
Clustering Massive-Categories
and Complex Documents via Graph

Convolutional Network

Qingchao Zhao1(B), Jing Yang1(B), Zhengkui Wang2(B), Yan Chu1(B),
Wen Shan3(B), and Isfaque Al Kaderi Tuhin2(B)

1 Harbin Engineering University, Harbin, China
{zhaoqc418,yangjing,chuyan}@hrbeu.edu.cn

2 Singapore Institute of Technology, Singapore, Singapore
{zhengkui.wang,tuhin.kaderi}@singaporetech.edu.sg

3 Singapore University of Social Sciences, Singapore, Singapore
viviensw@suss.edu.sg

Abstract. In recent years, a significant amount of text data are being
generated on the Internet and in digital applications. Clustering the
unlabeled documents becomes an essential task in many areas such as
automated document management and information retrieval. A typical
approach of document clustering consists of two major steps, where step
one extracts proper features to model documents for clustering and step
two applies the clustering methods to categorize the documents. Recent
research document clustering algorithms are mostly focusing on step one
to finding high-quality embedding or vector representation, after which
adopting traditional clustering methods for the second step. Or infer
the document representation based on the predetermined k clusters.
However, the traditional clustering methods are designed with simplistic
assumption of the data distribution that fails to cope with the documents
with complex distribution and a small number of clusters i.e. , less than
50. In addition to this, the previous need a predetermined k. In this
paper, we introduce Graph Convolutional Network into the document
clustering (instead of using the traditional clustering methods) and pro-
pose a supervised GCN-based document clustering algorithm, DC-GCN
which is able to handle documents in noisy, huge and complex distri-
bution by a learnable similarity estimator. Our proposed algorithm first
adopts a GCN-based confidence estimator to learn the document posi-
tion in a cluster via the affinity graph, and then adopts a GCN-based
similarity estimator to learn the document similarity by constructing the
doc-word graphs integrating the local neighbor documents and its key-
words. Based on the confidence and similarity, the document clusters
are finally formed. Our experimental evaluations show that DC-GCN
achieves 21.88%, 17.35% and 15.58% performance improvement on Fp

over the best baseline algorithms in three different datasets.

Keywords: Graph Convolutional Network · Document clustering ·
Supervised clustering · Massive-categories · Supervised learning

c© Springer Nature Switzerland AG 2021
H. Qiu et al. (Eds.): KSEM 2021, LNAI 12815, pp. 27–39, 2021.
https://doi.org/10.1007/978-3-030-82136-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82136-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-82136-4_3

28 Q. Zhao et al.

1 Introduction

Document clustering or text clustering is an important task in data mining. It
aims to partition a pool of text documents into distinctive clusters based on the
content similarity such that the documents in a cluster contain similar property
in comparison to documents in other clusters. It has been extensively used in
many applications such as topic tracking and detection, information retrieval,
public opinion analysis and monitoring, and news recommend system, etc. [1].

Traditional document clustering methods are generally conducted in two
steps. The first step is the vector representation of document features, which rep-
resents the high-dimensional, variable-length documents with low-dimensional
fixed-length vectors. Two commonly used feature extraction approaches are pro-
posed either based on topic models e.g. Latent dirichlet allocation (LDA) or the
embedding e.g. Doc2vec, FastText [10]. Recently, there are also some clustering
methods that extract document features based on the clustering task e.g. , Graph
Theory [2], CNN [15], autoencoder [13,19], contractive learning [8,9]. The sec-
ond step of the document clustering method aims to cluster all the documents
based on the extracted features. In this stage, traditional clustering are nor-
mally adopted to cluster the documents, such as K-means, DBSCAN, Spectral,
Single-Pass, etc.

