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Abstract. Graph Convolutional Networks (GCNs) have been proven
to be effective in various graph-related tasks, such as community detec-
tion. Essentially graph convolution is simply a special form of Lapla-
cian smoothing, acting as a low-pass filter that makes the features of
nodes linked to each other similarly. For community detection, how-
ever, the similarity of intra-community nodes and the difference of inter-
community nodes are equally vital. To bridge the gap between GCNs
and community detection, we develop a novel Community-Centric Dual
Filter (CCDF) framework for community detection. The central idea is
that, besides of low-pass filter in GCN, we define network modularity
enhanced high-pass filter to separate the discriminative signals from the
raw features. In addition, we design a scheme to jointly optimize low-
frequency and high-frequency information extraction on statistical mod-
eling of Markov Random Fields. Extensive experiments demonstrate that
the proposed CCDF model can consistently outperform or match state-
of-the-art baselines in terms of semi-supervised community detection.

Keywords: Graph Convolutional Networks + Community detection -
Modularity - Markov Random Field

1 Introduction

Many complex systems in various fields (e.g., social science, genetic science, and
information science) are generally abstracted as networks, where nodes repre-
sent elements, and edges represent mutual interactions between elements in the
system, so networks also can be called graphs. One of the significant properties
of the network is community detection, which can help us discover objects with
the same function in the system, study the relationship between different com-
munities, and so on. Community detection has been successfully used in many
applications, e.g., behavior prediction [16] and recommendation system [17].
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Fig. 1. Example of the wrongly-divided node in Texas

A large number of community detection algorithms based on various assump-
tions and techniques have been proposed, including modularity optimization [18],
Markov dynamic algorithms [19], and GCN-based methods [5]. Among these
methods, we would like to highlight GCNs, which leverage their representational
power to provide state-of-the-art performance on community-finding tasks.

GCNs are constructed by stacking (graph) neural network layers, essentially
recursively aggregate information from neighbors, which can be seen as a special
form of Laplacian smoothing [11]. The smoothness of signals, i.e., low-frequency
information, is the key to the success of graph neural networks (GNNs) [3,4,15].

However, off-the-shelf GCNs framework has two fundamental weaknesses
which hinder their performance of community detection. Firstly, most of them
seem to be tailor-made to work on assortative (homophilic) graphs [25], where
nodes from the same community tend to form edges. In fact, nodes with distinct
labels are more likely to link together in disassortative (heterophilic) networks
[24]. If we force the representation of connected nodes to be similar by employing
low-pass filter, obviously, those direct neighbors but belonging to the different
communities inevitably tend to have a similar representation, leading to a blur
inter-community distinction. Some researches [8] have further shown that explor-
ing low-frequency signals is insufficient in different scenarios, like community
detection. Secondly, it is well known that the node representation will become
indistinguishable when we stack many GCN layers, causing over-smoothing [22].
These remind us that low-pass filter of current GCNs is far from optimal for
real-world scenarios.

To remedy these two described weaknesses, we propose a dual graph filtering
framework community-centric for community detection simply as CCDF. We
first employ the theory of graph Laplacian and network modularity enhancement
to formally define a high-pass filter to separate the high-frequency signals from
the raw features, equipped to low-frequency signals extracted via GCN. Then
we use Markov Random Fields (MRF) to integrate different types of signals
adaptively. Figure 1 illustrates a sub-network in Texas, where each node’s color
denotes its community label. For the target node with id137 in Fig. 1(a), it is
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erroneously assigned to community 1 by GCN (Fig. 1(b)). The mistake is that
most of its neighbors belong to community 1, which directly affects the target
node’s predicted label. In comparison, CCDF correctly assigns the target node
to its correct community 3 (Fig. 1(c)). This is because CCDF refines the coarse
results from GCN by pulling nodes belonging to different communities to be far
away from each other in the process of message passing.

