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Abstract. The study of the material microstructure allows obtaining information
about the state of the part without additional tests and full-scale experiments. The
paper offers computermethods for constructing parametric, statistically equivalent
models of cast iron microstructure with the inclusion of spheroidal graphite. The
studied material has a transient microstructure that exhibits variability at various
material points. To analyze the unsteadiness of deformations, the Monte Carlo
method is used. A finite element model is constructed to find the elastic char-
acteristics of the material. The stress state is considered based on plane models.
Numerical experiments are carried out for various concentrations of inclusions.
The results obtained for the elastic constants are statistically averaged, and the
dependences of the Poisson’s ratio, the moduli of elasticity, and the shear moduli
on the concentration of the inclusions are established. For veracity assessment,
the values obtained are compared with those obtained using the mixture rule. The
results of the application of the rule confirm the correctness of the built models.
The yield surfaces are found, going beyond the surface indicates the appearance
of plastic strains in the material.

Keywords: High strength cast iron · Microstructure · Finite element method ·
Material properties · Yield surface

1 Introduction

The use of composite materials requires a detailed study of their internal structure. To
understand the behavior of the structure during operation, it is necessary to know the
mechanical properties of thematerial and the boundary stress values at which failure-free
operation is possible. Assessing the internal structure of the sample at the micro-level,
themethod of analyzing themicrostructure image is widely used. High-strength cast iron
has found application inmechanical engineering [31, 32]. It is used in critical assemblies,
such as gears, gearboxes, suspension arms, etc. A feature of such cast iron is its relatively
simple microstructure. The microstructure of cast iron with the inclusion of spherical
graphite is represented in Fig. 1.
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Such approaches to the analysis of the material macrostructure are known in the
literature. Experimental [1–6] or direct research. They require the creation of samples
and the experiment conducting.Work is knownwhere the influence of themicrostructure
on crack development [1], phase composition [2], the hardness of the test sample [6].

Fig. 1. The microstructure of high-strength cast iron [25]

The second group of studies [7–13], combines the application of computer vision
technology. Image pattern recognition is used to classify the structure [7, 10]; assessment
of the number of defects [8]; segmentation of complex microstructures [11], finding the
particle sizes and their distribution on the plane, predicting the properties of the material
by the image of its microstructure [12, 13]. Other works [14–18] propose modeling the
studied microstructure by the finite element method.

This paper proposes to create a methodology for studying microstructure without
additional full-scale experiment, to use the advantages of computer vision formicrostruc-
ture recognition. The proposed technique relies on the generation of statistically equiva-
lent microstructure geometry, independent of the particular image. The studied material
is characterized by a transition microstructure. Such a structure exhibits variability at
various points on the surface. For analysis, a method of averaging material characteris-
tics is used. The position and orientation of graphite inclusions on the ferrite plane are
randomly generated by a numerical method. The obtained statistical data allows describ-
ing of the variability microstructure influence on the sample’s mechanical properties.
Including analysis of the stress-strain state and equivalent elastic constants by the finite
element method. Elements of the same technics could be found in [26–30].

2 Objectives

As the initial data in the work, images of the microstructure of cast iron are taken
(Fig. 1). It is assumed that the structure of cast iron is modeled synthetically, based on
actual images of its microstructure. It is necessary to take into account the possibility of
a random position of inclusions on the plane and consider the possibility of varying their
concentration depending on the size of graphite. To determine the elastic properties of the
investigated material by modeling a finite elemental model. To obtain the characteristics
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of the elastic moduli, shear moduli, and Poisson’s ratio as a function of the concentration
of inclusions. Find the invariants of the elastic moduli. They provide information on the
elastic characteristics of the material. Build the yield surface, which ensures the absence
of plastic strains.

3 Image Processing and Generation of the Statistically Equivalent
Artificial Microstructure

Image processing and artificial microstructure generation of high-strength cast iron have
been implemented in previous works [19, 20]. The generation of the statistically equiva-
lent microstructure of cast iron is possible by establishing the dependence of the size of
inclusions on their concentration. For each concentration case, data have been obtained
on the number and size of graphite inclusions on the plane. According to mathematical
expectation data, the variance of the radii inclusions, their number per area, the function
of the dependence of the size of the inclusions on the concentration have been obtained
by (1):

M [R] = 18.308 · (ψ − 0.048)0.123;
√
D[R] = 9.683 · (ψ − 0.045)0.314.

