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Abstract. This paper addresses the problem of deterministic/random
separation in vibration signals when the machine is operating under
nonstationary regime. The solution to this problem is well established
in the stationary regime case, where the deterministic component is
simply periodic. In this regard, the synchronous average provides an
optimal way to separate a deterministic synchronous source from other
interferences. However, synchronous averaging theoretically requires the
machine to operate under stationary regime (i.e. the related vibration
signals are cyclostationary) and is otherwise jeopardized by the pres-
ence of amplitude and phase modulations. The local synchronous fitting
presents a powerful generalization of the synchronous average to the
non-stationary regime case (i.e. the related vibration signals are cyclo-
non-stationary). The idea is to replace the (cyclic) empirical average
operation by a (cyclic) local curve fitting using the Savitsky-Golay algo-
rithm. This paper studies the temporal and spectral properties of this
filter, and demonstrates its potentiality on real-world helicopter data
recorded under varying operating speed.

Keywords: Gears · Bearing · Diagnosis · Nonstationary conditions ·
Vibration signal · Savitzky–Golay filter · Signal separation

1 Introduction

Vibratory health monitoring of rotating machines has been widely used in indus-
tries for decades. It consists in analyzing the vibration signal in order to extract
machine health indicators. By its rotary movement, a machine generates a vibra-
tion signal rich in information on the health state of each of these organs includ-
ing gears, bearings, shafts, fan blades etc. These signals are cyclic in nature and
can be described within the cyclo-non-stationary (CNS) framework. The CNS
framework extends the cyclo-stationary theory to the case where machine sig-
nals are recorded under varying operating regimes (varying load and/or speed).
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They can be classified mainly into two categories: CNS at order 1 and CNS at
order 2 (or higher). With regard to bearings, their characteristic signal is CNS2
in nature. In fact, when they are defective, they generate a series of random
but pseudo-periodic pulses due to the sliding phenomenon in the bearing rolling
elements motion [1]. In the case of gearboxes, the meshing signal is intrinsically
deterministic and, thus, CNS1 in nature. Such a signal can be modeled as a sum
of a sinusoid modulated by the time-varying amplitudes and phases related to
the regime. For an accurate diagnosis, the separation of the CNS1 and CNS2
signals is required.

The few separation approaches in the literature using the cyclic behavior
of mechanical organs are based on the estimation of the CNS1 sinusoid, gener-
ally described by sinusoidal components. Synchronous averaging is probably the
most used technique for extracting sinusoidal components because of its sim-
plicity and ease of implementation [2,3]. Despite its widespread use, it is only
valid in stationary regime (constant speed and load). In variable regime, the syn-
chronous average fails due to the structural change in the signal statistics across
the cycles. In fact, the change in operating regime induces relatively slow ampli-
tude modulations in the signal as well as phase modulations. Methods adapted
to the analysis of non-stationary signals are present in the literature. Previously,
there was an attempt to generalize the SA by Daher et. al [4] using a paramet-
ric approach. In details, the authors decomposed the deterministic components
onto a set of periodic functions multiplied by functions dependent on the speed
capable of capturing long-term evolution over consecutive cycles. This approach
uses a higher-order polynomial to estimate the sinusoidal component throughout
the cycle contained in the raw vibration signal. It was shown that this technique
suffers from side effects and underestimates the entire dynamic of the sinusoidal
component.

Also, It is worth mentioning that authors in [5] proposed the so-called “Gen-
eralized Synchronous Average”, denoted GSA, for the variable speed condition.
A particular difference between the GSA and the proposed approach, is the fact
that the applicability of the former is confined to the case where only one CNS
agent varies during the acquisition (e.g. speed or torque) and its profile has to be
known. In fact, the GSA decomposes the CNS agent profile into a given number
of regimes and perform the average for each regime. A commonly encountered
scenario in rotating machine is when the speed and load vary simultaneously. In
this case, the GSA is not applicable whereas the proposed method can deal with
this issue.

