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Abstract. In the real world, many complex systems can be abstracted
as multi-layer networks. Recently, community detection for multi-layer
networks plays a vital role in multi-relationship complex system anal-
ysis, thus gradually gaining popularity especially in the optimization
algorithms. The multi-objective optimization (MOOP) methods attract
attention owing to the flexibility in solving community detection prob-
lems. Nevertheless, most of the MOOP methods pay little attention
to the prior information, which cannot ensure the high-level accuracy
and robustness against networks with complicated community struc-
tures. To address the problem, this paper proposes a semi-supervised
multi-objective evolutionary algorithm for multi-layer community detec-
tion (SS-MOML). The SS-MOML mainly consists of two steps: First, it
extracts the prior information from the network. Second, based on the
prior information, the prior layer is constructed by creating virtual con-
nections and the high-quality initial population is generated. And then
the optimization process begins, in which the genetic operation based
on the prior information is committed to guiding the evolutionary direc-
tion of chromosomes. Some extensive experiments are implemented and
the results prove that the proposed SS-MOML stands out in accuracy
and robustness than 7 state-of-the-art multi-layer community detection
algorithms.
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1 Introduction

Networks have become effective tools for processing complex systems in the real
world such as social networks, biological networks and technological networks
[10]. In a network, nodes represent the entities, and edges stand for the connec-
tions between entities. The traditional single-layer network can only represent a
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single relationship. However, the relationship of entities is diversified. Therefore,
multi-layer networks, which can address multi-relationship more effectively, have
gradually been a research hot spot [11].

Communities are one of the most essential attributes of networks, which can
reveal the potential structure characteristics of networks [10]. Generally speak-
ing, a community (module or cluster) is a series of nodes with closer connections
or more similar attributes [6]. Up to now, single-layer network based community
detection algorithms have made great achievements, for example, Gao et al. pro-
pose a physarum-based framework [5] and Yang et al. propose a semi-supervised
framework [17]. However, because of the particular structure of multi-layer net-
works, traditional single-layer based methods cannot address multi-layer net-
works effectively. In the past decades, some multi-layer community detection
algorithms have been proposed, among which multi-objective optimization algo-
rithm (MOOP) is one of the most effective methods. Due to the local and global
search capabilities of the evolutionary algorithm, the multi-objective evolution-
ary algorithm (MOEA), one of the most classical MOOP methods, has attracted
great attention [9]. MOEAs achieve good performance because they can balance
the information of each layer by optimizing different objective functions. How-
ever, this kind of algorithms pays much attention to the topological information
rather than taking prior information into full consideration.

Yang et al. suggest that only considering the topological information is not
adequate for algorithms [17]. The prior information can further improve the accu-
racy and robustness of the algorithm by dividing the preknown similar nodes
into the same community despite the weak relationship of the topological infor-
mation. For example, the prior information can be added to the non-negative
matrix factorization-based (NMF) or spectral clustering-based (SC) algorithm
as a graph regularization [17]. However, there are few researches for incorporat-
ing the prior information into the MOEA. This is because it is difficult to extract
the consensus prior information due to the complex structure of multi-layer net-
works. Besides, unlike the NMF and SC methods, MOEAs find the optimal com-
munity partition by imitating the population evolution, which brings difficulties
in applying the guidance of prior information.

To address the problem mentioned above, this paper proposes a novel Semi-
Supervised Multi-Objective evolutionary algorithm for Multi-Layer network
community detection (named SS-MOML). The main idea of SS-MOML is to
incorporate the prior information into the MOEA from beginning to end. More
specifically, it aims to construct the prior layer, initialization and prior infor-
mation based genetic operation, which incorporates the prior information into
networks and optimization process, respectively. The prior layer, high-quality
initialization and modified genetic operation can guide the evolution of the pop-
ulation by dividing similar nodes into the same community as far as possible.
The contributions are listed as follows.

– Instead of only paying attention to the topological information like the tra-
ditional MOEAs, the SS-MOML neatly combines the idea of semi-supervised
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methods and MOEA methods on different aspects, so as to further improve
the accuracy and robustness.

– In order to extract the prior information for multi-layer networks with vari-
ous structures, this paper proposes DeepWalk-based method and Sφrensen−
Dice′s similarity-based method, where a novel density-based aggregation
strategy is added into the DeepWalk to adapt to various network structures.

