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Abstract Models in systems engineering have existed in various forms dating back
to the 1950s. They have been used by engineers to understand various types of
phenomena, envision future systems, and generate engineering artifacts. Today the
increasing complexity of operational missions and technological advances enabled
in part by disciplinary convergence and wide access to data are having a dramatic
impact on system modeling. Operational missions are becoming increasingly more
complex with multiple sources of uncertainty and subject to a variety of disruptions.
Technological advances paced by advances in semantic technologies, machine
learning, Al, and applied analytics are transforming model development into a
closed-loop process. The advent of Industry 4.0 and digital engineering (including
digital twin and digital thread) is causing models to be viewed in an entirely new
light. And the convergence of engineering with other disciplines is opening up
a whole new way of developing system models. This paper presents a historical
perspective on models over several decades and offers a vision of how recent
developments are likely to shape the trajectory of system models in the future.

Keywords Engineering models - Deterministic models - Probabilistic models -
Learning models - Digital engineering - Industry 4.0

1 Introduction

Models, which have been a mainstay of engineering, are becoming central to
systems engineering (SE) with the advent of model-based systems engineering
(Madni and Sievers 2018). The questions today are determining where system
modeling is headed and what impact it is likely to have on systems and enterprises.
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These are some of the questions that the SE community is interested in as SE is
being transformed to address the needs and challenges of the twenty-first century.

At the outset, it is worth reminding ourselves of George Box’s (1976; Box and
Draper 1987) famous refrain, “All models are wrong, but some are useful.” The
entire quote is: “All models are approximations. Essentially, all models are wrong,
but some are useful. However, the approximate nature of the model must always be
borne in mind.” Box followed up on this cautionary comment with a more insightful
and actionable refrain: “Remember that all models are wrong; the practical question
is how wrong do they have to be to not be useful.” This quote essentially introduces
the concept of “model fidelity.” In SE, model fidelity is largely driven by the phase
in SE life cycle and the intended purpose of the model (i.e., questions the model is
expected to help answer).

Against the foregoing backdrop, this paper reviews the chronology of models
over the past 60 years — first in engineering, then in SE, and most recently in model-
based systems engineering (MBSE). It examines recent business and technology
trends that are likely to shape the trajectory of system modeling in the next decade
and what they foreshadow for system modeling in the twenty-first century.

This paper is organized as follows. Section 2 discusses the history of models in
engineering. Section 3 presents models and modeling advances in SE. Section 4
presents the expanding role of models in MBSE. Section 5 discusses the growing
importance of ontologies, knowledge graphs, metamodels, and reference models in
MBSE. Section 6 reviews how models have evolved over the last several decades.
Section 7 takes a look over the horizon to portend future advances in models. Section
8 summarizes the key points made in this paper.

2 Models in Engineering

Models have been used to envision architectures and engineering artifacts from time
immemorial. In the early days, models took the form of sketches, which were a
prelude to building physical artifacts. Over the ensuing years, models started to
become increasingly more structured. Over the past 50 years, the importance of
standardized representation, syntactic correctness, consistent semantic conventions,
and the need to enforce semantic consistency in models was gradually recognized.
This recognition enabled models to progress beyond drawings and concept maps
to computer-based representations with a standard lexicon (vocabulary), syntax
(grammar), and semantics (meaning). As important, the use of computer-based
models expanded to the understanding of real-world phenomena as models grew
in sophistication. Today models are being used to study and build complex
sociotechnical systems with the ability to dynamically adapt, learn, and improve
(Madni et al. 2018a).

Models are fundamentally abstractions (i.e., a simplified representation of
reality) in which the simplifications are achieved through purposeful suppression of
irrelevant real-world details (i.e., details that do not contribute to answering ques-
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tions at hand). Abstractions can take a variety of forms, including generalizations
from specific instances, uniform suppression of details not relevant to the purpose
of the model, and selective suppression of details (e.g., elimination/simplification
of certain perspectives or functions) to reduce complexity of envisioned systems or
phenomenon under study (Madni et al. 2018b).

Models can be descriptive, prescriptive, or predictive. Descriptive models rep-
resent or explain a phenomenon, problem situation, or system to enhance shared
human understanding and facilitate collaboration. Prescriptive models specify
required/desired behaviors or courses of action. Predictive models facilitate explo-
ration and help illuminate future outcomes in response to what-if assumptions and
decisions/actions. Model purpose (i.e., the questions we want the model to answer
at a desired level of detail) determines the scope and fidelity of models needed.

