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Abstract. We explore Granger causality and cointegration between
main stock indices, macroeconomic indicators (PMI) and central banks
monetary expansion for US data in presence of extreme market move-
ments: bubbles and crashes. Two stock indices are caused in Granger
sense either by economic fundamentals or by money supply provided by
Federal Reserve’s monetary policy. The causation is found to be dynamic:
vanishing during moderate expansions and recurring around long–term
market peaks followed by market crashes. Cointegration between the
time series dynamics, here considered within Vector Autoregressive
framework, has been empirically shown to be a time–variant, recurrent
phenomenon, too.
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1 Introduction

Economic and mechanical systems evolve in time according to their specific mul-
tivariate and often nonlinear dynamics measured by a set of underlying variables.
As systems are mostly stochastic, these variables are modelled by a collection
of stochastic processes exhibiting intertemporal dependencies. Some of the pro-
cesses can either exert leading/lagging influence on one another (causation), or
feature subtle joint evolution pattern (cointegration). The framework is general
enough to study multivariate empirical data stemming from a number of scien-
tific disciplines.

In this paper we will study dynamics of the US economy and financial market
by means of selected driving processes, aiming at capturing possible causality or
cointegration which themselves can be subject to evolution over time. Overall
US stock market capitalization exceeds 30 trillion = 3 × 1013 USD. According
to classic rules, long–term price trends (bull vs. bear market) coincide with
current macroeconomic background measured by e.g.: GDP dynamics, inflation,
unemployment rate, industrial output. Recently however, monetary expansion
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employed by central banks has found its place among main drivers of stock price
dynamics, envisaged here by two benchmark indices: S&P500 and NASDAQ
Composite.

Vast empirical research of the last decade shows that ample monetary stimuli
lead to massive decoupling of stock prices from underlying fundamentals, result-
ing in asset bubbles followed by crashes. Therefore it seems important to inspect
the cause and effect dynamics, namely which sets of inputs influence which other
variables. Some classic techniques are used both to detect sources of causa-
tion (transmitted via the time axis) and capture contemporaneous dependen-
cies between seemingly unrelated variables. Tracking these interactions between
financial markets, real economy and central banks balance sheets is still more
challenging in the presence of bubbles and crashes (known as boom–bust cycles).

The paper is organized as follows. In Sect. 2 we introduce empirical data
sets to be processed throughout the paper and perform preliminary transforma-
tions ensuring stationarity. Section 3 deals with testing Granger causality with
respect to the two stock indices, considered in moving 2–year time windows to
track presence or absence of causality. In Sect. 4 we focus on verifying cointegra-
tion between indices, economic fundamentals and central banks balance sheets.
Section 5 concludes the paper and provides promising topics for further research.

2 Data Sets Description and Preliminary Processing

2.1 Empirical Data Sets

In our empirical study we focus on specific econometric data from the United
States throughout years 2003–2019, sampled monthly. Each original series con-
sists of n = 204 entries recorded at month ends, provided by Saint Louis FED
database [7].

The data are as follows:

I Manufacturing PMI index – measure of activity at US factories,
II Federal Reserve Bank (FED) balance sheet – overall value of assets held by

US central bank which can be treated as a market liquidity proxy,
III S&P 500 index quotes,
IV NASDAQ Composite index quotes,
V Aggregate balance sheet of three main central banks (FED, European Cen-

tral Bank, Bank of Japan) expressed in USD based on respective month–end
currency crosses, namely EURUSD, USDJPY.

Accordingly, entire empirical data set constitutes a 204×5 matrix or, equiva-
lently, 5–dimensional uniformly sampled econometric time series arranged colum-
nwise. The data sets are visualized on subsequent plots of Figs. 1 and 2 below.
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Fig. 1. US PMI, S&P500 and NASDAQ composite data (2003–2019)

Fig. 2. FED and (FED + ECB + BoJ) assets monthly data (2003–2019)

The US Manufacturing PMI is rather range–bound with faint low–frequency
cyclical behavior. Stock indices and central banks balance sheets are evidently
nonstationary because of distinct trends, sometimes even faster than linear. Since
2009 the two US indices have experienced secular bull market, accompanied by
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explosive growth of FED and other main central banks assets. Fundamental envi-
ronment is described by Manufacturing PMI index which is recorded monthly.
GDP and corporate profits are measured only quarterly and due to weak data
resolution we exclude these series here.

