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Abstract Understanding system vulnerabilities to risk factors during operation
is essential for developing dependable systems. By implication, assessing in-
use risk factors requires monitoring system parameters that contribute to making
probabilistic inferences. We argue, however, that naïve use of statistical data
without regard to causality can yield surprising and often erroneous risk predictions.
Making reliable risk predictions is further complicated by lack of full awareness of
system states and the existence of unobservable parameters in complex systems.
Overly conservative risk assessment leads to increased life-cycle cost and reduced
system availability resulting from overly aggressive preventive maintenance or
replenishment strategies, while overly optimistic risk assessment can lead to even
higher life-cycle cost and potential harm when otherwise preventable failures occur.
This paper discusses a causality-aware, dynamic risk assessment model based
on hidden Markov model construct. This model employs the concept of hidden
system states that account for otherwise unexplainable observations. The model is
continuously evaluated during system operation and updated when new observations
warrant reevaluation.

Keywords Risk assessment · Markov model · Causality · Causal modeling ·
Probabilistic inference

1 Introduction

Telling a risk analyst to ‘just specify the likelihood,’ is like telling a homeless person to
‘just get a house’ (Ferson 2005).
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Nomenclature
a State transition probability
β Covariance of two system events
O Set of observations
π Initial state distribution
PN Probability necessity
S Finite set of states

Risk analyses methods generally predict events that can potentially occur and
the impact of those events on system behavior. A commonly used approach by
NASA and the US Department of Defense assesses and tracks risk by assigning
qualitative values to the likelihood and severity of events (DoD 2014; NASA 2010).
An obvious question is whether the relevant data needed for risk assessment is
available, especially when the events of interest may have minimal or no prior
history of occurrence (Huff 1954). Furthermore, the events selected for analysis
are usually based on analyst judgment and reflect analyst’s biases, not on hard
evidence. When complex systems are involved, uncertainty in the models used
may mask system realities, thereby resulting in questionable potentially misleading
conclusions.

Several authors have noted that Bayesian modeling methods can potentially
help in understanding the true nature of events and event impacts (Ferson 2005;
Homayoon 2009; NASA 2010; Baru 2016). When applied appropriately, Bayesian
models can accurately converge on the right parameters which influence or are
indicators of risk. This is an expected outcome in that Bayesian models account
for both parameter and model uncertainties. However, the proper application of the
Bayesian approach needs to clearly distinguish between correlation and causation.

Briefly, Bayes’ theorem, P(A & B) = P(A|B)P(B), has been successfully applied
in multiple, disparate domains. Of course, if improperly applied, it can lead to
surprising, potentially erroneous conclusions. Consider the oft cited example of ice
cream sales and drowning. If the data collected considers only number of ice cream
sales and number of drownings, then Bayes shows a correlation between increased
ice cream sales and people drowning. That is, if A is “drowning” and B is “ice cream
sales,” then as the priori, P(B), and likelihood, P(A|B), increase so does the apparent
correlation P(A & B). Obviously, this is flawed reasoning because both ice cream
sales and people swimming increase in hot weather. Bayes is not at fault here; rather,
it is that the “wrong” data set was used in the analysis. While finding correlations
is relatively easy, understanding causality is far more difficult (Pearl 2001, Pearl
2009).

At the heart of most forms of risk assessment are so-called weak assertions of
the form: if event A occurs, then event B occurs. If B occurs, then there is a higher
probability that A also occurs. Weak assertions are expressed by Bayes:
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Fig. 1 Two simple models of causality in which exogenous variables UA and UB are connected to
each other and to endogenous variables A and B with dashed lines. ß represents the direct effect A
has on B

P (A|B) = P(A)
P

(
B|A

)

P
(
B

) (1)

and are the basis for probabilistic risk assessment (PRA) (NASA 2010).
When considering risk though, simply observing a collection of parameters

without understanding causality can lead to false alarms or misinterpretation of
potentially hazardous situations. While this seems reasonable, unfortunately, in
complex systems, requisite observations and state knowledge for making sound
decisions may not be available. Moreover, systems that degrade with time may inval-
idate priors that frequentists depend on or prevent proper updating of subjectivists’
beliefs.

Pearl (2009) describes a causality construct that represents the probability that an
event, B=b, will occur whenever action, A=a, is enforced over the entire population
as P(B = b| do(A = a)). In essence, do(A) implies a controlled experiment with
randomized A.

