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Abstract. Inconsistency is one of the important issues in knowledge
systems, especially with the advent of the world wide web. Given a con-
text of inconsistency characterization, not all the primitive conflicts in
an inconsistent knowledge base are independent of one another in many
cases. The primitive conflicts tightly associated with each other should
be considered as a whole in handling inconsistency. In this paper, we
consider the modularity of inconsistency arising in a knowledge base,
which provides a promising starting point for parallel inconsistency han-
dling in very large knowledge bases. Then we propose a modularity-based
approach to measuring inconsistency for knowledge bases.
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1 Introduction

Inconsistency arises easily in knowledge-based systems when knowledge is gath-
ered from heterogeneous or distributed sources. A growing number of theories
and techniques for analyzing and resolving inconsistency have been proposed so
far in a variety of application domains. In particular, measuring inconsistency
has been considered as a promising starting point for better handling inconsis-
tency in many real-world applications recently [13].

A knowledge base (a finite set of propositional formulas) in a propositional
logic is inconsistent if there exists a formula such that both the formula and its
negation can be derived from the knowledge base. The occurrence of inconsis-
tency in a knowledge base is disastrous, since any proposition can be derived
from that knowledge base. In order to analyze and resolve the inconsistency in
a knowledge base, we often need to characterize the inconsistency within some
specific context in many cases. For example, the set of minimal inconsistent sub-
sets of an inconsistent knowledge base can be considered as a characterization of
inconsistency in the sense that one needs to remove only one formula from each
minimal inconsistent subset to resolve inconsistency [20]. Here a minimal incon-
sistent subset refers to an inconsistent subset without an inconsistent proper
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subset. Besides this, the set of propositional variables assigned to the designated
truth value of both true and false in some paraconsistent models such as the LPm

model in Priest’s Logic of Paradox (LP for short) [18] can be considered as a
characterization of inconsistency in a context of atom-based analysis of incon-
sistency [4,6,12]. Here we use the term of primitive conflict introduced in [1]
to denote such features of an inconsistent knowledge base used to characterize
inconsistency in a given context.

Given a context of inconsistency characterization, if we look inside the set of
primitive conflicts, we can find that not all the primitive conflicts are independent
of one another for some inconsistent knowledge bases. Some primitive conflicts
may be tightly associated with each other for some given knowledge base. For
example, in the context of characterizing inconsistency by minimal inconsistent
subsets, the association among some minimal inconsistent subsets of a knowledge
base due to their overlaps has been considered in some approaches to measuring
inconsistency based on minimal inconsistent subsets [7–10,15].

Such associations among primitive conflicts bring a natural partition of
the set of primitive conflicts such that only primitive conflicts in the same
cluster are associated with one another under the given context of incon-
sistency characterization. To illustrate this, consider knowledge bases K =
{a ∧ c,¬a, b,¬b, c,¬c,¬a ∨ b, d,¬d} under the context of characterizing the
inconsistency with minimal inconsistent subsets. Note that K has five minimal
inconsistent subsets {a ∧ c,¬a}, {b,¬b}, {a ∧ c,¬a ∨ b,¬b}, {c,¬c}, and {d,¬d}.
The first three minimal inconsistent subsets of K are tightly associated with one
other because both {a ∧ c,¬a} and {b,¬b} overlap {a ∧ c,¬a ∨ b,¬b}. Then it
is intuitive to consider that K has three separate clusters of primitive conflicts,
which arise from the three separate parts {a ∧ c,¬a, b,¬b,¬a ∨ b}, {c,¬c} and
{d,¬d} of K, respectively. The first cluster consists of the first three minimal
inconsistent subsets, while the other two clusters consists of the last two minimal
inconsistent subsets, respectively. On the other hand, within the context of atom-
based characterization in the framework of LP, it is intuitive to divide {a, b, c, d}
(atoms assigned to the designated truth value) into two clusters, i.e., {a, b, c}
and {d}. Correspondingly, K can be divided into two subsets, i.e., {d,¬d} and
K \ {d,¬d}.

In such cases, it is advisable to take into account the separate clusters of
primitive conflicts instead of individuals to handle the inconsistency in a knowl-
edge base. Moreover, such a consideration provides a promising starting point
for handling the inconsistency in a knowledge base in a parallel way, because
any two primitive conflicts from different clusters are independent of each other.
This is attractive to inconsistency handling for very large knowledge bases.

