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Abstract CubeSats have the demonstrated potential to contribute to commercial,
scientific, and government applications in remote sensing, communications, naviga-
tion, and research. Despite significant research into improving CubeSat operational
efficiency, there remains one fundamental limitation of CubeSats for EO imaging
applications: the small lenses and short focal lengths result in imagery with low
spatial resolution. This paper reviews the previous research on super-resolution
techniques and proposes potential applications of super-resolution to CubeSat EO
imagery.
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1 Introduction

CubeSats have the demonstrated potential to contribute to commercial, scientific,
and government applications in remote sensing, communications, navigation, and
research at a fraction of the size, development costs, and launch costs of the
large, exquisite, multifunction satellites designed to support Cold War military
requirements. Poghosyan et al. (Poghosyan and Golkar 2017) and Selva and Krejci
(2012) conducted reviews of the recent history of CubeSat missions and surveyed
CubeSat contributions to the scientific and experimental communities with the
goal of determining the applications for which CubeSats are best suited. Missions
such as Earth science, astrophysics, in situ laboratory applications, and technology
demonstration have already benefitted from CubeSat contributions (Poghosyan and
Golkar 2017; Selva and Krejci 2012). CubeSats offer significant advantages in terms
of reduced development timelines and development costs. The small size and weight
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of CubeSats allow multiple satellites to be launched on the same rocket, thus greatly
reducing launch costs (Selva and Krejci 2012). However, the reduced size, weight,
and power margins inherent in CubeSats also have disadvantages. Smaller satellites
are typically limited to single payloads or functions. The reduced functionality of
CubeSats requires larger numbers of satellites to achieve the same performance.
The mitigation of these disadvantages has been the subject of a significant body of
research, such as Altinok et al. use of decision forests to conduct image analysis
onboard a CubeSat (Altinok et al. 2016), Chang et al. and Pu et al. exploration
of super-resolution through neighbor embedding (Chang et al. 2004; Pu et al.
2009), Denby’s and Lucia’s use of on-orbit edge computing to increase CubeSat
efficiency (Denby and Lucia 2019), and Lüdenmann et al. employing sub-pixel
image registration on a nanosatellite (Lüdenmann et al. 2019).

For traditional electro-optical (EO) imagery applications, high resolution (HR)
requires large lenses and long focal lengths, which in turn require large satellites
to support them (Buzzi et al. 2019). Past research has demonstrated that on-
board image processing techniques can make more efficient use of limited satellite
resources (Altinok et al. 2016; Blaschke et al. 2014; Denby and Lucia 2019;
Lüdenmann et al. 2019). The continued miniaturization of electronics makes it
increasingly possible to apply these preprocessing algorithms to CubeSat missions
(Denby and Lucia 2019; Edeler et al. 2011; Lüdenmann et al. 2019). Work in
pixel registration (Lüdenmann et al. 2019), feature classification (Chia et al. 2015),
parallel computing (Denby and Lucia 2019), and radar interferometry (Hacker and
Sedwick 1999) has laid the groundwork for the collection of EO imagery using
multiple CubeSats flying in close formation.

Despite the data handling improvements, there remains one fundamental lim-
itation of CubeSats for EO imaging applications: the small lenses and short
focal lengths result in imagery with low spatial resolution. These low resolutions
(LR) are sufficient for scientific applications such as weather forecasting and
agricultural assessments (Poghosyan and Golkar 2017; Selva and Krejci 2012), but
are insufficient for defense mission planning and intelligence operations. There are
two primary methods for improving spatial image resolution: hardware solutions
that focus on improved camera capabilities and analytical methods that focus
on software solutions (Khattab et al. 2018). Hardware improvements are often
restricted by cost, large size, or technology readiness limitations – all three of which
we’ve identified as being incompatible with the CubeSat concept. Additionally,
optical imaging hardware is subject to the Rayleigh criterion in which light
diffraction limits the best possible resolution (Lee and Ashok 2019; Sprigg et al.
2016). Thus, a computational algorithm solution is required to improve EO spatial
resolution of CubeSat images.