The main contributions of this paper are summarized as follows:

— We develop a Community-Centric Dual Filter framework. We cast GCN as
a Laplacian smoothing filter to obtain low-frequency information and design
network modularity enhanced filter, which can be viewed as Laplacian sharp-
ening as the counterpart of Laplacian smoothing obtain high-frequency infor-
mation. The learned low-frequency and high-frequency information capture
the similarity of intra-community nodes and the difference of inter-community
nodes, respectively.

— We propose a novel frequency adaptation method in a complete end-to-
end deep network framework. On statistical modeling of MRF, our method
simultaneously and adaptively exploits discriminative information from inter-
community and intra-community. So it can flexibly enlarge the distance
between different communities, while most existing GNNs cannot.

— Extensive experiments have demonstrated that the proposed method can out-
perform representative baselines on benchmark datasets. We also show that
network modularity enhanced filter can significantly boost the performance
of community detection.

2 Preliminaries

2.1 Notations and Problem Definition

A non-directed graph represents as G = (V, &, X), where V = {v1,v9,- -, v,}
consists of a set of nodes, and &£ is a set of edges between nodes. X € R"*?
denotes the node attribute (feature) matrix, where X; is the i-th row of attribute
matrix X and Xj; is the j-th dimensional attribute of vertex v;, respectively.
The topological structure of graph G is represented by an adjacency matrix A,
where A;; = 1, if (v;,v;) € &, or 0 otherwise. And we define D as the diagonal
degree matrix with Dy; = 5 j Ajj. A and D stand for the adjacency matrix and
diagonal degree matrix with added self-loops, respectively.

Given a graph G, which partial nodes are labeled. The semi-supervised com-
munity detection task is then to label the rest unlabeled nodes in G.

2.2 Graph Convolution Networks

Inspired by the successful applications of deep learning to the regular grid data
(e.g., images and videos), researchers consider adopting the deep learning tech-
nique to process the irregular graph data (e.g. graphs or manifolds). GCNs gen-
eralize convolutional neural networks (CNNs) to graph-structured data. The
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core operation in GCNs is graph propagation, in which information is propa-
gated from each node to its neighborhoods with some deterministic propaga-
tion rules. Spectral approaches apply the convolution operation directly to the
spectrum of the graph (i.e., the singular values of graph Laplacian) by treat-
ing the node attributes as signals in the graph according to the spectral graph
theory. However, it suffers the high computational complexity of singular value
decomposition (SVD). Then, ChebNet [9] approximates the spectral filter with
Chebyshev polynomials to solve the issue of too complicated calculation. After,
[2] proposes GCN via a localized first-order approximation to ChebNet, which
simplifies ChebNet. Since then, many methods attempt to advance this architec-
ture, including GAT [12] proposes learning the importance of different neighbors
for the central node via a self-attention mechanism, GMNN [20] combines GNNs
with probabilistic graphical models, and MixHop [21] employs the mixed-order
propagation, etc.
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Fig. 2. Graphical representation of the proposed framework CCDF (Color figure
online)

3 Owur Proposed Model: CCDF

3.1 Overview

In this section, we design a novel Community-Centric Dual Filter (CCDF) frame-
work for community detection which is shown in Fig. 2. We can observe that Fig.
2 consists of two parts: the left is a feature network with adjacency matrix A
and node feature matrix X, the renormalized adjacent matrix Aof A expressed
as 5_%15_%, which are used as the inputs of the neural network along with
X. The right is CCDF’s three major components. In the first component (the
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green box), the two convolutional layers of GCN can be interpreted as a special
form of Laplacian smoothing that acts as low-pass filter to obtain low-frequency
information retains the similarity of the intra-community nodes. The first layer
is to learn a deep representation of the attributed network and the second
layer is to derive node community membership. In addition, we design a net-
work modularity enhancement that acts as high-pass filter to perform Laplacian
sharpening, which learns high-frequency information captures the difference of
inter-community nodes as the second component of CCDF (the red box). In the
third component (the purple box), we leverage MRF to adaptively integrate the
low-frequency and high-frequency information in a complete end-to-end deep
network framework. The model CCDF is trained as a whole using the Adam
optimizer [6].

