it.
In Case 1, xs is a winner of the election regarding completion V = (v) of
Ṽ = (ṽ) if and only if xs is placed in position k in v. Candidate xs being
placed in position k in v is equivalent to ∀xj ∈ Xi \ {xs} : xs >v xj . Thereby,
Θi = |{>∗ ∈ Λ(�Xi

) | ∀xj ∈ Xi \ {xs} : xs >∗ xj}|/|Λ(�Xi
)| holds. But if xs

is fixed to the top position regarding Xi, it holds that the remaining number
of completions equals the number of completions regarding Xi+1 = Xi \ {xs}
whereby |{>∗ ∈ Λ(�Xi

) | ∀xj ∈ Xi \ {xs} : xs >∗ xj}| = |Λ(�Xi+1)| holds.
Thereby, Θi = |Λ(�Xi+1)|/|Λ(�Xi

)| follows. In Case 2, xs is not a winner of the
election regarding completions V = (v) of Ṽ = (ṽ) if and only if xs is placed in
position k + 1 in v. The proportion of completions in which xs is not a winner
and thus fixed to the last position regarding Xi is given by Θi = 1 − Φ with Φ
denoting the probability that xs wins. Thereby, Θi = |Λ(�Xi+1)|/|Λ(�Xi

)| can
be shown analogous to Case 1.
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Finally, it holds that |Xt−1| = 1 whereby |Λ(�Xt−1)| = 1. Thus, by repeatedly
applying |Λ(�Xi

)| = Θ−1
i · |Λ(�Xi+1)| for i ∈ {0, . . . , t − 2}, |Λ(�X)| = |Λ(�X0)

| =
∏t−2

i=0 Θ−1
i follows. As the reduction can be performed in polynomial time,

the #P-hardness follows. ��
Note that the complexity in the unique winner case is much more diverse. For
scoring rules fulfilling α1 > α2 for each number of candidates, for example plural-
ity, (2, 1, . . . , 1, 0), and Borda, the #P-hardness of the problem in the case of one
voter can be shown using the previous reduction. For 2-approval, the problem
is trivial for one voter, but can be shown to be #P-hard for two voters using a
slightly adjusted version of the previous reduction. Finally, for veto, the problem
is not hard for any constant number of voters, since the problem is trivial if the
number of candidates exceeds the number of voters by more than one.

We now turn to the results regarding approval voting. We start with the
result for approval voting with a variable number of approvals per voter, for
which the complexity is significantly lower than for scoring rules.

Theorem 2. E-Evaluation is in FP for AV assuming PPIC.

Proof. We show that the problem is in FP using a dynamic programming app-
roach. Assume we are given an AV-Evaluation instance assuming PPIC con-
sisting of a set of candidates C = {p, c1, . . . , cm−1}, partial profile Ṽ = (ṽ1, . . . ,
ṽn) and candidate p.

First, we define some shorthand notations. By d(c), a(c), and u(c) we denote
the number of votes ṽi in Ṽ with appṽi

(c) = 0, 1, or ⊥ respectively. For a
candidate c ∈ C, by R(i, c) for 0 ≤ i ≤ n we denote the number of combina-
tions to extend the partial entries in Ṽ for candidate c such that c has exactly
i approvals. It holds that R(i, c) =

(
u(c)

i−a(c)

)
for 0 ≤ i − a(c) ≤ u(c) and 0 other-

wise. By N(s, j, k) we denote the number of combinations to extend the partial
entries in Ṽ for the candidates c1, . . . , cj in a way that exactly k candidates
in {c1, . . . , cj} receive exactly s approvals each while each other candidate in
{c1, . . . , cj} receives less than s approvals. Set N(s, 0, 0) = 1 for 0 ≤ s ≤ n
and N(s, j, k) = 0 for k > j or negative s, j, or k. The following relationship
applies. N(s, j, k) =

[∑s−1
i=0 R(i, cj)

]
· N(s, j − 1, k) + R(s, cj) · N(s, j − 1, k − 1)

for 0 ≤ s ≤ n, 1 ≤ j ≤ m − 1, and 0 ≤ k ≤ m − 1. The factor in the first term
of the formula equals the number of different possibilities for cj to receive less
than s approvals in a completion. The factor in the second term corresponds to
the number of different possibilities for cj in a completion to obtain exactly s
approvals, which increases the number of candidates with exactly s approvals by
one. Therefore, by summing over all possible numbers of co-winners and each
score of p that p could receive considering the different ways p may receive this
score we obtain H =

∑m−1
k=0

∑n
s=0 (R(s, p) · N(s,m − 1, k)) denoting the number

of completions for which p is a winner of the election. Thereby the probability Φ
that p is a winner of the election is given by H/2N⊥ with N⊥ denoting the total
number of undetermined approvals in Ṽ . We have to determine O(n·m2) different
entries with each one requiring at most O(n2) steps whereby the whole approach
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only requires a polynomial bounded number of steps. In the unique winner case
we receive the number of completions in which p is the winner of the elections
by excluding the possibility of co-winners: H =

∑n
s=0 R(s, p) · N(s,m − 1, 0). ��

On the other hand, if the number of approvals is fixed for each voter, the
problem becomes hard for approval voting. Interestingly, and contrary to the
result for scoring rules, this hardness does not hold for a constant number of
voters. This leads to the apparently contradictory result that the complexity
of the problem for one and the same voting rule described by k-approval and
k-AV is differing. This difference can be traced back to the differing degree of
information which was addressed in the explanation after Example 1.

Theorem 3. E-Evaluation is #P-hard for k-AV for any fixed k ≥ 1 assuming
PPIC, but lies in FP for a constant number of voters.

The first statement can be shown by a reduction from #Perfect-Bipartite-
Matching which was shown to be #P-hard by Valiant [34]. The second state-
ment follows from the observation that there is only a polynomially bounded
number of votes per voter and thus for a constant number of voters there is only
a polynomially bounded number of profiles with non-zero probability.

3.2 Mallows

In the following, we present our results regarding the Mallows noise model. Note
that the Mallows model is generalized by the repeated insertion model (RIM).
Therefore, the hardness results in this section also hold for RIM. Again, we
first present the results for profiles consisting of linear order votes. Note that
our main tool for the hardness results presented here is the observation that the
evaluation problem regarding Mallows is equivalent to the counting variant of the
unit-cost swap bribery problem (see Dorn and Schlotter [14]) under polynomial-
time Turing reduction. We omitted the proof for this result due to the length
restrictions. The main idea is to choose the dispersion factor in such a way that
it is possible to recalculate the exact number of profiles in a certain total swap
distance in which the respective candidate is a (non-)unique winner.

Theorem 4. E-Evaluation is in FP for all scoring rules assuming Mallows
for one voter.

We show that Kendall’s approach (see Kendall [22]) of calculating the number of
linear orders with an exact given swap distance to a given vote can be formulated
as dynamic programming and extended to take into account the position of p.

This result can also be extended to any constant number of voters for a certain
class of scoring rules. We call a scoring rule almost constant if the number of
different values in its scoring vectors is bounded by a constant, and additionally
only one value has an unbounded number of entries. This class of scoring rules
was considered by Baumeister et al. [5] and later by Kenig and Kimelfeld [23],
the latter of which coined the name. This class contains, for example, scoring
rules like k-approval, k-veto and (2, 1, . . . , 1, 0).
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Theorem 5. E-Evaluation is in FP for all almost constant scoring rules
assuming Mallows for a constant number of voters.

The result is based on the fact that the number of combinations of relevant
prefixes and suffixes of the votes in the profile is bounded by a polynomial
with the degree including the number of positions covered by the values with a
bounded number of entries and the number of voters. As we will see in Theorem 8,
there also exist scoring rules beyond this class for which the problem is hard for
a constant number of voters. We proceed with our results for an unbounded
number.

Theorem 6. E-Evaluation is #P-hard for (2, 1, . . . , 1, 0) and Borda assuming
Mallows.

Baumeister et al. [5] showed the NP-hardness of the unit-cost swap bribery prob-
lem for (2, 1, . . . , 1, 0) and Borda through a polynomial-time many-one-reduction
from the NP-complete problem X3C. As the respective counting problem #X3C
is #P-hard as shown by Hunt et al. [20] and the previously mentioned reductions
by Baumeister et al. are also parsimonious, the counting version of the unit-cost
swap bribery problem is #P-hard for (2, 1, . . . , 1, 0) and Borda. Therefore, by
the results stated at the beginning of this section regarding the polynomial-
time Turing equivalence of the problems, the #P-hardness of E-Evaluation for
(2, 1, . . . , 1, 0) and Borda assuming Mallows follows.

Contrary to Borda and (2, 1, . . . , 1, 0), it is known that the unit-cost swap
bribery problem is in P for plurality and veto (Dorn and Schlotter [14]). As we
see in the following, however, the respective counting variants and evaluation
problems assuming Mallows are #P-hard.

Theorem 7. E-Evaluation is #P-hard for k-approval and k-veto with fixed
k ≥ 1 assuming Mallows.

The proof consists of a reduction from #Perfect-Bipartite-Matching for
3-regular graphs which was shown to be #P-hard by Dagum and Luby [13].

Considering Theorem 4 and Theorem 5, the question arises as to whether a
scoring rule exists and, if so, whether a natural scoring rule exists, for which the
evaluation problem assuming Mallows is #P-hard even for a constant number of
voters. For this we consider top-
m/2� Borda characterized by the scoring vector
α = (k, k − 1, . . . , 1, 0, . . . , 0) for k = 
m/2� and m candidates.

Theorem 8. E-Evaluation is #P-hard for top-
m/2� Borda assuming Mal-
lows, even for a constant number voters.

Again, the proof consists of a reduction from #Perfect-Bipartite-Matching
for 3-regular graphs using König’s Line Coloring Theorem (König [24]). The
number of voters here is 13. We expect that the problem is already hard for a
lower number of voters for scoring rules similar to top-
m/2� Borda and Borda.

We now turn to the results regarding approval voting.
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Theorem 9. E-Evaluation is in FP for AV assuming Mallows and for k-AV
assuming Mallows and a constant number of voters.

The proof for the first case consists of a dynamic programming approach
similar to that in the proof of Theorem 2. The second case follows from the fact
that only a polynomial bounded number of possible profiles exist.

3.3 EDM

We now present our results regarding EDM. Since EDM generalizes both PPIC
and Mallows, and, under certain restrictions, even through a polynomial-time
Turing reduction, many of the previous results can be transferred to EDM for
both scoring rules and approval voting. Note that some results for individual
scoring rules and EDM were already known through Hazon et al. [19].

Theorem 10. E-Evaluation is #P-hard for AV, k-AV, and all scoring rules
assuming EDM, but lies in FP for a constant number of voters.

