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Abstract. Robustness and operational reliability are some advantages that present
rotating machine components as inevitable parts of most mechanical engineering
systems. To keep rotating machines function at optimal conditions, control and
maintenance of machine components must well be applied. Improper analysis
of high modulated non-stationary data, acquired from machine components (e.g.
gears and bearings) may lead to complete machine break. Despite the body of
research work, available through the literature, most of existing condition moni-
toring (CM) methods proved to be inefficient for real world applications. Hence,
this would still suggest an obvious need for fundamental modifications and/or
development of new CM techniques. Here we aim to tackle this issue by propos-
ing Signal Intensity Estimator (SIE) as an alternative technique, tailored to the
task for monitoring of high modulated data. Our main interest lies with the intro-
duction of the idea behind the SIEmethod and its previous successful applications
for monitoring Suzlon and Repower (Wind Energy Companies) wind machines.
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1 Introduction

Machine components such as bearings and gears have been utilised for various machin-
ing and industrial processes since the ancient era. Feasibility for condition monitoring
(CM) of bearings and gears using signal processing techniques was off the shelf deter-
mined (Elforjani 2020). Observational studies have demonstrated that most of the well-
established CM tools are only highly relevant/sensitive in the detection of early presence
of machine faults. Also, the potential of the use of these methods for monitoring the well
advanced damages remains low (Elforjani and Bechhoefer 2018). Another important
constraint on all the work discussed in this area is that the reliability of these techniques
to handle and characterize the measured data from machines under non-stationary oper-
ating conditions is not yet sufficiently proved (Elforjani 2020). Most of the commonly
used time and frequency analysis methods assume that the operating conditions (e.g.
speed and load) can be held reasonably constant.
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However, in real world applications, machine data very often is acquired from an
environment under non-stationary operating conditions. This type of data consists of
very extremely high modulation rates that need capable, efficient and workable CM
tools for a thorough analysis. Practical failings of the existing CM methods in tackling
the high modulated data were highlighted in the reports provided by some wind energy
companies (e.g. Suzlon & Repower) (Elforjani 2020; Elforjani and Bechhoefer 2018).
Due to non-stationarity, information of bearings’ faults, for instance, from Repower
wind machines was superimposed by the gears’ meshing signals. As a consequence,
what is called high order cyclostationary process (signals with varying properties e.g.
statistical variance) was generated. This led the applied CM tools to unworkably observe
and locate the carrier frequencies of the bearings under diagnosis.

To tackle the non-stationarity issue, the authors have recently proposed Signal Inten-
sity Estimator (SIE), which was inspirational to numerous subsequent works. SIE exhib-
ited excellent performance in almost all cases and it was shown to be more reliable than
the existing methods.

Until recently, the SIE method has passed through major changes, updates and mod-
ifications not only to alleviate and ease its computational complexity but also to improve
its overall accuracy. It should be telling that early versions of SIE algorithms were only
limited to the analysis of the experimental data and there was no definitive method or
a single approach universally suitable for how values of the required parameters such
as the maximum frequency of analysis and the windows size should be obtained. As a
consequence of this, tedious trial and error method remained the only attempt to solve
this problem (Elforjani 2016, 2018). Although similar SIE idea is still applied, the most
updated SIE version significantly differs in the way it handles the selection of such
parameters. It was reported that the updated version does not suffer from any issues
raised earlier and its algorithm provides flexibility to tackle very complex challenges
in simple, robust and reliable computational process and leaves no requirement for any
further calculation steps. However, to our knowledge, there may not be any published
documents surrounding the concepts of SIE method in very sufficient and comprehen-
sive details. For the sake of completeness, the main objective of the present chapter is to
bring together and thoroughly explain both the basic and advanced concepts of the most
updated SIE method in a single standard document that comes in handy when machine
diagnostic is performed. The chapter starts with a thorough overview of SIE method
and then progresses to highlight its applications for the analysis of data from real world
wind machines (Repower & Suzlon wind machines).

2 Signal Intensity Estimator (SIE)

Statistical parameters such as Root Mean Square (RMS), kurtosis (KU), and Crest Fac-
tor (CF) are broadly used to extract the carrying information from vibration signals. In
general, these fault indicators are attractive to the field analysts, who are mainly practical
than theory oriented, because they are very fast to compute and do not need laborious
knowledge. Also, they can be incorporated into the monitoring systems at very low cost.
However, due to the nature of today’s CM data, these fault indicators suffer from issues
such as high dimensionality, high modulation rates, and rapid transient changes. When
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trying to apply KU or CF in practice to vibration data from well-advanced damaged
machine, they become insignificant/unresponsive and their levels will drop to that sim-
ilar to undamaged machines. Yet, KU, CF, and RMS are essentially measured over a
predefined signal chunk (one value indicator) and, hence, their values were reported to be
unaffected by transient changes that typically occur over micro seconds. Further, these
parameters can only provide time domain information, which is not always sufficient to
obtain an exact match between the failure mode and the faulty component.

