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Abstract. Natural language text contains numerous event-based, and
a large number of semantic relations exist between events. Event rela-
tions express the event rationality logic and reveal the evolution process
of events, which is of great significance for machines to understand the
text and the construction of event-based knowledge base. Event rela-
tion discovery includes extracting event relation from text and obtaining
event relation by reasoning. Event relation extraction focuses on the
recognition of explicit relations, while event relation reasoning can also
discover implicit relations, which is more meaningful and more difficult.
In this paper, we propose a model combining LSTM and attention mech-
anism for event relation reasoning, which uses the attention mechanism
to dynamically generate event sequence representation according to the
type of relation and predicts the event relation. The macro-F1 value in
the experimental result reaches 63.71%, which shows that the model can
effectively discover implicit event-event relation.

Keywords: Event knowledge graph · Event relation · Bi-LSTM ·
Attention mechanism

1 Introduction

Events and event relations in natural language contain advanced semantic infor-
mation. Events do not occur in isolation, and the occurrence of the event is
logically related to other events. The event relation is different from the clas-
sification relation between traditional concepts. It is often used to describe the
higher-level semantic relations between events, such as causality, follow, concur-
rency, and composite. Discover event relations from text helps machines under-
stand text better, and facilitate the construction of event-based knowledge bases
from text.
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Event relation discovery includes event relation extraction and event rela-
tion reason. Recent research work on event relation extraction mainly aims at
temporal event relation detection [17], subevent relation recognition [1,10], and
causality relation extraction [7]. These methods are mainly divided into pattern
matching method and machine learning method. The pattern matching method
generally uses the rule template to match the keywords of the relation, and the
machine learning method constructs the model to capture the semantics and fea-
tures of the text for relation extraction. Existing methods focus on the extraction
of explicit relations and cannot predict event relations from event-event sequence,
while event relation reasoning can also discover implicit relations, which is more
meaningful and difficult.

In this paper, we aim at reasoning implicit relations of events from text.
Event relation reason is a task to obtain the pairs of event sequences and clas-
sify the relation (causality, follow, concurrency, and composite) between them.
Existing methods of event relation discovery based on machine learning generally
use models such as RNN and GCN [5,6,21] to obtain the representation of the
event. However, the text contains redundant information unrelated to the event,
resulting in the weakness of semantic information in the event feature vector.
Event knowledge graph is event-based knowledge base for specific application
domain. It is usually constructed by domain experts iteratively through manual
or automatic methods. Event knowledge graph describes important events with
related elements (such as action, objects, time and place) in a specific domain
in the form of RDF triples, and also contains the description of rationality rela-
tionship between events. So we can generate the event representation sequence
from it and take it as a priori knowledge base for event relation reasoning.

In this paper, we propose a model combining LSTM and attention mecha-
nism for event relation reasoning. We obtain event information from the event
knowledge graph and use the attention mechanism to dynamically generate event
sequence representation according to the type of relation. To verify the effective-
ness of the proposed event relational reasoning method, we annotate a new text
set about COVID-19 on the basis of CEC1 corpus, and construct an event knowl-
edge graph about COVID-19 from the annotated texts.

The remainder of this paper is organized as follows: Sect. 2 introduces and
discusses relevant works about the recognition model of different event relations.
Section 3 introduces the event knowledge graph. Section 4 describes our proposed
model. Section 5 demonstrates relevant experiments and analyzes the results.
Finally, Sect. 6 concludes by summarizing our proposed method and pointing
out directions for future work.

2 Related Work

Recent research work on event relation extraction tasks mainly aims at causal-
ity relation extraction, temporal relation detection and subevent relation
recognition.
1 https://github.com/daselab/CEC-Corpus.

https://github.com/daselab/CEC-Corpus
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Causality relation is the most important semantic relation between events,
Girju [7] constructed a template to identify causality relations and used it to
match the keywords of the relation. Peng [18] proposed a method to measure
causality on event triggers by using pointwise mutual information. Recently,
Mirza [14] presented a data-driven approach with rules to extract causal rela-
tions between events. Kriengkrai [9] extracted the original sentence of the causal
candidate from the network text and the multi-column CNN is used to determine
whether there is a causal relation between event pairs.

Event temporal relations specify how different events in a paragraph relate
to each other in terms of time sequence. Current work aimed at representing
event pairs based on linguistic features and using statistical learning methods
(such as logistic regression [12] and SVM [15]) to capture the relations. With the
development of deep learning technology, Cheng [5] and Xu [21] extracted the
shortest dependency path of the event context and classified the event temporal
relation with neural network based on LSTM. Dai [6] combined LSTM and GCN
to capture features and correlation syntax for event temporal relation detection.

