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Abstract Autonomous systems incorporate varying degrees of adaptation behavior
to sustain their operations with acceptable quality of service (QoS). The QoS
capability of such highly complex dynamic adaptive systems depends on how
well they respond to hostile external events. The paper formulates model-based
assessment techniques to benchmark the QoS capability of a networked system of
cars S. We elaborate on this approach with a MATLAB-SIMULINK-based case
study of adaptive cruise control (ACC) system in automobiles: first, for in-vehicle
CC and then for multi-vehicle coordinated ACC. We employ model-predictive
intelligent control methods to dynamically adapt the ACC system configurations
to attain optimal behavior.

Keywords QoS of adaptive systems · Model-based assessment · Automobile
cruise control systems

1 Introduction

A quantitative assessment of the QoS (quality of service) capability of an embedded
software system S enables a sustained QoS behavior and/or reduced cost of system
operations, in the face of uncontrolled external environment conditions incident on
S (Gjorven and et al. 2006). In this paper, we study the autonomic management
of adaptive cruise control (ACC) processes in automobiles (Wiki 2016) based on a
model-based system assessment logic.

The managed system is a native in-vehicle CC operating under hostile road
conditions E∗ : e.g., road slipperiness and elevation, wind forces, air density, etc.
E∗ depicts the events that are hard to measure but nevertheless significantly impact
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Fig. 1 Functional blocks composed in our ACC system (=CC + AM)

the CC operations. The autonomic manager (AM) is a situation-based control
module that optimizes the in-vehicle CC behavior in a context of the sensed external
environment conditions E⊂ E∗ . The AM is realized as a hierarchical control module
interacting with the in-vehicle CC system via a signaling interface – as advocated
in (Ravindran and Ramesh 2014). The paper extends our earlier preliminary study
on the infusion of intelligent control behavior by external management modules
(Adiththan et al. 2017).

The AM maps the user-level QoS-oriented preferences onto a CC logic. Here,
QoS depicts multiple attributes of the speed ramp-up behavior of a vehicle when
a reference speed is set, such as fuel consumption for speed ramp-up, latency in
reaching a reference speed, and speed jitter in steady-state. The CC logic determines
the torque generation from engine components to speed up/down the vehicle in
pursuit towards a desired speed while meeting a desired QoS specs. It is often based
on a proportional-integral (PI) controller with gain constants: (Kp,Ki) to map the
observed speed error onto a torque. We use a CC simulation module developed at
CalTech, written in MATLAB-SIMULINK, in our study of AM.

See Fig. 1. The AM consists of two functional modules: (i) monitor to assess the
QoS performance of CC under the prevailing E∗ and (ii) configuration generator
to determine the modified in-vehicle CC settings (Kp,Ki) to effectively deal with
E∗ . (i) quantitatively analyzes how the QoS attributes are affected by E∗ , whereas
(ii) dynamically changes the control algorithm and/or its parameters to achieve a
calibrated improvement under E∗ . For instance, the torque generated by the in-
vehicle CC is increased in the face of higher road elevations and/or wind forces (the
latency and steady-state speed are also suitably controlled). The AM dynamically
plugs in suitable in-vehicle CC parameters (Kp,Ki), as determined for the sensed
environment E ⊂ E∗ under a certain policy. A policy may also factor in other
situational inputs: say, road detours and barriers and multi-vehicle coordination
needs.

We also consider a multi-vehicle cruise control (MVC), realizable by coordinat-
ing the per-vehicle CC modules. The multi-vehicle coordination involves generating
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vehicle configurations that enforce the inter-vehicle safety spacing constraints while
maximizing the collective QoS experienced by the vehicle ensemble.

2 QoS-Oriented View of ACC System

The true model of a vehicle’s raw physical process (RPP), i.e., how the engine,
tires, and axles perform under various road conditions, is often not known in an
exact form. So, the CC logic uses an approximate model of the RPP, as absorbed in
a PI-control law (PI: proportional-integral) (CalTech 2014). The difference between
the model-expected and observed speeds during a control step is also factored in a
decision for the next step about the torque to be applied. An iterative sequence of
such control steps leads the CC to a steady state.

