
LogAttn: Unsupervised Log Anomaly
Detection with an AutoEncoder Based

Attention Mechanism

Linming Zhang1,2, Wenzhong Li1(B) , Zhijie Zhang1, Qingning Lu1, Ce Hou1,
Peng Hu2, Tong Gui2, and Sanglu Lu1

1 State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China

lwz@nju.edu.cn
2 Huawei Nanjing Research Center, Nanjing 210012, China

Abstract. System logs produced by modern computer systems are valu-
able resources for detecting anomalies, debugging performance issues,
and recovering application failures. With the increasing scale and com-
plexity of the log data, manual log inspection is infeasible and man-power
expensive. In this paper, we proposed LogAttn, an autoencoder model
that combines an encoder-decoder structure with an attention mecha-
nism for unsupervised log anomaly detection. The unstructured normal
log data is proceeded by a log parser that uses a semantic analyse and
clustering algorithm to parse log data into a sequence of event count
vectors and semantic vectors. The encoder combines deep neural net-
works with an attention mechanism that learns the weights of different
features to form a latent feature representation, which is further used
by a decoder to reconstruct the log event sequence. If the reconstruction
error is above a predefined threshold, it detects an anomaly in the log
sequence and reports the result to the administrator. We conduct exten-
sive experiments based on three real-world log datasets, which show that
LogAttn achieves the best comprehensive performance compared to the
state-of-the-art methods.

Keywords: Log anomaly detection · Sematic feature · AutoEncoder ·
Attention mechanism · Unsupervised learning

1 Introduction

System logs are universally produced by modern computer system to record
operation states and critical events, which are valuable resources for detect-
ing system anomalies, debugging performance issues, and recovering applica-
tion failures [10,14,17]. With the increasing scale and complexity of computer
systems, the number of logs could be millions, bringing the challenges for the
administrators to fully understand the system status and detect anomalies effi-
ciently. While manual log inspection is infeasible and man-power expensive, auto-
mated log anomaly detection has become an urgent task and a valuable research
topic [24,28].
c© Springer Nature Switzerland AG 2021
H. Qiu et al. (Eds.): KSEM 2021, LNAI 12817, pp. 222–235, 2021.
https://doi.org/10.1007/978-3-030-82153-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82153-1_19&domain=pdf
http://orcid.org/0000-0002-9199-3655
https://doi.org/10.1007/978-3-030-82153-1_19


LogAttn: Unsupervised Log Anomaly Detection 223

In the recent years, many methods of automatic log anomaly detection have
been proposed to mine abnormal events in logs through machine learning tech-
niques [4,18,19]. Xu [28] proposed to detect anomalies in the log with a principal
component analysis (PCA) approach. Lou [20] mined invariants in the log, where
the change of invariants is considered as an anomaly in the system. Min et al.
proposed DeepLog [6], deep model based on long short-term memory (LSTM)
network to detect anomalies by analyzing the temporal information of the log
sequence.

Despite that learning-based log anomaly detection has made great progress,
it still confronts the following challenges. (1) Unstructured log parsing. Most log
data are unstructured and they requires a parsing method to map unstructured
log into structured format for data mining. Existing methods [27] [13] parse
unstructured log into predefined log template, which require expert knowledge
to define parsing rules and they are not extensible to new log events [16]. (2)
Semantic feature extraction. Log data contain rich semantic information that are
useful for understanding log anomalies. Previous works [6] intended to detect
abnormal execution sequence from log data, and the semantic features has not
been fully addressed. (3) Unsupervised anomaly detection. Since annotating log
anomalies is complicated and man-power expensive, most log data are unlabeled.
In practice, the detection of log anomalies is expected to be proceeded in an
unsupervised way.