Pearl shows that causality can be associated with directed graphs in which
nodes represent observed or unobserved system factors connected by a term that
represents the causal effect of one factor on another. The model comprises so-called
exogenous variables that are not influenced by other system variables but have an
impact on other system variables called endogenous variables. Figure 1 shows two
simple examples based on Pearl’s paper. In Fig. 1a, Cov(A,B) = β and in Fig. 1b,
Cov(A,B) = β + Cov(UA,UB). Note that in some situations Cov(UA,UB) = 0 in
which case the covariance is β as in Fig. 1a.

The evaluation of probabilities needed for causality needs more care than simply
collecting data and looking at frequencies of occurrence. For example, Bayesian
analyses are strongly influenced by the assumptions made on prior probabilities as
shown in Eq. 1. As sample size increases, the sensitivity to those priors is reduced.
However, in the case of causality, sensitivity to prior causal assumptions remains
strong regardless of sample size. Moreover, hidden and indirect effects confound
faithfully representing the relationships between events and actions. Recalling the
example of eating ice cream and drowning, a naïve statistical analysis will conclude
a strong correlation.
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One solution for reducing the likelihood of false correlations uses Pearl’s concept
of probability necessity, PN. Under the assumption that event, A, is monotonic
relative to action, B, then

PN = P (A|B) − P
(
A|B ′)

P (A|B)
+ P

(
A|B ′) − P

(
A|do

(
B ′))

P (B,A)
(2)

Equation 2 subtracts the likelihood that event, A, occurs even when action B
does not. In the case of eating ice cream, the likelihood of drowning will be roughly
the same regardless of ice cream consumption which eliminates confounding and
incorrect bias.

2 Risk

Loosely, risk assesses the likelihood some event will occur and the impact that
event has on a system or on a system’s environment. Assessments run the gamut
of subjective analyses by subject matter experts (SMEs) to more rigorous and
formal mathematical constructs. SME risk assessments are essential during system
formulation, design, and test phases because hard data are usually not available.
While far from perfect, methods have been created that help mitigate the impact
of SME bias and incorrect assumptions that often underlie subjective assessments.
Also, while some systems are heavily instrumented for post-deployment data
collection, that data may not always be useful for evaluating the cause of a particular
event or the probability that an unexpected and dangerous event is likely to occur in
the near future.

Dynamic assessment of system state from post-deployment data can provide
insights into design weaknesses and aid in scheduling maintenance and replenish-
ment activities. This is not a matter of simply collecting large quantities of data
and doing a statistical analysis because dependencies in complex systems can be
difficult to untangle. For example, suppose there is a risk of event occurring when
exogenic variable P1 > x but never when endogenic variables P2 < y and P3 = true.
A correct assessment of event risk depends on knowing the correlation of P1 to
P2 and P3. Knowing only that an event occurs based on the value of P1 is akin to
correlating increased ice cream sales to drowning while disregarding the correlation
with increased swimming and summer temperatures.

2.1 Hidden Markov Causality Risk Model

Traditionally, risk assessments are used by managers and engineers in tradespace
and early design evaluations and focus attention on design changes needed for
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removing or reducing the likelihood of serious, undesirable future events. While
using risk assessments in the design process is essential, it is equally important
to understand post-deployment system vulnerabilities. That is, systems must be
monitored during operation so that risks of serious or dangerous events can be
estimated. As previously noted, naïve data collection without consideration of
causality will not suffice as a reliable predictor of risk. What is needed is the creation
of models in which prior probabilities account for probability necessity as in Eq. 2.

A state machine construct is a natural model for evaluating system risk in which
states represent a notion of vulnerability, transitions occur as the result of system
events, and outputs result from system state and system events. In an ideal world, the
Markov property holds, i.e., the conditional probability distribution of future states
depends only on the present state and events and not on the trajectory taken to arrive
at that state. When the Markov property holds, we can create an understanding of the
state space and the probability distribution for future states based on straightforward
statistical analysis of observations made.

In the real world, there might be ambiguity in the knowledge of system state
or uncertainty that an event will have the expected result. That is, some aspects
of a system may be unobservable or hidden. Hidden Markov models (HMMs)
accommodate uncertainty by including hidden states associated with initially
unknown observation and transition distributions. HMMs are trained during system
use and over time refine distributions by evaluating how well a model predicts
system behavior. In essence, continuous model updates are a Bayesian process that
improves HMM priors and consequently improves the reliability of the predictions
made by the model.