Today models are used in engineering analysis and design to visualize envisioned
systems or modifications to existing systems; specify structure and behavior of
systems; and understand how parts of a system inter-relate and behave in relation
to each other and the external world. Models are also used to guide system
development, assemble parts, and identify/generate and evaluate alternatives during
design. And, finally, models are used to maintain an audit trail of assumptions and
design decisions during system development (Madni et al. 2019).

3 Models in Systems Engineering (SE)

Models in SE have generally followed the evolution of models in traditional
engineering disciplines but with a time lag. Over the years, models have appeared
in a variety of forms: a “back of the envelope” calculation to ballpark a solution;
a sketch on a napkin to communicate a germinating idea or an evolving concept; a
computational algorithm to describe a physical law that lends itself to mathematical
description; a deterministic representation to describe systems with known cause
and effect; a probabilistic representation to capture environmental uncertainties and
uncertainties in the knowledge of the system state space, as well as to account for
random events; a statistical model to parsimoniously summarize the data collected
over space and time; an architectural model to depict system structure and behavior
and conduct trade-off analyses among performance and quality attributes associated
with a system in its operational context; a logical model to describe how entities
relate to each other in implementation-independent form; a data model to represent
data in abstract form and organize and standardize how the data elements relate
to each other; and a “learning” model that employs supervised, unsupervised, and
reinforcement learning to increase model accuracy at system “build-time” and
during system “run-time” (i.e., operational use).

Table 1 presents an approximate timeline of modeling methods that have been
employed over time to deal with increasing problem and system complexity.
Modeling in SE began with the ubiquitous block diagram or black box model,
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Table 1 Rough chronology of models in systems engineering

Year Application within SE

Modeling Construct Name Originated/Discipline (approx.)

Black Box (block diagrams) 1945/electronic circuit 1950
theory

Functional Flow Block Diagram 1955/systems 1955
engineering

Petri Nets 1962/concurrent 1977
hardware
communication

Hidden Markov Model/POMDP 1965/operations 2015
research, robotics

Reinforcement Learning 1965/psychology, 2014
robotics

Structure Analysis and Design Technique | 1969/software and 1969
systems engineering

Linear Temporal Logic 1977/computer science | 1980

Data Flow Diagram 1979/software 1980
engineering

N2 Diagram/Design Structure Matrix 1980/software and 1990
hardware design

IDEFO0 198 1/manufacturing 1982

Contract-Based Design 1986/design automation | 2000

State M 1987/computation 1990
theory

Axiomatic Design 1990/system design 2002

Unified Modeling Language (UML) 1996/software 1997
engineering

Digital Twins 2002/manufacturing 2019

Flexible Contract Approach 2010/design automation | 2014

in which blocks represented system components and the arcs between the blocks
represented the exchange of information, energy, and physical artifacts. Similarly,
the N2 diagram and later the design structure matrix (DSM) gained popularity
as a parsimonious way to represent a system along with its interactions and
dependencies. In systems engineering, the N2 diagram was interpreted from a
functional perspective, with the components in the N2 diagram being replaced
with major system functions. Thereafter, the functional flow block diagram (FFBD)
was developed to capture the dynamics of system behavior in a multitier, time-
sequenced flow diagram depicting a system’s functional flow. In the meantime, the
software engineering community was engaged in developing data flow diagrams
(DFDs) to model the data flow aspects of software systems. In the 1969-1973
timeframe, Structured Analysis and Design Technique (SADT) came into being
within systems engineering and software engineering methodologies to describe
systems as a hierarchy of functions (Ross 1977). It was subsequently formalized
and published as Integrated Computer-Aided Manufacturing (ICAM) Definition, or
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IDEF, in 1981 (Marca and McGowan 1987; Davis 1992; Mylopoulos 2004). The
IDEF representation was primarily championed by the USAF as a viable way to
model systems. Not long after, several structured approaches emerged including
structured programming, structured design, and structured analysis. It is worth
noting that DFDs, N2 charts, and IDEF, diagrams all capture the same time-lapsed
flow of information, energy, and physical artifacts among functions. Then came the
recognition of the importance of system states and the advent of state machines (or
state transition diagrams), which were adapted by several engineering disciplines to
capture dynamic behavior. These methods were rapidly adopted and applied by the
SE community to model system modes and states. It soon became evident that state
machines suffered from a combinatorial explosion in their state space compromising
their scalability. To ameliorate this problem, the SE community turned to heuristics,
meta-rules, Petri nets, and Petri net variants (Zisman 1978). This strategy delayed
the combinatorial explosion but did not eliminate it.

