
Executable Modeling of a CubeSat-Based
Space Situational Awareness System

Mostafa Lutfi and Ricardo Valerdi

Abstract As systems grow in complexity, systems engineers have embraced
Model-Based Systems Engineering (MBSE) to tackle this complexity. The Sys-
tems Modeling Language (SysML) is the most commonly used language by the
systems engineers to implement MBSE. SysML is not highly capable of expressing
conceptual but not executable models. In order to perform requirements/behavior
verifications, systems engineers/designers mostly use separate simulation tools.
Hence, the efficiency of the systems engineering process is often reduced due
to the isolated and consecutive use of both SysML modeling tool and other
simulation tools, for example, defining simulation inputs to each simulation tool
separately. Hence, executable SysML is the next logical step towards achieving
true MBSE support for all systems engineering activities in the life cycle phases –
system requirements, analysis, design, implementation, integration, verification,
transition, validation, acceptance testing, training, and maintenance. Therefore,
various research efforts are being conducted to develop executable SysMLmodeling
approaches. This research develops a SysML Executable Modeling Methodology
(SEMM), which is demonstrated by modeling a CubeSat-based Space Situational
Awareness (SSA) system in SysML. The SysML SSA-CubeSat system model is
made executable by integrating with Commercial-Off-The-Shelf (COTS) simulation
software, namely, Systems Tool Kit (STK) and MATLAB, following the approaches
defined in the SEMM.

Keywords MBSE · SysML · Executable modeling · Space Situational
Awareness

M. Lutfi (�) · R. Valerdi
Systems and Industrial Engineering, The University of Arizona, Tucson, AZ, USA
e-mail: mostafalutfi@email.arizona.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_40

475

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_40&domain=pdf
mailto:mostafalutfi@email.arizona.edu
https://doi.org/10.1007/978-3-030-82083-1_40


476 M. Lutfi and R. Valerdi

1 Introduction

Model-Based Systems Engineering (MBSE) focuses on formalized application of
modeling to support systems engineering artifacts development from the conceptual
design phase throughout the end of the system of interest (SOI) life cycle (Hart
2015). SysML has emerged as the de facto standard system modeling language
for MBSE (Delligatti 2014). MBSE is advancing in a way that intends to combine
modeling with its natural next step simulation, to support the definition of system
requirements, system design, system analysis, and system verification and valida-
tion. Therefore, SysML needs to be an executable language in order to directly
support system’s life cycle activities (Nikolaidou et al. 2016). This research paper
presents a practical approach for enabling execution of models described in SysML.
Specifically, the authors modeled a SSA system using CubeSats in SysML and
integrated with MATLAB and Systems Tool Kit (A. G. Inc 2013). The approach
described in the methodology can be expanded to other simulation tools too.

2 Literature Review

2.1 Recent Research on SysML Executable Modeling

Tsadimas et al. presented the transformation procedure of Enterprise Information
System (EIS) SysML models to executable simulation code (Tsadimas et al. 2014).
The author used QVT as the transformation tool. The paper also demonstrated how
simulation results can be incorporated into the source SysML model using Model-
Driven Architecture (MDA). Robinson et al. introduced a new analysis framework
to develop executable and object-oriented SysML models through Python pro-
gramming interface (Balestrini-Robinson et al. 2015). The analysis framework
demonstrated a new procedure to enable rapid prototyping through the integration of
SysML model and existing diagramming languages. In order to lower the financial
implications, the framework used the following open-source software (OSS) –
Python, MongoDB, Django, MongoEngine, OpenMDAO, RDFLib, BerkelyDB,
and Django Rest Framework.

Chabibi et al. presented a taxonomy of links between SysML and various
simulation environments (Chabibi et al. 2015). The paper studied an integration
approach of several simulation environments into a common platform and enable
two-way transformation between those environments and SysML. Chabibi et
al. in another paper proposed an integration of SysML and Simulink utilizing
modern techniques of Model-Driven Engineering (MDE) (Chabibi et al. 2016).
The proposed integration approach consists of following steps – SysML modeling
of a system using SysML4Simulink profile, executable MATLAB code generation
from SysML source diagrams, and conducting simulation in order to verify system
behavior through Simulink.



