
Azad M. Madni · Barry Boehm ·
Daniel Erwin · Mahta Moghaddam ·
Michael Sievers ·
Marilee Wheaton Editors

Recent Trends
and Advances
in Model
Based Systems
Engineering

Recent Trends and Advances in Model Based
Systems Engineering

Azad M. Madni • Barry Boehm • Daniel Erwin
Mahta Moghaddam • Michael Sievers
Marilee Wheaton
Editors

Recent Trends and Advances
in Model Based Systems
Engineering

Editors
Azad M. Madni
Department of Astronautical Engineering
University of Southern California
Los Angeles, CA, USA

Daniel Erwin
Department of Astronautical Engineering
University of Southern California
Los Angeles, CA, USA

Michael Sievers
Department of Astronautical Engineering
University of Southern California
Los Angeles, CA, USA

Barry Boehm
Department of Industrial and Systems
Engineering
University of Southern California
Los Angeles, CA, USA

Mahta Moghaddam
Department of Electrical and Computer
Engineering
University of Southern California
Los Angeles, CA, USA

Marilee Wheaton
Department of Astronautical Engineering
University of Southern California
Los Angeles, CA, USA

ISBN 978-3-030-82082-4 ISBN 978-3-030-82083-1 (eBook)
https://doi.org/10.1007/978-3-030-82083-1

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-82083-1

Preface

Systems engineering is undergoing an exciting transformation that is motivated by
mission and system complexity and paced by advances in model-based systems
engineering (MBSE) and digital engineering (DE). This transformation is enabled
by Industry 4.0, the Internet of Things (IoT), and the ongoing convergence of sys-
tems engineering with other disciplines. The central theme of the 2020 Conference
on Systems Engineering Research (CSER) was motivated by these developments.
Specifically, this conference was focused on exploring recent trends and advances
in model-based systems engineering (MBSE) and the synergy of MBSE with
other disciplines (e.g., digital engineering) and technologies (e.g., simulation, AI,
machine learning).

Systems engineering today has two major thrusts: traditional methods that work
well for relatively mature and not overly complicated or complex systems, and new
and innovative methods that are specifically driven by the increasing complexity of
sociotechnical systems and advances in engineering, materials, computation, and
convergence. The latter has become increasingly important for addressing problems
in the twenty-first century. MBSE is rapidly becoming a vital system engineering
advance to address such problems.

Researchers from academia, industry, and government submitted papers on
a variety of MBSE topics for this conference. These include ontologies and
MBSE, MBSE processes, model-based methods in systems architecting, modeling
approaches in MBSE, MBSE standards, MBSE languages, synergy between MBSE
and digital engineering (DE), economic analysis of MBSE, MBSE application areas
(e.g., manufacturing, aerospace, defense), and the future of MBSE.

This volume is a compendium of peer-reviewed research papers from university,
government, and industry researchers who participated in 2020 CSER. It brings
together diverse domains and technical competencies of model-based systems
engineering (MBSE) in a single, comprehensive volume. To help the reader
conveniently navigate this volume, the chapters are organized into seven parts. Each
part represents a key MBSE research area.

It is our hope that this volume will get the readers interested in pursuing MBSE
research beyond the traditional application areas and take on complex scientific and

v

vi Preface

societal problems of national and global significance. On behalf of the editors, I want
to thank all who contributed to this volume. We hope that you find the contents of
this volume inspiring and potentially useful building blocks for future research.

University of Southern California, Azad M. Madni
Los Angeles, CA, USA

Contents

Part I MBSE and Digital Engineering

Toward a Reference Architecture for Digital and Model-Based
Engineering Information Systems . 3
Hayden C. Daly and Paul T. Grogan

Digital Engineering Ecosystem for Future Nuclear Power Plants:
Innovation of Ontologies, Tools, and Data Exchange . 15
Christopher Ritter, Jeren Browning, Lee Nelson, Tammie Borders,
John Bumgardner, and Mitchell Kerman

Introducing Digital Doppelgängers for Healthcare Policy Analysis 25
Jennifer Legaspi and Shamsnaz Virani Bhada

Employing Digital Twins Within MBSE: Preliminary Results
and Findings . 35
Shatad Purohit and Azad M. Madni

A Review of Set-Based Design Research Opportunities . 45
Nicholas J. Shallcross, Gregory S. Parnell, Edward Pohl, and Eric Specking

Digital Modernization for Systems Engineering . 55
Jorge Buenfil, Ross Arnold, Benjamin Abruzzo, and Scott Lucero

Investigating Model Credibility Within a Model Curation Context 67
Donna H. Rhodes

Part II Modeling in MBSE

Automated Detection of Architecture Patterns in MBSE Models 81
Matthew Cotter, Michael Hadjimichael, Aleksandra Markina-Khusid,
and Brian York

vii

viii Contents

A Survey of Super-Resolution Techniques for a Potential CubeSat
Imagery System Architecture . 91
William Symolon and Cihan Dagli

Data Analytics of a Honeypot System Based on a Markov
Decision Process Model . 101
Lidong Wang, Randy Jones, and Terril C. Falls

Probabilistic System Modeling for Complex Systems Operating
in Uncertain Environments . 113
Parisa Pouya and Azad M. Madni

Identification of Adverse Operational Conditions
in Sociotechnical Systems: A Data Analytics Approach . 129
Taylan G. Topcu, Konstantinos Triantis, and Bart Roets

Dynamic Causal Hidden Markov Model Risk Assessment 141
Michael Sievers and Azad M. Madni

Part III Use of Ontologies in MBSE

Minimum Viable Model to Demonstrate Value Proposition
of Ontologies for Model-Based Systems Engineering . 153
Azad M. Madni

Ontological Modeling of Time and Time-Based Reasoning for
Systems of Systems . 165
Surya Vamsi Varma Sagi and Leonard Petnga

Ontology-Enabled Hardware-Software Testbed for Engineering
Adaptive Systems. 177
Edwin Ordoukhanian and Azad M. Madni

An Ontology for System Reconfiguration: Integrated Modular
Avionics IMA Case Study. 189
Lara Qasim, Andreas Makoto Hein, Sorin Olaru, Marija Jankovic,
and Jean-Luc Garnier

Reducing Design Rework Using Set-Based Design
in a Model-Centric Environment . 199
Shawn Dullen, Dinesh Verma, and Mark Blackburn

Knowledge Representation and Reasoning in the Context
of Systems Engineering . 217
Hanumanthrao Kannan

Ontology-Driven Knowledge Modeling and Reasoning for
Multi-domain System Architecting and Configuration . 229
Leonard Petnga

Contents ix

Part IV MBSE Processes and Languages

A Literature Review of the Integration of Test Activities into
the Product Development Process . 243
Aksel Elkjaer, Geir Ringen, and Cecilia Haskins

Implementing a MOSA Decision Support Tool in a Model-Based
Environment . 257
Michael Dai, Cesare Guariniello, and Daniel DeLaurentis

Change Management Processes in MBSE . 269
Isabeta Rountree, Victor Lopez, and L. Dale Thomas

The Need for Semantic Extension of SysML to Model
the Problem Space . 279
Paul Wach and Alejandro Salado

Variant Modeling for Multi-perspective, Multi-fidelity Systems
Simulation . 291
Ryan Colletti, Ahsan Qamar, Sandro Nuesch, William Bailey,
and Christiaan Paredis

An Executable Systems Modeling Language (ESysML):
Motivations and Overview of Language Structure . 303
Matthew Amissah and Holly Handley

Quantitative System Reliability and Availability Analysis Using
SysML . 313
Jaron Chen, Michael Hailwood, and Myron Hecht

Part V Advances in MBSE

Towards Making the Business Case for MBSE . 325
Nick L. S. Fung, Sahar Kokaly, Alessio Di Sandro, and Marsha Chechik

COSYSMO 3.0’s Improvements in Estimating and Methodology. 341
James P. Alstad

Assurance Case Property Checking with MMINT-A and OCL 351
Nick L. S. Fung, Sahar Kokaly, Alessio Di Sandro, and Marsha Chechik

Interpretation Discrepancies of SysML State Machine: An Initial
Investigation . 361
Ben Cratsley, Siwani Regmi, Paul Wach, and Alejandro Salado

Fuzzy Multicriteria Optimization for System Engineer’s Design
of Myoelectric Prostheses . 371
Kenneth W. Garner and Kamran Iqbal

Functional Decomposition: Evaluating Systems Engineering
Techniques . 387
Cal M. Cluff and Dinesh Verma

x Contents

Part VI MBSE Applications

Model-Driven Safety of Autonomous Vehicles . 407
N. Annable, A. Bayzat, Z. Diskin, M. Lawford, R. Paige, and A. Wassyng

A Model-Based Engineering Approach for Development of ADAS
Features . 419
Arun Adiththan, Joseph D’Ambrosio, Prakash Peranandam, S. Ramesh,
and Grant Soremekun

Optimal Management and Configuration Methods for
Automobile Cruise Control Systems . 429
Arun Adiththan, Kaliappa Ravindran, and S. Ramesh

A Systems Modeling Illustration of the Military Academy Doolie
Cadet System . 441
Nathan Hasuk Oh and Martin “Trae” Span

Project Managers and Systems Engineers, “Can two walk
together, unless they agree?”: Recent Research Findings
on Development Projects . 453
Sigal Kordova, Eyal Kats, and Moti Frank

A Plan for Model Curation at the US Army Armaments Center 463
Christina Jauregui and Mary A. Bone

Executable Modeling of a CubeSat-Based Space Situational
Awareness System . 475
Mostafa Lutfi and Ricardo Valerdi

Comparing Weighting Strategies for SME-Based
Manufacturability Assessment Scoring . 485
Emily S. Wall, Christina H. Rinaudo, and R. Cody Salter

A Framework for Using the MAKE Methodology and Tool for
Objective Manufacturability Decision Analysis . 493
Sara C. Fuller, Tonya G. McCall, Emily S. Wall, Terril C. Falls,
Christina H. Rinaudo, and Randy K. Buchanan

A Bioinspired Framework for Analyzing and Predicting
the Trade-off Between System of Systems Attributes . 503
Abheek Chatterjee, Richard Malak, and Astrid Layton

Model-Based Systems-of-Systems Healthcare: Coordinating
the Coordinators . 515
Bernard P. Zeigler, Mark Redding, Pamela J. Boyers, and Ernest L. Carter

Model-Based Systems Engineering for CubeSat FMECA 529
Evelyn Honoré-Livermore and Cecilia Haskins

Contents xi

Model-Based Systems Engineering for Design of Unmanned
Aircraft Traffic Management Systems . 541
Lindsey Martin, Samantha Rawlins, and Leonard Petnga

Exploration of MBSE Methods for Inheritance and Design Reuse
in Space Missions . 553
Alejandro E. Trujillo and Azad M. Madni

Part VII Future of MBSE

Models in Systems Engineering: From Engineering Artifacts
to Source of Competitive Advantage . 567
Azad M. Madni

Transdisciplinary Systems Engineering Approaches. 579
Bryan Mesmer, Doroth Mckinney, Michael Watson, and Azad M. Madni

A Systems Science Basis for Compositionality Reasoning 591
Swaminathan Natarajan, Subhrojyoti Roy Chaudhuri, and Anand Kumar

Toward the Design of Artificial Swarms Using Network Motifs 603
Khoinguyen Trinh and Zhenghui Sha

Enterprise Architecting Applied to Small Unmanned Aircraft
System Integration into Low-Altitude Urban Airspace . 619
Raymond T. Vetter and Donna H. Rhodes

Identification of Elements and Element Relationships for
Organizational Architectures for Systems Engineers . 631
Garima Bhatia and Bryan Mesmer

Application and Modelling of Systems Engineering Methods
to Deployed Enterprise Content Management Systems . 643
Stephan Bren

Toward an Enterprise Architecture for a Digital Systems
Engineering Ecosystem . 653
Yaniv Mordecai, Olivier L. de Weck, and Edward F. Crawley

Collaborative Management of Research Projects in SysML 665
Benjamin Kruse, Thomas Hagedorn, Mary A. Bone, and Mark Blackburn

Supporting the Application of Dynamic Risk Analysis
to Real-World Situations Using Systems Engineering: A Focus
on the Norwegian Power Grid Management . 675
Michael Pacevicius, Cecilia Haskins, and Nicola Paltrinieri

Toward a Reliability Approach Decision Support Tool for Early
System Design: Physics of Failure vs. Historical Failure Data 687
John Kosempel, Bryan M. O’Halloran, and Douglas L. Van Bossuyt

xii Contents

An Approach to Improve Hurricane Disaster Logistics Using
System Dynamics and Information Systems . 699
Jeanne-Marie Lawrence, Niamat Ullah Ibne Hossain,
Christina H. Rinaudo, Randy K. Buchanan, and Raed Jaradat

Index . 713

About the Editors

Azad M. Madni is a member of the National
Academy of Engineering and the University Professor
of Astronautics, Aerospace and Mechanical Engi-
neering. He also has a joint appointment in Civil
and Environmental Engineering at the University of
Southern California’s Viterbi School of Engineering.
He is the holder of the Northrop Grumman Foun-
dation Fred O’Green Chair in Engineering. He is
the executive director of USC’s systems architecting
and engineering program and the founding director
of the Distributed Autonomy and Intelligent Sys-
tems Laboratory. He is the founder and CEO of
Intelligent Systems Technology, Inc., a hi-tech com-
pany that conducts research and offers educational
courses in intelligent systems for education and train-
ing. He is the chief systems engineering advisor to
The Aerospace Corporation. He received his Ph.D.,
M.S., and B.S. degrees in Engineering from UCLA.
His recent awards include 2021 INCOSE Benefactor
Award, 2021 IEEE AESS Judith A. Resnik Space
Award, 2020 IEEE SMC Norbert Wiener Award, 2020
NDIA’s Ferguson Award for Excellence in Systems
Engineering, 2020 IEEE-USA Entrepreneur Achieve-
ment Award, 2019 IEEE AESS Pioneer Award, 2019
INCOSE Founders Award, 2019 AIAA/ASEE Leland
Atwood Award, 2019 ASME CIE Leadership Award,
2019 Society for Modeling and Simulation Interna-
tional Presidential Award, and 2011 INCOSE Pioneer
Award. He is a Life Fellow/Fellow of IEEE, INCOSE,
AIAA, AAAS, SDPS, IETE, AAIA, and WAS. He

xiii

xiv About the Editors

is the co-founder and current chair of IEEE SMC
Technical Committee on Model Based Systems Engi-
neering. He is the author of Transdisciplinary Systems
Engineering: Exploiting Convergence in a Hyper-
Connected World (Springer 2018). He is the co-author
of Tradeoff Decisions in System Design (Springer,
2016).

Barry Boehm is a member of the National Academy
of Engineering and Distinguished Professor of Com-
puter Science in the Viterbi School of Engineering at
the University of Southern California. His honors and
awards include INCOSE Pioneer, guest lecturer at the
USSR Academy of Sciences, the AIAA Information
Systems Award, the J.D. Warnier Prize for Excellence
in Information Sciences, the ISPA Freiman Award for
Parametric Analysis, the NSIA Grace Murray Hopper
Award, the Office of the Secretary of Defense Award
for Excellence, the ASQC Lifetime Achievement
Award, and the ACM Distinguished Research Award
in Software Engineering . He is an AIAA Fellow, an
ACM Fellow, an IEEE Fellow. He received his B.A.
degree from Harvard University, and his M.S. and
Ph.D. degrees from UCLA, all in mathematics.

Daniel Erwin is a professor and chair of astronautical
engineering, and an associate fellow of AIAA. He
is also the faculty member who oversaw the all-
student research team that set the student altitude
record for rockets to pass the Karman line into outer
space. He is the co-director of USC’s Distributed
Autonomy and Intelligent Systems Laboratory. His
awards include the 2017 Engineers’ Council Dis-
tinguished Engineering Project Achievement Award,
2016 Engineers’ Council Distinguished Engineering
Educator Award, 2006 USC-LDS Student Associa-
tion Outstanding Teaching Award, 1995 USC School
of Engineering Outstanding Teaching Award, and
1993 TRW, Inc. TRW Excellence in Teaching Award.
He received his B.S. in applied physics from Califor-
nia Institute of Technology and his M.S. and Ph.D. in
electrical engineering from the University of Southern
California.

About the Editors xv

Mahta Moghaddam is Distinguished Professor of
Electrical and Computer Engineering and a member
of the National Academy of Engineering. She is an
IEEE Fellow and a past president of IEEE Antennas
and Propagation Society. She is the editor-in-chief of
the IEEE Antennas and Propagation journal. She has
received several awards and honors including NASA
Honor Award, Outstanding Public Service Leadership
Medal, and numerous group achievement awards. She
is the president and co-founder of Maxwell Medical
Corporation, a USC startup that is developing medi-
cal diagnostic therapy and interoperative monitoring
devices using microwave technology. She received
her B.S. in electrical engineering from the University
of Kansas with highest distinction, and her M.S.
and Ph.D. degrees in electrical engineering from the
University of Illinois at Urbana-Champaign.

Marilee Wheaton is a systems engineering fellow
of The Aerospace Corporation and president of the
International Council on Systems Engineering. She is
a fellow of AIAA and INCOSE, and a senior member
of IEEE. Previously, she was a general manager at
The Aerospace Corporation. She has also served as
an adjunct associate professor of systems architect-
ing and engineering program at the University of
Southern California for 11 years. Marilee is a life
member and fellow of the Society of Women Engi-
neers. She is an advisory board member of California
State University, Northridge College of Engineering
and Computer Science. She received her B.A. degree
in mathematics from California Lutheran University
and her M.S. degree in systems engineering from
University of Southern California. Marilee has been
involved in the Conference on Systems Engineering
Research in a leadership role for nearly a decade. She
is currently pursuing her doctorate at the University of
Southern California in astronautical engineering with
a specialization in systems engineering.

xvi About the Editors

Michael Sievers is a senior systems engineer at
Caltech’s Jet Propulsion Laboratory in Pasadena,
California, and is responsible for developing and ana-
lyzing spacecraft and ground systems architectures.
He is also an adjunct lecturer at the University of
Southern California where he teaches classes in sys-
tems and system of systems architectures, engineered
resilience, and model-based systems engineering. Dr.
Sievers earned his Ph.D. and master’s degrees in com-
puter science and a Bachelors’ degree in electrical
engineering all from UCLA. He has published over
50 journal and conference papers and is an INCOSE
Fellow, AIAA Associate Fellow, and IEEE Senior
Member.

Part I
MBSE and Digital Engineering

Toward a Reference Architecture for
Digital and Model-Based Engineering
Information Systems

Hayden C. Daly and Paul T. Grogan

Abstract Digital and model-based engineering envisions a future where software
systems are intricately involved in systems engineering and engineering design
efforts. Recent advances in the field of software engineering have the potential
to enable more flexible, reconfigurable, and updateable systems for engineering
applications. This paper introduces an information system reference architecture
for digital and model-based engineering activities based on modern web-based
architectural styles. An application case explains how the reference architecture
shaped the implementation of the Tradespace Analysis Tool for Constellations (TAT-
C) Knowledge Base, a software component for space systems engineering that
maintains a resource library conforming to common object schemas. Database,
back-end, and front-end software components serve as architectural layers con-
nected by simple information protocols based on semantic linked data models for
improved interoperability.

Keywords Digital engineering · Layered architecture · Model-based
engineering · Model interoperability · Semantic web technology · Software
architecture

1 Introduction

Digital and model-based engineering (DMbE) envisions the widespread use of
digital artifacts, digital environments, and digital tools to support engineering
activities (Hale et al. 2017). It encompasses recent efforts in model-based systems
engineering to adopt semantic frameworks and graphical modeling languages as
a means to represent systems models in a common, interoperable format (Bone
et al. 2018, 2019). However, developing an infrastructure platform for information
technology that is “flexible, reconfigurable, and updateable” remains a significant

H. C. Daly · P. T. Grogan (�)
Castle Point on Hudson, Stevens Institute of Technology, Hoboken, NJ, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-82083-1_1

4 H. C. Daly and P. T. Grogan

challenge in DMbE (Hale et al. 2017). This challenge sits at the intersection between
two fields that increasingly overlap: systems engineering and software engineering.

The field of software engineering has experienced significant growth, innovation,
and change in recent decades. Indeed, many of the systems modeling languages
including SysML, OPM, and IDEF0 evolved from software engineering practice
established in the 1990s to standardize software design and use object-oriented
programming styles to accommodate greater levels of product complexity (Dori
2016). More recent trends in software engineering focus on service-orientation,
web-based application programming interfaces (APIs), and containerization as
further systems-level techniques to accommodate increased product complexity
with more distributed software architectures.

Drawing from the state-of-the-art in software engineering practice, this paper
advances a reference software architecture to support DMbE practices. The pro-
posed reference architecture has been successfully implemented for the Tradespace
Analysis Tool for Constellations Knowledge Base (TAT-C KB), a systems engineer-
ing software tool in the domain of space systems. Based on insights and experience
from this application case, the reference architecture has the potential to serve as the
foundation for future DMbE information systems.

2 Background

The term reference architecture originated from the field of software engineering
but, over the past decade, has been adopted in systems engineering to describe “the
essence of existing architectures, and the vision of future needs and evolution to
provide guidance to assist in developing new system architectures” (Cloutier et al.
2010). From a system design perspective, a reference architecture encodes patterns
or rules and “constrains the instantiations of multiple architectures and solutions”
to provide a foundation and comparison point for individual solutions (Office of the
Assistant Secretary of Defense 2010).

Large-scale software systems such as the Internet follow a layered architecture
as a form of modularity enabling robustness (disturbances do not easily propagate
across layers) while also preserving changeability (component layers can be updated
in relative isolation) (Doyle et al. 2011). In the case of the Internet, various layers
encapsulate the data link, network, transport, session, and presentation components.
Each component layer is constrained by a set of protocols; however, shared
constraints across layers deconstrain the overall system by allowing piece-wise
substitution and evolution.

Software development practice increasingly emphasizes layers at the individual
application level to achieve similar lifecycle objectives. Architectural styles such as
representational state transfer (REST) constrain protocols to stateless resource oper-
ations to minimize latency and maximize independence and scalability (Fielding and
Taylor 2002). Improved access to customize server-side components using com-
mon scripting languages such as Python (Flask) and JavaScript (Node.js/Express)

Toward a Reference Architecture for Digital and Model-Based Engineering. . . 5

and availability of real-time, bidirectional, client–server communication libraries
(WebSockets and Socket.IO) support layered architectures even for small-scale
applications.

Despite recent advances in software engineering, new architectural styles are
slow to translate to DMbE environments which still emphasize centralized platforms
for aggregating graphical models and proprietary software without exposed APIs.
A vision for a future DMbE information system resembles that of the Internet
where component models are orchestrated in layers with well-defined constraining
protocols. Drawing from recent work in the space systems engineering domain, this
paper outlines a reference architecture to explain how a modern web-based layered
architecture can support DMbE activities. The reference architecture highlights the
key components (layers) and protocols to exchange information.

3 Proposed Reference Architecture

3.1 System Components

The proposed software architecture consists of a back-end, front-end, and database.
The database component can be any data storage solution and could be implemented
in different ways. It could be implemented as a file system, relational database, non-
relational database, and in-memory store in this architecture. The database solution
can be respective to the data used in the application, and all that really matters is
that it will be able to communicate directly with the back-end.

The back-end connects the database and front-end/client. The primary purpose of
the back-end is to convert the database command line interface into an easily acces-
sible HTTP (HyperText Transfer Protocol) service. The back-end acts as an API
that communicates with the front-end and user through the same communication
strategy. This API is a wrapper for the underlying technical models and provides
analysis services. This back-end can take the form of various technologies such as
Flask, Node.js/Express, Apache, Nginx, and more as long as the solution allows for
HTTP accessible services.

The front-end can be implemented by choice and is application specific. The
main function of this component is to allow to directly interact with the service.
The front-end can take many forms such as a browser-based GUI (Graphical User
Interface), a mobile application, or direct communication with the client. The
proposed communication strategy between these components is HTTP requests as
they are a common and straightforward communication method utilized within web
technology. The benefits of this communication strategy will be stressed in the
following section.

As shown in Fig. 1, the proposed architecture consists of three simple compo-
nents with communication only done through HTTP. The back-end can communi-
cate with the database in whatever method applicable to the database strategy/usage.
Many applications of this architecture could have three entirely isolated components

6 H. C. Daly and P. T. Grogan

Fig. 1 UML diagram of reference architecture

or just two if the back-end and the database are stored in the same component.
The entire application can be containerized using recently popular technologies like
Docker and Kubernetes.

3.2 System Interface

Communication through HTTP requests is beneficial for numerous reasons, but
the primary three are to reduce development work, reduce integration challenges,
and improve overall operation. HTTP is the Internet standard for communication
and involves the transfer of data over a URL (Uniform Resource Locator) request.
These requests can contain data in the form of JSON (JavaScript Object Notation),
XML (Extensible Markup Language), or other types. There are a few different
fundamental forms of HTTP requests utilized in this software application which
are GET, POST, and DELETE. A GET request has a specified URL and retrieves
information from the server. A POST request sends information to the server.
A DELETE request is meant to delete specified information from the server.

By utilizing HTTP for communication, the API has direct communication with
not only the front-end but the user as well leading to greater interoperability.
This reduces the development work by allowing the developer to fixate their
responsibility solely on building a functional API and not the logistics of how it
would communicate with the front-end. This standardized communication reduces
integration difficulties for the same reason. The engineers can work with a standard
interface of the HTTP requests rather than worry about developing an API and
communication strategy. This leads to an understanding of a standard model for
communication with support of numerous web technologies already. Lastly, it
improves the overall operation because the front-end and back-end run independent
of one another so their individual performances will not have an effect on one
another.

Toward a Reference Architecture for Digital and Model-Based Engineering. . . 7

3.3 Data Encoding

By utilizing communication through HTTP, the model also has to choose what
syntax to format data in. JSON is a popular format for HTTP data transfer that uses
a key-value (dictionary) structure to encode data. This type of data is very flexible
for engineers to use as it does not require typing for any of the object properties and
allows for appending of extra fields. The JSON format is also very easy for engineers
to use as it is human readable and does not require much additional training.