– In order to get the utmost of the prior information and MOEA, this paper
proposes a SS-MOML algorithm, which utilizes the prior information to gen-
erate the prior layer, initial population and guide the population evolution.

The paper is organized as follows. Sect. 2 introduces the problem definition of
multi-layer network community detection. The proposed SS-MOML algorithm is
presented in detail in Sect. 3. The extensive experiments are elucidated in Sect. 4.
Finally, Sect. 5 concludes the paper.

2 Problem Definition

A multi-layer network can be represented as a graph G = (V, El (l = 1, . . . , L)),
which consists of L layers. Each layer has the same node set V = {v1, v2, . . . , vN}
which satisfies |V | = N and N represents the number of nodes. El stands for
the edge set of the lth layer which represents a kind of relationship. Exist-
ing approaches formulate the multi-layer network as a set of matrices, A(l) ∈
R

N×N
+ (l = 1, · · · , L), which is used to encode the information of each layer.

Layers

Consensus community partition

Community
detection

Fig. 1. An example of multi-layer networks. The network consists of 3 layers, and dif-
ferent layers represent different relationships (i.e., friends, colleagues, and classmates).
Nodes pertaining to different communities are colored differently.

A multi-layer network has multiple layers, where each layer represents one
relationship, which is shown in Fig. 1. The complex structure of multi-layer net-
works leads to the diversity of the community structure in each layer. The ulti-
mate goal of the multi-layer network community detection algorithm is to find a
consensus community partition that best adapts to each layer of the multi-layer
network.
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3 Proposed Method

The proposed SS-MOML algorithm is introduced in this section. The flowchart
of the proposed algorithm is shown in Fig. 2. The algorithm mainly consists of
two components, namely, the prior information extraction and the optimization
process. In the former part, two prior information extraction methods are pro-
posed, that is, DeepWalk-based method (shown in (a)) and Sφrensen − Dice′s-
similarity-based method (shown in (b)). The optimization process is based on
the NSGA-II, and the prior information is incorporated into the optimization
section in each step. The main components of the optimization process are shown
in (c), and each of them is introduced as follows.

Fig. 2. The flowchart of the SS-MOML algorithm. (a) and (b) represent the DeepWalk-
based and the Sφrensen − Dice′s-based prior information extraction process, respec-
tively. (c) is the optimization process. As shown in the figure, the DeepWalk-based
information is utilized to construct the prior layer and the Sφrensen − Dice′s-based
information to guide the genetic operation.

3.1 Prior Information Extraction

As mentioned above, the prior information is used to guide the algorithm to
divide the similar nodes into the same community. Therefore, the prior infor-
mation plays a key role in algorithm since high accurate prior information can
provide a correct guidance. For example, Ma et al. believe that the subgraph
composed of closely connected nodes should be the prior information and they
find such prior information through a greedy search method [10]. In this paper,
we extract the prior information by applying DeepWalk (DW for short) [14]
and Sφrensen − Dice′s (Dice for short) similarity [16] because the DW can
extract the relatively high-order information and Dice can eliminate the effect
of node degree. Firstly, the DeepWalk algorithm is applied in each network layer
to acquire the low-dimensional representation vectors of each one. Due to the
particularity of multi-layer network structure (i.e., each network layer represents
a certain kind of relationship), the low-dimensional vectors need to be merged
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into a consensus vector as the consensus prior information of the network. The
most intuitive way is to compute the average of each vector. However, the quan-
tity of information and the importance of each layer are different, so calculating
the average of vectors may lead to low accuracy. To overcome the problem, we
propose the density-based aggregation strategy, which quantizes the amount of
information in each layer using density, which functions as the weight to merge
vectors from different layers [8]. Since the increase of density means the decrease
of information quantity on the contrary, it is inconvenient to calculate the weight.
To address this problem, the equation is converted to Eq. (1).

density =
Mc

N(N − 1)/2
(1)

where Mc represents the number of connections within communities, and N
is the number of nodes. The density means the proportion of connections and
nodes within a community. We regard a network layer as a community, so that
the density can be used to quantize the information quantity of a network layer.

The second method is to extract the prior information by applying Dice
similarity. The equation is shown in Eq. (2).

S (vi, vj) =
2ComNeighbours (vi, vj)
Length (vi) + Length (vj)

(2)

where vi and vj represent the nodes, ComNeighbours(vi, vj) means the number
of common neighbours of nodes vi and vj . Length(vi) is the degree of the node
vi. To preserve the structure of the multi-layer network, the neighbours of all
layers are considered when calculating the number of neighbours of nodes, which
ensures the connection information of all layers are considered.