In order to address the above challenges, we proposed LogAttn, a log anomaly
detection framework with an autoencoder based attention mechanism. We use
deep learning method to embed log events and semantic features into latent vec-
tors, and apply a clustering method to parse unstructured log data into pseudo
labels. We propose an autoencoder model that combines an encoder-decoder
structure with an attention mechanism for unsupervised log anomaly detection.
The encoder uses an temporal convolutional network (TCN) to capture temporal
semantic correlations and a deep neural network (DNN) to capture statistical
correlations. The attention mechanism learns the weights of different features
to form a latent feature representation, which is further used by a decoder to
reconstruct the log event sequence. The overall model is trained with normal
log data, and then executed online to detect anomaly events by comparing the
reconstruction error with a predefined threshold. We conduct extensive exper-
iments based on three real-world open system log datasets, which show that
LogAttn has a better trade-off between precision and recall, and achieve the
best comprehensive performance compared to the state-of-the-art methods.

2 Related Work

Log anomaly detection methods can be divided into two categories: supervised
and unsupervised. Supervised log anomaly detection methods include SVM [12],
LR [18], LOGROBUST [29], Decision Tree [5], etc. Due to the difficulties of anno-
tating log data in reality, this paper only focuses on unsupervised log anomaly
detection.



224 L. Zhang et al.

TCN

DNN

Semantic 
vectors

Count 
vectors

Similarity 
Calculation 

TCNAttention FC

Semantic 
vectors

Count 
vectors Model

Result

FP?

GLOVE
&

SIF

Windows
Partition

Log
Clustering

EVT

Administrator
Online

Offline

Real Time 
Log

Messages

Pseudo
Label

- 1131748364 2005.11.11 
dn499 Nov 11 14:32:44 
dn499/dn499 kernel:
- 1131748364 2005.11.11 
dn499 Nov 11 14:32:44 
dn499/dn499 kernel: 
fs_client: Umounting panfs .

- 1131748364 2005.11.11 
dn499 Nov 11 14:32:44 
dn499/dn499 kernel: 
pan_kmod: quiescing 
subdev 0x78 ("PANASAS 
kernel trace facility")
...

Log File AutoEncoder
Log Parser

Fig. 1. The architecture of LogAttn.

Unsupervised log anomaly detection can be further divided into shallow
learning based methods and deep learning based methods. Conventional unsu-
pervised machine learning techniques were applied for log anomaly detection,
which included PCA [28], IM [20]. Xu et al. [28] applied Principal Component
Analysis (PCA) to generate the log normal and abnormal subspace, where the
normal subspace is the first K principal components and the abnormal sub-
space is the rest of the dimensions. Lou et al. [20] applied an invariant min-
ing (IM) algorithm to find the linear relationship maintained by the system
under different inputs or loads. If any invariants are broken, the log sequence
is considered an anomaly. Recently, deep learning techniques were introduced
to unsupervised log anomaly detection. LogCluster [19] was a clustering based
log anomaly detection method that groups similar log sequences by clustering
them and detects anomaly if the nearest group is abnormal. Deeplog [6] was a
deep learning based unsupervised log anomaly detection method that used Long
Short-term Memory (LSTM) to detect abnormal log sequences. LogAnomaly [22]
adopted a Template2Vec method to extract the semantic information hidden in
the log template, and detected both continuous and quantitative log anomaly
using a neural network.

Different from the existing unsupervised log anomaly detection methods that
relied on predefined log templates, our work uses word embedding and clustering
method to form log representations, and adopts a deep generative model com-
bining with an attention mechanism for unsupervised log anomaly detection.

3 LogAttn Mechanism

3.1 Framework

We proposed an unsupervised framework called LogAttn for system log anomaly
detection, which is illustrated in Fig. 1. The overall framework is divided into
two parts: offline training and online detection.



LogAttn: Unsupervised Log Anomaly Detection 225

During offline training, the unstructured normal log data is proceeded by a
log parser to form formalized representations, which are used to train an autoen-
coder (AE) model to learn the normal execution pattern. The log parser uses a
semantic analyse and clustering algorithm to parse log data into a sequence of
event count vectors and semantic vectors. The autoencoder model is an encoder-
decoder structure with an attention mechanism. The encoder uses an temporal
convolutional network (TCN) to capture temporal semantic correlations and a
deep neural network (DNN) to capture statistical correlations. The hidden layer
of the encoder is connected to an attention layer to learn the weights of dif-
ferent features to form a latent feature representation, which is further used
by a decoder to reconstruct the log event sequence. By training the AE model
in an unsupervised way, it can reconstruct the normal log execution sequence
effectively.