3.2 Laplacian Smoothing

One of the key components in most GCN models is the graph convolutional
layer, which can be described by:

X0 = g[(1 = D)X W] (1)

where X (™*1) ig the output of the (m+1)-th layer, and X () is the input nodes’
feature matrix X. £(-) is the nonlinear activation function Softmax or ReLU.
W s a _trainable Welght matrlx of the m-th layer. The symmetric graph
Laplacian L=I-D:AD" , where I is the identity matrix. The first term
(I — L) is the given graph Laplacian without the parameter.

As shown in Eq. (1), GCN naturally smooths the features in the neighbor-
hoods as each node aggregates information from neighbors. This characteristic
is related to Laplacian smoothing. The following is an explanation of Laplacian
smoothing.

Regarding X € R™* % as a signal defined on graph with normalized Laplacian
matrix L, the signal smoothness over the graph can be calculated as:

2
Xk Xk
trace(XTLX) =) A, - 1 (2)
2 Ay (VD”H \/Djj+1>

1,5,k

A smaller value of trace(XTLX) indicates smoother graph signal [26], i.c.,
smaller signal difference between adjacent nodes.

Suppose that we are given a noisy graph signal X, we can adopt the following
objective function to recover the low-frequency signal:

argmlng( *) = ||X* — X|]2 + Btrace(X*TLX™) (3)

Note that if we set 8 = 1/2, one-step gradient descent optimization of g(X™*)
in Eq. (3) equals to GCN convolutional operator [7], shown in Eq. (1).
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3.3 Network Modularity Enhancement

The low-pass filter in GCNs mainly retains the commonality of node features,
which inevitably ignores the difference, so that the learned representations of
connected nodes become similar, and always utilizing low-pass filter will lead to
the over-smoothing problem [28]. To alleviate the issue, we introduce network
modularity, proposed in [23], applied to measure the significance of community
structures. We define network modularity enhanced graph convolutional, which
makes each node’s feature farther away from the centroid of its neighbors from
different communities. The new modularity @@ of the community partition is
expressed as:

QC) = — Z (Aij = —5 —=)(ci, ¢j) (4)
i,jEV
where C' = (¢1,¢9,...,¢,) be a partition of network G, and ¢; denotes the com-

munity label to which node 7 belongs to. m is the number of edges in the network.
(-,-) is an indicator function, which is —1, if ¢; # ¢;, or 0 otherwise. Each ele-
ment of modularity @ is shown as:

Q= {(A” — LutfDutly e # ¢ (5)
0, otherwise

From Eq. (5), we can see the modularity @ is defined as the difference between
the number of edges with communities and the expected number of such edges
over all pairs of nodes [27]. Unlike the definition of Kronecker delta in [23],
Q@ here focuses on the pairwise nodes from different communities, while [23]
emphasizes community partition based label consistency. Assume ) approaches
the maximum, we have powerful high-frequency information hidden in the inter-
community.

Connection to Laplacian Sharpening
Each element of Laplacian sharpening is described as:

A .

~ ——— i i

I+ L=q VDPutlyPitl 7 (6)
2, otherwise

By comparing Eq. (5) with Eq. (6), we can learn that (1) @ has a consistent
meaning with Laplacian sharpening. @) adopts the difference of both the degrees
of nodes and edges as a discriminant criterion, while Laplacian sharpening adopts
the quotient form. Therefore, network modularity enhanced graph convolutional
can be viewed as a Laplacian sharpening as the counterpart of Laplacian smooth-
ing. (2) @ captures the distinctive features from different communities by virtue
of the known labels ignored by Laplacian sharpening.
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3.4 Aggregation

Attention mechanism [12] is the most used strategy to learn the importance of
different representations from multi-views or sources. For example, we can use
two learnable coeflicients to measure the proportion of low-frequency and high-
frequency signals and aggregate them [8]. However, it would introduce more
parameters to learn.

