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Abstract Complex systems that continuously interact with dynamic uncertain
environments need the ability to adapt their decision-making based on observed out-
comes of their decisions and actions. Traditional deterministic modeling approaches
are invariably inadequate for modeling systems whose models are not fully known
initially. For such systems, we need the ability to start with an incomplete model and
then progressively complete the model with observations made along the way. To
address this problem type, we propose an extendable-partially observable Markov
decision process (extendable-POMDP) to model the system’s state space and
decision-making in the presence of uncertainties. The extendable-POMDP model
is able to account for unknown-unknowns by incorporating “new hidden states”
that result in expanding the model state space which in turn extends the associated
probability distributions. This paper provides an online algorithm for solving a
POMDP model by employing a heuristic search algorithm that estimates long-
term rewards in a finite-horizon look-ahead in a sense-plan-act cycle. Heuristics
are employed in model definition, expansion, and online look-ahead search to
contain the otherwise inevitable computational complexity arising from state-space
explosion.
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1 Introduction

Understanding the dynamic behavior of complex systems that undergo state changes
as a result of ongoing interaction with the environment is a challenging system
modeling problem. Existing techniques that are employed for these purposes are
either deterministic or stochastic. Deterministic models fully determine a model
based on setting up initial assumptions and conditions, while stochastic models
exhibit required randomness needed to characterize stochastic properties. Recent
studies on modeling a system’s dynamic behavior can be classified as the following:
(1) inferring the underlying model and parameters for classifying and making
predictions about the future and (2) identifying the conditional dependencies,
relationships between variables, correlations, and changes in variables over time
(Robinson and Hartemink 2009). The main objective of the former class of problems
is to find patterns and parameters from the behavioral data and make predictions
about the future. Examples of this class of problems are speech recognition,
activity or behavior detection, and anomaly detection. Markovian models, such as
Markov chains and hidden Markov models (HMMs), are usually employed in these
applications. The latter class of problems focuses on identifying the underlying
(system or environment) states and correlations resulting from a system’s interaction
with its environment. The main goal in these problems is to design an abstract
representation (model) of the real system-environment interaction and use it for
understanding and reasoning about the system (Madni and Sievers 2018). This paper
focuses on adapting existing modeling techniques for the latter class of problems
that require ongoing decision-making in complex systems operating in dynamic
uncertain environments.

Various techniques, such as time-varying Gaussian graphical models (Talih and
Hengartner 2005; Xuan and Murphy 2007), dynamic Bayesian networks (DBNs)
(Robinson and Hartemink 2009), and different Markovian models, are employed for
designing models based on state variables and correlations. In this paper, we focus
on Markov model family because they offer a strong mathematical framework and
probabilistic structure capable of modeling systems for a wide range of applications.
These models perform well in practice if applied in the right way when modeling
complex systems (Rabiner 1989). For instance, HMMs (also viewed as stochastic
generalization of finite-state automata) are examples of Markovian models in which
state variables and dependencies are modeled as states and probability distributions,
respectively. Markovian models are also employed for developing modeling tools,
such as state diagrams that are mainly used in MBSE and control system design
(Madni and Sievers 2018; Wray and Zilberstein 2019).

To make decisions and plan actions with respect to state variables and their
correlations, decisions and their influences on state variables should be embedded
within the system model. Markov decision processes (MDPs) are Markov models
that capture the transitions and correlations between various state variables dur-
ing system-environment interactions that occur during system’s decision-making.
Basically, MDPs can be viewed as Markov chains that include decisions within
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the model that allows for making decisions over time (Alagoz et al. 2010).
POMDPs are generalization of MDP models extended to a probabilistic domain
in which uncertainty regarding the state of the system model is allowed, and state
variable information is completely hidden or only partially known. This implies
that an observation (signal) from the environment (1) can identify more than one
state at a time or (2) cannot be explained based on the existing state variables
and correlations in the model. The former implies that the most probable states
should be considered, instead of one unique state, while the latter means that a
new “hidden state” is required in the model to represent the new observation.
POMDPs are widely used in modeling sequential planning in various applications
in which systems interface noisy and uncertain environments (Cassandra 1998).
For instance, Hubmann et al. (2017), Song et al. (2016), and Ulbrich and Maurer
(2013) employ POMDPs for decision-making in autonomous vehicles (AVs) where
there exist uncertainties in observed information and intensions of passengers
and drivers. Machine maintenance, structural inspection, machine vision, search
and rescue, and target identification are other examples of complex systems with
uncertain environments where POMDPs are successfully employed for planning
and decision-making (Cassandra 1998). Generally, with POMDP applications, the
former definition of hidden information is widely addressed through the probability
distributions within the model. However, the latter definition of hidden information,
i.e., unknown-unknowns, should also be considered in the model design to ensure
accurate and correct response when faced with unknown-unknowns.