The hardness results follow from the proofs of the hardness results regarding
PPIC (see the note on the complexity regarding an unbounded number of voters
above Theorem 1 and Theorem 3) in which for the constructed instances the
number of completions of a vote is at most two and thus the instance can be
efficiently transformed into an EDM instance. The efficiency result follows from
the fact that the number of possible profiles is polynomially bounded.

Finally, we present our results for a constant number of candidates.1

Theorem 11. E-Evaluation is in FP for AV, k-AV, and all scoring rules
assuming PPIC, Mallows, or EDM for a constant number of candidates.

The result follows by slight adjustments from the approach for a constant num-
ber of candidates by Hazon et al. [19] and the fact that Mallows and PPIC
instances can be efficiently transformed to EDM instances for a constant num-
ber of candidates.

3.4 Corresponding Decision Problem

Conitzer and Sandholm [12] defined the evaluation problem as a decision problem
instead of a weighted counting problem. Assume we are given a rational number
r with 0 ≤ r ≤ 1 as part of the input. Here we ask whether the probability that
the given candidate is a winner of the election is greater than r. We refer to
this problem as E-Evaluation-Dec. The question arises whether the decision
problem in some cases is easier to answer than the weighted counting problem.
The following result shows that this is not the case for the cases considered here,
namely AV, k-AV and scoring rules assuming PPIC, Mallows, and EDM. This
result holds for all winner models and parameterized cases considered here.

1 Theorem 11 covers the case of classical scoring rules with a fixed-size scoring vector.
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Theorem 12. For the cases considered here, the problems E-Evaluation and
E-Evaluation-Dec are equivalent under polynomial-time Turing reduction.

While the reduction of the decision variant to the probability variant is straight-
forward, the reduction in the opposite direction uses the decision problem as
oracle for the search algorithm of Kwek and Mehlhorn [25]. It follows that E-
Evaluation is in FP, if and only if E-Evaluation-Dec is in P. On the other
hand, E-Evaluation is #P-hard, if and only if E-Evaluation-Dec is #P-
hard. While it is unusual to speak of #P-hardness of decision problems, it is
possible to show just that using Turing reductions. The #P-hardness makes the
NP-membership of such a problem unlikely (Toda [33]).

An interesting special case of the decision problem is to ask if the probability
that the given candidate wins is greater than r = 0. By the previous theorem it
follows that if the problem for r = 0 is NP-hard, the NP-hardness of the evalua-
tion problem under Turing reduction follows, but not the stronger #P-hardness.
Regarding EDM, the problem is referred to as the Chance-Evaluation prob-
lem by Hazon et al. [19]. Regarding PPIC, the problem is equivalent to the well
studied possible winner problem (for a recent overview, see Lang [26]). Regard-
ing Mallows, the problem is trivial for the voting rules considered here as each
candidate has a non-zero winning probability.

4 Further Related Work

In the following we discuss the related work which has not been sufficiently
covered in the paper so far. For a comprehensive overview regarding elections
with probabilistic or incomplete preferences, we refer to the overview by Boutilier
and Rosenschein [8] and the survey by Walsh [35].

Subsequently to the polynomial-time randomized approximation algorithm
with additive error for calculating a candidates’ winning probability assuming
PPIC by Bachrach et al. [2], Kenig and Kimelfeld [23] recently presented such
an algorithm with multiplicative error for calculating the probability that a
candidate loses assuming PPIC or RIM including Mallows.

Wojtas and Faliszewski [37] and recently Imber and Kimelfeld [21] have stud-
ied the problem of determining the winning probability for elections in which the
participation of candidates or voters is uncertain by examining the complexity
of the counting variants of election control problems.

Shiryaev et al. [31] studied the robustness of elections by considering the
minimum number of swaps in the profile necessary to replace the current win-
ner for which the evaluation problem under Mallows forms the probabilistic
variant. Very recently, Boehmer et al. [7] have further built on these studies
and thoroughly investigated the corresponding counting variant considering the
parameterized complexity and by experiments based on the election map dataset
by Szufa et al. [32], to investigate the practical complexity as well as the actual
stability measurement considered by the problem. In comparison to the Mal-
lows model, not all profiles are taken into account, weighted according to their
distance, but all profiles up to a given distance limit are equally weighted.
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In many cases the Mallows model is used to describe the distribution of votes
based on a true general underlying ranking. If one assumes that the assumption
regarding the existence of such a ranking is correct, it seems a reasonable app-
roach to determine the winner by determining the most likely underlying ranking
or to ask for a voting rule with the output as close as possible to such an under-
lying ranking. This approach has been examined, beside others, by Caragiannis
et al. [10] and de Weerdt et al. [36].

The evaluation problem is also considered in other contexts. For example,
in sports, the evaluation problem was studied by Mattei et al. [29] for various
tournament formats and subsequently by Baumeister and Hogrebe [4] with a
particular focus on predicting the outcome of round-robin tournaments.

5 Conclusion

We studied the computational complexity of the evaluation problem for approval
voting and positional scoring rules regarding PPIC, the Mallows noise model,
and EDM. We showed that the complexity of the problem varies greatly depend-
ing on the voting rule, the distribution model, and the parameterization. While
in the general case, and partially even in very restricted cases, the evaluation
problem is quite hard, we also identified general cases in which the probability
that the given candidate wins the election can be calculated efficiently. Finally, in
addition to the more practical motivations we have presented at the beginning,
the evaluation problem is essential for the theoretical investigations of proba-
bilistic variants of election interference problems such as manipulation, bribery,
and control. As introduced by Conitzer and Sandholm [12] the decision variant
of the evaluation problem is essentially the verification problem for just those
problems. They show NP-hardness for several cases, but also finally point out
that these problems do not necessarily lie in NP. In Sect. 3.4 we show that this
assumption is probably correct by proving the #P-hardness for several cases. For
just those NP- and #P-hard cases, it is unlikely that the interference problem
itself lies in NP, as the problem of verifying the success of a given intervention
is probably not contained in P.

Besides solving the open cases, namely the complexity regarding Mallows and
k-AV in general and Borda for a constant number of voters, it may be interesting
to consider multi-winner elections, further distribution models, and the fine-
grained parameterized counting complexity as introduced by Flum and Grohe
[17]. Of course, the worst-case, and the slightly more practical parameterized
worst-case, analysis is only the first but an indispensable step in the complexity
analysis of the problems and should, especially for the here identified hard cases,
be followed by an average-case or typical-case analysis.
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Abstract. Communicative interactive POMDPs (CIPOMDPs) provide
a principled framework for optimal interaction and communication in
multi-agent settings by endowing agents with nested models (theories
of mind) of others and with the ability to communicate with them. In
CIPOMDPs, agents use Bayes update to process their observations and
messages without the usual assumption of cooperative discourse. We pro-
pose a variant of the point-based value iteration method, called IPBVI-
Comm, to compute the approximate optimal policy of a CIPOMDP
agent. We then use the IPBVI-Comm to study the optimal commu-
nicative behavior of agents in cooperative and competitive scenarios.
Unsurprisingly, it is optimal for agents to attempt to mislead if their
preferences are not aligned. But it turns out the higher depth of rea-
soning allows an agent to detect insincere communication and to guard
against it. Specifically, in some scenarios, the agent is able to distinguish
a truthful friend from a deceptive foe based on the message received.

Keywords: Decision-theoretic planning · Multi agent systems ·
Deception

1 Introduction

The Communicative Interactive Partially Observable Markov Decision Process
(CIPOMDP) provides a principled framework for rational interaction and com-
munication in a multi-agent environments [19]. CIPOMDP framework is an
extension of interactive POMDP [18] to include the exchange of messages among
the agents. IPOMDP, in turn, extends Partially Observable Markov Decision
Process (POMDP) [39] to include other agents by incorporating their models
into its state space. As in POMDPs, the value function of CIPOMDPs is rep-
resented in terms of max over linear segments called alpha-vectors. Each alpha
vector corresponds to a policy and each component of alpha vector ascribes value
to an interactive state. Value iteration proceeds by backing up alpha-vectors to
a higher time horizon starting from horizon 1. POMDPs suffer from the curse
of dimensionality and the curse of history. Naturally, These curses are carried
over to IPOMDPs and CIPOMDPs, which require solving of nested POMDPs
and CIPOMDPs. The curse of history is more prominent in CIPOMDPs because
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the policy is now conditional on both observation and message received. Since
computing optimal policies for POMDPs by exact solution methods are proven
to be PSPACE-complete for finite time horizon and undecidable for an infinite
time horizon [25], a large amount of work has been done in computing approxi-
mate solution. [31] introduced a point-based value iteration (PBVI) algorithm to
approximate exact value iteration by selecting a fixed set of representative belief
points and maintaining alpha vectors that are optimal at those points only. Our
work builds on the interactive point-based value iteration [11] which showed
improvement in runtime over other IPOMDP solution methods like [10]. Exact
value iteration quickly becomes intractable in PODMPs and IPOMDPs due to
generation of large number of alpha-vectors which is exponential in observation
space |A||νt+1||Ω|, where νt+1 denote set of alpha vectors being backed-up from
t + 1 to t. In the case of CIPOMDP, the size is further exploded due to the
inclusion of message space in the policy. The exact number of alpha-vectors gen-
erated at time t will be |A||νt+1||Ω||M|. To keep the size of the alpha-set in each
iteration tractable, we can use the point-based method, which only retains the
vectors which are optimal at the fixed set of belief points. As in IPOMDP, we
need to solve the lower-level model to compute the alpha vectors. Accordingly,
we limit the initial model of other agents to a finite set.

The study of communication and interaction among self-interested agents in
a partially observable and stochastic domain has application in several fields
ranging from military [3,17] to social robotics [4]. The communicative behavior
among the agents in multi-agent systems has been studied in cognitive science
[2], economics [13] and artificial intelligence [22,43]. With the advancement of
artificial intelligence, the topic of machine deception has become more impor-
tant. In particular, since communication among agents is becoming ubiquitous,
malicious agents trying to exploit the vulnerabilities in other AI systems and
humans might be a common problem of the future. Thus it is important to lay
the foundation for deception-resistant AI systems. Further, as more AI agents are
becoming part of our social life, the study of emergent social behavior among
communicating agents (both artificial and human) with varied preferences is
vital.

Although vast literature exists on the topic of machine fooling humans
through fake content [37] and human fooling machines with adversarial attacks
[24], the study of deception in a sequential decision-making scenario, by model-
ing other agents have rarely been explored. As argued in [23], AI needs to guard
itself against malevolent humans and sometimes be able to deceive as well. On
the other hand, when the agents’ preferences align, then they benefit from sin-
cere communication. Like physical actions, communicative actions are guided
by the expected utility obtained in a particular state. Agents sometimes benefit
from being sincere and sometimes it is in their best interest to deceive. To be
able to cooperate, deceive or guard against deception, the agent needs to model
the belief, intention, and preference of the other agent [5]. While POMDPs pro-
vide a theoretically sound framework to model uncertainty about the state of
the world, the Theory of Mind (ToM) approach of IPOMDPs and CIPOMDPs
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allows modeling of uncertainty about other agents, including their beliefs about
the world and other agents. Figure 1 shows the theory of mind (ToM) of the
decision-making agent which is uncertain about the type of another agent and
how it may model others including the original agent. At the bottom of the
hierarchy of models could be a random agent, or a rational agent that does not
model others, i.e., a classical POMDP agent. A great deal of research in psy-
chology establishes a connection of deception to the recursive theory of mind
reasoning, which starts at an early age in humans [9,32,38]. More recently, [29]
provides a comprehensive quantitative analysis of the role of rationality and
theory of mind in deception and detecting deception.