In this paper, we focus on taking such a partition of an inconsistent knowl-
edge base into account in characterizing and handling inconsistency for that
base. At first, we propose a notion of module to split an inconsistent knowledge
base into several parts such that each inconsistent part (module) has only one
block of primitive conflicts under a given context of inconsistency characteriza-
tion. Moreover, we show that there exists a unique module-based partition for a
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knowledge base under the given context. Then we propose a modularity-based
framework for measuring the inconsistency in a knowledge base, which allows us
to integrate the inconsistency assessments for modules of the base to assess the
inconsistency of the whole knowledge base in a flexible way.

The rest of this paper is organized as follows. In Sect. 2 we introduce some
necessary notions about inconsistency characterization. In Sect. 3 we propose the
notion of module of a knowledge base, and then we give some instances. In Sect. 4
we propose a modularity-based framework for measuring the inconsistency in a
knowledge base. In Sect. 5 we compare our work with some very closely related
work. Finally, we conclude this paper in Sect. 6.

2 Preliminaries

We use a finite propositional language in this paper. Let P be a finite set of
propositional atoms (or variables) and L a propositional language built from
P and two propositional constants � (true) and ⊥ (false) under connectives
{¬,∧,∨}. We use a, b, c, · · · to denote the propositional atoms, and α, β, γ, · · ·
to denote the propositional formulas.

A knowledge base K is a finite set of propositional formulas. For two knowl-
edge bases K and K ′ such that K ∩ K ′ = ∅, we use K + K ′ instead of K ∪ K ′

to denote the union of K and K ′.
K is inconsistent if there is a formula α such that K 	 α and K 	 ¬α, where

	 is the classical consequence relation. We abbreviate α∧¬α as ⊥ when there is
no confusion. Then we use K 	 ⊥ (resp. K 
	 ⊥) to denote that a knowledge base
K is inconsistent (resp. consistent). An inconsistent subset K ′ of K is called a
minimal inconsistent subset of K if no proper subset of K ′ is inconsistent. We use
MI(K) to denote the set of all the minimal inconsistent subsets of K. A formula
in K is called a free formula if this formula does not belong to any minimal
inconsistent subset of K [4]. We use FREE(K) to denote the set of free formulas
of K. Evidently, K = (

⋃
MI(K)) ∪ FREE(K), where

⋃
MI(K) = ∪M∈MI(K)M .

Given a knowledge base K, a subset R of K is called a minimal correction
subset of K if K \ R 
	 ⊥ and for any R′ ⊂ R, K \ R′ 	 ⊥. We use MC(K) to
denote the set of all the minimal correction subsets of K.

It is well known that an inconsistent knowledge base K has no classical model.
Some paraconsistent models have been established for inconsistent knowledge
bases. Without loss of generality, we introduce the LPm model, one of the simple
but representative paraconsistent models [4,6,12], in this paper.

The LPm model [18] of knowledge bases is given in the framework of Priest’s
Logic of Paradox (LP for short) [19]. Roughly speaking, Priest’s Logic of Paradox
provides three-valued models for inconsistent knowledge bases by expanding the
classical truth values {T,F} to the set {T,F, {T,F}}, in which the third truth
value {T,F} (also abbreviated as B in [6,12]) is considered intuitively as both
true and false [18]. Here we use the following notations and the concepts about
the LPm model used in [6]. An interpretation ω for LPm models maps each
propositional variable to one of the three truth values T, F, B such that
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– ω(true) = T, ω(false) = F,
– ω(¬α) = B if and only if ω(α) = B, ω(¬α) = T if and only if ω(α) = F,
– ω(α ∧ β) = min≤t{ω(α), ω(β)}, ω(α ∨ β) = max≤t{ω(α), ω(β)},

where F <t B <t T. Then the set of models of a formula α is defined as
ModLP(α) = {ω|ω(α) ∈ {T,B}}. Further, the set of models of a knowledge
base K is defined as ModLP(K) = {ω|ω ∈ ModLP(α) for all α ∈ K}.

Let ω be an interpretation and K a knowledge base, then we use ω!(K) to
denote the set of propositional variables of K assigned to B by ω. Based on
ω!(K), we can define the minimal models of K w.r.t. ω!(K) as follows:

MinModLP(K) = {ω ∈ ModLP(K)|∀ω′ ∈ ModLP(K), ω!(K) 
⊂ ω′!(K)}.

The probability distribution on the language L presented in [16,17] is defined
as follows: a function P : L �→ [0, 1] is a probability function on L if P satisfies

– if |= α, then P (α) = 1,
– if |= ¬(α ∧ β), then P (α ∨ β) = P (α) + P (β).

Probability distributions over a knowledge base describe how plausible each for-
mula can be true. Note that there is no probability distribution such that the
probability of each formula of K is 1 if K 	 ⊥.