Recently, the so-called local synchronous fitting (LSF) [6] has been proposed.
The LSF uses a lower order polynomial to estimate the complex envelope across
the cycles. In reference [6] the LSF showned to perform better than the method
proposed by Daher et al. [4].
Other parametric methods such as Vold-Kalman filtering [7], H∞ filtering [8],
biquadratic filtering [9] have been proposed to monitor rotating machines under
variable speed conditions.
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For the time being, the properties of the LSF are not studied. The aim of
this paper is to fill this gap by studying the time and frequency properties of
the LSF filter. The paper is organized as follows. In Sect. 2 we recall the LSF for
the estimation of sinusoidal components. In Sect. 3 the properties in time and
frequency domain of the LSF filter is studied. In Sect. 4 the LSF filter is applied
to analyze a helicopter vibration signal. The last section concludes the paper.

2 Polynomial Generalization of the Synchronous Average

2.1 Cyclo-non-Stationary Signals

Cyclo-non-stationary (CNS) signals are firstly proposed to describe vibration sig-
nals recorded under strong varying regimes. These signals, though being resam-
pled in the angular domain, present strong long-term statistical change in their
structure that prevents them to be cyclostationary. As it will be shown in this
paper, the CNS class can enfold other types of signals generated from different
applications, not only vibrations recorded under nonstationary regimes. As this
paper is concerned with the estimation of the deterministic component, first-
order CNS signals are of concern. It is proposed to define a first-order CNS
signal, say x[n], with a fundamental period N (i.e. cycle and 1/N the normalized
frequency) and a length L as:

(∀n ∈ {1, · · · , L}) x[n] = d[n] + w[n] =
∑

k

dk[n]ej2πkn/N + w[n] (1)

where k is an integer, dk[n] ∈ C are deterministic smooth functions (whose real
and imaginary part are continuous and differentiable) and whose bandwidths,
denoted Bk, are much smaller than the half of the fundamental frequency i.e.:
(∀k) , Bk � 1/2N and w[n] is a random noise that can possibly comprise other
higher-order CNS components. The fundamental period N can be also referred
to as “revolution” or “cycle”. As periodicity is generally defined in the angu-
lar domain, the index n generally refers to the discret angular variable, that
is x(θn) = x(nΔθ) = x[n] where θ and Δθ respectively denotes the continu-
ous angle variable and increment (angular sampling period). According to the
Weirstrass theorem, the complex envelopes, dk[n], can be approximated through
a P -order polynomial function, i.e.:

(∀k) dk[n] ≈
P∑

p=0

dp
knp (2)

where dp
k ∈ C. By inserting Eq. (2) into the expression of d[n], one obtains:

(∀n ∈ {1, · · · , L}) d[n] =
P∑

p=0

cp[n]np (3)

where cp[n] =
∑

k dp
kej2πkn/N is a periodic function of period N . Equation (3)

indicates that the deterministic component can be approximated by a sum of
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periodic functions multiplied with the polynomial basis: it is actually a polyno-
mial with periodic coefficients.

Let us first define n̄ = �n−1/N�+1 as the sample location within the period
N (a/b denotes the division of a by b). Since cp(n) is periodic with period N ,
we have cp[n̄] = cp[n̄ + (q − 1)N ] for all integer q ∈ {1, . . . , Q} (Q is the number
of cycles). Thus, Eq. (3) can be equivalently written as follows:

(∀q ∈ {1, · · · , Q}) (∀n̄ ∈ {1, · · · , N}) d[n̄+(q−1)N ] =
P∑

p=0

cp[n̄](n̄+(q−1)N)p

(4)
Using the binomial theorem (n̄ + (q − 1)N)p =

∑p
i=0 Cp

i N i(n̄ − N)p−iqi where
Cp

i is the binomial coefficient), one can deduce from Eq. (4) that the samples
associated with the same location n̄ in the period, sq[n̄] = d[n̄+(q −1)N ] for all
integer q ∈ {1, · · · , Q}, define a polynomial of order P with constant coefficients,
i.e.:

(∀q ∈ {1, · · · , Q}) (∀n̄ ∈ {1, · · · , N}) sq[n̄] =
P∑

p=0

bp[n̄]qp (5)

where bp[n̄] = Np
∑P

j=p Cj
p(n̄−N)j−pcj [n̄]. Note that bp[n̄] is parametrized by n̄.

Equation (5) means that, for each position withing the cycle, the data evolution
along the cycles follows a smooth curve defined through a P th order polynomial.