(1)

The nature of inclusions obeys the normal distribution law of a random variable.
Each radius of graphite inclusions is randomly generated while their total area is less
than the required concentration. By concentration (ψ) is meant the ratio of the area
of inclusions to the area of the sample, which varies in the range of [0.054..0.3]. The
position of radii centers on the plane of the simulated cast ironmicrostructure also occurs
randomly and implemented by a uniform quantity distribution function. The result of
the artificial generation of the microstructure is shown in Fig. 2.

Fig. 2. Artificially generated microstructure with an appropriate concentration of inclusions

4 Finite Element Model

The construction of the finite elemental model is based on the geometry (Fig. 2) obtained
after the artificial generation of the cast iron microstructure. To create the mesh grid,
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a two-dimensional 8-node finite element with two degrees of freedom in each node is
used. Typical meshing is shown in Fig. 3. For calculations, it is assumed that ferrite is
an isotropic material, in Table 1 shows its mechanical properties, and graphite – has a
hexagonal structure of the crystal lattice, the corresponding elastic constants are given
in Table 2.

Fig. 3. The typical meshing of cast iron microstructure

Table 1. Properties of ferrite material

E, GPa N Yield strength, MPa

210 0.3 125

Table 2. Properties of graphite material

Ex, Ez,
GPa

Ey,
GPa

νxy νyz νxz Gxy, Gxz,
GPa

Gyz,
GPa

Yield strength, MPa

Compression Tensile

1025 36 0.34 0.012 0.16 0.18 4.35 480 100

5 Homogenization Procedure and Elastics Constant Determination

Based on the macro level, structural elements are considered homogeneous anisotropic
materials with averaged elastic characteristics. Hooke’s law for anisotropic material can
be written for the case of general anisotropy by (2):

〈
εij

〉 = Aijkl〈σkl〉, (i, j, k, l = 1, 2, 3), (2)

where Aijkl – elastic constants of equivalent homogeneous material;〈
σij

〉
,
〈
εij

〉
– the mean strain and strain tensors averaged as the integral by volume (3).

〈
σij

〉 = 1

V

∫

V

σijdV ; 〈
εij

〉 = 1

V

∫

V

εijdV . (3)
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Using the Voigt notation [23] and the above concepts are introduced, the 4th rank
symmetric tensor from Eq. (2) can be written using a quadratic matrix. In an arbitrarily
chosen orthogonal coordinate system, Hooke’s law can be represented in a matrix form
(4) [17].

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

〈εx〉〈
εy

〉

〈εz〉〈
γyz

〉

〈γzx〉〈
γxy

〉

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56
a61 a62 a63 a64 a65 a66

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

×

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

〈σx〉〈
σy

〉

〈σz〉〈
τyz

〉

〈τzx〉〈
τxy

〉

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

, (4)

where aik elastic constants; in the general case, the number of independent elastic
constants is 21, according to symmetry aik= aki.

As a test sample, plane artificially modeled images of cast iron microstructure are
taken, therefore it‘s correct to calculate the stress based on plane models. Equation (4)
for the case of a plane stress state takes the form (5):

⎡

⎣
〈εx〉〈
εy

〉
〈
γxy

〉

⎤

⎦ =
⎡

⎣
a11 a12 a16
a21 a22 a26
a61 a62 a66

⎤

⎦ ×
⎡

⎣
〈σx〉〈
σy

〉
〈
τxy

〉

⎤

⎦. (5)

In technical application, such notation (6) are often used [21]:

a11 = 1
Ex

; a22 = 1
Ey

; a66 = 1
Gxy

; a12 = − νxy
Ex

; a21 = − νyx
Ey

;
a16 = ηx,xy

Gxy
; a26 = ηy,xy

Gxy
; a61 = ηxy,x

Ex
; a62 = ηxy,y

Ey
,

(6)

where Ex, Ey,– Young’s moduli; νxy, νyx – Poisson’s ratio; Gxy – shear module;
ηxy,x, ηxy,y – the 1st order coefficients of interaction that characterize the displacement in
the directions parallel to the coordinate axes under the action of normal stresses; ηx,xy,
ηy,xy – the 2nd order interaction coefficients that characterize the elongation in directions
parallel to the coordinate axes caused by the shear stresses.