3 Conflict Modules

In this section, we propose a notion of conflict modules to characterize an incon-
sistent knowledge base. We start with the notion of partition of a knowledge
base.

Let K be a knowledge base, a set B = {B(i)|∅ ⊂ B(i) ⊆ K}m
i=0 with B(i) ∩

B(j) = ∅ for i 
= j of subsets of K, is called a partition of K if
m∑

i=0

Bi = K.

Let K be a knowledge base and A(K) the set of atoms of formulas in K.
A set {A(i)|∅ ⊂ A(i) ⊆ A(K)}m

i=0 with A(i) ∩ A(j) = ∅ for i 
= j of subsets of

A(K), is called a partition of A(K) if
m∑

i=0

Ai = A(K). Such a partition may be

considered as a kind of language split used in belief change in some sense. Let
∅ ⊂ A ⊆ A(K), we use F(A) to denote the set of formulas containing at least
one variable of A in K.

We can also split a knowledge base into several parts according to the separa-
tion of their atoms. Let K be a knowledge base, a partition B = {B(i)|∅ ⊂ B(i) ⊆
K}m

i=0 of K, is called an A-partition of K if F(A(Bi)) = Bi for all 0 ≤ i ≤ m.
Evidently, if {B(i)}m

i=0 is an A-partition of K, then {A(B(i))}m
i=0 is a partition

of A(K).
Further, if a partition B of K satisfies a given constraint such as F(A(Bi)) =

Bi, then we call B a constrained partition. Essentially, an A-partition of K is a
constrained partition of K. A partition B1 of K is a refinement of a partition B2

of K if every element of B1 is a subset of some element of B2.
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Here we use Cμ(K) to denote the set of primitive conflicts of K under the con-
text μ of inconsistency characterization. For example, if we use minimal incon-
sistent subsets to characterize the inconsistency of K, then the set of primitive
conflicts of K is exactly MI(K). Now we are ready to define the conflict modules
of a knowledge base.

Definition 1. Let K be an inconsistent knowledge base and μ a context of incon-
sistency characterization. Then a set {K(i)|K(i) ⊆ K}m

i=1 of subsets of K with
K(i) ∩ K(j) = ∅ for i 
= j, is called the set of conflict modules of K w.r.t. μ, if

(1) K(i) 	 ⊥, i = 1, 2, . . . ,m,

(2) Cμ(
k∑

l=1

K(il)) =
k∑

l=1

Cμ(K(il)) for all 1 ≤ i1 < · · · < ik ≤ m,

(3) Cμ(
m∑

i=1

K(i)) = Cμ(K),

(4) for each K(i), there is no constrained partition of K(i) w.r.t. μ, or for each
partition {K

(i)
1 ,K

(i)
2 } of K(i), Cμ(K(i)

1 ) + Cμ(K(i)
2 ) ⊂ Cμ(K(i)).

Here (1) states that each conflict module of K is inconsistent. (2) states that
any union of conflict modules cannot bring any new primitive conflict under
the context μ. This essentially ensures that the primitive conflicts in different
conflicts modules exactly belong to different blocks of primitive conflicts under
the context μ. (3) states that all the primitive conflicts in K are distributed over
the conflicts modules of K. (4) states that each conflict module is a unity in
characterizing inconsistency under the context μ.

Just for simplicity, the set of conflict modules of a consistent knowledge base
is considered as ∅. If the set of conflict modules of an inconsistent knowledge

base K is {K}, then we call K a modular knowledge base. We call K \
m∑

i=1

K(i)

the conflict-free module of K. We use K(0) to denote the conflict-free module of
K. Evidently, if K is consistent, its conflict-free module is itself. From now on,
we call the partition {K(i)}m

i=0 the set of modules of K.

Proposition 1. Let K be an inconsistent knowledge base and μ a context of
inconsistency characterization. Then there is a unique set of conflict modules of
K w.r.t. μ.

Proof. Let {K
(i)
1 }m

i=1 and {K
(j)
2 }n

j=1 be two different sets of conflict modules of

K. Without loss of generality, suppose that K
(1)
1 is covered by K

(1)
2 and K

(2)
2 ,

i.e., K
(1)
1 ⊆ K

(1)
2 ∪ K

(2)
2 and K

(1)
1 ∩ K

(1)
2 
= ∅,K

(1)
1 ∩ K

(2)
2 
= ∅.

