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Abstract. Recent studies show that deep neural networks are vulnera-
ble to data poisoning and backdoor attacks, both of which involve mali-
cious fine tuning of deep models. In this paper, we first propose a black-
box based fragile neural network watermarking method for the detection
of malicious fine tuning. The watermarking process can be divided into
three steps. Firstly, a set of trigger images is constructed based on a
user-specific secret key. Then, a well trained DNN model is fine-tuned
to classify the normal images in training set and trigger images in trig-
ger set simultaneously in a two-stage alternate training manner. Fragile
watermark is embedded by this means while keeping model’s original
classification ability. The watermarked model is sensitive to malicious
fine tuning and will produce unstable classification results of the trig-
ger images. At last, the integrity of the network model can be verified by
analyzing the output of watermarked model with the trigger image set as
input. The experiments on three benchmark datasets demonstrate that
our proposed watermarking method is effective in detecting malicious
fine tuning.

Keywords: Neural network · Fragile watermarking · Model integrity
protection · Malicious tuning detection · Data poisoning · Backdoor
defense

1 Introduction

Deep neural networks (DNN) have been widely used in all areas, such as com-
puter vision [1], natural language processing [2], etc. In addition, a variety of
learning methods have been proposed, such as reinforcement learning [3,4], fed-
erated learning [5], and so on. Then comes into our sight not only the security
of data [6], but also the security of models. These well-trained deep models are
valuable assets to the owners. However, they may be possessed or tampered ille-
gally. For example, customers who buy a DNN model might distribute it beyond
the license agreement, or attackers may inject backdoor into the models.
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Some malicious attacks like adversarial examples [7], data poison [8] and
backdoor attack [8] are very common in deep learning. Correspondingly, some
measures have been taken to solve these security issues. Among them, neural
network watermarking is a promising research area. Digital watermarking is a
traditional technique used for copyright protection or integrity authentication
of digital products. Neural network watermarking is the extension of traditional
watermarking concept for neural networks. And neural network watermarking
techniques can be classified into two types: robust and fragile watermarking.

So far, most of the published researches are robust watermarking techniques
used for protecting the copyright of DNN models. The word robust means these
methods are insensitive to changes that aim to remove the embedded watermark.
The robust watermarking techniques can roughly be divided into two categories:
weight-parameter-based methods [9–13] and trigger-set-based methods [14–18].
The former ones are white-box schemes, in which the details of network param-
eters are needed. While the latter ones are black-box watermarking methods
requiring no inner parameters of the models. In these methods, a trigger image
set is built in advance and these images may be assigned with false labels that are
irrelevant to their contents. In the verification process, the watermarked model’s
classification results of trigger set can be used for authentication directly.

Fragile watermarking [19] is originally designed for multimedia authentica-
tion, which is sensitive to content modification and is usually transparent in
terms of perception. Now we migrate the concept of traditional fragile water-
marking to neural networks. For DNN fragile watermarking, the following prop-
erties should be considered. First, it should require low training cost and be
easy to embed and extract from the model. Second, the embedded watermark
should be imperceptible and has no much impact on model’s original perfor-
mance. Third, there should be some quantifiable metrics for malicious tamper-
ing authentication. Fourth, it should be extensible and can be widely applied to
other networks and datasets.

Formally, image classifier Cθ is a supervised learning task aiming at finding
a classification function F to classify the images in training set Tra with the
classification loss Lcla, i.e., Cθ = Lcla(F(Tra)). Usually, the trigger-set-based
watermarking methods need a trigger image set Tri apart from training set,
where images in Tri are stamped with preset labels according to some rules.
And watermarked classifier Cθw tries to classify the images in both the training
set and trigger set, i.e., Cθw = Lcla(F(Tra ∪ Tri)). Watermarked models gain
the ability to recognize both normal images and trigger images by training the
network from scratch or fine tuning trained models. For unmodified watermarked
models, Cθw is supposed to output the predefined labels for input trigger images.