Fig. 1. Theory of Mind (ToM) reasoning from the perspective of agent i interacting
with agent j when there is uncertainty about the opponent type. Level is indicative of
cognitive sophistication. The neutral agent i thinks j might be enemy, friend or random
agent. Further, i thinks j thinks i might be a sincere and gullible agent or a random
agent. The behavior of j is simulated by i by putting itself in j’s shoes. Within that
simulation, i needs to reason how j simulates i’s behavior.

In order to advance the usefulness of CIPOMDPs in multiagent planning,
particularly in non-cooperative setting, we proceed to fill in missing gaps in cur-
rent CIPOMDP literature. First, we propose an offline solution method called
interactive point based value iteration with communication (IPBVI-Comm) to
solve for the optimal communicative behavior. Then, we use IPBVI-Comm to
study communicative behaviors of CIPOMDP agents in various cooperative and
deceptive scenarios. Further, compared to [19], we provide more formal defini-
tion of the message space in terms of discretized interactive belief space, and
specify how the missing variables are marginalized. We also formalize the defi-
nition of sincerity and deception in terms of the message sent by the agent and
its belief about the state of the world. The proposed point-based offline solution
technique is used to compute the policy which finds the optimal action-message
pair to send at each time-step of interaction with the other agent. The subse-
quent policies are conditional on not only the observation but also the message
received from the other agent. Based on the preference of the agent and what is
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known about the preferences of the modeled agent, the agent may benefit from
incorporating the message from another agent into its belief, but discounting
it if it thinks the other agent has an incentive to lie. The policy of POMDP
agent on the bottom of a ToM hierarchy is augmented with a sincere message
using a look-ahead reachability tree from the initial belief in the interactive state
of the modeling agent. Similarly, we propose a way for an agent modeled as a
POMDP to receive messages by augmenting its observation space. We apply
IPBVI-Comm to agents interacting in the multi-agent tiger game and show that
communication is valuable to agents and results in superior policies compared to
its no communication counterpart. In cooperative scenarios, the agent can take
advantage of messages from a sincere agent as additional observations, and can
send sincere messages that inform the other agent. In competitive scenarios, the
agent not only attempts to deceive the other agent but also ignores the message
it knows to be deceitful. We then show how Bayesian update allows an agent
higher in a cognitive hierarchy to tell a friend from foe based on the message
received and its own observation.

2 Related Work

The problem of agents communicating and interacting simultaneously has been
addressed in several decision-theoretic as well as RL settings. [14] uses DDRQN
to learn communication protocol and solve a riddle by coordination. [15] com-
bines multiagent RL with a bayesian update to compute communication proto-
cols and policies in cooperative, partially observable multi-agent settings. [40]
uses a neural model that learns communication along with the policy. In the
planning and control setting, [28] uses communication for controllers to share
part of their observation and control history at each step. More recently, [41]
used POMDP with communication for human-robot collaboration task. Other
work in HRI include [6,8,42]. [7] uses a theory of mind approach for the execution
of a shared plan.

Communication has been studied extensively in other multi-agent decision
theoretic frameworks [26,27,30,44]. In [33], agents use extended belief state that
contain approximation of other agents’ beliefs. But these works assume fully
cooperative interactions and mostly involve central planning. CIPOMDPs, on the
other hand, provide subjective theory of mind reasoning during communication,
and follows Bayesian approaches to pragmatics.

Deception has been widely studied across multiple disciplines including game
theory [12,35], psychology [16] and economics [21]. When it comes to a sequen-
tial decision process to study attacker’s and defender’s approaches in cyberse-
curity research, decision theoretic framework of POMDP [1] and IPOMDP [36]
has been used. [34] combines ToM with components from deception theory and
implements an epistemic agent using Agent-Oriented Programming Language.
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3 Background

3.1 Communicative Interactive POMDPs

CIPOMDP [19] is the first general framework for an autonomous self-interested
agent to communicate and interact with other agents in the environment
based on Bayesian decision theory. A finitely nested communicative interactive
POMDP of agent i in an environment with agent j, is defined as:

CIPOMDPi = 〈ISi,l, Ai,M, Ωi, Ti, Oi, Ri〉 (1)

where ISi,l is a set of interactive states, defined as ISi,l = S × Mj,k, l ≥ 1,
where S is the set of physical states and Mj,k is the set of possible models of agent
j, l is the strategy (nesting) level, and k < l. The set of possible models Mj,k

consists of intentional models, Θj , or sub-intentional ones, SMj . While the inten-
tional models ascribe beliefs, preferences and rationality in action selection to
the modeled agent, the sub-intentional models do not. We consider kth (less than
l) level intentional models of agent j defined as θj,k = 〈bj,k, Aj , Ωj , Tj , Oj , Rj〉,
where bj,k is agent j’s belief nested to the level k, bj,k ∈ Δ(ISj,k). The inten-
tional model θj,k, is sometimes called type, can be rewritten as θj,k = 〈bj,k, θ̂j〉,
where θ̂j includes all elements of the intentional model other than the belief and
is called the agent j’s frame. Among the classes of sub-intentional models, we
consider no-information model [20] which randomly selects action to execute and
message to send in each time-step. The random models are possible in each level
starting with level-0.

In contrast to classical POMDPs and similar to IPOMDPs, the transition,
observation and reward functions in CIPOMDPs take actions of other agents
into account. A = Ai × Aj is the set of joint actions of all agents, Ωi is the set
of agent i’s possible observations, Ti : S × A × S → [0, 1] is the state transition
function, Oi : S × A × Ωi → [0, 1] is the observation function, Ri : S × A → R
is the reward function.

The ISi,l can be defined inductively

ISi,0 = S, Θj,0 = {〈bj,0, θ̂j〉 : bj,0 ∈ Δ(S)}
Mj,0 = Θj,0 ∪ SMj

ISi,1 = S × Mj,0, Θj,1 = {〈bj,1, θ̂j〉 : bj,1 ∈ Δ(ISj,1)}
Mj,1 = Θj,1 ∪ SMj

......

ISi,l = S
l−1×
k=0

Mj,k, Θj,l = {〈bj,l, θ̂j〉 : bj,l ∈ Δ(ISj,l)}
Mj,l = Θj,l ∪ SMj

The above defines the 0-level model, θj,0 as having beliefs only over the phys-
ical state space, S. The level 1 agent model maintains beliefs over the physical
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states and 0-level models of the opponent. A level l agent, θj,l, maintains beliefs
over S and over models of the opponent nested up to l − 1.

M is a set of messages the agents can send to and receive from each other,
i.e., it is a communication language the agents share. Since agents’ beliefs are
probability distributions and communication is intended to share beliefs, it is
natural to interpret a message in M as a marginal probability distribution over
a subset of variables in the agents’ interactive state spaces ISi and ISj , which
overlap. That way M is a set of probabilistic statements about the interactive
state space. The message nil, i.e., silence, contains no variables. Note that we do
not assume that messages reflect agents’ actual beliefs. We will further discretize
M below.

3.2 Belief Update in CIPOMDPs

Belief update in CIPOMDPs is analogous to belief update in IPOMDPs when
it comes to actions and observations. At any particular time step agents i and
j can not only perform physical actions and observe but also send and receive
messages. Call the message i sent at time t−1 mt−1

i,s , and one i received at time t

mt
i,r, and analogously for j. We assume all messages are in M and that message

transmission is perfect. We provide precise definition of message space in our
formulation in Sect. 4.1. The belief update in CIPOMDPs has to update the
probability of interactive state given the previous belief, action and observation,
and given the message sent (at the previous time step) and received (at the
current time): P (ist|bt−1

i , at−1
i ,mt−1

i,s , ot
i,m

t
i,r):

bt
i(is

t) = P (ist|bt−1
i , at−1

i , mt−1
i,s , ot

i, m
t
i,r) = η

∑

ist−1

bt−1
i (ist−1)

∑

at−1
j

P (mt−1
j,s , at−1

j |θt−1
j )

× Oi(s
t, at−1, ot

i)Ti(s
t−1, at−1, st)

∑

ot
j

τθt
j
(bt−1

j , at−1
j , mt−1

j,s , ot
j , m

t
j,r, b

t
j)Oj(s

t, at−1, ot
j)

The term P (mt−1
j,s , at−1

j |θt−1
j ) quantifies the relation between the message i

received from j and the model, θj , of agent j that generated the message.1 This
term is the measure of j′s sincerity, i.e., whether the message j sent reflects j’s
beliefs which are part of the model θj . η is the normalizing constant.

3.3 Planning in CIPOMDPs

The utility of interactive belief of agent i, contained in i’s type θi, is:

Ui(θi) = max(mi,s,ai)

{ ∑
is∈IS

bis(s)ERi(is,mi,s, ai)

+ γ
∑

(mi,r,oi)

P (mi,r, oi|bi, ai)Ui(〈SEθi
(bi, ai,mi,s, oi,mi,r), θ̂i〉)

}
(2)

1 Note that mt−1
j,s = mt

i,r because message transmission is assumed to be perfect.
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ERi(is,mi,s, ai) above is the immediate reward to i for sending mi,s

and executing action ai given the interactive state is and is equal to
Σaj

Ri(is, ai, aj ,mi,s)P (aj |θj). The planning in CIPOMDP makes use of Eq. 2,
which is based on the Bellman optimality principle. The policy computes optimal
action, message pair which results in a maximum expected reward. Consequently,
value iteration in CIPOMDP is analogous to that in IPOMDP and POMDP. The
set of optimal message-action pairs, (m∗

i,s, a
∗
i ) is obtained by replacing max in

Eq. 2 with argmax. We call the resulting set of optimal message-action pairs
OPT (θi). When agent i models agent j as a strict optimizer, i predicts j would
choose action-message pair in OPT set with equal probability:

P (mj,s, aj |θj) =
1

|OPT (θj)| (3)

and that P (mj,s, aj |θj) is equal to zero if (mj,s, aj) is not in OPT . The
possibility that agents may be less than optimal is considered in [19]

Being able to compute the probabilities of messages given the preferences and
beliefs of a speaker is of crucial importance when sincerity is not guaranteed. The
belief update in CIPOMDPs provides the principled way to discount content of
messages that may be insincere because it is in the interest of the speaker to
transmit them. We give an example of this further below.