The number of observe-decide-act (ODA) steps needed to reach the steady-state
(Koda) is a measure of the latency of CC for speed-up, withΣ j = 1

Koda Q(j) being the
total torque expended for the speed ramp-up – and hence the fuel consumed – and
[Vref − V′(Koda)] being the steady-state error (SSE) (Kienke and Nielson 2005). The
latency, torque, and SSE are the QoS attributes for the in-vehicle CC. A parameter
setting of small values for the PI constants (Kp,Ki), for instance, yields a lower SSE,
albeit at the expense of a larger latency and/or more fuel consumption.

The controller generates a trajectory of torque values [Qj]j = 1,2,···,Koda that
finally leads to a sustainable speed V′, where V′ ≈ V. An optimal QoS q′

opt depicts
a scenario where the QoS utility of CC as perceived by the drivers is high, i.e., U(q,
q′
opt) ≈ 1.0. A control trajectory, as computed oblivious of the road conditions by

a static PI-control law, often leads to a less optimal QoS (when compared with its
intelligent counterpart). The suboptimality of QoS is more pronounced when the
road conditions are light to moderate, because the static controller is constrained to
a smaller region of the search space of [speed, torque] tuples for control trajectory
generation.

In our model-based approach, the CC employs user-supplied utility functions to
map a degradation in each of these QoS attributes onto user-level displeasure – and
hence a contribution to the overall cost. Here, a throttle action X contemplated for
speed ramp-up factors in the expected changes in [Koda, Q, SSE] – and hence the
cost incurred by X. Among various candidate actions {X}, the controller chooses
an X that is expected to incur the lowest cost and then unfolds X to be exercised
on the vehicle. Figure 2 illustrates a mapping of the system-level QoS of CC to an
user-perceivable utility index: U(q, q′) ∈ [0,1].

Our QoS-centric optimization approach for CC can be contrasted from the
control-theoretic optimization approach advocated in (Bauer and Gauterin 2016).
The latter too provides for model-predictive computation and horizon-based plan-
ning to deal with: (i) unexpected disturbances encountered on a road over short
timescales and (ii) control inaccuracies arising from model uncertainty itself. In
our approach, however, (i) and (ii) appear as a difference between the model-
computed and observed costs, thereby triggering a throttle action to lower the cost
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Fig. 2 Usefulness measure of a cruise control system

in a next control step. Because of its reliance on predefined cost relations and
utility functions, our approach is more amenable for incorporation as generalizable
software-level solutions (say, offloading the expensive model-predictive computa-
tions to a cloud).

3 Autonomic Control of In-Vehicle CC

We adjust the Kp and Ki parameters dynamically based on the sensed and/or
estimated environment conditions E. For example, if the wind speed increases,
Kp is jacked up to generate higher amounts of torque in the throttle actions that
would counter the wind forces more effectively (than what a statically set Kp would
otherwise do). Likewise, the Ki parameter that captures the accumulated modeling
error since the start of a CC action is also jacked up to accelerate the learning. Our
dynamic setting of (Kp, Ki) based on the estimating the environment parameters
such as road elevation (θ ), air density (ρ), and road friction coefficient (Cr ∈ [0,1])
depicts an infusion of controller intelligence with the process level modeling of core
components of in-vehicle CC system.

3.1 Optimal Setting of In-Vehicle CC Parameters

Our study on how the QoS changes vis-a-vis some representative (Kp, Ki) parameter
values of the PI controller reveals two points. First, a different controller configura-
tion can yield a better QoS under the current ρ-Cr conditions. Second, an optimal
setting of the controller parameters can change with ρ-Cr. We thus reason that [Kp,

Ki] should be adjustable according to the current ρ-Cr conditions.
We comprehensively analyze the impact of [Kp, Ki] on the overall optimal

behavior of the CC sub-system of a vehicle. It involves determining how the optimal
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Fig. 3 Simulation results on optimal per-vehicle CC design

controller setting, denoted as [Kpo, Kio], changes under different ρ-Cr conditions.
We formulate a composite QoS index γ for the CC sub-system in terms of individual
QoS attributes [Koda,Q, SSE] attained with a controller setting[Kp, Ki], as:

γ = c1.Koda + c2.Q + c3.SSE, (1)

where c1, c2, and c3 are positive constants (we use the notations q and γ

interchangeably in the paper). The γ depicts a mapping of the QoS attributes onto
a scalar space, attaining an optimal value at: [Kp = Kpo, Ki = Kio]. The domain-
specific interpretation of [Koda,Q, SSE] attributes, namely, lower values mean a
better QoS, casts the optimization goal as finding the lowest γ value.

We conducted a gradient search of the [Kp, Ki]-space to determine the optimal
setting. The composite QoS index γ was computed from the [Koda,Q, SSE] data
output by the SIMULINK module for various [Kp, Ki] settings under a given ρ-Cr.
Figure 3 shows the γ values for different [Kp, Ki] and ρ-Cr values. It is found that
the setting [Kp0 = 0.7, Ki0 = 0.2] gives the optimal point, namely, the lowest γ

value. The system has a global minimum point, which is detected by the gradient
search algorithm in a short number of epochs.
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An optimal parameter setting [Kp0, Ki0] is tied to the external environment
conditions: [ρ,Cr]. So, a reasonably accurate (and low cost) estimation of the ρ-
Cr values is needed.

3.2 Declarative Specs for Autonomic Control

An infusion of the intelligent control capabilities however requires capturing the
domain-knowledge pertinent to CC operations by the AM, as described below.

The AMmodule may employ policy functions to adjust the (Kp, Ki) parameters –
c.f. Eq. 1. We assume that the information about [ρ,Cr, θ , . . . ] is available to the
AM in some form (say, with estimators running in the CC system’s control plane).
The question then is: how does the AM orchestrate the changes to (Kp, Ki)? This
is because triggering these changes requires AM to capture the domain-knowledge:
such as an increase in θ or ρ requires generating a higherQ. Over a certain operating
region, the domain-knowledge can be codified as axioms and rules maintained by
the AM to relate a change in [ρ,Cr, θ , . . . ] to a desired change in (Kp, Ki).

A declarative specs of the AM-level basic rule relates the current value of ρ to
the newly sensed value of ρ as:

> [ρsen, ρcur ] →
incr_kp

[
diff (ρsen, ρcur ) , α(p,1)

] ∧
incr_ki

[
diff

(
ρsen, ρcur , δρ

)
, α(i,1)

] ;
incr_kp [x, y] →

The applicative functions incr_Kp[.] and assign Kp(.) are exported by the CC
system for use by the AM: first, to realize an increase of Kp subject to the condition
ρsen > (ρcur + δp) and second, to signal a plug-in of the modified Kp to the PI
controller. Similarly, the update rules for Kp based on the changes in Cr and θ can
be specified. Likewise, the update rules for Ki can be specified.

A declarative specs of the PI-controller update rules can make the AM oblivious
of the domain-knowledge, enabling its reuse (at a meta-level). The AM is basically
a symbolic processor that evaluates the truth or otherwise of various relations and
then plugs in a new (Kp,Ki) as needed.

4 Multi-vehicle Cruise Control (MVC)

We outline the key tenets of a multi-vehicle cruise control system (MVC) for
automobiles. Figure 4 shows the functional modules. The QoS depicts how safely a
set of vehicles maintain their set speeds within acceptable deviations while avoiding
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Fig. 4 Functional modules of a MVC system

drastic changes. We provide an empirical view of how an optimal QoS behavior can
be determined for a multi-vehicle ensemble.