Besides, some research aims at the extraction of event hierarchical relations.
This task attempts to extract hierarchical structure where the parent event con-
tains child events described in the same document. To cope with this task, Araki
[2] introduced a multi-class logistic regression model to detect subevent relations.
Glavaš [8] constructed rich set of features for subevent relation classification.
Zhou [24] constructed a common temporal sense language model Tacolm and
predicted subevent relations on this basis.

Existing research works obtain event features and representations from text
and uses different models to learn a particular relation between events, individ-
ually. These methods mainly aim at the extraction of explicit relations of texts,
while a large number of semantic relations are implicit. Moreover, they are pri-
marily developed at the sentence level and hence it is easy to omit relational
event pairs scattered in different sentences or even in different documents.

In this paper, we construct the event knowledge graph and generate the event
sequence based on it. Then we use a neural network model to learn the relation
characteristics between events and predict the event relation.

3 Event Knowledge Graph

Based on the event model and event ontology concept proposed by Liu [11], we
propose the event knowledge graph. Event knowledge graph is an event-based
knowledge base accumulated in knowledge application, which contains event-
based knowledge in different fields.

To construct the event knowledge graph, from the perspective of knowledge
representation, we define an event as

E :=< A,P,O,L, T > (1)

where A,P,O,L, T represents the trigger, participant, object, location, and time
of the event, respectively. The event knowledge graph includes event ontology
models and event instances, which is described as
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EKG :=< EOs,EIs > (2)

where EOs is event ontology set and EIs is event instance set. The event ontol-
ogy is a shared, formal and explicit specification of the event class system model.
It contains event class concepts, rules for event knowledge inference and relations
between event classes (including causality, follow, concurrency, and composite).

An event instance is an instantiation of an event class, representing a specific
event. We extend the RDF triples to represent the basic elements in the event
knowledge graph. For example, the relation between the event instance and the
event class can be described as < e1, type, ec1 >, where e1 is an event instance
and ec1 is an event class. Event relations describe the rationality relation between
events, represented as < e1, event relation, e2 >. Event elements is the descrip-
tion of the event, which is defined as: < e1, element relation, element entity >,
where element relation is selected from {hasParticipant, hasObject, hasLoca-
tion, hasTime} and element entity represents the event element entity.

Event knowledge graph is usually constructed by domain experts iteratively
through manual or automatic methods. Machine learning methods are widely
used in the automatic construction of event knowledge graph, such as GNN [16]
is used to extract event trigger, and K-means is used to identify event elements.

Proof. “Since the COVID-19 epidemic spread in Europe and the world, the
European Commission will continue to restrict travel to Europe from mid-March
to 15 June this year.” The event knowledge graph from the text is shown in Fig. 1.

Fig. 1. A simple subgraph of the event knowledge graph.

4 Proposed Method

In this model, word2vec is used to map element words into low-dimensional
vectors space, and LSTM is used to model event sequence. In addition, Attention
mechanism assigns different weights to event element vectors.
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4.1 Event Representation

In this paper, the event sequence is generated from the event knowledge graph.
In CEC, we find that the average length of event sequence is 4.85, and 96.63%
of event elements (trigger, participant, object, location and time) can be cov-
ered completely when the length of the event sequence is twelve. So we set the
length of the event sequence as twelve. In a Chinese sentence, events are usually
described in the order of time, participants, triggers, objects, and place. There-
fore, we obtain the event trigger and related elements from the event knowledge
graph in order. The event sequence contains six words filled forward and five
words filled backward in the above order based on the event trigger. We use
“〈pad〉” to mark paddings to ensure that the length of event sequence is equal.

4.2 LSTM

We use LSTM, a special RNN, to process sequence data and learn long-term
dependencies. As shown in Fig. 2, the LSTM layer runs on a vector sequence
of event sequences. LSTM has three gates (input i, forget f and output o) and
a cell storage vector. The forget gate decides what information to throw away
from the cell state. The input gate determines how the input vector x(t) changes
the cell state. The output gate allows the cell state to affect the output.

Fig. 2. The event-event relation reason model based on Bi-LSTM and attention mech-
anism. The input consists of two parts: an event sequence with NER tags and a target
event-event relation. vele and veve are embedding vectors of the event and event ele-
ment. The weight vector α is calculated based on the target event-event relation.
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4.3 Word Encoder

Word embeddings learned from a large amount of unlabeled data can capture the
semantics of words. In this paper, we use word2vec [13] to learn word embeddings
on the corpus. Considering the effect of event element type on event representa-
tion, we concatenate the word vector eword and the type vector etype to represent
each word.

wt = eword ⊕ etype (3)
As the reversed order of event sequence also carries rich information, we can

feed the reverse event sequence into LSTM to obtain the backward representa-
tion. Bidirectional LSTM uses two LSTMs to obtain the semantics of the for-
ward and backward sequences, respectively. Therefore, for an event represented
by sequence wt, t ∈ [0, T ], the calculation is described simply as follows:

−→
h t =

−−−−→
LSTM(wt), t ∈ [1, T ] (4)

←−
h t =

←−−−−
LSTM(wt), t ∈ [T, 1] (5)

We concatenate the forward hidden state
−→
h t and the backward hidden

state
←−
h t to contain the semantics of the event, which is described as eventi =

[
−→
h t,

←−
h t].