In this paper, we propose an extended version of the standard POMDP models
that accounts for unknown-unknowns and unexplainable signals, in addition to
uncertainties, by incorporating new hidden states, expanding the model, and
retuning the probability distributions when needed (Madni et al. 2018a; b; Sievers et
al. 2019a, b). Also, an online look-ahead heuristic search algorithm is provided that
solves the extended POMDP model by estimating the possible future decision paths
for each available decision and calculating the expected long-term reward associated
with that decision and path. An example of model setup and decision-making using
the new POMDP model and online algorithm for a simulated autonomous vehicle
(AV) in a specific scenario is also provided.

2 Review of Markov Models and Decision Processes

2.1 Markov Models and Hidden Markov Models (HMMs)

A Markov model (chain) is defined as a triplet <S, T, π> in which S denotes a finite
set of states that are directly observable from the system-environment interaction,
T : S × S → [0, 1] is the transition function (matrix) that includes the probabilities
associated with transitioning from a state to another, and π : p(si) → [0, 1] where
si ∈ S is the initial state probability distribution. In contrast with the Markov models
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Fig. 1 (a) A Markov chain with eight states. (b) An HMM with four hidden states and eight
observations. ti, j and oi, k transition and emission probabilities, respectively

that assume state variables and their changes over time are directly observable,
HMMs assume an underlying “hidden” process associated with state variables that
is modeled as a Markov chain and that process is obtained from noisy observations.
In other words, an HMM is a statistical Markov model. Basically, an HMM can
be defined as a tuple <S, �, T, O, π> in which S denotes the state space in the
model; � = {o0, . . . , on} is the observation space in which distinct observations
associated with states are defined; T : S × S → [0, 1] shows the transition matrix;
O : S × � → [0, 1] represents the observation probabilities in the emission matrix,
where Oi(oj) is the probability associated with observing oj at state si at time t; and
π : p(si) → [0, 1] defines the probabilities associated with being at a state at time t
= 0 (Rabiner 1989). Figure 1a shows a Markov model where various observations
from the system-environment interaction are modeled as individual states, whereas
Fig. 1b shows the same example with hidden states identified based on observations.

2.2 Markov Decision Processes (MDPs)

To keep track of the impacts of transitions in between states, values can be embedded
within the model definition. These values can be defined with respect to an objective
or goal defined for the model under a specific scenario. Moreover, the capability of
making decisions or reacting to changes in state variables can also be integrated
with a Markov model. Adding the ability of making decisions based on observed
changes in state variables to a Markov model and storing the impacts of changes
and transitions defines an MDP model. In general, an MDP model is defined as a
tuple <S, A, T, R> where S identifies a set of finite states (state space), A identifies an
action space, T : S × A × S → [0, 1] represents the transition function that identifies
the transition probabilities between states based on actions, and R : S × A × S→R
shows the reward function which identifies the rewards or penalties associated with
being in a state and making a decision. The overall objective in MDPs is to find
the most optimal mapping between the actions and states, so-called optimal policy
that maximizes the sum of long-term rewards by achieving the goal of the MDP
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using minimum possible number of decisions or in the shortest time. A commonly
applied approach for finding an optimal policy associated with an MDP model is
using value iteration (Eq. 2) that employs dynamic programming for solving the
Bellman’s equation in an iterative process until the optimal value is achieved. For
each state at time t, the action corresponding to the maximum value is considered
the optimal mapping between that state and available actions (Eq. 3):
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2.3 Partially Observable Markov Decision Processes
(POMDPs)