DNN models are vulnerable to malicious attacks like data poisoning attack-
ing. Now many DNN models need multi-parties training, the participants might
inject backdoor into the network while updating parameters. Typical data poi-
soning behaviors can be classified into three kinds as follows:
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1) Simple data poisoning [8]: attackers attempt to reduce the model performance
by introducing lots of mislabeled samples to the training set, which can be
expressed as: Cθp = Lcla(F(Tra ∪ Mislabeled Samples)).

2) Backdoor data poisoning [8]: it is a more imperceptible way of model tam-
pering by adding some poisoned samples with a fixed backdoor pattern to
the training set, that is, Cθb = Lcla(F(Tra ∪ Backdoor Samples)). Through
training, this backdoor pattern can be added to normal samples to obtain
the expected output label yb, i.e., Cθb(x⊕Backdoor pattern) = yb. This data
poisoning method is difficult to be found, for only a small number of backdoor
samples are needed and the injected backdoor has little impact on model’s
performance.

3) Label-consistent data poisoning [20]: label consistency means there is no tam-
pering with image labels. This kind of attacking method often use adversarial
example or GANs to recreate the samples in training set, making DNN more
difficult to learn the features of image content. So, the backdoor attacking
can succeed because networks focus on the backdoor pattern more than often.
And traditional backdoor samples with wrong labels are easy to be detected
by checking the training set, therefore, the label-consistency data poisoning
methods have drawn much attention.

Some approaches have been proposed to detect the malicious tampering of
DNN models. In [21], a detection and mitigation system for DNN backdoor
attacks is proposed, where the backdoor can be identified and even some miti-
gation techniques are proved to remove the embedded backdoors. And in [22],
a black-box based backdoor detection scheme is presented with minimal prior
knowledge of the model. Both of them are solutions of detecting the existence of
backdoors afterwards, and no precautions are taken to prevent backdoor insert-
ing. In [13], a reversible watermarking algorithm for integrity authentication is
proposed, in which the parameters of the model can be fully recovered after
extracting the watermarking and the integrity of the model can be verified by
applying the reversible watermarking. However, it’s a white-box method requir-
ing the details of networks, which is inconvenient for watermarking embedding
and extraction. Therefore, we proposed a black-box based integrity authentica-
tion method with fragile watermarking technique, in which a trigger set is used
and no model inner parameter is revealed. Let’s call it: fragile neural network
watermarking with trigger image set.

The contributions of this paper are summarized as follows:

– We firstly proposed a black-box based fragile watermarking method for
authenticating the integrity of DNN classifiers.

– A novel loss function, Lvar and an alternate two-stage training strategy were
put forward elaborately, with which fragile watermark can be embedded easily
into the neural network. Meanwhile, two easily accessible metrics are designed
for model authentication, which can be obtained quickly by only checking the
classification outputs of trigger images.
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– Our proposed watermarking method is of good compatibility and extensibil-
ity, and experiments on three benchmark datasets showed that the embedded
watermark have little impact on the prior task of the network.

The rest of this paper is organized as follows: Sect. 2 describes the proposed
fragile watermarking and authentication metrics. Then, the properties of our
scheme are demonstrated in Sect. 3. At last, conclusion is given in Sect. 4.

2 Fragile Watermarking

2.1 Application Scenario

Before introducing our proposed watermarking method, let us describe the appli-
cation scenario with the following scenes. Consider three parties: model trainer,
consumer, and attacker. The training of a complex network requires multiple
stages of adjustment, and an attacker among the trainers may use the conve-
nience of accessing training data for poisoning, resulting in network backdoored
or performing worse than expected. And attackers could even poison models
delivered to consumers. To this end, we introduce a fragile watermarking method
suitable for neural networks to verify the integrity of watermarked models.

2.2 Watermarking Methodology

Figure 1 shows the overview of the proposed watermarking method. The whole
process is divided into three steps: the first step is to construct a trigger image
set using a secret key; and the second step is to embed a fragile watermark
in a two-stage training procedure; the last step is the authentication process
determining whether a neural model is tampered through two proposed metrics.