The past six decades have seen several contributions to systems modeling
from a variety of disciplines such as electrical engineering, operations research,
design automation, manufacturing, and software engineering. For example, formal
modeling approaches for representing, analyzing, and designing systems originated
in software engineering and design automation. The early modeling work relevant
to SE, which drew on mathematical system representations, includes modeling
formalisms (Tarski 1955), homomorphic relational structures (Klir 1991; Lin 1999),
axiomatic design (Suh 1998), and structured analysis and design (Yourdon 1989).

It is interesting to note that many of the models being used in systems engineering
had their origins in other disciplines such as electronic circuit theory, operations
research, software engineering, design automation, robotics, and manufacturing.
Also, some modeling approaches from other disciplines were adopted quickly
by systems engineers, while others took more than a decade. This time lag was
essentially a function of the need expressed by the SE community. For example,
increasing system complexity and emphasis on system safety led systems engineers
to employ formal and probabilistic methods to address verification and validation
needs and uncertainties in knowledge of system states and the environment.
Similarly, the advent of machine learning was only recently adopted by the SE
community when it became apparent that many complex systems operate in
uncertain, partially observable environments in which incoming information from
sensor onboard vehicles and the environment help reduce the uncertainty in system
models.

4 Models in Model-Based Systems Engineering (MBSE)

The historic use of models in SE is best characterized as “engineering with
models.” The basic idea is that models from different disciplines can be inte-
grated to provide a solution to a problem that cuts across multiple disciplines
(e.g., electrical, mechanical, thermal, optical). However, these models, based on
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different assumptions, were not designed with integration in mind. Model-based
systems engineering (MBSE) is different from engineering with models. In MBSE,
models represent an enduring and authoritative source of truth. MBSE replaces
the traditional document-centric approach to SE while ensuring that documents
can be produced on demand from the unified model and from the perspective
of different stakeholders. This is similar to the automatic generation of code on
demand in Model-Based Software Engineering. In MBSE, the models have shared
assumptions and shared (or compatible) underlying ontologies and representations.
Models in MBSE are centralized digital repositories that interconnect information
from multiple sources and disciplines such that a change in one part of the model can
be traced back to the original/derived requirement or use case. SysML, an extension
of a subset of UML developed by the International Council on Systems Engineering
(INCOSE) and subsequently advanced by Object Management Group (OMG) and
INCOSE, became the popular system modeling language.

Over the past decade and a half, several MBSE methodologies have emerged
(Estefan 2008). They include as follows: IBM Rational Unified Process (RUP)
supported by IBM Rational Suite; INCOSE Object-Oriented Systems Engineer-
ing Method (OOSEM) developed with extensive aerospace involvement, which
is supported by commercial SysML tools; Vitech’s CORE product suite; JPL
State Analysis Methodology; Dori’s Object-Process Methodology (OPM); INCOSE
MBSE Initiative, OMG’s Model-Driven Architecture; and ISO/IEC 42010.

Today MBSE remains an important augmentation of SE as it continues to address
additional phases of the system life cycle such as verification, validation, and testing.
In this regard, the advent of digital twins (from digital engineering) can be expected
to facilitate and accelerate system life cycle coverage (Madni et al. 2019).

5 Growing Importance of Ontologies, Knowledge Graphs,
Metamodels, and Reference Models

Two key problems being addressed by the SE community today are to eliminate the
miscommunications that frequently occur within SE teams and to assure interoper-
ability among models and between information systems of collaborators. This focus
led to the growing importance of ontologies, knowledge graphs, metamodels, and
reference models.

Ontologies are thesauri of words representing concepts, the relationships among
them, and the rules that help with model correctness checking (Sowa 1996,
2011). The model checking rules help with identification of gaps and semantic
inconsistencies in system models. Ontologies have been a subject of study in
the systems engineering community as a means to reduce modeling complexity,
facilitate model verification, and enhance interoperability. From a data perspective,
ontologies are semantic data models that define the types of entities in a particular
domain, the relationship among the entities, and the properties that can be used to
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describe the entities. Ontologies are generic data models in that they only model
generic types of entities that share certain properties but do not include information
about specific entities in the domain. For example, an ontology might focus on
generic vehicles, attempting to capture characteristics that most vehicles might have.
By capturing information in this way, the ontology can be used to describe other
vehicles in the future. An ontology comprises three main elements: classes, which
are distinct types of entities that exist in the domain; relationships, which link any
two classes; and attributes, which are properties that describe an individual class.
When classes are linked through relationships, the ontology can be visualized as a
graph.