POMDPs are generalization of MDPs to uncertain environments where partially
available data could potentially result in incomplete information about the state
space. Uncertainty may appear as (1) uncertainty in actuation, whether an action
is carried out successfully; (2) uncertainty in sensor and data interpretation due to
sensor noise and limited sensor capabilities; (3) uncertainty about the environment;
and (4) uncertainty about intensions of other systems in the environment (Koenig
and Simmons 1998; Bai et al. 2015). In contrast with the MDP models that assume
full access to state space, partial observability implies that the system only receives
an indication of its current state that only allows for probabilistic identification
of the state. A POMDP model can be defined as a tuple <S, A, �, T, O, R> in
which S determines a finite state space which is hidden; A identifies a finite set of
actions; � = {o0, . . . , on} is a finite set of observations; T : S × A × S → [0, 1] is
the transition function that identifies the probabilities associated with transitions in
between states; O : S × A × � → [0, 1] defines the emission function (or matrix),
which provides the probabilities associated with performing an action in a state and
observing an observation from the observation space; and finally R : S ×A×S→R
is the reward function that provides rewards/penalties associated with performing
an action in a state and transitioning to another state (Spaan 2012). Figure 2 shows
the differences between a problem modeled using both an MDP and a POMDP
model with four states S = {s0, s1, s2, s3} and three actions A = {a0, a1, a2}. In
this figure, [t0, t1, t2]i, j and [r0, r1, r2]i, j represent the transition probabilities and
rewards/penalties of performing actions [a0, a1, a2] ∈ A at state si and transitioning
to state sj in both MDP and POMDP models, respectively. In addition, [o0, o1, o2]i, k
are the emission probabilities of observing ok ∈ � after performing [a0, a1, a2] ∈ A
at state si in the POMDP model.
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Fig. 2 A problem modeled with an MDP model if the states are observable (left) and a POMDP
model where the full-observability assumption is relaxed

Since the state space is only partially observable, POMDPs employ a probabilis-
tic distribution, so-called belief, over the state space to determine the most recent
state based on received observations. At time t = 0, with no available observation,
the belief can be initialized as a uniform distribution over all the states. Later, as the
system interacts with the environment and receives feedback (i.e., observations and
rewards), the belief vector gets updated based on Bayes’ rule as follows:

bt+1 (si) = p
(
si |bt , a, o

) = p (o|si, a)
∑

s∈S p (si |s, a) bt (s)∑
s′∈S p (o|s′, a)

∑
s∈S p (s′|s, a) bt (s)

(4)

where p(o| si, a) and p(si| s, a) show the emission probability of performing a at si
and observing o and the probability of transitioning to si after performing action a
at state s. A POMDP can be formulated as an MDP to find the optimal policies
associated with all possible belief states by solving Bellman’s equation using
techniques such as dynamic programming (Eq. 5):
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The techniques, such as dynamic programming, that evaluate every imaginable
belief and action pair and provide an optimal policy prior to execution are known
as “offline algorithms.” Offline algorithms assume that the initial model setup and
the environment are fixed. While the offline algorithms can achieve very good
performance, they often take significant amount of time, e.g., hours, to solve slightly
large problems in which there exist numerous possible situations to consider (Ross
et al. 2008). On the other hand, online algorithms circumvent the complexity of
computing a policy by only considering the current belief and a small horizon to
search for contingency plans. Since online algorithms evaluate the actual belief
achieved from real interactions between a system and its environment, they can
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handle changes in the environment (e.g., changes in goals) without recomputing the
full policy for the whole model (Sunberg and Kochenderfer 2018; Ye et al. 2017).

3 Proposed POMDP and Solution

In dynamic and uncertain environments, there is no guarantee that all information
is initially known and considered in the model. This means that there may be
observations that cannot be explained using the existing states in the model, which
require expanding the current state space to include “new hidden states,” when
discovered during the execution phase. The current definition of the POMDPs and
offline solutions are not able to accommodate the issues associated with unknown-
unknowns.