The existing document clustering approaches focused more on how to get
high-quality embedding in the first step. However, in the second step, they
adopt the traditional clustering methods that usually result in unsatisfactory
performance for the documents with complex distribution and a large num-
ber of categories, as they are designed based on simplistic assumption of data
distribution with a small number of categories [2,8,9,13,15,19]. For example,
K-means-based is only suitable for data distribution around the cluster cen-
ter. DBSCAN is designed for clusters with uniform density. Spectral is suitable
for clusters with similar cluster sizes. The Single-Pass is sensitive to the input
order of clustered instances [4,16]. Moreover, most clustering methods require to
know the predetermined number of clusters k in order to make accurate clusters
[8,15]. Existing approaches work well when the number of clusters is small and
provided, and the documents are in a particular distribution. However, there
are many application scenarios which contain massive categories of documents
with complex data distribution. For example, personalized recommendations for
decentralized we-media content need massive categories of text which can not be
just a few categories. Meanwhile, the different sizes of clusters and the richness
of the contents lead to complex data distributions. The data in these domains
have different characteristics compared with the datasets that have been studied
before. First, the data is highly noised with a complex distribution such as a lot
of non-convex clusters. Second, the number of clusters is large, which is almost
impossible to pre-determine. These characteristics have made existing document
clustering algorithms ineffective and inefficient unfortunately. This calls for a
new approach to tackle the challenges.

To tackle the issues of massive document clustering with complex distribution
in the second step of the document clustering, we convert the clustering problem

Clustering Massive-Categories and Complex Documents 29

into a structural pattern learning problem using Graph Convolutional Network
(GCN). GCN has been proven effective in learning the patterns in the affinity
graphs [14,17,18]. In this paper, we model all the documents as an affinity graph.
Based on this, we propose a GCN-based clustering algorithm, DC-GCN which
enables effective clustering for complex documents with massive categories. We
define confidence based on the characteristic of clusters in the affinity graph. The
high confidence of a document node defines the distance between the document to
the cluster center where more neighbors have the same label. DC-GCN consists of
two important steps. In the first step, we learn the confidence of each document
node through its context structure using a GCN-based confidence estimator.
In the second step, we learn the similarity of two documents via a GCN-based
similarity estimator based on doc-word graphs including both documents and
keywords relationship information. Based on predicted confidence and similarity,
all the documents can be easily grouped into clusters.

Our key contributions of this paper are three-fold. (1) We make the first
attempt to introduce Graph Convolutional Network into the document cluster-
ing problem. (2) We propose an innovative supervised GCN-based document
clustering algorithm, DC-GCN which enables effective and efficient clustering
for massive-category documents with complex distribution. DC-GCN does not
require the data with a particular distribution and pre-determined cluster num-
ber. It is an intelligent learnable model integrating both documents and its
keywords information to cluster massive-categories documents. (3) We provide
experimental evaluations based on real datasets with various baseline clustering
methods. The results confirm the effectiveness of DC-GCN.

The rest of the paper is organized as follows. Section 2 introduces the related
works. In Sect. 3, we present our proposed solution. Section 4 and Sect. 5 provide
the experimental evaluations and conclusion respectively.

2 Related Works

Document Features Extraction. Much research effort has been devoted to
identify the best document feature representations and extractions as the first
step of the document clustering algorithm. The simplest method is to use doc-
ument word frequency to filter out irrelevant features. For example, the main
idea of Term Frequency–Inverse Document Frequency (TF-TDF). The purpose
of Latent Semantic Analysis (LSA) is to discover hidden semantic dimensions-
namely “topic” or “Concept” from the document by singular value decomposi-
tion (SVD), then pLSA and Latent Dirichlet Allocation (LDA) were developed
Later. There are also neural network-based methods. For example, Doc2vec is an
unsupervised learning algorithm based on Word2vec. The algorithm predicts a
vector based on the context of each word to represent different documents. The
structure of the model potentially overcomes the lack of semantics of the word
bag model Shortcomings like LDA. Recently, Xu, Jiaming proposed STC2 which
uses CNN to fit the text and use the unsupervised learning method to get the
text label. After fitting, K-means is used to cluster the hidden layer variables,

30 Q. Zhao et al.

and finally the result is obtained [15]. Autoencoder-based methods combine the
loss of K-means essentially. Given that there are k clusters, Dejiao Zhang pro-
posed a MIXAE architecture. This model optimizes two parts at the same time:
a set of autoencoders where each learns the distribution similar objects; a mix-
ture assignment neural network, which inputs the concatenated latent vectors
from the autoencoders set and infers the distribution over clusters [21]. By using
the sample augmentations, Bassoma Diallo propose a deep embedding clustering
framework based on contractive autoencoder (need a k) with Frobenius norm
[8]. These methods still needs a predetermined cluster number k and suit for
less-categories data (usually less than 20). Different to these works that aims
to tackle the issues in document extraction, our work is orthogonal to them by
investigating how to improve the second step of clustering performance without
a predetermined k.