If there is no constrained partition of K
(1)
1 w.r.t. μ, then consider α1 ∈

K
(1)
1 ∩K

(1)
2 and α2 ∈ K

(1)
1 ∩ K

(2)
2 , then α1 ∈ K

(1)
2 and α2 ∈ K

(2)
2 . This contradicts

that α1 and α2 must be in the same part when we partition K in the context μ.
If there is at least one constrained partition of K

(1)
1 w.r.t. μ, then there

exists at least one primitive conflict C ∈ Cμ(K(1)
1 ) such that F (C) ∩ K

(1)
2 
= ∅
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and F (C) ∩ K
(2)
2 
= ∅, where F (C) is the set of formulas involved in C. So,

C 
∈ Cμ(K(1)
2 ) and C 
∈ Cμ(K(2)

2 ), but C ∈ Cμ(K(1)
2 +K

(2)
2 ). Therefore, Cμ(K(1)

2 )+
Cμ(K(2)

2 ) ⊂ Cμ(K(1)
2 + K

(2)
2 ). This contradicts that {K

(j)
2 }n

j=1 is also a set of

modules of K w.r.t. μ. Therefore, {K
(i)
1 }m

i=1 = {K
(j)
2 }n

j=1. �
Here we give some instances of conflicts modules. Consider the case μM where

the inconsistency of a knowledge base is characterized by minimal inconsistent
subsets of K. We define a relation RμM

over
⋃
MI(K) as follows: (α, β) ∈ RμM

if
and only if there exists a sequence α0, · · · , αn of formulas in

⋃
MI(K) with α0 =

α and αn = β such that αi−1 and αi belong to the same minimal inconsistent
subset for all 1 ≤ i ≤ n. Evidently, RμM

is an equivalence relation. We use [α]μM

to denote the equivalence class α belongs to, i.e., [α]μM
= {β ∈ ⋃

MI(K)|(α, β) ∈
RμM

}. Then the set of conflict modules of K w.r.t. μM is given as the quotient
set of

⋃
MI(K) by RμM

.

Proposition 2. Let K be an inconsistent knowledge base. Then

– the set of conflict modules of K w.r.t. μM is given as {[α]μM
|α ∈ ⋃

MI(K)};
– the conflict-free module K(0) = FREE(K).

Proof. Given K 	 ⊥, suppose that {[α1]μM
, . . . , [αm]μM

} is the quotient set of⋃
MI(K) by RμM

. It can be easily shown that the quotient set satisfies conditions
(1)-(3) of definition of conflict modules. For the condition (4), any split of [αi]μM

can break at least one minimal inconsistent subset, then MI(S1) + MI(S2) ⊂
MI([αi]μM

) for any partition {S1, S2} of [α1]μM
. Therefore, {[α]μM

|α ∈ ⋃
MI(K)}

is the set of conflict modules of K w.r.t. μM , and K(0) = FREE(K). �

Example 1. Consider K1 = {a,¬a,¬a ∨ b,¬b ∧ d,¬d ∧ e, c,¬c, e ∨ f, g}. Then
MI(K1) = {M1,M2,M3,M4}, where M1 = {a,¬a}, M2 = {a,¬a ∨ b,¬b ∧ d},
M3 = {¬b∧d,¬d∧e}, and M4 = {c,¬c}. The set of conflict modules of K1 with
regard to μM is {{a,¬a,¬a ∨ b,¬b ∧ d,¬d ∧ e}, {c,¬c}}, and the corresponding
conflict-free module of K1 is {e ∨ f, g}. The set of minimal inconsistent subsets
of K1 can be divided into two blocks, i.e., {M1,M2,M3} and {M4}.

Now we give an A-partition of K based on the dependence of formulas on
atoms. We define a relation RA over K as follows: (α, β) ∈ RA if and only if there
exists a sequence α0, · · · , αn of formulas in K with α0 = α and αn = β such
that αi−1 and αi have at least one common atom for all 1 ≤ i ≤ n. Evidently,
RA is an equivalence relation. We use [α]A to denote the equivalence class α
belongs to, i.e., [α]A = {β ∈ K|(α, β) ∈ RA}. Evidently, F(A([α]A)) = [α]A.
Then {[α]A|α ∈ K} is exactly an A-partition of K.

Consider an atom-based case μL where the inconsistency of a knowledge base
is characterized by the set of propositional variables assigned to B by minimal
LPm models, that is, CμL

(K) = {a ∈ A(K)|∃ω ∈ MinModLP(K)s.t.ω(a) = B}.
Then the set of conflict modules of K w.r.t. μL can be given by the following
proposition.