4 Approach

4.1 Message Space

We define message space, M, as a set of marginal probability distributions over
a subset of variables in the interactive states of the agent. Since the belief space
is continuous we make the computation more tractable by quantizing M into
finite set of belief points. The message space is augmented with nil representing
silence, which is analogous to no-op operation in the physical action set. Limiting
message space to only nil message reduces CIPOMDP to IPOMDP. Usually,
a message contains information about only the subset of possible interactive
states.2 The variables that the message doesn’t mention are interpreted as being
marginalized. For e.g. the message received mi,r can provide a mapping from
physical state to belief marginalizing other variables of interactive state (belief
of another agent, frame, etc.). Then mi,r(s) denotes belief the message ascribes
to physical state s ∈ S. Further, message may only contain probabilities of subset
of values that the variables mentioned in message can take. We use the principle
of indifference and assume that probability is uniformly distributed among the
remaining values. For the variables used in the message, let W be the set of
values mentioned in the message and W’ be the set of values not mentioned in
the message
2 For example, if the physical state space, S, is factored into variables X and Y , a

message, m, might be “P (0 ≤ X ≤ 100) = 0.7”.
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∀w′ ∈ W ′

m(w′) =
1 − ∑

w∈W m(w)
|W ′| (4)

4.2 Sincerity and Deception

Let X denote a set of variables describing the interactive state of the agent.
℘(X) is a set of all non-empty subsets of X. The joint belief bt of an agent
can be marginalized over the subset of variables in X. Let bX represent belief
marginalized over variables in X. Accordingly message space M can be factored
into the sets of messages marginalized over each of X ∈ ℘(X).

Sincere message can be defined as a message in message space m ∈ M
X

which
is closest to the marginalized belief bt

X
consistent with the true joint belief bt of

the agent at time t. The distance is defined in terms of the L1 norm. Thus the
set of sincere messages is given by

Msincere =
⋃

X∈℘(X)

arg min
m∈MX

‖bt
X

− m‖ (5)

Insincere(deceptive) message can be defined as any message in message space
except the one closest to true belief bt of the agent at time t. Thus the set of
insincere messages is given by

Minsincere =
⋃

X∈℘(X)

MX − arg min
m∈MX

‖bt
X

− m‖ (6)

4.3 Communication for POMDP (Level-0 CIPOMDP)

The recursion in CIPOMDP bottoms out as a flat POMDP which does not have
a model of the other agent. We use the definition of literal speaker3 from [19]. A
literal listener can incorporate the incoming message as additional observation,
which we describe in the following section. These assumptions enable an agent
that does not model the other agent to participate in the exchange of messages.

Augmented Observation Space and Function for POMDP. We propose
POMDP (θ0) can receive the message and include it in its belief update, by
augmenting its observation space and consequently observation function. Obser-
vation space now becomes a Cartesian product of usual observation space and
message space.
3 Literal speaker generates a message reflecting its true belief about the physical states

of the world bt with probability 1 − α and all other messages including ‘nil’ with
probability α

|M|−1
.
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Ω′ = Ω × M (7)

The joint probability of observation and message received is obtained by
combining the likelihood function for a physical observation with message dis-
tribution. The message distribution is represented by a triangular distribution
with the idea that the likelihood of a message reflecting belief about the world
state should increase monotonically as the belief.

P (mi,r|s) =
{ 1

|S| if mi,r = nil

(mi,r(s)) otherwise
(8)

Given the state of the world, observation is conditionally independent of the
message received. The conditional independence holds because the broadcasted
message received by the agent does not depend on the sensor which is used to get
a physical observation. Then the augmented observation function can be defined
as

∀mi,r
∈ M and ∀o ∈ Ω and ∀s ∈ S

O′(s, a, o,mi,r) =
O(s, a, o)P (mi,r|s)∑

mi,r
P (mi,r|s) (9)

4.4 IPBVI-Comm Algorithm

The point-based value iteration approach backs up the alpha-vectors optimal at
a fixed set of belief points in each iteration starting from horizon 1. Each iteration
consists of three steps, which we describe below, and along the way we highlight
the difference with IPBVI [11]. Algorithm 1 provides the interactive point based
value iteration with communication. The majority of the work happens in func-
tion PointBasedUpdate which generates new set of alpha vectors utilizing alpha
vectors from previous time horizon. The belief set for each horizon consists of
randomly generated belief points across all interactive states. When it comes
to the 3 steps of point-based value iteration, IPBVI-Comm has the complexity
of the same order as IPBVI except that the time complexity for calculation of
intermediate alpha-vectors now depends on the size of the message space. Let
|B| represent the size of sample belief space at any level. When models of level
‘l’ are solved, we have maximum of |B| number of alpha vectors for each frame.
For simplicity, let’s suppose we have |θ̂| frames at each level. Then the number of
alpha vectors at each level is bounded by O(|B||θ̂|l2) The additional complexity
in IPBVI-Comm stems from the augmentation of POMDP policy with a sincere
message, for which the agent has to perform an exact belief update. Even if we
limit the set of initial models of other agents like IPBVI and perform planning
over reachable models of the other agent, exact belief update quickly becomes
intractable. At t + 1, |Bt||A||Ω′| new models are generated.
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Algorithm 1. Point based value iteration with communication
1: function PointBasedUpdate(Γ t−1,ISt−1,ISt, Bt, Mt)
2: Γ a,ms,∗ ← ∅, Γ a,ms,o,mr ← ∅
3: for action ∈ A, ms ∈ M do
4: αa,ms ← AlphasAM(action, ms)
5: Γ a,ms,∗ ← Γ a,ms,∗ ∪ αa,ms

6: for obs ∈ Ω, mr ∈ M do
7: αa,o,m,s,m,r ← AlphasAOM(a, ms, obs, mr, Γ

t−1)
8: Γ a,ms,o,mr ← Γ a,ms,o,mr ∪ αa,o,ms,mr

9: end for
10: end for
11: Γ all ← ∅
12: for action ∈ A, ms ∈ M do
13: Γ a,ms ← ∅
14: for bl ∈ B do
15: αa,ms,b ← Γ a,ms,∗(action, ms)
16: for obs ∈ Ω,mr ∈ M do
17: αa,ms,b ← αa,ms,b + arg maxΓa,ms,o,mr (αa,ms,o,mr .bi,l)
18: end for
19: Γ a,ms ← Γ a,ms ∪ αa,ms,b

20: end for
21: Γ all ← Γ all ∪ Γ a,ms

22: end for
23: νt ← ∅
24: for bl ∈ B do
25: νt ← νt ∪ arg maxαt∈Γall(αt.bl)
26: end for
27: return νt

28: end function

Step 1. The first step (lines 2–10) involves calculating the intermediate set of
alpha vectors Γ ai,mi,s,∗ representing immediate reward for action ai and mes-
sage mi,s (Eq. 10), and Γ ai,oi,mi,s,mi,r representing future reward after receiving
observation oi and message mi,r (Eq. 11). The step is performed for all actions,
observations and messages. For horizon 1, computation of immediate reward is
sufficient and will be used as initial alpha set for subsequent backups.

Different from point-based algorithm for IPOMDPs, we need to calculate
Pr(mir|θj,l−1) and perform belief update for the other agent j which now
depends on message sent by i. Due to one-step delay in message exchange, the
message sent in the current time step allows computing interactive states in next
time step and backup the values from next time step. Assuming sincerity for θj,0,
only the message closest to belief will get probability 1 − α. All the other mes-
sages, including ‘nil’, will share the probability α. When a message received is
other than a sincere message, level-1 CIPOMDP ignores the message, and belief
update proceeds as IPOMDP. For higher-level CIPOMDPs, the probability of
message received is uniformly distributed among all the messages in OPT (θj)
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set, as defined in Sect. 3.3. Algorithm to calculate the probability of message
given model of another agent is provided in the appendix.

∀ai ∈ Ai,∀oi ∈ Ωi,∀mi,s ∈ M,∀is ∈ IS

Γ ai,mi,s,∗ ← αai,mi,s,∗(is) =
∑

aj∈Aj

Ri(s, ai, aj ,mi,s)Pr(aj |θj,l−1) (10)

Γ ai,oi,mi,s,mi,r ← αai,oi,mi,s,mi,r (is) = γ
∑

is′∈IS′

∑

aj∈Aj

Pr(mi,r, aj |θj,l−1)Ti(s, ai, aj , s
′)

Oi(s
′, ai, aj , oi)

∑

oj

Oj(s
′, ai, aj , oj)δD(SEθ̂j

(bj,l−1, aj , oj , mj,s, mi,s) − b′
j,l−1)α

′
(is′)

(11)

Here, δD is the Dirac delta function taking the current belief and updated
belief as an argument. The updated belief is returned by state estimator function
SEθ̂j

.

Step 2. The second step (lines 11–22) involves combining intermediate alpha
vectors calculated in step 1 weighted by the observation and message likelihood
using a cross sum operation. Due to the point-based approach, the cross sum
operation in exact value iteration is simplified. The step proceeds by selecting
only those intermediate alpha vectors which are optimal at any of the given set
of belief points.

Γ ai,mi,s ← Γ ai,mi,s,∗ ⊕
oi∈Ωi,mi,r∈M

arg max
Γai,oi,mi,s,mi,r

(αai,oi,mi,s,mi,r .bi,l)

∀bi,l ∈ Bi,l (12)

Step 3. In the final step, the belief points in set Bi,l are used again to select the
alpha vectors for the final set for the current iteration. Since different action,
message pairs can be optimal for the modeled agent, we need to include alpha
vectors corresponding to all optimal action, message pairs in the final alpha set.

νt ← arg max
αt∈∪ai

Γai,mi

(αt.bi,l)

∀bi,l ∈ Bi,l (13)

The recursion bottoms out as level-0 POMDP which we assume to be lit-
eral speaker. Since, POMDP policy only computes physical action, we need to
augment the policy with sincere message. The algorithm for augmenting level-0
POMDP policy with sincere message is provided in appendix.
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5 Experiments and Results

5.1 Multi-agent Tiger Game

In this version, two agents are facing two doors: “left” and “right”. Behind one
door lies a hungry tiger and behind the other is a pot of gold but the agents
do not know the position of either. Thus, the set of states is S = {TL, TR}
indicating the tiger’s presence behind the left, or right, door. Each agent can
open either door. Agents can also independently listen for the presence of the
tiger, so the actions are A = {OR,OL,L} for opening the right door, opening the
left door, and listening and is the same for both agents. The transition function
T , specifies that every time either agent opens one of the doors, the state is reset
to TR or TL with equal probability, regardless of the action of the other agent.
However, if both agents listen, the state remains unchanged. After every action,
each agent can hear the tiger’s growl coming either from the left, GL, or from the
right door, GR. The observation function O (identical for both agents) specifies
the accuracy of observations. We assume that tiger’s growls are informative, with
predefined sensor accuracy, only if the agents listen. If the agent opens the doors
the growls have an equal chance to come from the left or right door and are thus
completely uninformative.