Clustering Methods. After the document feature extraction, the document
clustering algorithm adopts clustering method to categorize the documents. The
first kind is based on agglomerative methods such as Hierarchical Agglomerative
Clustering (HAC). HAC has been studied extensively in the clustering litera-
ture for document data, and FastHAC is proposed to reduce the calculation [7].
K-medoid and K-means are two classic distance-based partitioning algorithms.
There are also some based on the density, such as DBcsan, MeanShift, Density
Peak clustering [5,6,11]. Spectral clustering is a Graph-based method. Spectral
clustering can also be extended to social networks or Web-based networks [12].
However, all these commonly used clustering algorithms are based on simplistic
assumption on the data distribution that fails to cope with the complex distribu-
tion or required canedetermine datasets cluster number. Differently, DC-GCN is
able to handle any complex distribution with unknown cluster number enabled
by its learnable model.

3 Problem Formulation and Our Solution

3.1 Framework Overview

Our proposed GCN-based clustering algorithm, DC-GCN consists of the two
similar steps (feature extraction step followed by clustering step) as other docu-
ment clustering algorithm. In DC-GCN, we first adopt the most popular vector
representation, Doc2vec to extract the features for each document. As how to
extract features is not our focus, we will omit the detail here. Note that DC-GCN
is a general framework which can incorporate any feature representation.

After extracting the document features, in the next step, we construct the
affinity graph by calculating the affinity (cosine similarity) between document
features. The affinity graph G(V,E) consists of all the documents as the nodes
in V and the edges in E that are constructed between any vertex with its k
nearest neighbors. Figure 1 provides the whole framework overview. Intuitively,
our algorithm tackles the clustering problem by predicting the confidence of the
nodes and the similarity of the two nodes. We first adopt GCN to develop a

Clustering Massive-Categories and Complex Documents 31

confidence estimator to predict the confidence of each document indicating the
position of the document in the cluster. A document with high confidence is
close to the cluster center. Otherwise, it is far away from the cluster center. We
further propose a similarity estimator to predict the similarity of two documents,
where similarity indicates the probability for two documents belonging to the
same cluster. Consider that the keywords inside documents provide valuable
evidence of the similarity of two documents. We further add the keywords into
the learning graph to make an accurate document similarity prediction. After
the obtaining the confidence and similarity, we find a path from each node to
the cluster center and get final clusters easily.

Fig. 1. Overview of DC-GCN framework. (Color figure online)

3.2 Confidence Estimator

According to the observation, when a document is close to the cluster center,
its neighbor documents are usually more similar and in the same cluster. For a
document at the margin of a cluster, there are usually other labeled documents
in its neighbors. We define the confidence of a document as follows.

Definition: Confidence. The confidence Ci of document i is defined as the position
of i in its cluster and formally calculated by:

ci =
1

|Ni|
∑

vj∈Ni

{
aij li = lj

−aij li �= lj
(1)

where Ni is the neighborhood of document i , aij is the affinity value (cosine
similarity) between two documents i and j. li is the ground-truth label of doc-
ument i. A higher the value of c indicates that the node is close to the cluster
center. To calculate the confidence of each document, we first build an affinity
graph. For each document, we select its k nearest documents based on their

32 Q. Zhao et al.

extracted features and build the edge among them. This affinity graph with the
original feature is the input of confidence estimator GCN model.