4.1 Modeling Aspects of MVC

Suppose a vehicle X takes an action to speed up or down, as part of its local
CC action. X cannot hit any of the vehicles {X′} moving in its vicinity. To
satisfy this critical safety requirement, a coordination of the vehicles is needed
wherein an intended move of X is evaluated in conjunction with its effects on
one or more of the nearby vehicles {X′}. For instance, a slowdown of X can
force a vehicle X′ behind also to lower its speed (but may not affect the vehicles
ahead). The extent of slowdown of X′ is determined by many parameters, such
as its distance to X, environment conditions (e.g., road wetness, vehicle traction),
occupant characteristics (e.g., comfort level, children and old-aged passengers),
etc. We envisage that the multi-vehicle coordination controller C gets hosted on
a roadside assist compute node (possibly located at the edge of a compute cloud),
with adequate physical and logical sensors and computational resources to enforce
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the QoS needs of MVC. C interacts with the various vehicles under its control
realm over wireless signaling channels. Given that each vehicle itself implements
an onboard CC module, the coordination of multiple vehicles by C is deemed as a
hierarchical control.

The QoS in MVC scenario is determined by how far each car is forced to deviate
below from the driver expected speed. We define the speed deviation, Dv, as the
difference between a driver-set speed and a speed adjustment computed by the
MVC controller C. One scenario where C may choose to adjust the speed is when a
vehicle V interacts with other vehicles {X′} that have lower locally set speed limits.
The Dv is thus different from the in-vehicle SSE parameters, but the driver often
cannot distinguish between Dv and SSE. The adjusted speed computation done at C
may consider the safe following distance ds set by individual drivers while turning
ON the cruise control mode. Different drivers may independently choose ds values
according to the acceptable comfort level while the vehicle is on cruise mode.

The MVC works by potentially overriding the speed limits of individual car
drivers, to achieve a collective safe driving of the N-vehicle ensemble while striving
to keep the Dv of each vehicle low for a given ds setting (i.e., maximize the per-
vehicle QoS of CC). The QoS of MVC is thus gauged by how good the MVC
algorithm strives to keep all the N vehicles safe with minimal displeasure. An
assessment of this MVC capability requires a model of the multi-vehicle ensemble.

4.2 Optimal Configuration of MVC System

A globally optimal configuration for N vehicles is one that minimizes the cost:

Γm =
∑

k=1

N
1-Uk

[
Dv(k)–Dv

′
(k)

]
; (2)

subject to a constraint that the inter-vehicle distances are higher than the
safe-limit ds. Here, V(k) is the MVC-enforced speed limit of kth vehicle and
D0(k) = [Vref(k) − V(k)] and Uk(.) is the per-vehicle utility function. Here,
D′

v(k) = [Vref(k) − V(k)], where V′(k) is the actual speed sustained by the local
CC of kth vehicle, with ε(k) = [V(k) − V′(k)] being the steady-state error (SSE)
induced by the native PI-control law. D′

v(k) is not known to the kth driver, unless
the MVC signals about the speed override. Here, the computation of 
m for a single
configuration would amount to running N instances of SIMULINK module (each
instance with potentially a different parameter set) and summing the per-driver
displeasure accrued in that configuration.

Determining the globally minimal 
m is however an NP-complete problem, as
the MVC should conduct an exhaustive search of all feasible configurations. If L
is the number of distinct speed settings possible, the computational complexity of
an exhaustive search would then be O(LN). Therefore, one should employ a greedy
(and/or genetic) search algorithm to quickly come up with a reasonable suboptimal
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configuration. Such an MVC-level QoS definition would require knowing what
the global minimum would be – in order to determine how suboptimal a greedy-
computed solution is.

In the absence of accurate knowledge about the best configuration G*m, we
have the MVC specify a cost threshold to compute an acceptably suboptimal
configuration Ga. The use of situational knowledge by a management entity would
allow specifying Ga

m (say, through a GUI). We then use Ga as a reference
benchmark for analysis purposes. Now, the MVC would run its own heuristics-
based search of some representative configurations to quickly come up with its
own view of what the (sub-)optimal configuration would be – which we denote
as Ga

g. If 
(Ga
g) > 
(Ga), the search gets preemptively stopped; otherwise, the

search would end by a designer-set termination condition: say, the cost difference
[
(Ga) − 
(Ga

g)] falls below a threshold. Thereupon, the MVC system is deemed
to have reached a steady state.