Executable Modeling of a CubeSat-Based Space Situational Awareness System 477

Kotronis et al. developed a framework that supports continuous performance
assessment of Railway Transportation System (RTS) SysML model (Kotronis et
al. 2016). The authors used QVT for generation of executable simulation models
from the RTS SysML model. The executable simulation models are simulated in
Discrete Event System Specification (DEVS) simulators, and the simulation results
are incorporated into the RTS SysML model. Cawasji and Baras studied different
methods to perform integration of SysML and other simulation tools (Cawasji
and Baras 2018). Then, they proposed a new method by constructing a SysML
executable model of a two-room house. They used the Functional Mock-up Interface
(FMI) standard to integrate the SysML model with a Modelica model. The authors
exported the Modelica model as Functional Mock-up Unit (FMU). Then, they used
Simulink as an interface between the FMU and the SysMLmodel. Finally, a tradeoff
analysis was run through SysML, in MATLAB, to demonstrate the decision-making
capability of the proposed approach for SysML executable modeling.

In order to reduce the gap between high-level modeling and evaluation of
system performance through simulation, Gauthier et al. proposed a Model-Driven
Engineering (MDE) tooled approach for automatic system requirements validation
(Gauthier et al. 2015). The OMG SysML-Modelica working group has officially
adopted this integration approach as the “SysML4Modelica” profile.

Karban et al. proposed a new Executable Systems Engineering Method (ESEM)
for automatic requirements verification (Karban et al. 2016). ESEM is based on
executable SysML modeling patterns and consists of structural, behavioral, and
parametric diagrams. The authors usedMagicDraw as the SysMLmodeling tool and
Cameo Simulation Toolkit (CST) as the simulation engine. The authors developed
an eight-step method to follow for executable SysML modeling – formalize
requirements, specify design, characterize components, specify analysis context,
specify operational scenarios, specify configurations, run analysis, and evaluate
requirement satisfaction.

2.2 Space Situational Awareness

Space Situational Awareness is the ability to observe, understand, and predict the
physical location and behavior of natural and manmade objects in orbit around the
earth (Space Situational Awareness n.d.). Space traffic (both physical and infor-
mational) is increasing at an exponential rate. Since the start of space exploration
in 1957, about 5500 rockets have been launched into earth orbit, resulting in
approximately 5000 satellites and 23,000 debris still in space (esa n.d.). SSA could
deliver knowledge of potential threats posed to both space assets and Earth by
adversaries and environments, including space weather, space debris, uncontrolled
spacecrafts, and space weapons (Gasparini and Miranda 2010; Kennewell and Vo
2013).



478 M. Lutfi and R. Valerdi

3 SysML Executable Modeling Methodology

SysMLModels can be made executable by enabling integration of COTS simulation
software through scripting languages supported by the MBSE tool. For example,
Cameo Systems Modeler by Nomagic supports the following scripting languages –
JavaScript, Groovy, Ruby, MATLAB, Python, and BeanShell (N. M. Inc. 2020).
So, these scripting languages can take input from the SysML model and return the
output/result from the integrated simulation tool into the model (Fig. 1).

In this research paper, CSM with Cameo Simulation Toolkit (CST) plug-in from
Nomagic was used to create the SysML model. Moreover, MATLAB and Systems
Tool Kit (STK) were two other COTS simulation tools being integrated with the
system model to make it executable (A. G. Inc 2013). CST is a plug-in attached
to the CSM in order to provide extendable model execution framework based on
OMG fUML standards. fUML stands for Foundational Subset for Executable UML
Models (Seidewitz and Tatibouet 2015). STK is a physics-based 3D modeling,
simulation, and visualization tool used by engineers, space mission analysts, space
operators, and decision-makers in order to model and simulate complex land, sea,
air, or space systems (A. G. Inc 2013). The following steps describe the procedure
to implement the SEMM for any system of interest (SOI). For this research paper,
CubeSat-SSA system has been chosen as the SOI.

Model Organization The model is organized by the package names according to
the four pillars of SysML (Requirements, Structure, Behavior, and Parametric).
For this research paper, Parametrics package was excluded. SysML Requirements
diagram falls under Requirements package. SysML Block Definition Diagram and
SysML Internal Block Diagram reside inside Structure package. All the behavior
diagrams (SysML Use Case, SysML Activity Diagram, and SysML State Machine
Diagram) used in the model are being placed inside Behavior package. Further
package decomposition was used for organization of the model elements inside
these three major packages (Requirements, Structure, and Behavior) (Fig. 2).