Recently, Spectral Kurtosis (SK) algorithmwas proposed to handle this issue (Antoni
2006). Often faultymachine show significant highKU levels, whichwill give a rise to the
impulsive responses. This will lead the acquired data to have varying statistical contents,
in particular, if the machine is working under varying operating conditions. Thus, the
idea behind the SK method is to locate the varying and/or non-stationary events in the
frequency domain. The SK algorithm basically attempts to first calculate the KU values
at different frequency bands and then identify the location of the maximum KU. The
frequency band of the maximum SK level will eventually be used to design a signal
filter to extract the high level impulsive signals. Though several attempts were made to
improve the overall calculation procedures and ease the difficulty in the investigation
of the entire plane, it should be telling that the method is still highly dependent on an
iterative and complicated computational process. Yet, improper selection of the optimal
size for the frequency bands has substantial impacts on the overall results. Also, the
applicability of this method in the case of high modulated data is not always possible
since the calculatedKUvalues by nature are very noisy and the SK, as a result, will not be
able to resolve the highmodulation rates in the analyzed signals; vibration spectrum very
often is overwhelmed by broad and noisy frequency spikes (Elforjani and Bechhoefer
2018).

This motivates the need for an alternative approach that provides the flexibility of
being applicable even in the cases of high modulated data. Signal Intensity Estimator
(SIE) method has a distinction from the other tools as it employs the cumulative sum
(CUSUM) for monitoring any sequential samples (Elforjani 2020). The use of CUSUM
will firstly allow the total to be identified at any time interval without having to sum
the entire sequence. Secondly, if any particular activities are not individually important,
CUSUM can easily save having to record the sequence itself. Thirdly, processing sev-
eral samples from failure histories using CUSUM’s will result in greater sensitivity for
detecting transient shifts or variation in trends over time. In practice, SIE is essentially a
piecewise windowing method that attempts to analyze any CM data, regardless its phys-
ical units, using a twostep process. It is important at this point to note that SIE method
is fundamentally different from the classical envelope approaches as the process pri-
marily incorporates the segmentation of the entire signal into equal width segments and
CUSUM is then used to statistically chart the signal intensity of current and preceding
values.

To apply the SIE, the sum of cumulative sum (SCSsegment) of a predefined segment
(window) in a given time domain signal is normalized to the overall root mean square
(RMSoverall) of the same signal.Aswell-known, the rotational speed (RPM) is considered
to be one of causal factors of the non-stationarity and it is therefore the RPM is employed
by the SIE algorithm to calculate the Maximum Frequency of Analysis (Fmax). Using
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this approach for the calculation of segment sizes could significantly alleviate the issue
of what is called the losses in time localization and frequency localization. With the
known of RPM at any time and the Machine Component Constant (β), Fmax can simply
be calculated using Eq. 1.

Fmax = β · RPM
60

(1)

It is worth to mention that each β value in Eq. 2 is assigned to a specific machine
component (e.g. shafts, bearings, gears, etc.). After careful iterative selection process,
the validation results confirmed that the process produced β values within appropriate
tolerance levels.

β =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

20, for shafts
40, for bearings
60, for pumps
80, for gears
100, for slow rotational speeds

(2)

The calculated Fmax values are compared with published SIE Standard Frequencies
(SSF’s), which have been quantitatively and qualitatively validated experimentally to
eventually ensure the reproducible results. The SSF is very important factor in the SIE
algorithmas it allows for a robust calculationof themost appropriatewindows (segments)
size and significantly helps to avoid any indefinite settings. Table 1 illustrates an example
of these SIE Standard Frequencies used for bearings and gears.

Upon the completion of selecting SSF value, SIE algorithm calculates the required
number of segments (n) in the analysed signal using the Sampling Rate Frequency (FS).
This can be described through an equation such as the following:

nsegments = Fs

SSF
(3)

Mathematically, SIE can be computed using one of two approaches. The first app-
roach is a time domainmethod where SIE values are directly calculated from the original
data (Eq. 4). The SIE values in the second approach are extracted from the resulting Fast
Fourier transform (FFT) applied to every individual segment (Eq. 5).