During online execution, the newly generated log sequence is proceeded by
the log parser, and then fed to the well-trained AE model to reconstruct the input
sequence. The error between the reconstructed log sequence and the original
log sequence is calculated. If the log follows a normal pattern, it should be
successfully reconstructed with very low error. If the reconstruction error is above
a predefined threshold, it detects an anomaly in the log sequence and reports
the result to the administrator.

3.2 Log Parsing Based on Semantic Analysis and Clustering

Log parsing is the first and indispensable part of log anomaly detection, which
converts the log’s text messages into a sequence of execution flows. Unlike tradi-
tional log parsers (such as LKE [9], LogSig [27], Drain [13], IPLoM [21], etc.) that
used predefined templates to parse text messages, we propose a novel log parsing
method that uses semantic analysis to embed log events into latent vectors, and
applies clustering on the latent vectors to form their pseudo labels (represented
by cluster IDs). The detailed process is described as follows.

(1) We first apply word embedding on the log sentence through Global Vectors
for Word Representation (GloVe) [25]. GloVe is a word representation tool
based on global word frequency statistics, which can convert a word into
an embedding vector representation that captures semantic features among
words, such as their similarity, analogy and so on.

(2) We then calculate the weighted coefficient of each word using Smooth Inverse
Frequency (SIF) [1] to form sentence vectors. The lower the frequency of a
word appears in a sentence, the more important it is in the sentence, cor-
responding to a larger weighted coefficient. Thereafter, we let each sentence
vector subtracts its projection on the first principal component of the matrix
composed of all sentence vectors, which can erase the common information of
all sentences and increase the discrimination among the sentence embedding
vectors.

(3) After obtaining the embedding vectors of the log events, we cluster them
through the DBSCAN [8] algorithm, and use the cluster IDs to form the



226 L. Zhang et al.

Fig. 2. The structure of encoder-decoder with an attention mechanism.

pseudo labels of the log events. By substituting the log events with the cluster
IDs, we can parse the log text as a sequence of execution flow represented
by pseudo labels.

(4) We further adopt a window-based partition to divide the log data into sub-
sequences. A subsequence is a basic unit in our model to detect whether
there is an anomaly. The log partition can be carried out with a sliding
window or a session window. The sliding window partitions log data along
time steps into overlapping subsequences (with moving forward a step size).
The session window partitions log data based on session IDs where a unique
session ID corresponds to a subsequence representing an execution flow of a
session.

(5) Based on window partition and the embedding vector of each sentence, we
form a sequence of semantic vectors for each log subsequence represented
by the embedding vectors of the log events.

(6) Based on the pseudo labels and window partition, we form a sequence of
count vectors for the log subsequences. A count vector is formed by calcu-
lating the occurrence frequency of each class of event in the log sequence,
which represents the statistical pattern of a log subsequence.

3.3 Log Anomaly Detection Model

The proposed log anomaly detection model is illustrated in Fig. 2, which is
the combination of an autoencoder and an attentional mechanism. The encoder
uses a temporal convolutional network (TCN) to process the semantic vector
sequence and a deep neural network (DNN) to process the corresponding event
count sequence to form compact representations of both temporal and sematic
features. An attention mechanism is assigned to learn the importance weights of



LogAttn: Unsupervised Log Anomaly Detection 227

sematic and statistical features. The decoder takes both attention weights and
compact feature vectors as input to reconstruct the subsequence of log events.
The overall model is trained offline with normal log data, and then executed
online to detect anomaly events by comparing the reconstruction error with a
predefined threshold. The detail process is explained in the following.

AutoEncoder. Anomaly detection based on dimensionality reduction assumes
that the data have a certain degree of correlation and can be embedded into
a lower latitude subspace [30]. After the original data is embedded in a lower
latitude, the abnormal and normal data will be separated. Autoencoder is a
powerful unsupervised learning technique for information compression, where
an encoder is used to find a compressed representation of a given data, while a
decoder is used to reconstruct the original input. During training, the decoder
forces the encoder to select the feature with the most useful information, which
is preserved in the compressed representation.