After that, the prior information contains the similarity between every two
nodes. To construct the prior layer, we retain a part of node pairs with the
highest DW-based cosine similarity as virtual edges according to a predefined
threshold θ. Finally, the collection of virtual edges constitutes the prior layer.
The prior layer contains accurate information of community structure because
the connected nodes are more likely to belong to the same community (they are
more similar). In addition, the Dice-based prior information is incorporated into
the genetic operation, which is described in Sect. 3.4.

3.2 Objective Functions

The MOEA can be represented as F = {F1, F2, . . . , Ft}, where Fi is the ith
objective function, and t means the number of functions. The MOEA optimizes
each objective function to find the optimal solution. In this paper, we choose
two widely-used objective functions, Modularity (Q) [12] and Normalized Cut
(Nc) [3], which are shown in Eq. (3) and Eq. (4).

Q =
1

2M

N∑

i,j

(
Aij − di × dj

2M

)
δ
(
Ci, Cj

)
(3)
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where M is the number of edges, A represents the corresponding adjacent matrix
and di means the degree of node i. C stands for the community and Ci represents
the node i that belongs to C. When Ci = Cj , δ

(
Ci, Cj

)
= 1, and 0 otherwise.

In this paper, the first objective function is the average of Q for each layer.

Nc
(
{Ck}Kk=1

)
=

1
K

K∑

k=1

Nck (4)

where Nck = W o
k

2·W i
k+W o

k

+ W o
k

2·(Wa
k −W i

k)+W o
k

, and Ck is the kth community. W i
k, W o

k

and W a
k are the sum of edge weights within communities, between communities,

and total edges of community k, respectively. To adapt to the structure of multi-
layer networks, the W i

k, W o
k and W a

k are calculated for all layers.

3.3 Encoding Scheme and Initialization

The encoding scheme will affect the computational cost of the algorithm. Label-
based and locus-based methods are two widely-used encoding approaches. How-
ever, the label-based method may cause redundancy, which leads to space con-
suming. For example, the encoding sequence {1 1 1 2 2 2 2} and {2 2 2 1 1 1 1}
represent the same community partition. Therefore, the locus-based encoding
scheme is selected in the proposed algorithm.

To generate the high-quality initial population, we apply the k-means
algorithm to the consensus low-dimensional vector (calculated by DW-based
method). Then the clustering result is transformed to the locus-based encoding,
which is the initial population. The flowchart of initialization is also shown in
Fig. 2.

3.4 Genetic Operators

Genetic operation is one of the most critical components, which is helpful to
break the local optimality and find the optimal solution. In this paper, the
crossover and mutation operations are used to increase the population diversity.

The crossover operation can generate various offspring chromosomes. The
uniform crossover is selected in this paper because it is more random. Firstly, a
binary mask, having the same length as the chromosome, is generated randomly.
The offspring is generated by choosing the gene of parents according to the value
of the binary mask. More specifically, at a gene, when the value of the mask is
0, the offspring chooses the first parent, otherwise another parent.

To make full use of the guiding ability of Dice-based prior information (calcu-
lated in Sect. 3.1), we propose the Dice-based mutation strategy. Simultaneously,
to ensure the utilization of the local information (i.e., neighbours of nodes), we
design a mutation strategy consisting of two parts as shown in Fig. 3.

There are two mutation strategies, and 50% of parent chromosome conducts
the neighbour-based mutation strategy and others perform the Dice-based muta-
tion strategy to take full advantage of the local information and prior informa-
tion. For neighbour-based strategy, a gene of a parent chromosome is selected
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Fig. 3. The diagram of mutation operation. The mutation consists of two components,
which are neighbour-based (red dotted line) and Dice-based strategy (blue dotted line).
(Color figure online)

randomly according to a predefined probability. Then, the value of the selected
gene mutates to the value of one of its neighbours. As for the Dice-based strat-
egy, some genes are selected randomly with a predefined probability and the
value of genes is selected from the Dice similarity table randomly. Similar to
DW similarity mentioned in Sect. 3.1, the Dice similarity table is constructed by
a part of node pairs with the highest Dice similarity according to a predefined
reservation threshold ε. Figure 3 illustrates the processes of genetic operation.