4.4 Attention Layer

Each event is usually triggered by a verb and described by several event ele-
ments. For event pairs with different relations, the focus of the event elements is
different. For example, when reasoning whether the event pair has a concurrent
relation, we will emphasize two events’ time continuity. Attention Mechanism
[3] can guide the neural network model to treat each component of the input
unequally according to the importance of the input to a given task. So, we use
the attention mechanism to measure the importance of event elements in relation
type and assign different weights to the elements.

In Fig. 2, the attention weight α is calculated from the hidden state h calcu-
lated by Bi-LSTM and the target event relation vector r. The attention score of
the kth event element word in the event sequence is calculated as:

αk =
exp(hk · rT)

∑
i exp(hi · rT)

(6)

velement = αTH (7)
where H = [h1, ...,hT ] is a matrix and velement is the vector of event elements
which integrates all event element of the event. The vector of event sequence is
defined as the weighted sum of vtrigger and velement, which is described as

vevent = (1 − β) · vtrigger + β · velement (8)
where β ∈ [0, 1] trades off event trigger and elements and vtrigger is the hidden
vector of the trigger word token in Bi-LSTM.
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4.5 Event-Event Relation Reason

Inspired by the translation model in the knowledge graph, such as TransE [4]
and TransH [20], we regard the event as a special entity and assume that the
distance of event-event with relation in vector space is close. Considering that
events and relations are in different semantic spaces, we map the event vector
into the relation semantic space through the relation matrix. The score of event
pairs under the relation is calculated as follows:

g(event1, r, event2) = ||Wrvevent1 + r − Wrvevent2 || (9)

The objective is to minimize the maximum interval loss function. The main
idea of this method is that we should maximize the score interval between each
positive sample Ti = (event1, r, event2) and the negative sample T

′
i generated

by replacing an event in the triple randomly. The loss function is expressed as

J =
∑

Ti∈S

∑

T
′
i ∈S′

max(0, 1 − g(Ti) + g(T
′
i )) (10)

where S and S
′
represent the set of positive and negative examples, respectively.

5 Experiments

In this section, we present the experiments on event relation reason. Specifically,
we conduct evaluation for event relation extraction based on CEC corpus (Sect.
5.1–Sect. 5.4). We demonstrate the effects of event elements on event relation
reasoning by adjusting the parameter β (Sect. 5.5). Finally, a detail ablation
study is given to explain the significance of attention mechanism (Sect. 5.6).

5.1 Dataset

In experiments, we use CEC, a Chinese event-based dataset, to generate the
event knowledge graph. Figure. 3 shows the annotation content of corpus by tak-
ing the event travel restriction to Europe as an example. Besides, we use 92 repre-
sentative reports about COVID-19 and mark the event triggers, event elements
(such as participants, time, location), and event relations semi-automatically.
We add 3459 event instances and 1616 event relations to the CEC in total.

5.2 Experimental Settings

The dimension of the word vector is 128 dimensions, which word2vec trains. The
vector of event element type is a 32-dimensional vector initialized randomly. The
size of the LSTM is 128 (256 for Bi-LSTM), and the number of layers in the
LSTM is 2. During the training process, we used gradient descent and the Adam
optimizer algorithm to update the parameters. The batch size is 64. The learning
rate is 0.02, and we use the exponential slowing method to make the learning
rate decrease exponentially with the increase of the training step. To prevent
neural networks from over-fitting, we adopt dropout [19] and L2 regularization.
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Fig. 3. The annotation of travel restriction to Europe event in the corpus. For ease of
reading, the English translation of the Chinese text is added in the brackets.

5.3 Evaluation Metrics

We use precision (P), recall (R) and F1-measure (F1) to evaluate the results.
Precision: the percentage of correctly predicted event relations in total pre-
dicted event relations.

Recall: the proportion of correctly predicted event relations in the relation
samples.

F1-measure: F1 = 2∗P∗R
P+R

5.4 Result and Discussion

To verify the effectiveness of the model, we compare with the following methods:

– word+PoS+SVM: For the event sequence, we spliced word vectors based
on the bag-of-words model and part of speech tags as event features and used
SVM as a classifier.

– word+PoS+KNN: We use the same feature engineering above but use
KNN as the classifier.

– Yang: Yang et al. [22] proposed an event-based Siamese Bi-LSTM network
to model events and applied it to the learning of causality.