The encoder we used for log data contains a temporal convolutional net-
work (TCN) [3]and a deep neural network (DNN), which are explained in the
following.

The time convolution network (TCN) is a new type of neural network model
derived from convolutional neural network (CNN). Unlike normal convolution,
TCN uses the causal convolution and void convolution to extract features across
time steps, which is powerful to capture the temporal dependencies of sequence
data and provide a visual field for temporal modeling. In TCN, dilated causal
convolutions are used to allow the filter to be applied to a region larger than the
length of the filter itself by skipping part of the input, which are formulated by

al,t =
ka

l −1∑

i=0

fa
l (i) · aa

l−1,t−da
l ·i, (1)

where al,t is the output of layer l at time t, and fa
l , ka

l , da
l are the filter, filter

size and dilation factor of the layer respectively.
The deep neural network (DNN) used in our model is a three-layered fully-

connected neural network, whose structure is illustrated in the left part of Fig.
2. It is used to capture the statistical characteristics of log event count sequence.

Attention Mechanism. The latent representations of the semantic features
and statistical features generated from the encoder are connected to an atten-
tion layer [2] to fuse the heterogeneous features and learn the importance of
different elements in the feature vectors. Therefore, the attention mechanism
can be seen as an interface between the encoder and decoder, providing the
decoder with the importance weights from the hidden stats. With this setup,
the model can selectively focus on the useful parts of the input sequence to learn
the “alignment” between them.



228 L. Zhang et al.

At time step t, denote the encoder’s output by a vector of length s with
elements Yt, Yt−1, . . . , Yt−s+1. The attention mechanism can be formally repre-
sented by

Zt =
s−1∑

k=0

αt,kYt−k (2)

αt,k =
exp (et,k)

∑S−1
k=0 exp (et,k)

(3)

et,k = P (Yt−k) = vT tanh (WYt−k + b) (4)

where et,k is the importance of Yt−k; at,k is the normalized value of the impor-
tance; and W , b and v are the model’s parameters to be learned.

Loss Function. The decoder consists of a TCN network that has the same
structure as the encoder, which is normalized by a softmax layer to reconstruct
the input log subsequence. Multiple vectors in the reconstructed sequence rep-
resent the probability of the possible types of log events at the current time. We
use cross entropy [11] as the loss function of the decoder, which is given by

Loss = −
l∑

i=1

N∑

j=1

Ri,j log Pi,j , (5)

where l is the length of the log subsequence and N is the number of log events;
Ri,j ∈ {0, 1} is an indicator, i.e., Ri,j = 1 if the i-th log event belongs to the
j-th pseudo label, and Ri,j = 0 otherwise; and Pi,j is the output of the decoder
representing the probability that the i-th log event belongs to the j-th pseudo
label.

3.4 Selection of Anomaly Threshold

After training the autoencoder, the reconstructed sequence of the log can be
obtained, and the reconstruction error between the reconstructed sequence and
the original sequence can be quantified using the Kullback–Leibler (KL) diver-
gence [7], which is calculated by

DKL(p‖q) =
N∑

i=1

[p (xi) log p (xi) − p (xi) log q (xi)] , (6)

where p(·) and q(·) are the reconstructed log events and the original log events
accordingly, and N is the total number of log events in the subsequence.

If the reconstruction error exceeds a threshold, an anomaly is considered
to be detected. Here we use the extreme value theory (EVT) [26] to derive the
anomaly threshold. The goal of extreme value theory is to find the law of extreme
events, which is generally considered to be different from the distribution of the



LogAttn: Unsupervised Log Anomaly Detection 229

whole data. Extreme value theory makes it possible to detect those extreme
events without considering the complex distribution of the original data.The
peak-over-threshold (POT) [26] in the extreme value theory uses Generalized
Pareto distribution (GPD) to fit the extreme value beyond the threshold. We
use the POT to learn the threshold of anomaly log with the following formulas.