For reference, CubeSats are manufactured in a variety of form factors that
are all based on a 1U form, which is a 10-centimeter cube (Fig. 1a) (Space
Flight Now https://spaceflightnow.com/2015/10/16/nasa-to-fly-cubesats-on-three-
new-commercial-launchers/). Other CubeSat form factors are based on scaling
that 1U form factor, the most common variations of which are 2U, 3U, and 6U
form factors. A 3U CubeSat is a 10 cm × 10 cm × 30 cm satellite, roughly the
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Fig. 1 (a) NASA file photo of a 1U form factor CubeSat (Space Flight Now https://spaceflightnow.
com/2015/10/16/nasa-to-fly-cubesats-on-three-new-commercial-launchers/); (b) SatRevolution
(REC) CubeSat, 2U and 6U form factor, Earth imaging 50cm resolution; (c) Plant Labs
(Dove) CubeSat, 3U form factor, Earth imaging 3.7 m resolution (NanoSats Database https://
www.nanosats.eu/tables#constellations)

size of a loaf of bread. Figure 1b, c is 2U and 3U CubeSats, respectively. Figure
1b, c images are excerpted from a Table of Commercial CubeSat Constellations
(NanoSats Database https://www.nanosats.eu/tables#constellations).

This paper reviews the previous research on super-resolution (SR) and proposes
potential applications of super-resolution to CubeSat EO imagery. Sections 2 and 3
discuss the two main categories of super-resolution: single-image super-resolution
and multi-image super-resolution, respectively. Section 4 proposes potential appli-
cations of super-resolution to a CubeSat imagery system architecture, followed by
concluding remarks in Sect. 5.

2 Single-Image Super-Resolution

Single-image super-resolution (SISR) is a relatively recent field of research and
concerns the estimation of an HR image from a single LR image (Qureshi et al.
2012). SISR requires a training database of LR and HR pairs with specific features
and segments common to both and annotated for machine learning algorithms.
There are three main categories of SISR algorithms: interpolation-based algorithms
reconstruct HR images using existing pixels to interpolate probable missing pixels;
reconstruction-based algorithms use a priori knowledge (down-sampling, blurring,
and warping) to recover the HR image; learning-based algorithms use dictionary
pairs of training and testing images to estimate HR images (Yao et al. 2020).

Guo et al. (2019) developed a generalized image restoration neural network
called the deep likelihood network (DL-Net). This research is focused on image
restoration tasks that aren’t limited to narrow applications based on the original
neural network training data set. Typically, these training data are generated by
intentionally degrading a high-resolution image; these training sets tend to result
in poor generalization by the network. The authors build upon single-image super-
resolution (SISR) through neighbor embedding as developed by (Chang et al. 2004;
Pu et al. 2009; Timofte et al. 2013) to design an image interpolation algorithm
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capable of generalizing from a variety of image degradation types. This process
makes use of the local geometry within neighboring image segments to extrapolate
from low-resolution to high-resolution images.

Fan and Yeung (2007) expand on the SISR application by studying the distri-
bution of small image patches to determine the types of image structures (edges,
corners, outlines, etc.) that are likely to occur in the image. The authors assume
similar local geometries between the image patches to neighborhood relationships
between the low-resolution and corresponding high-resolution training images. By
retaining image patch geometric relationships and inter-patch relationships with
neighbors, the authors are able to generate high-resolution images that are both
accurate and smooth.

Ismail et al. (2020) explore applications of super-resolution where there is an
insufficient quantity or quality of neural network training data. Propose the use
of adaptive network-based fuzzy inference system (ANFIS) to interpolate effective
mappings from low-resolution to high-resolution images, given sparse training data.

Al-Mansoori and Kunhu (2013) evaluate three well-known interpolation tech-
niques: nearest neighbor, bilinear, and bicubic interpolation. In all three cases, the
authors use a single low-resolution image and perform the interpolation techniques
to compare the results. The initial experiment limited the magnification factors
as a proof of concept. In all example-based super-resolution results, the bicubic
interpolation yielded smoother edges and more detailed high-resolution images.

Since SISR methods by definition only use one LR input image, the SISR
algorithms tend to be computationally faster because they don’t require motion
estimation and pixel registration between input images (Bätz et al. 2015). However,
SISR algorithms have a fundamental limitation in that the training set must be
similar to the desired HR image in order for the reconstruction algorithms to be
effective (Qureshi et al. 2012). Additionally, the possible resolution enhancement is
limited compared to multi-image super-resolution techniques (Bätz et al. 2015).