– Zhang: Zhang [23] used deep LSTM with average pooling in the last layer
to obtain the average vector value and learn the event temporal relation.

Table 1. Performance comparison with different methods

Method Causality Follow Concurrency Composite Overall

word+PoS+SVM 61.67 38.93 30.98 50.45 45.51

word+PoS+KNN 64.89 46.44 34.67 57.84 50.96

Yang’s model 70.59 42.82 41.19 69.21 55.95

Zhang’s model 71.16 45.96 39.79 72.50 57.35

our model 73.18 50.75 48.16 82.76 63.71

Table 1 reveals the performance comparison of the five models on the dataset.
The macro-average F1 vlaue of our method is 63.71%. Our model achieves better
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performance on the relations of causality and composite, compared with follow
and concurrency. There are two possible reasons. Firstly, event pairs with causal-
ity and composite relations have a strong logical connection with event triggers,
and their distribution is relatively concentrated. Secondly, the follow and con-
currency relation focus on the time element of event pair. However, the model
does not distinguish well between two relations.

From Table 1, we can find that the overall performance of our model is
better than the four benchmarks in macro-average F1 value. Compared with
the machine learning-based methods, our neural network model significantly
improves the F1 value. These results further verify the effectiveness of the neu-
ral network in the task of event relation reason.

The comparison of model performances on individual relation types also
proves the improvement on the F1 score. Our model achieves the greatest perfor-
mance improvement (72.5 vs. 82.76) on composite relation. The relations of fol-
low and concurrency are so difficult to distinguish that the traditional methods
cannot recognize them well. However, the BiLSTM can capture the semantic fea-
tures of event sequences, and the attention mechanism assigns different weights
to event elements. Hence, our model significantly improves the performance of
two relations. These results prove the validity of our model.

5.5 The Effect of β

Table 2 lists the detailed performance of our model with different parameters β.
We select numbers from {0, 0.1, 0.2, 0.3, 0.4} as the parameter β to verify the
effect of event elements on event relation reason. From the table, we can find
that it is better to add event elements to the event representation than to take
the event trigger’s hidden vector as the event’s representation. When β is 0.2,
the model is most suitable for the event relation reason task and achieves the
best performance. When β is greater than 0.2, the model becomes less effective.
It is likely that the lack of event trigger information and the emphasis on event
element information resulting in insufficient semantic coherence of the event.
These results indicate that integrating event trigger and elements to represent
event semantic information is more suitable for event-event relation reason.

Table 2. The effect of β on experimental performance

β Precision (%) Recall (%) F1-score (%)

0.0 60.27 61.25 60.65

0.1 62.23 62.91 62.52

0.2 64.05 63.74 63.71

0.3 61.54 61.90 61.46

0.4 60.40 61.22 60.69
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5.6 Analysis of Attention Weight α

We design two sets of comparative experiments to confirm the impact of the
attention mechanism. In the first set of experiments, we use the attention mech-
anism to assign different weights to event elements in a specific relation and take
the weighted summation result as the event’s element representation. In the sec-
ond set of experiments, we only add the average vectors of event elements. The
experimental results are shown in Fig. 4. In general, the model combining the
attention mechanism has a better experimental result. The attention mechanism
can dynamically assign weights to elements according to the type of relation and
capture the features of specific event elements.

Fig. 4. Influence of attention mechanism. Red line: the representation of event ele-
ments obtained by the attention mechanism. Blue line: the representation of the event
element obtained by adding the average element vectors. (Color figure online)

Figure 5 shows several examples of the attention vector α learned by our
model. In the first example, the causality relation focuses on the logical con-
nection between event pairs, and the model assigns similar attention scores to
event elements. The time element and the continuity of the event occurrence are
important clues to the follow relation. In the second example, the model focuses
not only on time but also on the continuity of the event pairs. Therefore it assigns
high attention scores to key elements of the event, such as “fire” and “fireman”.
Furthermore, the concurrency relation refers to the occurrence of two events
simultaneously or one after the other. The third example is a negative sample.
However, to explore the concurrency relation between events, the model tries to
capture this feature by assigning a high attention score to the time element.
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Fig. 5. Visualization of attention weight vector α of sample event instances learned by
our model.

6 Conclusion

In this paper, we proposed an event relation reason model based on LSTM and
attention mechanism. The event knowledge graph is introduced as a priori knowl-
edge base and we obtain the event sequence from it. The model learns features
for relation reasoning iteratively along the event representation sequence. We
leverage LSTM for event information propagation and integration. Meanwhile,
attention mechanism assigns different weights to event elements dynamically.
Experimental results show that the model achieves a better performance on the
reasoning of event causality and composition relation. In future work, we will
improve the reasoning of concurrency and follow relation between events.
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