Then Hooke’s law (5), taking into account the notation (6), will take the form (7).
Based on the statement about the symmetry of the matrix, have six independent elastic
constants, and three are linearly dependent on the diagonal constants determined from
Eqs. (8):

⎡

⎣
〈εx〉〈
εy

〉
〈
γxy

〉

⎤

⎦ =
⎡

⎢
⎣

1
Ex

− νxy
Ex

ηx,xy
Gxy

− νyx
Ey

1
Ey

ηy,xy
Gxy

ηxy,x
Ex

ηxy,y
Ey

1
Gxy

⎤

⎥
⎦ ×

⎡

⎣
〈σx〉〈
σy

〉
〈
τxy

〉

⎤

⎦. (7)

Exνyx = Eyνxy;Exηx,xy = Gxyηxy,x;Eyηy,xy = Gxyηxy,y. (8)

Toobtain thematrix it’s necessary tofind all the constants four numerical experiments
have to be performed. The load diagramof themodel, the results ofwhich allows creating
a system of linear algebraic equations for the Poisson’s ratio, elastic and shear moduli
represented in Fig. 4.
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Fig. 4. Von Mises equivalent stresses under different types of loads

6 The Results of Elastic Constant Conclusion

The results of the stress-strain state of the microstructure of cast iron with the inclusion
of spherical graphite in four types of load are represented in Fig. 4. Considering the
orientation of inclusions to be arbitrary, it is necessary to conduct a series of numerical
experiments to obtain elastic constants.

To determine the elastic constants, the Monte Carlo method is used. According to
this method, the position and orientation of inclusions on the plane are set randomly.
For each concentration, 200 Monte Carlo algorithm interventions are performed. The
results obtained for elastic constants are statistically averaged, and their dependence on
the concentration of inclusions is established (Fig. 5). The dependence (9) is taken as
the confidence interval for the calculated data, which for the normal distribution of a
random variable corresponds to 99.73% of the probability of the results being in this
region.

αint = M ± 3 · √
D, (9)
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where M and D – mathematical expectation and variance of the corresponding elastic
constants.

The averaged results for 200 numerical experiments for the elastic moduli, Poisson’s
ratio, shear moduli, and the 1st and 2nd order coefficients of the mutual influence of
stresses for 17 concentrations of graphite inclusions are given in Table 3.