F̄τ (x) = P(τ − X > x | X < τ) ∼
τ→τ

(
1 +

γx

σ(τ)

)− 1
γ

, (7)

where σ and γ are the parameters of GPD, τ is the anomaly threshold, X is the
difference value, and τ − X represents the part beyond the threshold τ .

The parameters δ and γ are estimated using maximum likelihood estimation
(MLE). The estimated values σ̂ and γ̂ are used to calculate the quantile under
a given anomaly probability q,

zq � τ − σ̂

γ̂

((
qn

Nτ

)−γ̂

− 1

)
, (8)

where τ is the empirical threshold of anomaly detection, n is the total number
of all observed values, and Nτ is the number of points less than τ .

4 Performance Evaluation

4.1 Experimental Environment

Implementation. We conduct experiments on a personal computer (CPU:
Intel Core i7-8900U 1,8 GHz, Memory: 16 GB DDR4 2666 MHz, and OS: 64-bit
Ubuntu 16.04). The default parameter settings are as follows. The TCN structure
of our encoder and decoder are the same (a three-layer TCN network), and the
DNN in our encoder is a three-layer fully connected network. The window size
of the log sequence is 10. The anomalous proportion of EVT is set to 0.08.

Datasets. We use three open system log datasets to evaluate the algorithms,
which are described in the following.

– HDFS [28]: The HDFS dataset was generated from a Hadoop cluster con-
sisting of 200 amazon EC2 nodes. There were 11,197,954 log entries in the
dataset, of which anomaly accounted for 2.9%. We split the log entries into
different sessions using the identity character block id. These sessions are
flagged by Hadoop domain experts. We used 4,855 sessions as the training
set, which was parsed from the previous 100,000 log entries. The remaining
553,366 normal sessions and 15,838 abnormal sessions were used as the test
set.

– BGL [23]: The BGL dataset was collected from a Blue Gene/L supercom-
puter system deployed on Lawrence Livermore National Labs (LLNL). The
dataset contains a total of 4,747,963 log entries, of which 348,460 are marked
as anomaly. The BGL dataset uses the first 80% (based on the log timestamp)
as the training set and the last 20% as the test set.



230 L. Zhang et al.

– Thunderbird [23]: The Thunderbird dataset was collected from a Thunder-
bird supercomputer system at Sandia National Labs (SNL) in Albuquerque,
with 9,024 processors and 27,072GB of memory. The first four million log
entries in the dataset were analyzed, with the first 80% (based on the times-
tamp of the log) as the training set and the last 20% as the test set.

Performence Metrics. We use the following standard performance metrics to
evaluate the algorithms: Precision (P ), Recall (R), and F1-score (F1), given by

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 = 2 × P × R

P + R
, (9)

where TP is the True Positives, FP is the False Positives, and FN is the False
Negatives.

Baseline Algorithms. We compare the proposed LogAttn algorithm with five
unsupervised log anomaly detection methods: two shallow learning based meth-
ods PCA [28] and IM [20], and three deep learning based methods LogClus-
ter [19], Deeplog [6], and LogAnomaly [22]. We implement LogAttn and DeepLog
with the deep learning python library PyTorch. For PCA, IM, and LogCluster,
we use their open source toolkit [15].

Table 1. Performance of log anomaly detection algorithms on different datasets (P
means Precision; R means Recall; F1 means F1-score; ‘-’ means unavailable)

Methods HDFS BGL Thunderbird

P R F1 P R F1 P R F1

PCA 0.98 0.74 0.79 0.50 0.61 0.55 0.51 0.55 0.53

LogCluster 0.87 0.74 0.80 0.42 0.87 0.57 0.48 0.50 0.49

IM 0.88 0.95 0.91 0.83 0.99 0.91 0.73 0.81 0.77

DeepLog 0.95 0.96 0.96 0.90 0.95 0.93 0.88 0.92 0.90

LogAnomaly 0.97 0.94 0.96 0.96 0.94 0.95 - - -

LogAttn 0.95 0.99 0.97 0.96 0.98 0.97 0.91 0.93 0.92

4.2 Numerical Results

We perform comparative experiments between LogAttn and baselines on the
above datasets. Table 1 are the experimental results on HDFS, BGL, and Thun-
derbird respectively. In general, LogAttn performed well in all three datasets,
reaching the F1-score of 0.97,0.97 and 0.91.