2.2 Local Synchronous Fitting

As previously pointed out, the estimation of the deterministic component
resumes to find a curve that fits the data points that are related to the same
location in the cycle. While the proposed approach also seeks a polynomial fit,
this latter is made locally and for each data point. The adopted fitting method
is excerpted from the “Savitzky-Golay filter” which is a widely known method
to smooth or fit the data based on the least mean square solution of local poly-
nomial fitting [10].

Precisely, for every q ∈ {1, · · · , Q}, let’s consider the data set xq[n̄] being a
function of q and parametrized by n̄; we try to find the best LMS polynomial fit,
with a fixed order P at the point n̄, from the 2M + 1 subset centered at q, i.e.
{xq−M [n̄], · · · , xq+M [n̄]}. It follows that, this problem can be stated in a similar
way as the previous subsection, i.e.:

(∀q ∈ {1, · · · , Q}) (∀n̄ ∈ {1, · · · , N}) b̂(q)[n̄] = argmin
b(q)[n̄]

‖Jb(q)[n̄] − x(q)[n̄]‖2 (6)

where x(q)[n̄] = [xq−M [n̄], · · · , xq+M [n̄]]T represents the qth subset, b(q)[n̄] =
[b(q)0 [n̄], · · · , b

(q)
P [n̄]]T are the P + 1 polynomial coefficients associated with the

qth subset, and J the (2M + 1) × (p + 1) matrix such that for every m ∈
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{1, · · · , 2M + 1}, p ∈ {1, · · · , P + 1}, Jm,p = (m − M + 1)p−1. The (2M + 1)-
length curve that best fits the qth subset writes:

s(q)m =
P∑

p=0

b(q)p [n̄](m − M + 1)p (7)

It is worth noting that the window doesn’t have to be symmetric in general, but
it is decided to adopt in this paper a symmetric window centered on the sample
itself, considering M samples on the left and M on the right. The Savitzky-Golay
method suggests to estimate the deterministic component at the qth data point
by retaining the value of the polynomial at the central point i.e. at m = M + 1:

(∀q ∈ {1, · · · , Q}) (∀n̄ ∈ {1, · · · , N} :) d̂[n̄ + (q − 1)N ] = ŝ
(q)
M+1[n̄] = b̂

(q)
M+1[n̄]

(8)
It can be shown that solution of (6) writes:

(∀q ∈ {1, · · · , Q}) (∀n̄ ∈ {1, · · · , N}) b̂(q)[n̄] = Hx(q)[n̄] (9)

where H = (JTJ)−1JT is a matrix of size (P + 1) × (2M + 1) whose elements
are independent of n̄ and q. The (M + 1)th element of the above vector namely
b̂
(q)
M+1[n̄] is actually a linear combination of x(q)[n̄] with the 2M + 1 elements of

the (M + 1)th row, hT = [h−M , · · · , hM ], of H being independent of q and n̄:

b̂
(q)
M+1[n̄] = hTx(q)[n̄] (10)

Considering Eqs. (8) and (9), one can write the estimate of the deterministic
component, henceforth called “local synchronous fit” (LSF), as:

d̂[n̄ + (q − 1)N ] =
M∑

m=−M

xq−m[n̄]hm

=
M∑

m=−M

x[n̄ + (q − 1)N − mN ]hm

=
MN∑

i=−MN

x[n̄ + (q − 1)N − i]h̃i (11)

The above equation can be explained as follows: the deterministic component
estimate at a given location n̄ and a cycle N is a weighted sum of the data located
at the same cycle positions in neighboring cycles. The number of considered
cycles depends on the length of the S-G filter, being equal to 2M + 1: one for
the sample located at the same position, M for the data located at the left
(previous cycles) and M for the data located at the right (following cycles).
With that being said, one can reformulate Eq. (11) as follows:

d̂[n̄ + (q − 1)N ] =
MN∑

i=−MN

x[n̄ + (q − 1)N − i]h̃i (12)
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where h̃T = [h̃−MN , · · · , h̃MN ] is obtained by zero-padding the S-G filter h as
follows: {

h̃i = hm if i = mN, −M ≤ m ≤ M

h̃i = 0 elsewhere
(13)

Now applying the variable change n = n̄ + (q − 1)N , Eq. (12) writes as:

d̂[n] =
MN∑

i=−MN

x[n − i]h̃i (14)

The above formulation gives an interesting insight on the LSF method: it is
equivalent to an LTI filtering with a (2MN +1)-length filter h̃ whose coefficients
are made of the associated (2M + 1)-length S-G filter h zero-padded by N − 1
samples among its coefficient.

