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Abstract We make the case that since model-based development of complex
software-intensive systems has proven to be so effective, a model-based paradigm
that encompasses assurance of the system makes excellent sense and will result
in more rigorous, less ad hoc approaches to the development and maintenance
of assurance cases. This will become especially clear in the manufacturing of
autonomous motor vehicles. Adequate demonstration of the safety of autonomous
vehicles is a huge challenge. Doing it once for a single vehicle is difficult. Doing
it for multiple vehicles in a product family and coping with incremental changes
in design from one model version to the next without redoing the complete
safety analysis is even more difficult. We show that a comprehensive, rigorous
model-driven approach to development and assurance holds the promise of more
efficient and more effective assurance in general and also provides a mechanism for
incremental assurance. We also briefly compare that with one of the current staples
for documenting assurance cases – Goal Structuring Notation.

Keywords Model-based development · Model-based assurance · Assurance
cases

1 Introduction

Model-based development (MBD) of complex automotive systems is well estab-
lished and has proven to be the preferred approach. Analysis of models together with
model management and correct-by-construction software generation are convincing
reasons to use a model-based approach. The approach to the associated safety
assurance has lagged somewhat, but it makes good sense to utilize model-based
approaches for those same reasons. In addition, safety assurance needs to be planned
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ahead of development and tightly integrated with development as it proceeds. One
of the huge assurance hurdles we have to overcome is the inability to perform incre-
mental safety assurance. Incremental design is now the norm with manufacturers
routinely modifying existing vehicle (or vehicle product-line) designs for their next
model year. In doing this, manufacturers must be able to do the same with the
associated safety assurance. In other words, they need to be able to produce safety
assurance based on that of the previous model and changes in design as well as
changes in regulations, operating conditions, etc., without redoing the assurance
from scratch.

This is challenging right now with the current proliferation of Advanced Driving
Systems and introductory autonomous features. It is going to be even more difficult
with more autonomous features leading to full Level 5 autonomy (i.e., features that
completely replace the driver) (SAE J3016 2018), exacerbated by the fact that the
required levels of safety increase as the level of autonomy increases. A common
mitigating factor for early autonomous features is that there is a human driver who
can take over control of the vehicle. This will not be true for Level 5 autonomy,
drastically increasing the level of safety required for these future vehicles.

We believe that existing notations and tools for safety assurance fall far short
of what we need for achieving the necessary safety levels for (current and) future
vehicles. Together with an automotive partner, we have developed an approach to
safety assurance that better integrates the assurance processes and development
processes; is much more rigorous than existing techniques; is less ad hoc; includes
extremely comprehensive traceability; is compatible with current model manage-
ment techniques; and facilitates incremental assurance.

The remainder of this paper briefly introduces one of the most popular assurance
case notations used today, introduces our new methodology, and very briefly
compares them. Readers can find excellent publications on various aspects of
assurance/safety cases, for example, in (Rushby et al. 2015 and Rhinehart et al.
2015).

2 Goal Structuring Notation (GSN)

GSN is one of the most popular graphical notations for the presentation of assurance
cases (Kelly 1998). It presents its “argument” by statingGoals (representing claims)
and Strategies (reasons for decomposing goals into sub-goals) and supports terminal
goals using Solutions (representing evidence). It has a rich supporting notation
including Assumptions, Contexts, and Justifications.
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Fig. 1 GSN ASIL example

2.1 A GSN Example

Figure 1 provides an example of a GSN fragment representing the calculation of
ASILs (Automotive Safety Integrity Levels) for all identified system-level hazards
as described in ISO 26262 [ISO 26262, 2018]. Briefly, an ASIL captures the
risk associated with a system-level hazard and guides the development of its
mitigation. The context C1 is included to emphasize that this fragment would follow
demonstration that system hazards were adequately determined. There is no space
here to include other support nodes, such as assumptions.

The top-level claim G1 is decomposed into G2 and G3 as described in S1. G2
is further decomposed and supported by evidence that the severity, exposure, and
controllability ratings have all been correctly determined in accordance with ISO
26262 guidelines. G3 is supported by a calculated ASIL rating that utilizes the
correctly assigned severity, exposure, and controllability ratings.

2.2 GSN Benefits

GSN is intuitive. People understand it readily, and it seems to enable people to ask
critical questions related to the (somewhat) implicit argument presented by GSN.
It has motivated many developers and certifiers to consider seriously what must
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be demonstrated to ensure safety. There is significant work on automating aspects
of GSN, including safety case construction and formal approaches to dealing with
evidence. An excellent source for this is https://ti.arc.nasa.gov/profile/edenney/.