Despite JSON’s flexibility, it can still follow schema specifications. This can
be achieved through the use of JSON-LD which provides standard guidelines for
JSON communication (Sporny et al. 2019). Using the JSON-LD format requires
the implementation of standardized schema of the data. A schema includes simple
documentation about what should be sent and what variables fields represent
including units, reference, and other parameters. This stresses the concept of the
semantic web where everything can be in communication in a way that is easily
accessible and has consistent semantics. Another major benefit of the schema is
that enables interoperability based on common understanding. With the recent
applications of machine learning in the field of systems engineering to discover
insights on data, the usage of a standardized data will lead to much more ease on
the application of processing.

For usage of standardized schema, resources such as Schema.org can be utilized
(Guha et al. 2016). Schema.org is a database of schema for structured data on the
Internet with the overarching goal of facilitating the semantic web.

4 Example Application Case

4.1 Tradespace Analysis Tool for Constellations (TAT-C)

The Tradespace Analysis Tool for Constellations (TAT-C) is a software modeling
tool to support pre-Phase A conceptual design of Earth-observing spacecraft
constellations (Le Moigne et al. 2017). Based on a mission concept and constraints
on available constellation geometries, spacecraft buses, and instruments, TAT-C
enumerates and searches a combinatorial tradespace to identify desirable mission
architectures. Software modules in TAT-C perform specific functions such as
orbital propagation, launch vehicle selection, instrument performance analysis, cost
analysis, and search execution.

The TAT-C Knowledge Base (KB) module documents schema definitions for
TAT-C objects and maintains a library of conforming object models gathered from
historical missions. Designed as a layered architecture with database, back-end, and
front-end components, other TAT-C components including a browser-based GUI
access KB data resources using standard web-based protocols. A publicly accessible
version of the KB application is available at https://tatckb.org.

https://tatckb.org

8 H. C. Daly and P. T. Grogan

Fig. 2 UML diagram of architecture for TAT-C

Although small in scale, TAT-C exhibits many of the challenges of DMbE
information systems. The KB implementation details in the following sections
address the implementation of individual components, protocols exchanging infor-
mation between layers, and the data encoding system selected to improve model
interoperability between software components.

4.2 System Components

The TAT-C KB software architecture consists of a front-end website, a back-end
API, and a database. The decision was made to isolate the front-end code from the
back-end code and came into fruition as a front-end GUI and a back-end server only
in communication through HTTP requests. Figure 2 shows the KB architecture.

The front-end component uses common web technology and takes the form of
an HTML/CSS/JavaScript website to act as an interface for the API. The front-end
interface can be seen in Fig. 3. The back-end component uses a Node.js/Express
server to act as wrapper for the database and provide technical data analysis. The
back-end uses Mongoose to make queries from the MongoDB database.

Containerization was also utilized on this project as it reduced friction with
integration and will be expanded upon in Sect. 4.5.

4.3 System Interface

Communication between the components relies on HTTP requests. As shown in
Fig. 4, the client has the choice of either interacting with the front-end GUI or
making a request from the API directly via HTTP. For this function specifically,
the only parameter the API requires is the collection being requested. The API

Toward a Reference Architecture for Digital and Model-Based Engineering. . . 9

Fig. 3 The front-end interface of TAT-C KB

Fig. 4 Communication diagram for count HTTP requests

then redirects their request to the internal count function with the parameter of the
collection and returns the number of elements in the specified collection. All the
count function does is query the database for the number in that collection.

The communication with the API allowed for a few different kinds of HTTP
requests which were: count, list, get, add, and delete. All of these have
specific parameters and queries. The parameters are required fields by the API for
the function. The arguments are additional fields the user can use when constructing
API requests to get certain responses. Table 1 documents all of the parameters and
queries which summarizes the API documentation.

The count function is pretty straightforward and provides the number of a
specified type within the database. This allows for the additional query search
where you are able to find the number of objects that match a specified string within
the type. The list function provides a list of all the objects within a specified type
and allows for the following queries: search, sort, offset, populate, and limit. The
get function is the simplest and just allows you to get an object of a specified type

10 H. C. Daly and P. T. Grogan

Table 1 All HTTP requests

Request Method URL Parameters Arguments

Count GET /:type:/count/ type search

List GET /:type/list/ type search, sort, offset,
populate, limit

Get GET /:type/:id/
/:type/instance/:id

type, id populate

Add POST /:type/add/
/add/

type token

Delete DELETE /:type/delete/:id/ type, id token

{
@context: {

owl: "http ://www.w3.org /2002/07/ owl#",
rdf: "http ://www.w3.org /1999/02/22 -rdf -syntax -ns#",
rdfs: "http ://www.w3.org /2000/01/rdf -schema#",
schema: "http :// schema.org/",
tatckb: "http :// tatckb.org/schema /2.0/"

},
@graph: [

{
@id: "tatckb:ASI",
@type: "tatckb:Agency",
tatckb:name: "Agenzia Spaziale Italiana",
tatckb:acronym: "ASI",
tatckb:agencyType: "GOVERNMENT",
@lastUpdated: "2019 -07 -24 T20 :10:06.558Z"

}
]

}

Fig. 5 Output of “/api/agency/list?search=ASI”

and @id field. This request only allows the query populate which will populate
all sub-objects by the @id field within the object. The add function takes the input
of an object and allows you to add it to a specified type. The delete function allows
you to delete an object within a specified type by the @id field within the object and
accepts no additional queries. An example of the JSON response from the API is in
Fig. 5 and will be explained in the following section.

4.4 Data Encoding

The overall goal of the KB is to set a standard for tradespace analysis data and help
organize it. To increase interoperability, specific JSON-LD schemas were created for

Toward a Reference Architecture for Digital and Model-Based Engineering. . . 11

Table 2 Schema documentation for data type GroundStation

Property Expected type Description

name schema:Text The full name of an entity

latitude schema:Number Latitude (decimal degrees) with respect to the WGS
84 geodetic model. Ranges between −90◦ (south) and
90◦ (north) where 0 degrees represents the equator

longitude schema:Number Longitude (decimal degrees) with respect to the WGS
84 geodetic model. Ranges between −180◦ (west)
and 180◦ (east) where 0 degrees represents the prime
meridian

elevation schema:Number Elevation (m) above mean sea level with respect to
the WGS 84 geodetic model

agency tatckb:Agency Designer, provider, or operator, of this object

each of the 22 different data types. Some of the data fields allow for more variation
than others, accomplished by storing the data in the form of JSON objects. All of the
data types have three base fields allowing for better organization purposes, these are
@id, @type, and @lastUpdated. The @id field is assigned to the object when
created and is used for a unique identifier. The @type field specifies the collection
type the object is meant to fit into which is later used in the HTTP requests. The
@lastUpdated field was added for a timestamp of the last time the data was
changed/updated which makes finding recently manipulated data easier.

Each type has its own specified documentation for its fields, and Table 2 shows
the properties, expected types, and descriptions for the GroundStation type of
data.

Utilizing standard schema for each of the data types in the KB improves
interoperability across multiple projects within the field of tradespace analysis.

Figure 5 shows the result of the request of a list of all objects in the Agency
collection that include the regular expression “ASI.” The response contains two
portions: the context and the graph. The context provides guidelines for the JSON-
LD schema and datatype including the specific documentation for the TAT-C KB.
The graph contains the list of objects matching the request. The object contained
has the fields as specified in the schema documentation for the data type Agency.

4.5 Containerization Configuration

Containerization refers to the ability to virtualize a development/deployment envi-
ronment and isolate it from others. Containerization has recently become very large
in the software industry as it allows for replicating the development environment
exactly leading to less issues in deployment. Containerization allows for the
separation of the back-end/database and the front-end entirely by isolating them
into two separate environments.

12 H. C. Daly and P. T. Grogan

For the containerization, Docker was the project’s selected solution. The KB
project includes two separate containers–one for the database and one for the web
combining both the front and back-end components. The database container uses a
lightweight environment specifically designed to hold a MongoDB database which
was hosted on the port 27017. The web container runs a lightweight Node.js image
hosted on port 80. One deployment challenge encountered here is that the web
container needed to wait the MongoDB container to be fully initialized before
attempting connection or it would fail generating an error. To ensure the startup
sequence functioned properly, a script was written in a Dockerfile to delay the web
server startup until after the database initialization.

The primary downside of using Docker on an application is that whenever
changes are made to a container, it has to be rebuilt. Usually the rebuilding time
is relatively quick but depending on the amount of dependencies and libraries the
environment uses, it can take more time.

5 Conclusion

Architecting DMbE information systems pursues a goal of providing a flexible,
reconfigurable, and updateable platform for systems engineering and design activ-
ities. This paper adopts and transitions practices from modern web-based software
engineering as a reference architecture that promotes robustness while preserving
changeability. Specifically, layered architectures interconnected with well-defined
and constrained protocols based on web technologies such as HTTP support DMbE
using principles that enabled large-scale software systems such as the Internet.

As demonstrated in the TAT-C KB application case, this paper identifies three key
layers and their functionality: the database (data persistence), back-end (technical
services), and front-end (user interface) components. Interfaces based on the
HTTP request–response protocol provide a simple approach to access resources.
Supporting data encoding standards such as JSON-LD provide enhanced semantic
interoperability while preserving simple, human-readable formats. This architec-
tural pattern can serve as the foundation for other DMbE projects that adopt
alternative component implementations, interfaces, and encoding styles.

Acknowledgments This work was supported in part by NASA collaborative agreement/grant
80NSSC17K0586 titled “Knowledge Representation for Distributed Space Mission Design using
TAT-C with Machine Learning” as a part of an Advanced Information Systems Technology (AIST)
2016 project.

Toward a Reference Architecture for Digital and Model-Based Engineering. . . 13

References

Bone, M., M. Blackburn, B. Kruse, J. Dzielski, T. Hagedorn, and I. Grosse. 2018. Toward an
interoperability and integration framework to enable digital thread. Systems 6(4). https://doi.
org/10.3390/systems6040046.

Bone, M.A., M.R. Blackburn, D.H. Rhodes, D.N. Cohen, and J.A. Guerrero. 2019. Transforming
systems engineering through digital engineering. The Journal of Defense Modeling and
Simulation: Applications, Methodology, Technology 16(4): 339–355.https://doi.org/10.1177/
1548512917751873.

Cloutier, R., G. Muller, D. Verma, R. Nilchiani, E. Hole, and M. Bone. 2010. The concept of
reference architectures. Systems Engineering 13(1): 14–27. https://doi.org/10.1002/sys.20129.

Dori, D. 2016. Model-Based Systems Engineering with OPM and SysML. New York: Springer.
Doyle, J.C., and M. Csete. 2011. Architecture, constraints, and behavior. Proceedings of the

National Academy of Sciences of the United States of America 108(Supplement 3): 15624–
15630. https://doi.org/10.1073/pnas.1103557108.

Fielding, R.T., and R.N. Taylor. 2002. Principled design of the modern web architecture. ACM
Transactions on Internet Technology 62(2): 115–150. https://doi.org/10.1145/514183.514185.

Guha, R., D. Brickley, and S. Macbeth. 2016. Schema.org: Evolution of structured data on the web.
Communications of the ACM 59(2): 44–51. https://doi.org/10.1145/2844544.

Hale, J.P., P. Simmerman, G. Kukkala, J. Guerrero, P. Kobryn, B. Puchek, M. Misconti, C. Baldwin,
and M. Mulpuri. 2017. Digital model-based engineering: Expectations, prerequisites, and
challenges of infusion, Technical Report NASA/TM-2017-219633, National Aeronautics and
Space Administration.

Le Moigne, J., P. Dabney, O. de Weck, V. Foreman, P. Grogan, M. Holland, S. Hughes, and
S. Nag. 2017. Tradespace analysis tool for designing constellations (TAT-C). In 2017 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth. https://doi.
org/10.1109/IGARSS.2017.8127168.

Office of the Assistant Secretary of Defense. 2010. Reference architecture description.
Sporny, M., D. Longley, G. Kellogg, M. Lanthaler, and N. Lindstr. 2019. JSON-LD 1.1, Standard,

W3C. https://www.w3.org/TR/json-ld11/.

https://doi.org/10.3390/systems6040046
https://doi.org/10.3390/systems6040046
https://doi.org/10.1177/1548512917751873
https://doi.org/10.1177/1548512917751873
https://doi.org/10.1002/sys.20129
https://doi.org/10.1073/pnas.1103557108
https://doi.org/10.1145/514183.514185
https://doi.org/10.1145/2844544
https://doi.org/10.1109/IGARSS.2017.8127168
https://doi.org/10.1109/IGARSS.2017.8127168
https://www.w3.org/TR/json-ld11/

Digital Engineering Ecosystem for Future
Nuclear Power Plants: Innovation
of Ontologies, Tools, and Data Exchange

Christopher Ritter, Jeren Browning, Lee Nelson, Tammie Borders,
John Bumgardner, and Mitchell Kerman

Abstract The construction of megaprojects has consistently demonstrated chal-
lenges for project managers in regard to meeting cost, schedule, and performance
requirements. Megaproject construction challenges are commonplace within the
nuclear industry with many active projects in the United States failing to meet
cost and schedule efforts by significant margins. Currently, nuclear engineering
teams operate in siloed tools and disparate teams where connections across design,
procurement, and construction systems are translated manually or over brittle point-
to-point integrations. The manual nature of data exchange increases the risk of silent
errors in the reactor design, with each silent error cascading across the design.
These cascading errors lead to uncontrollable risk during construction, resulting
in significant delays and cost overruns. Additionally, due to the desire to reduce
schedule and avoid escalation, construction is often begun prior to full design
maturity. Digital engineering (DE) embodies a deliberate transformational approach
to the manner in which systems are designed, engineered, constructed, operated,
maintained, and retired. DoD defines DE as “an integrated digital approach that uses
authoritative sources of system data and models as a continuum across disciplines
to support lifecycle activities from concept through disposal” (U.S. Department of
Defense, Digital Engineering Strategy, Washington, DC, June 2018). This paper
describes the ontologies (data model), tool architectures, data exchange, and process
to transform engineering teams to a new digital engineering ecosystem.

Keywords Digital engineering · Enterprise transformation · Systems
engineering · Model based systems engineering · MBSE

C. Ritter (�) · J. Browning · L. Nelson · T. Borders · J. Bumgardner · M. Kerman
Idaho National Laboratory, Idaho Falls, ID, USA
e-mail: Christopher.Ritter@inl.gov

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_2&domain=pdf
mailto:Christopher.Ritter@inl.gov
https://doi.org/10.1007/978-3-030-82083-1_2

16 C. Ritter et al.

1 Introduction

New nuclear construction represents projects with high upfront capital costs,
which have continued to increase over time. In a recent study, a team from MIT
analyzed the nuclear industry’s primary costs. The study compared current reactor
programs over an established baseline to assess overall industry competitiveness. In
the United States, V.C. Summer 2&3 in South Carolina and Vogtle 3&4 were
analyzed. Neither project is predicated to meet the 2009 benchmark (https://
energy.mit.edu/wp-content/uploads/2018/09/The-Future-of-Nuclear-Energy-in-a-
Carbon-Constrained-World.pdf). V.C. Summer was recently canceled at a cost of
over $4.9 billion to rate payers in South Carolina (https://www.chooseenergy.com/
news/article/failed-v-c-summer-nuclear-project-timeline/). In Georgia, Vogtle 2&3
represent greater than $10 billion cost overrun which contributed to the bankruptcy
of Westinghouse (https://www.utilitydive.com/news/southern-increases-vogtle-
nuke-pricetag-by-11-billion/529682/).

Construction delays and cost overruns are not unique to the nuclear domain.
The European Aeronautic Defense and Space (EADS) Airbus 380 program suffered
approximately $6.5 billion in losses. Electrical wiring of airframes is a complex
effort involving 530,000 meters of cables, 100,000 wires, and 40,300 connectors.
During this installation, electrical teams found a critical issue – the wires were
cut too short. Engineers in Germany and Spain used Dassault CATIA v4, while
engineers in Britain and France had upgraded to Dassault CATIA v5. This resulted
in German design teams being unable to update changes to the electrical design
automatically. This interoperability issue cost Airbus 20 months of delays and a
loss in program confidence (What Grounded the Airbus A380?) (Fig. 1).

Complex system issues continue to affect the aerospace, defense, and nuclear
industries. Recognizing this, the Department of Defense (DoD) released a Digital
Engineering Strategy (U.S. Department of Defense, Digital Engineering Strategy
2018). This strategy promotes the use of digital artifacts comprising the digital
representations of systems, subsystems, and components to design and sustain
national defense systems. The DoD’s five strategic goals for digital engineering are
to:

Fig. 1 (a) Projected LCOE for different advanced reactor concepts. (b) Overnight cost of
recent Gen-III+ builds versus benchmark (https://energy.mit.edu/wp-content/uploads/2018/09/
The-Future-of-Nuclear-Energy-in-a-Carbon-Constrained-World.pdf)

https://energy.mit.edu/wp-content/uploads/2018/09/The-Future-of-Nuclear-Energy-in-a-Carbon-Constrained-World.pdf
https://energy.mit.edu/wp-content/uploads/2018/09/The-Future-of-Nuclear-Energy-in-a-Carbon-Constrained-World.pdf
https://energy.mit.edu/wp-content/uploads/2018/09/The-Future-of-Nuclear-Energy-in-a-Carbon-Constrained-World.pdf
https://www.chooseenergy.com/news/article/failed-v-c-summer-nuclear-project-timeline/
https://www.chooseenergy.com/news/article/failed-v-c-summer-nuclear-project-timeline/
https://www.utilitydive.com/news/southern-increases-vogtle-nuke-pricetag-by-11-billion/529682/
https://www.utilitydive.com/news/southern-increases-vogtle-nuke-pricetag-by-11-billion/529682/
https://energy.mit.edu/wp-content/uploads/2018/09/The-Future-of-Nuclear-Energy-in-a-Carbon-Constrained-World.pdf
https://energy.mit.edu/wp-content/uploads/2018/09/The-Future-of-Nuclear-Energy-in-a-Carbon-Constrained-World.pdf

Digital Engineering Ecosystem for Future Nuclear Power Plants: Innovation. . . 17

• Formalize the development, integration, and use of models to inform enterprise
and program decision-making.

• Provide an enduring, authoritative source of truth.
• Incorporate technological innovation to improve the engineering practice.
• Establish a supporting infrastructure and environment to perform activities and

collaborate and communicate across stakeholders.
• Transform the culture and workforce to adopt and support digital engineering

across the lifecycle.

The DoD Digital Engineering Strategy recognizes the significant role digital
tools have played in successful complex engineering projects. For example, Morten-
son Construction recently realized a 600-day schedule savings and 25% greater
productivity increase utilizing virtual design and construction (VDC) technologies
across 416 VDC programs (Virtual Design and Construction). In the aerospace
industry, Boeing has applied integrated digital tools since the design of the 777
and has seen a 40% improvement in first-time quality through use of digital twins
on the Boeing 777X program ((https://www.aviationtoday.com/2018/09/14/boeing-
ceo-talks-digital-twin-era-aviation/).

2 Three Laws of Systems Engineering

The failures of complex industry projects each share common attributes. Further
context is provided through an examination of some critical lessons in engineering
history. Every project shares the three laws of systems engineering:

1. All systems are created equal. The cost and complexity of today’s systems
require extensive engineering rigor to be applied throughout the entire lifecycle –
from conceptual design through disposal. Today, even toasters can be complex
systems containing both hardware and software and requiring a digital design
process. The need for an extensive process is recognized through the continuing
evolving list of standards: MIL-STD-499B, ANSI/EIA 632, IEEE 1220, ISO/IEC
15288, the systems engineering “Vee” model (Fig. 2), the waterfall model, the
spiral development model, agile software engineering methods, and many others.
Engineering teams must follow a process, or projects will become lost and result
with a design that either does not meet the required intent or just cannot be
completed (typically due to cost and/or schedule overruns).

2. All systems are flawed. All systems are conceived, designed, and built by humans,
and humans are not infallible. Therefore, though not intentional, any system that
humans create will be flawed. Errors, critical failures, and catastrophic failures
may occur depending upon the severity of these latent, inadvertent problems.
This is statistically observed through a 65% failure rate of megaprojects with
failure defined as 25% over budget, 25% behind schedule, or simply unsatisfied
business objectives (Merrow 2011).

https://www.aviationtoday.com/2018/09/14/boeing-ceo-talks-digital-twin-era-aviation/
https://www.aviationtoday.com/2018/09/14/boeing-ceo-talks-digital-twin-era-aviation/

18 C. Ritter et al.

Fig. 2 The systems engineering “Vee” model (https://commons.wikimedia.org/wiki/
File:Systems_ Engineering_V_diagram.jpg)

Fig. 3 Cost overruns compared to upfront design spend (https://reqexperts.com/wp-content/
uploads/2015/07/Managing_Requirements.pdf; Gruhl). (b) Relative cost of assumption errors
in software (https://reqexperts.com/wp-content/uploads/2015/07/Managing_Requirements.pdf;
Extra Time Saves Money 1990)

3. Early intervention can save the program (and the company). Early project man-
agement studies at NASA found a direct correlation between upfront investment
in systems engineering and cost overruns (Fig. 3). The cause of this correlation
is the assumed error during the requirements phase in design. The cost to extract
a defect early, during the conceptual phase, is up to 1000× less than errors
found during operations. A classic example is the Hubble Space Telescope (HST)
program where a major flaw was found in the telescope’s optics system after
launching the telescope in orbit. This flaw led to a challenge in space servicing

https://commons.wikimedia.org/wiki/File:Systems _Engineering_V_diagram.jpg
https://reqexperts.com/wp-content/uploads/2015/07/Managing_Requirements.pdf
https://reqexperts.com/wp-content/uploads/2015/07/Managing_Requirements.pdf
https://reqexperts.com/wp-content/uploads/2015/07/Managing_Requirements.pdf

Digital Engineering Ecosystem for Future Nuclear Power Plants: Innovation. . . 19

mission (SM-1) to resolve the telescope’s optics issues and install a new camera
system (https://www.spacetelescope.org/about/history/servicing_mission_1/).

3 Development of Digital Engineering Ecosystem for Nuclear
Power Design

Given the proven cost, schedule, and risk reduction benefits in the aerospace,
defense, and construction industries, the Idaho National Laboratory began a digital
engineering program in 2018 to support the Versatile Test Reactor (VTR) program.
The VTR is a 300-megawatt thermal fast neutron plant under development to sup-
port reliable open core testing under closely controlled environmental conditions,
enabling the development and qualification of new fuels for future advanced reactor
designs.

3.1 Nuclear Design Ontology

The development of an integrated ecosystem requires interoperability with precise
semantics to connect tools and information. Multiple industries, such as defense
(Defense Architecture Framework Meta Model 2 (DoDAF Meta-Model (DM2)))
and energy (ISO 15926 (https://www.iso.org/standard/70694.html)), have domain
ontologies; however a standard does not exist in the nuclear domain. Diagram-
ming languages including Business Process Modeling Notation (BPMN), Systems
Modeling Language (SysML) (OMG SysML Specifications), and Unified Modeling
Language (UML) (About the Unified Modeling Language Specification Version
2.2) only specify diagram “look and feel” and fail to capture risk, cost, and other
programmatic information.

To enable a standard ontology for industry, INL led development of a nuclear
design ontology. Many early efforts to develop ontologies in industry necessitated
the development of a top-level metamodel to explain entities within a domain ontol-
ogy. Today, many top-level ontologies exist which allow for extension to support
domain-specific ontologies. The Basic Formal Ontology (BFO) was selected to
provide compatibility with over 300 domain-specific ontologies which already exist
in the scientific community.

BFO uses ontological naming conventions (e.g., SpecificallyDependentContin-
uant) which caused usability concerns early in development. To mitigate usability
issues, BFO was extended with the Lifecycle Modeling Language (LML) to provide
simpler terminology more familiar to the systems engineering community. Accord-
ingly, the SpecificallyDependentContinuant has been aliased with the Characteristic
class name. The combination of two open industry ontologies maximizes the reach
of the nuclear design ontology (Fig. 4).

https://www.spacetelescope.org/about/history/servicing_mission_1/

20 C. Ritter et al.

Fig. 4 Screenshot of nuclear ontology in Protégé

The BFO- and LML-derived ontology includes extensions for physical assets,
for example, components (e.g., coolant), equipment (e.g., valve), and structures
(e.g., turbine hall). Additionally, a fully executable extension was developed to
facilitate the inclusion of behavior models. BFO and LML do not include execution
specifications within their ontologies, which leads vendors to develop proprietary
tree structures to store this information. To enable executable behavior models, the
ontology includes a “step construct type” attribute on Action class, Planned Action
class (step template), and Transition class which are used to describe the missing
execution layer. This enables integration software to fully include behavior model
sequencing and execution logic.

This design ontology has been extended to additionally support operations and
maintenance activities of nuclear power plants. The combined design and operations
ontology will be released to the open-source community as Data Integration
Aggregated Model and Ontology for Nuclear Deployment (DIAMOND).

3.2 Deployment of Digital Tools

The development of innovative nuclear reactor facilities includes requirements,
risks, schedule, cost, 2D piping and instrumentation (P&ID) diagrams, 3D plant
models, material parts lists, and various engineering/procurement metadata through-
out design. These requirements are similar to the DoD Digital Engineering Ecosys-
tem (Fig. 5). Traditionally, textual data is developed in office tools (e.g., Microsoft
Office), and engineering data is developed in disconnected modeling tools (e.g.,

Digital Engineering Ecosystem for Future Nuclear Power Plants: Innovation. . . 21

Fig. 5 DoD authoritative source of truth (U.S. Department of Defense, Digital Engineering
Strategy, Washington, DC, June 2018)

Autodesk Inventor). To fully realize a digital engineering “authoritative source of
truth,” model-based tools have been deployed across engineering teams.

The construction industry utilized model-based digital tools, commonly referred
to as building information management (BIM), in the development of complex
civil engineering programs. At INL, the VTR program has deployed the AVEVA
solution to support BIM which includes several capabilities including the capture
of 2D piping and instrumentation diagrams (P&ID) and 3D mechanical, civil, and
structural diagrams. AVEVA’s suite of software includes a data-driven approach,
integrations across their tools, and a web-based collaboration platform (AVEVA
Net). Notably AVEVA’s toolset does not natively integrate with common systems
engineering tools, analytic codes (seismic, pipe stress, etc.), nor open REST APIs
to connect additional tools.