SIET |segment = SCSsegment
RMSoverall

(4)

SIEF |segment =
∑

∣
∣
∣
∣FFT

(
CSsegment
RMSoverall

)∣
∣
∣
∣ (5)

When non-transient type signals are analyzed, identical statistically SIE charts will
be noted and the ratio of SIE between any two adjacent segments will approximately
approach a value of one. For the signals associatedwith transient characteristics, this ratio
will be greater than one. It is of interest to mention that SIE algorithm is also integrated
with another algorithm for performing the statistical test for normality to identify the
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Table 1. Example of SIE standard frequencies for the analysis frequency (Hz).

Machine
component
(Type of
application)

β Analysis frequency

Fmax
a SSFb

Bearings 40 Fmax < 800 Equal to Fmax
c

Bearings 40 800 ≤ Fmax ≤ 1500 1000–2000

Bearings 40 Fmax > 1500 2000–4000

Bearings 40 Fmax > FSd <NFe

Gears 80 Fmax < 800 Equal to Fmax
c

Gears 80 800 ≤ Fmax ≤ 1500 2000–4000

Gears 80 Fmax > 1500 4000–6000

Gears 80 Fmax > FSd <NFe

aThis Fmax is calculated using Eq. (1).
bThis SSF is selected based according to the calculated Fmax to
obtain the optimal frequency localisation.
cThe Fmax value is selected if it is less than 800 Hz.
dThe FS is the sampling rate frequency.
eThe selected SFF value is set to be close to the Nyquist Frequency
if Fmax value is greater than the sampling rate frequency.

variation of statistical contents (e.g. variance and mean) in the data. This algorithm
can also perform the test for periodicity using the time domain autocorrelation method.
Further, representation of frequency features for the entire SIE signal is the counterpart of
SIE analysis. Several spectral frequency tools such as FFT, Wavelet Transform (WT), to
name few, are employed to generate the final SIE signal spectrum that eventually depicts
the results in both visual and numerical fashions. It was reported that SIE method could
produce visibly good results and its feasibility for the analysis of experimental and/or
real world data has been proven in a number of published research work (Elforjani 2020;
Elforjani and Bechhoefer 2018). In the next section, analysis of datasets from two real
world wind machines using SIE algorithm is highlighted.

3 Applications of SIE Method (Case-Studies)

This section aims to provide an overview of previous use of SIE method for handling the
non-stationary and highmodulated data in some details. For the purpose of this objective,
SIE method was applied to two datasets provided by Repower and Suzlon (Wind Energy
Companies). Due to the proprietary rights to the wind machines, it is worth remarking
here that machine specifications and the measurements setup are briefly discussed. To
provide credibility to the SIE method, results were directly compared with the existing
standard references commonly used for machine diagnostic.
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3.1 Repower Wind Machine (Bearing Case-Study)

For this case-study, vibration data were prospectively collected from one of commer-
cial Repower wind machines (M92). These turbines are fitted with Winergy gearboxes
(PEAB 4481.0) to produce a nominal output power of 2.05MW. Three bearings are used
to support the high speed shaft rotating at an average rotational speed of 1374RPM.Char-
acteristic frequencies for bearing components are summarised in Table 2. The provided
vibration data was continuously acquired from one of the machines with an abnormal
performance for 6 days (4th, 5th, 6th, 8th, 9th and 11th of March 2014). The acquisition
systemwas connected to one radial accelerometer channel to gather vibrationwaveforms
in (g) once a day, at a sampling rate of 48.828 kHz, and over a recording time of 6 s.
Rotational speed was also measured by one tachometer channel at a constant angular
sampling rate of 2/rev.

Repower reported that this data was unworkably analysed and only Bore-Scoping
method (visual inspection) could detect a faulty bearing outer-race (“High Speed Shaft
GS FWD” id = “K”). The forcing frequency of the faulty outer-race is approximately
177.8 Hz. Several analyses have been consecutively undertaken here using SIE method
and SK algorithm.

Table 2. Characteristic frequencies of bearing components.

Race name Bearing convention

“High speed shaft RS” id =
“J”

“High speed shaft GS
FWD” id = “K”

“High speed shaft GS
AFT” id = “L”

Retainer 0.42 f r* 0.43 f r 0.41 f r

Roller 3.26 f r 3.68 f r 2.17 f r

Inner 9.70 f r 10.16 f r 7.07 f r

Outer 7.18 f r 7.77 f r 4.88 f r
*f r is the shaft rate in Hz.

The first set of analysis involved the use of autocorrelation test to examine the
periodicity in the resulting SIE and SK values. Illustrated results in Fig. 1 have proven
that SIE is adequate for the identification of the periodicity corresponded to the faulty
out-race.