Defining System Requirements/Use Cases/Concept of Operations (ConOps) The
research paper assumed preliminary stakeholder analysis and customer require-
ments identification already being conducted to produce the following operational
requirements for the CubeSat-SSA system (Fig. 3). The OpReq-03 has been tested
for automatic verification later in the paper. Use case diagram is drawn with the aid

Fig. 1 SysML executable modeling framework



Executable Modeling of a CubeSat-Based Space Situational Awareness System 479

Fig. 2 Model containment tree showing package

Fig. 3 Operational requirements for CubeSat-SSA system

of SysML Use Case diagram (Fig. 4). SysML State Machine Diagram enabled the
creation of Concept of Operations in the model (Fig. 4).

Modeling System Architecture (Physical)/Internal Structure/Subsystem Communi-
cation SysML Block Definition Diagram was used to model Physical Architec-
ture of the CubeSat-SSA system. Moreover, the physical architecture leveraged
INCOSE’s CubeSat Reference Model to represent standard CubeSat components
and subsystems (Kaslow et al. 2018). SSA Domain is comprised of Artificial Space



480 M. Lutfi and R. Valerdi

Fig. 4 (a) CubeSat-SSA system use cases (left); (b) concept of operations (right)

Fig. 5 (a) SSA Domain (top left); (b) CubeSat-SSA System Architecture (top right); (c) Space
Segment (bottom left); (d) SSA Mission Payload (bottom right)

Objects, Natural Space Objects, Orbital Debris, and Space Weather. CubeSat-SSA
System Architecture falls under Artificial Space Objects. CubeSat-SSA System
Architecture consists of Space Segment, SSA Command and Data Centre, Com-
mand and Data Centre Services, Transport, Launch and Deployment Services, and
GPS. Space Segment and SSA Command and Data Centre were further decomposed
into subsystems (Fig. 5).

Integration with the COTS Analysis/Simulation Tools After defining the system
context and corresponding behaviors for each of the scenario to be simulated, next
step was to integrate the COTS tools (MATLAB and STK) with those behaviors.
An activity diagram consists of different types of action elements. This research



Executable Modeling of a CubeSat-Based Space Situational Awareness System 481

paper used CSM’s Opaque Action, Read Structural Feature Action, and Read
Self Action to facilitate the integration process. Opaque Action facilitated the
integration of MATLAB script into CSM. CSM does not allow integration of
Systems Tool Kit (STK), which is a widely used space mission analysis tool. STK
was run from CSM via MATLAB scripts. STK and MATLAB interoperate with
each other through STK’s COM interface. STK_Relevance’s classifier behavior
used a MATLAB function script, which automated and modified the SSA relevance
function defined in a previous research. In that research work, authors used SSA
relevance measures of effectiveness for comparing SSA system architectures using
a network of CubeSats (Chandra et al. 2018). However, the authors were forced
to run the MATLAB script independently due to the non-executable nature of the
model they defined.

Illustrative Example Scenarios The first scenario utilizes co-simulation in STK
to visualize the scenario and calculate the results. In this scenario, an observation
satellite (CubeSat) tracks ten unknown objects. A pointing sensor is attached to the
observation satellite, namely, ADSLSat. Random creation of the unknown objects
is based on the following assumptions – radius of earth is 6371 km, low earth orbit
ranges from 100 to 2000 km, minimum semimajor axis is 6471 km, and maximum
semimajor axis is 8371 km. The scenario returns the access values (access start
times and access stop times) for each of the unknown object. The scenario can be
run/reset/closed solely from SysML model without opening the STK application.
SysML state machine diagram perfectly worked to create the scenario in STK by
a systematic process with signals and triggers. For example, when the “Access
Computation” state is running in CST, STK 3D model sends all the access data
to the CST console in real time (Fig. 6). Each state was integrated with activity
diagram which defines the MATLAB script.