INL has deployed the IBM Jazz Engineering Lifecycle Management software
for the development of systems engineering artifacts. The Jazz platform includes a
suite of integrated tools to manage requirements, define test cases (verification/val-
idation), model physical/logical architectures, and manage system changes. IBM’s
Jazz platform includes an open standard, Open Services for Lifecycle Collaboration
(OSLC), to enable typed links across tools within their ecosystem. These links
enable a named association (e.g., Satisfied by) between systems engineering
artifacts and exposed over web-based REST APIs. Notably, Jazz does not include
native integrations for BIM tools, traceability prediction, or analytic codes.

22 C. Ritter et al.

The Department of Energy requires large construction programs to implement
an earned value management system (EVMS) to manage the program schedule.
Accordingly, INL has traditionally leveraged the Oracle Primavera PPM P6 tool
to track the schedule and link associated cost information. The digital ecosystem
leverages this existing deployment and web-based SOAP APIs available as part of
the P6 deployment.

As tools were deployed, across geographically disperse teams, significant issues
were discovered in the performance of the initial ecosystem. To deploy tooling as
quickly as possible, existing DOE networks were utilized; however peak traffic
latency was measured as 100× greater than nonpeak times. Typically, nuclear
reactor development programs utilize local networks which are either inaccessible
to partners or only accessible through a virtual private network (VPN) connection.
To overcome latency issues, the tool suite is now deployed to the Microsoft Azure
Government Cloud, which in testing has resulted in peak latency measurements
equal to nominal measurements of the prior DOE network.

3.3 Integration of Digital Tools

The current state of the art is that each reactor vendor develops their own taxonomy
and development plan. Once established, a toolset is deployed to enable the design
of a new plant. Typically, these tools are disconnected and include no common
interchange language to communicate outside their domain, offering varying data
schemas for each stage of the lifecycle. While some vendors include integrations
within their suite, most programs result in utilized comma-separated values (CSV)
files to exchange information. These CSVs use specific domain languages which
require manual data manipulation for exchange, thus increasing the risk of human
error and creating an environment where any change requires extensive rework.

To rectify this issue, a digital engineering integration framework is under
development with a team of laboratories, universities, and contractors to enable
seamless connection of data across the digital engineering ecosystem. The current
system, under development, stores information in the Microsoft Azure CosmosDB.
CosmosDB allows for global data distribution and persistence of data in a graph
database format (Gremlin). Graph databases are optimized for storage and retrieval
of highly connected data, allowing for rapid queries across digital links.

The integration framework utilizes web connections through Transmission Con-
trol Protocol (TCP) Representational State Transfer (REST) interfaces which
transfer data live through standard commercial networking technologies. This
allows for a “digital thread” of connected data to be updated live as corresponding
engineering, procurement, and construction tools are modified. Through the capture
of live data, versioning, conflict resolution, and accurate analysis codes can be
further developed.

Tools which expose an existing REST interface with a standard authentication
mechanism (e.g., OAuth 2.0, Basic Authentication) can be natively integrated

Digital Engineering Ecosystem for Future Nuclear Power Plants: Innovation. . . 23

Fig. 6 Integration framework architecture

into the framework. Conversely, tools which do not expose a standard REST
interface or authentication mechanism are integrated through custom adapters which
expose a web-accessible interface. The AVEVA BIM provides a desktop/local
server API only and thus a custom adapter has been developed. The IBM Jazz
system provides an open REST interface which utilized standard authentication
mechanisms (OAuth) and is straightforward to adapt into the integrated system.

The connection of engineering design data into a common, accessible database
allows for the automation of analysis code integration. As part of this ecosystem,
research at North Carolina State University has led to the development of automated
mesh generation for finite element analysis (FEA) codes. This FEA mesh generation
currently utilizes standard BIM industry foundation class (IFC) files to enable
meshing through a set of Python scrips. Future iterations of this analysis integration
will explore direct linkage to the integrated data store which will allow automate
analysis reporting (Fig. 6).

4 Summary and Path Forward

The development of a digital engineering ecosystem is expected to provide sig-
nificant improvements to cost and schedule while dramatically reducing overall
program risk. These tools are currently deployed on the Versatile Test Reactor
program with teams at varying stages of implementation. The BIM tools have
been fully rolled out to the virtual design and construction contractor, Bechtel, and

24 C. Ritter et al.

synchronized with INL’s internal databases. Systems engineering tools are deployed
through high-level documentation, and work is ongoing to fully deploy the toolset
at the system and component levels of design. The project management team has
already deployed the Primavera P6 toolset across all scheduling operations.

Looking forward, advanced modeling and simulation and analytics integrations
are planned in 2020. Research is ongoing to investigate the integration of the
TerraPower’s Advanced Reactor Modeling Interface (ARMI) framework to enable
rapid prototyping of reactor experiments and linkage to the neutronics, thermal, and
fuel performance domains. Additional research to autonomously identify missing
traceability links and incorrect traceability links is currently within 2020 scope.
Through the connection of data sources and analytics codes, the project team looks
to enable new data analytics capabilities to predict reactor performance and design
issues early in the design process, minimizing cascading risk in the nuclear design
process.

References

About the Unified Modeling Language Specification Version 2.2. About the Common Object
Request Broker Architecture Specification Version 3.3, www.omg.org/spec/UML/2.2/

DoDAF Meta-Model (DM2). Chief Information Officer, dodcio.defense.gov/Library/DoD-
Architecture-Framework/dodaf20_dm2/

Extra Time Saves Money. 1990. Warren Kuffel Computer Language, December 1990.
Gruhl, Werner M.. Chief Cost & Economics Analysis Branch. NASA Headquarters.
Lifecycle Modeling Language. Lifecycle Modeling Language, www.lifecyclemodeling.org/.
Merrow, E.W. 2011. Industrial megaprojects. Hoboken, New Jersey: Wiley.
OMG SysML Specifications. What Is SysML? | OMG SysML, www.omgsysml.org/

specifications.htm.
U.S. Department of Defense, Digital Engineering Strategy, Washington, DC, June 2018.
Virtual Design and Construction. Mortenson Construction,www.mortenson.com/approach/virtual-

design-construction/vdc-report
What Grounded the Airbus A380?. Cadalyst, www.cadalyst.com/cad/product-design/what-

grounded-airbus-a380-10903

http://www.omg.org/spec/UML/2.2/
https://dodcio.defense.gov/Library/DoD-Architecture-Framework/dodaf20_dm2/
http://www.lifecyclemodeling.org/
http://www.omgsysml.org/specifications.htm
http://www.mortenson.com/approach/virtual-design-construction/vdc-report
http://www.cadalyst.com/cad/product-design/what-grounded-airbus-a380-10903

Introducing Digital Doppelgängers
for Healthcare Policy Analysis

Jennifer Legaspi and Shamsnaz Virani Bhada

Abstract Healthcare policy evaluation is a time-consuming, challenging process
due to the complexity of the US healthcare system which is comprised of both public
and private payers; a variety of healthcare suppliers including doctors, medical
device companies, and pharmacies; and patients from different insurance coverages
and socioeconomic backgrounds. Systems engineering processes are intended for
complex systems and are ideal for addressing healthcare policy. Specifically,
model-based systems engineering (MBSE) is used to increase traceability with its
model-centric approach and can be used to increase understanding of the healthcare
system. In this paper, we attempt to exploit digital twin philosophy of MBSE to
understand a US healthcare system as a complex system. We focus our efforts
in building a digital doppelgänger which reflects most aspects of the healthcare
systems digitally, but is not an exact digital twin. The doppelgänger helps navigate
around the medical privacy laws of the US healthcare system and runs some analysis
on healthcare policy.

Keywords Model-based systems engineering · Policy development ·
Model-based design · Policy analysis · Healthcare · Digital twin · Virtual
prototype · Emergent properties · Digital doppelgänger

1 Introduction

Healthcare policy implementation in the USA can take years from the identification
of a need for a policy change to the implementation of the policy. Legislators must
work with the current system to make changes that will not detrimentally affect the
actors in the system. Most recently, healthcare reform has occurred in 2010 with the
Affordable Care Act (ACA) yielding new pathways of insurance coverage (Mulligan

J. Legaspi (�) · S. V. Bhada
Worcester Polytechnic Institute, Worcester, MA, USA
e-mail: jlegaspi@wpi.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_3

25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_3&domain=pdf
mailto:jlegaspi@wpi.edu
https://doi.org/10.1007/978-3-030-82083-1_3

26 J. Legaspi and S. V. Bhada

2017). The implementation of the ACA in 2010 was met by strong opposition (Wei
and Jarlenski 2014), but during its cycle of utilization, it garnered support. After the
ACA penalty for the uninsured was repealed in 2019, only one quarter chose not
to get coverage because of the repeal (Collins and Gunja 2019). Further calls for
healthcare reform have been called for by various political candidates in the USA,
but a 2019 survey shows that 40% of adults do not know enough about public and
private insurance to have an opinion (Collins and Gunja 2019) which may be an
indicator of the level of complexity of the system.

The healthcare system is a complex system that can be analyzed using systems
engineering methods and approaches to be presented to an audience in a way that
is easier to understand. Model-based systems engineering (MBSE) can be used
to make sense of the current rules and regulations due to its inherent benefit of
traceability attributed to its model-centric approach rather than a document-centric
approach (Krishnan et al. 2018). Digital twins in systems engineering can also
be used to address the issue of healthcare reform by accurately representing the
complexity of the health records of an individual.

Typically, digital twins are implemented as a representation of a specific instance
that are continually updated with respect to its twin (Madni et al. 2019). In the case
of healthcare, there are rules for medical record privacy and security in the USA
under the Health Insurance Portability and Accountability Act (HIPAA) (Madni et
al. 2019).

Security risks that exist with a digital twin of healthcare records should be
considered when using a digital twin for policy evaluation. This research addresses
these security risks in healthcare reform analysis by using a digital doppelgänger
instead of a digital twin.

In this case we provide a distinction between digital twin and digital doppel-
gänger. A digital twin of a health record would be a complete and digital version of
a specific person’s health records. The Meriam- Webster defines a doppelgänger as
“something or someone that strongly resembles another.” From this definition, we
describe a digital doppelgänger in terms of health records as a synthetic version
of health records that could bear strong resemblance to the health records of a
person that exists in the world, but the digital doppelgänger is not related to the
person’s health records, nor does a change in that person’s health have an effect
on the synthetic health records of the digital doppelgänger. Figure 1 illustrates the
differences between a digital twin and digital doppelgänger with a snapshot over
multiple years of life. The living person has matched records held in the digital
realm represented by a digital twin. A digital doppelgänger has similar patterns of
doctor visits to the living person and may have diagnoses and treatments at age
ranges considered similar with respect to health statistics. The digital doppelgänger
can be viewed as a hybrid of a virtual prototype and a digital twin.

Using MBSE and digital doppelgängers or digital twins, healthcare reform can
be evaluated with respect to the system requirements modeled in SysML. Digital
doppelgängers as well as digital twins can enable the simulation of emergent
properties in a complex system such as healthcare in the USA.

Introducing Digital Doppelgängers for Healthcare Policy Analysis 27

Fig. 1 Sample timeline of living person represented by a digital twin and a digital doppelgänger

Fig. 2 Proposed methodology

2 Methodology

This section describes the proposed methodology behind the application of a digital
doppelgänger with MBSE for healthcare policy evaluation. The methodology in
Virani et al. is built upon to generate a methodology applicable to healthcare
reform. The proposed change to the methodology follows the initial three steps
of policy selection, modeling strategy, and model checking (U.S. Department of
Health and Human Services 2013) and adds model distribution as a key step in the
methodology as shown in Fig. 2. In previous research, models are intended to be
used by researchers familiar with the tools (Krishnan et al. 2018). In this research,
the intention is to provide a tool that can be used by patients, lawmakers, suppliers,
and payers to make educated decisions regarding healthcare reform.

2.1 Policy Selection

The first step in the methodology is policy selection. Full applications of the
methodology proposed by Virani et al. will be more rigorous for the policy selection
step, but because the end goal of the methodology is to create a tool for nonexperts
in the healthcare domain, policies that can potentially affect a wide range of actors
in the system are prioritized over policies that may only affect a small group for
the time being. Taking this into consideration, the research team selected basic, yet
commonly misunderstood, aspects of health insurance such as copays and premiums

28 J. Legaspi and S. V. Bhada

for a basic proof of concept. A full application of the methodology would require a
specific and complete policy that has been implemented or proposed.

Copays or copayments are fixed amounts paid for by the patient for a covered
healthcare service. Premiums are paid on monthly basis by the health insurance
subscriber (Virani and Rust 2016). Patients would ideally like to have no copays
or premiums while still having access to quality medical services. Suppliers, which
include doctors and pharmacies, benefit from copayments because it reduces the
amount of upfront costs they must pay to provide a medical service to a patient.
If a supplier is not reimbursed by the payer and the patient does not pay, they will
only get the amount of the copayment for the medical service. Payers benefit from
premiums which go into their funds from each of their policy subscribers. If payers
have no funds, they cannot reimburse suppliers for medical services supplied to
patients.

The policy changes selected for focus are change in copays and change in
monthly premiums. Because the example policy selected is a simple policy change
rather than a complex and specific proposed implementation, the use of natural
language processing is not required (U.S. Department of Health and Human
Services 2013). When applying this research to a specific proposition, natural
language processing will likely be required to automate the policy modeling process.

2.2 Modeling Strategy

The modeling strategy makes use of both SysML and MATLAB with digital
doppelgängers. MBSE methods emphasize the importance of traceability between
SysML and MATLAB. Synthea, an open-source tool created by MITRE Corpora-
tion, provides access to digital doppelgängers which are utilized to help uncover
emergent properties of the healthcare system. The digital doppelgängers generated
by Synthea are based on real patient datasets and medical data to generate synthetic
patient data. This synthetic electronic health record (EHR) is not connected to
a human system, so it does not have the privacy and security concerns that real
electronic health records have (MITRE 2019).

Using SysML, we model the effects of changes in copays and premiums on the
relationships in the healthcare system, further document Synthea in model form,
and document any additional work completed in MATLAB. The sequence diagram
represents the effects of decreased copays on healthcare system through a patient
visit to the doctor. Copays and premiums have direct effects on the actors in the
relationships, but they can also indirectly affect the relationships and interactions
between actors in the system. Lower copays, for example, may encourage more
frequent doctor visits causing longer wait times and shorter amounts of time spent
with the doctor. The lower copays may also increase the likelihood of the patient
being able to afford any prescriptions provided by the doctor. According to the
American Medical Association (AMA), medical nonadherence – where patients do
not take prescriptions as prescribed by their doctor – is common. The AMA states

Introducing Digital Doppelgängers for Healthcare Policy Analysis 29

that 25% of new prescriptions are not filled and 50% are not used as directed (U.S.
Centers for Medicare and Medicaid Services 2019). These interactions in groups of
relationships happen hundreds of millions of times annually which has a significant
effect on the healthcare system overall.

Due to the broadness and complexity of the healthcare system in the USA, the
SysML modeling strategy must be kept in focus by the scope of the system. The
healthcare system is comprised of a range of payers, providers, patients, payer
policies, as well as policies in the form of government rules and regulations. Rules
and regulations can vary from state to state with some states requiring more benefits
than others. By limiting the scope, the models can be better defined for the payer
policies that most resemble the effects of changes in copays and premiums. In
addition to limiting the scope to changes in copays and premiums, we also limit
the scope by focusing on a population that resembles the state of Massachusetts.

The sequence diagram in SysML is also color coded to show how changes may
either positively affect or negatively affect relationships in the system. Shown in
Fig. 3, positive effects are indicated by green comment boxes. Negative effects are
indicated by red comment boxes.

In addition to SysML, MATLAB is used to mathematically represent the rela-
tionships in the healthcare system. Many of the relationships are already modeled
in Synthea, but aspects of the relationships that have not yet been implemented
in Synthea are modeled in MATLAB. Anything modeled in MATLAB is also
modeled in SysML to document functions and ensure traceability. Figures 4 and
5 show the SysML representation of a MATLAB implementation of the payers,
respectively. Changes in copays and premiums were initially modeled in MATLAB
until they were added to Synthea. The results in MATLAB can also be used to
visualize the effects of copay and premium changes on the system. The relationships
represented in MATLAB and Synthea are based on real-world data. Data from the
US government as well as from Commonwealth Fund was utilized in the MATLAB
models. Each function in MATLAB was modeled in SysML in order to document
the purpose of the function and to provide traceability. Payers were modeled in
SysML in connection to the MATLAB implementation.

At the time, payer copay data had not been implemented in Synthea, so the
copays were implemented in MATLAB. Synthea models were created by MITRE
Corporation and are being continually improved. While the team did not make
changes to the models that were created in Synthea, changes could be requested
if needed. Copay and premium data are examples of changes that were made by
MITRE in parallel to this research. Recognizing the limitations of the Synthea
models was important to ensuring the accuracy of the models when integrated with
Synthea.

The data produced by Synthea is both a benefit and a limitation of the Synthea
models by functioning a hybrid of a digital twin and a virtual prototype. We refer to
this hybrid as a digital doppelgänger which we leverage to work with US medical
privacy laws. In the USA, medical privacy laws such as HIPAA impose restrictions
on access to medical records (Madni et al. 2019). For the purpose of analyzing
health policy, restrictions on access to medical records can be prohibitive to the

30 J. Legaspi and S. V. Bhada

Fig. 3 Sequence diagram of patient, supplier, payer relationship

Introducing Digital Doppelgängers for Healthcare Policy Analysis 31

Fig. 4 Block diagram of payers

Fig. 5 MATLAB implementation of payers

analysis. Synthea takes the benefits of a digital twin such as a high level of detail
and instantiations as well as the benefits of a virtual prototype but does not represent
a real person to provide digital doppelgängers. Instantiations could have similar

32 J. Legaspi and S. V. Bhada

medical records to a real person but are not actually connected to a real person.
Character strings are appended to automatically generated names to show that the
instantiations are generated by Synthea and are not real people to prevent misuse of
data and to prevent confusion (MITRE 2019).

3 Model Checking

The models have three major parts which need to be checked: SysML, MATLAB,
and Synthea. The strategies for SysML and MATLAB were nearly identical.
With Synthea, the model checking strategy focused on Synthea integration with
MATLAB and SysML models.

In a preliminary check, the SysML diagrams and the MATLAB functions
were reviewed by subject matter experts at MITRE Corporation during the model
checking phase. During a complete implementation of the methodology with a
specific policy instance, functions may need to be checked line by line. Modeling
was completed in an iterative approach, so functionality was added incrementally
and checked by experts throughout the process. With SysML, the models should be
confirmed by experts who compare it to current policies. MATLAB models are also
compared to policies, but these models have the added benefit of results that could
be displayed. Variance from expectation could indicate the need to adjust MATLAB
models. Once models are thoroughly vetted, they can be used to indicate emergent
properties of the system. Accurate and sufficiently fitted models checked by experts
could demonstrate unexpected effects of the complex healthcare system.

Synthea is checked by subject matter experts at MITRE Corporation. With
respect to this research, SysML and MATLAB models needed to be checked for
proper integration with Synthea to ensure that functionality would not be doubly
implemented and that any assumptions about features in Synthea were confirmed
with the MITRE team.

4 Conclusion

This paper discussed the use of digital twins and digital doppelgängers with MBSE
constructs and methodologies to model and analyze healthcare policy. The approach
builds on existing approaches but modifies them for the healthcare system. Digital
doppelgängers are used to help simulate emergent properties of the healthcare
system, but as electronic health records become increasingly prevalent and the
security of those health records is addressed, digital twins can be used to even more
accurately model the emergent properties of the healthcare system.

Introducing Digital Doppelgängers for Healthcare Policy Analysis 33

Acknowledgments We thank our colleagues at MITRE Corporation for their expertise in
healthcare and Synthea, especially to Jason Walonoski and Rob Lieberthal. Additional thanks to
Robi Scalfani for generating datasets from unreleased branches of Synthea.

References

Collins, S.R., and M.Z. Gunja. 2019. What Do Americans Think About Their Health
Coverage Ahead of the 2020 Election? Commonwealth Fund, September 26 2019.
[Online]. Available: https://www.commonwealthfund.org/publications/issue-briefs/2019/sep/
what-do-americans-think-health-coverage-2020-election. Accessed 17 Oct 2019.

Krishnan, R., S. Virani, and R. Gasoto. 2018. Discovering toxic policies using MSBE constructs.
In Disciplinary Convergence in Systems Engineering, Redondo Beach.

Madni, A.M., C.C. Madni, and S.D. Lucero. 2019. Leveraging Digital Twin Technology in Model-
Based Systems Engineering. Systems 7: 7.

MITRE. Synthea Empowers Data Driven Health IT, MITRE, 2019. [Online]. Available: https://
synthetichealth.github.io/synthea/#about-landing. Accessed Sept 2019.

Mulligan, J. 2017. The Problem of Choice: From the Voluntary Way to Affordable Care Act Health
Insurance Exchanges. Social Science and Medicine 181: 34–42.

U.S. Centers for Medicare & Medicaid Services. Glossary [Online]. Available: https://
www.commonwealthfund.org/publications/issue-briefs/2019/sep/what-do-americans-think-
health-coverage-2020-election. Accessed 17 Oct 2019.

U.S. Department of Health and Human Services. 2013. Summary of the HIPAA Security
Rule, U.S. Department of Health and Human Services, 26 July 2013. [Online]. Available:
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html. Accessed
17 Oct 2019.

Virani, S., and T. Rust. 2016. Using Model Based Systems Engineering in Policy Development: A
Thought Paper. In Conference on Systems Engineering Research.

Wei, Z., and M. Jarlenski. 2014. The Politics of Opposition to the Enactment of the Patient
Protection and Affordable Care Act in the United States. International Critical Thought 4 (2):
208–220.

https://www.commonwealthfund.org/publications/issue-briefs/2019/sep/what-do-americans-think-health-coverage-2020-election
https://synthetichealth.github.io/synthea/#about-landing
https://www.commonwealthfund.org/publications/issue-briefs/2019/sep/what-do-americans-think-health-coverage-2020-election
https://www.hhs.gov/hipaa/for-professionals/security/laws-regulations/index.html

Employing Digital Twins Within MBSE:
Preliminary Results and Findings

Shatad Purohit and Azad M. Madni

Abstract Model-based systems engineering (MBSE) requires greater investment
than traditional systems engineering in the early phases of the system life cycle.
Program management justifies this additional investment by arguing that such
investments can be expected to produce continuous gains across later phases of
system life cycle resulting from early detection of defects, risk reduction, improved
communication, superior integration of the supply chain, product line definition,
and enhanced traceability. Since systems evolve over the system life cycle, system
models need to be updated continually to reflect the state of the system and
realize value. However, in systems engineering organizations today, there is a
tendency to reallocate modeling resources to other projects once initial modeling
is completed on a particular project. This practice results in a resource gap which
impedes the continuous update of system models through later phases of the system
life cycle. This paper presents how digital twin technology can be exploited to
address model updates throughout the MBSE life cycle. This paper also presents
preliminary results from prototyping and experiments with a digital twin including
data collection from a physical system operating in the real world to update the
digital twin model. This paper shows how operational analysis and modeling can be
enhanced by leveraging the digital twin construct.

Keywords Model-based systems engineering · Digital twin · Virtual prototype ·
Simulation

1 Introduction

Model-based systems engineering (MBSE) today tends to be primarily focused on
the front end of the system life cycle (Madni et al. 2019). MBSE typically results in
greater investment in the early phases of system life cycle when compared to early-

S. Purohit (�) · A. M. Madni
University of Southern California, Los Angeles, CA, USA
e-mail: shatadkp@usc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_4

35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_4&domain=pdf
mailto:shatadkp@usc.edu
https://doi.org/10.1007/978-3-030-82083-1_4

36 S. Purohit and A. M. Madni

stage investments in traditional systems engineering. Program management justifies
this added expense by arguing that they expect to recover the added investment
through continuous gains in the later phases of the system life cycle through early
detection of defects, risk reduction, improved communication, superior integration
of the supply chain, product line definition, and traceability. Furthermore, systems
tend to evolve over their life cycle, generating a need for continual model update to
continue to realize value. Unfortunately, in most systems engineering organizations
today, modeling resources are quickly reallocated to other projects after initial
modeling on a particular project is complete. This practice results in resource gaps
in the ongoing project which impedes the ability to continuously update the system
model through later phases of the system life cycle.

At the present time, hardware associated with a physical system and operational
analysis are not an integral part of MBSE methodologies, but they need to
be. Integrating hardware associated with a physical system into MBSE provides
opportunities to learn from real-world data while continuously updating the system
model, thereby improving model accuracy.

During the initial phases of the system life cycle, system model fidelity is limited
by the available knowledge and information about the structure and behavior of
the system. Therefore, system architecture and design decisions are initially based
on limited data which implies decision-making under uncertainty. Additionally, the
model does not extend to later stages such as manufacturing, integration, operations,
and maintenance. In other words, in today’s system development projects, initial
phase system models rarely cover factors pertaining to later phases of the system life
cycle (Madni and Purohit 2019). This omission invariably leads to complications
during system (model) validation and operation. This recognition has led to the
development of a digital twin-enabled closed-loop modeling approach (Madni and
Erwin 2018; Madni et al. 2020). This paper describes experiments conducted using
this approach.

With increasing system complexity, it is important to monitor system behavior
throughout the system life cycle. This capability is essential to deal with unknown
unknowns and collect data on system behavior (Datta 2016, 2017; Bone et al.
2018). The latter can increase the accuracy and fidelity of system models which
in turn can improve decision quality and provide useful data for future projects
(Folds & McDermott 2019; Ghosh et al. 2019). As important, model updates from
a previous system can be used in defining a product line. This paper describes
experiments conducted using this approach. This approach employs a combination
supervised, unsupervised, and reinforcement learning for inference analytics and
model upgrade.