Table 3. Elastic characteristics of the studied material

ψ Ex,GPa Ey,GPa Gxy,GPa νxy, ×
10−2

νyx, ×
10−2

ηx,xy, ×
10−3

ηy,xy, ×
10−3

ηxy,x, ×
10−3

ηxy,y, ×
10−3

0.054 195.58 196.13 74.54 31.56 31.65 −0.70 0.31 −1.87 0.85

0.057 195.70 195.59 74.14 31.54 31.52 1.28 −1.04 3.32 −2.76

0.060 194.32 194.63 73.81 31.73 31.78 0.15 −0.48 0.59 −1.52

0.065 193.37 193.68 73.05 31.75 31.81 1.36 −0.11 3.59 −0.27

0.070 192.70 193.13 72.24 31.71 31.78 1.57 −1.24 4.32 −3.24

0.075 190.87 191.63 72.04 31.98 32.11 −0.21 2.44 −0.45 6.55

0.080 190.02 190.50 71.19 32.07 32.15 −1.35 −1.14 −3.60 −2.98

0.085 189.56 189.72 70.71 32.07 32.11 −1.98 0.17 −5.23 0.18

0.090 187.94 188.33 70.64 32.32 32.38 0.65 −0.71 1.90 −2.20

0.100 186.16 186.16 68.93 32.53 32.53 −1.64 0.49 −4.95 1.78

0.135 178.43 178.75 65.59 33.27 33.35 −1.83 2.40 −5.25 6.52

0.150 174.98 174.17 65.06 34.19 34.03 0.76 2.12 2.89 3.89

0.170 170.40 168.81 63.64 34.99 34.68 −2.81 5.41 −6.61 14.32

0.185 166.62 166.56 62.19 35.21 35.18 1.69 −2.32 5.09 −7.02

0.200 163.98 163.95 60.76 35.46 35.46 −0.98 3.55 −3.24 9.11

0.250 155.47 156.33 56.25 36.13 36.34 −0.40 −3.51 −0.07 −10.15

0.300 147.21 144.73 53.40 38.09 37.53 1.13 2.68 2.67 6.62

To assess the veracity, the results obtained have been compared with the results
obtained using the mixture rule (10). This approach makes it possible to estimate the
upper and lower boundaries of the elastic moduli. These estimates correspond to parallel
and perpendicular structural elements (Fig. 6). An analysis of the results shows that the
mathematical expectation of the equivalent moduli of elasticity is between the upper and
lower bounds of the estimate according to the rule of the mixture, which confirms the
correctness of the constructed models. However, from it is seen that the upper boundary
of the confidence interval exceeds the upper estimate of the elastic moduli. This is
because the rule of the mixture does not take into account the random orientation of
the principal axes of the graphite crystals, and a comparison is possible only by average
values. This is also since the real properties of graphite are much more complicated than
isotropic, which provides for the rule of the mixture.
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Fig. 5. The dependence of the elastic characteristics of the material on the concentration of
inclusions

Emax = ψ · Eg + (1 − ψ) · Ef ;Emin =
(

ψ

Eg
+ 1 − ψ

Ef

)−1

, (10)

where, ψ – concentration in the range [0.054, 0.300]; Eg – graphite elastic moduli; Ef

– ferrite elastic moduli.
On the other hand, in the literature [22], the problems of finding the invariants of the

elastic moduli tensor are often considered. Such invariants have a mechanical meaning
and provide information on the elastic properties of the material under study. The found
invariants of the elastic moduli provide information on the properties of the material and
require the establishment of a smaller number of independent constants.

To find the corresponding invariants, it is necessary to introduce the concepts: eigen-
values – λ, and Eigen tensor of the second rank – qij. Then, for a plane stress state, the
tensor takes the form (11):
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Fig. 6. The upper and lower boundaries of the elastic moduli of the generated microstructure

Aij · qj = λ · qi, (i, j = 1, 2, 3). (11)

⎧
⎨

⎩

(A11 − λ) · q1 + A12 · q2 + A13 · q3 = 0
A21 · q1 + (A22 − λ) · q2 + A23 · q3 = 0
A31 · q1 + A32 · q2 + (A33 − λ) · q3 = 0

. (12)

The system of linear Eqs. (12) gives three orthonormal Eigen tensors: q(1)
i

, q(2)
i

, q(3)
i

.
Stresses and strains are represented by the expansion along with the basis of intrinsic
tensors (13):

σi = k(σ )
1 · q(1)

i + k(σ )
2 · q(2)

i + k(σ )
3 · q(3)

i ⇒ σ ∗
i ;

εi = k(ε)
1 · q(1)

i + k(ε)
2 · q(2)

i + k(ε)
3 · q(3)

i ⇒ ε∗
i ;

k(σ )
1 = σi · q(1)

i ; k(σ )
2 = σi · q(2)

i ; k(σ )
3 = σi · q(3)

i ;
k(ε)
1 = σi · q(1)

i ; k(ε)
2 = σi · q(2)

i ; k(ε)
3 = σi · q(3)

i .

(13)

Given Eq. (13), Hooke’s law in matrix form has a diagonal form (14), the elastic
moduli are given in three positive definite eigenvalues λi > 0, (i = 1, 2, 3):

⎡

⎣

〈
σ ∗
i

〉
〈
σ ∗
i

〉
〈
σ ∗
i

〉

⎤

⎦ =
⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦ ×
⎡

⎣

〈
ε∗
i

〉
〈
ε∗
i

〉
〈
ε∗
i

〉

⎤

⎦. (14)

Using the linear algebra library numpy.linalg, the eigenvalue and the right eigenvec-
tors of the square array for the elastic moduli are calculated. The results of mathematical
expectation and variance for three invariants of the elastic moduli and six elastic con-
stants for various concentrations of inclusions are shown in Table 4, and such dependence
is graphically shown in Fig. 7.
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Table 4. Statistical data of the invariants of the elastic moduli