2.3 GSN Challenges

GSN promotes an ad hoc approach to structuring an assurance case. There is
nothing in GSN itself that helps us decide how to present a safety argument.
Patterns and experience are the basis of good GSN assurance cases. The tree-
like structure, while intuitive, results in cross-cutting concerns that make creating,
understanding, and maintaining a GSN assurance case extremely challenging. The
major challenges introduced by GSN are: (i) it leads to a false sense of confidence
because the reasoning in GSN is about why/how claims are decomposed, not as
to why premises (grounded in evidence) support parent claims, and (ii) rigorous
safety impact analysis is extremely difficult, bordering on impossible. The inherent
traceability in GSN is through arcs connecting nodes, and this will not detect the
impact of changes in parts of the tree that are not explicitly connected.

3 Workflow+

Workflow+ (WF+) is a modelling framework which aims to provide a way for all
information necessary for safety assurance to be captured in a single model. This
model shows relationships between development processes, assurance processes,
development outputs, assurance outputs, and the environment of the system(s) of
interest. WF+ grew out of our work with an automotive partner; an overview of
WF+ modelling and its core mechanisms can be found in (Diskin et al. 2019).

WF+ uses metamodels that define workflows to be followed during the devel-
opment of domain-specific safety-critical systems, complete with all process defi-
nitions, data definitions, control flow, data-to-data and data-to-process traceability,
and constraints over processes and data. These core mechanisms allow all necessary
validation, verification, checks, and reviews to be modelled and included. When
the process defined in the metamodel is executed, an instance of this metamodel
documents the development of the real-world system produced. This includes details
of the system data, reports generated by tasks within the process, etc.

A metamodel can be based on prevailing standards such as ISO 26262 (ISO
26262, 2018), best practices, internal company procedures, etc. and can also be used
to check compliance with the different types of guidelines mentioned. A metamodel
can be checked to see that it is well-formed based on rules suggested by the
mathematical foundations of these models. These checks on well-formedness result
in assurance steps, and these assurance steps can be viewed in different ways – one

https://ti.arc.nasa.gov/profile/edenney/
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Fig. 2 A simple WF+ example (metamodel on the left, instance on the right)

important view is a GSN-like structure. Metamodels can be thought of as templates
for development and/or assurance.

The WF+ metamodels presented in this paper are built using a profile of UML
class diagrams with the following features: (i) two types of classes, process and
data classes; (ii) two types of associations – dataflow associations (green) from data
to process classes and back and static data associations (black) from data to data
classes; (iii) a special type of process class to model reviewing; and (iv) several
constraints on the interactions of the features mentioned above, the most important
of which is that processes and their dataflow form a hierarchy, i.e., a directed acyclic
graph.

Figure 2 shows a simple example of a WF+ metamodel of the risk assessment
process described in ISO 26262 and an instantiation. In this example, the metamodel
(left) specifies that when executed, the Risk Assessment process takes in a hazardous
event, which is a pair of an operational situation and vehicle-level hazard, and
outputs an ASIL classification for that hazardous event. The output data are
connected to the input data, shown as a composition (black diamond) association
from Hazardous Event (HE) to ASIL. The multiplicities dictate that this process is
to be executed once for each HE and that each execution produces one ASIL. There
is also a review process (purple), which evaluates the execution of Risk Assessment
and the validity of its data. The instantiation (on the right) shows the documentation
of an execution of Risk Assessment for a particular hazardous event HE1, which
was determined to be ASIL A, and the output of a review process that validates this
ASIL classification for HE1.

3.1 A WF+ Example

Figure 3 is a refined version of the example metamodel in Fig. 2. (The added
argument elements will be explained later.) In this example, the input data definition
has been refined to capture the types of Intended Operational Situations that can
be part of a HE (operational situations are from (SAE J2980, 2015)) and the
Consequence(s) of HEs. The definition of the Risk Assessment process itself has
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Fig. 3 Refined version of the WF+ example

been refined by decomposing it into four steps. When executed, steps 1 and 2
take in one HE, including Consequences, and produce values for the Severity and
Controllability of that HE.

When executed, Step 3 takes in one HE and outputs Exposure as an attribute of
the Intended Operational Situation of that HE. This HE, which will have its Severity,
Controllability, and Exposure assigned, is then input to Step 4. Step 4 is a query (i.e.,
automatic process) that, when executed, assigns an ASIL classification to that HE.
As steps 1, 2, and 3 define processes that are to be executed by humans, they have
accompanying review processes to assess the validity of their output. As Step 4 is a
Query, its output does not require validation (more on this in 4.6 Automation).