To accommodate this issue, we further extended the standard definition of the
POMDP models to allow for expanding the model and incorporating new hidden
states. Thus, the definition of the POMDP updates to a tuple <S+, A, �+, T+,
O+, R+> in which S+ : S ∪ H is the extended finite set of states including the
hidden state(s), H, and �+ : � ∪ � is the extended finite set of observations.
Initially, H and � are empty sets and the model is a tuple of <S, A, �, T, O,
R>. As the model discovers unknown-unknowns during its interaction with its
environment, the sets are accumulated by the new observations and hidden states.
T+ : S+ × A × S+ → [0, 1] is the extended transition function that includes the
probabilities of transitioning to and from the hidden states, R+ : S+ × A × S+→R
determines the extended reward function, and O+ : S+ × A× �+ → [0, 1] identifies
the extended observation function that contains the probabilities of observing both
o ∈ � and o

′ ∈ � (Fig. 3). On the other hand, definition of states, observations,
and reward function in the proposed POMDP model are slightly different from a
standard POMDP model. State space is defined based on various, high-level events
that generally describe different conditions in the system-environment interaction.
Generalization of the state space to high-level events helps with reducing the number
of state space and decreasing the related computational complexities.

Fig. 3 Example of how a POMDP expands as a new hidden state is added to incorporate an
unknown-unknown
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Moreover, variables that identify the goal and failure events are also modeled
as states in the model. Since the goal and failures are also embedded as states
within a model, the reward function assigns rewards/penalties (r > 0 or r < 0)
to the states depending on whether a state is identified as goal, failure, or transient,
which changes the reward matrix to a reward vector R+ : 1 × S+→R. Optimal
policy in the proposed POMDP is identified as an action that updates the belief
so that, considering all possible observations in the model, the goal state has a
higher probability (failure has less probability) in the future belief. In other words,
the optimal policy is the mapping between the belief and actions that maximizes
the long-term sum of rewards by constantly moving along a plan trajectory that
improves the belief state (Eq. 6):

π∗
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⎣
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∑
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p (o|s, a)
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)
R+(s)

⎤

⎦
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Thus, since the belief represents the probabilities assigned to most probable
states and optimal policy improves the belief probability distribution by assigning a
higher probability to the goal state, the combination can be used for explaining the
decisions made and reasoning about the model.

3.1 Initializing New Hidden States

Hidden states are associated with the events that cannot be interpreted from the
initialized state in the model state space (Sievers et al. 2019a, b). When a new hidden
state is initialized in the proposed POMDP model, the transition and emission
probabilities of the hidden state are empirically initialized using the following
heuristics depending on the model and scenario:

Heuristic 1: “Expected Outcome: Assign higher probabilities to the most expected
states/observations based on how the action changes the state variables of the
model.” After performing a certain action (e.g., a), depending on the influence of
the action on the predetermined state variables, the most expected observations
or states are assigned with higher probabilities, and the less expected ones will
have lower probabilities.

Heuristic 2: “Safest Outcome: Assign probabilities so that the optimal policy asso-
ciated with the hidden state is the safest action (e.g., neutral action) or updates
the belief so that the safest/most neutral state receives a higher probability.”

On the other hand, transition and emission probabilities from known states to the
hidden state(s) are initially assigned with small probabilities (e.g., 0.01), because
this transition (or emission) is not repeated enough compared to the known states.
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3.2 N-Step Look-Ahead (Online Policy Estimation Algorithm)

Since the hidden states and unexplainable observations are discovered during the
execution phase, there exists no prior information, such as pre-planned policies,
associated with them. Thus, even if an offline solution can efficiently calculate and
estimate optimal policies for a model prior to execution, the solution still lacks
the optimal policies associated with the newly added hidden state. In other words,
offline algorithms also lack the ability of updating a pre-estimated solution when
a model or environment changes that results in changing the model objective or
goal (Ross et al. 2008). This implies that the offline algorithms are not applicable
to the problems with highly dynamic environments and objectives, because they
require to recompute the optimal policies after any changes. On the other hand,
online algorithms that rely on combining offline calculations in estimating optimal
policies during the look-ahead search in estimated future beliefs are not sufficient,
since there is no prior information that exists for newly initialized hidden states.
To this end, we implemented the online, “N-Step Look-Ahead,” policy estimation
algorithm that (1) defines a belief tree with the current belief state as its top node,
“root”; (2) recursively, explores the possible plan/decision paths by traversing the
expected beliefs located on the lower levels of the tree; and (3) calculates the
expected long-term rewards for available possible plans in that tree to select the
plan with the highest long-term reward.