The remainder of this paper is organized as follows. Section 2 presents the overall
methodology. Section 3 describes the experiments performed with physical system
and digital twin. Section 4 presents the technical risk related to digital twin-enabled
model-based systems engineering, and Section 5 presents conclusions and potential
for future work in this area.

Employing Digital Twins Within MBSE: Preliminary Results and Findings 37

2 Methodology

In MBSE, models are based on consistent assumptions, semantics, and principles.
Such models can potentially answer questions of interest to stakeholders. Thereafter,
experimentation using simulations can be used to verify dynamic system behaviors
under a variety of assumptions.

In complex systems, hidden interactions can give rise to unexpected system
behaviors. Therefore, models of such systems need to account for such interac-
tions because the quality of predictions and decisions depends on the credibility,
completeness, and accuracy of the models.

As new capabilities are being added to the twenty-first-century systems to
sustain them in highly competitive markets, they are producing an increase in the
interdependencies between the various components within and outside the system.
Increasing dependencies increases the system’s overall complexity, which results in
unintended consequences including failures (Grieves and Vickers 2017; Hoffenson
et al. 2019). In today’s complex systems, it has become essential to embrace failures.
Also, it is not enough to continue to perform adequately in the face of disruption.
Today’s systems need the capability to learn from responding to disruptions and
failures and use that knowledge to improve system’s performance and resilience.

Since detailed data on the system and its operational environment is not available
in the early phases of the system life cycle, the assumptions made initially in
building the models could be wrong, and the models may not have the requisite
fidelity. As new data becomes available, learning can help with revision of initial
assumptions and heuristics.

Failure to revisit the initial assumption is one of the most significant issues that
needs to be addressed in MBSE. The initial models are created with limited data;
the assumptions employed in the beginning may not be valid because they tend to
be based on inadequate understanding and limited evidence (West and Pyster 2015).

Digital twin technology (from digital engineering) provides a promising means
to update assumptions and increase model fidelity (Kinard 2010; Kraft 2015;
Morton et al. 2009). New evidence from the physical system can be captured and
stored for analysis and subsequently used to update system behavior (Chen et al.
2008; Glaessgen and Stargel 2012). The data captured in digital twins enhances
traceability between system requirements and real-world behaviors.

With digital twin-enabled MBSE, the fidelity of the model can increase with
new data, which in turn improves the quality of architectural and design decisions
made. As shown in Fig. 1, inference and data analytics can complement MBSE.
Insights and data thus produced can be used to systematically increase the fidelity
and scope of the model leading to superior decisions and predictions. Also, as shown
in Fig. 1, data from the physical system in the real world can be used to update
system models. Subsequently, analysis and inference can lead to new insights that
can complement the knowledge contained in the centralized digital models even
during later phases of the system life cycle. Figure 2 depicts the MBSE life cycle
phases on the horizontal axis. The MBSE, traditional SE, and digital twin-enabled

38 S. Purohit and A. M. Madni

Fig. 1 Digital twin-enabled MBSE process overview

Fig. 2 Application of digital twin across MBSE life cycle with associated investments and gains
(Madni et al. 2019)

MBSE cost curves are presented in Fig. 2. Color codes are used to convey traditional
systems engineering, MBSE, and digital twin-enabled MBSE curves. The costs and
gains associated with digital twin-enabled MBSE implementation are presented.

For digital twin-enabled MBSE, at the initial phase of the system life cycle,
there are additional costs related to ontology definition and integration, sensor
infrastructure implementation, data processing, data management, and configuration
management. Substantial gains are expected during the later phases of the system
life cycle against incurred costs considering the time value of money. Consolidating
and continuously updating information from enterprise, system, and organization
level facilitates superior decision-making and planning across the system life cycle.

Figure 3 presents an ontology for digital twin-enabled model update. The ontol-
ogy view depicts relevant aspect of closed-loop model-based systems engineering.
The ontology answers questions such as What are the different components of the
digital twin? What are the different aspects of the digital twin that are updated
during the system life cycle? What kind of data is collected related to the system’s
temporality?

Employing Digital Twins Within MBSE: Preliminary Results and Findings 39

Fig. 3 Digital twin-enabled model update ontology

3 Preliminary Experiments

We conducted preliminary experiments to explore the creation of the digital twin
and its update using data from real-world operation of its physical twin. In this
experiment, the contextual model of the system is used to demonstrate the value of
digital twin technology (i.e., modifying the model during system operation in real
world). The contextual model captures the external entities present in the system’s
environment. Physical properties such as size, shape, location, and velocity are
captured in the contextual model.

The experimentation setup consists of two UAVs (Fig. 4). Each UAV sys-
tem consists of sensing subsystem, communication subsystem, battery subsystem,
propulsion subsystem, and control subsystem. UAVs operate in an indoor maze-
structured environment comprising static and dynamic entities and subject to

40 S. Purohit and A. M. Madni

Fig. 4 Experimentation setup

external forces. The mission of the UAV system is to search for a predefined
object in the environment. Both UAVs communicate the external visual and acoustic
data, internal subsystem information related to battery subsystem health, internal
subsystem temperature, external temperature altitude, location, communication
bandwidth, and speeds. The data is transferred to the data storage system through
communication network for preprocessing. The inference and analytics server
performs data collection, integration, filtering, feature extraction, transformation,
and analysis. For example, the video stream coming from the UAV is converted into
frames of fixed size, and color threshold and contrast values are adjusted. Frames are
calibrated for distortion and passed through trained Recurrent Convolutional Neural
Network model, where the objects in the video feed are identified and tagged. Also,
velocity vectors of objects are calculated based on the movement of objects in the
frames and UAV velocity vectors. Objects with similar velocity are clustered in the
same group. In this case, the contextual model of the system is continuously updated
based on results from analytics.

The planning and decision-making problem involves multiple levels of decision-
making, with varying levels of difficulty. For example, rule-based models, heuristic
models, and probabilistic models provide increasing levels of information about
the system. In the experiment, the physical system continually acquires contextual
information.

The experimentation scenarios span multiple UAV operational phases. The first
phase of UAVs search mission has only static objects in the environment. The system
follows a rule-based model to navigate in the environment. In the next phase of the
experiment, a dynamic object is introduced in the external environment of the UAVs.
Thereafter, the object is identified and clustered in a new group due to its dynamic

Employing Digital Twins Within MBSE: Preliminary Results and Findings 41

nature. The generation of new clusters induces the system to switch from a rule-
based model to a state machine model. In the next phase, an external force acts
on one of the UAVs, changing the stability, speed, and location of the UAV. The
inference/analytics server then creates a correlation function between the sudden
change in internal system attributes and the appearance of the external dynamic
object. This, in turn, forces the system to shift to a probabilistic system model. In
the experimentation setup, the human-system interface (Fig. 5) allows the human
to intervene and add inputs. This interface enables the creation of tags, editing of
the correlation function, control of the system, and updates to the model. In the
experiment, operational phase data of the system is used to update the model.

4 Implementation

During simulated or real-world system operation, making model updates is chal-
lenging. Specifically, system representation needs to be sufficiently flexible (and
extensible) to incorporate new information and changes. Furthermore, observations
require the capability to capture and store data in digital repositories to support
decision-making. This requirement, in turn, creates a requirement on the system
architecture to represent the perception subsystem. Making models “closed loop”
(Madni et al. 2019) requires an investment in (a) physical or virtual sensors during
system prototyping, development, integration, testing, operation, and maintenance
and (b) a rudimentary testbed instrumentation for data collection.

Virtual simulations capable of interacting with physical systems require com-
munication infrastructure and computing architecture that enables the creation and
automatic update of online models. An initial modest investment in the infras-
tructure that includes a perception subsystem (i.e., sensors) is required. However,
significant benefits can be expected to accrue with repeated use of the infrastructure
during simulation-based experiments. A primary technical risk in implementing a
state-based model is the combinatorial explosion inherent in such models. Since data
is collected continuously and the model once constructed is updated continually,
dealing with a massive influx of data requires prior data filtering and processing.
Our approach to containing the combinatorial explosion is to employ heuristics and
contextual filtering (Madni 2018; Madni and Erwin 2018; Madni and Sievers 2018).
This approach can potentially ameliorate this risk by separating data analysis and
filtering from model building and communication.

5 Summary

This paper has presented a methodology, preliminary experiments, and imple-
mentation for a digital twin-enabled MBSE process. The paper provides proof
of feasibility of creating a digital twin that is able to access data from the

42 S. Purohit and A. M. Madni

F
ig

.5
H

um
an

-s
ys

te
m

in
te

rf
ac

e
of

ex
pe

ri
m

en
ta

tio
n

se
tu

p

Employing Digital Twins Within MBSE: Preliminary Results and Findings 43

physical twin operating in the real world to stay up-to-date with respect to the
operation of the physical system. This approach essentially makes modeling into
a closed-loop process (Madni et al. 2019). A multi-UAV scenario is used in the
preliminary experiments to demonstrate the overall approach. This paper has also
presented the overarching ontology used to integrate the major subsystems needed
for experimentation and support digital twin model update based on data from the
physical twin.

References

Bone, M., M. Blackburn, B. Kruse, J. Dzielski, T. Hagedorn, and I. Grosse. 2018. Toward an
Interoperability and Integration Framework to Enable Digital Thread. Systems 6 (4): 46.

Chen, P.C., D.H. Baldelli, and J. Zeng 2008. Dynamic Flight Simulation (DFS) Tool for
Nonlinear Flight Dynamic Simulation Including Aeroelastic Effects. In Proceedings of the
AIAA Atmospheric Flight Mechanics Conference and Exhibit, Honolulu, Hawaii, USA, AIAA
2008-6376.

Datta, S.P.A. 2016. Emergence of Digital Twins, arXiv e-print. (arXiv:1610.06467).
———. 2017. Emergence of Digital Twins – Is This the March of Reason? Journal of Innovation

Management 5 (3): 14–33. https://doi.org/10.24840/2183-0606_005.003_0003.
Folds D.J., and T.A. McDermott. 2019. The Digital (Mission) Twin: An Integrating Concept

for Future Adaptive cyber-Physical-Human Systems. In IEEE International Conference on
Systems, Man and Cybernetics (SMC), Bari, Italy, 2019, pp. 748-754, https://doi.org/10.1109/
SMC.2019.8914324.

Ghosh, A.K., S. Ullah, and A. Kubo. 2019. Hidden Markov Model-Based Digital Twin Con-
struction for Futuristic Manufacturing Systems. Artificial Intelligence for Engineering Design,
Analysis and Manufacturing. 1–15. https://doi.org/10.1017/S089006041900012X.

Glaessgen, E.H., and D.S. Stargel 2012. The Digital Twin Paradigm for Future NASA and U.S.
Air Force Vehicles.

Grieves, M., and J. Vickers. 2017. Digital Twin: Mitigating Unpredictable, Undesirable Emergent
Behavior in Complex Systems. In Transdisciplinary Perspectives on Complex Systems, ed. F.-J.
Kahlen et al. Germany: Springer.

Hoffenson, S., P. Brouse, D.S. Gelosh, M. Pafford, L.D. Strawser, J. Wade, and A. Sofer. 2019.
Grand Challenges in Systems Engineering Education. In Systems Engineering in Context,
Proceedings of the 16th Annual Conference on Systems Engineering Research., ed. S.C. Adams
et al.

Kinard, D. 2010. The Digital Thread–Key to F-35 Joint Strike Fighter Affordability, Aerospace
Manufacturing and Design http://www.onlineamd.com/amd-080910-f-35-joint-strikefighter-
digital-thread.aspx

Kraft, E.M. 2015. HPCMP CREATE-AV and the Air Force Digital Threat, 53rd AIAA Aerospace
Sciences Meeting, Kissimmee, FL.

Madni, A.M. 2018. Transdisciplinary Systems Engineering: Exploiting Convergence in a Hyper-
connected World. New York: Springer.

Madni, A.M., and D. Erwin, 2018. Next Generation Adaptive Cyber Physical Human Systems,
Year 1 Technical Report, Systems Engineering Research Center, September.

Madni, A.M., C.C. Madni, and D.S. Lucero. 2019. Leveraging Digital Twin Technology in
Model-Based Systems Engineering, MDPI Systems, special issue on Model-Based Systems
Engineering, Publication, March.

Madni, A.M., and S. Purohit. 2019. Economic Analysis of Model-Based Systems Engineering.
MDPI Systems, special issue on Model-Based Systems Engineering, Publication, February.

http://dx.doi.org/10.24840/2183-0606_005.003_0003
http://dx.doi.org/10.1109/SMC.2019.8914324
http://dx.doi.org/10.1017/S089006041900012X
http://www.onlineamd.com/amd-080910-f-35-joint-strikefighter-digital-thread.aspx

44 S. Purohit and A. M. Madni

Madni, A.M., S. Purohit, and A. Madni. 2020. Digital Twin Technology-Enabled Research Testbed
for Game-Based Learning and Assessment: Theoretical Issues of Using Simulations and Games
in Educational Assessment, ed. O’Neil, H, Taylor & Francis, Spring.

Madni, A.M., and M. Sievers. 2018. Model-Based Systems Engineering: Motivation, Current
Status, and Research Opportunities, Systems Engineering, Special 20th Anniversary Issue, 21
(3).

Morton, S.A., D.R. McDaniel, D.R. Sears, B. Tillman, and T.R. Tuckey. 2009. Kestrel—a Fixed
Wing Virtual Aircraft Product of the CREATE Program. In Proceedings of the 47th AIAA
Aerospace Sciences Meeting, Orlando, Fla, USA, January, AIAA 2009-338.

West, T.D., and A. Pyster. 2015. Untangling the Digital Thread: The Challenge and Promise of
Model-Based Engineering in Defense Acquisition. INSIGHT 18 (2): 45–55.

A Review of Set-Based Design Research
Opportunities

Nicholas J. Shallcross, Gregory S. Parnell, Edward Pohl, and Eric Specking

Abstract Increasing system complexity has been a driving force for the devel-
opment of systems engineering methodologies. One of these methodologies is a
concurrent engineering process known as set-based design (SBD). In support of
ongoing SBD research, our team conducted a structured literature review to ascer-
tain the current state of SBD research. This paper provides the results and analysis
from the review of relevant SBD methodologies attempting to identify method-
ologies combining two or more systems analysis methodologies with SBD. The
purpose of this research is to identify potential research opportunities by identifying
underrepresented SBD methodologies in the literature. We specifically focus on
applications combining SBD and model-based systems engineering (MBSE) with
requirements development, decision analysis, risk analysis, affordability analysis,
resilience, and complexity analysis applications. Our findings identified several
potential research opportunities in these application areas, as well as additional
opportunities for combining SBD and MBSE with systems architecting, uncertainty
analysis, and intelligent adversary analysis.

Keywords Set-based design · Model-based systems engineering · Literature
review · Systems engineering research opportunities

1 Introduction

The increasing complexity of engineered systems drove the development of new
systems engineering (SE) methodologies for the past three decades (Bhatia and
Mesmer 2019). This complexity encompasses the design of individual components,
their subsequent interaction as part of a system, and the system’s interaction and
function with other systems in its operational environment. It logically follows

N. J. Shallcross (�) · G. S. Parnell · E. Pohl · E. Specking
University of Arkansas, Fayetteville, AR, USA
e-mail: njshallc@uark.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_5

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_5&domain=pdf
mailto:njshallc@uark.edu
https://doi.org/10.1007/978-3-030-82083-1_5

46 N. J. Shallcross et al.

that engineered systems are now subject to greater uncertainty, both epistemic
and aleatory, thus increasing a design program’s overall risk. The need to better
understand system requirements, reduce uncertainty, enhance design resiliency,
and control lifecycle costs makes set-based design (SBD) an attractive product
design alternative in both government and industry. SBD is a concurrent engineer-
ing methodology that facilitates enhanced product development through delaying
design decisions, robust alternative development, and uncertainty reduction (Singer
et al. 2009). As a methodology, SBD has the flexibility to adapt to organizational
and program requirements and is well suited for complimentary implementation in
conjunction with other system design processes (Singer et al. 2009). The purpose
of this paper is to provide a synopsis of SBD use cases and to identify SBD appli-
cation areas requiring further research and development. We specifically focus on
applications combining SBD and model-based systems engineering (MBSE) with
requirements development, decision analysis, risk analysis, affordability analysis,
resilience, and complexity analysis applications. To accomplish this, we provide a
brief description of SBD and then discuss the results and analysis of our structured
literature review. Finally, we identify knowledge gaps, specifically highlighting
potential research opportunities combining SBD and MBSE with modeling and
simulation, system architecting, uncertainty analysis, and intelligent adversary
analysis.

2 Set-Based Design

2.1 Description

Set-based design is a product design method first described by Ward et al. in their
study of the Toyota Motor Corporation’s design and production process (Ward et
al. 1995). Ward describes SBD as a concurrent and iterative engineering process
that develops sets of design alternatives, at the system and sub-system levels, and
subsequently removes infeasible and sub-optimal alternatives from consideration.
These set reduction activities continue until a final design solution is selected. More
succinctly, SBD is a sequential product development decision-making process well
suited for systems engineering programs dealing with complexity and uncertainty.

SBD develops and explores a large number of system and sub-system design
alternatives, organized as sets, within the design space. Sets are groups of design
alternatives sharing at least one specified design choice (Specking et al. 2018,
Specking and Buchanan 2018). Set design spaces can be either discrete or continu-
ous, and it is common for system-level design spaces to initially contain thousands
and possibly millions of prospective design alternatives (Shallcross et al. 2019). It
is this feature that enables SBD to explore and analyze potentially superior design
alternatives compared to those developed using traditional design approaches. While
there are several SBD methodologies described in the literature, these processes

A Review of Set-Based Design Research Opportunities 47

generally follow three principles: (1) map the design space to define feasible regions,
develop multiple alternatives, and explore trade-offs, (2) identify intersections of
feasible sets and develop conceptual robustness, and (3) establish feasibility before
commitment by controlling uncertainty at decision points and remain within sets
once committed (Raudberget 2010).

A critical component of any SBD methodology is the delaying of critical design
decisions. Premature design decisions, often made in the absence of sufficient infor-
mation, reduce design and program flexibility, thus increasing cost and schedule
risk. Decision delay enables system requirements and design uncertainty resolution
prior to commitment to specific sub-system or system alternatives (Singer et al.
2009). In this regard, decision delay is a key risk mitigation strategy for complex
engineered systems and is the primary mechanism enabling many of the potential
benefits of SBD.

2.2 Benefits

Numerous SBD benefits, identified from the literature, are grouped into two
complimentary categories: (1) value improvement benefits and (2) risk mitigation
benefits. Value improvement benefits result from the development of multiple robust
design alternatives that are Pareto-optimal in regard to stakeholder value. Value
improvement benefits can take many forms but are generally the result of superior
alternative identification and development (Small et al. 2018). A simple thought
exercise regarding continuous spectrums supports this point. Mathematically, the
probability of occurrence for any single discrete point over a continuous range is
zero. Many complex system design spaces can also be thought of as continuous
spectrums and thus contain a nearly infinite number of design options. Traditional
approaches generally consider only a few design alternatives; however, the proba-
bility that one of these complex designs is Pareto-optimal is essentially zero. By
considering a multitude of design alternatives, SBD increases the identification
likelihood of an optimal design or set of designs, in terms of value and some other
metric. Thus by considering a significantly greater number of alternatives, we are
able to identify alternatives with greater value than those developed using traditional
design approaches. This is especially true during the early design phase. Figure 1
provides a simple depiction of SBD value improvement benefits when compared to
traditional system design approaches (Wade et al. 2018).

Using uncertainty resolution methods can yield risk mitigation benefits. In this
regard, we reduce epistemic or knowledge uncertainty by delaying design decisions.
By definition, a decision is an irrevocable allocation of resources; thus decision
delay forestalls premature commitment of finite resources (Parnell et al. 2011).
This results in increased design and program flexibility in the face of changing
and uncertain requirements. Additionally, delayed decisions enable technology
maturation helping to ensure pre-commitment design feasibility (Ghosh and Seering
2014). In the end, these factors help to mitigate program schedule and cost risks by

48 N. J. Shallcross et al.

Cost ($)

eulaV

Set 1

Set 2
Set 3

Set 4

Set 5
Point in Set

Point-Based
Design Point

Set-Based Design: Design Set Visualiza�on

Fig. 1 Point-based design and set-based design comparison

retaining the capability to efficiently update or change design options with minimal
rework, a leading driver of cost and schedule overruns (Shallcross et al. 2019).

3 A Review of the Current State of Set-Based Design

This section presents a brief summary of our literature review methodology and
an overview of key findings. We undertook a structured literature review of 158
documents, primarily consisting of theses, books, journal papers, conference papers,
and technical reports to identify the state of SBD application and research in
government, industry, and academia. We focused specifically on identifying novel
SBD approaches or applications where SBD was used in conjunction with other
system engineering design and process methodologies. It is not the purpose of
this paper to provide an in-depth analysis of each contribution included within the
review. Instead, we provide a high-level analysis of the general contributions from
the body of knowledge. As a result, we highlight documents that are either seminal
contributions, provide novel approaches, or support general statements about the
body of knowledge.

3.1 Literature Review Methodology

This research conducted a methodical search of systems engineering design papers
whose main topics included either “set-based design,” “model-based systems
engineering,” or “systems engineering,” plus one or more of the following topics:

A Review of Set-Based Design Research Opportunities 49

affordability, complexity, decision analysis, requirements development, resilience
applications, risk analysis, and uncertainty analysis. Forty-one database searches,
combining these keywords, yielded 572 documents which we screened for study
relevance, resulting in the inclusion of 158 documents in the final review. We
used Qiqqa, a reference management software, to facilitate document management,
enabling efficient analysis and review. Publication dates for these documents range
from 1995 to 2019, with 143 having publication dates of 2005 or later. We catego-
rized papers using the author-provided keywords, allowing us to catalog documents
under multiple keyword categories. Additionally, we undertook a thorough review
of document content to ascertain the level and type of contribution to our above
referenced research areas. This review, along with the keyword categorization,
formed the basis of the results and analysis provided in the following sections.

3.2 Description of Author-Provided Keywords

A review of author-provided keywords identified 309 unique keywords and phrases
from the 158 documents included in this survey. Table 1 provides a listing of the top
10 keywords by observation. Overall, keywords similar to those used in our search
and screening process are displayed prominently in this list, as well as related topics
such as decisions analysis, optimization, and design and tradespace exploration.

We binned each keyword into 24 categories enabling keyword aggregation into a
set of manageable topics. For example, the category “set-based methods” captured
all keywords associated with known SBD methodologies, such as set-based design,
set reduction, or set-based thinking. We screened each document to ensure that
keyword categories were listed only once against a specific publication, preventing
double counting of categories. Table 2 provides a listing of the top 15 categories by
observation and occurrence frequency.

Set-based methods appear most frequently within the literature (68 contribu-
tions), followed closely by decision analysis applications (66 contributions). Several

Table 1 Top 10
author-provided keywords by
observation from the 158
reviewed articles

Rank Author-provided keywords Observations

1 Set-based design 63
2 Model-based systems engineering 20
3 Decision analysis 17
4 Risk analysis 16
5 Systems engineering 16
6 Uncertainty 15
7 Optimization 14
8 Multi-objective decision analysis 11
9 Trade-off analysis 11
10 Resilience 10

50 N. J. Shallcross et al.

Table 2 Top 15 keyword
categories by observation
from the 158 reviewed
articles

Rank Keyword categories # observations

1 Set-based methods 68
2 Decision analysis applications 66
3 General systems engineering 46
4 Risk applications 30
5 MBSE applications 28
6 Design and tradespace analysis 26
7 Uncertainty analysis 25
8 Resilience 23
9 Complexity 18
10 Optimization and heuristics 17
11 Defense applications 16
12 Modeling and simulation 15
13 Early design applications 14
14 Requirements development 12
15 AoA 12

categories germane to our research, such as risk and MBSE applications, as well as
resilience, complexity, and requirements development occur less frequently within
the literature. This helps identify potential emergent SBD research areas.

3.3 Analysis of Literature Review Research Areas

Following keyword categorization, we analyzed the research activity within the
body of literature, by identifying studies contributing to three or more research
categories of interest. As our future research looks to develop complex system
design methodologies combining SBD with MBSE, we focused our analysis on
documents containing significant contributions to both areas. Therefore, we identi-
fied all documents containing “set-based methods” and “MBSE applications.” We
then screen those categories against topics such as decision analysis applications,
risk applications, resilience, complexity, and requirements analysis. Figure 2a–
d provides a visual depiction of notable joint research by category, specifically
highlighting instances of research contributing to three research categories of
interest.

While the body of literature contains numerous studies contributing to any
2 of the 24 keyword categories, a limited number of publications contribute to
3 categories. For example, there are 68 publications contributing to set-based
methods, 28 contributing to MBSE, and 66 contributing to decision analysis
applications in our literature. However, as seen in Fig. 2a, only five documents
contribute significantly to all three.

We observed similar results when we analyzed contributions pertaining to
design and tradespace applications, risk applications, modeling and simulation,

A Review of Set-Based Design Research Opportunities 51

(a) Set-Based Methods, MBSE Applications, & Decision
Analysis Applications

Decision Analysis
Applications

27

MBSE
Applications

15

Set-Based
Methods

37

5
26

8

(b) Set-Based Methods, MBSE Applications, & Design
and Tradespace Analysis

Set-Based
Methods

55

MBSE
Applications

16

Design &
Tradespace Analysis

11

3

8
7

2

(c) Set-Based Methods, MBSE Applications, & Risk
Applications

Set-Based
Methods

MBSE
Applications

Risk
Applications

4

2
8

55 21

19

1

(d) Set-Based Methods, MBSE Applications, & Modeling
and Simulation

Set-Based
Methods

60

MBSE
Applications

18

Modeling &
Simulation

9

4

53
1

Fig. 2 Joint research activity including set-based methods, MBSE applications and (a) decision
analysis applications, (b) design and tradespace analysis, (c) risk applications, and (d) modeling
and simulation

affordability, and uncertainty analysis. While there exists significant and relevant
research in these areas, there is a dearth of research combining these disciplines with
SBD and MBSE. In this regard, it is also interesting to note that only five studies
provide significant contributions to both SBD and MBSE: Blackburn (2014), Garner
et al. (2015), Miller (2017), Specking et al. (2018), and Yukish et al. (2018). Several
authors, such as Nahm and Ishikawa, identified the efficacy of conducting SBD in
a model-based environment as early as 2005 (Nahm and Ishikawa 2005). Similarly,
other researchers, such as Wong, described methodologies containing elements of
SBD and MBSE (Wong et al. 2009). However, it is only recently that methodologies,
such as those listed above, purposefully combining both SBD and MBSE in systems
engineering and product design appear in the literature.