A knowledge graph acquires and integrates information into an ontology and
applies a reasoner to derive new knowledge (Ehrlinger and W63 2016). In other
words, knowledge graphs are instantiations of ontologies. Using an ontology as an
organizing framework, real data about specific entities in the domain can be added
to create a knowledge graph. When data about specific entities are added for all
entities in the ontology, a knowledge graph emerges. In other words, a knowledge
graph is created when an ontology is used as an organizing construct for real-world
data. Thus,

| Ontology + Data = Knowledge Graph |

Metamodels define the abstract syntax (i.e., grammar) of model description
languages (Sprinkle et al. 2014). For example, the Unified Modeling Language
(UML) metamodel defines the abstract syntax of various UML diagrams. More
generally, metamodels express the logical syntactical structures that domain-specific
models need to conform to for scalability, reuse, and extensibility. Metamodels
are concerned with defining the symbols and structure for a predefined class of
problems, along with rules that operate on the symbols. These properties allow
the instantiation of a model from a metamodel. Thus, a metamodel defines the
general structure, constraints, and symbols that can be used to model a system.
Since metamodels do not specify the semantics of models, they do not have stand-
alone use. However, ontologies and metamodels are complementing and synergistic.
Specifically, an ontology can represent concepts and relationships formally using the
structure provided by the metamodel. While ontologies may not use a metamodel,
those that do will have certain desirable properties (e.g., interoperability, reuse,
syntactic correctness, semantic consistency).

Reference models are abstract frameworks or domain-specific ontologies con-
sisting of an interlinked set of clearly defined concepts produced by authoritative
sources within defined stakeholder communities. A reference model can represent
business functions and system components as long as they constitute a complete
set. The terms in the reference model can be used to communicate ideas clearly
among members of the SE community from vastly different backgrounds. The
reference model is distinct from, but can include, related taxonomies, entities,
and relationships to reveal hierarchies (e.g., system hierarchy, system architecture)
relevant to stakeholders.
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6 How Have Models Changed over the Last Several Decades?

After more than 50 years, system modeling has evolved in several important ways
shown below:

The starting point for modeling has changed from choosing a modeling construct
to starting with a detailed analysis of needs to derive system modeling require-
ments which are then used to determine the right combination of models needed
to model the system of interest.

The scope of modeling has expanded — from a single system to networked
systems, system of systems, and enterprises.

Models have grown in sophistication — from deterministic to stochastic, proba-
bilistic, and learning models.

Engineering models used to be rooted in the engineering discipline. Today
they are drawing on other disciplines such as biology, cognitive science, social
science, economics, and entertainment arts.

Earlier models used to be “data hungry.” They needed complete information
before they could provide value. Today models can cope with partial information
and still provide value.

Modeling used to be an open-loop process. Today modeling is being transformed
to a closed-loop process that improves model completeness and accuracy based
on data from collection assets, machine learning, and data analytics techniques.
For example, virtual system models can now incorporate data from the corre-
sponding physical system and become a digital twin (Madni et al. 2019).
System representations have expanded from fixed structures to flexible represen-
tations which are needed to respond to systemic problems and adapt to external
disruptions.

System models are becoming increasingly more formal and rigorous to enable
verification and validation, support simulation-based testing, and facilitate rea-
soning, interoperability, and reuse.

Models are beginning to incorporate the capability to explain system behavior,
an important characteristic that is key to model acceptance and trust in the
engineering community. Explanation capability is needed for black box models,
while interpretability is needed for glass box models.

The SE community is much more cost conscious, with an emphasis on economic
value derived from transitioning to MBSE (Madni and Purohit 2019).

Industry view of models has changed from viewing them solely as engineering
artifacts to viewing them as knowledge assets and a source of competitive
advantage.

Today models are expanding into the behavioral domain. The human is no longer

modeled as a transfer function, optimal controller, or utility maximizer. Rather, the
human is modeled with an awareness of strengths (e.g., ability to generate creative
options, rapid context awareness) and limitations (e.g., cognitive limitations, biases,
tendency to lose focus). The advent of cyber-physical-human systems is a driver in
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Table 2 System models: pre-2005 and today

System models
Comparison factors
Starting Point

Focus
Methods

Multidisciplinary Emphasis
Model Requirements

Process
Representation
Correctness Proof
Rigor

Learning

Explanatory Capability

Emphasis on ROI
Industry View

Pre-2005

a modeling construct (e.g.,
IDEFO0, SADT)

single system
deterministic (mostly)

minimal
need complete information

open loop

fixed

not available

structured representation;

static correctness checking

a priori supervised learning

none

modest
engineering artifact

Today

requirements derived from
needs and mapped to
appropriate combination of
models

networked systems, SoS,
enterprise

deterministic, stochastic,
probabilistic

significant

can work with partial
information (e.g., POMDP)
closed loop

flexible

available

formal representation; use of
ontology and metamodel;
support for formal reasoning
in situ unsupervised and
reinforcement learning
some; distinguishes between
interpretability (glass box
models) and explainability
(black box models)
significant

knowledge asset; source of
competitive advantage
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this regard. As important, the age-old thinking of “humans versus machines” has
been replaced by “humans and machines” with a growing emphasis on augmented
intelligence (Madni 2020a).