Indeed, KPSS test proposed in [5] strongly rejects stationarity hypothesis
(narrowly only in case of PMI), whereas the augmented Dickey–Fuller (ADF)
test does not reject unit–root hypothesis in case of stock indices and balance
sheet data.

Granger causality analysis requires covariance–stationary data, therefore we
will need transformed data according to well–known techniques aiming at elim-
inating trends and tapering heteroscedasticity. For each univariate time series
{Xt}1≤t≤n we define a transformed series {ΔXt} as either logreturn or common
differencing:

ΔXt
def
=

{
log

(
Xt

Xt−1

)
Xt − Xt−1

(1)

The latter transform is applied only to the low–volatility PMI series with no
linear trend, instead exhibiting only a slowly varying cyclical component. The
remaining four empirical time series are subject to transform yielding logreturns.
Both schemes are additive over larger time horizons in case temporal aggregation
were necessary.

Stationarity tests are now comfortably passed, no unit–roots are detected.
Sudden spike in FED balance sheet in late 2008 is a distinct outlier.

For convenience, we will denote the transformed series as {Δ(Nasdaq)t},
{Δ(PMI)t} and so on. Now we proceed to explore the Granger causality between
fundamental, monetary data on one hand, and financial time series on the other.

3 Granger Causality Study: What Drives Stock Indices
Returns?

3.1 Growing Impact of Monetary Stimuli on Financial Markets

In the classic study of economics systems dynamics, especially in the context of
stock market performance relative to macro input variables, there has been well
understood role of leading and lagging variables driving economy and long–term
stock returns within a given cycle phase. For instance, unemployment rate is a
typical lagging indicator, whereas yield curve has performed quite well as leading
indicator (especially inversions preceding recessions by a 1–2 year margin). These
interdependencies used to be modelled by wide variety of time series models, e.g.
regression, vector ARIMA’s, conditional copulae, GARCH–type models (Fig. 3).

Currently, especially since the financial crisis of 2008–09, there is a growing
impact of monetary interventions upon stock prices dynamics. The US Fed-
eral Reserve Bank has engaged in four large–scale asset purchase programs
known as quantitative easing (QE ). Simultaneously, European Central Bank,
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Fig. 3. Three time series after “stationarizing” transforms

Bank of Japan and Bank of England have been carrying out their own QE ’s.
This contributes to releveraging the overall financial system and artificial risk
suppression. The issue of markets decoupling from economic fundamentals has
been raised since around 2012–13. Typical economic cycles have become over–
extended and stock valuations have run well above commonly approved long–
term averages.

3.2 Granger Causality Test

Crucial question facing asset managers and creators of macroeconomic policies is
which econometric or/and financial time series tend to lead (here: cause) which
other time series. Granger (1969) has developed a novel testing procedure devised
for detecting causality between time series, see [2].

Definition 31. Wide–sense stationary time series {Xt}t∈Z is said to Granger
cause another w.–s. s. time series {Yt}t∈Z if for any fixed t ∈ Z

σ2
(
Ŷt|Yt−1, Yt−2, . . . , Xt−1,Xt−2, . . .

)
< σ2

(
Ŷt|Yt−1, Yt−2, . . .

)
(2)

where σ2(Ŷt|Ft−1) = E
{(

Ŷt − E(Ŷt|Ft−1)
)2∣∣Ft−1

}
is the variance of the optimal

linear forecast Ŷt based on filtration Ft−1 i.e. σ–algebra generated by the history
of processes {Xt} and {Yt}.



98 B. Stawiarski

The above definition states that including {Xs}s<t into forecast equation
defining Ŷt improves forecasting of Yt compared to the case of including only
{Ys}s<t. The variance is commonly estimated by MSE.

Granger test serves to verify whether inequality (2) holds. Technically, the
restricted versus unrestricted hypothesis is subject to testing by a Wald–type
procedure. Null hypothesis H0 states no Granger causality, equivalently: no
need to include past {Xs} into forecasting the present value Xt. The alterna-
tive is Granger causality: {Xt} significantly improves the forecast performance.
Detailed theoretic derivations can be found e.g. in [3] and [6].

Figures 4 and 5 below show detailed results of Granger causality tests in
relation to the US stock market measured by S&P500 and NASDAQ Composite
benchmarks. Main questions we ask is: do economic fundamentals and/or mon-
etary stimuli exert statistically significant causal influence on large–cap stock
prices?