Ultimately, the purpose of this study was to identify knowledge gaps with
the current set of SBD and MBSE literature to guide future research efforts.
Figure 2a–d identifies joint contribution areas with limited research, highlighting
the potential for new approaches that integrate modeling and simulation, risk, or
tradespace analysis with model-centric SBD. However, this research also identified
application areas completely lacking significant contributions, which we define as
SBD knowledge gaps.

52 N. J. Shallcross et al.

4 Discussion on SBD Knowledge Gaps and Future Research
Opportunities

This research identified several knowledge gaps pertaining to integrating SBD,
MBSE, and several of the topics listed at the beginning of Sect. 3. Figure
3a–d provides four contribution areas highlighting opportunities for integration:
resilience, system requirements development, complexity, and system architecting.
As seen in the four Venn diagrams, there is a lack of research that integrates the three
considered disciplines in each diagram. As before, there exist significant bodies of
research into areas such as resilience or requirements development, but contributions
integrating these and other similar research areas with SBD and MBSE are very
limited.

As the categories of resilience, complexity, architecting, and requirements devel-
opment are rather broad, they require further discussion to fully elicit the research
opportunities to integrate these areas with SBD and MBSE. Concepts such as
resilience and complexity span a wide array of applications. In this research we are
mainly concerned with resilience as it pertains to the design and platform use case.
This speaks to programs and designs that are resilient to uncertain requirements
and platforms that are robust in the face of competitive and evolving operating

Set-Based
Methods

60

MBSE
Applications

20

Complexity

12

5

33

(b) Set-Based Methods, MBSE Applications, &
Complexity Applications

(a) Set-Based Methods, MBSE Applications, & Resilience

Set-Based
Methods

55

MBSE
Applications

21

Resilience

13

5

28

(d) Set-Based Methods, MBSE Applications, &
Requirements Development

Set-Based
Methods

MBSE
Applications

Requirements
Development

5

44

59 19

4

Set-Based
Methods

62

MBSE
Applications

20

Architecting

6

(c) Set-Based Methods, MBSE Applications, & System
Architecting

5

1
3

Fig. 3 Identified knowledge gaps for set-based methods, MBSE applications, and (a) resilience,
(b) complexity applications, (c) system architecting, and (d) requirements development

A Review of Set-Based Design Research Opportunities 53

environments. Similarly, complexity not only refers to complex systems and system
of systems (SoS) but also complex environments. Complexity, and specifically
system complexity, leads naturally into system architecting and how to effectively
design an adaptive and affordable SoS under uncertainty. Finally, uncertainty
reduction is enabled, in part, by thorough and robust requirements development.
Requirements development and analysis can take on many forms, but in this context,
requirements development specifically pertains to business and mission analysis.
In addition to these findings, we also validated a research opportunity identified
separately by Hartman and Specking regarding the use of intelligent adversary
analysis to inform system design and risk analysis (Hartman 2018; Specking et
al. 2018). A review of the literature found no applications combining intelligent
adversary analysis with SBD or any other systems engineering application to inform
design requirements or reduce epistemic uncertainty. Based on our review of the
literature, these areas along with uncertainty and affordability applications create
potential research opportunities for significant meaningful contributions within the
engineering and design communities.

5 Conclusion

This research evaluated current SBD and MBSE literature to identify methodology
development opportunities. Our research reviewed 158 journal articles, conference
papers, technical reports, theses, and books to identify SBD research applications
integrating additional methods such as MBSE, decision analysis, risk analysis, or
requirements development. The review identified a rich source of SBD applica-
tions, generally conducted in concert with another systems engineering approach.
However, the review also identified a lack of applications combining SBD with two
or more specific methodologies, resulting in SBD knowledge gaps. We identified
applications with limited research combining SBD and MBSE with decision anal-
ysis, tradespace analysis, risk analysis, or modeling and simulation methodologies.
Additionally, we identified gaps lacking any research or methodologies incorpo-
rating SBD and MBSE with resilience, complexity, architecting, or requirements
development applications. Finally, we validated a relevant research opportunity
identified in the literature that combines SBD and intelligent adversary analysis to
inform system design and programmatic risk. These results will inform our future
research focus as we continue to develop and improve upon SBD methodologies
suitable for complex and adaptive system development. The full list of reviewed
sources is available to interested parties upon request.

54 N. J. Shallcross et al.

References

Bhatia, G., and B. Mesmer. 2019. Trends in Occurrences of Systems Engineering Topics in
Literature. Systems 7 (2): 28.

Blackburn, M. 2014. Introducing Model Based Systems Engineering Transforming System
Engineering through Model-Based Systems Engineering: Technical Report for 2014, Systems
Engineering Research Center, Stevens Institute of Technology.

Garner, M., N. Doerry, A. MacKenna, F. Pearce, C. Bassler, S. Hannapel, and P. McCauley. 2015.
Concept Exploration Methods for the Small Surface Combatant. In World Maritime Technology
Conference.

Ghosh, S., and W. Seering. 2014. Set-Based Thinking in the Engineering Design Community
and Beyond. In ASME 2014 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference.

Hartman, G. 2018. Enhancing Set-Based Design to Engineer Resilience for Long-Lived Systems.
Dissertation, Wayne State University, Detroit, Michigan, United States.

Miller, S. 2017. Design as a Sequential Decision Process: A Method for Reducing Design Set
Space Using Models to Bound Objectives, Dissertation, Pennsylvania State University, State
College, Pennsylvania, United States.

Nahm, Y., and H. Ishikawa. 2005. Representing and Aggregating Engineering Quantities with
Preference Structure for Set-Based Concurrent Engineering. Concurrent Engineering 13 (2):
123.

Parnell, G., P. Driscoll, and D. Henderson. 2011. Decision making in systems engineering and
management. Wiley.

Raudberget, D. 2010. The Decision Process in Set-Based Concurrent Engineering-An Industrial
Case Study. In DS 60: Proceedings of DESIGN 2010, the 11th International Design Confer-
ence, Dubrovnik, Croatia.

Shallcross, N., G. Parnell, E. Pohl, and D. Buede. 2019. Integrating Set-Based Design into the
Department of Defense Acquisition System to Inform Programmatic Decisions. In Proceedings
of the International Annual Conference of the American Society for Engineering Management.

Singer, D., N. Doerry, and E. Buckley. 2009. What Is Set-Based Design? Naval Engineers Journal
121 (4): 31.

Small, C., R. Buchanan, E. Pohl, G. Parnell, M. Cilli, S. Goerger, and Z. Wade. 2018. A UAV Case
Study with Set-Based Design. INCOSE International Symposium 28: 1578.

Specking, E., G. Parnell, E. Pohl, and R. Buchanan. 2018. Early Design Space Exploration with
Model-Based System Engineering and Set-Based Design. Systems 6 (4): 45.

Specking, E., and R. Buchanan. 2018. A Foundation for System Set-Based Design Trade-off
Analytics. In Proceedings of the International Annual Conference of the American Society for
Engineering Management.

Wade, Z., G. Parnell, S. Goerger, E. Pohl, and E. Specking. 2018. Designing Engineered Resilient
Systems Using Set-Based Design. Systems Engineering in Context, p. 111.

Ward, A., J. Liker, J. Cristiano, and D. Sobek. 1995. The Second Toyota Paradox: How Delaying
Decisions Can Make Better Cars Faster. Sloan Management Review 36 (3): 43.

Wong, J., K. Parrish, I. Tommelein, and B. Stojadinovic. 2009. SetPlan: A Computer Tool to
Aid in Set-Based Design. In 17th Annual Conference of the International Group for Lean
Construction, IGLC17.

Yukish, M., S. Miller, J. Martin, L. Bennett, and M. Hoskins. 2018. Set-Based Design, Model-
Based Systems Engineering, and Sequential Decision Processes. Naval Engineers Journal 130
(4): 93.

Digital Modernization for Systems
Engineering

Jorge Buenfil, Ross Arnold, Benjamin Abruzzo, and Scott Lucero

Abstract Digital modernization is a relatively new concept that the Department
of Defense (DoD) has embraced and recommended for implementation across the
services. We explain the concepts behind digital modernization using a systems
approach to avoid confusion and promote clarity. Many other definitions of these
concepts include unnecessary combination of descriptions, goals, and methods. We
describe digital modernization in terms of its purpose, elements, and interconnec-
tions. Additionally, we offer new simpler definitions of the digital thread, digital
system model, and digital twin concepts. To conclude we propose ways in which
digital modernization could be implemented in systems engineering practice.

Keywords Digital modernization · Digital system model · Digital twin · Digital
thread

1 Introduction

The Department of Defense (DoD) released its Digital Modernization Strategy on
July 12, 2019; this strategy will guide DoD’s information technology transforma-
tion. There are four strategic initiatives in the strategy:

• Innovation for advantage
• Optimization
• Resilient cybersecurity
• Cultivation of talent

J. Buenfil (�)
Agile Defense, Inc., Reston, VA, USA
e-mail: jorge.buenfil@alumni.stevens.edu

R. Arnold · B. Abruzzo
US Army CCDC, Picatinny Arsenal, NJ, USA

S. Lucero
DoD, Washington, DC, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_6

55

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_6&domain=pdf
mailto:jorge.buenfil@alumni.stevens.edu
https://doi.org/10.1007/978-3-030-82083-1_6

56 J. Buenfil et al.

Fig. 1 Digital modernization. (US Dept. of Defense 2019)

This strategy supports the National Defense Strategy (NDS) lines of effort
through the lens of cloud, artificial intelligence, command, control, communica-
tions, and cybersecurity, as shown in Fig. 1. In particular, the National Defense
Strategy indicates: “The security environment is also affected by rapid technological
advancements and the changing character of war.”

Rapid technological advances mentioned above imply a departure from tradi-
tional developments, which used to be designed with a combination of technical
drawings and small-scale prototypes. Most of the time, those prototypes were made
of cheaper materials, such as wood, but still some physical properties could be
directly observed (i.e., coefficient of drag in a wind tunnel or aerodynamic stability)
(Rich and Janos 1994). In this framework, DoD relied on a linear process to develop
complex US government work not protected by US copyright systems, typically
with a design-test-evaluate iterative process hoping that the result would serve a
range of missions and users. The policy-regulated acquisition process used to govern
this process is document-intensive and often stove-piped, which extended the time
for each cycle with systems that are cumbersome to change and sustain (DepSecDef
Systems Engineering 2018).

In the now distant past, a computer’s cost was very high and its processing
capacity very limited, confining the use of modeling and simulation (M&S) only
to those with the means and for which there was practically no alternative, as in the
case of thermonuclear weapon design in the 1950s (Bird and Sherwin 2005). As
digital computers became more powerful and readily available, many more of the
stages of tests and analyses could be performed virtually.

We see digital modernization as the natural evolution of the movements toward
“virtualization” applied to engineering efforts. By virtualization we mean the
abstraction of relevant information from the real world. Virtualization has been

Digital Modernization for Systems Engineering 57

evolving since the early days of computer simulations, through software-defined
radios, to fly-by-wire technologies, digital photography, electronic documents, etc.

Now that computers are ubiquitous, powerful, and relatively inexpensive,
widespread use of high-fidelity M&S is not only a possibility but also a necessity.
Especially for systems engineering, this has resulted in a movement away from
document-centric practices to model-centric practices. Yet, replacing traditional
paper documents with electronic equivalents is not enough to modernize the practice
in the terms outlined by the DoD’s Digital Modernization Strategy. What is missing
is the ability to close the loop: to keep virtual equivalents of every element of
the system so that not only its parts but also its behaviors and interdependencies
could be reproduced and visualized in high correlation with the equivalent physical
implementation.

The DoD seized these developments to enact its Digital Engineering Strategy as
follows:

Incorporating the use of digital computing, analytical capabilities, and new technologies
to conduct engineering in more integrated virtual environments to increase customer and
vendor engagement, improve threat response timelines, foster infusion of technology,
reduce cost of documentation, and impact sustainment affordability. These comprehensive
engineering environments will allow DoD and its industry partners to evolve designs at the
conceptual phase, reducing the need for expensive mock-ups, premature design lock, and
physical testing (DepSecDef Systems Engineering 2018).

In short, DoD’s goals are to reduce the time it takes to design new armament
systems, while also lowering the cost of development and maintaining high
availability, reliability, and adaptability to change. These goals promote the use of
digital representations of systems and components and the use of digital artefacts
as technical means of communication across a diverse set of stakeholders. Digital
representations enable virtualization, which in turn allows us the ability to study
the new system with computer simulations in order to fix any observable problems
before even building prototypes of such system.

The remainder of this article is organized as follows. In Sect. 2 we discuss some
of the previous definitions of digital thread, digital system model, and the digital
twin. Sect. 3 covers our proposed definitions for the terms, with some discussion of
open research challenges in Sect. 4. Finally we share our conclusions and discuss
the future of digital modernization in Sect. 5.

2 Background

Figure 2 shows a graphical representation of the goals of digital engineering. It is
noteworthy that the goals start with the use of models, since models are the artifacts
that can be simulated; however, equally if not more important is that the last goal
is the transformation of the enterprise culture and workforce. There are concrete
technical solutions to the other goals but not the last one, which in our experience

58 J. Buenfil et al.

Fig. 2 Digital engineering
goals (DepSecDef Systems
Engineering 2018)

Fig. 3 Virtual system example (DepSecDef Systems Engineering 2018)

ends up being the hardest challenge that can make or break the efforts to achieve
digital modernization. Figure 3 depicts an example of how an actual system is
virtualized by connecting the different models that describe the system with high
fidelity for simulation to the point where it becomes the authoritative source of truth
for the development, manufacture, and sustainment phases of its life cycle.

Digital Modernization for Systems Engineering 59

In this context, the authoritative source of truth means the original data elements
that represent the best data available. Other data elements may copy the original
data, or create links to it, but updates to the data should be carefully designed
to update the original and not the copies to prevent falling out of sync and loss
of version control. The authoritative source of truth used to be called single
source of truth to indicate that this was the original single source, but it led to
confusion by implying that there was a single repository for the data. In reality the
concept of authoritative source of truth does not require a physical single storage
implementation; it may well be distributed over a wide area network as long as
there is a way to tell which one is the original and where it is located.

The elements behind digital modernization are:

• Digital thread
• Digital system model
• Digital twin

The concept of digital thread was originally created and disseminated by
the US Air Force (USAF), which originally defined it as “the combination of
advanced modeling and simulation tools that link materials-design-processing-
manufacturing” (Chief Scientist USAF, 2013).

Another well-known definition is:

“Incorporating the use of digital computing, analytical capabilities, and new technologies
to conduct engineering in more integrated virtual environments to increase customer and
vendor engagement, improve threat response timelines, foster infusion of technology,
reduce cost of documentation, and impact sustainment affordability. These comprehensive
engineering environments will allow DoD and its industry partners to evolve designs at the
conceptual phase, reducing the need for expensive mock-ups, premature design lock, and
physical testing” (DepSecDef Systems Engineering 2018). “The Digital Thread refers to
the communication framework that allows a connected data flow and integrated view of the
asset’s data throughout its lifecycle across traditionally siloed functional perspectives. The
digital thread concept raises the bar for delivering the right information to the right place
at the right time” (Leiva 2016). Yet another common definition, proposed by Dr. Kraft, US
Air Force (USAF), expands the concept to add that:

Digital Thread is the creation and use of cross domain, common digital surrogates of a
materiel system to allow dynamic, contemporaneous assessment of the system’s current
and future capabilities to inform decisions in the Capability Planning and Analysis, Pre-
liminary Design, Detailed Design, Manufacturing, Testing, and Sustainment acquisition
phases. (Kraft 2013)

Those definitions are not incorrect; however, they mix in ways the digital thread
works, along with some justification of why it is important and how to use it. If
we wanted a simple definition to say what it is exactly, we would not find it. Dr.
Kraft described the digital surrogate as a “physics-based technical description of
the weapon system resulting from the generation, management, and application of
data, models, and information from authoritative sources across the system’s life
cycle.” Currently, the digital surrogate concept is more widely known as a digital
system model (DSM) by DoD. A DSM is the result of applying digital engineering
techniques using a digital thread.

60 J. Buenfil et al.

The last element to define is the digital twin, which has been defined as:

virtual instance of a physical system (twin) that is continually updated with the latter’s
performance, maintenance, and health status data throughout the physical system’s life
cycle. (Madni et al. 2019)

Another definition of digital twin describes it as:

a virtual representation of the system as an integrated system of data, models, and analysis
tools applied over the entire life cycle on a tail-number unique and operator-by-name basis.
(Chief Scientist USAF, 2013)

NASA and USAF researchers describe a digital twin as “an integrated multi-
physics, multi-scale, probabilistic simulation of an as-built vehicle or system that
uses the best available physical models, sensor updates, fleet history, etc., to mirror
the life of its corresponding flying twin” (Glaessgen and Stargel 2012). Those are
good definitions in general, but also mix in some of the usage together with the
what is the digital twin. Particularly the last two definitions assume that digital twins
apply only to aircraft.

We researched current literature in the field for other definitions, but most of
them combine the definitions with extraneous concepts such as purpose, method
of creation, etc., instead of focusing on what the thing they are defining is.
Additionally, most definitions fail to show the connection between digital twin,
digital system model, and digital thread. Therefore, we present our own definitions
using their level of abstraction as the differentiating criteria, which also facilitates
the description of their interconnections to each other.

3 Proposal

Systems thinking is a set of synergistic analytic skills used to improve the capability of iden-
tifying and understanding systems, predicting their behaviors, and devising modifications
to them in order to produce desired effects. These skills work together as a system. (Arnold
and Wade 2015)

We propose applying a systems approach (Arnold and Wade 2015; von Berta-
lanffy 1969; Arnold and Wade 2017) to explain the concepts behind DoD’s Digital
Modernization Strategy. By a systems approach, we mean observing the parts
(elements), behaviors (purpose), and interfaces (interconnections) that make digital
modernization a system in its own merit, as depicted in Fig. 4.

These concepts can be better analyzed by describing them at different levels of
abstraction. We work with three levels: conceptual, logic, and physical. In very
general terms, the conceptual level of abstraction deals with the main ideas, the
what to do. This is the level of the digital thread. The logical level of abstraction
deals with how to do things. This level corresponds roughly to the digital system
model. The physical level of abstraction deals with what to do things. This is the
level of the digital twin. To better understand those concepts, we will synthesize
simple definitions from multiple definitions that can be found online. Our aim is to

Digital Modernization for Systems Engineering 61

Fig. 4 Digital modernization

explain each term as a specialization of another term that is better known. We will
indicate what is different with the new term that makes it unique.

In descending order by level of abstraction, we have:

Digital Thread: abstract representation of a class of physical systems as a collection
of links that connect the system elements to enable computer modeling and
simulation of data flows corresponding to the performance of the system’s
functionality

Digital System Model: an instance of a digital thread that corresponds to a particular
system. For example, a laptop computer or a car

Digital Twin: an instance of a digital system model that corresponds to a unique
physical entity. For example, a specific laptop computer with a unique serial
number or car with a unique vehicle identification number (VIN)

The layers of abstraction can also be mapped to phases in the life cycle of the
system, as shown in Fig. 5. The digital thread is a conceptual vision of a system,
with its essential elements, their interconnections, and behavior/purpose of each
part. This corresponds to the concept of operations and system-level requirements
of systems engineering in Fig. 5. At the logical layer, the DSM is a model of
the system; this corresponds to the design phases in Fig. 5. The physical level
corresponds to the implementation phase in Fig. 5, where instance of the system
implementation is made along with its corresponding digital twin. A common
confusion happens between the concept of DSM and digital twin. One way to clear
that confusion is to consider that the DSM represents a system as designed, while the

62 J. Buenfil et al.

Fig. 5 Systems Engineering “V”

digital twin represents an instance of the system as built/as maintained; every digital
twin is unique. One DSM typically results in several physical system instances, each
of them assigned to its own digital twin.

In summary, the digital thread is the process of creation of a system in a virtual
environment (a computer system). The product of the digital thread process is a
digital system model that contains all the essential elements of an actual system,
such as requirements, architecture, design, test cases, behavioral description, etc.
that allow the system to be simulated by a computer, observed, and analyzed. Once
the virtual system is perfected to meet its requirements and is produced, the physical
instance of the system can have a Fig. 5 Systems Engineering V (Wasserman 2014)
digital representation containing the exact configuration and maintenance record of
this particular system at a particular point in time. This digital representation is the
digital twin.

Planning and building a virtual system provides a virtual copy that can be
studied and shared at low cost as compared with a physical prototype of the
same system. These advantages are synonymous with the advantages afforded by
software, which itself is a virtualization of data processing and data management.
Software systems and associated digital data are easier to search, update, and share
than physical counterparts such as large volumes of paper files, reports, tables with
numbers, or calculations performed on mechanical devices. Similar efficiencies
can be obtained by using the digital thread to create and manage digital system
models and subsequently digital twins. The Tesla company is one example of a

Digital Modernization for Systems Engineering 63

company that has utilized digital modernization concepts to its advantage. Tesla
has revolutionized the automotive industry in no small part by taking the concept
of virtualization to new heights. Tesla cars are designed with digital engineering;
their DSMs are simulated and analyzed extensively before prototypes are made and
tested on actual roads. Digital engineering is not only used for design. The DSM is
used to drive the more than 1,000 factory robots that build a substantial portion of
Tesla’s cars (Campbell 2018); additionally, once the cars are delivered, a digital twin
is maintained with all relevant data collected for that particular vehicle identification
number (VIN). The digital twin includes the maintenance record, software versions,
mileage, location, and many parameters that describe how a particular vehicle has
been operated. The virtual world meets the physical world when software updates
are delivered wirelessly to enhance the physical operation of the car’s systems.

Boeing has taken a similar approach with its fleet of newer airplanes, all of which
have a digital twin containing all the information necessary to remotely diagnose
problems with the plane and to identify which kind of services or repairs may be
required to keep an aircraft safely operational (High 2018).

4 Discussion and Open Research Challenges

The US DoD realizes that to overmatch near-peer competition challenges, it is
necessary to streamline the ways new defense systems are acquired. New systems
need to be fielded faster without sacrificing performance and cost. Given the
complexity of new, large-scale defense systems, which often incorporate sophis-
ticated electronics, new materials, high energy, and increasing artificial intelligence,
meeting DoD goals will be extremely challenging using only today’s systems
engineering practices. A possible approach to this challenge is to use digital
engineering via the digital thread to create and manage digital system models
to develop new systems and then use digital twins to manage their maintenance
operations once the systems are produced.

Adopting this paradigm implies the necessity to change the way the DoD devel-
ops and maintains new defense systems. However, there are several obstacles that
must be overcome to successfully implement the Digital Modernization Strategy
within the DoD. Taking a systems approach (Madni et al. 2019) to the problem,
it rapidly becomes evident that it is not sufficient to simply agree to do things
differently. It is necessary to adjust external factors such as the environment to foster
and protect the first steps in the direction of change. The main obstacles as we see
them are the following:

• Cultural inertia
• Fear of the unknown
• Lack of incentive to change

64 J. Buenfil et al.

4.1 Cultural Inertia

One of the most difficult challenges that stands in the way of implementing
digital modernization is to convince the workforce across the enterprise to embrace
the new paradigm. Digital modernization reaches beyond new tool environments
and training; it requires a change of philosophy of how systems are built and
maintained. In a way, it is similar to gamification, defined as a set of activities
and processes to solve problems by using or applying the characteristics of game
elements (Deterding et al. 2011). Gamification commonly employs game design
elements to improve user engagement. Sadly, until cultural inertia is overcome,
a real digital transformation of the enterprise is unlikely. However, once cultural
inertia is overcome, digital transformation will likely happen even without ideal
tools or infrastructure in place.

4.2 Fear of the Unknown

Closely related to cultural inertia is the fear of the unknown, the not created here
syndrome that makes people say things like “that’s not how we do things” and
“that will never work here.” Even if the enterprise embraces digital transformation,
members of the workforce may still fear some aspects of it either because they do
not understand the new paradigm or because it has the potential to affect rooted
interests in the old system. For example, if a department has the mission to verify
engineering diagrams using human expertise, the introduction of an automatic
verification system could trigger fierce resistance to those whose jobs would be
replaced. The affected parties might argue that the new system could not be trusted,
even in the face of factual evidence that the system performs at an equivalent or even
more efficient level than that of humans on a particular task.

4.3 Lack of Incentives to Change

Even if we manage to motivate the workforce to embrace change, overcome cultural
inertia, and dispel the fears of the unknown and our workforce is ready for the
digital modernization, a lack of incentives may still pose a problem. If incentives to
pursue the change are not established, the migration toward digital modernization
will happen slowly at best or perhaps not at all. The result is a missed opportunity to
transform the enterprise and align it better with the needs of future systems. The
main reason to incentivize people to change is to provide the spark that ignites
the explosion of innovation and creativity necessary to transform the enterprise as
a whole, not just the engineering operations. Digital modernization is a holistic
approach to organizational improvement and therefore requires buy-in from the
entire organization.

Digital Modernization for Systems Engineering 65

5 Conclusion

We applied a systems approach to explain the concepts behind DoD’s digital
modernization in terms of its purpose, elements, and interconnections. The purpose
is to reduce the development time for a new weapon system from concept to fielding,
while maintaining performance, reliability, and maintainability at an affordable cost
to the government. The elements of digital modernization are the digital thread,
digital system model, and digital twin, which we defined in simple terms in Sect. 3
of this paper.