Table 1. Neutral
Reward

〈ai, aj〉 TL TR

OR, L 10 −100

OL, L −100 10

L, L −1 −1

OR, OL 10 −100

OL, OL −100 10

L, OL −1 −1

OR, OR 10 −100

OL, OR −100 10

L, OR −1 −1

Table 2. Friend
Reward

〈ai, aj〉 TL TR

OR, L 9.5 −100.5

OL, L −100.5 9.5

L, L −1.5 −1.5

OR, OL −40 −95

OL, OL −150 15

L, OL −51 4

OR, OR 15 −150

OL, OR −95 −40

L, OR 4 −51

Table 3. Enemy
Reward A

〈ai, aj〉 TL TR

OR, L 10.5 −99.5

OL, L −99.5 10.5

L, L −0.5 −0.5

OR, OL 60 −105

OL, OL −50 5

L, OL 49 −6

OR, OR 5 −50

OL, OR −105 60

L, OR −6 49

Table 4. Enemy
Reward B

〈ai, aj〉 TL TR

OR, L 10 −100

OL, L −100 10

L, L −1 −1

OR, OL 10 −150

OL, OL −100 −40

L, OL −1 −51

OR, OR −40 −100

OL, OR −150 10

L, OR −51 −1

Reward Functions. The reward functions are chosen to simulate cooperative
and competitive scenarios. Table 1 represents the scenario when the reward of the
agent is independent of the action of the other agent. Table 2 is the friend reward
function where the agent gets half of the reward obtained by the other agent,
in addition to its own reward. In Table 3 the agent gets half of the negative of
the reward obtained by the other agent, hence represents the competitive case.
In other reward function Table 4, the agent gets −50 reward if another agent
opens the correct door but there is no extra reward if the other agent opens the
wrong door. Table 3 incentivizes the extreme lie while Table 4 incentivizes more
believable lie.
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5.2 Results

Table 5 shows the total reward collected in multi-agent tiger game averaged
across 10000 episodes for sensor accuracy of 0.85. The message space M is limited
to distribution over physical states only and has been quantized into 5 equally
spaced belief points (0.0, 1.0), (0.25, 0.75), (0.5, 0.5), (0.75, 0.25), (1.0, 0.0), and
nil. The value of α is fixed to 0.01. The results show that the CIPOMDP agent
outperforms the IPOMDP agent in terms of the average reward collected due to
the sophistication of message exchange. The difference is more prominent when
the agent is able to deceive the other agent. The behavior of the agent across
multiple scenarios is discussed below.

Table 5. Reward comparison for CIPOMDP agent against IPOMDP agent in different
scenarios. For Enemy, reward function in Table 3 is used.

Nesting

level

Agent Opponent Reward

h = 3 h = 4 h = 5

CIPOMDP IPOMDP CIPOMDP IPOMDP CIPOMDP IPOMDP

1 Neutral Sincere and

Gullible

3.4 ±
8.92

2.84 ±
16.02

3.9 ±
8.29

2.39 ±
7.95

3.5 ±
8.037

1.067 ±
20.275

Enemy Sincere and

Gullible

46 ±
24.69

1.53 ±
18.07

66.48 ±
42.15

1.07 ±
8.887

86.00 ±
36.57

−1.31

± 24.79

Friend Sincere and

Gullible

5.08 ±
10.91

4.15 ±
18.02

6.05 ±
9.42

3.56 ±
8.86

5.71 ±
17.10

−0.81

± 23.32

2 Neutral Enemy 3.39 ±
8.08

2.81 ±
16.02

3.9 ±
11.40

2.39 ±
7.67

3.4942

± 8.94

1.55 ±
17.14

Friend Friend 5.08 ±
10.5

4.14 ±
18.02

6.21 ±
8.56

3.67 ±
8.97

5.02 ±
10.099

3.65 ±
17.94

Enemy Enemy 5.44 ±
10.83

1.53 ±
18.07

8.99 ±
18.88

2.32 ±
15.72

10.78 ±
18.09

0.5 ±
19.81

Neutral Uncertain

(Enemy or

Friend)

3.43 ±
7.80

1.53 ±
18.07

4.19 ±
9.162

2.44 ±
7.87

3.45 ±
8.33

0.82 ±
13.71

5.3 Algorithm Performance

Since the point-based algorithm only backs up alpha-vectors optimal at fixed
set of belief points, the performance would depend on the number of belief
points chosen. Figure 2 shows the comparison of expected reward for the different
number of belief points.
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Fig. 2. The performance profile of IPBVI-Comm for level 2 (left) and level 1 (right)
CIPOMDP agent, in a cooperative multiagent tiger game. The increase in expected
reward is due to improvement in policy after increasing number of belief points. The
figure also shows the comparison with exact value iteration

6 Discussion

6.1 Cooperative Scenario

When level 2 friend i models a friend j, agent i sends a sincere message to j
reflecting its belief and further includes a message from another agent in its belief
update. For e.g. after starting from uniform belief, if the agent i hears GL, it
will send the sincere message mi,s = (0.75, 0.25), which assigns probability 0.75
to TL and 0.25 to TR.

6.2 Non-cooperative Scenarios

When a level 1 CIPOMDP agent i models a gullible agent j, it can collect a large
reward by sending a deceitful message. For e.g. after starting from uniform belief
and getting GL, the agent sends a message mi,s = (0, 1) which indicates agent
i is certain tiger is on the right, opposite to its own observation. When level 2
enemy i models enemy j, the sophisticated agent i can prevent itself from being
deceived by j and further take advantage of the deceitful message as an extra
observation. Also, since level-2 agent knows level-1 CIPOMDP models the other
as a sincere agent, the former tends to deceive the latter by sending a deceitful
message. When level 2 neutral agent models an enemy, it has no incentive to
deceive but can prevent itself from being deceived by ignoring the message from
the other agent.

6.3 Uncertainty About the Opponent

Message Non-revealing of the Agent’s Type. Let’s consider a scenario
where the level-2 CIPOMDP agent i is uncertain about the level-1 opponent
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j’s type and thus assigns uniform probability over the other agent being friend,
enemy or random4. The friend is characterized by the friend reward function
(Rf ) which incentivizes sincere communication while the enemy is characterized
by the enemy reward function (Re) incentivizing the deceptive behavior. Also, all
other elements in the frame of the CIPOMDP agent at all levels are assumed to
be the same. Level-2 CIPOMDP i uses IPBVI-Comm to solve for the anticipated
behavior of modeled agents θf

j,1 and θe
j,1. Now let’s see how the belief update

proceeds for i. Note, that optimal messages from level-1 agents are not indicative
of the agent type. For e.g. if the enemy received GL, it would send the message
(0.25, 0.75) and if the friend received GR, it would again send the message (0.25,
0.75). We study the scenario when the message itself is indicative of agent type in
the next section. It turns out the agent i is still able to assign a higher probability
to one agent type than the other based on the observation it received. For e.g. if
the observation and message received for i in two time-steps are < GL,′ nil′ >
and < GL, (0.25, 0.75) >, the agent is more likely to be an enemy than the friend
because its observations contradict the received message. The belief update of
other scenarios are provided in appendix.

Message Revealing the Agent’s Type. Again we consider the scenario when
there is uncertainty about the opponent type, i.e. when level 2 neutral agent
i models both enemy and friend. The only difference now is that the agent
modeled at level-1 θj,1 has the reward function that incentivizes the extreme
lie (Table 4). In this case, the higher level agent θi,2 can figure out if the other
agent j is friend or enemy based on the message content only. The CIPOMDP
agent θi,2 incorporates the message from j as a sincere message if it is closer
to the belief of the modeled agent θj,1 and discards the message as an insincere
message if the incoming message is way off the belief of the modeled agent. For
e.g. if the belief of the modeled agent is (0.85, 0.15), (0.75, 0.25) is considered a
sincere message while (1, 0) is considered insincere message. Let’s suppose θi,2

starts by listening at t = 0. After receiving GL and message nil, the belief shifts
towards physical state TL but belief is equally distributed among both frames.
At t = 1, after receiving message (0.75, 0.25) and observation GL, the belief
concentrates on tiger being on left and other agent being a friend. The agent
is able to detect friend from enemy by calculation of sincerity term P (mi,r|θj).
When θj = (bj , Rf ), P (mi,r|θj) = 1 and when θj = (bj , Re), P (mi,r|θj) = 0.
This happens because for level-1 CIPOMDP with enemy reward function, the
optimal action would be to lie to the extreme. This would make θi,0 open the door
intended by the deceiver θj,1, disregarding its own observation. This message
reveals j as an enemy to the higher level agent i.

4 Level-2 CIPOMDP might be uncertain about the strategic level of the opponent,
but to simplify the illustration, we stick to level-1 models and a random model.
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7 Conclusion

We started by devising a technique to incorporate the message into POMDP
belief update in order to allow an agent that does not model other agents to
take part in exchange of (literal) messages. We then formalized the notion of
sincerity and deception in terms of belief of the agent and messages in message
space. We adopted a point based solution method to CIPOMDPs to alleviate the
complexities of considering communication as well as observations and physical
actions. The analysis of computed policies shows the added sophistication of
communication results in policies of superior quality, which is further supported
by the empirical results on several experiments conducted on multi-agent tiger
game. In future work, we want to explore the higher depth of nesting, and
more relaxed soft maximization criterion for action selection which can give
rise to richer rational communicative behavior agents can engage in. We are
considering online planning method like Monte Carlo tree search for computing
policy which provides scalability and with some variation, could accomodate
continuous message space.
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Abstract. This paper introduces a negotiation approach to solve the
Multi-Agent Path Finding problem. The approach aims to achieve a
good trade-off between the privacy of the agents and the effectiveness
of solutions. Accordingly, a token-based bilateral negotiation protocol
and a compatible negotiation strategy are presented. The proposed app-
roach is evaluated in a variety of scenarios by comparing it with state-
of-the-art centralized approaches such as Conflict Based Search and its
variant. The experimental results showed that the proposed approach
can find conflict-free path solutions with a higher success rate, especially
when the search space is large and high-density compared to centralized
approaches while the gap between path cost differences is reasonably low.
The proposed approach enables agents to have their autonomy; thus, it
is convenient for MAPF problems involving self-interested agents.

Keywords: Multi-Agent Path Finding · Negotiation · Decentralized
coordination · Self-interested agents

1 Introduction

Technological advancements in the last decades enable autonomous robots and
vehicles to carry out a variety of tasks such as surveillance and transportation.
To achieve their goal, they may need to navigate from one location to another.
Imagine an environment in which hundreds of autonomous robots aiming to
reach certain locations. Such an environment requires a coordination mechanism
to avoid some potential collisions. This problem, allocating conflict-free paths to
agents so as to navigate safely in an environment, is well-addressed in the field of
Multi-Agent Systems and known as Multi-Agent Path Finding (MAPF) problem
[26]. A vast number of studies tackle this problem; some propose a centralized
solution while others focus on decentralized solutions [25].