� M[λ1], ×
1011

D[λ1], ×
1011

M[λ2], ×
1010

D[λ2], ×
109

M[λ3], ×
109

D[λ3], ×
109

0.054 2.86 1.49 7.45 0.53 1.74 1.20

0.057 2.86 1.49 7.41 0.64 2.19 1.61

0.060 2.85 1.48 7.38 0.75 2.53 1.61

0.065 2.84 1.47 7.30 1.09 3.15 1.86

0.070 2.83 1.47 7.22 1.08 3.02 2.15

0.075 2.82 1.45 7.20 1.19 3.13 2.07

0.080 2.81 1.44 7.11 1.12 3.55 2.20

0.085 2.80 1.44 7.06 1.31 3.83 2.49

0.090 2.79 1.42 7.05 1.42 3.61 2.35

0.100 2.76 1.40 6.90 1.61 4.07 2.63

0.135 2.69 1.34 6.54 2.26 4.88 3.18

0.150 2.66 1.31 6.49 2.56 5.57 3.84

0.170 2.61 1.26 6.34 2.97 5.34 3.20

0.185 2.58 1.24 6.19 3.08 5.61 4.10

0.200 2.55 1.22 6.05 3.06 4.99 3.58

0.250 2.46 1.15 5.59 3.55 7.29 4.04

0.300 2.36 1.07 5.30 4.05 6.89 4.95

7 The Yield Surface Calculation

One of the tasks of materials engineering is to establish the loading conditions that cause
plastic deformation. This is important to determine the load combination which leads to
a transition from the elastic to the plastic state. To find «safe» loading which is not lead
to plastic deformation.

In the case of uniaxial loading, this task is not particularly difficult. It is enough to
have a relation between stress and strain. Such data can be obtained from experiments
on simple tension and compression. However, for materials that are in conditions of
two and three-dimensional stress states, everything is not so clear. In such situations,
predicting the appearance of plasticity requires additional information.

In the case of a three-dimensional stress state, determining the yield surface is a
difficult task. This is due to several technical difficulties caused on the one hand by the
complexity of the experimental environment, and on the other hand, by the huge number
of samples that need to be tested. This problem is especially acute for composite and
heterogeneous materials. To solve this problem, computer simulation methods are used.
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Fig. 7. The dependence of the invariants of the elasticitymoduli on the concentration of inclusions

Computer modeling uses yield hypotheses in complex loading conditions [24]. All
hypotheses are based on the assumption that the yield of material in a multidimen-

sional stressed state occurs when the value is reached or exceeded the specific value
obtained from a simple uniaxial test.

The finding of the yield surface in this work is based on the hypothesis of the
specific energy of shaping (the Huber – Mises – Genki hypothesis) [24]. According to
the hypothesis, plastic strains of a sample in a complex stress state occurs when the
specific formation energy becomes equal to or exceeds the specific formation energy of
the material under the action of a uniaxial stress state.

For the microstructure which is consists of two types of materials (ferrite and
graphite), the maximum stresses for each phase are found. For graphite, the tensile
and compressive strengths differ significantly, therefore, separately for each type of
stress state, the ratios maximum stresses to the corresponding allowable tensile strength
are found. The yield surface is determined by the ratio of the principal stresses to the
safety factor. The calculation result for some concentrations of graphite inclusions in the
structure of ferrite is presented graphically in Table 5.
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Table 5. Yield surface for different concentration of inclusions

Calculation results KDE processed data

ψ
 =

 0
.0

54
ψ

 =
 0

.1
00

ψ
 =

 0
.1

85

The first column in Table 5 contains some concentrations of graphite inclusions. The
second column contains the calculation results presented as a set of points where the
abscissa axis is σ 1 and the ordinate is σ 2. These quantities are the maximum allowable
values of the principal stresses for ferrite and graphite materials respectively.
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Kernel density estimation (KDE) is away to estimate the probability density function
(PDF) of a random variable in a non-parametric way. In the third column of Table
5 presented a PDF of the principals stress values obtained during calculations. Yield
surface for different concentration of inclusions built with a library of statistical functions
scipy.stats using gaussian_kde method to calculate the estimator bandwidth.