Alternatively, we resort to MRF as our aggregation strategy [5]. The essential
ingredient of MRF is an objective (or energy) function consisting of the sum of
unary potentials defined as ¢{c;} and pairwise potentials defined as 6{c;,c;} :

B(C) ==} ole} —ad 0feic} (7)

where ¢{c;} for an individual i measures the cost that it has label ¢; and 0{c;, ¢; }
for ¢ and j represents the cost that they have labels ¢; and c;, respectively. o is
a parameter for balancing the unary and pairwise potentials.

In this work, we substitute low-frequency information learned X in Eq. (1)
for the unary potential, and network modularity @ in Eq. (5), the sum of pair-
wise potentials for all node pairs of a given network, finally, we get community
detection oriented energy function E(C|A4, X):

E(C|A, X) = —ZX,- —QZQU (8)

There is the property that the minimum of the energy function corresponds
to the best possible community partition [1]. However, minimizing the energy
function to yield the most probable community partition for a given network is
intractable. The pairwise potentials are defined over a complete network rather
than the sparse network. Next, we will use a mean filed approximately for MRF’s
inference [5] to solve the issue from Eq. (8).

The Gibbs distribution of E(C|A4, X) is

P(C|A, X) = %exp{—ZE(CﬂA,X)} )

where N is a normalized constant.

The exact distribution P(C|A, X) is difficult to compute. Thereby we replace
the exact probability distribution with an approximate distribution P(C|A, X)
which is decomposable, i.e.,

P(C|A, X) =[] PileilA, X) (10)
Lemma 1 [5]. Given P(C|A,X) in Eq. (9) and its approzimation P(C|A, X)

in Eq. (10), we can derive the update equation of Pi(ci|A, X) by minimizing the
KL-divergence D(P||P), we can derive

P(CIA, X) — %exp (X +QX) (11)
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3.5 The Whole Architecture

Based on the update Eq. (11), we transform the MRF’s inference into a con-
volution process and formulate it as convolution operations to finalize the last
component of the integrated end-to-end deep neural network. Here, we formally
define the whole framework of CCDF, which has four steps:

XM = ReLUAX O WD) (12)
XL = Softmax(AXg)Wl(Q)) (13)
Xy = SoftmaX(X(O)Wél)) (14)

Z = Softmax (X, + QXgWs) (15)

where X(Ll), X1, and Z are defined as the outputs of the first, second and third
convolution layer, Xy is a layer of nonlinear feature extraction. Wl(l), W1(2),

WQ(U and W5 are the corresponding weights, respectively.
CCDF can be trained by minimizing the cross entropy between the pre-
dicted and the (partial) ground-truth community labels under parameters 6 =

W w® w Wyl e,

m
in.Z(2,Y) = i YyInZ; 16
wremin (1Y) = wgnn 33 Vil 7, (16
1 1 =

where V] is the set of labeled nodes and m is the number of labels, Y;; is 1 if
node v; has label [, otherwise 0.

From Eq. (15), we can learn our method is to introduce a transformation of
MRF model [5] and its inference to a convolutional layer to be added as the last
layer of the whole framework.

Placing CCDF in the Context of Related Prior Work
It can be easily seen that GCN is a special case of our model. Specifically, when
we ignore Eq. (14) and Eq. (15), the model becomes GCN. And in Eq. (15),
we use the result of two-layer GCN (X,) instead of nonlinear feature extraction
(Xp) and then change the indicator function §. Meanwhile, add the similarity
matrix that derives from attributed space and force the balance coefficient to be
positive. This model becomes MRFasGCN (MasG) which has been proposed by
Experimental results (Fig. 4) show that GCN obtains a relatively coarse
community result for both our method and MasG [5]. Then MasG further rein-
forces similar or nearby nodes to have compatible community labels. It offers
smooth labeling among nearby nodes by shortening the distance between nodes
from the same communities. The difference is that our model refines coarsely
labeled communities by enlarging the distance between nodes from different
communities. Compared with them, we find that most of GCNs prefer to aggre-
gate the low-frequency information, which makes them inadequate for learning
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on disassortative graphs and suffers from over-smoothing seriously. Among the
methods that differ from utilizing low-frequency information only, our method
uses the MRF bridges the low-frequency and high-frequency information so able
to integrate and train parameters in low-pass and high-pass extractors together
to develop an end-to-end deep learning framework for community detection.