HMMs for real-time vulnerability assessment of network cyberattacks are not
new (Årnes et al. 2005; Liu and Liu 2016). Conceptually, these assessments involve
the creation of a HMM-based attack graph in which states represent a method of
attack and transition probabilities reflect the difficulty or vulnerability of an attack
causing an unwanted operational change. Monitors collect an observation sequence
that is used for evaluating how well the HMM predicts that sequence but can also
be used in determining a state probability distribution (belief state). That is, given
an observation sequence, O, it is possible to predict P(O|model) using the forward
algorithm as well as the belief state distribution after observing the sequence, O.
Additionally, the state sequence can be determined using the Viterbi algorithm
which determines the most probable path the model takes as each observation is
made. The state sequence is useful in understanding the events that caused the
system to arrive in its current state, that is, it provides the notion of causality.
Additionally, if P(O|model) is below a threshold, then it is likely that there is a
new hidden state at play or the model parameters need adjustment.

In a similar vein, a more general risk model can be created. This model comprises
known states that represent system conditions, transitions, and observations associ-
ated with system conditions. The model is augmented with hidden system conditions
and initially unknown transition and observation probabilities. For example, Fig. 2
shows a HMM comprising two known and two hidden system conditions. The
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Fig. 2 A four-state Markov
model comprising two
observable states, S0 and S1,
and two hidden states, S3
and S4

transition and observation probabilities associated with the hidden states must be
nonzero but can be arbitrarily small.

A HMM is conventionally defined by:

• A finite set of states, S = {s0, s1, . . . sn − 1}; the state at time, t, is qt.
• A set of observations, O = {O0,O1, . . .OT − 1}.
• State transition matrix, A, in which element ai, j = P(qi + 1 = sj � P(qt = si).
• Observation distribution matrix, B, in which bj(k) = P(ok| qt = sj) where

0 ≤ j ≤ n − 1 and
0 ≤ k ≤ T.

• An initial state probability distribution, π , in which π j = P(q0 = si) for
0 ≤ i ≤ n − 1.

2.2 Assessing Risk

In evaluating risk, HMM states represent hazard conditions, e.g., the condition that
pressure in a tank exceeds a specified threshold. State transitions are determined
by substituting the HMM parameters into Eq. 2. Equation 3 computes ai, j by
considering whether there is a causal link between si and sj if observation, o, occurs
while in sj:

ai,j = P
(
sj |si, o

) − P
(
sj |si ′, o

)

P
(
sj |si

) + P
(
sj |si ′, o

) − P
(
sj |do

(
si

′, o
))

P
(
sj , si

) (3)
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The HMM is developed by choosing a set of hazard conditions either randomly
or through analyses such as fault tree or branch termination. Hidden states are then
added and connected to the initial state set. Hidden state transition and observation
probabilities are assigned nonzero, but low values so that they do not exert undue
influence on model parameter initialization. However, the consequence of overly
high values is that model parameter convergence could take more iterations.

The initial risk algorithm comprises five steps:

1. Determine initial values for A, B, and π ; these may be set randomly if initial
values are unknown.

2. Collect observations and update the initial model Baum-Welch (Baum and Petrie
1966) using Eq. 3 for evaluating transition updates.

3. Given an observation sequence, O, compute P(O|model) using the forward algo-
rithm, i.e., determine whether the observations match a risk scenario predicted
by the model.

4. Given the state distribution determined in Step 3, use the model to predict the
probability of transitioning to another risk.

5. Go back to Step 2 until P(O|model) exceeds a threshold.

The algorithm changes once P(O|model) is above a threshold. That is, observa-
tions are made, P(O|model) is computed, and a risk prediction is made. P(O|model)
below a threshold is an indication of a novel condition that requires returning to
Step 2. Figure 3 shows the risk algorithm flow diagram.

3 Observation Clusters

Making observations to evaluate risk in a real system is more complicated than
simply collecting data from monitors. Factors such as noise, faulty monitors, and
transient events can potentially create variances that need accommodation without
necessarily adding to an already large state space. Moreover, some monitors may
have greater influence on the state space than others in certain system operational
modes. For example, a fault in an entry-descent-landing (EDL) subsystem during
the early cruise phase to Mars is less important than the same fault occurring in the
EDL activity.

Dealing with transient effects and certain types of noise is readily managed by
requiring persistence on monitor samples. Modal information is collected as a data
point in an observation. That is, rather than trust that a commanded mode has been
achieved, for the purposes of risk, we depend on correlation of mode-dependent
variables that represent the mode the system is actually in. Note too that variations
in mode-dependent variables are also likely.