SISR techniques are fast, less computationally intensive, and capable of pro-
ducing sharp HR images for specific applications. However, SISR methods do not
generalize well to large-scale problems and require large databases of LR/HR image
pairs in order to estimate and reconstruct HR images. Additionally, as discussed
in the following section, SISR methods cannot take advantage of relative motion
between a series of LR images to achieve better resolution improvements. These
limitations mean that SISR techniques cannot leverage all the advantages of satellite
imagery and therefore are not ideal for CubeSat SR applications.

3 Multi-image Super-Resolution

Multi-image super-resolution (MISR) is a well-studied problem which typically
consists of three stages: registration estimates the shifts between LR images, relative
to a reference image, with sub-pixel accuracy; interpolation obtains a uniform HR
image from a nonuniform composite of LR images; and restoration removes the
image blur and noise. MISR can be further subdivided into frequency domain
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techniques and spatial domain techniques (Qureshi et al. 2012). The relative motion
between LR input images produces the sub-pixel shifts necessary to achieving
higher-resolution enhancement by accounting for information from adjacent image
frames (Bätz et al. 2015).

Sub-pixel motion must be present in the input sequence frames in order to
realize the best possible resolution enhancement using MISR techniques. However,
this sub-pixel motion also requires highly accurate motion estimation in order
to avoid introducing artifacts from erroneous motion vectors (Bätz et al. 2016a).
Bätz and colleagues have published a series of papers (Bätz et al. 2015, 2016a, b,
2017) proposing various methods to minimize the introduction of these artifacts
and to improve the overall image enhancement results. Their proposed methods
include locally adaptive denoising (Bätz et al. 2017) which introduced a step
between interpolation and restoration, dual weighting (Bätz et al. 2016a) which
employs both a motion confidence weight and a distance weight to resolve motion
estimation errors, and hybrid SISR/MISR (Bätz et al. 2015) approach that employs
both SR techniques but weights SISR more heavily in the case of static targets
and MISR more heavily in the case of dynamic targets. All of these techniques
showed significantly improved peak signal-to-noise ratio (PSNR) compared to more
traditional SR techniques.

Mandanici et al. (2019) applied an MISR algorithm to terrestrial thermal images
using a novel registration technique that computes the sum of normalized distances
(SND) to a given reference image. A higher SND denotes less accurate registration.
These images are then excluded from the interpolation stage, based on an SND
threshold value. This methodology has the added benefit of coherence analysis to
identify reconstructed pixels that are less reliable which, when combined with the
image frame rejection criteria, resulted in improved thermal image resolution.

Some researchers (Cohen et al. 2019; Zhang et al. 2009) are exploring the use
of super-resolution in microscopy applications to obtain image resolutions beyond
Rayleigh criterion diffraction-limited resolution. Cohen et al. (2019) investigate
the resolution limit of image analysis algorithms. Zhang and colleagues propose
a method to capture random micro-displacement offsets of multiple images without
the need for a high-cost, precision mechanical device (Zhang et al. 2009). These
precision offsets allow superior HR image reconstruction compared to the more
expensive fixed micro-offset technique. While this research focused on microscopic
image enhancement, it would be interesting to research whether their techniques
may have applicability to CubeSat image resolution enhancement.

MISR techniques are able to produce superior resolution enhancement by taking
advantage of the sub-pixel motion between consecutive LR images by accounting
for information from adjacent pixels, given a sufficiently accurate motion estimation
algorithm. However, MISR approaches have a tendency to present ill-posed prob-
lems, either due to an inadequate number of LR images or poor estimation of image
capture artifacts, such as blur (Khattab et al. 2018). Despite this limitation, past
research has demonstrated that regularization techniques (Irani and Peleg 1991) help
to invert an ill-posed problem to a well-posed problem (Khattab et al. 2018). Overall,
MISR techniques offer better potential to take advantage of CubeSat capabilities.
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4 Applications to CubeSats