As can be seen from the experimental results, LogAttn, DeepLog and IM are
the most effective log anomaly detection methods, while LogAttn has the best
overall performance, reaching the F1-score of 0.97, 0.97, and 0.91 accordingly



LogAttn: Unsupervised Log Anomaly Detection 231

Table 2. Performance of LogAttn with/without semantic analysis on BGL dataset (P
means Precision; R means Recall; F1 means F1-score).

Template w/o semantic analysis w/ semantic analysis

P R F1 P R F1

T1 0.94 0.98 0.96 0.96 0.99 0.98

T2 0.90 0.98 0.94 0.96 0.98 0.97

T3 0.88 0.99 0.93 0.95 0.98 0.96

on the three datasets. PCA and LogCluster have poor performance, and their
F1-scores on the three datasets are lower than 0.80.

In HDFS dataset, IM is less accurate, but has a recall rate of 0.95. DeepLog
also had a recall rate of 0.96, but an accuracy rate of 0.95. LogAttn significantly
improved the recall rate to 0.99 and F1-score to 0.97 while ensuring a high
accuracy. The dramatic increase in recall rate means that almost all anomalies
can be detected by LogAttn automatically, leading to a large saving of manpower,
time and resources.

In the BGL dataset, IM and DeepLog all have good comprehensive perfor-
mance. The recall rate of IM is as high as 0.99, but unfortunately the precision
is only 0.83. This unbalanced experimental result means that although almost
all the anomalies are detected, there are large amount of normal logs detected
as anomalies. DeepLog also has a recall rate of 0.96 with an accuracy of 0.90,
which is obviously a better trade-off than the other algorithms.

In the Thunderbird dataset, the experimental results are similar. The com-
prehensive performance of IM, DeepLog and LogAttn is above 0.80, while that of
PCA and LogCluster is poor. The recall rate of DeepLog and LogAttn was 0.92,
but the precision and F1-score of LogAttn are higher than that of DeepLog.

Ablation Study of Semantic Features. To show that the addition of seman-
tic analysis can improve the robustness of the whole system, we conduct com-
parative experiments on the basis of three different number of template libraries
T1, T2, T3 of BGL respectively, and the results of with/without semantic anal-
ysis are recorded. As shown in Table 2, with the same number of templates, log
anomaly detection tasks perform better with semantic analysis. The difference in
the number of templates will affect the experimental results. We can see that the
comprehensive performance of three different templates stabilized above 0.96 in
the case of semantic analysis, while the F1-score without semantic analysis 0.96,
0.94, 0.93 for T1, T2, T3 accordingly. With the same template, the performance
of semantic analysis is better than that of non-semantic analysis. We can also see
from Table 2 that the change in the number of templates has a small impact on
performance when there is semantic analysis, while the performance fluctuation
is larges when there is no semantic analysis.



232 L. Zhang et al.

Visualization of Attention Weights. Both semantic information and statis-
tical information have different priorities for log anomaly detection, which are
represented by their attention weights. The attention mechanism enables auto-
matic selection and fusion of log characteristics. In order to evaluate the impact
of the combination of semantic and statistical characteristics of the subsequence
on the log anomaly detection task, we perform a visualization analysis on the
attention weight for the HDFS, BGL, and Thunderbird dataset.

(a) HDFS. (b) BGL. (c) Thunderbird.

Fig. 3. Visualization of attention weights. It is shown that HDFS has larger weights
on semantic features; BGL has larger weights on statistical features; Thunderbird has
large weights on both.