Centralized solutions rely on full access to all relevant information regarding
the agents and properties of the given environment so that a global solution can
be derived. In contrast, decentralized solutions decouple the problem into local
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chunks and address the conflicts locally [10]. Without any time constraints, cen-
tralized approaches can find optimal solutions if there exist. However, the perfor-
mance of centralized solution approaches can suffer in high density and complex
environments [8,24]. Besides, full information may not always be available due
to the limitation of communication, sensors, or privacy issues. On the one hand,
decentralized approaches can deal with uncertainty and scalability issues and
produce admissible solutions. However, they may overlook a potential optimal
solution and end up with suboptimal solutions.

This work pursues a decentralized approach to the MAPF problem targeting
a good trade-off between privacy and effectiveness of the solutions. As agents can
resolve their conflicts for varying problems from resource allocation to planning
through negotiation [3,13,15,19], we advocate to solve the aforementioned prob-
lem in terms of negotiation and accordingly propose a token-based alternating
offers protocol. In the proposed approach, agents share their partial path infor-
mation with only relevant agents that are close to them to some extent. If they
detect any conflict on their partial path, they encounter a bilateral negotiation
to allocate required locations for certain time steps. To govern this negotiation,
this study introduces a variant of alternating offers protocol enriched with token
exchanges. By enforcing the tokens’ usage, the protocol leads agents to act col-
laboratively and search unexplored paths so that there is no conflict anymore.
A path-aware negotiation strategy is also presented in line with the protocol.
There are a few attempts to solve the MAPF problem in terms of negotiation
[14,21,22]. Either they require sharing full path information with others, or they
consider one-step decisions such as who will move to a certain direction at the
time of conflict, or they aim to resolve the conflict in one shot (i.e., collaborate or
reject). In contrast, our approach aims to reduce the complexity of the problem
by resolving the conflicts in subpath plans iteratively instead of the entire path
plans, thereby respecting the agents’ privacy to some extent.

This paper is organized as Sect. 2 describes the problem addressed in this
paper, while Sect. 3 lays out the proposed solution approach, introduces a new
variant of Alternating Offers Protocol and a compatible negotiation strategy in
line with that protocol. Experiment setup and results of the experiments are
presented in Sect. 4. This paper’s main contributions and planned future work
are discussed in Sect. 6.

2 Problem Statement

Multi-Agent Pathfinding (MAPF) as defined in [26], is the problem of assigning
conflict free paths to agents from their respective starting locations to their
destinations. Formally, we have k agents denoted by A = {A1, A2, ..., Ak }
navigating in an undirected graph G = (V,E) where starting and destination
location for each Ai are denoted by si ∈ V and gi ∈ V respectively. The path of
each agent Ai is denoted by πi, a sequence of vertices indexed by each time step
0 → n, (s0i , ..., g

n
i ). πt

i ∈ V corresponds to current location of Ai at time step t.
At any time step, the agents cannot be located in the same vertex – πt

i �= πt
j ∀
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i �= j, and traverse the same edge. A swapping conflict occurs when πt
i = πt+1

j

∧ πt+1
i = πt

j ∀ i �= j.
In this paper, agents are located in a M × M grid-like environment where

each cell corresponds to a vertex as illustrated in Fig. 1a. Each agent has an
initial path to follow in the addressed problem to reach their destination, shown
by dashed lines in the grid. For the current example, we have three agents A,
B, and C whose planned paths are colored in their respective colors (i.e., red,
blue, and green). Here, an agent located in a cell can only move to their vertical
and horizontal adjacent neighboring cells (i.e., cardinal directions). For instance,
Agent A located in (2, 2) can move to one of the following cells: (1, 2), (3, 2),
(2, 1), and (2, 3). In the proposed framework, agents cannot wait at a certain cell
unless agents reach their destinations. That is, πt

i �= πt+1
i whereas πt

i �= gi. As
seen in the example, there is a conflict between Agent A and B at time step t
= 2 (cell (3, 3)). They need to resolve this conflict to achieve their goals. Final
solutions will be evaluated under the objective of some of the individual costs,∑k

i=1 |πi| where individual cost of each agent i corresponds to their path length
denoted by |πi|. Furthermore, when an agent reaches its destination, it stops
there to act as an obstacle for other agents. This behavior makes this problem
a stay at target MAPF problem.

Fig. 1. Example environment & field of view representation

3 Proposed Approach

This work presents a decentralized solution in which agents autonomously nego-
tiate with each other in order to refine their path to avoid possible collisions. The
main challenge is to deal with the uncertainty about the environment due to the
limited capacity of the sensors, communication, or some privacy concerns. Most
real-world applications are partially observable where the agents can perceive
some relevant aspects of the environment. For instance, a robot may not per-
ceive all objects that are far from its current location. Light detection and range
finding sensors can detect up to a certain distance. Similarly, wireless commu-
nication systems also have limited communication capabilities. Agents may not



A Decentralized Token-Based Negotiation Approach for MAPF 267

exchange information with each other if their distance is above a threshold value.
Besides, full information is not always available due to the characteristics of the
environment. For example, drivers in traffic do not know where other drivers
are going. Furthermore, agents may be reluctant to share all information due to
their privacy. For instance, they may not be willing to reveal their destination.

In our framework, agents are located in a grid as shown in Fig. 1b. Initially,
each agent knows only their starting location, destination, and a path plan to
reach their destination. Those planned paths are shown in colored dot lines in the
grid for each agent. For simulating the aforementioned partially observable envi-
ronment, we adopt the concept of field of view. The framework enables agents to
access a limited portion of other agents’ planned paths within a certain proxim-
ity and share their own. In other words, an agent’s field of view determines the
scope of its communication and perception capacity. An agent can only observe
and communicate with other agents if they are within its field of view. That is
described as a certain number of cells d from its location. For instance, when d is
equal to 1, the boundary of the field of view is shown by a red rectangle for Agent
A. In such a case, Agent A can receive/send information from/to only Agent C,
which is located in the scope of Agent A’s field of view and vice versa. However,
in the given snapshot, Agent B cannot communicate or see other agents at that
time.

In this framework, agents broadcast their sub-planned path. Agents are free
to determine to what extent the path to be shared with other agents in the field
of view. In our experiments, agents share their current subpath with a length
of 2d. If any conflict is detected by one of the agents, they can engage in a
negotiation session. For example, when d is equal to 1, agents will share their
current subpath with a length of 2 (i.e., its next two moves) with the agents
located the scope of their field of view. Agent A broadcasts its current subpath
as Broadcast : [πt=1

A = (3, 2), πt=2
A = (3, 3)] while Agent C shared its own as

Broadcast : [πt=1
C = (2, 3), πt=2

C = (3, 3)]. Since agents would detect a conflict in
the vertex (3, 3) at t = 2, Agent A and C start negotiating on the allocation of
vertices on their path since they detect a conflict in (3, 3).

When an agent detects a conflict with more than one agent, which negotiation
to be held first is determined in first come first serve basis. For example, if d
is 2, then Agent B and Agent C will share their subpaths with a length of 4
with Agent A. Agent A may first negotiate with Agent B if Agent B’s message
has been received before Agent C’s one. Afterward, it can encounter a bilateral
negotiation with Agent C. After carrying out any successful negotiation, agents
will update their path accordingly. A number of negotiation sessions might be
held until resolving current conflicts. If there are no conflicts left in the current
field of view, agents move to their next location in their path. Once an agent
reaches its desired destination, it will not encounter a negotiation anymore. The
negotiation between agents is carried out according to the proposed token-based
negotiation protocol. The details of this protocol and a specific bidding strategy
particularly designed for this protocol to tackle the MAPF problem are explained
in the following sections.
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3.1 Token-Based Alternating Offers Protocol (TAOP)

The proposed framework requires agents to engage in negotiation to resolve
conflicts in their paths. At a given time, the conflict may occur either between
two agents or among multiple agents. When it happens among more than two
agents, we can formulate it as multiple bilateral negotiations and consider it a
multilateral negotiation. As it may be harder to find a joint agreement, especially
when the number of participants is high [4], the proposed approach aims to solve
the conflicts in multiple consecutive bilateral negotiations. For simplicity, agents
perform their bilateral negotiations consecutively. That is, a new negotiation can
start after completing the previous one.

In the proposed approach, when there is a conflict in two agents’ sub-path,
agents negotiate on allocating the relevant vertices for certain time steps. Follow-
ing the previous example illustrated in Fig. 1b, Agent A may claim to allocate
the vertices at (3, 2) at time t = 1, (3, 3) at time t = 2 while Agent C may aim
to allocate the vertices at (2, 3) at time t = 1, (3, 3) at time t = 2. Depending
on how the negotiation proceeds, they may concede over time and change their
request on vertex allocations to come up with an agreement. If agents find an
agreement, they are supposed to obey the allocation for the other party. That is,
agents are free to change their own path as long as their current path allocation
does not violate the agreed vertex allocation for the other party. For example,
when Agent C accepts Agent A’s vertex allocation for time steps t = 1 and
t = 2, Agent C confirms that it will not occupy those vertices to be allocated by
Agent A for the agreed time steps.

The interaction between agents needs to be governed by a negotiation pro-
tocol. In automated negotiation, agents mostly follow the Stacked Alternating
Offers Protocol [5] in which they exchange offers in a turn-taking fashion until
reaching a predefined deadline. This protocol does not force the agents to come
up with an agreement. If both agents are selfish, they may fail the negotiation.
However, finding a consensus plays a key role in the context of MAPF. Therefore,
agents preferably follow a protocol leading them to reach an agreement. Accord-
ingly, we introduce a novel token-based negotiation protocol namely Token-based
Alternating Offers Protocol (TAOP) inspired from Monotonic Concession Pro-
tocol (MCP) [23] and Unmediated Single Text Protocol (USTP) [16]. According
to MCP, agents make simultaneous offers in a way that either they can stick to
their previous offer or make a concession. If both parties stick to their previous
offers, the negotiation ends without any consensus. Otherwise, agents continue
negotiation until reaching an agreement or failing the negotiation. This protocol
leads agents to complete the negotiation without setting a predefined deadline.
However, there is a high risk of ending up with a failure. In USTP, agents inter-
changeably are becoming a proposer or voter during the negotiation. Initially, a
number of tokens are given to each agent where agents can use those tokens to
override other’s reject votes. One agent starts with a random offer, and the other
agent votes to accept or reject it. If the other agent accepts, it is considered as
the most recently accepted bid. This interaction is repeated multiple times, and
the most recently accepted bid is updated over time. At the end of the nego-
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tiation, the most recently accepted bid is considered as the agreement. Here,
the tokens are used to incentivize truthful voting of agents to not manipulate
the system by rejecting all offers. Since this protocol is particularly designed for
large-scaled negotiation problems, the generated bids are variants of an initial
random offer, not directly applicable to our problem. On the other hand, the
token idea can enforce the agents to concede over time in a fairway.