3.2 Building Arguments Over a WF+ Example

When a WF+metamodel is built, its creators include constraints designed to ensure
that its instances will be (i) syntactically correct (i.e., properly structured) and (ii)
semantically correct (i.e., valid). Assurance-related arguments can be created based
on these constraints almost mechanically. Light and dark pink elements in Fig. 3
are natural-language arguments based on syntactic and semantic constraints on the
data definitions in the metamodel. Syntactic constraints (light pink), such as the
multiplicity constraint that each HE must have exactly 1 Severity attribute, are put in
place in the process definition to ensure that instances documenting execution of the
metamodel are always properly structured. Violations of these syntactic constraints
in the instantiation of the metamodel could be detected automatically by tooling.
We can also set the tool to make such checks in the process of building the instance
so that the instance is syntactically correct by construction.
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Semantic constraints (dark pink), such as the constraint T on the attribute Valid?
of Severity, are put in place to ensure that all (critical) data in an instance are
validated by a review. In an instance documenting the execution of a process, if
the value of a Valid? attribute is False or missing, that constraint is violated.

Since ASIL is produced by an automated Query, we want to certify that the
Query itself will produce the correct result given correct inputs, rather than manually
review the Query’s output every time it is executed. This is represented by the pink
node attached to Step 4 (see 4.6 Automation).

By composing syntactic and semantic constraints, we can derive higher-level
constraints and add higher-level assurance-related arguments for those derived con-
straints (blue). For example, when combining the syntactic and semantic constraints
on Severity, we add the argument “Severity is correct.” That is, we claim that if a
severity value is present and it has been reviewed, then it is correct, as shown by the
blue arrows in Fig. 3. Derived constraints can be formed by combining syntactic,
semantic, and/or derived constraints. In a GSN setting, a strategy must be included
to explain the logic as to why sub-claims support their parent claim(s). In a WF+
setting, derived constraints (and their corresponding arguments) are based solely
on the logical composition of constraints and thus do not require a strategy. The
logical soundness of this approach enables us to ensure that any valid execution
of the process definition will satisfy all constraints and thus all arguments in the
process definition will hold for any valid instance (see (Diskin et al. 2019) for
details). This is useful as it allows process definitions to be used as templates for
the development of assurance cases (see 4.7 Templates). It is worth mentioning that
while WF+ itself does not ensure that considerations for safety are included in
some particular workflow, it does, however, provide a setting in which workflows
can be planned and evaluated by experts to ensure that we are adequately confident
they will result in safe systems. In safety-critical embedded systems, including AVs,
this usually amounts to ensuring that we must (i) demonstrate that the requirements
specification will result in a safe system; (ii) demonstrate that the system satisfies
its requirements; and (iii) demonstrate the system does not implement any behavior
not in the requirements specification.

4 Advantages of WF+ for Model-Based Assurance

4.1 Making Assurance Less Ad Hoc

Assurance of AVs using GSN can be ad hoc and reliant upon how individual
safety experts interpret the safety requirements, the certification standards, and the
GSN syntax itself. More specifically, there is no precisely defined methodology for
assurance when using GSN; it relies on individual expertise. There are benefits to
this, as engineers can optimize the process of constructing an assurance case based
on their experience with AVs, but this comes at a price in terms of repeatability and
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learnability. An important benefit of using WF+ is the clear methodology that is to
be followed when building assurance arguments; this will enable engineers to more
readily learn the techniques and for the steps to be repeatable.

By comparison with GSN, the semantics for each element of WF+, as well as the
role each element plays in the assurance process, are precisely defined. This should
lead to fewer opportunities for misinterpretation. Also, WF + ‘s structure makes
managing large assurance cases more systematic, repeatable, and inexpensive.

4.2 Improved Traceability

Detailed traceability is essential for assurance cases of complex systems such as
AVs, because it improves understandability and facilitates following all pertinent
links to an argument. In particular, change impact analysis is completely dependent
on accurate and complete traceability. Current approaches lack mechanisms to
include direct traceability and often rely on implicit (i.e., assumed) traceability
between arguments. For example, in Fig. 1, the traceability between hazards and
their respective severity, controllability, and exposure is left implicit through the
wording of the diagrammatic elements. This implicit traceability is easy to identify
and follow in this simple example, but in large-scale industrial safety cases it is
often much more difficult to identify and understand, especially when cross-cutting
concerns branch over multiple argument legs. This places an undue burden on
independent reviewers to discover this implicit structure on their own and, when
compounded with the ad hoc structure typical of GSN-style safety cases, can lead to
significant misunderstanding of the intended argument. This prevents independent
reviewers from being able to review an assurance case with sufficient confidence
and may result in potentially dangerous flaws in arguments.