Proposition 3. Let K be an inconsistent knowledge base. Then
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– the set of conflict modules of K w.r.t. μL is given as

{[α]A|α ∈ K s.t. [α]A 	 ⊥} ;

– the conflict-free module K(0) =
∑

[α]A ��⊥
[α]A.

Proof. Let K be an inconsistent knowledge base and α ∈ K such that [α]A 	 ⊥.
Then for any β ∈ K such that β 
∈ [α]A, then it holds that b 
∈ CμL

([α]A) for
all b ∈ A({β}). Then it is easy to check that the conditions (1), (2), and (3) of
the definition of conflict modules are satisfied. Note that for any proper subset
S 
= ∅ of [α]A, F(A(S)) 
= S. So, the condition (4) is also satisfied. �

Example 2. Consider K1 again. The set of conflict modules of K1 with regard to
either μL is {{a,¬a,¬a∨ b,¬b∧d,¬d∧ e, e∨ f}, {c,¬c}}, and the corresponding
conflict-free module of K1 is {g}.

The corresponding partition of atoms is {{a, b, d, e, f}, {c}, {g}}. The set of
atoms assigned to B by minimal LPm models can be split into two blocks, i.e.,
{a, d} and {c}.

Consider a case μP of probability-based inconsistency characterization where
the primitive conflicts are represented by minimal P-inconsistent subsets. Here
a subset S of K is called a P-inconsistent subset of K if F(A(S)) = S, and
there is no probability distribution P on S such that P (α) = 1 for all α ∈ S.
A P-inconsistent subset S is called a minimal P -inconsistent of K if no proper
subset of S is P-inconsistent. Then the set of conflict modules of K w.r.t. μP

can be given by the following proposition.

Proposition 4. Let K be an inconsistent knowledge base. Then

– the set of conflict modules of K w.r.t. μP is given as

{[α]A|α ∈ K s.t. [α]A 	 ⊥} ;

– the conflict-free module K(0) =
∑

[α]A ��⊥
[α]A.

Proof. Let K be an inconsistent knowledge base and α ∈ K. Note that [α]A is
a minimal P-inconsistent subset iff [α]A 	 ⊥. �

However, for any context μA of atom-based or valuation-based or paracon-
sistent models-based inconsistency characterization, the set of conflict modules
of K w.r.t. μA is exactly {[α]A|α ∈ K s.t. [α]A 	 ⊥}.

4 Module-Based Inconsistency Assessment

The modularity of inconsistent knowledge bases provides a good starting point
to measure inconsistency in a parallel way. Given a context of inconsistency
characterization, the primitive conflicts of an inconsistent knowledge base are
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distributed over the conflict modules of that base. Moreover, the primitive con-
flicts in each conflict module exactly comprise a separate block. Then a desirable
inconsistency measure should take into account the inconsistency assessment of
each module as well as the way to integrate the assessments of these modules
in order to assess the inconsistency of the whole knowledge base. To this end,
we first give a general framework to define an inconsistency measure based on
modules of a knowledge base.

Definition 2. Let K be a knowledge base. Then the inconsistency measure for
K with regard to μ, denoted Iμ(K), is a module-based measure if

Iμ(K) = δ(Iμ(K(0)), Iμ(K(1)), · · · , Iμ(K(m))), (1)

where {K(i)}m
i=1 (possibly empty) is the set of conflict modules of K with regard

to μ, and δ is an operation for integrating the measures of modules with δ(x) = x.

Now we give some existing instances of module-based measures.

– The measure IMI(K) presented in [6] is defined as the number of minimal

inconsistent subsets of K. Then by Proposition 2, IMI(K) =
m∑

i=0

IMI(K(i)).

– The measure Idr(K) presented in [14] is defined as the smallest size of minimal

correction subsets of K. Then by Proposition 2, Idr(K) =
m∑

i=0

Idr(K(i)).

– The measure ILPm
(K) presented in [4,6] is defined as the normalized mini-

mum number of variables assigned inconsistent truth values in LPm models

(with regard to |P|). Then by Proposition 3, ILPm
(K) =

m∑

i=0

ILPm
(K(i)).

– The maximal η-consistency presented in [11] is one of the most representative
of probability-based measures. For 0 ≤ η ≤ 1, a knowledge base K is η-
consistent if there exists a probability function P such that P (α) ≥ η for all
α ∈ K. Furthermore, K is maximally η-consistent if K is η-consistent, and
for all γ > η, K is not γ-consistent. If we define Ipr(K) = η if K is maximally
η-consistent, then by Proposition 4, Ipr(K) = min

0≤i≤m
Ipr(K(i)).