Fig. 4. Granger causality test results – part 1

The answer is critically important both for long–term asset allocation strate-
gies and undertaking preemptive steps to reduce risk prior to possible major
downturn. A notation X −→ Y (lag) stands for “{Xt} up to h = lag time units
backwards Granger causes {Yt}” as in Definition 31. Lags of up to 3 have been
considered, as the test in many cases can be sensitive to the lag imposed ad hoc.

Statistically significant entries are highlighted in bold and colour, namely:
orange – significance at 0.05 level; yellow – significance at 0.1 level; light blue –
at 0.2 level. Obviously, in rigid statistical inference mainly test sizes of 0.01 or
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Fig. 5. Granger causality test results – part 2

0.05 are considered, but here we emphasize pairs of the series and accompanying
time frames for which at least slight causality can be conjectured (0.1, 0.2 level).

It is clearly seen that during heightened financial stress fundamentals (here:
PMI index) Granger–cause the stock price dynamics. Secondly, during the period
of massive balance sheet expansion after 2008 crisis, asset valuations are driven
more by liquidity than underlying economic fundamentals. FED’s activity has
exerted visible causal impact on indices performance between 2014 and 2017.
Interestingly, the FED in 2015 partly reverted its easing course but facing a
market breakdown in 2018 it returned to lowering interest rates and since sum-
mer 2019 restarted QE. Thus, FED’s reverse course caused market declines or at
least more rapid corrections in 2015, 2016 and twice in 2018. Other main central
banks kept on expanding their assets pool and this may explain further market
overvaluation, albeit it is not seen in the statistical causality tests.

3.3 Modelling and Forecasting Example: VAR(3) Model

As shown above, there are periods – especially around market peaks and severe
drops/crashes – when stock indices are Granger–caused both by PMI and liquid-
ity. One such time span covers subprime–driven market crash and financial crisis
of 2008–09. Now we will show how vector autoregressive modelling framework
VAR(3) works for this selected 2–year period (2008–2009), in which Granger
causality has been confirmed.

As a reminder, a VAR(p) model for a p–dimensional time series {Xt} in its
matrix form is defined as
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Xt = A1Xt−1 + . . . + ApXt−p + ut, (3)

for some p×p matrices Ai =
[
a
(i)
r,s

]
, 1 ≤ i, r, s ≤ p and a vector white noise {ut}.

In our setup we consider

Xt =

⎡
⎣Δ(SP500)t

Δ(PMI)t
Δ(FED)t

⎤
⎦ (4)

where ΔXt denotes respective differenced or log–differenced coordinatewise uni-
variate series according to transformations described in Sect. 2.

We choose the 24 months of years 2008–09 as a training set, fit a VAR model
with the aid of vars R–package [9] by Pfaff (2018) and use it for constructing
point and interval forecasts 12 months ahead, i.e. spanning over year 2010. As
we are interested in modelling the stock indices, we will restrict our attention to
the first row of the VAR model, setting p = 3 in accordance with maximal lag
considered in Granger causality testing reported in Figs. 4 and 5.

Specifically, we focus on the following extracted model for monthly logreturns
of S&P500 index:

Δ(SP500)t =
3∑

i=1

a
(i)
1,1Δ(SP500)t−i +

3∑
i=1

a
(i)
1,2Δ(PMI)t−i +

3∑
i=1

a
(i)
1,3Δ(FED)t−i

(5)
for 4 ≤ t ≤ 24 (within the 2008–09 time frame).

With the OLS estimators Âi the resulting forecast for S&P500 logreturns in
2010 is given by

̂Δ(SP500)t =
3∑

i=1

â
(i)
1,1Δ(SP500)t−i +

3∑
i=1

â
(i)
1,2Δ(PMI)t−i +

3∑
i=1

â
(i)
1,3Δ(FED)t−i.

(6)
Recall from the previous subsection that within the 2008–09 horizon the

FED series did not Granger cause the S&P500 index, whereas PMI did. Besides,
additional AR(2) term for the index itself proved statistically significant. Hence

in (5) only two out of nine coefficients â
(i)
1,s are significant at 0.05 level, i.e. the

null hypothesis H0: a
(i)
1,s = 0 has been rejected in these two cases, namely a

(2)
1,1 �= 0

and a
(1)
1,2 �= 0. Thus the model (5) reduces to

̂Δ(SP500)t = −0.752Δ(SP500)t−2 + 0.03Δ(PMI)t−1. (7)

We conclude this section with Fig. 6 showing visualization of point and inter-
val (95%) forecasts (blue points and red cylinders, respectively) derived from the
above VAR(3) model (6), and confronted with real index monthly logreturns.