Data fromday 4 and day 11was also subjected to additional processing using spectral
frequency tools. It is observed that SK algorithm could not efficiently demodulate the
analysed vibration signals and the noisy frequency peaks overwhelmed the resulting
spectrum, though some signs of faulty outer-race could be spotted in the data from day
11. In contrast to the SK behavior, seen in Figs. 2 and 3, the SIE considerably produced
very broad demodulated bands for the two days. The diagrams of SIE spectrum are
dominated by clear evidence of cyclic frequencies corresponded to the faulty bearing
outer-race. The remarkable feature of the SIE method is that it could clearly show
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Fig. 1. Results of autocorrelation analysis for SIE and SK

symptoms of faulty bearing installed on a high speed shaft such as high amplitudes at
1BPFO and 2BPFO, which are completely well-matched with those fault signs reported
in standard machine diagnostic references (Mobius Institute 2019; Nakhaeinejad and
Bukowitz 2011).

Fig. 2. Results of frequency analysis (day 4)
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Fig. 3. Results of frequency analysis (day 11)

3.2 Suzlon Wind Machine (Gearbox Case-Study)

In this case, 265 h of measured vibration data was obtained from a SuzlonM88 wind tur-
bine gearbox. The nominal output power and the nominal output speed of all SuzlonM88
wind machines are 3 MW and 1800 RPM respectively. One accelerometer channel was
attached to the gearbox casing tomeasure radial vibration levels from intermediate-high-
speed-stage side. The connected acquisition system has continuously recorded vibration
measurements in (g) for 6 s, every 10 min, with a sampling rate of 97.656 kHz. Rota-
tional speed was simultaneously recorded over 40 s at a constant angular sampling rate
of 8/rev using two tachometer channels. As the measured vibration levels have signifi-
cantly deviated from the conventional performance, the machine has been taken out of
the service. The analysis report indicated that a faulty helical pinion gear with 32 teeth
could only visually be detected. It should however be noted that prior to the visual field
inspection, some online CM tools were unworkably used to identify the causal factors
behind this abnormality.

Figures 4 and 5 provide an overview of the spectral analysis using SIE and SK
methods. Based on the results, the SK technique after 200 h intomeasurements produced
very modulated spectrum with very scattered and broad frequency spikes corresponded
to the rotational speed (1×). Yet, the first and second Gear Mesh Frequencies (GMF) of
the faulty pinion can hardly be located. However, this is not the case for the SIE spectrum,
where in the addition to the appearance of 1× and 2×RPM of the damaged pinion, clear
damage signs such as high amplitude of the first GMF and multiple sidebands around
it, spaced at 1× RPM, can also be noted. One of the key findings from Figs. 4 and
5 is the high excited Gear Natural Frequency (GNF) surrounded by some sidebands at
480 Hz. This spike along with its second and third harmonics and the presence of 1× and
2× RPM also represent clear symptoms for an eccentric gear (Mobius Institute 2019;
Nakhaeinejad and Bukowitz 2011).
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Also was noted, that the second GNF was eventually convoluted with the first mod-
ulated GMF of the pinion. The significant high amplitude in the GMF and the GNF of
the pinion gear in SIE spectrum can also be attributed to the high friction and the high
load on the pinion teeth. Another cause of these significant peaks may be referred to the
gear wear. Important multiple sidebands around these frequencies are not only common
signs for the broken tooth but also they are the signs of the presence of pitch diameter
wear (Mobius Institute 2019; Nakhaeinejad and Bukowitz 2011).

Fig. 4. Results of frequency analysis (200 h)

Fig. 5. Results of frequency analysis (260 h)
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As the damage has well developed, results from the SK spectrum have become
insignificant. This reinforces the above view that the KU values drop to undamaged
machine levels when the fault is well advanced. Unlike SK, SIE spectrum, presented
in Fig. 5, continued to offer good frequency localization, where the presence of intense
peaks corresponded to faulty gear can clearly be noted. These findings are in line with
previous results reported in Fig. 4, though relatively lower amplitude in GMF and GNF
is noted.

4 Conclusion

As per the earlier published work in the literature, this chapter was edited to serve
as notes and standard reference for those who want to learn the detailed computational
process of SIEmethod in the field ofmachinery conditionmonitoring. It also summarised
the feasibility of analysing the non-stationary vibration data acquired from real world
applications using SIE method.

Outcomes of various analysis led to the conclusion that SIE approach can outperform
other state-of-the-art CM algorithms such as SK. The SIE results agree well with the
existing standard references for machine fault monitoring. Also, the analysis has also
shown that it is difficult to draw any firm conclusions based on the observations from the
SK spectrum and the obtained results should be interpreted with caution when excessive
and high modulation rates are present in the analyzed data.
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