The behavior of the module-based inconsistency measure depends on prop-
erties of assessments for modules as well as characteristics of the integration
operation δ. Just for simplicity, we assume that any inconsistency measure dis-
cussed from now on is a non-negative inconsistency measure such that the higher
the inconsistency value, the more inconsistent a knowledge base is.

In order to characterize a module-based inconsistency measure, we consider
the following postulates about the integration operation δ firstly. Let xi ≥ 0 for
i ≥ 0,

– 0-Invariance: δ(x0, x1, · · · , xm) = δ(x1, · · · , xm) if x0 = 0.
– M-Monotony: δ(x0, · · · , xm) ≤ δ(x0, · · · , xm, xm+1) for 0 ≤ m.
– R-Monotony: δ(x0, · · · , xi, xi+1, · · · , xm) ≤ δ(y, xi+1, · · · , xm) if

δ(x0, · · · , xi) ≤ y.
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Essentially, the property of 0-Invariance says that the variables with the value
0 play no role in the integration of nonnegative variables under δ. The property
of M-monotony says that the result of integration under δ cannot decrease as we
extend the set of variables to be integrated. The property of R-monotony says
that replacing a set of variables with some variable greater than the integration
of these variables cannot make the result of integration under δ decrease.

Evidently, both δ(x0, x1, · · · , xm) =
m∑

i=0

xi and δ(x0, x1, · · · , xm) = max
0≤i≤m

xi

satisfy all the three postulates.
Then we consider the properties of inconsistency assessment for modules and

modular knowledge bases.

– Consistency: Iμ(K(i)) = 0 if and only if i = 0.
– ⊆-Monotony: Iμ(K) ≤ Iμ(K ′) for two modular knowledge bases K and K ′

such that K ⊆ K ′.
– Reinforcement: Suppose that K1, . . . ,Kn−1, and Kn are modular knowledge

bases with regard to μ such that
n−1∑

i=1

Ki ⊆ Kn, then

δ(Iμ(K1), · · · , Iμ(Kn−1)) ≤ Iμ(Kn).

– M-Dominance: Let Bβ and Bα be the sets of modules of K ∪{β} and K ∪{α}
for two formulas α and β not in K, respectively, then δ(Iμ(K ′)|K ′ ∈ Bα \
Bβ) ≥ δ(Iμ(K ′′)|K ′′ ∈ Bβ \ Bα) if α 	 β and α 
	 ⊥.

The property of Consistency says that only the conflict-free module has null
inconsistency assessment. However, it is exactly the property of consistency pre-
sented in [6]. The property of ⊆-monotony says that the inconsistency measure
for modular knowledge bases is monotonic w.r.t. set inclusion. The property of
Reinforcement says that the inconsistency assessment of a modular knowledge
base obtained by connecting a number of smaller disjoint modular knowledge
bases is not less than the result of integration of assessments of these smaller
modular knowledge bases. The property of M-Dominance states the result of
integration of new modules cannot be less than that of the modules disappeared
by replacing a formula with another logically stronger formula.

Besides the property of Consistency presented in [6], the properties of
Monotony, Free Formula Independence, and Dominance presented in [4–6], and
the property of Safe Formula Independence (also termed as Weak Independence
in [21]) presented in [6] are considered as representative ones for characterizing
inconsistency measures. In detail, let I be an inconsistency measure, then

– Consistency : I(K) = 0 if and only if K is consistent.
– Monotony: I(K ∪ K ′) ≥ I(K).
– Free Formula Independence: If α ∈ FREE(K ∪{α}), then I(K ∪{α}) = I(K).
– Dominance: If α 
∈ K and α 	 β and α 
	 ⊥, then I(K ∪ {α}) ≥ I(K ∪ {β}).
– Safe Formula Independence: If A({α}) ∩ A(K) = ∅ and α 
	 ⊥, then I(K ∪

{α}) = I(K).



328 K. Mu

Here we adopt the revised form of Dominance presented by [2].
However, the following propositions show that the postulates of the inte-

gration operation and the properties of inconsistency measures for modules and
modular knowledge bases guarantee the satisfaction of these representative prop-
erties by the module-based inconsistency measure.

Proposition 5. If Iμ satisfies Iμ(K(0)) = 0, and δ satisfies 0-Invariance, then
Iμ(K \ K(0)) = Iμ(K).