Basically, the proposed token-based alternating offers protocol is a variant
of alternating offers protocol enriched with token exchanges. One of the agents
initiates the negotiation with an offer. The receiving party can accept this offer,
make a counteroffer, or end the negotiation without agreement. The main differ-
ence is that agents are not allowed to repeat their previous offers unless they pay
for them. The protocol assumes that each agent owns a predefined number of
tokens, T . Those tokens are used to enable an agent to make one of its previous
offers during that negotiation. Different from MCP, agents are not required to
make conceding moves. The essential requirement for agents is to make unpro-
posed offers during the negotiation or pay tokens to repeat an offer. In addition
to the given offer, agents send an acknowledgement message specifying the num-
ber of tokens to be used to repeat an offer previously made by the same agent.
The general flow of the proposed protocol is given below:

1. One of the agents makes an offer specifying its request to allocate some ver-
tices for certain time steps and sends an acknowledgement message regarding
the usage of its token in the current negotiation. Initially, the usage of tokens
is set to zero.

2. The receiving agent can take one of the following actions:
– ends the negotiation without any consensus.
– accept the received offer and complete the negotiation successfully.
– makes an offer specifying the vertices allocation for itself that has not

been offered by that agent yet and sends the acknowledgement denoting
the accumulated usage of its tokens.

– can repeat one of its previous offers, increase the usage of its tokens by
one, and sends the token acknowledgement message.

3. If the agent accepts or ends the negotiation, negotiation is finished. The
accepting agent receives tokens amounting to the calculated token usage dif-
ference from its opponent, min(Topp,self − Tself,opp, 0) where Topp,self and
Tself,opp denote the total number of tokens used by the opponent and the
accepting agent during the entire negotiation respectively. If the accepting
agents spend more tokens than its opponent, it does not receive any tokens.
Otherwise, the receiving agent can take any action mentioned in Step 2.

Considering the scenario given in Fig. 1b, an example negotiation trace
between Agent A and C is illustrated in Fig. 2. Agent A initiates the negoti-
ation with its offer PA1 requesting to claim the vertices (3, 2) for t = 1 ad (3, 3)
for t = 2. Agent C does not accept this offer and makes its own offer specifying
the allocation for itself, such as (2, 3) and (2, 4). Since Agent A insists on its
previous offer, it increases its token usage by one. As seen from the example,
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agents send an acknowledgement message and their offer in each turn. In the
fourth round, Agent C accepts Agent A’s offer. It confirms that Agent C will
not move to (3, 2)t=1 and (3, 3)t=2. In return, Agent A will pay 2 tokens (TA,C-
TC,A). It is worth to note that the token exchange is performed at the end of the
negotiation depending on who accepts the offer. If an agent needs to pay tokens,
but it has an insufficient number of tokens, the agreement is not committed (i.e.,
negotiation fails).

Fig. 2. Example interaction between negotiating agents

3.2 Path-Aware Negotiation Strategy

Existing negotiation strategies focus on only which offer to make at a given time
and when to accept a given offer [6]. Therefore, there is a need to design a new
strategy taking token exchanges into account. Hereby, we propose a negotiation
strategy determining when to repeat an offer or to generate a new offer. The
proposed strategy, namely Path-Aware negotiation strategy, aims to utilize the
information available to determine when to insist on its current path. It is worth
noting that each agent generates its possible paths leading them to their desti-
nation by using A-Star Algorithm in a way that the generated paths would not
conflict with the neighbor agents’ current path. Afterward, they sort those paths
in descending order with respect to their path cost.

Algorithm 1 describes how an agent negotiates according to Path-Aware
Negotiation Strategy. At the beginning of the negotiation, the current path in the
field of view (Pcurrent) is the relevant part of the optimal path (i.e., the shortest
path to its destination). It corresponds to the first offer in the negotiation. When
the agent receives an offer from its opponents, it checks whether it is possible
to generate a path that is of equal length or shorter than its current path to
the destination (Line 1). If so, it accepts its opponent’s offer (Line 2). Note
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that the path generation function takes the opponent’s offer, Oopponent as a
constraint while generating the best possible path to the destination. If the
agent’s remaining tokens are greater than the length of the remaining path to
the destination (Line 4), it decides to repeat its previous offer and updates
its remaining tokens accordingly (Line 5). Recall that for each repetition, the
agent needs to use one token. Otherwise, it concedes and sets the next possible
best path from the sorted path space PSpace, as its current path in its field of
view (Line 7). Accordingly, the agent offers its previous path in the field of view
Pcurrent (Line 9). Note that agents have to concede if they don’t have any tokens
left.

Algorithm 1: Negotiation Strategy of Path-Aware Agent
Data:
Tremaining : Agent’s remaining tokens count
Premaining : Agent’s remaining path to destination
Pcurrent : Current path in FoV
PSpace: Sorted path space
Oopponent : Opponent offer

1 if |Pcurrent| ≥ |generatePath(Oopponent)| then
2 accept()
3 else
4 if Tremaining > |Premaining| then
5 Tremaining − −
6 else
7 Pcurrent ← PSpace.next()
8 end
9 offer(Pcurrent)

10 end

4 Evaluation

We evaluated the proposed approach empirically from three different perspec-
tives: by comparing its performance with centralized solutions, by comparing
the performance of the Path-aware negotiation strategy with a baseline strat-
egy, and by studying the effect of field of view (FoV) in the proposed approach.
The following sections will explain our experimental setup and result elaborately.

4.1 Experimental Setup

To inspect the performance of our decentralized approach against centralized
approaches to resolve conflicts in MAPF, we make a comparison with two well-
known centralized methods, namely Conflict-Based Search (CBS) [24] and CBS
with the Weighted Pairwise Dependency Graph Heuristic and Rectangle Rea-
soning by Multi-Valued Decision Diagrams, named WDG+R in [17]. These cen-
tralized solutions are detailed below. We used the code of WDG+R provided
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by its authors. We removed wait-action (no movement in a time step) from the
action space of agents in all solvers to be suitable for the problem definition
in Sect. 2. All experiments were carried on machines with the computing power
of 16-Core 3.2 GHz Intel Xeon and 32 GB RAM. Each scenario configuration
experimented with 100 different scenarios in no obstacle, 8 × 8, and 16 × 16 grid
environments.

– CBS: Conflict-Based Search (CBS) [24] is a two-level algorithm for central-
ized and optimal MAPF. At the low-level search, a single path is planned
by an optimal shortest-path algorithm, like A*, under given constraints. A
constraint is a tuple (i, v, t) where agent ai is prohibited from occupying
vertex v at time step t. At the high-level search, a constraint tree (CT) is
operated to resolve conflicts between paths. CT is a binary tree of constraint
nodes. Each CT node consists of a set of constraints for each agent. When a
conflict is found between two agents, two child nodes are generated. In each
child node, one agent in the conflict is prohibited from using conflicted vertex
or edge by adding a constraint, and a new path is searched for that agent at
the low level under the new constraint set.

– WDG+R: It is one of the recently enhanced variants of CBS and a state-
of-art optimal MAPF solver. WDG+R operates smaller CTs by using an
admissible heuristic in the high-level search named the Weighted Pairwise
Dependency Graph (WDG) Heuristic. WDG represents the pairwise depen-
dencies requiring some cost increase to resolve conflicts. Value of the minimum
vertex cover of WDG serves as an admissible heuristic of a lower bound to
cost increase to resolve conflicts. Besides, it efficiently resolves the rectangle
conflicts by a reasoning technique introduced to CBS in [18]. A rectangle
conflict occurs when two locations are required to be taken by both agents
simultaneously, which means a certain cost increase to resolve the conflict.
These enhancements provide a large factor of speedup compared to CBS.

We generated MAPF scenarios from the MAPF benchmark datasets provided
by [25]. Table 1 provides the information of experimented MAPF scenarios. We
set eight different problem configurations, which are 10, 15, 20, and 25-agent
scenarios in an empty 8 × 8 grid, and 20, 40, 60, and 80-agent scenarios in an
empty 16 × 16 grid. For each configuration, 100 different scenarios have experi-
mented with randomly distributed path lengths between 2 and 14 for 8× 8 grid
scenarios, and 4 and 24 for 16× 16 grid scenarios. We determined the number
of agents in the environment to such levels to observe remarkable breakdowns
in success rates of CBS and WDG+R, which helps to see which MAPF problem
complexity levels these centralized MAPF solution approaches become to fail
at. 8 × 8 grid scenarios are experimented to benchmark CBS specifically and our
proposed solution considering the performance evaluation of CBS done in [24].
In 16 × 16 grid scenarios, we aim to see when the scaling capability of centralized
and decentralized solutions are discriminated by changing the number of agents
with large increments.

We set the runtime of CBS and WDG+R to 30 min 8× 8 for grid scenarios
and 1 h for 16× 16 grid scenarios in favor of obtaining optimal solutions for a
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Table 1. Scenario types

Configuration name Grid size Number of agents Initial path range

Config-1 8× 8 10 2–14

Config-2 8× 8 15 2–14

Config-3 8× 8 20 2–14

Config-4 8× 8 25 2–14

Config-5 16× 16 20 4–24

Config-6 16× 16 40 4–24

Config-7 16× 16 60 4–24

Config-8 16× 16 80 4–24

rigorous evaluation of experiments, although CBS benchmarked in 5 min by [24]
and WDG+R benchmarked in 1 min by [17]. However, the runtime metric does
not represent the success capability of our decentralized solution since it would
proceed in real-time. Nevertheless, we limited the simulation runtime of the
decentralized MAPF framework. In addition, decentralized solution can fail to
find a solution, when inactive agents close off movement to destination (Fig. 3a),
or surround others (Fig. 3).

Fig. 3. Agent and destination blocked by agents reached destinations

The field of view (FoV) is set to 2 for all agents to experiment with all 8× 8
and 16 × 16 scenarios. Setting FoV to 1 corresponds that agents can be aware of
conflicts just a one-time step before, limiting the practicality of negotiation to
resolve conflicts. To observe the effect of FoV in our framework’s solution per-
formance, we repeat the experiments of Config-6 and Config-7 scenarios, setting
FoV to 2, 3, and 4 for all agents. We do not test the effect of field of view in
8 × 8 grid environment since it is not much practicable to change the range.