It becomes obvious that the LSF turns to an LTI filtering of the original
signal x[n] with the (2MN + 1)-length filter h̃:

d̂[n] =
MN∑

i=−MN

x[n − i]h̃i (15)

The fact that the LSF turns into a linear-time invariant convolution with h̃T

instead of fitting QN polynomial has a major impact on the computation time
of the algorithm. Actually, this is a basic feature of the Savitsky-Golay (S-G)
algorithm which, when applied to equally spaced data, is equivalent to an LTI
convolution. It is important to note that, just like the S-G filter, the LSF filter
h̃ is the same for P (P odd) and P + 1, meaning that for a fixed M , h̃ is the
same for P = 0 and P = 1, or P = 3 and P = 4.

3 Study of the LSF Filter

The previous section showed an intimate relationship between the S-G and LSF
filters. The aim of this section is to study the time (or angle) and frequency (or
order) domain properties of this filter.

3.1 Impulse Response

This section is concerned with the study of the impulse response (IR) of the LSF
filter. A numerical simulation is made and displayed in Fig. 3 showing the IRs of
the LSF filter for three polynomial orders ((a) P = 1, (b) P = 3 and (c) P = 5)
and three window lengths (M = 20 (blue plot), M = 50 (red plot) and M = 100
(green plot)). The observations of these plots lead to the following properties:

– For P = 1, the associated S-G filter is actually a moving average filter and
the LSF in this case can be called as the “synchronous moving average”.
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– It is obvious that the non-zero coefficients are only defined at integer mul-
tiples of the fundamental period (since the plots are represented w.r.t. the
fundamental period, it is equal to 1).

– The maximum value is located at zero meaning that the biggest weight is
always associated with the center of the moving window. This is also a feature
of a low-pass filter. For lower values of P , the first lobe tends to be flatter.
The flattest one is that associated with P = 1 where the non-zero coefficients
are all equal.

– For a fixed window width given by M , the maximum value of the coefficients
decreases and the variability of the coefficient envelope increases with P , the
reason is that further samples (within the 2M + 1 window interval) are con-
sidered (through weights) as P increases, so that relatively higher frequency
modulations are considered. This pattern is consistent with other values of
M and P .

– For a fixed P , the shape of the envelope of the coefficients stays the same
(to see this compare the three plots of the same color), yet further samples
are naturally considered as the window width get larger with M . Of course
the coefficient weight and location are adapted so that their squared sum
equals 1.

Now having evaluated the IR shape, the next subsection evaluates its spectral
properties.

3.2 Frequency Response Function

Reference [11] has studied the frequency response function (FRF) of the S-G
filter which, as expected, turns into a low-pass filter whose cutoff frequency
depends on both the polynomial order P and the window length through M .
Equations (12) shows a strong relationship between the S-G filter h and the
LSF filter h̃. The spectral interpretation of this relationship is studied in this
subsection as well as the spectral properties of the LSF filter. Let’s define H(α)
as the frequency response function (FRF) of the LSF filter of {hi}i=M

i=−M , that is

H(α) =
∑

i∈Z

hie
j2πiα/N − N/2 < α ≤ N/2 (16)

where α is a frequency variable represented with respect to the fundamental order
(i.e. associated with the fundamental cycle or period N) with unit [evt/rev], i.e.
one event per revolution/cycle/period, i is the normalized angular index which
represent i/N revolution of the fundamental period. The FRF of the LSF filter
writes as:

H̃(α) =
∑

k∈Z

H(N(α − k/N)) − N/2 < α ≤ N/2

=
∑

k∈Z

H(Nα − k) − N/2 < α ≤ N/2 (17)
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Fig. 1. The IRs of the LSF filter for three polynomial orders: (a) P = 1, (b) P = 3 and
(c) P = 5. For each polynomial order, the IR is applied for three window length defined
for M = 20 (blue plot), M = 50 (red plot) and M = 100 (green plot).