Table 1. The statistics of datasets

Datasets #Nodes | #Edges | #Attributes | #Communities
Cora 2708 5429 1433 7
Citeseer 3327 4732 | 3703 6
Pubmed 19717 | 44338 500 3
Texas 183 328 | 1703 5
Wisconsin 262 530 1703 5
Cornell 195 304 | 1703 5
Washington | 217 446 | 1703 5

4 Experiments

4.1 Datasets

We conduct experiments on seven widely-used benchmark datasets. We choose
the commonly used citation graphs Cora, Citeseer and Pubmed for assortative
datasets. We consider webpage graphs Texas, Wisconsin, Cornell, and Washing-
ton for disassortative datasets. We summarize the dataset statistics in Table 1.

Table 2. Comparison of prediction accuracy

Method Cora | Citeseer | Pubmed | Texas | Wisconsin | Cornell | Washington
ChebNet [9] 81.20 | 69.80 74.40 64.13 | 53.43 38.77 47.70
JKNet [10] 80.20 | 68.70 78.00 64.21 | 55.72 51.02 62.38
IncepGCN [13] | 77.60 | 69.30 77.70 63.04 | 54.96 54.08 60.55
SGC [11] 81.00 | 71.90 78.90 57.61 | 56.49 53.06 60.55
GAT [12] 83.00 | 72.50 79.00 64.18 | 48.85 47.96 46.79
DropEdge [13] | 82.80 | 72.30 79.60 65.21 | 56.48 45.91 58.71
ALaGCN [14] 82.90 | 70.90 79.60 68.48 | 56.49 47.96 56.88
GraphHeat [15] | 83.70 | 72.50 80.50 64.13 | 51.90 35.70 48.62
GCN [2] 81.50 | 70.30 79.00 63.04 | 54.96 47.96 56.88
CCDF 84.10 | 73.70 80.10 77.17 | 62.59 61.22 70.64
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4.2 Experimental Setup

We aim to provide a rigorous and fair comparison between different methods on
each dataset by using the same dataset splits and training procedure. For Cora,
Citeseer and Pubmed, we use 20 nodes per class for training, 500 nodes for val-
idation, and 1000 nodes for testing. There is no standard division for Texas,
Wisconsin, Cornell and Washington. In order to verify the effectiveness and
robustness, we use 20% for training, 30% for validation, and 50% for testing. We
tune hyperparameters for all methods individually and the baseline results are
essentially the same as their original reports. For CCDF, We tune the following
hyper-parameters, in assortative datasets, the hyper-parameter set is: learning
rate = 0.04, dropout = 0.8, weight decay in {2e—4, 6e—4, 4e—6}. In disassorta-
tive datasets, the hyper-parameter set is: learning rate = 0.05, dropout in {0.5,
0.6}, weight decay in {le—3, 2e—3, 2e—4}. In training, we run 240 epochs, and
the random seed is fixed. We adopt the widely-used Adam optimizer [6] and
run experiments on Pytorch. Besides, we use Accuracy (ACC) as the metric
to evaluate the performance of all methods. Our implementation is available
online.!

4.3 Comparison with the Existing Methods

To comprehensively evaluate our method, we compare it with the following nine
state-of-the-art semi-supervised methods, including ChebNet [9], JKNet [10],
IncepGCN [13], SGC [11], GAT [12], DropEdge [13], ALaGCN [14], GraphHeat
[15] and GCN [2].