Trigger set 
Construction

Step 1

Alternate 
training 

Stage 1: Train with

Stage 2: Train with

Training set Trigger set

Trigger set

Watermarking Embedding

Step 2

···

Model Authentication

Watermarked
model 

modify

Step 3

···
Unmodified

Output
Labels

Modified

Fig. 1. An overview of the proposed fragile neural network watermarking method. The
process of our scheme is divided into 3 steps. The fragile watermark is embedded by fine
tuning the well-trained models in a two-stage alternate training manner, until the fine-
tuned models satisfy the following condition: Acctrig = 1 and Accval ≥ expected value.
At last, the integrity of fragile watermarked model can be authenticated by evaluating
two metrics, namely Acctrig < 1 or V ardiff ≥ 0.
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The first step of our scheme is to generate L pseudo-random trigger images
with the secret key key specified by the model trainer. Each trigger image is
assigned with a fix label, which can be expressed as follows:

{Imagei, Labeli} ← {(Ii, i%C) | i = 0, 1, · · · , L − 1}, (1)

where Imagei or Ii represents a trigger image and Labeli is its preset label i%C.
Here, % is the Mod operation of math, and C is the total number of classes in
training dataset. Figure 2 shows three trigger samples used in our experiments.

Fig. 2. Three examples of trigger images.

The second step of our method is watermarking embedding process. Our
proposed fragile watermark is usually embedded in the well-trained models by
a two-stage fine tuning procedure, with the classification loss Lcla and fragile
watermarking loss Lvar, which are defined as follows:

Lcla = −
C−1∑

j=0

yj log(pj), (2)

Lvar = Lcla + α · Var(P), (3)

where Lcla is the cross entropy loss for multi-class classification. For fragile water-
marking, the watermarked model should be sensitive to modification. Thus, a
regularization term Var(P) is added in Lvar. Here α is a weight coefficient, and
P is a vector of classified results for each trigger image after Softmax opera-
tion, i.e., P = {pj | j = 0, 1, · · · , C − 1} (

∑
pj = 1). Here, pj is the predicted

probability of each class which falls into (0, 1), and Var(P) is the variance of P.
The watermark embedding process can be divided into two stages. In the

first stage, training set (Tra) along with the whole trigger set (Tri) are used
for model fine-tuning with loss Lcla, where training set (Tra) is made up of
partial images from the raw training dataset. The model is trained to recognize
the images in both training set and trigger set. In the second stage, loss Lvar is
used to fine-tune the model only on the trigger set, with the purpose of reducing
the variance of predicted probability vector and classifying all the trigger images
rightly. This watermark embedding process would not stop until two conditions
are satisfied: 1). The classification accuracy on trigger samples is equal to 1, i.e.,
Acctrig = 1; 2). The classification accuracy on normal samples in validation set is
equal to or greater than the expected value, that is, Accval ≥ expected. By using
this alternate training method, the proposed fragile watermark are embedded
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easily into the DNN models. And the classification accuracy on normal images
are usually not lower than the original un-watermarked models.

Here, we also defined the concept Cθrobust as the classifier with a robust
watermark. It is trained on both training set and trigger set with loss Lcla,
which means only the first stage of watermarking embedding is used. It can be
expressed as: Cθrobust = Lcla(F(Tra ∪ Tri)). This is also the way that many
previous methods [14–18] embed robust watermarks. By doing so, the output
of the watermarked model to the trigger set will not be easily changed by fine-
tuning the model, in other words, the watermark is not fragile.

The performance of fragile watermarked model has a close relation to the size
of Tra, which reflects the trade-off between watermarking embedding efficiency
and model performance. When the size of Tra declines, it takes less time for
watermark embedding, yet the classification accuracy on normal images will also
decrease. Hence, we randomly take 10% of the images in raw training database
as the training set Tra. The sensibility of watermark is enhanced gradually as α
increases, but a too large value can also lead to performance degradation. Here
we limit α ranging from 0 to several hundreds in our experiments.