Table 2 provides a comparison of pre-2005 system models and system models

today.

7 Looking over the Horizon

With systems continuing to grow in complexity and missions continuing to become
increasingly more challenging, the versatility and value of a model depend on
its ability to provide useful information despite incomplete information; ability
to acquire and reflect valid information pertaining to key system characteristics
and behaviors of interest; ability to support simplifications (e.g., assumptions,
approximates) while retaining requisite fidelity to provide correct answers; and
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ability to validate its outputs. Importantly, models require real-world measurements
to test the validity of their predictions and explanations and for validation of outputs.
It may not be feasible to meet these requirements in circumstances where input
conditions cannot be adequately controlled or input and control conditions cannot
be replicated.

With the recent surge in interest to transform and underpin SE with for-
mal methods (e.g., linear temporal logic, contract-based design), three necessary
characteristics of models surfaced: provably correct representation essential in
applications where safety is paramount; flexible representation to support agility and
resilience; and evidence-based learning to complete and refine models. Learning
ability is crucial when operating in partially observable environments in which
information about the system and the environment becomes incrementally available
during mission execution. In response to these requirements, probabilistic learning
models emerged including the flexible contract approach with the capacity to
learn (Sievers and Madni 2016; Madni 2018a). This construct combines traditional
contracts, partially observable Markov decision process (POMDP), reinforcement
learning, and heuristics to strike an effective balance between model verifiability
and flexibility (Sievers and Madni 2017; Madni et al. 2018a, b).

In the light of methodological advances and ongoing integration of MBSE with
digital engineering, systems modeling can be expected to evolve in new and exciting
directions. We already see evidence of formal methods being introduced within the
MBSE rubric. Specifically, the concept of ontologies from computer science is being
introduced into MBSE to enhance semantic consistency, enhance interoperability,
and formalize scope with respect to the system modeling activity. In particular,
ontologies can be expected to play important roles in answering stakeholder/user
questions by capturing key concepts and relationships from use cases of interest
and supplemented by expert knowledge. The scope of system modeling can be
expected to expand to cover probabilistic modeling, formal modeling, modeling
with incomplete or partial information, and learning models (i.e., supervised,
unsupervised, and reinforcement learning). Models can be expected to have richer
semantic foundations to reflect new perspectives made possible by disciplinary
convergence. These advances and enhancements will enable more detailed questions
to be answered earlier in the system’s life cycle. With growing convergence of
engineering with entertainment arts, it will be possible to transform system models
into stories that can be executed in simulation or in virtual worlds (Madni et al.
2014; Madni 2015). Importantly, enterprises are beginning to increasingly rely
on their suppliers, application providers, and tool vendors to create sustainable
competitive advantage in their respective markets. This reliance calls for seamless
interoperability. The latter can be achieved through models based on domain
ontologies with interoperability being enabled by creating a semantic layer between
enterprises and their technology/tool providers (Madni 2020b). As a result, system
models are no longer being viewed as engineering artifacts but rather as knowledge
assets and a source of competitive advantage for organizations.
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8 Summary

Models have been a mainstay of systems engineering for several decades. However,
the types of models and the value they provide have changed dramatically. The types
of models used for system modeling have evolved considerably driven in large part
by the increasing complexity of the system and the environment and advances made
in formal and probabilistic methods, machine learning, and applied analytics. These
advances have transformed modeling from being a one-shot open-loop activity
to an iterative closed-loop activity informed by evidence and results of machine
learning. Importantly, the historical view of models as engineering artifacts has
changed dramatically. Today they are viewed as sources of competitive advantage.
The competitive advantage results from the ability to reuse models, completely
or in part, to rapidly achieve interoperability in risk-mitigated fashion with third-
party applications and tools and enable the use of ontologies and metamodels.
The growing importance and adoption of MBSE in major organizations coupled
with the advent of digital engineering make digital twin-enabled MBSE especially
effective for model-based V&V. This paper has addressed both modeling problems
and how far along systems modeling has advanced as a result of problem pull
and enabled by advances in system modeling and ongoing convergence of systems
modeling with machine learning, data analytics, and entertainment arts (Madni
2018b). This trend can be expected to continue and grow in the future. As a result
of these advances, systems models are becoming knowledge assets and a source of
competitive advantage in various industries.
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