In the second scenario, SSA Relevance function is simulated in MATLAB taking
“number of CubeSats” as input (through read structural feature action in the activity
diagram) from the CubeSat-SSA SysML model (Fig. 7). Value properties were
added to the system context in order to provide input and accept output from
MATLAB tool (Fig. 8). Relevance_percentage value was not populated initially
because it would be populated by the simulation result of an external MATLAB
script. Moreover, for simplicity the number of mesh layers (3), mesh resolution
(5 degrees), analysis period (30 days), orbit period (1 day), and time step (1 day)
for analysis were kept as constant. Moreover, inertial angle, altitude, camera line of
sight, and camera FOV were generated randomly.

After the simulation finishes, a MATLAB plot showing SSA relevance is
generated, and SSA relevance percentage is returned to the CubeSat-SSA system
model through Opaque Action in the activity diagram. The Operation Requirement-
03 states that the SSA system shall provide equal or greater than 99% SSA
Relevance. Based on the relevance percentage value property, the OpReq-03 was
automatically verified (Fig. 8). Satisfy relationship exists between the OpReq-
03 and SSA Relevance block (Fig. 3). When the “relevance_percantage” value
property automatically populated, it check whether it satisfies the requirement



482 M. Lutfi and R. Valerdi

Fig. 6 Synchronization of SysML state machine diagram with STK for Scenario 1

Fig. 7 Interaction between CSM and MATLAB for Scenario 2

Fig. 8 (a) Console panel showing requirements not satisfied (top), (b) red color indicating
requirement was not satisfied

specified value or not (Fig. 8). The following table summarizes the key Scenario
1 and 2 parameters (Table 1).



Executable Modeling of a CubeSat-Based Space Situational Awareness System 483

Table 1 Data exchange between integrated simulation tool and SysML model

Scenario no. Integrated simulation tool Simulation input
Simulation results to
SysML model

1 STK Space object properties Access between objects
2 MATLAB Number of CubeSats Relevance percentage

4 Discussion

The above section demonstrates the benefits of executable modeling instead of mod-
eling for communication purpose. Scenario 1 demonstrated how to create/run/resent
a STK scenario inside the SysML CubeSat-SSA system model. Moreover, access
values from a known satellite to a number of unknown objects were returned
to the system model automatically. In Scenario 2, a number of CubeSats were
fed into MATLAB simulation from the SysML CubeSat-SSA system model and
simulation result, i.e., relevance percentage was returned to the model in order to
verify a requirement. So, different CubeSat-SSA Architecture based on the number
of CubeSats network can be evaluated from the SysMLCubeSat-SSA systemmodel.
It was apparent that some of the SysML diagrams were not executable in nature that
may change when SysML v2 will be implemented. There were some lag between
the CST simulation and STK/MATLAB simulation scenario. Moreover, CSM does
not support all data types as input.

5 Conclusion

The purpose of the SysML model was to demonstrate how executable modeling
could incorporate the systems engineering artifacts, namely, system design (System
Architecture, ConOps, Use Case, and Requirements), analysis/simulation, and
requirements verification into the model itself. Hence, the user does not need to
create separate simulation parameters into a separate software as that software
can be run from SysML model with the capability of defining/exchanging all the
simulation parameters. Hence, SysML models alone will be sufficient for system
behavior verifications. Further work needs to be done to make the integration of
different COTS tools from a variety of domain with the SysML models to achieve
the true purpose of MBSE.

References

Balestrini-Robinson, S., D.F. Freeman, and D.C. Browne. 2015. An Object-oriented and Exe-
cutable SysML Framework for Rapid Model Development. Procedia Computer Science 44:
423–432. https://doi.org/10.1016/j.procs.2015.03.062.

http://dx.doi.org/10.1016/j.procs.2015.03.062


484 M. Lutfi and R. Valerdi

Cawasji, K.A., and J.S. Baras. 2018. SysML Executable Model of an Energy-Efficient House and
Trade-Off Analysis. IEEE International Systems Engineering Symposium (ISSE) 2018: 1–8.
https://doi.org/10.1109/SysEng.2018.8544402.

Chabibi, B., A. Anwar, and M. Nassar. 2015. Towards an alignment of SysML and simulation
tools. In 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications
(AICCSA), 1–6. https://doi.org/10.1109/AICCSA.2015.7507216.

Chabibi, B., A. Douche, A. Anwar, and M. Nassar. 2016. Integrating SysML with Simulation Envi-
ronments (Simulink) by Model Transformation Approach. In 2016 IEEE 25th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE),
148–150. https://doi.org/10.1109/WETICE.2016.39.