4.3 Configuration Search Algorithms

As outlined in the earlier section, we employed greedy search and genetic search
methods to decide a next state of the MVC system that would generate a close-
to-optimal trajectory. To determine how suboptimal the trajectory is, we also carry
out an exhaustive search of the state space to find the best solution 
*m (which is
basically a brute-force computation).

For greedy search, the MVC controller treats a subset of the vehicles {X} as
ignoring its commands, when computing a new configuration (even though {X}
may be compliant) – where 1 < |X| 	 N. The non-consideration of vehicles {X}
in a decision-making by the MVC manifests as allowing them to stay course, as
determined by their native CC sub-systems – while the remaining vehicles (N − |X|)
are treated as controllable. This leads to a much small-dimensional search space:
O(LN − |X|). A deterministic search therein yields a candidate that incurs the lowest
cost among the small set of configurations considered.

A genetic search, on the other hand, occurs over the full-dimensional space
of N vehicles but with a random selection of candidate vehicle configurations. A
candidate configuration is produced after multiple crossover checks on the model-
computed vehicle states. The random mutation of multiple solutions (two or more)
occurs on those known to be good for at least a selected subset of the vehicles.
The rationale is that the sub-elements of parent configurations known to be good
for some vehicles will likely yield a better offspring when combined (i.e., a new
configuration good for additional vehicles as well). The evolutionary process leads
to a better offspring, albeit probabilistically, as a result of the crossovers of sub-
elements from good parents.
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Fig. 5 Avatar-based approach for MVC system benchmarking

4.4 Avatar-Based Benchmarking of MVC System

We employ avatars to generate multiple benchmarks for an MVC system S in a
simulated world. An avatar is basically a mathematical model of S executed in
a virtualized world, which is subjected to simulated environment conditions that
are close approximations to the actual conditions incident on S. A model �(S,E,G)
representing the current system S is used to benchmark the actual behavior of S.
This objectively verifies the goodness of S in meeting its QoS goal G in the face of
environment conditions e∈E. See Fig. 5.

Different models of S that represent alternate compositions of S from the core
functional components, namely, the per-vehicle CC processes and the configuration
parameters, may yield different QoS behaviors. For instance, an increase in speed
and/or lane change of one or more cars can be parameterized in the sub-system
models, thereby computing its effects on the MVC-wide QoS – and the associated
configuration cost (S,G,E). Such purported changes are first analyzed by a model-
driven simulation of the modified MVC processes (S + δ, e,G) in a virtualized
world, before committing a configuration change δ in the actual MVC system.
The analysis involves two things: (1) comparing the estimated behavior of model
�(S + δ,E,G) with the currently observed run-time behavior of actual system S and
(2) infusion of system-level changes δ, if needed, in the operational processes of
S using compositional methods (e.g., changing the Kp/Ki parameters of in-vehicle
CC). In the above light, the behavior computed by the model (S, e,G) serves as a
“gold-standard”: first, to determine how good is the actual behavior of S relative to
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the expectations and second, to provide the basis for a calibrated change in S. In
general, the different benchmarks obtained from alternate compositions of S can be
analyzed to meet the desired optimality conditions. The model-driven simulations of
�(S,E,G) and �(S + δ,E,G) can be seen as different avatars of S for benchmarking
and reconfigurations of S.

5 Conclusions

Our work adds a software cybernetics dimension to the autonomic management of
an in-vehicle CC system. The dynamically settable CC logic allows a vehicle to be
more responsive to the stringent demands in a multi-vehicle coordination scenario,
relative to a statically set CC. Our compositional design of ACC system promotes
incremental evolution and reconfiguration of ACC functionality by software and/or
model reuse. The paper also described a multi-vehicle coordination functionality
composed from the per-vehicle CC models (static or dynamic) – realizable on a
roadside unit (say, hosted on a cloud edge). Our adaptive control of vehicles meets
a critical functionality requirement for Intelligent Transport Systems, as enunciated
in (Koopman and Wagner 2014).
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