8 Conclusions

The paper discusses an algorithm for studying the elastic mechanical properties of cast
iron. The elemental analysis of the created structural model is completed, the obtained
formulas for determining the elastic moduli, Poisson’s ratio, and shear moduli are com-
pleted. The analysis of the dependence of elastic characteristics on the content of graphite
inclusions is carried out. To evaluate the results, the mixture rule is applied to the aver-
aged elastic moduli. The results of numerical modeling showed a good ratio of the
calculated values of the Poisson’s ratio, elastic moduli, and shear with reference data.
On the other hand, the maximum allowable values of the principal stresses for ferrite
and graphite materials are calculated. According to the received data yield surfaces for
various concentrations of inclusions have been found and constructed. Going beyond
the surface indicates the appearance of plastic strains in the part.

Acknowledgment. This work has been supported by the Ministry of Education and Science of
Ukraine in the framework of the realization of the research projects: «Development of methods
for mathematical modeling of the behavior of new and composite materials aims to structural
elements lifetime estimation and prediction of engineering designs reliability» (State Reg. Num.
0117U004969), and «Development of methods of computational intelligence in problems of syn-
thesis of characteristics of responsible elements, increase of reliability and efficiency of innovative
equipment» (State Reg. Num. 0121U100730).

References

1. Sikoraab, P., Elrahmanac, M., Chunga, S.-Y., Cendrowskid, K., Mijowskad, E., Stephana, D.:
Mechanical and microstructural properties of cement pastes containing carbon nanotubes and
carbon nanotube-silica core-shell structures, exposed to elevated temperature. Cement Concr.
Compos. 95, 193–204 (2019). https://doi.org/10.1016/j.cemconcomp.2018.11.006

2. Salinas, A., Celentano, D., Carvajal, L., Artigas, A., Monsalve, A.: Microstructure-based
constitutive modelling of low-alloy multiphase TRIP steels. Metals 9(2), 250 (2019). https://
doi.org/10.3390/met9020250

3. Xu, H., Zhu, M., Marcicki, J., Yang, X.: Mechanical modeling of battery separator based on
microstructure image analysis and stochastic characterization. J. Power Sources 345, 137–145
(2017). https://doi.org/10.1016/j.jpowsour.2017.02.002

4. Son, S., et al.: Investigation of the microstructure of laser-arc hybrid welded boron steel. JOM
70(8), 1548–1553 (2018). https://doi.org/10.1007/s11837-018-2876-2

5. Zhang, Y., et al.: Influence of graphite morphology on phase, microstructure, and properties of
hot dipping and diffusion aluminizing coating on flake/spheroidal graphite cast iron. Metals
9(4), 450 (2019). https://doi.org/10.3390/met9040450

https://doi.org/10.1016/j.cemconcomp.2018.11.006
https://doi.org/10.3390/met9020250
https://doi.org/10.1016/j.jpowsour.2017.02.002
https://doi.org/10.1007/s11837-018-2876-2
https://doi.org/10.3390/met9040450


Computer Method of Determining the Yield Surface 391

6. Ramakrishnan, G., Dinda, P.: Microstructure and mechanical properties of direct laser metal
deposited Haynes 282 superalloy. Mater. Sci. Eng. 748(4), 347–356 (2019). https://doi.org/
10.1016/j.msea.2019.01.101

7. DeCost, B., Holm, E.: A computer vision approach for automated analysis and classification
of microstructural image data. Comput. Mater. Sci. 110, 126–133 (2015). https://doi.org/10.
1016/j.commatsci.2015.08.011

8. Pereira, R.F., da Silva Filho, V.E.R., Moura, L.B., Kumar, N.A., de Alexandria, A.R., de
Albuquerque, V.H.C.: Automatic quantification of spheroidal graphite nodules using com-
puter vision techniques. J. Supercomput. 76(2), 1212–1225 (2018). https://doi.org/10.1007/
s11227-018-2579-z

9. Campbell, A., Murray, P., Yakushina, E., Marshall, S., Ion, W.: New methods for automatic
quantification of microstructural features using digital image processing. Mater. Des. 141,
395–406 (2018). https://doi.org/10.1016/j.matdes.2017.12.049