Proof. Let {K(i)}m
i=1 be the set of conflict modules of K, then if Iμ(K(0)) =

0, Iμ(K) = δ(0, Iμ(K(1)), · · · , Iμ(K(m))). Further, by 0-Invariance, Iμ(K) =
δ(Iμ(K(1)), · · · , Iμ(K(m))) = Iμ(K \ K(0)). �

Corollary 1. If IμM
satisfies IμM

(K(0)) = 0, and δ satisfies 0-Invariance, then
IμM

satisfies the property of Free Formula Independence.

Proof. If α is a free formula of K ∪{α}, then (K ∪{α})(0) = K(0)∪{α}. Then by
Proposition 5, IμM

(K ∪ {α})= IμM
(K ∪ {α} \ K ∪ {α})(0)) = IμM

(K \ K(0)) =
IμM

(K). �

Corollary 2. If IμL
satisfies IμL

(K(0)) = 0, and δ satisfies 0-Invariance, then
IμL

satisfies the property of Safe Formula Independence.

Proof. Note that α is a safe formula of K, then α is also a free formula of K. �

Proposition 6. If Iμ satisfies ⊆-Monotony and Reinforcement, and δ satisfies
M-monotony and R-monotony, then Iμ satisfies the property of Monotony.

Proof. Let {(K)(i)}m
i=0 and {(K∪K ′)(j)}n

j=0 be sets of modules of K and K∪K ′,
respectively. Moreover, suppose that for j > k, (K ∪ K ′)(j) ∩ (K)(i) = ∅ for all
i = 1, 2, · · · ,m. Suppose that xi = Iμ((K)(i)) and yj = Iμ((K ∪ K ′)(j)). Then
if (K)(i) is not a module of K ∪ K ′, then there exists some (K ∪ K ′)(j) such
that (K)(i) ⊂ (K ∪ K ′)(j). Suppose that (K)(j1), · · · , (K)(jl) ⊂ (K ∪ K ′)(j).
Then by Reinforcement, it holds that δ(xj1 , · · · , xjl) ≤ yj . Further, by R-
monotony, it holds that δ(x1, · · · , xj1 , · · · , xjl , · · · , xm) ≤ δ(x1, · · · , yj , · · · , xm).
Then by M-monotony, δ(x1, · · · , xm) ≤ δ(x1, · · · , xm, yk, yk+1, · · · , yn). Further,
by ⊆-Monotony and the two inequalities above, it holds that δ(x1, · · · , xm) ≤
δ(y1, · · · , yk−1, yk, yk+1, · · · , yn). �

Proposition 7. If Iμ satisfies ⊆-Monotony, M -Dominance and Reinforcement,
and δ satisfies M-monotony and R-monotony, then Iμ satisfies the property of
Dominance.
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Proof. Let Bβ and Bα be the sets of modules of K ∪ {β} and K ∪ {α} for two
formulas α and β not in K, respectively, then Iμ(K ∪{α}) = δ(Iμ(K ′)|K ′ ∈ Bα)
and Iμ(K ∪ {β}) = δ(Iμ(K ′)|K ′ ∈ Bβ).

Let Kα be the module of K ∪ {α} such that α ∈ Kα. Then Iμ(K ∪ {α}) =
δ(Iμ(Kα), Iμ(K ′)|K ′ ∈ Bα\{Kα}). Note that Iμ(Kβ) ≤ δ(Iμ(K ′′)|K ′′ ∈ Bβ \Bα)
and Iμ(Kα) = δ(Iμ(K ′′)|K ′′ ∈ Bα \ Bβ) ≥ δ(Iμ(K ′′)|K ′′ ∈ Bβ \ Bα). Therefore,
Iμ(K ∪ {α}) ≥ δ(Iμ(K ′′)|K ′′ ∈ (Bβ \ Bα) + Bα \ {Kα}). So, Iμ(K ∪ {α}) ≥
Iμ(K ∪ {β}). �

Lastly we give two new instances of module-based inconsistency measure
guided by these postulates.

Definition 3. Let K be a knowledge base and {K(i)}m
i=0 the set of modules of

K with regard to μM . Then the inconsistency measure Imax(K) for K is defined
as Imax(K) = max

0≤i≤m
Idr(K(i)).

Essentially, Imax(K) use the maximum value of modules of K as the incon-
sistency value of the whole knowledge.

Proposition 8. Imax satisfies the properties of Consistency, Free Formula Inde-
pendence, Safe Formula Independence, Monotony, and Dominance.

Proof. Note that proofs for Consistency, Free Formula Independence, Safe For-
mula Independence and Monotony are trivial. Here we just focus on Dominance.
Let α 
∈ K and α 	 β and α 
	 ⊥. Let Kα (resp. Kβ) be a module of K ∪ {α}
(resp. K ∪ {β} ) such that α ∈ Kα (resp.β ∈ Kβ ). Let K1,K2, . . . ,Km be the
modules of K ∪ {β} such that Ki ∩ Kα 
= ∅ and Ki 
= Kβ for all i = 1, 2, · · · ,m.