A summary of the interconnections of those concepts is that the digital thread
is the methodology, or engineering paradigm, that links all different aspects of
the system, represented as models, and allows the exchange of information among
those models to account for interdependencies and second- and third-order effects
of actions and events that affect the system. The product with this methodology of
system development is the digital system model, which encompasses all relevant
aspects of a particular system, such as a drone. Finally, the digital twin is an
instantiation of the digital system model which keeps track of a particular physical
system’s state “as maintained.” There is a one-to-one relationship between a
produced copy of the system and its corresponding digital twin.

Given the absolute need to stay competitive both commercially and in the
geopolitical and strategic military sense, we are left with little choice but to change
how we develop engineering systems throughout their entire life cycles from
conceptualization to decommissioning. The push for shorter development cycles,
lower development costs, and high adaptability to changing circumstances demands
that we create a digital world where new systems could exist and show us how
they behave under a variety of inputs and environments. The knowledge gained
by simulating complex engineering systems will be critical to the realization of
correct physical implementations requiring less rework. This in turn will translate
to lower costs, shorter development cycles, and greater adaptability as compared
with traditional methods. Digital modernization will usher in a paradigm shift away
from traditional complex system development in which a system gradually evolves
by implementing a few features at a time, testing those features, updating the design
to include new knowledge, and then repeatedly iterating through this cycle until
the system meets all requirements and passes all operational tests. However, digital
modernization will not happen by itself.

People will make the change. In particular, the systems engineers are in charge
of leading this transformation. They must drive the systems engineering practice to
higher level of excellence to allow their organizations not only to succeed but also
to compete and win in highly contested environments. The cost of failure in this
transformation is unacceptably high.

66 J. Buenfil et al.

References

Arnold, R.D., and J.P. Wade. 2015. A Definition of Systems Thinking: A Systems Approach.
Procedia Computer Science 44: 669–678. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1877050915002860.

———. 2017. A Complete Set of Systems Thinking Skills. INCOSE International Symposium,
27(1), Adelaide, South Australia.

Bird, K., and M.J. Sherwin. 2005. American Prometheus. The Triumph and Tragedy of J. Robert
Oppenheimer. Random House, Inc.

Campbell, P. 2018. Here’s What’s Really Going on in Tesla’s Factory, August 2018. [Online].
Available: https://ftalphaville.ft.com/2018/08/16/1534435108000/Here-s-what-s-really-going-
on-in-Tesla-s-factory/.

Chief Scientist of the United States Air Force, Global Horizons. 2013. Final Report. United
States Air Force. Global Science and Technology Vision. United States Air Force, June
2013. [Online]. Available: https://www.dodmantech.com/ManTechPrograms/Files/AirForce/
ClearedDTforWebsite.pdf.

Deterding, S., D. Dixon, R. Khaled, and L. Nacke. 2011. From Game Design Elements to
Gamefulness: Defining “gamification”. In Proceedings of the 15th International Academic
MindTrek Conference: Envisioning Future Media Environments, ser. MindTrek ’11. New York:
ACM, 2011, pp. 9–15. [Online]. Available: http://doi.acm.org/10.1145/2181037.2181040.

Glaessgen, E., and D. Stargel. 2012. The Digital Twin Paradigm for Future NASA and U.S. Air
Force Vehicles. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and
Materials Conference – Special Session on the Digital Twin; April 23, 2012 – April 26, 2012;
Honolulu, HI; United States. NASA Langley Research Center; Hampton, VA, United States,
2012.

High, P. 2013. Boeing’s CIO wins Forbes CIO Innovation Award by Developing the Digital
Flight Deck. April c. [Online]. Available: https://www.forbes.com/sites/peterhigh/2018/
04/16/boeings-cio-wins-forbes-cio-innovation-award-by-developing-the-digital-flight-deck/
#452fd2bb7e6a.

Kraft, D.E. 2013. Expanding the Digital Thread to Impact Total Ownership Cost. In 201 NIST
MBE Summit, 2013.

Leiva, C. 2016. What is the digital thread? 2016. [Online]. Available: https://www.ibaset.com/blog/
what-is-the-digital-thread/.

Madni, A.M., C.C. Madni, and S.D. Lucero. 2019. Leveraging Digital Twin Technology in Model-
Based Systems Engineering. 2019. [Online]. Available: https://www.mdpi.com/2079-8954/7/1/
7/htm.

Office of the Deputy Assistant Secretary of Defense for Systems Engineering, Department
of Defense Digital Engineering Strategy. U.S. Department of Defense, June 2018.
[Online]. Available: https://sercuarc.org/wp-content/uploads/2018/06/Digital-Engineering-
StrategyApproved.pdf.

Rich, B.R. and L. Janos. 1994. Skunk Works. A Personal Memoir of My Years at Lockheed. Little,
Brown and Company.

Summary of the 2018 National Defense Strategy of The United States of America. Sharpening
the American Military’s Competitive Edge. Office of Prepublication and Security Review,
2018. [Online]. Available: https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-
Defense-Strategy-Summary.pdf.

US Department of Defense, DoD Digital Modernization Strategy. DoD Information Resource
Management Strategic Plan FY19-23. Office of Prepublication and Security Review, July
2019. [Online]. Available: https://media.defense.gov/2019/Jul/12/2002156622/-1/-1/1/DOD-
DIGITAL-MODERNIZATION-STRATEGY-2019.PDF.

von Bertalanffy, L. 1969. General System Theory. New York: George Braziller, Inc.
Wasserman, S. 2014. Model-Based System Engineering – Beyond Spreadsheets. [Online]. Avail-

able: https://www.engineering.com/DesignSoftware/DesignSoftwareArticles/ArticleID/7352/
Model-Based-System-Engineering%2D%2DBeyond-Spreadsheets.aspx.

http://www.sciencedirect.com/science/article/pii/S1877050915002860
https://ftalphaville.ft.com/2018/08/16/1534435108000/Here-s-what-s-really-going-on-in-Tesla-s-factory/
https://www.dodmantech.com/ManTechPrograms/Files/AirForce/ClearedDTforWebsite.pdf
http://doi.acm.org/10.1145/2181037.2181040
https://www.forbes.com/sites/peterhigh/2018/04/16/boeings-cio-wins-forbes-cio-innovation-award-by-developing-the-digital-flight-deck/#452fd2bb7e6a
https://www.ibaset.com/blog/what-is-the-digital-thread/
https://www.mdpi.com/2079-8954/7/1/7/htm
https://sercuarc.org/wp-content/uploads/2018/06/Digital-Engineering-StrategyApproved.pdf
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf
https://media.defense.gov/2019/Jul/12/2002156622/-1/-1/1/DOD-DIGITAL-MODERNIZATION-STRATEGY-2019.PDF
https://www.engineering.com/DesignSoftware/DesignSoftwareArticles/ArticleID/7352/Model-Based-System-Engineering%2D%2DBeyond-Spreadsheets.aspx

Investigating Model Credibility Within
a Model Curation Context

Donna H. Rhodes

Abstract Model curation can be thought of as a hallmark of digital maturity,
signifying that models are highly valuable assets of the enterprise used as a
trusted basis for engineering decisions. As enterprises begin to develop large model
repositories, model credibility becomes a central concern. Recent studies show the
decision to use, reuse, and repurpose models is contingent on the model consumer’s
perception of validity and trustworthiness of the model. This paper discusses an
investigation of selected foundational works on credibility of models, simulations,
and websites as part of a larger research effort on model curation. The objective is to
leverage findings and strategies from prior work and identify useful heuristics that
can inform model credibility within the context of model curation.

Keywords Model curation · Model credibility · Model discovery · Model
consumer · Trust

1 Introduction

The transformation to digital engineering has brought model curation to the
forefront of systems engineering research. Model curation can be defined as the
lifecycle management, control, preservation and active enhancement of models
and associated information to ensure value for current and future use, as well as
repurposing beyond initial purpose and context. Curation activities include model
governance, acquisition, accession, valuation, preservation, active enhancement,
model discovery, and archiving. Curation practices promote formalism and provide
for the strategic management and control of models and associated digital artifacts,
particularly when managed as a collection at the enterprise level. Model curation
infrastructure will better enable an enterprise to establish and actively enhance

D. H. Rhodes (�)
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: rhodes@mit.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_7

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_7&domain=pdf
mailto:rhodes@mit.edu
https://doi.org/10.1007/978-3-030-82083-1_7

68 D. H. Rhodes

the collection of models that are of value to the enterprise (Rhodes 2018a, b). As
evidenced by curation practice in institutional collections (e.g., museum, historical
society, libraries), dedicated leadership and support roles are needed to carry out
curation processes. Moving into the future, model curation can be expected to
involve unique responsibilities at the enterprise level, motivating a new leadership
role of model curator (Rhodes 2019). The lack of access to models, mistrust of
models, and perception of legitimacy of models are all barriers to model reuse
and longevity, which can potentially be mitigated by model curation. The terms
model and simulation are used in this paper in a broad manner; useful definitions
are specified by NASA (Fogg et al. 2001).

Model: A description or representation of a system, entity, phenomenon, or
process (adapted from Bankes (1993)). Note: A model may be constructed from
multiple sub-models; the sub-models and the integrated sub-models are all consid-
ered models. Likewise, any data that goes into a model are considered part of the
model.

Simulation: The imitation of the behavioral characteristics of a system, entity,
phenomenon, or process.

The most recently published version of the NASA Standard for Models and
Simulations (2016) illustrates the life cycle of M&S as shown in Fig. 1. As
completed models are selected for curation, model curation can be thought of
as overlapping the latter two phases, model use/operations and model archiving.
Additionally, an enterprise model collection would come into play at the start of the
life cycle, where reuse of a model is an option that replaces the development of a
new model.

Fig. 1 M&S life cycle from NASA-STD-7009A W/CHANGE 1 (Ahn and de Weck 2007, p. 70)

Investigating Model Credibility Within a Model Curation Context 69

2 Model Curation

Not all models are suitable for curation. Curation applies to longer duration models,
rather than those developed for a quick study or to simply work out a problem.
Two broad categories of longer-duration models that necessitate model curation
are (1) models used throughout the lifespan of a program and (2) models to be
intentionally reused for other purposes/contexts. The former includes, for instance,
the set of models comprising a digital twin. The latter includes reference models and
“platform” models, which enable enterprise to reuse and repurpose models (Rhodes
2018b).

Model curation use cases need to be generated through investigating the myriad
situations under which curation is applicable and valuable to the enterprise and its
stakeholders. This will depend uniquely on the enterprise, program characteristics,
and specialized circumstances, including its strategic technology and business
roadmaps. Model credibility is a key consideration because there is minimal
value in placing a model under curation if the credibility is in question. This
investigation is motivated by the belief that the foundational ideas and approaches
for model credibility are worth re-examining respective to a model curation context.
This context has many facets, including curation practice, requisite leadership,
supporting infrastructure, required competencies, curating for model consumer
needs, and application of innovations to enhance model discovery (Rhodes 2019).
Model credibility is a construct that underpins all of these facets.

3 Model Credibility

Model credibility and its associated constructs (model confidence, model trust,
model validation, model value, etc.) have been investigated and discussed in the
literature for more than four decades. The earliest works come from the operations
research and simulation communities (Rhodes 2018a, b, 2019). Our ongoing
research is re-examining the prior work on credibility within the context of model
curation. As revealed through past investigation of model credibility, there are
actions that can be taken in curation practice and the supporting infrastructure to
increase the likelihood that a model consumer will perceive a model as trustworthy
and valid.

The following sections review selected works on model and simulation cred-
ibility. In addition to model credibility, a body of work on website credibility is
discussed. It is worth noting that websites at the time of the studies were dense
and content-rich static information, as contrasted with today’s highly visual and
more interactive experience. As such, this is an informative body of work for digital
engineering in that the websites in the early website credibility studies are more akin
to digital artifacts.

70 D. H. Rhodes

3.1 Credibility of Models and Simulations

Kahne (1976) proposed a new approach for examining model credibility for large-
scale systems, asserting “model credibility is separated into two distinct, if not
independent, issues: validity and value” (verification is assumed in his paper).
Kahne states, “To be a bit more specific, we are contrasting verisimilitude (having
the appearance of truth) with worth (value). For convenience we will use the words
validity and value.” He notes that credibility of a model will depend, among other
things, upon “the quality of the match between the model and the model user,”
noting that the model reflects the biases and outlook of the modeler. A novelty of
his approach is to take the viewpoint of buyer/seller, with a subjective approach to
credibility-type questions where credibility is defined as capable of being believed
(Kahne 1976).

In 1979, the SCS Technical Committee issued a report on terminology for model
credibility. This was motivated by the desire to develop a standard set of terminology
to facilitate effective communication between the builder of a simulation model and
its potential users, believed to be the “cornerstone for establishing the credibility
of a computer simulation” (SCS 1979). This committee provided a framework to
review credibility of a simulation (Fig. 2). This framework divides the simulation
environment into three basic elements. Inner arrows describe processes that relate
the elements to each other. The outer arrows refer to procedures that are used to
evaluate credibility of the processes.

Gass and Joel (1981) investigated the concepts of model confidence, showing
model confidence to be not an attribute of a model, but of the model user (Gass
and Joel 1981). Seven confidence criteria the authors proposed are model definition,
model structure, model data, computer model verification, model validation, model
usability, and model pedigree. The latter (originally called model demographics)
is especially pertinent to perception of credibility, given its subjectivity. They state
pedigree “should enable the decision maker to determine the model’s status with
respect to past achievements, theoretical and methodological state-of-the-art, and
the expert advice that went into its development” (Gass and Joel 1981). Gass (1993)
states that critical to use of a model is “the credibility or confidence that the decision
maker has in the model and its ability to produce information that would be of value
to the decision makers” (Gass 1993).

Balci (1986) proposed comprehensive guidelines for assessing credibility of
simulation results. He characterizes a life cycle of simulation study as richly
characterized with 10 phases, 10 processes, and 13 credibility assessment stages
(Fig. 2).

Balci’s important work demonstrates that credibility assessment is complex and
involves staged assessment through the lifespan of a model or simulation (Steele
2008). His work demonstrates that during development, the acceptance of the model
is a result of the model consumer’s cumulative perception of validation efforts. This
suggests the importance of giving a model consumer transparency into the series of
validation activities that went into the original development, not only the end result.

Investigating Model Credibility Within a Model Curation Context 71

REALITY

Computer
simulation

Model
verification

Model
validation

Model
qualification

Programming

CONCEPTUAL
MODEL

COMPUTERIZED
MODEL

Analysis

Fig. 2 SCS framework to review credibility of a simulation (SCS 1979)

Assessment of Credibility of Models and Simulations

Steele (2008) reveals the insights and thinking behind the NASA’s Standard for
Models and Simulations (M&S) (Fig. 3). Eight relevant factors of credibility were
identified during the development of this standard, which defines credibility as the
quality to elicit belief or trust in M&S results (Steele 2008). The evolution of the
NASA standard surfaced various dimensions of credibility and more recently an
assessment approach. State of the practice on model credibility assessment in the
systems field has emerged as part of the NASA efforts over more than a decade.
A method for M&S credibility assessment is described in Appendix E of the 2016
update of NASA Standard for Models and Simulations (2016) [4, pp. 55–72]. Ahn
et al. (2014) propose a formal procedure based on the NASA standard to assess the
credibility of an M&S in an objective way using the opinions of an expert group for
credibility assessment and a Delphi approach (Ahn et al. 2014), initially piloted on
an M&S platform called SpaceNet by Ahn and de Weck in 2007 (Ahn and de Weck
2007).

3.2 Website Credibility

The Stanford University Persuasive Technology Lab, founded and directed by BJ
Fogg, has investigated captology (computers as persuasive technologies) over the

72 D. H. Rhodes

Fig. 3 Balci’s life cycle of a simulation study (Steele 2008)

past two decades, with early studies on website credibility. The larger body of
research of the lab seeks to create insights into how computing products can be
designed to change people’s beliefs and behaviors. An early study (Fogg et al. 2000)
aimed to assess a broad range of elements that impact varying aesthetic, context, and
technical factors on credibility of websites (Fogg et al. 2000).

Fogg et al. (2001) state “simply put, credibility can be defined as believability”
and is a perception based on two factors: trustworthiness + expertise (Fig. 4).
Additional clarifying points are the following: (1) credibility is a perceived quality;

Investigating Model Credibility Within a Model Curation Context 73

Fig. 4 De Vin’s schematic of factors influencing the overall credibility of simulation results (De
Vin 2015, p 154)

it does not reside in an object, person, or piece of information; and (2) when
discussing credibility of a computer product, one is always discussing a perception
of credibility (Fogg et al. 2001).

Several findings of this work are insightful for model curation. First, web
credibility was found to increase when users perceive a real-world organization
and real people behind a website. Second, small errors had a large negative impact
on credibility of a website. Third, the users view websites as less credible if they
experience technical problems (e.g., delays in download of information). Fogg
states, “if users think a site lacks credibility – that the information and services
cannot be trusted – they will abandon the site and seek to fill their needs in other
ways” (Fogg et al. 2001). This appears to suggest that a poorly designed model
repository would be a significant deterrent to the success of model curation in
an enterprise. The research by Fogg et al. led to a collection of website design
guidelines; several of these appear to be applicable for design of model curation
infrastructure and enablers.

3.3 Recent Research on Model Confidence and Trust

Research performed by Flanagan (2012) uses case studies and a web-based exper-
iment to investigate key challenges to model-based design: distinguishing model
confidence from model validation (Flanagan 2012). The objective of her research
is to understand factors that cause perception of model quality to differ from
actual quality. She proposes eight factors as the key variables to misaligned model
confidence and tests hypotheses for six of these in the experiment to illustrate the
effect of the factors on perception of model credibility. According to Flanagan,
these factors can potentially help explain behavior of decision-makers, especially
in the situation where “the model would be a good tool to help solve a problem;
however, the decision-maker does not agree and continues without input from

74 D. H. Rhodes

the model, effectively dismissing its predictions” (Flanagan 2012). One of the
hypotheses that was validated in the experiment, and is most relevant to this
model curation, concerns source and transparency of the model. This hypothesis
is: A more trustworthy model author and transparent governing equations will
improve model perception. Her finding was that for cases where the source was
important to the decision, there was a significant difference in the decision outcome
where untrustworthy sources caused reduced confidence. Flanagan’s research, while
preliminary, demonstrates the value of further research of this nature.

These findings are consistent with findings of a more recent empirical study by
German and Rhodes (2017) on model-centric decision-making and trust (German
and Rhodes 2017). Model credibility was found to be a perceived quality, positively
impacted by tailorable transparency and available model pedigree (detailing who
originated the model, who subsequently enhanced the model, assumptions made,
expertise of modelers, etc.). They also found that while not always needed, model
consumers must have available model transparency when determining if a model
should be trusted in making a specific decision.

3.4 Recent Research on Overall Credibility

Recent work by De Vin (2015) provides a significant discussion on credibility of
simulation, stating it “ . . . is thus influenced by three factors: Credibility of the
model, credibility of the data, and credibility of the model use” (De Vin 2015, p.
152). He notes that without credible data (also called data pedigree as discussed
in (NASA 2016)), it will not be possible to carry out trustworthy validation of the
model. De Vin’s paper “uses the NASA CAS model for credibility assessment of
simulations to arrive at a schematic representation of how overall credibility as
composed of aspect related to the model, the data, and the model’s use” (De Vin
2015).

4 Toward Design Guidelines for Model Curation

Model curation requires both initial and ongoing investment, which must be
outweighed by the payoffs (e.g., life cycle model usability, repurposing of models
for new contexts, reuse of models at the enterprise level, etc.). This would be
a poor investment if model credibility is neglected. In the spirit of Kahne’s
buyer/seller approach, it may be useful to think about model curation from a model
acquirer (consumer)/model curator approach. The model acquirer’s perception of
the expertise and authority of the model curator will have influence on perception
of credibility.

Model curation practices and infrastructure must be designed to support quality
of individual model consumer experience and the capacity to foster perceived

Investigating Model Credibility Within a Model Curation Context 75

trustworthiness of the model. Model curation infrastructure (model repositories,
interfaces for repository access, etc.) needs to be designed for cost effectiveness and
security, as well as for the quality of the experience of human interaction. As can be
inferred by Fogg (2000, 2001), a poorly designed model repository would negatively
impact perceived credibility, as would a poorly designed user experience with access
and interaction with the repository. The design implications resulting from the
website credibility studies of Fogg et al. offer practical guidance for model curation.
For example, including markers of expertise and markers of trustworthiness could
be implemented through model pedigree information.

4.1 Heuristics for Model Curation

The technological challenges for creating model collection repositories are quite
significant. The social, cognitive, and perceptual challenges are equally – if not
more – challenging, yet are more difficult to comprehend and address. These
challenges must all be addressed for the future success of digital engineering.

Model credibility is now generally accepted as a property of the model perceiver,
and there are observed behaviors and useful strategies that the systems community
can adapt in support of digital engineering goals. The foundational papers and on
credibility suggest a derived set of heuristics toward establishing design guidelines
that can be used by the systems community in evolving model curation practice and
enabling technology. Continuing investigation is expected to contribute to expand-
ing and refining these heuristics and formulating respective design guidelines. An
initial set of nine heuristics are proposed below:

1. Model credibility is an attribute of the model consumer, not the model.
2. Model credibility is positively influenced by communication between modeler

and model consumer, both active and passive.
3. Credibility of digital artifacts is influenced by both trustworthiness and expertise

of a model consumer.
4. Acceptance of a model for (re)use is influenced by a model consumer’s belief

that the model has the ability to produce information of value to them.
5. Credibility of models in a collection influences a model consumer’s trust in the

enabling infrastructure.
6. A model consumer’s experience in discovering and retrieving models from a

repository influences perceived credibility of the model.
7. Model credibility is influenced by a model consumer’s trust in the expertise of the

model originator, as well as modelers who subsequently enhance and maintain
the model over time.

8. Model credibility is influenced by a model consumer’s capacity for transparency
into the validation activities throughout its development and enhancement.

76 D. H. Rhodes

9. Credibility of the model collection is influenced by a model consumer’s percep-
tion of expertise of the governance authority that accepted the model into the
collection.

5 Conclusion and Further Research

Significant research is needed to realize the promise of model curation for the
systems field (Rhodes 2018a, b, 2019). The ongoing larger research project is inves-
tigating four facets of model curation. The first is model curation implementation
practices for performing model curation activities at the enterprise level. These must
be harmonized with existing model management practices and supporting practices
such as configuration management and data management. A second facet of the
research investigates precursors, enablers, and barriers to model curation practice,
infrastructure, and approaches to the curating of models. The third facet concerns
innovations through myriad newer methods and technologies that could be applied
in model curation, especially in model discovery and curating for consumer needs.
The fourth concerns competencies, roles, and responsibilities. Model credibility is
an overarching consideration across these four areas of research. The formulation
of heuristics that draw from prior work and other fields can be used to inform
the strategies and enablers for model curation such as model pedigree, accession
records, and model valuation.

This paper considers selected prior research on model credibility, simulation
credibility, and website credibility. Data credibility is not explored in this paper
but is also of central importance to model curation. The findings suggest that
prior work on credibility has significant relevance for model curation and useful
strategies and practices from other fields can be adapted for digital engineering.
Further investigation into the substantial body of work on credibility within the
model curation context is ongoing. The linkage between model credibility and
data credibility needs further examination within the model curation context.
Additionally, other areas remain to be explored, including credibility in regard to
information retrieval, data curation, human-computer interaction, and augmented
intelligence.

Acknowledgments This material is based upon work supported, in whole or in part, by the US
Department of Defense through the Systems Engineering Research Center (SERC) under Contract
HQ0034-13-D-0004. SERC is a federally funded University Affiliated Research Center managed
by Stevens Institute of Technology. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
US Department of Defense.

Investigating Model Credibility Within a Model Curation Context 77

References

Ahn, J., and O.L. de Weck. 2007. Pilot Study: Credibility Assessment of SpaceNet 1.3 with NASA-
STD-(I)-7009, Tech Rep. MIT, Cambridge, MA.

Ahn, J., O. de Weck, and M. Steele. 2014. Credibility Assessment of Models and Simulations
Based on NASA’s Models and Simulation Standard Using the Delphi Method. Systems
Engineering 17 (2): 237–248.

Balci, O. 1986. Credibility Assessment of Simulation Results. Proceedings of the 1986 Winter
Simulation Conference.

Bankes, S., 1993. Exploratory modeling for policy analysis. Operations Research 41 (3), 435–449.
De Vin, L. 2015. Simulation, Models, and Results: Reflections on their Nature and Credibility. In

Proceedings of FAIM 2015, 148–155.
Flanagan, G. 2012. Key Challenges to Model-Based Design: Distinguishing Model Confidence

from Model Validation. Master’s Thesis. Massachusetts Institute of Technology.
Fogg, B.J., J. Marshall, A. Osipovich, C. Varma, O. Laraki, N. Fang, J. Paul, A. Rangnekar, J. Shon,

P. Swani, and M. Treinen. 2000. Elements That Affect Web Credibility: Early Results from a
Self-Report Study. In CHI’00 Extended Abstracts On Human Factors in Computing Systems,
287–288. ACM.

Fogg, B.J., J. Marshall, O. Laraki, A. Osipovich, C. Varma, N. Fang, J. Paul, A. Rangnekar, J.
Shon, P. Swani, and M. Treinen. 2001. What Makes Web Sites Credible?: A Report on a Large
Quantitative Study. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 61–68. ACM.

Gass, S. 1993. Model Accreditation: A Rationale and Process for Determining A Numerical
Rating. European Journal of Operational Research 66 (2): 250–258.

Gass, S.I., and L. Joel. 1981. Concepts of Model Confidence. Computers and Operations Research.
8 (4): 341–346.

German, E.S., and D.H. Rhodes. 2017. Model-Centric Decision-Making: Exploring Decision-
Maker Trust and Perception of Models. In 15th Conf. on Systems Engineering Research. Los
Angeles, CA.

Kahne, S. 1976. Model Credibility for Large-Scale Systems. IEEE Transactions on Systems, Man
and Cybernetics. Aug. 587–590.

NASA. 2016. NASA-STD-7009A w/CHANGE 1, Standard for Models and Simulations https://
standards.nasa.gov/standard/nasa/nasa-std-7009. Accessed 30 Oct 2019.