The algorithm recursively expands the belief states at each level (l ≤ N) until
it reaches the deepest level (N) or a termination condition for a belief is met. The
tree is explored bottom to top and left to right, meaning that initially the values
associated with the leftmost branches are calculated starting from the bottom of
the tree and moving to the top node, then the next branch is explored, and value is
calculated until all branches are traversed (Eq. (7)). A learning rate 0 < γ < 1 is
also considered, so that the largest rewards are collected as early as possible. The
depth of the tree determines the finite horizon for the look-ahead search. Basically,
at each level of the tree, the expected beliefs at level l < N are calculated based on
the beliefs at level l − 1, available actions, and possible observations:

V N
(
bt , a

) =
∑

o∈Ω+′
Pr

(
o| bt , a

) ∗ γ
∑

a′∈A

V N
l+1

(
bt+1
a,o , a′) (7)

Since this algorithm is designed to provide a policy anytime it’s required, the
execution time of the algorithm (time complexity) is very important. As N increases,
the search algorithm explores deeper levels and the estimated long-term reward
becomes more accurate. On the other hand, larger N requires more computation
time, so there is a trade-off between the accuracy and execution time. Various
techniques, such as sampling and heuristic search, are employed to reduce the
computation time of a search algorithm (Ye et al. 2017; Kurniawati and Yadav 2016;
Etminan and Moghaddam 2018a; b). We employ a heuristic search that reduces
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the time complexity of the search by only considering the exploration of the belief
nodes that satisfy the conditions defined in our heuristics. Our heuristic summarizes
as follows:

Search Heuristic1: “Expand non-terminal/non-failure belief nodes.” Using this
heuristic, the search algorithm only expands and explores the belief nodes that
have low probabilities assigned to failure states.

Search Heuristic2: “Expand the belief nodes using possible actions and associated
reachable observations only.” Based on this heuristic, the belief nodes in the
lower levels (l-1) of the tree are calculated based on observations with high
probabilities from a parent belief node at level l and an action a. Reachable
observations are identified using the criteria represented in Eq. 8:

o ∈ Ω+′ (
bt , a

)
iff

∑

s∈S+
bt (s)p (o|s, a) ≥ L (8)

Where �+′ ⊆ �+ denotes the reachable observation and 0 ≤ L ≤ 1 is the minimum
reachability probability defined empirically based on the size or the problem and
emission matrix. Figure 4 shows how applying the heuristic search reduces the
computation time in the N-Step Look-Ahead search from an exponential growth
rate to a linear growth rate for a given model that includes four states and three
actions.

4 An Exemplar POMDP Model

In an exemplar scenario, we simulated an AV in a multilane freeway using
PythonVTK. As shown in Fig. 5a, the AV (green) is surrounded by traffic in
different lanes (different relative distances and velocity/speed). The AV has two
main objectives with respect to its surrounding environment (freeway + traffic).
These are (1) safely drive within one lane and (2) safely change lanes when it
becomes necessary (Pouya and Madni 2020a).

For the purpose of this paper, we define a POMDP model, including the
states and probabilities associated with the former objective, and test the model
in the simulated multilane freeway using the N-Step Look-Ahead function for
constant decision-making. Later, we tune the parameters and demonstrate model
expansion for including hidden states. The initial step in POMDP model definition
is identification of candidate states with respect to various high-level general
conditions. However, due to partial observability (e.g., sensor noise and hidden
driver intensions), the states can be identified based on observations. Figure 5b
demonstrates various observation classes (candidate states) defined based on vehicle
speed and relative distances (difference between distance in front and rear, dF − dR)
using the simulated traffic data around the AV with two different traffic setups.
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Fig. 4 Look-ahead policy estimator computation time as different heuristics are applied

Fig. 5 (a) Traffic simulation dashboard. (b) High-level traffic conditions (patterns) based on data