The above equation gives an interesting insight on the interpretation of the
LSF filter, it is actually a comb-filter located at the fundamental order and
all its harmonics i.e. the set of central frequencies is defined as: Ω = {α ∈
Z s.t. −N/2 < α ≤ N/2} (if N is odd, otherwise one sample on the left bound
must be added just like the convention adopted in digital signal processing).

Similarly to the synchronous average, the comb-filter is made of N identical
elementary low-pass filter H(Nα) which, when shifted, turns into band-pass
filter. This is due to the fact that the mean operation (which is the empirical
average in the synchronous average case and the fitting in the LSF case) is made
synchronously (across cycles). Interestingly, the elementary filter is nothing but
the S-G filter FRF, defined for each couple (P,M), shrinked by a factor N (which
is the number of samples per fundamental period). The reason of the spectral
domain shrinkage is the zero-padding in Eq. (13) which spaces the sample by
N (i.e. the IR of the S-G filter is dilated). A numerical simulation is made and
displayed in Fig. 1 showing the IRs of the LSF filter for three polynomial orders
((a) P = 1, (b) P = 3 and (c) P = 5) and three window lengths (M = 20 (blue
plot), M = 50 (red plot) and M = 100 (green plot)). The plots show a comb
filter having a unit gain at the central frequencies and whose properties clearly
depend on the both P and M (Fig. 2).

In order to study the effect of these parameters on the filter properties, it is
more convenient to analyse the elementary filter which can be observed over a
half of an order (for instance from 0 to 0.5) because of its symmetry. To do so,
the FRFs of the LSF filter is computed for a fixed polynomial order P = 3, and
for several window widths defined by M = 20 (blue plot), M = 50 (red plot),
M = 100 (green plot) and M = 100 (black plot). The FRFs of the LSF filter is
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Fig. 2. The FRFs of the LSF filter for three polynomial orders: (a) P = 1, (b) P = 3
and (c) P = 5. For each polynomial order, the IR is applied for three window length
defined for M = 20 (blue plot), M = 50 (red plot) and M = 100 (green plot).

also computed for M = 50: P = 1 (blue plot), P = 3 (red plot), P = 5 (green
plot) and P = 7 (black plot).

The observations of these plots leads to the following properties of the ele-
mentary filter:

– Since the IR is real, H̃(α) is real and symmetric and so H(Nα) also is.
– For P = 1, the associated S-G FRF is actually a sinc function, having the

narrowest bandpass and the highest noise in the stop-band region for a fixed
M .

– The cutoff frequency increases with P and decreases with M . The reason is
that by increasing P for a given M or decreasing M for a given P , larger
variations in the estimated component are allowed which results in higher
frequencies of the modulations.

– The magnitude of the secondary lobes decreases with P and increases with
M .

Since the filter bandpass is the most important element in choosing M and
P , the 3-dB cutoff frequency is calculated w.r.t. M for five polynomial orders:
P = 1, P = 3, P = 5, P = 7 and P = 9. Results are displayed in Fig. 4.
The results are generally conform with what was stated previously. As expected,
the cutoff frequency plots of higher polynomial order are located above the order
plots associated with lower polynomial. It is remarkable how the cutoff frequency
strongly decreases as M increases for lower values of M and this change gets
slower for higher values until stabilizing asymptotically. Another feature not fully
represented in these plots is the fact that almost any desired bandwidth can be
obtained by multiple couples (M,P ), disregarding the noise rejection properties
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Fig. 3. (a)The FRFs of the LSF filter for P = 3: M = 20 (blue plot), M = 50 (red
plot), M = 100 (green plot) and M = 100 (black plot). (b) The FRFs of the LSF filter
for M = 50: P = 1 (blue plot), P = 3 (red plot), P = 5 (green plot) and P = 7 (black
plot).

in the stopband region. In details, if one of these parameters is fixed, almost any
cutoff frequency can be obtained by simply sweeping the other.