As shown in Table 2, we can see our method CCDF improves upon GCN by
a margin of 3.4%, 14.13% in Citeseer and Texas. CCDF improves 12.99% and
19.56% more accurately than GAT and SGC in Texas. In disassortative networks,
CCDF much higher than other methods. Because nodes with distinct labels are
more likely to link together in disassortative networks [24]. Only using low-pass
filters is not suitable for disassortative networks. The experimental results show
that our method CCDF performs the best on 8 of 9 methods, which demonstrates
the effectiveness of CCDF.

4.4 Ablation Study

To validate the effectiveness of individual component in the proposed method
CCDF, we compare CCDF with its five variants: 1) In our method, we ignore
Eq. (14) and Eq. (15), which is equivalent to GCN. 2) The weight parameters Wy
in CCDF is set to 1 without training (as the most general way), namely CCDF
without Ws. 3) @ in Eq. (5) is replaced by community structure embedding

23D _1ogt, 0} (¢ = 2), defined in [22], namely CCDF with Cepp.

d.d;
4) Q is replaced by I + D’%AD’%, which is the initial first-order Chebyshev

matrix, maz{log .
filter derived in GCN, namely CCDF with Si_srder. 5) In order to compare

! https://github.com/KSEM2021/CCDF.
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network modularity enhancement and Laplacian sharpening, we replace Eq. (5)
with Eq. (6), when ¢; # ¢;, namely CCDF with A. The last configuration is the
full proposed method CCDF.

0.0

Citeseer Pubmed

CCDF

CCDF with A4
CCDF with Sy —graer
CCDF with Comp
CCDF without W,
GON

Wisconsin Cornel | Washington

Fig. 3. Comparison of CCDF with its five variants

85

Accuracy(%)
o g ~

Cora  Cite. Pubm. Texa. Wisc. Corn. Wash.

Fig. 4. Comparison experiment with GCN and MasG [5]

The results of the ablation study are shown in Fig. 3, from which we have the
following two observations. First, all CCDF’s variants with component changes
witness clear performance drops compared to the full propose method, which
indicates that the existence of W5 and the @ in Eq. (5) have a certain influence
on our method. Second, the experimental results of CCDF and its variants are
significantly higher than GCN on six of seven datasets.

In order to compare with GCN and [5]’s method (MasG) which is stated in
Sect. 3.5, we add one comparative experiment between GCN, MasG, and our
method. The results show in Fig. 4.
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5 Alleviating Over-Smoothing Problem

To verify whether CCDF can alleviate the over-smoothing problem, we compare
the performance of GCN and CCDF at different model depths in Cora, Cite-
seer, Pubmed, and Texas. The results show in Fig. 5. We can see that GCN
achieves the best performance at two layers. As the number of layers increases,
the performance of GCN drops rapidly, which indicates that GCN suffers from
over-smoothing seriously. On the contrary, the results of CCDF are relatively
stable and higher than GCN, which indicates that CCDF has the ability to sup-
press over-smoothing. CCDF contains both low-frequency and high-frequency
information, which can keep node representations from becoming indistinguish-
able.

~4~ CCDF ~8~ CCOF 80 ~e- CCOF ~8~ CCOF
w0 | al 7
_ 75 60 _ 76 10
& £ 2 £
5" 5 3 3
fos £s0 £n gos

1 2 3 a4 5 6 71 8 1 2 3 4 5 6 71 8 1 2 3 4 5 6 1 8 1 2 3 4 5 6 1 8
Number of Layers Number of Layers Number of Layers Number of Layers

(a) Cora (b) Citeseer (c) Pubmed (d) Texas

Fig. 5. Test accuracy with different model depth

6 Conclusion

In this paper, we develop a Community-Centric Dual Filter (CCDF) frame-
work for semi-supervised community detection task. CCDF can simultaneously
and adaptively exploit low-frequency and high-frequency information from intra-
community and inter-community, respectively. Furthermore, we leverage MRF
to adaptively integrate the low-frequency and high-frequency information in a
complete end-to-end deep network framework. Extensive experiments validate
the effectiveness of our proposed method and demonstrate that CCDF can out-
perform or match baseline on various datasets.
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