Researchers have developed a number of algorithms designed to improve image
quality. Three common algorithms are pixel averaging, super-resolution, and
mosaicking (Lüdenmann et al. 2019). In addition to lens size and focal length,
CubeSat downlink data rate and onboard storage capacity are two other limiting
factors in electro-optical imaging (Altinok et al. 2016). In order to apply averaging,
super-resolution, or mosaicking, the CubeSats must either downlink large image
files to be processed terrestrially or the CubeSats must have real-time access to a
memory-intensive catalog of georectified reference images (Altinok et al. 2016;
Lüdenmann et al. 2019). In either case, the requirements are impractical for use on-
board a CubeSat. Lüdenmann et al. (2019) developed a method to use a combination
of correlation and regression algorithms to identify the geometric transformations
between consecutive images on-board the CubeSat while keeping the data downlink
requirements within the size, weight, and power restrictions imposed by the CubeSat
standard.

MISR techniques are most effective when sub-pixel motion is present in the input
sequence frames. This attribute of MISR makes it particularly useful in CubeSat
EO imagery applications since satellites in Earth orbit are in constant motion. A
formation of CubeSats can capture multiple images of the same target area on Earth.
The varying locations of the CubeSats within the formation combined with the
orbital velocity of the CubeSats inherently provide the input image offset required
for successful MISR application.

Figure 2 depicts a high-level operational view (OV-1) of one possible system
architecture for CubeSat EO SR applications. This architecture assumes a pre-
determined CubeSat formation, optimized (Buzzi et al. 2019; Chia et al. 2015)

Fig. 2 OV-1 of potential system architecture for CubeSat super-resolution



A Survey of Super-Resolution Techniques for a Potential CubeSat Imagery. . . 97

for the number of CubeSats and orbital parameters necessary to collect the LR
images. The LR images are then preprocessed for motion estimation and pixel
registration (Bätz et al. 2015; Khattab et al. 2018; Lüdenmann et al. 2019) before
being segmented (Blaschke et al. 2014; Denby and Lucia 2019) and input to a MISR
computational algorithm for HR pixel interpolation. The processed image segments
are then recombined, the HR image is restored, and a quality verification process
certifies the resulting HR image. One possible method of quality verification is
to compare the resulting resolution improvements, from the proposed architecture,
against a theoretically perfect Rayleigh-limited image from current, state-of-the-art,
CubeSat imaging hardware.

Since traditional resolution enhancement algorithms are impractical for CubeSat
applications and techniques exist to efficiently register LR images prior to downlink,
MISR becomes an attractive technique to improve the spatial resolution of CubeSat
images.

5 Conclusion and Future Research

This survey paper reviews recent research published regarding SR and discusses the
advantages and disadvantages of the two primary SR techniques: SISR and MISR.

SISR is a relatively new research field and consists of three main categories
of algorithms: interpolation-based algorithms, reconstruction-based algorithms, and
learning-based algorithms. SISR algorithms tend to be computationally faster and
provide good resolution enhancement for specific applications; however, they do
not generalize well and cannot take advantage of information from adjacent pixels
in sequential image frames. These limitations mean that SISR is not the best choice
for CubeSat SR applications.

MISR is a well-studied problem that consists of geometric registration, interpo-
lation, and restoration to derive a single HR image from multiple LR images. The
relative sub-pixel motion between input image frames is the key to achieving high-
quality resolution enhancement. However, the estimation of that motion, during
the pixel registration process, must be highly accurate to avoid introducing error
artifacts into the HR image. An additional challenge with MISR techniques is that
an inadequate number of LR input images or poor estimation of image capture
artifacts can contribute to making the MISR approach an ill-posed problem. Care
must be taken to understand the constraints and limitations of the imaging hardware
and to apply regularization techniques to define a well-posed MISR problem.

The inherent limitations of CubeSats and the nature of satellite orbits makeMISR
an attractive technique for improving CubeSat EO spatial resolution. Additional
research is required to develop a resolution enhancement model that can enhance
image resolution sufficiently enough to extend the utility of CubeSat images
to defense mission planning and intelligence operations. CubeSats have already
demonstrated their potential to contribute to scientific discovery; extending that
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potential to include that satisfaction of national defense requirements will provide
intelligence value at a fraction of the current costs of large satellites.
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