Rhodes D.H. 2018a. Interactive Model-Centric Systems Engineering Technical Report, Phase 5.
(No. SERC-2018-TR 104). Systems Engineering Research Center Hoboken NJ.

———. 2018b. Interactive Model-Centric Systems Engineering Technical Report, Phase 6. (No.
SERC-2019-TR 003). Systems Engineering Research Center Hoboken NJ.

Rhodes, D.H. 2019. Model Curation: Requisite Leadership and Practice in Digital Engineering
Enterprises. 17th Conference on Systems Engineering Research. Washington, DC.

SCS. 1979. Terminology for Model Credibility. Reports of the SCS Technical Committees.
Steele, M.J. 2008, June. Dimensions of Credibility in Models and Simulations. In Proceedings of

the 2008 Summer Computer Simulation Conference (57). Society for Modeling & Simulation
International.

https://standards.nasa.gov/standard/nasa/nasa-std-7009

Part II
Modeling in MBSE

Automated Detection of Architecture
Patterns in MBSE Models

Matthew Cotter, Michael Hadjimichael, Aleksandra Markina-Khusid,
and Brian York

Abstract The evaluation of a system’s architecture is an essential process within
the systems engineering lifecycle. Commercially available model-based systems
engineering (MBSE) tools, when combined with standards-based architecture
modeling languages, provide a means through which architecture information can
be expressed graphically and formally in a machine-readable format; this format
can be leveraged in order to improve the system architecture evaluation process.
The authors propose an automated, repeatable method for detecting patterns of
interest embedded within an MBSE model. This novel method uses a heuristically
guided set of similarity measures that depend on textual and graphical content of
a model. The proposed method has been implemented for architectures developed
in IBM’s Rational Rhapsody, and No Magic Inc.’s MagicDraw, and has proven
to be able to identify six well-established patterns: Adapter, Bridge, Composite,
Façade, Observer, and Proxy. This automation has the potential to produce cost and
time savings for the evaluation process and to add an additional degree of rigor and
completeness to an architecture evaluation.

Keywords Model-based systems engineering · MBSE · Architecture patterns ·
Design patterns · Unified modeling language · Systems modeling language ·
Pattern detection · Architecture analysis · Architecture evaluation

1 Introduction

Though no single accepted definition exists, a systems architecture is often
described as a conceptual model that defines the structure and behavior of a real-
world system; this model must be based on principles, concepts, and properties
that logically relate to, and are consistent with, one another (INCOSE 2019).

M. Cotter (�) · M. Hadjimichael · A. Markina-Khusid · B. York
The MITRE Corporation, Bedford, MA, USA
e-mail: mjcotter@mitre.org

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_8

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_8&domain=pdf
mailto:mjcotter@mitre.org
https://doi.org/10.1007/978-3-030-82083-1_8

82 M. Cotter et al.

Systems architectures are utilized for different purposes, by different stakeholders,
at different times throughout the system lifecycle. For example, system architectures
are often evaluated by systems engineers during the conceptualization phase of the
system lifecycle in order to quantify “the potential of said architecture to deliver a
system capable of fulfilling stakeholder requirements, and to identify any potential
risks associated with fulfilling said requirements” (Lassing et al. 1999; Maranzano
et al. 2005).

System architecture evaluation may be informal or formal. Even if architecture
evaluation is conducted informally, there exist many principles, processes, and
guidelines that suggest how a systems architecture evaluation should be conducted.
Most of these evaluation methods have their origins in software design and
development; Babar et al. (2013) summarize popular and existing architecture
evaluation methods, noting that all of the methods they summarize typically “use
scenarios to characterize quality attributes[these scenarios] are mapped onto
architectural components to assess the architecture’s capability to support those
scenarios, or identify the changes required to handle those scenarios” (Babar et al.
2013).

Though these methods are commonly used, they are often entirely human-driven
processes that rely heavily on expert observation and qualitative assessment. Thus,
these evaluation techniques can at times be resource- and time-intensive if the
complexity of the system is large or if the number of alternative architectures to
compare with one another is large. Architecture patterns, also referred to as design
patterns, may provide a means through which the architecture evaluation process
can be made more automated and rigorous. Generally, a pattern may be defined as a
reusable solution to one or more common problems (Taylow et al. 2009).

The usefulness of patterns, and more specifically architecture patterns, is twofold.
First, the incorporation of patterns into a systems architecture can make said system
more efficient and effective (Champin and Solnon 2003). Second, architecture
patterns provide an evaluation team with a concrete set of architectural features that
align with a specific capability or requirement.

This paper describes a method to automatically detect patterns of interest within
a systems architecture captured in UML or SysML using either Rational Rhapsody
or No Magic Inc.’s MagicDraw, two widely used system architecture development
tools. The paper demonstrates that once a pattern is formalized and encoded
into a UML/SysML model, there is enough contextual information in a systems
architecture to have an algorithm intelligently search the graphical representation
of the architecture and identify strong candidates for architecture pattern matches.
This automation potentially facilitates cost/time savings for evaluation and has the
potential to add an additional rigor and completeness to any evaluation method.

Though patterns are applied across multiple unique fields (e.g., software engi-
neering, requirements engineering, mechanical engineering), it is important to
note that their application in the domain of systems engineering has not yet
become common practice through the community. Cloutier (2005) summarizes
recent work and research on patterns within the systems engineering domain and
proposes a framework through which future research can assist in the growth, and

Automated Detection of Architecture Patterns in MBSE Models 83

formal application, of patterns within the systems engineering (Cloutier 2005).
The authors note that successful execution of research along Cloutier’s framework
would strengthen the methodology described in this paper; as patterns become more
prevalent in practice, methods for their detection become more valuable.

Section 2 provides an overview of the technical approach that provides context
to our research, before discussing complimentary prototypes that were created as
part of this research in more detail. Section 3 summarizes the results of applying
the prototypes to system architecture models. Section 4 concludes the paper,
summarizing potential impacts and limitations to automated pattern detection.

2 Technical Approach

The authors investigated the feasibility of developing a product that guides a systems
engineer during the process of system architecture evaluation by automatically
detecting architecture patterns embedded within a systems architecture. In order
to realize this goal, the authors made the following observations that helped scope
and motivate the technical approach:

1. Commercially available model-based systems engineering (MBSE) tools provide
a means to capture architecture data that is formally structured and thus easily
manipulated and analyzed by external applications. This is primarily because
MBSE tools force users to conform to semiformal graphical design languages
such as the Unified Modeling Language (UML) and/or Systems Modeling
Language (SysML). Both UML and SysML are managed and maintained by the
Object Management Group (OMG) (Tsantalis et al. 2006).

2. The architecture under evaluation and architectural patterns to be detected can
both be defined in UML/SysML models.

3. Architecture pattern detection is analogous to finding a labeled, directed sub-
graph within a larger labeled and directed graph, a complex category of problems
that has been widely researched. Champin and Solnon (2003) measure the
similarity of labeled graphs in order to compare cases in case-based reasoning
and modeling structured objects (Bernardi et al. 2014). Tsantalis et al. (2006)
used similarity scoring to detect patterns in open-source software, exploiting
the inheritance hierarchies of classes and interfaces in open-source software
(Weilkiens 2008). Bernardi et al. (2014) search for architecture patterns in
a software system, modeling both in a design-specific language, relying on
hierarchical models (Gamma et al. 1995).

4. As of the time of publication, there exists no widely accepted method of
automatically detecting patterns within non-software architectures, using UML
and SysML elements and constructs.

In summary, the authors recognized that a combination of MBSE tools,
UML/SysML, architectural patterns, and graph theory can be utilized to improve the
architecture evaluation process. For example, Fig. 1 illustrates how an architecture

84 M. Cotter et al.

Fig. 1 Technical approach to architectural pattern detection

pattern and the system architecture under evaluation can both be parsed in an
equivalent graph-based format, before matches of the pattern can be found in the
architecture. The architectural diagrams in Fig. 1 are created using Rhapsody.

The authors defined the overall technical approach to MBSE-centric-based
pattern detection in four sequential steps:

1. Architecture parsing: The process of translating text-based architecture data that
has been generated from an architectural diagram in an MBSE tool into a graph-
based data structure whose nodes and edges correspond to a subset of elements
contained within the original MBSE model. The text-based architecture data
complies with the XML Metadata Interchange (XMI) standard, as defined by the
Object Management Group (OMG). The export of architecture data into XMI
format is supported by most commercial MBSE tools. This parsing process has
been implemented using Python 3.

2. Architecture pattern detection: The process of comparing two graph-based data
structures generated from step #1 above. The comparison process requires that
one data structure represents the system architecture to be evaluated and the other
represents a potential pattern to be located. A similarity score is calculated using
both natural language processing and structural graph comparisons. This process
has been implemented using Python 3.

3. Architecture (and pattern) visualization: The process of visualizing the architec-
ture data and pattern matching results in a web-based application. This process
has been implemented using both JavaScript and Java.

4. Pattern completion recommendation: Partial architecture pattern matches lead
naturally to a recommender system which identifies those pattern components
necessary to complete the pattern and ideally improve the architectural design.

Figure 2 summarizes the information presented above into a sequential process
that utilizes a UML/SysML defined system as input and provides architectural

Automated Detection of Architecture Patterns in MBSE Models 85

Fig. 2 Technical approach to architectural pattern detection

features/patterns as output. The following subsections describe the formation of
architecture patterns and each stage of the previously described technical approach
in more detail.

2.1 Architectural Pattern Definitions

Each architecture pattern used in this research can be traced back to software-
specific object-oriented patterns that were originally defined in 1994 by a group of
authors referred to as the “Gang of Four” (Ingram et al. 2015). Their work and these
patterns have been influential in the field of software engineering and are critical to
object-oriented design theory and practice. Additionally, it has been noted by some
that many of these patterns can be used to describe non-software systems as well
(Tupper 2011; Duell 1997). However, this statement is not as widely accepted, nor
are these patterns consciously applied as regularly outside the software domain.

Note that UML and SysML are object-oriented languages; therefore, the Gang
of Four design patterns can be represented using UML/SysML constructs. The
following six architecture patterns were chosen for this research: Adapter, Bridge,
Composite, Façade, Observer, and Proxy. These were selected as they are univer-
sally accepted and their usefulness in application is well-documented (Larman 2013;
The GraphML Team 2019). Additionally, all of these patterns are referred to as
structural patterns, in that they were originally intended to “provide a manner to
define relationships between classes and objects” (Weilkiens 2008). A structural
pattern can be described within a single diagram type in a UML (i.e., class
diagram) or SysML (i.e., block definition diagram) model. Future work may extend
pattern identification to other diagram types within UML and SysML, for example,
describing system behavior such as state machines.

86 M. Cotter et al.

2.2 Architecture Parsing

The goal of the architecture parser is to extract the structural and lexical information
from the SysML representation of the architecture and represent it as a graph
structure. The set of nodes consists of those architectural components which rep-
resent SysML structural elements such as packages, classes, properties, operations,
and parameters. The set of edges consists of UML/SysML structural relation-
ships represented in the architecture: part-of, is-type, generalization, property, and
association. The resulting graph is stored using the Python GraphML package,
where GraphML is an XML-based file format created specifically for storing graph
structures (Bastian et al. 2009). Any metadata and non-graph relevant material in
the XMI files, such as behavioral UML/SysML elements or applied profiles, are
ignored and are not included in the resulting graph structure. Future versions of the
parsing capability could incorporate this sort of information into the graph structure
if needed for the detection of additional architecture patterns.

2.3 Architecture Pattern Detection

The goal of the pattern detection prototype is to find all instances of an architecture
pattern embedded within a system architecture model. More specifically, given two
graphs, one parsed from the system architecture to be evaluated and the other parsed
from the pattern definition, the objective is to search for candidate matches of a
design pattern graph to subgraphs within the system architecture graph. Nodes and
edges in pattern graph are compared against one or more elements of the architecture
graph. The same pattern may be found in multiple places in a large architecture;
therefore, multiple candidate matches, complete or partial, may be identified.

The proposed approach relies on lexical clues as a starting point for seeking out
and matching architecture patterns. For example, in seeking an Adapter architecture
pattern, the algorithm can trigger from any of the set of keywords as a substring of,
or a similar string to, an architecture graph node label: “adapt,” “client,” “wrapper,”
or “target.” Without such an assumption, every architecture node must be tested as
a possible match. From each possible starting point, the matching algorithm uses a
maximal set of contextual information to identify the most likely possible matching
between design pattern components and architectural components.

2.4 Architecture Visualization

A key challenge in evaluating architectures is the ability to visualize features
of interest while maintaining a clear view of the system from an architectural
perspective. Graph-based architecture visualization tools have the potential to strike

Automated Detection of Architecture Patterns in MBSE Models 87

Fig. 3 (a) An architecture uploaded to the web application. (b) Filtered to show a single matched
pattern

a balance between these concepts if information can be selectively displayed or
suppressed by a user. The value of such architecture visualization applications is
twofold. First, visualization can act as a “debugging tool” for the investigation
and validation of an architecture’s definition. Discrepancies in an architecture’s
definition will often be readily apparent to a viewer when the architecture is
viewed from a new perspective. Second, a visualization tool may help the viewer
understanding how components of system interact with each other.

A web-based application was developed that visualizes GraphML data created as
output from the pattern detection algorithm. The web application allows a user to
upload and examine any architecture that has been evaluated by the pattern matching
software. The web application leverages existing functions and libraries provided
by the publicly available tool, Gephi Toolkit, in order to process the input file into a
user-friendly visualization (Maioriello 2002). Figure 3a, b shows a snapshot of the
web application, having ingested a sample architecture and filtering said architecture
for detected Adapter pattern.

3 Results and Discussion

The authors created functional prototypes for all steps of the technical approach.
The prototypes were tested using systems architectures and patterns generated in
both Rhapsody and MagicDraw, yielding successful pattern detection results.

Our prototypes were able to successfully detect patterns that were intentionally
embedded within both small-scale and large-scale models created in either Rhap-
sody or MagicDraw, with limited false positives. These embedded patterns were
constructed to mimic both the semantic structure of the design pattern and the
natural language used to name each of the elements within it. For example, Fig. 4
presents a systems architecture test model constructed to mimic a realistic logical
decomposition of a generic military aircraft, with a small portion of the architecture
intentionally created to resemble an Adapter pattern.

The pattern matching software was able to focus its search of the systems
architecture around keywords, or partial keywords, associated with any portion

88 M. Cotter et al.

Fig. 4 Adapter pattern variant, embedded within a systems architecture model

of the anticipated pattern(s). It then successfully matched all components of the
Adapter pattern to analogous representations within the systems architecture model.
This behavior was consistent across all test cases and patterns; the software was
able to reliably match the appropriate set of elements from the architecture under
evaluation, to the appropriate element of the pattern definition. Additionally, the
program was tested on a real architecture of approximately 7000 nodes and 14000
links and was able to quickly identify several design patterns in a trivial amount of
time.

Several challenges to pattern detection are worth highlighting. First, there are no
enforced UML/SysML standards for labeling of architectural components, either of
graph nodes or edges. This can increase the number of misidentified components or
missed patterns: if an implemented pattern does not match any keywords, it will not
be detected. Therefore, it will always be necessary for a skilled systems engineer or
subject matter expert to be available to verify the pattern implementations detected
by the software. Second, architectural design patterns are not always clearly or
consistently defined in the literature, so a specific implementation of a design
pattern is chosen as search criteria; the authors recognize that there are other valid
variations, and a more refined prototype must take this into consideration. Third,
UML/SysML notation is not expressive enough to convey all the requirements
necessary to express an architecture pattern. In particular, the authors had to create
a mechanism within an MBSE tool to indicate data associated with one or more
pattern components, such as the concept “zero or more of” or “one or more of.”
These mechanisms will allow more flexibility in architecture pattern specifications
and implementations. Finally, although both Rhapsody and MagicDraw allow
for the generation of XMI data as discussed previously, there remain structural
representation differences that cause the export of models to differ between tools.
Fortunately, the semantic content remains identical between tools. For example,
architecture patterns exported from each software package differ enough that the
technical approach requires the use of Rhapsody pattern templates when seeking
patterns in Rhapsody-defined system architectures and MagicDraw templates for
MagicDraw-defined architectures.

Automated Detection of Architecture Patterns in MBSE Models 89

4 Conclusion

The authors were able to successfully demonstrate detection of patterns of interest
in system architecture models built in MBSE tools. This demonstration required:

• The development of a joint MagicDraw-Rhapsody UML/SysML architecture
parser

• The creation of a library of standard systems architecture patterns, expressed in
UML/SysML

• The design, implementation, and testing of a unique pattern detection approach
which locates potential architectural patterns in a systems architecture that
potentially consists of thousands of elements and relationships

• The development of a graph-based visualization application to examine the
pattern matching results

There are a number of potential next steps for this research. First, alternative
patterns that utilize a wider set of UML/SysML elements, e.g., behavioral elements
or profile extensions, could be incorporated into the prototypes. Second, the pattern
detection capability could be directly integrated into Rhapsody or MagicDraw
using one or more JAVA-based plugins that utilize the tool’s native application
programming interface (API) in order to collect and manipulate elements of a
systems architecture.

Once a pattern is formalized and encoded into a UML/SysML model, there
is enough contextual information in a systems architecture to have an algorithm
intelligently search the graphical representation of the architecture and identify
strong candidates for architectural pattern matches. Our approach is also capable
of finding partial pattern matches, providing the evaluating systems engineer
with an indication of how to potentially improve the architecture. The pattern
matching prototype takes advantage of known keywords in order to promote
computational efficiency. In some cases, this may also lead to unintentional false
matches, especially in cases where a systems architecture model has dozens or
hundreds of similar label names. However, even given this potential limitation, the
proposed technique is likely to provide time and cost savings during architectural
review, while also leading to a more objective, complete evaluation of the overall
architecture and consequent system modifications and improvements.

Acknowledgments \The authors would like to acknowledge Sanith Wijesinghe and Tom Wheeler
for the continuous support, advocacy, and guidance throughout the course of this research. The
authors would also like to thank our collaborators, Huy Tran and Karl Thomson (University of
Illinois), without whom this research, and the complimentary technical products, would not have
been successful. Finally, the authors thank all reviewers of this publication for their thoughtful,
thorough, and detailed feedback.

90 M. Cotter et al.

References

Babar, M., A. Brown, and I. Mistrik. 2013. Agile Software Architecture: Aligning Agile Processes
and Software Architectures. San Francisco: Morgan Kaufmann Publishers Inc.

Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: An open source software for exploring
and manipulating networks. In International AAAI Conference on Weblogs and Social Media.

Bernardi, M., M. Cimitile, and G. Di Lucca. 2014. Design Pattern Detection Using a DSL-Driven
Graph Matching Approach. Journal of Software: Evolution and Process 26 (12): 1233–1266.

Champin, P., and C. Solnon. 2003. Measuring the Similarity of Labeled Graphs. In 5th Interna-
tional Conference on Case-Based Reasoning: Research and Development. Berlin: Springer.

Cloutier, R.J. 2005. Toward the Application of Patterns to Systems Engineering. In Conference on
Systems Engineering Research (CSER) 2005.

Duell, M. 1997. Non-software Examples of Software Design Patterns. Conference on Object
Oriented Programming, Systems, Languages, and Application, New York.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995. Design Patterns: Elements of Reusable
object Oriented Software. Boston: Addison-Wesley Longman Publishing Co.

INCOSE, Stevens Institute of Technology, IEEE Computer Society, Systems Engineering Body
Of Knowledge (SEBoK). 11 September 2019. [Online]. Available: https://www.sebokwiki.org/
wiki/System_Architecture.

Ingram, C., R. Payne, and J. Fitzgerald. 2015. Architecture Modeling Patterns for Systems of
Systems. INCOSE International Symposium 25 (1): 1177–1192.

Larman, C. 2013. Applying UML And Patterns. 3rd ed.
Lassing, N., D. Rijesenbrij and H.V. Vliet. 1999. The Goal of Software Architecture Analysis:

Confidence Building or Risk Assessment. Proceedings of First BeNeLux Conference on
Software Architecture.

Maioriello, J. 2002. What are Design Patterns and Do I Need Them. Developer.com, 2002.
[Online].

Maranzano, J., S. Rozsypal, G. Zimmerman, G. Warnken, P. Wirth, and D. Weiss. 2005.
Architecture Review: Practice and Experience. IEEE Software 22 (2): 34–43.

Taylow, R.N., N. Medvidovic, and E.M. Dashofy. 2009. Software Architecture: Foundations
Theory and Practice. Wiley.

The GraphML Team. The GraphML Format, 24 January 2019. [Online]. Available: http://
graphml.graphdrawing.org/.

Tsantalis, N., A. Chatzigeorgiou, G. Stephanides, and S. Halkidis. 2006. Design Pattern Detection
Using Similarity Scoring. IEEE Transactions on Software Engineering 32 (11): 896–909.

Tupper, C. 2011. Enterprise Architecture Frameworks and Methodologies. In Data Architecture:
From Zen to Reality, 23–55. Elsevier Inc.

Weilkiens, T. 2008. Systems Engineering with SysML/UML: Modeling, Analysis, Design, Morgan
Kaufmann/The OMG Press.

https://www.sebokwiki.org/wiki/System_Architecture
http://developer.com
http://graphml.graphdrawing.org/

A Survey of Super-Resolution Techniques
for a Potential CubeSat Imagery System
Architecture

William Symolon and Cihan Dagli

Abstract CubeSats have the demonstrated potential to contribute to commercial,
scientific, and government applications in remote sensing, communications, naviga-
tion, and research. Despite significant research into improving CubeSat operational
efficiency, there remains one fundamental limitation of CubeSats for EO imaging
applications: the small lenses and short focal lengths result in imagery with low
spatial resolution. This paper reviews the previous research on super-resolution
techniques and proposes potential applications of super-resolution to CubeSat EO
imagery.

Keywords Resolution enhancement · Super-resolution · Electro-optical
imagery · CubeSat · Architecture

1 Introduction

CubeSats have the demonstrated potential to contribute to commercial, scientific,
and government applications in remote sensing, communications, navigation, and
research at a fraction of the size, development costs, and launch costs of the
large, exquisite, multifunction satellites designed to support Cold War military
requirements. Poghosyan et al. (Poghosyan and Golkar 2017) and Selva and Krejci
(2012) conducted reviews of the recent history of CubeSat missions and surveyed
CubeSat contributions to the scientific and experimental communities with the
goal of determining the applications for which CubeSats are best suited. Missions
such as Earth science, astrophysics, in situ laboratory applications, and technology
demonstration have already benefitted from CubeSat contributions (Poghosyan and
Golkar 2017; Selva and Krejci 2012). CubeSats offer significant advantages in terms
of reduced development timelines and development costs. The small size and weight

W. Symolon (�) · C. Dagli
Engineering Management and Systems Engineering Department, Missouri University of Science
and Technology, Rolla, MO, USA
e-mail: west42@umsystem.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_9

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_9&domain=pdf
mailto:west42@umsystem.edu
https://doi.org/10.1007/978-3-030-82083-1_9

92 W. Symolon and C. Dagli

of CubeSats allow multiple satellites to be launched on the same rocket, thus greatly
reducing launch costs (Selva and Krejci 2012). However, the reduced size, weight,
and power margins inherent in CubeSats also have disadvantages. Smaller satellites
are typically limited to single payloads or functions. The reduced functionality of
CubeSats requires larger numbers of satellites to achieve the same performance.
The mitigation of these disadvantages has been the subject of a significant body of
research, such as Altinok et al. use of decision forests to conduct image analysis
onboard a CubeSat (Altinok et al. 2016), Chang et al. and Pu et al. exploration
of super-resolution through neighbor embedding (Chang et al. 2004; Pu et al.
2009), Denby’s and Lucia’s use of on-orbit edge computing to increase CubeSat
efficiency (Denby and Lucia 2019), and Lüdenmann et al. employing sub-pixel
image registration on a nanosatellite (Lüdenmann et al. 2019).

For traditional electro-optical (EO) imagery applications, high resolution (HR)
requires large lenses and long focal lengths, which in turn require large satellites
to support them (Buzzi et al. 2019). Past research has demonstrated that on-
board image processing techniques can make more efficient use of limited satellite
resources (Altinok et al. 2016; Blaschke et al. 2014; Denby and Lucia 2019;
Lüdenmann et al. 2019). The continued miniaturization of electronics makes it
increasingly possible to apply these preprocessing algorithms to CubeSat missions
(Denby and Lucia 2019; Edeler et al. 2011; Lüdenmann et al. 2019). Work in
pixel registration (Lüdenmann et al. 2019), feature classification (Chia et al. 2015),
parallel computing (Denby and Lucia 2019), and radar interferometry (Hacker and
Sedwick 1999) has laid the groundwork for the collection of EO imagery using
multiple CubeSats flying in close formation.

Despite the data handling improvements, there remains one fundamental lim-
itation of CubeSats for EO imaging applications: the small lenses and short
focal lengths result in imagery with low spatial resolution. These low resolutions
(LR) are sufficient for scientific applications such as weather forecasting and
agricultural assessments (Poghosyan and Golkar 2017; Selva and Krejci 2012), but
are insufficient for defense mission planning and intelligence operations. There are
two primary methods for improving spatial image resolution: hardware solutions
that focus on improved camera capabilities and analytical methods that focus
on software solutions (Khattab et al. 2018). Hardware improvements are often
restricted by cost, large size, or technology readiness limitations – all three of which
we’ve identified as being incompatible with the CubeSat concept. Additionally,
optical imaging hardware is subject to the Rayleigh criterion in which light
diffraction limits the best possible resolution (Lee and Ashok 2019; Sprigg et al.
2016). Thus, a computational algorithm solution is required to improve EO spatial
resolution of CubeSat images.