GCN-Based Confidence Learning Model. In order to learn the structural
patterns of nodes with similar confidence, the confidence estimator is empowered
by a GCN model. The input of the GCN model is the adjacency matrix of the
affinity graph and the node feature matrix, while the output is the confidence of
each node. The formal representation of each layer of the model is:

Fl+1 = RELU(g(D̃−1(A + I), Fl)Wl) (2)

where D̃ii = Σj(A + I)j is the diagonal matrix, A is the initial adjacency
matrix, and I is the identity matrix. Wl is a trainable parameter matrix, and
RELU is used as the nonlinear activation. We define g(·, ·) as the concatenation of
the embedding after neighborhood aggregation and the input embedding, which
is formalized as g(D̃−1(A + I), Fl) = [(Fl)�, (D̃−1(A + I)Fl)�]�. The model has
four layers. The last layer has to be embedded through a fully connected layer.

GCN Model Training. For each node in node-set N , the loss function L is the
mean square error (MSE) between the predicted confidence c and the ground-
truth confidence c′. The output of the model is to get the predicted confidence,
which is used in the clustering forming step to add edges between documents.

Loss =
1
N

N∑

i=1

|ci − c′
i|2 (3)

3.3 Similarity Estimator

The aim of the similarity estimator is to learn the similarity of the docu-
ments, which is defined as the probability (a value between 0 and 1) of them
with the same label. In ground truth, if two documents are with two different
labels/clusters, the similarity is 0. If they are with same labels, it is 1.

To obtain the accurate similarity between documents, both the local con-
text and the keywords information play an important role in determining the
similarity. The local context of a document refers to the nearest neighbor doc-
uments that are close to each other. The keywords appeared in each document
are essential information for us to determine the similarity. Therefore, in our
similarity estimator, our GCN-based model is proposed to learn the similarity
based on heterogeneous learning graphs, namely doc-word graphs that include
both the documents and keywords. Our heterogeneous learning doc-word graphs
are constructed via below three steps.

Step 1: Node candidates of doc-word graphs. For a given document p, we form
a pivoted learning doc-word graph DWGp = G(Vp, Ep) of it, which consists
of p’s n nearest neighbor documents and the keywords of each document in
Vp, and the edge set Ep. The nearest neighbor documents are those needed to
measure the similarity. And, we unfold the document by capturing its keywords

Clustering Massive-Categories and Complex Documents 33

to enrich its semantic meaning of the doc-word graph. These keywords provide
detail measures to determine the similarity of the documents instead of using
only the Doc2vec information.

Step 2: Build the input adj matrix. Since DWGp is a heterogeneous graph, we
design two types of edges: the edge between the document and the keyword
(doc-word edge) and the edge between words (word-word edge). It is worth
noting that they are different from the affinity graph in confidence estimator,
the doc-word graph does not have the doc-doc edge. For doc-word edge, we assign
an edge weight with TF-IDF. For the word-word edge, the point-wise mutual
information (PMI) calculates the edge weight between words like TextGCN [20].
Finally, based on the Ep and the edge weight in the sub-graph. The formal
description of the element Aij of the adjacency matrix A is as follows:

Aij =

⎧
⎪⎪⎨

⎪⎪⎩

PMI(i; j) i, j are words, PMI(i, j) > 0
TF − IDFij i is document, j is word

1 i = j
0 otherwise

(4)

Step 3: Build the feature matrix. We design a pseudo-one-hot encoding to build
the nodes’ feature which is more efficient than the one-hot encoding. First, we
collect all the keywords, and set the feature of the keywords into one-hot vectors
like an identity matrix I whose dimension is equal to the number of keywords.
The document node feature is a normalized vocabulary vector. For example, the
vectors of the three keywords in corpus w1, w2, w3 are (1,0,0), (0,1,0), (0,0,1).
The document d1 contains the words w1 and w3, and the vocabulary vector after
the normalization of the document d1 is (0.5, 0, 0.5).

GCN-Based Similarity Learning Model. Based on the constructed doc-
word graphs, we adopt a two-layer GCN model to learn the document classifi-
cation task. The formal expression is provided as follows.

Z = softmax(ÃReLU(ÃXW0)W1) (5)

Where X is pseudo-one-hot encoding of the documents and words, Ã =
D− 1

2 AD− 1
2 . W0 and W1 are the trainable parameter matrix and softmax(xi) =

1
Z exp(xi), Z =

∑
i exp(xi).