WF+ was developed from the ground-up with this in mind and enables detailed
traceability. All traceability necessary between data and processes underlying
arguments is maintained explicitly and allows for cross-cutting concerns to be
accurately and explicitly represented. WF+ facilitates improved understandability
and independent reviewing and provides an excellent basis for change impact
analysis.

4.3 Change Impact Analysis

When dealing with highly complex embedded systems such as AVs, it can be
difficult to determine the impact of incremental design changes on the system’s
assurance case. As AV systems continue to increase in complexity, even experienced
engineers have trouble keeping up with the thousands of connections between
design and their respective elements of an assurance case. The model-based nature
of WF+ provides the necessary foundations for change impact analysis to be
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automated as much as is possible. The detailed granularity and traceability possible
in WF+ metamodels allow for tools to be built that can automatically follow
traceability links to all related data and their associated arguments, directing
engineers to areas of assurance that are affected by changes in design. On top of
this, the well-defined semantics of WF+ metamodels and assurance cases allows
for an explicit ontology of change propagation that enables a well-defined approach
to assurance of incremental changes to systems.

4.4 Integrating Assurance with Development

The model-based approach of WF+ opens up the opportunity for WF+ models
to be directly integrated with model-based development or V&V tools. This
allows assurance to be built directly over data from development, rather than
having an assurance case as a separate document with references to development
documentation. With direct access to artifacts from development, some aspects of
assurance cases can be generated automatically and validated based on the content
of those design artifacts (see 4.6 Automation). While it is possible to integrate
GSN approaches with development (Hawkins et al. 2015), integrating WF+ with
development will allow for more scalable solutions that are better suited to change
impact analysis. Also, its traceability into the environment facilitates dealing with
feature interactions that stretch into the environment.

4.5 Automation

As AV systems continue to increase in complexity, it is desirable to automate
as much of the assurance case development as possible to reduce development
costs. Building WF+ on well-established MBD principles allows tool developers
to leverage a wide range of pre-existing techniques for managing assurance cases,
including automated querying to search assurance cases, and transformations for
applying templates.

The model-based approach of WF+ allows for static syntactic correctness to
be checked automatically. As more granularity is added to the WF+ metamodel,
some semantically significant properties can be encoded in the structure of the
metamodel through the use of constraints. For example, if there are certain structural
properties of design-related elements desirable for safety, then the corresponding
constraints can be placed on the metamodel to allow these properties to be checked
automatically. Table 1 in ISO 26262-6 (ISO 26262, 2018) outlines properties of
software architectural design that are desirable for avoiding systematic faults. Many
of these properties such as restricted size of interfaces, restricted size of complexity
of software components, and loose coupling between software components are all
good candidates for automatic checking through constraints over detailed models.
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An MBD approach also allows for some processing to be automated, such as
Look Up ASIL in Fig. 3. It is possible for these automated tasks to be certified,
i.e., have trustworthy outputs given correct inputs. Time is saved by automating the
process, and time is saved by not requiring their outputs to be reviewed.

4.6 Templates

As with any safety-critical system, it is necessary to plan for the safety of AVs
ahead of development. Assurance case templates aim to specify a nearly-complete
assurance case for a particular type of system before development begins (see
Wassyng et al. 2015). A template includes sufficiently prescriptive limitations
on systems (as determined collectively by experts in the field) but still allows
enough flexibility so as to not unduly interfere with the creative design of a
system. Assurance case templates specify higher-level argumentation and the overall
structure of an assurance case, as well as acceptance criteria for required evidence.

WF+ is well suited for implementing assurance case templates using high-level
WF+ metamodels that must be conformed to. For a particular system, this WF+
template can be refined to fit the needs of the system of interest and can then be
executed. The modular nature of WF+ allows for assurance case templates to be
created hierarchically to produce different versions of the templates to fit different
use cases. Benefits of this include repeatability, ease of audit, and potentially
increased productivity as tools can be used to carry out refinements and instantiation.
Importantly, it also facilitates incremental assurance when changes that eventually
occur were already taken into account as options in the metamodel.

5 Conclusion

The modelling effort required by WF+ is substantial. However, the vast majority of
the required modelling is of the form “model once – use many times.” What do we
get from this effort? One of the most important attributes is that it facilitates effective
incremental assurance! Traceability links in WF+ are comprehensive and cover
planning, development, processes, work products, and the environment. The fact
that we start with metamodels that act as templates means we reduce confirmation
bias in the assurance process. We also conform to the dictum – design safety into the
vehicle, do not add it afterwards. Compared with existing notations/methods, WF+
is extremely rigorous, less ad hoc, facilitates automation of many aspects of safety
assurance, and reduces the difficulties associated with cross-cutting concerns.?
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