3.5 Optimal Selection Strategy

As mentioned above, MOEAs can find a collection of solutions. Finding an appro-
priate way to extract the optimal solution is important for the algorithm. The
knee point strategy is a useful method [1]. The idea of the knee point refers to
a little improvement of one objective function leading to a significant reduction
of other objective functions. For a two-fitness-function MOEA, an angle-based
method is applied to find the knee point of the solution set [1].

Fig. 4. An example of knee point strategy. The red point represents the target node
and green points are four neighbours of the target node. α, β, γ and η are four angles.
(Color figure online)

The angle-based method estimates the trades-offs of two objective functions
by measuring the slopes of two lines, where the line is constructed by passing
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through the node and its neighbours. In the angle-based measure, first, we select
four neighbors, which are the closest or the second closest on either side of the
target solution. Two neighbors on different sides are randomly chosen as a pair to
calculate the angle with the target solution. The four angles are shown in Fig. 4.
The point with at least one maximal angle can be designated as the optimal
solution.

Although the knee point strategy can find the optimal solution, the total
iteration times keep unchanged, which will lead to the fluctuation of the Pareto
set. Therefore, a modularity-based selection strategy is used as a supplement.
The strategy selects the solutions by finding the maximum average of modularity.

4 Experiment

4.1 Datasets and Metrics

Various synthetic and real-world datasets are used to validate the performance
of the proposed algorithm. The basic information of datasets is shown in
Table 1. The synthetic datasets are generated by the multi-layer LFR bench-
mark (mLFR) [2]. The mLFR benchmark controls the structure of the net-
work by changing the mixing parameter (μ) and the degree change chance (Dc).
Both the μ and Dc range in (0, 1). With the increase of μ and Dc, the com-
munity structure of the multi-layer network becomes more complicated. The
real-world networks with different types and scales (i.e., SND [7], MPD [7],
WTN [7], CoRA [7], Citeseer [7]) are used to ensure the comprehensiveness of the
experiment.

Table 1. The summary of datasets. The first five are real-world datasets and the last
two are generated by the mFLR benchmark.

Network Layers Nodes Clusters

SND 3 71 3

MPD 3 87 6

WTN 14 183 10

CoRA 2 1662 3

CiteSeer 2 3312 3

Syn1 3 5000 9

Syn2 3 10000 16

Besides the datasets, metrics are also significant for experiments. In this
paper, two widely-used metrics are used to evaluate the accuracy of the detected
communities, namely, Normalized Mutual Information (NMI) [7] and Adjusted
Rand Index (ARI) [7]. Both two metrics evaluate the similarity between par-
tition C and Ω, where Ω represents the ground truth and C stands for the
partition calculated by the proposed algorithm. The range of NMI and ARI is
[0,1]. The larger the both metrics, the more accurate the community partition.
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Table 2. The experimental results on various datasets. The A1 − A8 represent SS-
MOML (our proposed algorithm), MOEA-MultiNet, SC-ML, MIMOSA, S2-jNMF,
COMCLUS, CSNMF and GMC algorithm, respectively. The ‘-’ represents that the
algorithm cannot run successfully on this network.

Algorithms A1 A2 A3 A4 A5 A6 A7 A8

SND NMI 0.721 0.437 0.681 0.132 0.582 0.555 0.681 0.597

ARI 0.747 0.201 0.493 0.088 0.452 0.480 0.493 0.428

MPD NMI 0.591 0.494 0.495 0.096 0.516 0.421 0.504 0.451

ARI 0.468 0.385 0.379 0.01 0.396 0.365 0.394 0.248

WTN NMI 0.316 0.140 0.231 0.065 0.157 0.183 0.284 0.203

ARI 0.197 0.052 0.129 0.007 0.069 0.105 0.197 0.015

CoRA NMI 0.886 0.317 0.480 0.011 0.796 0.471 0.514 0.519

ARI 0.924 0.243 0.485 0.001 0.813 0.447 0.491 0.426

CiteSeer NMI 0.345 - 0.191 - 0.149 0.182 0.237 0.042

ARI 0.337 - 0.169 - 0.147 0.119 0.207 0.012

Syn1 NMI 0.965 - 0.950 0.855 0.772 0.950 1 0.999

ARI 0.972 - 0.902 0.896 0.602 0.902 1 0.999

Syn2 NMI 0.953 - 1 0.098 0.452 0.894 0.946 0.963

ARI 0.895 - 1 0.01 0.074 0.814 0.874 0.954

4.2 Baselines and Parameter Settings

In SS-MOML, the parameter settings of DeepWalk are the same as the source
paper. The number of iterations and populations are both 500. Besides, θ and ε,
which are used to control the proportion of retaining prior information, are set
as 0.3 and 0.1, respectively. The analysis of parameters is shown in Sect. 4.4.