Training of Similarity Estimator. For a pivot node i, if a neighbor j shares
the same label with i, the label is set to 1, otherwise it is 0.

rij =
{

1, li = lj
0, li �= lj

, vj ∈ Gi (6)

Where Gi is the sub-graph of pivot i, li is the label of the node vi. The model
predicts the similarity that reflects whether two nodes have the same label. The
loss function is MSE.

LE(Gi) =
∑

vi∈Gi

∣∣rij − r′
ij

∣∣2 (7)

34 Q. Zhao et al.

3.4 Form Clusters via Confidence and Similarity

Recall that the document confidence reflects its position in a cluster and the
similarity of two documents indicates the probability of them in one cluster.
For each node, we locate all its neighbors with higher confidence and add an
edge with the most similar neighbor. In this way, each node could locate another
similar node which has a higher confidence with the position closer to the cluster
center. By so doing, we can find a path from each document to the cluster center
and form the clusters easily.

3.5 Complexity Analysis and Discussion

The time complexity of the whole algorithm consists of three parts: confidence
estimator, similarity estimator, and clustering. In confidence estimator, building
affinity graph costs O(nlogn). The graph convolution can be efficiently imple-
mented as the sparse-dense matrix multiplication, a complexity O(|ε|). In similar-
ity estimator, the cost of the preparation of similarity estimator is O(n′mlogm),
where m is the number of the candidate documents and keywords which is far
less than the number of keywords in the corpus, and n′ is the number of pivots
with high confidence we choose. With the affinity graph in confidence estimator,
the last step of forming clusters is O(n · k), where k is the number of neighbor
documents which is far less than n.

4 Experiments and Performance Analysis

Dataset. Most of the available document datasets are all designed for the clas-
sification task with a small number of (i.e., below 20) categories, which can not
represent the application with massive categories. To evaluate the capability of
DC-GCN handling the massive categories, we use the crawled Wikipedia dataset
which includes more than 4000 categories. To verify scalability of method, we
use three different scale datasets as shown in Table 1 and there is no overlap
between the training and test datasets.

Method Comparison and Metrics. Recall that the most recent document
clustering algorithms all aim to improve the quality of the document feature
extraction following by using the classic clustering methods [2,8,9,13,15,19].
DC-GCN is orthogonal to recent document clustering algorithm (focus on feature
extraction with K) and aims to change the second step on the clustering perfor-
mance. We compare the proposed method with a series of clustering baselines,
which includes the classic clustering methods widely used in recent document
clustering algorithms i.e. K-means, mini-batch K-means (MK-means), DBSCAN,
HAC, MeanShift, Spectral [5,6,11]) and the streaming document clustering algo-
rithm Single-Pass (S-pass). Additionally, to study the performance improvement
of the proposed GCN-based similarity estimator over the existing similarity cal-
culation approach, we develop another method (CE) that only includes the pro-
posed GCN-based confidence estimator and Euclidean distance evaluation to

Clustering Massive-Categories and Complex Documents 35

Table 1. Wikipedia datasets introduction

#Clusters #Instances Domain

Training dataset 1851 10805 Society, Geography, Universe,
Politics, Concepts, Events,
Government, Economy,
Education, Energy,
Engineering, Entities, Ethics,
Business

Test dataset1 2660 15623 Technology, Health, Culture,
Nature, Sports, Science,
Entertainment, Religion,
Philosophy, Belief,
Mathematics, World

Test dataset2 2228 13094 Technology, Health, Culture,
Nature, Sports, Science
Entertainment

Test dataset3 1688 9921 Technology, Health, Culture,
Nature, Sports

form the clusters. For fair comparison, we use unsupervised Doc2vec extracted
features that do not require a predetermined K instead of previous document-
clustering-based feature extraction.

We adopt three most popular evaluation metrics to evaluate the effect of
clustering, namely Normalized Mutual Information (NMI), Pair-wise F-score
and BCubed F-score [3]. Meanwhile, we also compare the inferring running time
of different methods after the one-off training time.