As shown in Fig. 3(a), S1-S10 is the semantic vector sequences, and C1 is
the count vector sequence. The concatenation of S1-S10 and C1 is taken as the
input of the attention model, and S1′-S10′ is the output. From the results, we
can see that parts of the semantic features have much higher weights than the
rest features. As shown in Fig. 3(b), S1-S6 is the sequential sequence of logs,
and C1 is the quantitative sequence of logs, which shows that the statistical
information in BGL have higher weights than that of the semantic information.
Similar conclusion is found in Thunderbird (Fig. 3(c)).

5 Conclusion

Log anomaly detection is a valuable research topic for modern computer sys-
tems to debug performance issues and recover application failures. In this paper,
we proposed an autoencoder model called LogAttn that combined an encoder-
decoder structure with an attention mechanism for unsupervised log anomaly
detection. It developed a log parser that used a semantic analyse and clustering
algorithm to parse log data into a sequence of event count vectors and semantic
vectors. The encoder combined neural networks with an attention mechanism
to learn the weights of different features to form a latent feature representa-
tion, which was used by the decoder to reconstruct the log event sequence. If
the reconstruction error was above a predefined threshold, an anomaly in the
log sequence was detected and reported to the administrator. Extensive experi-
ments based on three open log datasets showed that LogAttn outperformed the
state-of-the-art methods.



LogAttn: Unsupervised Log Anomaly Detection 233

Acknowledgment. This work was partially supported by the National Key R&D
Program of China (Grant No. 2018YFB1004704), the National Natural Science Foun-
dation of China (Grant Nos. 61972196, 61832008, 61832005), the Key R&D Program of
Jiangsu Province, China (Grant No. BE2018116), the Collaborative Innovation Center
of Novel Software Technology and Industrialization, and the Sino-German Institutes
of Social Computing.

References

1. Arora, S., Liang, Y., Ma, T.: A simple but tough-to-beat baseline for sentence
embeddings. In: International Conference on Learning Representations (ICLR
2017) (2017)

2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

3. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271
(2018)

4. Breier, J., Branǐsová, J.: Anomaly detection from log files using data mining tech-
niques. In: Kim, Kuinam J. (ed.) Information Science and Applications. LNEE,
vol. 339, pp. 449–457. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46578-3 53

5. Chen, M., Zheng, A.X., Lloyd, J., Jordan, M.I., Brewer, E.: Failure diagnosis using
decision trees. In: International Conference on Autonomic Computing (2004)

6. Du, M., Li, F., Zheng, G., Srikumar, V.: Deeplog: anomaly detection and diagnosis
from system logs through deep learning. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pp. 1285–1298 (2017)

7. Erven, T., Harremoës, P.: Rényi divergence and kullback-leibler divergence. IEEE
Trans. Inf. Theory 60, 3797–3820 (2014)

8. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD 1996)
(1996)

9. Fu, Q., Lou, J.G., Wang, Y., Li, J.: Execution anomaly detection in distributed
systems through unstructured log analysis. In: IEEE international conference on
data mining (ICDM 2009), pp. 149–158. IEEE (2009)

10. Gai, K., Qiu, M., Zhao, H., Sun, X.: Resource management in sustainable cyber-
physical systems using heterogeneous cloud computing. IEEE Trans. Sustain. Com-
put. 3, 60–72 (2018)

11. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
Massachusetts (2011)

12. He, P., Zhu, J., He, S., Li, J., Lyu, M.R.: Towards automated log parsing for large-
scale log data analysis. IEEE Trans. Dependable Secure Comput. 15(6), 931–944
(2017)

13. He, P., Zhu, J., Zheng, Z., Lyu, M.R.: Drain: an online log parsing approach with
fixed depth tree. In: IEEE International Conference on Web Services, pp. 33–40.
IEEE (2017)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1803.01271
https://doi.org/10.1007/978-3-662-46578-3_53
https://doi.org/10.1007/978-3-662-46578-3_53


234 L. Zhang et al.

14. He, S., Lin, Q., Lou, J.G., Zhang, H., Lyu, M.R., Zhang, D.: Identifying impactful
service system problems via log analysis. In: 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 60–70 (2018)

15. He, S., Zhu, J., He, P., Lyu, M.R.: Experience report: system log analysis for
anomaly detection. In: IEEE 27th International Symposium on Software Reliability
Engineering (ISSRE 2016), pp. 207–218. IEEE (2016)