To verify the performance of our algorithm, various kinds of algorithms are
selected as the comparison algorithms, namely, MOEA based method (MOEA-
MultiNet [9]), spectral clustering based methods (SC-ML [4] and MIMOSA [3]),
matrix factorization based approaches (S2-jNMF [10], COMCLUS [13] and
CSNMF [7]) and multi-view clustering based method (GMC [15]). The parame-
ter settings of comparison algorithms are consistent with the source paper.

4.3 Experimental Results

The results of comparison experiments are shown in Table 2. The experiment
consists of seven comparison algorithms mentioned above running on five real-
world datasets and two synthetic datasets (Syn1 and Syn2).

The results show that the proposed SS-MOML performs better than other
state-of-the-art methods on most of the datasets. Since the prior information
guides the algorithm to divide similar nodes into the same community, the pro-
posed algorithm can keep a high-level performance on Citeseer, WTN and MPD,
which have a complicated community structure. Moreover, we find that the
SS-MOML has a higher accuracy than another classical MOEA-based method
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(MOEA-MultiNet) on most networks due to the utilization of prior information.
On Syn1 and Syn2 (large scale synthetic network), the accuracy of SS-MOML
is slightly lower than some comparison algorithms because the structure of syn-
thetic networks is simpler compared with real-world networks and the objective
function values are not linearly related to the accuracy. In general, the perfor-
mance of SS-MOML surpasses other algorithms on various kinds of multi-layer
networks.

4.4 Parameter Analysis

In this section, some experiments of threshold θ and ε are implemented to verify
the effects of two parameters on our algorithm. The results are shown in Fig. 5.

(a) MPD (b) 128-0.5-0.2
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Fig. 5. The experimental results of parameter analysis. The x-axis and y-axis represent
the threshold of Dice (ε) and cosine similarity (θ), which controls the reservation pro-
portion of prior information. To ensure the comprehensiveness of experiments, a real-
world network (MPD) and synthetic network (128-0.5-0.2) are chosen as experimental
datasets. To avoid the fluctuation of knee point selection strategy, the experiments take
the second optimal selection strategy (maximize the average modularity).

The experimental results indicate that the NMI value drops to the minimum
on both two datasets when θ = 0 and ε = 0, which means there is no prior
information incorporated into the algorithm. With θ and ε increase, the NMI
value rises because the prior information guides the algorithm to find better
solutions. As shown in (a), when the values of θ and ε surpass 0.5, the reserved
quantity of prior information grows up, leading to the decrease of the accuracy
for prior information (the similarity between nodes declines). The experiments
prove the positive impact of prior information on the algorithm.

4.5 Robustness Analysis

As mentioned above, the prior information can improve the robustness of the
algorithm. This section validates the robustness of the proposed SS-MOML algo-
rithm. The experiment, as shown in Fig. 6, consists of two sub-experiments,
which change the network structure and number of layers respectively.
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Fig. 6. The analysis of robustness. (a)–(c) are designed to validate the stability of
algorithms for various network structures. (d)–(f) represent the experimental results
running on networks with different layers.

The results show that the proposed SS-MOML performs better than other
state-of-the-art methods in terms of accuracy and stability on various synthetic
networks with different structure and number of layers. Compared with MOEA-
MultiNet, the proposed algorithm owns a remarkable advantage. In addition, we
can find that the NMI has less volatility than the other state-of-the-art methods
with high robustness. It is because that the prior information participates in the
initialization and each step of the MOEA, which can ensure the nodes with high
similarity are distributed into the same community.

5 Conclusion

This paper proposes a novel semi-supervised multi-objective evolutionary algo-
rithm for multi-layer network community detection, called SS-MOML. SS-
MOML first extracts the prior information using DW-based strategy and Dice-
based strategy. Then, it constructs the prior layer based on the DW-based strat-
egy and the optimization process begins. In each iteration step, the Dice-based
mutation strategy will guide the population evolution based on the Dice-based
prior information. Moreover, the prior information can evaluate the similarity
between nodes, and guide them into the same community despite the weak
relationship on topological information. A series of extensive experiments prove
our SS-MOML performs superiorly to other state-of-the-art algorithms on most
datasets.
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