Clustering Effectiveness and Runtime Analysis. For all baseline methods,
we report the best results by tuning the hyper-parameter. Table 2 provides the
detail results in three datasets. From the results, we have the following obser-
vations: (1) Among all the baseline algorithms, K-means performs nearly the
best with the longest inferring time when K is set as the ground-truth number.
However, K-means is highly depending on the predefined number of clusters
k. The performance will highly decrease if the k is set as the wrong number.
We also can infer that all K-means-based methods converge very slowly when
the number of categories increases. (2) The sampling method of mini-batch K-
means (MK-means) can speed up calculations by losing part of the accuracy.
(3) The effect of spectral clustering is second to K-means in all baselines, and
the computational efficiency is much higher than K-means. But, solving features
Value decomposition leads to a large number of calculations and memory require-
ments, thereby limiting the application of spectral clustering. (4) DBSCAN is
almost the most efficient among all algorithms when given the similarity matrix,
but it assumes that the density of each cluster is similar. Therefore, when the

36 Q. Zhao et al.

cluster distribution is complex, DBSCAN loses efficiency. (5) Although HAC does
not require a pre-determined number of clusters, the iterative merging process
involves a lot of computational budgets and outliers can have a great impact. (6)
The overall result of MeanShift is worse than K-means and spectral clustering,
but it has a slow convergence speed and only faster than K-means in all baselines.
(7) The effect of single-pass is also good among the baselines, but single-pass is
sensitive to the input order of documents. The outliers also have a great influ-
ence on the results. (8) Confidence Estimator is better than half of the baseline
results. Through more than one thousand classes of training, the results of two
thousand clusters can be predicted, which proves its effectiveness and scalable
in capturing important structural characteristics of nodes. (9) DC-GCN outper-
forms other algorithms in all the different datasets and metrics with comparable
inferring time. The final column of Table 2 provides the DC-GCN’s percentage
of performance improvement over the best baseline (underlined) for that metric.
This confirms the effectiveness and efficiency of the proposed approach empow-
ered by the learning capability of confidence and similarity estimators.

Table 2. Performance comparison results

Methods K-means MK-means Spectral HAC DBSCAN MeanShift S-pass CE DC-GCN Δ(%)

Wiki test set1 FP 0.2248 0.1359 0.1945 0.0008 0.0009 0.0140 0.0430 0.1496 0.2740 21.88

FB 0.4172 0.3894 0.3589 0.3619 0.4437 0.3922 0.3766 0.3539 0.4675 5.36

NMI 0.8461 0.8196 0.8325 0.4112 0.5454 0.8056 0.7715 0.8120 0.8714 2.99

Clusters 2661 2633 2658 3250 4639 4533 2935 1881 4677 –

Time 2041 s 123 s 169 s 25 s 2 s 839 s 93 s 2 s 423 s –

Wiki test set2 FP 0.2432 0.1660 0.2024 0.0009 0.0012 0.0188 0.0437 0.1424 0.2854 17.35

FB 0.4300 0.4061 0.3701 0.3836 0.4600 0.4028 0.3547 0.3533 0.4792 4.17

NMI 0.8481 0.8254 0.8323 0.4430 0.5813 0.8126 0.7616 0.8057 0.8713 2.73

Clusters 2228 2220 2225 2908 4108 3979 2642 1446 3813 –

Time 991 s 99 s 237 s 29 s 2 s 724 s 81 s 2 s 173 s –

Wiki test set3 FP 0.2688 0.1862 0.2231 0.0009 0.0017 0.0274 0.0725 0.2260 0.3107 15.58

FB 0.4538 0.4310 0.3865 0.3836 0.4736 0.4348 0.4138 0.4209 0.4941 4.32

NMI 0.8504 0.8283 0.8322 0.4430 0.6004 0.8155 0.7894 0.8340 0.8710 2.42

Clusters 1688 1675 1686 2908 3153 3063 2039 1523 2787 –

Time 812 s 59 s 118 s 13 s 3 s 402 s 44 s 2 s 78 s –

Candidate Document Selection in Doc-Word Graph. In this experiment,
we study the impact of the different candidate documents selection schemes in
DC-GCN. We design two different schemes to select the candidate documents
adding to the doc-word graph of a given pivot document p. The first scheme
(KNN-DWG) adds all the k nearest neighbor documents of the pivot p to its
DWG, while the second scheme (FC-DWG) only adds the nearest neighbor doc-
uments whose confidence is bigger than p. The second scheme filters out those
documents in the nearest neighbor with low confidence value, which results in
less nodes in the DWG and improves the calculation efficiency. Table 3 shows
the comparison results of these two methods. As expected, FC-DWG is faster
than KNN-DWG, as FC-DWG generates smaller size of Doc-word graphs. Inter-
estingly, we also find that FC-DWG is able to generate comparable performance