The last step of our scheme is model authentication. After acquired, the DNN
model’s predicted labels of trigger images will be quantified into two authenti-
cation metrics to decide whether the model has been modified or not.

2.3 Authentication Metrics

Two novel authentication metrics are proposed to verify whether a watermarked
model has been modified in our scheme. The first one is Acctrig, which is the
classification accuracy on the input trigger images. If Acctrig < 1, it indicates
that the model has been modified. The stronger the malicious attack is, the more
Acctrig will drop. If a model is modified, the trigger images may be classified
into different classes as follows:

N = {n0, n1, . . . , ni, . . . , nC−1}, (4)

where ni means the number of trigger samples that are classified as the i-th
class image, and the summation of ni is equal to the image number of trigger
set. Similarly, N0 is the corresponding statistical result of unmodified model.
Based on these two values, the second metric of our scheme is given:

V ardif = Var(N ) − Var(N0), (5)

where V ardif is used to measure the difference of classification results before
and after the watermarked model is tampered. The value of V ardif reflects the
degree to which the model has been modified. V ardif is always greater than
or equal to zero and a great value means the watermarked model is modified
severely.
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3 Experiments

In our paper, watermarking experiments are conducted with resnet18 [23] and
resnet50 [23], which were trained on datasets cifar-10 & cifar-100, and Cal-
tech101, respectively. The information of these datasets is showed in Table 1. We
trained the classifiers from scratch with the following configurations: the opti-
mizer of resnet18 is SGD with momentum with the learning rate of 0.1, which
decreases ten times every twenty epochs; the optimizer of resnet50 is Adam,
and the learning rate is 1e−4, which is reduced to 1e−5 in the last 20 epochs.
Then fragile watermarking is embedded by fine-tuning the trained classifiers
above. During the process of watermarking or attacking, the optimizer remains
unchanged, and the learning rate is set to value in the final stage of training.

Table 1. Dataset information

Dataset cifar-10 cifar-100 Caltech101 Our Tri

Classes (C) 10 100 101 -

Image size 32,32,3 32,32,3 300,200,3 32,32,3

Dataset size 60000 60000 9145 ≥36

Training size 45000 45000 6583 -

Testing size 10000 10000 1830 -

Val size 5000 5000 732 -

3.1 Visualization of Watermarking

In this part, we compared the outputs of fragile watermarked models by some
visual methods. Figure 3 records the classification accuracy of images during
the watermark embedding fine-tuning process, in which Val Acc and Trigger
Acc means classification accuracy on validation set and trigger set, respectively.

Fig. 3. The accuracy curves with different α values used during watermarking embed-
ding. Val Acc and Trigger Acc means classification accuracy on validation set and
trigger set, respectively.
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When α is 0, a robust watermark instead of a fragile watermark is embedded,
and with the increase of α, the sensibility of watermark increases and it will
take more epochs for fragile watermark embedding. However, from Fig. 3, we
can see that the increase of α has little effect on the performance of classifiers,
for the watermarking embedding fine-tuning process would not stop until two
conditions are satisfied, i.e., Acctrig = 1 and Accval ≥ expected. Thus, we can
pick α ranging from zero to several hundreds casually for watermark embedding.

Fig. 4. Comparison of feature projection extracted by different models. The figures
on the left and right are results of robust and fragile watermarked model trained on
cifar-10, respectively.

The model’s last convolution layer’s output tensor were projected onto a two-
dimension plane as demonstrated in Fig. 4 by a visualization tool UMAP. The
left and right figures illustrate the projected features extracted by classifiers with
robust and fragile watermark trained on cifar-10, respectively, where 10 larger
colored circles represent the projected feature points of 5,000 normal samples,
and the purple dots inside the circles are projected feature points of 36 trigger
images, which all belong to 10 image classes. As shown in Fig. 4, once the model is
embedded with fragile watermark, the projected feature points of trigger samples
will deviate from the center to classification boundary.