Chandra, A., Lutfi, M., & Gross, D. C. (2018). Leveraging the Emerging CubeSat Reference Model
for Space Situational Awareness.

Delligatti, L. (2014). SysML Distilled: A Brief Guide to the Systems Modeling Language. Pearson
Education.

esa. n.d. Space debris by the numbers. European Space Agency. Retrieved August
3, 2019, from https://www.esa.int/Our_Activities/Space_Safety/Space_Debris/
Space_debris_by_the_numbers

Gasparini, G., and V. Miranda. 2010. Space situational awareness: An overview. In The Fair and
Responsible Use of Space: An International Perspective, ed. W. Rathgeber, K.-U. Schrogl, and
R.A. Williamson, 73–87. Vienna: Springer. https://doi.org/10.1007/978-3-211-99653-9_7.

Gauthier, J.-M., F. Bouquet, A. Hammad, and F. Peureux. 2015. Tooled Process for Early
Validation of SysML Models Using Modelica Simulation. FSEN. https://doi.org/10.1007/978-
3-319-24644-4_16.

Hart, L. 2015. Introduction to Model-Based System Engineering (MBSE) and SysML. 43.
Inc, A. G. 2013, July 24. Bringing in External Data to Model Space Objects in STK. https://

vimeo.com/70964608
Inc, N. M. n.d.. Cameo Systems Modeler. Retrieved June 19, 2020, from https://

www.nomagic.com/products/cameo-systems-modeler
Karban, R., N. Jankevičius, and M. Elaasar. 2016. ESEM: Automated Systems Analysis using

Executable SysML Modeling Patterns. INCOSE International Symposium 26 (1): 1–24. https:/
/doi.org/10.1002/j.2334-5837.2016.00142.x.

Kaslow, D., B. Ayres, P.T. Cahill, L. Hart, A.G. Levi, and C. Croney. 2018, September 17.
Developing an MBSE CubeSat Reference Model – Interim Status #4. 2018 AIAA SPACE
and Astronautics Forum and Exposition. 2018 AIAA SPACE and Astronautics Forum and
Exposition, Orlando, FL. https://doi.org/10.2514/6.2018-5328.

Kennewell, J.A., and B. Vo. 2013. An overview of space situational awareness. In Proceedings of
the 16th International Conference on Information Fusion, 1029–1036.

Kotronis, C., A. Tsadimas, G.-D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopou-
los. 2016. Simulating SysML transportation models. In 2016 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), 001674–001679. https://doi.org/10.1109/
SMC.2016.7844478.

Nikolaidou, M., G.-D. Kapos, A. Tsadimas, V. Dalakas, and D. Anagnostopoulos 2016. Challenges
in SysML Model Simulation.

Seidewitz, E., and J. Tatibouet 2015. Tool Paper: Combining Alf and UML in Modeling Tools -
An Example with Papyrus.

Space Situational Awareness. n.d. Retrieved August 4, 2019, from https://
www.spaceacademy.net.au/intell/ssa.htm

Tsadimas, A., G.-D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos. 2014. Integrating
simulation capabilities into SysML for enterprise information system design. In 2014 9th
International Conference on System of Systems Engineering (SOSE), 272–277.

http://dx.doi.org/10.1109/SysEng.2018.8544402
http://dx.doi.org/10.1109/AICCSA.2015.7507216
http://dx.doi.org/10.1109/WETICE.2016.39
https://www.esa.int/Our_Activities/Space_Safety/Space_Debris/Space_debris_by_the_numbers
http://dx.doi.org/10.1007/978-3-211-99653-9_7
http://dx.doi.org/10.1007/978-3-319-24644-4_16
https://vimeo.com/70964608
https://www.nomagic.com/products/cameo-systems-modeler
http://dx.doi.org/10.1002/j.2334-5837.2016.00142.x
http://dx.doi.org/10.2514/6.2018-5328
http://dx.doi.org/10.1109/SMC.2016.7844478
https://www.spaceacademy.net.au/intell/ssa.htm

	Executable Modeling of a CubeSat-Based Space Situational Awareness System
	1 Introduction
	2 Literature Review
	2.1 Recent Research on SysML Executable Modeling
	2.2 Space Situational Awareness

	3 SysML Executable Modeling Methodology
	4 Discussion
	5 Conclusion
	References