Although the point forecasts seem a bit too pessimistic (which should come
as no surprise after traumatic 2008–2009 period), the real logreturns fall com-
fortably within all 12 confidence intervals. This study has proved reliable appli-
cational value of tracking Granger causality and resulting VAR modelling.
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Fig. 6. S&P 500 logreturns point and interval forecasts from the VAR(3) model based
on years 2008–09 versus real series: case study for year 2010

4 Vanishing and Recurring Cointegrations

As mentioned at the beginning, the original empirical time series are highly non-
stationary. According to ADF test, I(1) dynamics seems plausible (consequently
removed by differencing schemes for purposes of Sect. 3) even though one can
argue for explosive indices behavior under the bubble regime.

In this chapter we will analyze co–movements of the tech–heavy NASDAQ
Composite index, grouping IT and innovative companies, and Federal Reserve
Bank’s assets value. More importantly, only a handful of megacorporat-ions have
steadily increasing weights in the benchmark, making it critically fragile in case
of a sudden downturn. In February 2020 just four trillion–dollar market value
corporations: Apple, Microsoft, Alphabet/Google and Amazon cover as much as
40% of NASDAQ 100 non–financial companies index (accounting for major part
of broader NASDAQ Composite).

Cointegration concept was first conceived by Engle and Granger (1987) [1] in
order to model contemporaneous dynamics of nonstationary (integrated) time
series. In certain circumstances linear combinations of such nonstationary pro-
cesses may yield a stationary output.
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Definition 41. A k–dimensional time series {Xt} = {(Xt,1, . . . , Xt,k)T } with
coordinates having unit roots of order d ∈ N is said to be cointegrated (of order
d) if there exists a vector v ∈ R

k such that the series Ut = vT
Xt is wide–sense

stationary.

Here v = [v1, . . . , vk] is called a cointegrating vector, besides notation {Xt} ∼
I(d) is commonly used. Without loss of generality v can be normalized so that
v1 = 1, which is typically assumed in statistical software.

For k > 2 the cointegration is often considered within a vector autoregressive
error–correction model framework (VECM), stemming from VAR models by
taking differences. In this section we will conduct brief case study of detecting
possible cointegration within our data. Specifically, a testing procedure proposed
by Johansen (1991) [4] based on eigenvalues of a matrix present in VECM model
formulation will be employed.

Let us consider the empirical time series of PMI, FED balance sheet and
NASDAQ Composite, recorded monthly throughout 2003–2019 and introduced
in Sect. 2. We have already detected occasional Granger causality, enabling to
better explain dynamics of stock indices by incorporating PMI and/or FED data.
Now we intend to track contemporaneous interconnections between the series at a
given time t. FED and NASDAQ Composite are shown in Fig. 7. It is clearly seen
that after the 2008 crash CB balance sheets and NASDAQ quotes are driven by
strong trends. As argumented in vast research, central banks liquidity provided
by successive rounds of QE programs has incited risk–on behavior resulting in
aggressive speculation.

Fig. 7. FED balance sheet vs NASDAQ Composite index
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In our empirical study of the Johansen test performance we first test the
entire time span, next we divide it into 3 distinct subperiods: pre–crisis, post–
crisis 2009–14 and the most recent one, 2015–19. In the three tables below we
report the test results of the null H0 of no cointegration for selected series
collections. Table 3 in fact performs multivariate version of the test, because for
k ≥ 3 time series there may exist multiple (up to k) cointegrating relationships
(Tables 1 and 2).

Table 1. NASDAQ ←→ PMI cointegration test

Time span J statistics Critical value Cointegration

α : 0.05 0.01 no/yes (0/1)

2003–2019 (full) 13.09 14.90 19.19 0

2003–2008 5.87 ” ” 0

2009–2014 22.12 ” ” 1

2015–2019 5.45 ” ” 0

Table 2. NASDAQ ←→ FED cointegration test

Time span J statistics Critical value Cointegration

α : 0.05 0.01 no/yes (0/1)

2003–2019 (full) 5.04 14.90 19.19 0

2003–2008 10.01 ” ” 0

2009–2014 20.58 ” ” 1

2015–2019 3.65 ” ” 0

Table 3. NASDAQ ←→ PMI ←→ FED cointegration test

Time span J statistics Critical value Cointegration

α : 0.05 0.01 no/yes (0/1)