3.2 Perceptual Transparency

The existence of fragile watermark has little influence on original classification
ability of model. Table 2 lists the testing accuracy of un-watermarked models
and fragile watermarked models when varying the value of α. Results show that
the reduction of accuracy is less than 0.3% after watermark is embedded, and in
some cases the accuracy of watermarked model even increase slightly compared
to that of the clean model.
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Table 2. The accuracy of un-watermarked classifier and fragile watermarked classifier
for normal images in testing set when varying the value of α

Dataset Un-water, Acc α Watermarked, Acc

cifar-10 86.40% [0, 125] [86.36%, 86.54%]

cifar-100 72.55% [0, 400] [72.31%, 72.57%]

3.3 Watermarking Property

In this part, we tested the property of proposed fragile watermarking under
malicious attacking. To prove the effectiveness, 5 datasets listed as follows are
used to attack the fragile watermarked models using data poisoning method.

1. The original training set (T).
2. An extra training set (ET), which has the same distribution with T. In our

experiment, the validation set of original database is used as ET.
3. A poisoned dataset (DP), which has dozens of mislabeled samples with the

aim to reduce the model performance.
4. A simple backdoor poisoned dataset (SB), which contains the images in train-

ing set (T) as well as some mislabeled samples with backdoor patterns.
5. A label-consistent poisoned dataset (LCB) constructed according to [20].

Five datasets above are created on the basis of a image database, such as
cifar-10 and cifar-100. As [20] demonstrates, the minimum number of poisoned
samples for backdoor attacking should not be lower than 0.15% of the training
set size. Thus, for dataset cifar-10, we only added 75 (0.15% of the size) poisoned

Fig. 5. The classification accuracy of trigger set (Acctrig) when the robust watermarked
models (the first row) and fragile watermarked models (the second row) are fine-tuned
with 5 datasets (T, ET, DP, SB, and LCB) on cifar-10 or cifar-100, respectively. If the
curve’s label is prefixed with Last, it means only the last layer of model is fine-tuned,
otherwise all layers are fine-tuned.
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samples to dataset DP, SB, and LCB. In our experiment, the backdoor pattern
is a 3 × 3 × 3 white-and-black square block, which is superimposed on the lower
right corner of normal samples.

Figure 5 illustrates the mean accuracy of trigger set when watermarked mod-
els are fine-tuned with 5 datasets above. The malicious attacking experiments are
conducted either on all the layers, or only on the last layer of the watermarked
models. In Fig. 5, the first and second row are respectively the attacking results
of models with robust watermarks and fragile watermarks. It can be easily seen
that the fragile watermarked models are vulnerable to all kinds of modifications
compared to the robust watermarked models. The accuracy on trigger set Acctrig

declines rapidly when the fragile watermarked models are fine-tuned with poi-
soned datasets. And the more different the poisoned data is, the faster Acctrig

goes down. Thus, the accuracy curves of DP, SB, and LCB decline more quickly
than the curves of T and ET.

Table 3. Value of V ardif when the fragile watermarked model has been fine-tuned
with 5 different datasets for ten epochs

Dataset T ET DP SB LCB

V ardif (cifar-10) 0.40 1.80 4.60 24.40 13.80

V ardif (cifar-100) 0.00 0.00 0.02 0.30 0.30

Table 3 lists the V ardif values, when the fragile watermarked model is fine-
tuned with 5 datasets mentioned above. As can be seen, the V ardif value of T
and ET are much smaller than the values of other three poisoned datasets, with
the reason that the images in T and ET are the same or similar to the images in
raw training set. When fragile watermarked models are maliciously fine-tuned
with poisoned dataset DP, SB, and LCB, V ardif will be much greater than zero.
The V ardif values of cifar-10 are much larger than the values of cifar-100, mainly
because that cifar-10 owns less images classes and is sensitive to modification.

In order to view the variation of V ardif more intuitively, we depicted the
heat maps of classified trigger image numbers according to N in equation (4).
As shown in Fig. 6, the well trained model is fine-tuned with four datasets T,
DP, SB, and LCB. The horizontal and vertical axis are the class number and
the epoch number of fine tuning, respectively. For each block, the intensity of
the color is proportional to the predicted number of trigger samples falling into
the corresponding image categories. In the heat maps of poisoned datasets DP,
SB, and LCB, the distribution of colored blocks are more uneven compared to
blocks of T. This is because the embedded fragile watermark is damaged greatly
when model is fine-tuned by these three poisoned datasets.