10. Kwon,O., et al.: A deep neural network for classification ofmelt-pool images inmetal additive
manufacturing. J. Intell. Manuf. 31(2), 375–386 (2018). https://doi.org/10.1007/s10845-018-
1451-6

11. DeCost, B., Lei, B., Francis, T., Holm, E.: High throughput quantitative metallography for
complex microstructures using deep learning: a case study in ultrahigh carbon steel. Microsc.
Microanal. 25(1), 21–29 (2019). https://doi.org/10.1017/S1431927618015635

12. Fragassa,C.,Babic,M.,Bergmann,C.,Minak,G.: Predicting the tensile behavior of cast alloys
by a pattern recognition analysis on experimental data. Metals 9(5), 557 (2019). https://doi.
org/10.3390/met9050557

13. Shapovalova, M., Vodka, O.: Image microstructure estimation algorithm of heterogeneous
materials for identification their chemical composition. In: IEEE 2nd Ukraine Conference
on Electrical and Computer Engineering (UKRCON), Institute of Electrical and Electronics
Engineers Inc., Ukraine, Lviv pp. 975–979 (2019). https://doi.org/10.1109/UKRCON.2019.
8879861

14. Hua, F., Yang, Y., Guo, D., Tong, W., Hu, Z.: Cailiao Kexue Yu Jishu Elasto-plastic FEM
analysis of residual stress in spun tube. J. Mater. Sci. Technol. 20, 379–382 (2004)

15. Seriacopi, V., Fukumasu, N., Souza, R., Machado, I.: Finite element analysis of the effects
of thermo-mechanical loadings on a tool steel microstructure. Eng. Fail. Anal. 97, 383–398
(2019). https://doi.org/10.1016/j.engfailanal.2019.01.006

16. Park, H., Jung, J., Kim, H.: Three-dimensional microstructure modeling of particulate com-
posites using statistical synthetic structure and its thermo-mechanical finite element analysis.
Comput. Mater. Sci. 126, 265–271 (2017). https://doi.org/10.1016/j.commatsci.2016.09.033

17. Fischer, C., Reichenbacher, A., Metzger, M., Schweizer, C.: Computational assessment of
the microstructure-dependent thermomechanical behaviour of AlSi12CuNiMg-T7—meth-
ods and microstructure-based finite element analyses. In: Naumenko, K., Krüger, M. (eds.)
Advances in Mechanics of High-Temperature Materials. ASM, vol. 117, pp. 35–56. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-23869-8_2

18. Vodka, O.: Processing microsection images to determine elastic characteristics of cast iron.
IEEEUkraine SYW-2018Congress. Student, Young Professional andWomen in Engineering,
Kyiv, Ukraine (2018)

19. Shapovalovam, M., Vodka, O.: Computer methods for constructing parametric statistically
equivalent models of high-strength cast iron microstructure to analyze its elastic characteris-
tics. Notes of the Tavrida National University V.I. Vernadsky. Series: Technical Sciences, vol.
30(69), 6, pp. 179–187. (in Ukrainian) (2019). https://doi.org/10.32838/2663-5941/2019.6-
1/33

20. Shapovalova, M., Vodka, O.: Computer methods for modeling the synthetic structure of cast
iron for statistical evaluation of its mechanical properties and strength characteristics. BNTU
Minsk: 277–284 ISSN (online): 2310-7405 (2020). (in Russian)

https://doi.org/10.1016/j.msea.2019.01.101
https://doi.org/10.1016/j.commatsci.2015.08.011
https://doi.org/10.1007/s11227-018-2579-z
https://doi.org/10.1016/j.matdes.2017.12.049
https://doi.org/10.1007/s10845-018-1451-6
https://doi.org/10.1017/S1431927618015635
https://doi.org/10.3390/met9050557
https://doi.org/10.1109/UKRCON.2019.8879861
https://doi.org/10.1016/j.engfailanal.2019.01.006
https://doi.org/10.1016/j.commatsci.2016.09.033
https://doi.org/10.1007/978-3-030-23869-8_2
https://doi.org/10.32838/2663-5941/2019.6-1/33


392 M. Shapovalova and O. Vodka

21. Ambatsumian, S.: Theory of Anisotropic Plates. Nayka. Moscow (1967). 268 p. (in Russian)
22. Ostrosablin, N.: About the invariants of the fourth-rank tensor of elastic moduli. Sib. Jorn.