The datapoints that fall into the dashed classes are observations that cannot fully
determine a state, which we refer to as noisy and partially available observations. In
addition, according to pre-determined speed and distance limits in the simulation,
the datapoints that exceed these limits are identified as failures or crashes. The
next step after identifying the state candidates is defining the probabilities and
reward values. Since the objective of the model is to drive safely within a lane,
the goal state is s2 : safe and steady with R(s2) = + 10, the failure state is
s3 : crashed/failure with R(s3) = − 20, and s0 : slower, s1 : faster are transient
states with R(s0) = R(s1) = + 1 reward values. In addition, actions associated with
this model are a0 : maintain status quo, a1 : speed up, and a2 : slow down. The
transition and emission matrices can be learned from the simulation data or can be
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initialized based on expert’s judgment and tuned within the simulation. Later, the
probability and reward matrices are expanded as the model receives an observation
that cannot be explained using the current state space.

To expand and initialize the probability matrices when a new observation is
realized, we have applied the “most expected outcome” heuristic. As an example,
the transition probability associated with h0 and a1 has the highest probability
assigned to s1, because the vehicle expects to drive faster as it applies a1 and speeds
up.

In this simulation and for the purpose of this exemplar scenario, hidden obser-
vations are generated as outputs of a random function invoked in random times in
the simulation. After tuning the probabilities and defining the extension technique
within the POMDP model, the model is tested in the simulation by having the
N-Step Look-Ahead function evaluate the possible decisions at every time step
based on the most recent belief. N equal to 2 is selected for the depth of
look-ahead search with a sampling rate of 0.1s, and the POMDP decisions and
performance are compared to a rule-based algorithm designed based on time-to-
collision measurements.

Figure 6 (left) shows a series of changes in the AV’s belief, and the right figure
represents the values for possible actions estimated for each belief with N = 2.

As a new hidden state is identified and the belief is expanded at t = 15, the
look-ahead value estimation decides to maintain status quo (a0) as long as the belief
probability assigned to the hidden state is high but changes its decision as soon
as the belief in the known states goes higher. The dashed line demonstrates the
sum of long-term rewards associated with the belief series. Figure 7 demonstrates
the performance of the POMDP model in comparison with a rule-based algorithm
that makes decisions based on TTC criteria with full observability. As shown in
the figure, the overall pattern of the decisions made by the POMDP matches the
rule-based with full-observability pattern. However, the number of the changes in
decisions made by the POMDP is smaller (smoother pattern) than the rule-based,
which implies that the rule-based is more aggressive and reacts to every single

Fig. 6 (left) Belief updates, expanded at t = 15 to include a new hidden state; (right) estimated
long-term reward (dashed line)
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Fig. 7 POMDP performance evaluation and comparison with a TTC rule-based. (Pouya and
Madni 2020b)

observation. In contrast, the POMDP ensures about the consistency of the received
observation and reacts when its belief with respect to the received observation is
high.

5 Summary and Future Work

In this paper, we emphasized the importance of understanding the behavior of
a complex system from its interactions with its environment to design accurate
models for resilient decision-making with partially available data. We presented an
extendable-POMDP model that is initialized using available information, and then
adapts to new information by incorporating new hidden states, and thereby extends
the related probability distributions using heuristics, so they can be learned incre-
mentally. The flexibility introduced by incorporating new hidden states results in
risk associated with evaluating the accuracy of decisions made for the hidden states
with less or no prior information about the state, which we manage by employing
heuristics in model expansion. To address the risk associated with computational
complexity, the N-Step Look-Ahead online value estimation algorithm is employed.
This algorithm uses heuristic search, to solve the extendable-POMDPs in an any-
time fashion. We intend to extend the work presented in this paper to realize a
probabilistic modeling paradigm that can be used for decision-making and planning
of complex systems and system of systems that operate in highly dynamic, uncertain
environments. For model testing and verification purposes, we currently compare
with rule-based algorithms and full observability, but in the future, we intend to
employ machine learning (e.g., Q-learning (Pouya and Madni 2020c)) and formal
reasoning methods to create a formal verification technique for POMDP models.
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