4.2 Experimental Results

Each metric for the results of each solution method is averaged over scenarios
solved by itself throughout the evaluations in the following subsections.
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Fig. 4. Decentralized versus centralized approach results

Decentralized Versus Centralized Approach: Solution rate (R) of the
decentralized MAPF framework with Path-aware agents (PA) and the central-
ized solutions for 8× 8 and 16 × 16 grids are represented in Fig. 4a where the
left chart corresponds for 8× 8 grid results, and the right chart corresponds for
16 × 16 grid results. Although the decision complexity of agents is essential to
measure the framework performance, this basic agent strategy outperforms CBS
in 8× 8 grid scenarios and also WDG+R in 16× 16 grid scenarios in terms of
R. However, PA results are not desirable 8 × 8 grid scenarios when the solu-
tion quality is considered according to the left chart in Fig. 4b. To measure
how much extra cost is produced to resolve conflicts in optimal paths, we use
a metric named Average Normalized Path Difference (Davg), which is equal to
(C1-C0)/k where C0 is the cost of initial paths of all agents and C1 is the sum
of individual path costs (SIC) value attained in a solution. This metric means
how much-added cost is yielded to resolve conflicts compared to C0. Davg gives
the information of how much cost increase occurs in which environments for
the side of the self-interested agent only consider its own cost valuation based
on its initial path cost. Figure 4b shows that PA performs well in the scenar-
ios of the high number of agents in larger maps, which indicates the scalability
of the decentralized solution compared to centralized solutions. However, only
one scenario of Config-8 was solved by PA because agents cannot negotiate to
resolve a conflict caused due to the demonstrated situations in Fig. 3. We note
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Fig. 5. Average normalized path difference/solution rate

that Config-8 scenarios are not evaluated in the following metrics since optimal
solutions could not be obtained for them.

As all scenarios are not solved by WDG+R, we do not have the complete
information to measure the solution quality of the decentralized solutions since
optimal solutions are taken as the basis for it. It is not a health assessment to
compare the cases that CBS and WDG+R can solve with the scenarios they
cannot solve, but PA solves. For this reason, there is a need for a variable that
shows the relationship between solution rates and normalized path differences
more dynamically, which is Davg/R. Figure 5 has enabled dynamic changes to
be observed in a wide range with Davg/R. Although CBS seems to be more
successful than PA in 8 × 8 grid scenarios in terms of Davg, Fig. 5 shows that
Path-Aware agents are more successful when considering the performances in
new metric solution rates. It is observed that CBS fails dramatically in scenarios
involving 25 Agents. When the 8× 8 and 16× 16 grid scenarios are compared, it
is observed that the performance of the WDG+R remained the same, while the
performance of the Path Aware Agents was 10 times better. This result shows
that in larger domains, decentralized and intelligent agents such as Path-Aware
have less performance difference from optimal solvers and high privacy support.

Effect of Intelligence of Agents: To figure out the effect of intelligence of
agents in our framework, a baseline representing a random decision behavior
for the negotiation protocol is needed. Therefore, we present a basic decision
mechanism adapted by an experimental agent named Random Agent. Random
Agent accepts its opponent’s offer with %50 probability. Otherwise, it repeats its
previous offer with %50 probability if it has enough tokens. It generates its offer
space exactly in the same way as the Path-aware strategy. The main difference
is about accepting and deciding the usage of tokens. We highlight that Random
Agent provides a lower bound performance for any prospective self-interested
rational agent designed for the proposed decentralized MAPF framework.

Figure 6a shows the total number of token exchanges in a session for both
agent types. Negotiation between Path-Aware agents results in less number of
token exchanges compared to negotiations of Random agents, which shows that
Path-Aware agents insist on their offers only to maintain their own cost balance,
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Fig. 6. Path-aware agent versus random agent

Fig. 7. (a) Solution rate with FoV, (b) Average normalized path difference with FoV,
(c) Average normalized path difference/Solution rate with FoV

whereas Random agents insist or concede randomly. Negotiations between Path-
Aware agents reach an agreement faster than random agents in all environments,
as seen in Fig. 6b. The number of negotiations by Random agents represents a
baseline for the negotiation protocol if the agent decides indifferent to counter’s
bids. So, it can be concluded that when agents behave more analytical, they
can reach an agreement faster with our proposed negotiation protocol. Since the
solution rates of the decentralized solution with Random agents (RA) and the
decentralized solution with Path-Aware agents (PA) is low, we do not seek a
trend for the curves in Fig. 6.

Effect of Field of View: We experiment with 40 and 60-agent scenarios in
16 × 16 grid with different FoV values to figure out how the perception and
information broadcast range of agents relate to the solution performance of the
decentralized MAPF approach. This relation branches in three aspects, R, Davg,
and Davg/R. Figure 7 presents the related curves for PA and RA. Change in FoV
of Random agent has no general trend in R in all scenarios, while the increase in
FoV decreases R in all scenarios when all agents are Path-Aware. This decrease
is 1% for 40-agent scenarios and 14% for 60-agent scenarios, which shows that
Path-Aware agents struggle to agree in dense environments when they have a
wider FoV. On the other hand, Path-Aware agents can have better paths with
wider FoV according to Davg trend in Chart B. Besides, the third chart in Fig. 7
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shows that the solutions achieved with PA are much better in terms of Davg/R
compared to RA solutions. So, it can be concluded that intelligent agents can
preserve their own path cost interest by negotiating with others under TAOP.
This output is expected because Path-Aware agents change their bidding behav-
ior based on current cost analysis (of remaining path length and the remaining
token amount at the negotiation time). This evaluation becomes more useful if
more information about the environment is used.

In large FoV cases, Random agents tend to perform worse as their decision-
making process is stochastic. As the accepted offers are registered, having a large
FoV thus results in more constraints for agents, which reduces path search space.
Path-Aware Agents provide solutions to these problems both in acceptance and
by spending their tokens correctly. On the other hand, Random Agents do not
have a specific strategy other than entering into a negotiation and accepting long
paths randomly in the face of these problems. This situation is reflected in the
average number of negotiations per agent. When looking at the difference of the
average negotiation per agent between FoV 2 and FoV 3, Random agents (2.17)
are 2.59 times more than Path-Aware agents (0.83). When the same variable is
examined between FoV 3 and Fov 4, Random agents (2.11) increased 5.90 times
more than Path-Aware agents (0.35).

5 Related Work

We classify approaches to resolve conflicts in MAPF based on two factors: the
centralization of solution mechanism and cooperation of agents. Centralized solu-
tion approaches to pathfinding of cooperative agents provide optimal plans [11].
If a trusted center with the information of all agents moving in a certain area and
the ability to command all of them is not available, negotiation can be used for a
conflict resolution mechanism [1,12,21,22,27]. One negotiation approach to allo-
cating resources to multiple parties is Combinatorial Auction (CA). To resolve
conflicts between self-interested agents in an environment, Amir et al. reduce
MAPF problem to CA and implements iBundle, an iterative CA algorithm [20],
for MAPF [1]. Self-interested agents might not provide their own utilization
truthfully to the auctioneer. Considering this aspect of the auction, Amir et
al. propose Vickrey-Clarke-Groves (VCG) auction for MAPF, a strategy-proof
auction mechanism for manipulation attempts by the agents. In this iBundle auc-
tion, the auctioneer is exposed to a computational burden as agents submit their
all-desirable bundles, which requires even impractical auction time. Addressing
this limitation of iBundle, Gautier et al. introduce an auction design that allows
agents to submit a limited number of bundles so that a feasible allocation is
more likely to be found, and the auction terminates in fewer time [12]. They
also provide a further auction solution procedure applied if a feasible allocation
to submitted bundles is not found. Auctioneer finds some feasible allocations
using a MAPF solver, and it evaluates them to maximize social welfare using its
privileged knowledge gained in the bidding. Then it proposes the most valuable
allocation to the agents. Auction ends when all agents accept one allocation;
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otherwise, the auctioneer updates allocation values based on rejecting agents’
bids and proposes the best new allocation.

Key challenges of addressing MAPF problem within the decentralized
method can be summarized as establishing a framework for agents to use
while interacting with the environment, defining an interaction protocol between
agents, and designing agents that are able to reach a solution [2,7,9]. In their
paper Purwin et al., proposes a decentralized framework where agents allocate
portions of the environment in which they move. Similarly, the framework pro-
posed in this paper also allows agents to exchange vertex information while trying
to allocate a conflict-free path. However, their negotiation protocol resolves the
conflicts in one shot, whereas the protocol proposed in this paper allows agents
to engage in negotiation sessions in length. Sujit et al. focuses on resolving a
task allocation problem in their work, using a multilateral negotiation structure
[27]. Agents only utilize the presented token structure to determine whose offer
to accept in a deadlock situation that might happen, in which the agent with
the least number of tokens is selected. Whereas in this paper, tokens are treated
as a limitation in making repeated offers. The work of Pritchett et al. defines
a simultaneous bilateral negotiation structure to resolve conflicts in air traffic
control [21]. Their work defines a structure where agents negotiate over the tra-
jectories that they will take. In each round of the negotiation session, the cost
of all offers increases until an agreement is reached. While due to the nature of
the environment, this forces agents to concede over time, the protocol proposed
in this paper defines a hard constraint on how many times an agent can refuse
an opponent’s offer. Inotsume et al. demonstrates a negotiation-based approach
to MAPF from the perspective of an operator [14]. In their setup, each agent
tries to maximize their utility by completing tasks, reaching a certain destination
in a shared space. An area manager interface manages this shared space, and
each agent is expected to submit their desired paths to the area manager before
they begin their movement. Here, the area manager is the entity that checks
whether each path conflicts with already reserved paths or prohibited locations.
As they utilize a path reservation system managed by a non-agent entity, this
setup deviates from the proposed decentralized approach. Additionally, they pro-
pose a trading structure for their paths, which can correspond to token exchange.
They value these tokens equivalent to each edge traversal, whereas our study val-
ues tokens in a completely different economy. Nevertheless, both systems focus
on resolving path conflicts using negotiation mechanisms.

6 Conclusion

This paper addresses how self-interested agents can coordinate in a grid environ-
ment to reach their destination without any collision and proposes solving the
conflicts on the paths by means of bilateral negotiations. Accordingly, we propose
a novel negotiation protocol and a compatible path-aware negotiation strategy.
The proposed approach enables agents to optimize their paths in real time with-
out sharing their complete path information with everyone. This problem is
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harder to solve especially when the grid size gets larger and higher-density (i.e.,
large number of agents and long paths per agent). In such cases, the proposed
approach has an edge over centralized approaches. The analysis of experimental
evaluation showed that Path-aware negotiation approach finds reasonably good
solutions in most of the cases and it performed better on aforementioned chal-
lenging scenarios than the state-of-the-art centralized solution such as CBS and
WDG+R. As future work, we are planning to extend our approach by adopt-
ing multilateral negotiation instead of multiple consecutive bilateral negotiations
and to compare its performance with the current approach. In the current work,
agents should move constantly in line with their path. However, enabling agents
to wait for any time step (i.e., no move action) may lead agents to discover new
solutions while it increases the search space dramatically. We think of incorpo-
rating wait action to our framework as well as other variants of actions. Further-
more, it would be interesting to design more sophisticated negotiation agents
thinking ahead when they use their tokens.
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