Industr. Mach. 1(1), 155–163 (1998). (in Russian)
23. Annin, B., Ostrosablin, N.: Anisotropy of the elastic properties of materials. Appl. Mech.

Tech. Physic. 49(6), 131–151 (2008). (in Russian)
24. Beliaev, N.: Strength of materials. Science, Chap. (ed.) Physical and Mathematical Literature

(1965). 856 p. (in Russian)
25. GOST3443–87:Castings ofCast IronofVariousShapes ofGraphite.Methods for determining

the structure (ISO 945–75*). [Instead of GOST 3443–77]. M.: Standardinform. (2005). (in
Russian)

26. Kudii, D., Khrypunov, M., Zaitsev, R., Khrypunova, A.: Physical and technological founda-
tions of the chloride treatment of cadmium telluride layers for thin-film photoelectric con-
verters. J. Nano. Electron. Phys. 10(3), 03007 (2018). https://doi.org/10.21272/jnep.10(3).
03007

27. Zaitsev, R., Kirichenko, M., Khrypunov, G., Prokopenko, D., Zaitseva, L.: Hybrid solar gen-
erating module development for high-efficiency solar energy station. J. Nano. Electron. Phys.
10(6), 06017 (2018). https://doi.org/10.21272/jnep.10(6).06017

28. Avdieieva, O., Usatyi, O., Vodka, O.: Development of the typical design of the high-pressure
stage of a steam turbine. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M.
(eds.) DSMIE 2020. LNME, pp. 271–281. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-50491-5_26

29. Lytvynenko, O., Tarasov, O., Mykhailova, I., Avdieieva, O.: Possibility of using liquid-metals
for gas turbine cooling system. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J.,
Edl, M. (eds.) DSMIE 2020. LNME, pp. 312–321. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-50491-5_30

30. Shapovalova, M., Vodka, O.: A data-driven approach to the prediction of spheroidal graphite
cast iron yield surface probability characteristics. In: Nechyporuk, M., Pavlikov, V., Kritskiy,
D. (eds.) ICTM 2020. LNNS, vol. 188, pp. 565–576. Springer, Cham (2021). https://doi.org/
10.1007/978-3-030-66717-7_48

31. Kelin, A., Larin, O., Naryzhna, R., Trubayev, O., Vodka, O., Shapovalova, M.: Mathematical
modelling of residual lifetime of pumping units of electric power stations. In: Nechyporuk,
M., Pavlikov, V., Kritskiy, D. (eds.) Integrated Computer Technologies in Mechanical Engi-
neering. AISC, vol. 1113, pp. 271–288. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-37618-5_24

32. Kelin, A., Larin, O, Naryzhna, R, Trubayev, O, Vodka, O, Shapovalova, M : Estimation of
residual life-time of pumping units of electric power stations. In: IEEE 14th International
Conference on Computer Sciences and Information Technologies (CSIT), Lviv, Ukraine. 1,
153–159 (2019). https://doi.org/10.1109/STC-CSIT.2019.8929748

https://doi.org/10.21272/jnep.10(3).03007
https://doi.org/10.21272/jnep.10(6).06017
https://doi.org/10.1007/978-3-030-50491-5_26
https://doi.org/10.1007/978-3-030-50491-5_30
https://doi.org/10.1007/978-3-030-66717-7_48
https://doi.org/10.1007/978-3-030-37618-5_24
https://doi.org/10.1109/STC-CSIT.2019.8929748

	Computer Method of Determining the Yield Surface of Variable Structure of Heterogeneous Materials Based on the Statistical Evaluation of Their Elastic Characteristics
	1 Introduction
	2 Objectives
	3 Image Processing and Generation of the Statistically Equivalent Artificial Microstructure
	4 Finite Element Model
	5 Homogenization Procedure and Elastics Constant Determination
	6 The Results of Elastic Constant Conclusion
	7 The Yield Surface Calculation
	8 Conclusions
	References