16. Kabinna, S., Bezemer, C.-P., Shang, W., Syer, M.D., Hassan, A.E.: Examining the
stability of logging statements. Empir. Softw. Eng. 23(1), 290–333 (2017). https://
doi.org/10.1007/s10664-017-9518-0

17. Khatuya, S., Ganguly, N., Basak, J., Bharde, M., Mitra, B.: Adele: anomaly detec-
tion from event log empiricism. In: IEEE Conference on Computer Communica-
tions (INFOCOM 2018), pp. 2114–2122. IEEE (2018)

18. Liang, Y., Zhang, Y., Xiong, H., Sahoo, R.: Failure prediction in ibm bluegene/l
event logs. In: IEEE International Conference on Data Mining (ICDM 2007), pp.
583–588. IEEE (2007)

19. Lin, Q., Zhang, H., Lou, J.G., Zhang, Y., Chen, X.: Log clustering based problem
identification for online service systems. In: IEEE/ACM 38th International Con-
ference on Software Engineering Companion (ICSE-C 2016), pp. 102–111. IEEE
(2016)

20. Lou, J.G., Fu, Q., Yang, S., Xu, Y., Li, J.: Mining invariants from console logs for
system problem detection. In: USENIX Annual Technical Conference (ATC 2010),
pp. 1–14 (2010)

21. Makanju, A.A., Zincir-Heywood, A.N., Milios, E.E.: Clustering event logs using
iterative partitioning. In: Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD 2009), pp. 1255–1264
(2009)

22. Meng, W., Liu, Y., Zhu, Y., Zhang, S., Zhou, R.: Loganomaly: unsupervised detec-
tion of sequential and quantitative anomalies in unstructured logs. In: Twenty-
Eighth International Joint Conference on Artificial Intelligence (IJCAI 2019)
(2019)

23. Oliner, A., Stearley, J.: What supercomputers say: a study of five system logs. In:
IEEE/IFIP 37th International Conference on Dependable Systems and Networks
(DSN 2007), pp. 575–584. IEEE (2007)

24. Pecchia, A., Cotroneo, D., Kalbarczyk, Z., Iyer, R.K.: Improving log-based field
failure data analysis of multi-node computing systems. In: IEEE/IFIP 41st Inter-
national Conference on Dependable Systems & Networks (DSN 2011), pp. 97–108.
IEEE (2011)

25. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP 2014), pp. 1532–1543 (2014)

26. Siffer, A., Fouque, P.A., Termier, A., Largouët, C.: Anomaly detection in streams
with extreme value theory. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2017) (2017)

27. Tang, L., Li, T., Perng, C.S.: LogSig: generating system events from raw textual
logs. In: Proceedings of the 20th ACM international conference on Information and
knowledge management (CIKM 2011), pp. 785–794 (2011)

28. Xu, W., Huang, L., Fox, A., Patterson, D., Jordan, M.I.: Detecting large-scale
system problems by mining console logs. In: Proceedings of the ACM SIGOPS
22nd symposium on Operating systems principles, pp. 117–132 (2009)

https://doi.org/10.1007/s10664-017-9518-0
https://doi.org/10.1007/s10664-017-9518-0


LogAttn: Unsupervised Log Anomaly Detection 235

29. Zhang, X., Li, Z., Chen, J., He, X., Cheng, Q.: Robust log-based anomaly detection
on unstable log data. In: Proceedings of the 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (2019)

30. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In:
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2017), pp. 665–674 (2017)


	LogAttn: Unsupervised Log Anomaly Detection with an AutoEncoder Based Attention Mechanism
	1 Introduction
	2 Related Work
	3 LogAttn Mechanism
	3.1 Framework
	3.2 Log Parsing Based on Semantic Analysis and Clustering
	3.3 Log Anomaly Detection Model
	3.4 Selection of Anomaly Threshold

	4 Performance Evaluation
	4.1 Experimental Environment
	4.2 Numerical Results

	5 Conclusion
	References