3.3 Authors’ Recommendations on Parameter Setting

While the proposed method of Daher et al. [4] technique is parametrized by
the polynomial order P , the LSF method is parametrized by the window width
through M . The optimal parameter setting for a given problem depends on (i)
the deterministic component itself through the variability of its complex envelope
and (ii) the nature of the noise. In practice, neither the actual signal nor the
noise statistics are known. This makes it hard to establish a systematic method
for optimal parameter settings. However, according to the authors experience,
it is proposed to fix the polynomial order to P = 3. The reason is that for
P = 1 which corresponds to a synchronous moving average, the data tendency
within the local window will not be considered, while higher values of P will
not be useful since the window length defined by M can be shortened if higher
polynomial values are required. Another way to see this, is the fact that almost
any desired cutoff frequency can be obtained (M,P = 3). The choice of M can
be empirically set by the user by simply looking at the long-term modulations
in the signal envelope: the variability of the latter has to be expressible with a
3 polynomial order.
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Fig. 4. (a) The 3-dB cutoff frequency w.r.t. M for various values of the window length
defined by: P = 1(blue plot and ∗ markers), P = 3 (red plot and + marker), P = 5
(orange plot and × marker), P = 7(purple plot and � marker) and P = 9 (green plot
and � marker). (b) the dB representation of the plots in (a).

4 Application to Real Vibration Signal

In this section, the proposed approach is applied to analyze a helicopter vibration
signal. The signal is measured on a two stage gearbox with an input pinion (L),
two intermediate pinion (M) and (N) and an output pinion (O). The signal was
acquired with a sampling frequency of fs = 65536 Hz during 4 s. The kinematic
of the reducer is presented in Table 1. The corresponding signal is displayed in
Fig. 5 below. The rotating frequency increases from 63% to 100%.

Table 1. Characteristic order of the different pinion of the gearbox and the meshings.

Pinion (L) (M) (N) (O)

Order 1 0.293 0.293 0.1532

Meshing order 29 9.959

The order spectrum of the vibration is displayed in Fig. 6. It exhibits mainly
the characteristic order of the four pinion and two meshing order located at
2 × 9.959 and 29. The presence of those spectral line confirms that the gear
signal is sinusoidal. Here, we focus on the meshing component 29 and its is
estimated by the LSF filter. The latter is applied with a 3 order polynomial and
with a window length of M = 21, M = 101 and M = 401 respectively. The
provided estimation in time domain and time-frequency domain (spectrogram)
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Fig. 5. Measured signals on the helicopter gearbox.

is presented in Fig. 7. It can be seen that whatever the window length(M),
the LSF filter estimates component around order 29 and its harmonics. On the
other hand, it can be seen in the time domain that the estimation is smoother
for a larger window size. By decreasing M the LSF filter takes into account the
modulations and higher frequencies. The spectrogram in Fig. 7 (c) shows a wide
band estimate visible around the order 29 and its harmonics when the length of

Fig. 6. Order spectrum of the raw gearbox vibration signal.
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Fig. 7. Estimation of the meshing order 29 provided by LSF filter with a 3 order
polynomial and different window length(M = 21, 101, 401).
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the window is equal to M = 21. The lateral bands come from the modulation of
the meshing components by the rotation of the pinions (L) and (M). With regard
to the spectrogram in Fig. 7 (e) and (g), the estimate provided by the LSF filter
is narrow-band. The estimate is dominated mainly by the meshing components
and the lateral bands are strongly attenuated. In addition to that, we observe
that the noise level is strongly attenuated larger the size of the window is. These
results on real signals are consistent with the theoretical study of the LSF filter
of the Sect. 3. Based on these results, further analysis can be done such as pinion
health monitoring by analyze the residual signal after removing the estimated
meshing components.

5 Conclusions

This paper has studied the properties of the local synchronous fitting filter. It
was shown that the impulse response of this filter is that of the classical Savitsky-
Golay filter stretched by the number of point per cycle N and zero padded for all
non-integer multiple samples of N. The frequency response function is a comb
filter, being made of N identical elementary low-pass filters, which, when shifted,
turns into narrow bandpass filters. The elementary filter is nothing but the SG
filter of the same parameters, shrinked by a factor N. Further, the effect of the
two main parameters, namely the window length M and the polynomial order
P, is studied. It was shown that the cutoff frequency strongly decreases as M
increases for lower values of M and this change get slower for higher values
to reach an asymptote. Another interesting finding is the fact that any desired
bandwidth can be obtained by fixing P = 3 and varying only M. This facts makes
easier the manipulation of this method in practical applications.
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