2003–2019 (full) 20.86 21.07 25.75 0

2003–2008 23.00 ” ” 1

2009–2014 34.30 ” ” 1

2015–2019 15.56 ” ” 0

The maximum eigenvalue Johansen test detected cointegrations in each of
the three series combinations, mainly within 2003–2008 period (bold entries in
respective tables). Hence we obtain according cointegrating vectors:
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NASDAQ ←→ PMI: v1 = [1, 703.65] in 2009–14
NASDAQ ←→ FED: v2 = [1, −0.001] in 2009–14
NASDAQ ←→ PMI ←→ FED:

v3,1 = [1, 129.26, 0.005] in 2003–08
v3,2 = [1, 31.486, −0.001] in 2009–14

Oddly enough, aggregated 3 central banks balance sheet does not significantly
Granger cause the indices returns.

For illustrative purposes we will consider one instance of cointegration,
namely between FED balance and NASDAQ Comp. index during the 2009–
14 horizon. With the eigenvector v2 corresponding to the maximum eigenvalue
from Johansen’s test we compose the stationary combination:

Ut = (NASDAQ)t − 0.001(FED)t (8)

for 73 ≤ t ≤ 144 (which refers to years 2009–14).
As shown in Fig. 8 the process {Ut} given by (8) resembles stationary behav-

ior following a lower–order AR dynamics. Indeed, KPSS test confirms its sta-
tionarity. Similar reasoning can be carried out for remaining cointegrating com-
binations.

Fig. 8. Decointegrated FED–NASDAQ series and its sample ACF/PACF
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Cointegration analysis is very helpful in identifying seemingly unrelated
empirical processes which share similar dynamics due to common trend. It must
not be confused with spurious regression encountered in case of nonstationary
variables. From the portfolio and risk analysis viewpoint, constructing invest-
ment strategies based on cointegrated inputs greatly helps in robustifying the
allocation performance against nonstationary irregularities exhibited by single
components. Once cointegration has been detected, one can take advantage of
simultaneous exposure to various segments of financial markets, e.g. currencies,
stocks, commodities. Another promising field of research in the context of coin-
tegration and VECM modelling can be climate and natural sciences.

5 Conclusions and Further Research

By strict statistical inference we showed that within 17–year time span, namely
between 2003 and 2019, two main US stock indices are Granger–caused in 2–
yearly subperiods either by economic fundamentals, here measured by manufac-
turing activity index PMI, or by money supply provided by Federal Reserve’s
monetary interventions known as QE. Once the causality is detected, respective
variables appear as statistically significant in vector autoregressive models fitted
to current indices dynamics. The research has proved temporal instability of cau-
sation itself: it vanishes during moderate expansions and reemerges around long–
term market peaks concluding bubble–style price dynamics, followed by severe
stocks prices declines. This finding neccessitates using mechanisms of adaptive
detection and modelling techniques lest once accepted model does not become
irrelevant.

Separately, cointegration behavior has been proved to be a recurrent phe-
nomenon. We detected it during the monetary expansion of 2009–2014. Such
large money supply dynamics tends to robustify stock movements against eco-
nomic deceleration featured by hard fundamental data (market decoupling). As
of February 2020, by many well–adopted valuation metrics the US market is
currently extremely overvalued. For instance, in case of S&P500 index Schiller
10–year Price/Earnings indicator exceeds 30 compared to long–term average
around 18. Corporate profits after tax do not confirm the huge market appre-
ciation, either. Last time such a bubbly decoupling happened at 2000 dotcom
bubble peak and now, since 2016 this divergence has become by far larger, see
Fig. 9 provided by Bloomberg [8].

Dynamic approach to causality and cointegration coupled with adaptive,
varying coefficient/smooth transition modelling is a promising further research
path. Separately, more elaborate VARMAX-type models can be considered, as
well as robustified versions of cointegration tests can be implemented. Incorpo-
rating additional time series like aggregate portfolio positioning (net long/short
open interest held by large speculators) or sentiment indicators may prove help-
ful in timely identifying potential critical turning points on stock markets within
fragile, speculatively inflated price dynamics regime.
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Fig. 9. Stock bubble and broken cointegration evidence: stocks valuations (S&P 500)
decoupling from corporate profits (green rectangles)

Finally, the above methods can serve equally promisingly for inspection pur-
poses of mechanical systems (production lines, large machinery working control),
as sudden changes in cointegrations or Granger causations between the driving
processes may be indicative of a major failure or malfunction.
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