After a model is embedded with proposed fragile watermark, it may be upload
to cloud or sent to the users directly. To verify the integrity of acquired model, we
can apply the two metrics Acctrig and V ardif with the trigger image set offered
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Fig. 6. The numbers of trigger samples being classified into each class during the
malicious fine-tuning process carried on 4 datasets. The horizontal axis here is the
image classes and vertical axis is the epochs. The color depth of blocks means the
numbers of trigger images that are predicted as the corresponding image class.

Table 4. The classification accuracy of fragile watermarked models on normal images
in testing set with different sizes of trigger set used in fragile watermarking

Trigger set size Accuracy (cifar-10) Accuracy (cifar-100)

0 86.40% 73.22%

36 86.54% 73.11%

100 86.38% 73.03%

200 86.21% 72.91%

by the model owner. As long as Acctrig < 1 or V ardif > 0, we can believe that
the received models have been tampered.

3.4 Extensibility

Here, we explored the influence of trigger image set size on model performance.
First, we constructed several trigger sets of size ranging from 0 to 200, and
then each trigger set is used to embed fragile watermark individually. At last,
the classification accuracy on the testing set are tested in Table 4. It can be seen
that the size of trigger image set has no influence on the prediction consequences
of fragile watermarked models.

The fragile watermarking method is also experimented on dataset Cal-
tech101. In our experiments, classifier resnet50 is first embedded with fragile
watermark, and then be fine-tuned with 5 datasets (T, ET, DP, SB, and LCB).
Caltech101 is a 101-class dataset with the image size of about 300 × 200 × 3
pixels, and the backdoor pattern for Caltech101 is a 9× 9× 3 block. As a result,
the testing set accuracy of the un-watermarked classifier resnet50 is 94.46%, and
the accuracy of fragile watermarked classifiers is between 94.23% and 94.49%.
The classification ability of DNN model is proved to be almost unaffected by
watermarking.

The performance of watermarked resnet50 is also tested by fine tuning the
model with 5 datasets on the basis of Caltech101, and the results are presented
in Fig. 7. The left two and right two figures are separately the fine-tuned results
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Fig. 7. The classification accuracy of trigger set (Acctrig) when 5 datasets (T, ET, DP,
SB, LCB) are used to fine-tune robust watermarked resnet50 and fragile watermarked
resnet50 respectively on dataset Caltech101.

of robust and fragile watermarked resnet50. As illustrated in Fig. 7, fragile water-
marked resnet50 is sensitive to all kinds of fine tuning, especially when fine-tuned
with poisoned datasets DP, SB, and LCB. When all the layers of watermarked
resnet50 are fine-tuned, the curves of poisoned datasets DP, SB, and LCB goes
down more quickly than other curves. When only the last layer of model is
fine-tuned, accuracy curves fluctuate wildly. But in general, our proposed fragile
watermarking method is sensitive to malicious fine-tuning and can be used to
detect model tampering carried on various datasets.

4 Conclusion

In this paper, we proposed a black-box based fragile neural network watermark-
ing method with trigger image set for authenticating the integrity of DNN mod-
els. In our approach, models are trained to fit both the training set and the
trigger set simultaneously in a two-stage alternate training process, which aims
to embed fragile watermark while keeping the original classification performance.
The embedded fragile watermark is sensitive to model tampering, and thus can
be used to verify the integrity of models. Two meaningful metrics are provided to
determine whether the fragile watermarked model has been modified as well as
assess the distribution difference between the training set and the data used for
malicious attacking. The experiments on three benchmark datasets have shown
that our proposed fragile watermarking method is widely applicable to various
classifiers and datasets. We leave the research on more sensitive semi-fragile
neural network watermarking to future work.
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