Clustering Massive-Categories and Complex Documents 37

Table 3. Results of different candidate selection approaches

Methods Wiki test set1 Wiki test set2 Wiki test set3

KNN-DWG FC-DWG KNN-DWG FC-DWG KNN-DWG FC-DWG

FP 0.2615 0.2740 0.2746 0.2854 0.2974 0.3107

FB 0.4579 0.4675 0.4708 0.4792 0.4845 0.4941

NMI 0.8710 0.8714 0.8706 0.8713 0.8700 0.8710

Clusters 4897 4677 3959 3813 2901 2787

Time 587 s 423 s 190 s 173 s 97 s 78 s

with KNN-DWG, which indicates that remaining those high-confidence docu-
ments in the doc-word graphs is sufficient for the learning problem.

Comparison Between Static and Dynamic Affinity Graphs. In DC-GCN,
there are two possible approaches based on static affinity graph or dynamic
affinity graph in calculating the confidence and similarity. The static affinity
graph uses original affinity graph in each layer of the GCN, and finding the
k nearest neighbor documents for doc-word graph generation is also based on
original affinity graph and Doc2vec features. Differently, the dynamic approach
rebuilds the affinity graph after each graph covolutional layer in GCN, and the
finding KNN documents is also based on the updated affinity graph and updated
features. This experiment aims to study the performance difference between the
static approach in calculating the confidence (CE(s)) and similarity (SE(s)),
and the dynamic approach (CE(d) and SE(d)). As shown in Table 4, in the
confidence estimator, two kinds of methods surpass each other in different testing
datasets. In the similarity estimator, using the original feature to locate the
candidate documents can get a better result. Moreover, on a large-scale graph
with millions of nodes, rebuilding the affinity graph by the hidden feature results
in an excessively high computational budget. These observations indicate that
the dynamic approach is not superior compared to the static one.

Table 4. Results on static and dynamic affinity graphs

Methods Wiki test set1 Wiki test set2 Wiki test set3

CE(s) CE(d) SE(s) SE(d) CE(s) CE(d) SE(s) SE(d) CE(s) CE(d) SE(s) SE(d)

FP 0.1496 0.1855 0.2740 0.2555 0.1424 0.1907 0.2854 0.2655 0.2260 0.1925 0.3107 0.3055

FB 0.3539 0.3944 0.4675 0.4544 0.3533 0.3987 0.4792 0.4644 0.4209 0.3872 0.4941 0.4844

NMI 0.8120 0.8308 0.8714 0.8608 0.8057 0.8284 0.8713 0.8608 0.8340 0.8186 0.8710 0.8608

Clusters 1881 2501 4677 4897 1446 1994 3813 3841 1523 1165 2787 2501

Time 2 s 2 s 423 s 514 s 2 s 2 s 173 s 203 s 2 s 2 s 78 s 98 s

38 Q. Zhao et al.

5 Conclusion

This paper made the first attempt to introduce Graph Convolutional Network
(GCN) into the document clustering task. We proposed a GCN-based document
clustering algorithm, DC-GCN that provides effective clustering for massive-
category documents with complex distribution. DC-GCN transfers the clustering
task into two major learning components (learning the document confidence and
similarity) by powerful GCN. It integrates both the document and its keywords
into the learning framework. Our experimental results indicated that our pro-
posed method outperforms the existing document clustering algorithms, w.r.t.
the accuracy and efficiency. Meanwhile, DC-GCN does not required any pre-
determined cluster numbers and copes well with the large-scale and high-noise
document clustering. We expect DC-GCN can be applied in wider applications
with complex data distributions.

Acknowledgement. This research was supported by Singapore MOE TIF grant
(MOE2017-TIF-1-G018), the National Natural Science Foundation of China (61672179,
61370083) and China Postdoctoral Science Foundation (2019M651262).