However, normal variations in samples imply the need for n-dimensional clus-
tering in which each snapshot of monitor values is compared with a distance to
observation clusters. Snapshots within a cluster are characterized by the cluster
centroid. Ambiguous or unassignable snapshots are considered novel and trigger
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Fig. 3 Basic risk evaluation algorithm including learning iteration and observation-based risk
evaluation

both a reevaluation of the cluster space and, as needed, execution of the Baum-
Welsh algorithm for updating model parameters.

Not shown in Fig. 3 is the cluster step that occurs during initial observations
made for updating the initial HMM parameters. Because clusters may not be known
initially, clustering is performed using an expectation maximization-Gaussian mix-
ture model (GMM) (Dempster et al. 1977). Briefly, GMM is initialized by choosing
a set of clusters and randomly assigning a mean and distribution to each cluster.
After initialization, the probability that each data point belongs to that cluster is
computed by evaluating the proximity to the cluster centroid. The results are then
used to update the clusters and repeat the probability evaluations until the probability
distributions convergence.

During operation, the Mahalanobis distance from the observation to the clus-
ters determines whether an observation belongs to a cluster. An observation is
subsequently classified by the mean of the cluster it belongs to. We should note
too that clusters likely will change with time, especially as the system encounters
new usage, new environments, and changes. For this reason, when practical, offline
GMM is periodically performed to update the cluster definitions. In this regard,
it may be necessary to include heuristics for assessing the importance of certain
monitor values when offline GM is not practical. Using the EDL example from
above, it might be necessary to “disable” certain clusters when they no longer apply,
e.g., during EDL any cluster related to cruise operation is not applicable, and any
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observation that would fall into a cruise-mode cluster now falls into an observation
associated with an active fault or a fault vulnerability.

4 Conclusions and Future Prospects

The prevalence of autonomous systems in automotive, aircraft, military, space, and
commercial sectors is increasing making human-in-the-loop assessment of risk less
and less viable. Moreover, with increasing complexity, classical diagnosis methods
such as fault dictionaries that match syndromes to cause become less reliable due to
false or unaccounted-for correlations. The upshot is that maintaining future systems
will either become unacceptably expensive due to false alarms or, worse yet, systems
will become vulnerable to serious but unpredicted risks.

In this paper, we have defined a modeling construct and assessment algorithm
that, once trained, will provide a causality-aware assessment of risk. Our approach
has the advantage of reducing the influence of false correlations, thereby enabling a
more accurate understanding of system health. Moreover, there is a built-in learning
process that adds new hidden states or adjusts model parameters when needed to
explain a novel set of observations.

A distinguishing feature of our approach is that it relies less on individual
observations and more on whether a sequence of observations fits a causality
pattern. When a pattern is recognized, the model can provide a probability of
the pattern as well as the probability of escaping to another pattern. Given both
pieces of information, system operators can then decide whether and when repair
or replacement is needed. For example, is it necessary to ground an airplane
now due to a high probability of a near-term, serious fault condition, or can the
airplane complete a mission and receive service later? Additionally, knowing with
confidence failure risk simplifies maintenance scheduling and acquisition of spares.

It is well-known, however, that state-based models can be very large and difficult,
if not practically impossible, to analyze. General approaches to managing large
models comprise breaking them up into smaller models and/or using heuristics that
approximate completely rigorous analyses. An issue we have not yet addressed is the
impact on causality when decomposition or approximations are used. We understand
that practical use of our approach will necessitate a thorough evaluation of state-
space explosion.

Our primary work-to-go is to apply this concept to a realistic problem. To that
end we have created an unmanned aerial vehicle (UAV) simulation in which we can
“fly” multiple UAVs that are tasked with completing a reconnaissance mission. The
simulation allows an arbitrary number of monitors and also allows injecting noise,
transient upsets, and failures (Madni 2019).

To test-drive these concepts on realistic problems, we have created a minimum
viable testbed (Madni 2019). The testbed employs an open-source infrastructure,
multiple modeling and simulation methods, a library of components for rapid
scenario development, software and hardware building blocks, and an open-source
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repository. The testbed employs an open, extensible architecture, with the ability
to incorporate both virtual models and physical systems. This testbed is different
from traditional hardware-in-the-loop testbeds that employ proprietary models and
focus on specific system instantiation. We intend to report our findings from testbed
experimentation in a follow-on paper.
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