Let R be the smallest correction subset of Kα. If α 
∈ R, then R is also a
(not necessarily minimal) correction subset of Kβ ∪ K1 ∪ · · · ∪ Km. If α ∈ R,
then R ∪ {β} \ {α} is a correction subset of Kβ ∪ K1 ∪ · · · ∪ Km. So, Idr(Kα) ≥
Idr(Kβ ∪ K1 ∪ · · · ∪ Km). Therefore, Imax(K ∪ {α}) ≥ Imax(K ∪ {β}). �

Definition 4. Let K be a knowledge base and {K(i)}m
i=0 the set of modules of

K with regard to μM . Then the inconsistency measure Ie(K) for K is defined
as

Ie(K) = δe(Ie(K(0)), · · · , Ie(K(m))) =

⎧
⎨

⎩

m∏

i=1

Ie(K(i)), if m ≥ 1

0, otherwise.

where Ie(K(0)) = 0 and Ie(K(i)) = eIdr(K
(i)) for 1 ≤ i ≤ m.

Note that Ie(K(i)) > 1, then we have the following result.

Proposition 9. Ie satisfies the properties of Consistency, Free Formula Inde-
pendence, Safe Formula Independence, Monotony, and Dominance.

The proof is similar to the proof above. So we omit it.
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5 Comparison and Discussion

Splitting an inconsistent knowledge into their modules provides a promising
starting point for handling inconsistency for big knowledge bases in a parallel
way. Note that the notion of conflict module is based on the association among
primitive conflicts under a given context of inconsistency characterization.

Within the context μM where the inconsistency is characterized by mini-
mal inconsistent subsets, the notion of strong-partition presented in [7] and the
notion of MIS partition presented in [9] are similar to that of the set of con-
flict modules. All the three notions take into account the association among
minimal inconsistent subsets of an inconsistent knowledge base. But they are
different from one another in essence. The MIS-partition is a partition of the
set of minimal inconsistent subsets. Instead, both the set of modules and the
strong partition are partitions of the whole knowledge base. Note that the set of
conflict modules must cover all the minimal inconsistent subsets as well as their
associations. So, all the blocks of minimal inconsistent subsets remain unchanged
in conflict modules. However, this does not hold for strong partition. To illus-
trate this, consider K = {a,¬a, b,¬b,¬a ∨ b}, then the conflict module of K
is itself, while the strong partition of K is {{a,¬a}, {b,¬b}, {¬a ∨ b}}. On the
other hand, the MIS-partition also tends to break the associations among min-
imal inconsistent subsets. Consider K again. The MIS-partition of MI(K) is
{{{a,¬a}, {b,¬b}}, {{a,¬a∨ b,¬b}}}. Such a partition breaks the block consists
of all the three minimal inconsistent subsets.

In addition, the language splitting-based belief revision [3] seems similar to
the modularity of inconsistent knowledge base. However, the language splitting-
based belief revision aims to isolate local relevant information to new informa-
tion when the new information brings conflicts to the old belief base, whilst we
split an inconsistent knowledge base into several separate parts according to the
distribution of all primitive conflicts given a context of inconsistency character-
ization.

The modularity-based framework for measuring the inconsistency in a knowl-
edge base consists of two parts, i.e., inconsistency assessments for conflict mod-
ules and the integration operation over them. The sum operation is an usual
one for integrating a set of variables. In this case, it is advisable to adapt the
properties about additivity such as MinInc Separation presented in [6], Ind-
decomposability presented in [7], and Sub-Additivity presented in [9] to ones in
terms of modules.

6 Conclusion

We have proposed the notion of conflict modules to capture the association
among primitive conflicts as well as all the primitive conflicts of a knowledge
base under a given context of inconsistency characterization. The association
among primitive conflicts makes primitive conflicts comprise separate blocks,
each of which should be considered as a whole in inconsistency handling. Given
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a knowledge base, each of conflict modules exactly contains one block of primitive
conflicts of that base, moreover, all the primitive conflicts are distributed over
the conflict modules.

Then we have proposed a flexible framework for measuring inconsistency of
a knowledge based on modularization of that knowledge base, which consists of
two parts, i.e., inconsistency assessments for conflict modules and the integra-
tion operation over them. Some intuitive postulates about integration operation
and properties for inconsistency assessment for modules have been proposed to
characterize the framework.
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