References

1. Aggarwal, C.C., Zhai, C.: A survey of text clustering algorithms. In: Mining Text
Data, pp. 77–128. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-
3223-4 4

2. Ali, I., Melton, A.: Semantic-based text document clustering using cognitive seman-
tic learning and graph theory. In: ICSC, pp. 243–247. IEEE (2018)

3. Amigó, E., Gonzalo, J., Artiles, J., Verdejo, F.: A comparison of extrinsic clustering
evaluation metrics based on formal constraints. Inf. Retrieval 12(4), 461–486 (2009)

4. Berkhin, P.: A survey of clustering data mining techniques. In: Grouping Multi-
dimensional Data, pp. 25–71. Springer, Berlin (2006). https://doi.org/10.1007/3-
540-28349-8 2

5. Bohm, C., Railing, K., Kriegel, H.P., Kroger, P.: Density connected clustering with
local subspace preferences. In: ICDM 2004, pp. 27–34. IEEE (2004)

6. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal.
Mach. Intell. 17(8), 790–799 (1995)

7. Dash, M., Liu, H., Scheuermann, P., Tan, K.L.: Fast hierarchical clustering and its
validation. Data Knowl. Eng. 44(1), 109–138 (2003)

8. Diallo, B., Hu, J., Li, T., et al.: Deep embedding clustering based on contractive
autoencoder. Neurocomputing 433, 96–107 (2021)

9. Hu, W., Miyato, T., Tokui, S., et al.: Learning discrete representations via infor-
mation maximizing self-augmented training. In: ICML, pp. 1558–1567 (2017)

10. Joulin, A., Grave, E., Bojanowski, P., et al.: Fasttext. zip: compressing text clas-
sification models. arXiv:1612.03651 (2016)

11. Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science
344(6191), 1492–1496 (2014)

12. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007)

https://doi.org/10.1007/978-1-4614-3223-4_4
https://doi.org/10.1007/978-1-4614-3223-4_4
https://doi.org/10.1007/3-540-28349-8_2
https://doi.org/10.1007/3-540-28349-8_2
http://arxiv.org/abs/1612.03651

Clustering Massive-Categories and Complex Documents 39

13. Wang, X., Peng, D., Hu, P., et al.: Adversarial correlated autoencoder for unsu-
pervised multi-view representation learning. KBS 168, 109–120 (2019)

14. Wang, Z., Zheng, L., Li, Y., Wang, S.: Linkage based face clustering via graph
convolution network. In: CVPR, pp. 1117–1125 (2019)

15. Xu, J., Xu, B., Wang, P., et al.: Self-taught convolutional neural networks for short
text clustering. Neural Netw. 88, 22–31 (2017)

16. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw.
16(3), 645–678 (2005)

17. Yang, L., Chen, D., Zhan, X., et al.: Learning to cluster faces via confidence and
connectivity estimation. In: CVPR, pp. 13369–13378 (2020)

18. Yang, L., Zhan, X., Chen, D., et al.: Learning to cluster faces on an affinity graph.
In: CVPR, pp. 2298–2306 (2019)

19. Yang, L., Cheung, N.M., et al.: Deep clustering by gaussian mixture variational
autoencoders with graph embedding. In: ICCV, pp. 6440–6449 (2019)

20. Yao, L., Mao, C., Luo, Y.: Graph convolutional networks for text classification.
AAAI 33, 7370–7377 (2019)

21. Zhang, D., Sun, Y., Eriksson, B., Balzano, L.: Deep unsupervised clustering using
mixture of autoencoders. arXiv preprint arXiv:1712.07788 (2017)

http://arxiv.org/abs/1712.07788

	Clustering Massive-Categories and Complex Documents via Graph Convolutional Network
	1 Introduction
	2 Related Works
	3 Problem Formulation and Our Solution
	3.1 Framework Overview
	3.2 Confidence Estimator
	3.3 Similarity Estimator
	3.4 Form Clusters via Confidence and Similarity
	3.5 Complexity Analysis and Discussion

	4 Experiments and Performance Analysis
	5 Conclusion
	References