For reference, CubeSats are manufactured in a variety of form factors that
are all based on a 1U form, which is a 10-centimeter cube (Fig. 1a) (Space
Flight Now https://spaceflightnow.com/2015/10/16/nasa-to-fly-cubesats-on-three-
new-commercial-launchers/). Other CubeSat form factors are based on scaling
that 1U form factor, the most common variations of which are 2U, 3U, and 6U
form factors. A 3U CubeSat is a 10 cm × 10 cm × 30 cm satellite, roughly the

https://spaceflightnow.com/2015/10/16/nasa-to-fly-cubesats-on-three-new-commercial-launchers/
https://spaceflightnow.com/2015/10/16/nasa-to-fly-cubesats-on-three-new-commercial-launchers/

A Survey of Super-Resolution Techniques for a Potential CubeSat Imagery. . . 93

Fig. 1 (a) NASA file photo of a 1U form factor CubeSat (Space Flight Now https://spaceflightnow.
com/2015/10/16/nasa-to-fly-cubesats-on-three-new-commercial-launchers/); (b) SatRevolution
(REC) CubeSat, 2U and 6U form factor, Earth imaging 50cm resolution; (c) Plant Labs
(Dove) CubeSat, 3U form factor, Earth imaging 3.7 m resolution (NanoSats Database https://
www.nanosats.eu/tables#constellations)

size of a loaf of bread. Figure 1b, c is 2U and 3U CubeSats, respectively. Figure
1b, c images are excerpted from a Table of Commercial CubeSat Constellations
(NanoSats Database https://www.nanosats.eu/tables#constellations).

This paper reviews the previous research on super-resolution (SR) and proposes
potential applications of super-resolution to CubeSat EO imagery. Sections 2 and 3
discuss the two main categories of super-resolution: single-image super-resolution
and multi-image super-resolution, respectively. Section 4 proposes potential appli-
cations of super-resolution to a CubeSat imagery system architecture, followed by
concluding remarks in Sect. 5.

2 Single-Image Super-Resolution

Single-image super-resolution (SISR) is a relatively recent field of research and
concerns the estimation of an HR image from a single LR image (Qureshi et al.
2012). SISR requires a training database of LR and HR pairs with specific features
and segments common to both and annotated for machine learning algorithms.
There are three main categories of SISR algorithms: interpolation-based algorithms
reconstruct HR images using existing pixels to interpolate probable missing pixels;
reconstruction-based algorithms use a priori knowledge (down-sampling, blurring,
and warping) to recover the HR image; learning-based algorithms use dictionary
pairs of training and testing images to estimate HR images (Yao et al. 2020).

Guo et al. (2019) developed a generalized image restoration neural network
called the deep likelihood network (DL-Net). This research is focused on image
restoration tasks that aren’t limited to narrow applications based on the original
neural network training data set. Typically, these training data are generated by
intentionally degrading a high-resolution image; these training sets tend to result
in poor generalization by the network. The authors build upon single-image super-
resolution (SISR) through neighbor embedding as developed by (Chang et al. 2004;
Pu et al. 2009; Timofte et al. 2013) to design an image interpolation algorithm

https://spaceflightnow.com/2015/10/16/nasa-to-fly-cubesats-on-three-new-commercial-launchers/
https://spaceflightnow.com/2015/10/16/nasa-to-fly-cubesats-on-three-new-commercial-launchers/
https://www.nanosats.eu/tables
https://www.nanosats.eu/tables

94 W. Symolon and C. Dagli

capable of generalizing from a variety of image degradation types. This process
makes use of the local geometry within neighboring image segments to extrapolate
from low-resolution to high-resolution images.

Fan and Yeung (2007) expand on the SISR application by studying the distri-
bution of small image patches to determine the types of image structures (edges,
corners, outlines, etc.) that are likely to occur in the image. The authors assume
similar local geometries between the image patches to neighborhood relationships
between the low-resolution and corresponding high-resolution training images. By
retaining image patch geometric relationships and inter-patch relationships with
neighbors, the authors are able to generate high-resolution images that are both
accurate and smooth.

Ismail et al. (2020) explore applications of super-resolution where there is an
insufficient quantity or quality of neural network training data. Propose the use
of adaptive network-based fuzzy inference system (ANFIS) to interpolate effective
mappings from low-resolution to high-resolution images, given sparse training data.

Al-Mansoori and Kunhu (2013) evaluate three well-known interpolation tech-
niques: nearest neighbor, bilinear, and bicubic interpolation. In all three cases, the
authors use a single low-resolution image and perform the interpolation techniques
to compare the results. The initial experiment limited the magnification factors
as a proof of concept. In all example-based super-resolution results, the bicubic
interpolation yielded smoother edges and more detailed high-resolution images.

Since SISR methods by definition only use one LR input image, the SISR
algorithms tend to be computationally faster because they don’t require motion
estimation and pixel registration between input images (Bätz et al. 2015). However,
SISR algorithms have a fundamental limitation in that the training set must be
similar to the desired HR image in order for the reconstruction algorithms to be
effective (Qureshi et al. 2012). Additionally, the possible resolution enhancement is
limited compared to multi-image super-resolution techniques (Bätz et al. 2015).

SISR techniques are fast, less computationally intensive, and capable of pro-
ducing sharp HR images for specific applications. However, SISR methods do not
generalize well to large-scale problems and require large databases of LR/HR image
pairs in order to estimate and reconstruct HR images. Additionally, as discussed
in the following section, SISR methods cannot take advantage of relative motion
between a series of LR images to achieve better resolution improvements. These
limitations mean that SISR techniques cannot leverage all the advantages of satellite
imagery and therefore are not ideal for CubeSat SR applications.

3 Multi-image Super-Resolution

Multi-image super-resolution (MISR) is a well-studied problem which typically
consists of three stages: registration estimates the shifts between LR images, relative
to a reference image, with sub-pixel accuracy; interpolation obtains a uniform HR
image from a nonuniform composite of LR images; and restoration removes the
image blur and noise. MISR can be further subdivided into frequency domain

A Survey of Super-Resolution Techniques for a Potential CubeSat Imagery. . . 95

techniques and spatial domain techniques (Qureshi et al. 2012). The relative motion
between LR input images produces the sub-pixel shifts necessary to achieving
higher-resolution enhancement by accounting for information from adjacent image
frames (Bätz et al. 2015).

Sub-pixel motion must be present in the input sequence frames in order to
realize the best possible resolution enhancement using MISR techniques. However,
this sub-pixel motion also requires highly accurate motion estimation in order
to avoid introducing artifacts from erroneous motion vectors (Bätz et al. 2016a).
Bätz and colleagues have published a series of papers (Bätz et al. 2015, 2016a, b,
2017) proposing various methods to minimize the introduction of these artifacts
and to improve the overall image enhancement results. Their proposed methods
include locally adaptive denoising (Bätz et al. 2017) which introduced a step
between interpolation and restoration, dual weighting (Bätz et al. 2016a) which
employs both a motion confidence weight and a distance weight to resolve motion
estimation errors, and hybrid SISR/MISR (Bätz et al. 2015) approach that employs
both SR techniques but weights SISR more heavily in the case of static targets
and MISR more heavily in the case of dynamic targets. All of these techniques
showed significantly improved peak signal-to-noise ratio (PSNR) compared to more
traditional SR techniques.

Mandanici et al. (2019) applied an MISR algorithm to terrestrial thermal images
using a novel registration technique that computes the sum of normalized distances
(SND) to a given reference image. A higher SND denotes less accurate registration.
These images are then excluded from the interpolation stage, based on an SND
threshold value. This methodology has the added benefit of coherence analysis to
identify reconstructed pixels that are less reliable which, when combined with the
image frame rejection criteria, resulted in improved thermal image resolution.

Some researchers (Cohen et al. 2019; Zhang et al. 2009) are exploring the use
of super-resolution in microscopy applications to obtain image resolutions beyond
Rayleigh criterion diffraction-limited resolution. Cohen et al. (2019) investigate
the resolution limit of image analysis algorithms. Zhang and colleagues propose
a method to capture random micro-displacement offsets of multiple images without
the need for a high-cost, precision mechanical device (Zhang et al. 2009). These
precision offsets allow superior HR image reconstruction compared to the more
expensive fixed micro-offset technique. While this research focused on microscopic
image enhancement, it would be interesting to research whether their techniques
may have applicability to CubeSat image resolution enhancement.

MISR techniques are able to produce superior resolution enhancement by taking
advantage of the sub-pixel motion between consecutive LR images by accounting
for information from adjacent pixels, given a sufficiently accurate motion estimation
algorithm. However, MISR approaches have a tendency to present ill-posed prob-
lems, either due to an inadequate number of LR images or poor estimation of image
capture artifacts, such as blur (Khattab et al. 2018). Despite this limitation, past
research has demonstrated that regularization techniques (Irani and Peleg 1991) help
to invert an ill-posed problem to a well-posed problem (Khattab et al. 2018). Overall,
MISR techniques offer better potential to take advantage of CubeSat capabilities.

96 W. Symolon and C. Dagli

4 Applications to CubeSats

Researchers have developed a number of algorithms designed to improve image
quality. Three common algorithms are pixel averaging, super-resolution, and
mosaicking (Lüdenmann et al. 2019). In addition to lens size and focal length,
CubeSat downlink data rate and onboard storage capacity are two other limiting
factors in electro-optical imaging (Altinok et al. 2016). In order to apply averaging,
super-resolution, or mosaicking, the CubeSats must either downlink large image
files to be processed terrestrially or the CubeSats must have real-time access to a
memory-intensive catalog of georectified reference images (Altinok et al. 2016;
Lüdenmann et al. 2019). In either case, the requirements are impractical for use on-
board a CubeSat. Lüdenmann et al. (2019) developed a method to use a combination
of correlation and regression algorithms to identify the geometric transformations
between consecutive images on-board the CubeSat while keeping the data downlink
requirements within the size, weight, and power restrictions imposed by the CubeSat
standard.

MISR techniques are most effective when sub-pixel motion is present in the input
sequence frames. This attribute of MISR makes it particularly useful in CubeSat
EO imagery applications since satellites in Earth orbit are in constant motion. A
formation of CubeSats can capture multiple images of the same target area on Earth.
The varying locations of the CubeSats within the formation combined with the
orbital velocity of the CubeSats inherently provide the input image offset required
for successful MISR application.

Figure 2 depicts a high-level operational view (OV-1) of one possible system
architecture for CubeSat EO SR applications. This architecture assumes a pre-
determined CubeSat formation, optimized (Buzzi et al. 2019; Chia et al. 2015)

Fig. 2 OV-1 of potential system architecture for CubeSat super-resolution

A Survey of Super-Resolution Techniques for a Potential CubeSat Imagery. . . 97

for the number of CubeSats and orbital parameters necessary to collect the LR
images. The LR images are then preprocessed for motion estimation and pixel
registration (Bätz et al. 2015; Khattab et al. 2018; Lüdenmann et al. 2019) before
being segmented (Blaschke et al. 2014; Denby and Lucia 2019) and input to a MISR
computational algorithm for HR pixel interpolation. The processed image segments
are then recombined, the HR image is restored, and a quality verification process
certifies the resulting HR image. One possible method of quality verification is
to compare the resulting resolution improvements, from the proposed architecture,
against a theoretically perfect Rayleigh-limited image from current, state-of-the-art,
CubeSat imaging hardware.

Since traditional resolution enhancement algorithms are impractical for CubeSat
applications and techniques exist to efficiently register LR images prior to downlink,
MISR becomes an attractive technique to improve the spatial resolution of CubeSat
images.

5 Conclusion and Future Research

This survey paper reviews recent research published regarding SR and discusses the
advantages and disadvantages of the two primary SR techniques: SISR and MISR.

SISR is a relatively new research field and consists of three main categories
of algorithms: interpolation-based algorithms, reconstruction-based algorithms, and
learning-based algorithms. SISR algorithms tend to be computationally faster and
provide good resolution enhancement for specific applications; however, they do
not generalize well and cannot take advantage of information from adjacent pixels
in sequential image frames. These limitations mean that SISR is not the best choice
for CubeSat SR applications.

MISR is a well-studied problem that consists of geometric registration, interpo-
lation, and restoration to derive a single HR image from multiple LR images. The
relative sub-pixel motion between input image frames is the key to achieving high-
quality resolution enhancement. However, the estimation of that motion, during
the pixel registration process, must be highly accurate to avoid introducing error
artifacts into the HR image. An additional challenge with MISR techniques is that
an inadequate number of LR input images or poor estimation of image capture
artifacts can contribute to making the MISR approach an ill-posed problem. Care
must be taken to understand the constraints and limitations of the imaging hardware
and to apply regularization techniques to define a well-posed MISR problem.

The inherent limitations of CubeSats and the nature of satellite orbits make MISR
an attractive technique for improving CubeSat EO spatial resolution. Additional
research is required to develop a resolution enhancement model that can enhance
image resolution sufficiently enough to extend the utility of CubeSat images
to defense mission planning and intelligence operations. CubeSats have already
demonstrated their potential to contribute to scientific discovery; extending that

98 W. Symolon and C. Dagli

potential to include that satisfaction of national defense requirements will provide
intelligence value at a fraction of the current costs of large satellites.

References

Al-Mansoori, Saeed, and Alavi Kunhu. 2013. Enhancing DubaiSat-1 Satellite Imagery Using a
Single-Image Super-Resolution. In Proceedings of SPIE – The International Society for Optical
Engineering.

Altinok, Alphan, David R. Thompson, Benjamin Bornstein, Steve A. Chien, Joshua Doubleday,
and John Bellardo. 2016. Real-Time Orbital Image Analysis Using Decision Forests, with a
Deployment Onboard the IPEX Spacecraft. Journal of Field Robotics 33 (2): 187–204.

Bätz, Michel, Andrea Eichenseer, Jürgen Seiler, Markus Jonscher, and André Kaup. 2015. Hybrid
Super-Resolution Combining Example-Based Single-Image and Interpolation-Based Multi-
Image Reconstruction Approaches. In Proceedings – International Conference on Image
Processing, ICIP, 58–62.

Bätz, Michel, Andrea Eichenseer, and André Kaup. 2016a. Multi-Image Super-Resolution Using
a Dual Weighting Scheme Based on Voronoi Tessellation. In Proceedings – International
Conference on Image Processing, ICIP, 2822–2826.

———. 2016b. Multi-Image Super-Resolution for Fisheye Video Sequences Using Subpixel
Motion Estimation Based on Calibrated Re-Projection. In European Signal Processing Con-
ference, 1872–1876.

Bätz, Michel, Ján Koloda, Andrea Eichenseer, and André Kaup. 2017. Multi-Image Super-
Resolution Using a Locally Adaptive Denoising-Based Refinement. In IEEE 18th International
Workshop on Multimedia Signal Processing, MMSP.

Blaschke, Thomas, Geoffrey J. Hay, Stefan Lang, K. Maggi, Peter Hofmann, Elisabeth Addink,
Raul Q. Feitosa, Freek van der Meer, Harald van der Werff, Frieke van Coillie, and Dirk Tiede.
2014. Geographic Object-Based Image Analysis – Towards a New Paradigm. ISPRS Journal of
Photogrammetry and Remote Sensing 87: 180–191.

Buzzi, Pau Garcia, Daniel Selva, Nozomi Hitomi, and William J. Blackwell. 2019. Assessment
of Constellation Designs for Earth Observation: Application to the TROPICS mission. Acta
Astronautica 161: 166–182.

CubeSat Design Specification. (CDS) Rev. 13, The CubeSat Program, Cal Poly SLO.
Retrieved from https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/
56e9b62337013b6c063a655a/1458157095454/cds_rev13_final2.pdf. Accessed 14 June
2019.

Chang, Hong, Dit-Yan Yeung, and Yimin Xiong. 2004. Super-Resolution Through Neighbor
Embedding. Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition 1: 275–282.

Chia, W.C., L.S. Yeong, S.I. Ch’Ng, and Y.L. Kam. 2015. The Effect Of Using Super-Resolution To
Improve Feature Extraction And Registration Of Low Resolution Images In Sensor Networks.
In Proceedings of the 7th International Conference of Soft Computing and Pattern Recognition,
SoCPaR, 340–345.

Cohen, Edward, Anish Abraham, Sreevidhya Ramakrishnan, and Raimund Ober. 2019. Resolution
Limits of Image Analysis Algorithms. Nature Communications 10 (1): 793–804.

Denby, Bradley, and Brandon Lucia. 2019. Orbital Edge Computing: Machine Inference in Space.
IEEE Computer Architecture Letters 18 (1): 59–62.

Edeler, Torsten, Kevin Ohliger, Stephan Hussmann, and Alfred Mertins. 2011. Multi Image
Super Resolution Using Compressed Sensing. In ICASSP, IEEE International Conference on
Acoustics, Speech and Signal Processing – Proceedings, 2868–2871.

https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/56e9b62337013b6c063a655a/1458157095454/cds_rev13_final2.pdf

A Survey of Super-Resolution Techniques for a Potential CubeSat Imagery. . . 99

Fan, Wei, and Dit-Yan Yeung. 2007. Image Hallucination Using Neighbor Embedding over Visual
Primitive Manifolds. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition.

Guo, Yiwen, Wangmeng Zuo, Changshui Zhang, and Yurong Chen. 2019. Deep Likelihood
Network for Image Restoration with Multiple Degradations. arXiv:1904.09105v1 [cs.CV]. 19
April 2019.

Hacker, T.L, and R.J. Sedwick. 1999. Space-Based GMTI Radar Using Separated Spacecraft
Interferometry. AIAA Space Technology Conference & Exposition, 566–579. AIAA 99-4634.
28–30 September 1999. Albuquerque, New Mexico.

Irani, M., and S. Peleg. 1991. Improving Resolution by Image Registration. CVGIP: Graphical
Models and Image Processing 53: 231–239.

Ismail, Muhammad, Jing Yang, Changjing Shang, and Qiang Shen. 2020. Single Frame
Image Super Resolution Using ANFIS Interpolation: An Initial Experiment-Based Approach.
Advances in Intelligent Systems and Computing 1043: 27–40.

Khattab, M.M., A.M. Zeki, A.A. Alwan, A.S. Badawy, and L.S. Thota. 2018. Multi-Frame Super-
Resolution: A Survey. In IEEE International Conference on Computational Intelligence and
Computing Research, ICCIC.

Lee, Kwan Kit, and Amit Ashok. 2019. Surpassing Rayleigh Limit: Fisher Information Analysis
of Partially Coherent Source(s). Optics and Photonics for Information Processing XIII: 11136.

Lüdenmann, Jürgen, Arno Barnard, and Daniël F. Malan. 2019. Sub-pixel Image Registration on
an Embedded Nanosatellite Platform. Acta Astronautica 161: 293–303.

Mandanici, Emanuele, Luca Tavasci, Francesco Corsini, and Stefano Gandolfi. 2019. A Multi-
image Super-Resolution Algorithm Applied to Thermal Imagery. Applied Geomatics 11 (3):
215–228.

NanoSats Database. CubeSat Tables. Retrieved from https://www.nanosats.eu/
tables#constellations. Accessed 30 June 2019.

Poghosyan, Armen, and Alessandro Golkar. 2017. CubeSat Evolution: Analyzing CubeSat Capa-
bilities for Conducting Science Missions. Progress in Aerospace Sciences 88: 59–83.

Pu, Jian, Junping Zhang, Peihong Guo, and Xiaoru Yuan. 2009. Interactive Super-Resolution
Through Neighbor Embedding. In 9th Asian Conference on Computer Vision, Revised Selected
Papers, Part III, LNCS 5996, 496–505. September, 2009.

Qureshi, S.S., X.M. Li, and T. Ahmad. 2012. Investigating Image Super Resolution Techniques:
What to Choose? In International Conference on Advanced Communication Technology,
ICACT, 642–647.

Selva, Daniel, and David Krejci. 2012. A Survey and Assessment of the Capabilities of CubeSats
for Earth Observation. Acta Astronautica 74: 50–68.

Space Flight Now. NASA to fly CubeSats on Three New Commercial Launchers. Retrieved
from https://spaceflightnow.com/2015/10/16/nasa-to-fly-cubesats-on-three-new-commercial-
launchers/. Accessed 1 Nov 2019.

Sprigg, Jane, Tao Peng, and Yanhua Shih. 2016. Super-Resolution Imaging Using the Spatial-
Frequency Filtered Intensity Fluctuation Correlation. Scientific Reports 6: 38077.

Timofte, Radu, De Smet, Vincent, and Luc Van Gool. 2013. Anchored Neighborhood Regression
for Fast-Example-Based Super-Resolution. Proceedings of the IEEE International Conference
on Computer Vision: 1920–1927.

Yao, Tingting, Yu Luo, Yantong Chen, Dongqiao Yang, and Lei Zhao. 2020. Single-Image Super-
Resolution: A Survey. Lecture Notes in Electrical Engineering 516: 119–125.

Zhang, Jin, Zhong Wang, Guang H. Zhou, and Sheng H. Ye. 2009. Research of Super-Resolution
Reconstruction Based on Multi-Images of Random Micro-Offset. In Proceedings of the 2nd
International Congress on Image and Signal Processing, CISP’09.

https://www.nanosats.eu/tables
https://spaceflightnow.com/2015/10/16/nasa-to-fly-cubesats-on-three-new-commercial-launchers/

Data Analytics of a Honeypot System
Based on a Markov Decision Process
Model

Lidong Wang, Randy Jones, and Terril C. Falls

Abstract A honeypot system can play a significant role in exposing cybercrimes
and maintaining reliable cybersecurity. Markov decision process (MDP) is an
important method in systems engineering research and machine learning. The data
analytics of a honeypot system based on an MDP model is conducted using R
language and its functions in this paper. Specifically, data analytics over a finite
planning horizon (for an undiscounted MDP and a discounted MDP) and an
infinite planning horizon (for a discounted MDP) is performed, respectively. Results
obtained using four kinds of algorithms (value iteration, policy iteration, linear pro-
gramming, and Q-learning) are compared to check the validity of the MDP model.
The simulation of expected total rewards for various states is implemented using
various transition probability parameters and various transition reward parameters.

Keywords Data analytics · Honeypot · Cybersecurity · Markov decision process
(MDP) · Q-learning · Machine learning

1 Introduction

The interaction between an attacker and a defender in an intrusion detection
system (IDS) possibly includes the attacker entering the system, detecting the
attack, reentering the system, re-detecting the attack, and so on. During the
process, both the defender and the attacker learn about each other—their intentions,
vulnerabilities, and methods. This problem can be formulated as a Markov decision
process (MDP), and an optimal decision depends on state variables and model
parameters that characterize the attacker’s persistence and the IDS’s detection rate.
There are potential benefits of gathering the attacker’s intelligence and considering
the learning effect in a cyber-defense scenario (Bao and Musacchio 2009).

L. Wang (�) · R. Jones · T. C. Falls
Institute for Systems Engineering Research, Mississippi State University, Vicksburg, MS, USA
e-mail: lidong@iser.msstate.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_10

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_10&domain=pdf
mailto:lidong@iser.msstate.edu
https://doi.org/10.1007/978-3-030-82083-1_10

102 L. Wang et al.

An IDS and a host system controlled by a Markov decision process can serve
as an efficient resiliency solution. A Markov adversary model was created with
real data for four various types of cyberattacks, and how the model captures
intrinsic features of malicious behaviors was investigated (Magalhaes and Lewis
2016). A two-player (defender and attacker) model of MDP was proposed to
evaluate results of cyber intrusions to one or multiple substations. Various factors
that influence the results of the competition between defense and intrusion were
incorporated in the MDP; these factors include the skill and knowledge of an
attacker, the performance indexes of proactive and reactive defense measures, etc.
(Chen et al. 2018). A partially observable Markov decision process (POMDP) for
a resilient design was studied, and the use of flexible contracts for multi-UAV
(unmanned aerial vehicle) swarm control was illustrated (Madni et al. 2018).

A honeypot-based approach for an intrusion detection and prevention system
(IDPS) was presented, and a honeypot-based IDPS was developed (Baykara and
Das 2018). A honeypot is designed to attract attackers by providing attackers with
misleading or false information. An attacker that compromises a honeypot system
leaves valuable tracks about its attack methods (Bar et al. 2016). An SSH self-
adaptive honeypot system was developed in Python to decide how to interact with
an external attacker. A deep Q-learning algorithm that makes use of neural network
(NN) was used in the honeypot system (Pauna et al. 2018).

Honeypots have been tools in disclosing cybercrimes. Botmasters who operate
the commands and control of botnets can exploit the fact that a honeypot should not
be involved in illegal actions through commanding a compromised machine to take
malicious actions against targets. A honeypot operator needs to choose an optimal
response that has a balance between being liable for participating in any illicit action
and being disclosed (Hayatle et al. 2013).

The purpose of this paper is to perform data analytics of a honeypot system based
on an MDP model, compare the results of various algorithms, and investigate results
obtained using various transition probability parameters and various transition
reward parameters.

2 Methods

2.1 Markov Decision Process

An MDP is a sequential decision process in which decisions lead to a sequence
of Markov chains with rewards. MDP has been an important method in systems
engineering research and artificial intelligence. An MDP can be defined by a tuple
<S, A, P, R, γ > (Alsheikh et al. 2015; Chen et al. 2018; Mohri et al. 2012):

• S is a set of states.
• A is a set of actions.

Data Analytics of a Honeypot System Based on a Markov Decision Process Model 103

• P is a transition probability matrix that describes the transition from state s to
state s

′
(s ∈ S, s

′ ∈ S) after the action a (a ∈ A) is taken.
• R is the immediate reward after the action a is taken.
• γ (0 < γ < 1) is a discounted factor of rewards.

A “policy” is defined as a mapping from a state to an action. The objective of an
MDP is to find an optimal policy that maximizes the expected average reward per
period or the expected total reward. The set of equally spaced and consecutive time
period for the analysis of an MDP is called a planning horizon. An epoch is the end
of a time period. The optimal policy over a finite planning horizon maximizes the
vector of expected total rewards till the end of the horizon. For an infinite planning
horizon, the expected total reward (discounted) is used to measure the earnings of a
discounted MDP (with a discount factor γ).

2.2 Algorithms for Solving the Markov Decision Process

Value iteration (VI), policy iteration (PI), linear programming (LP), and Q-learning
can be used to compute the optimal policy of a recurrent MDP. Data analytics
results of these algorithms can be substantially different, or there are possible
convergence problems of iterations during the analytics process if an MDP model
is not reasonable due to an incorrect structure or inappropriate parameters of the
MDP model. Therefore, the four kinds of algorithms are used in this paper and their
results are compared to check the validity of the MDP model.

Value iteration: If a planning horizon is finite, the optimal policy of an MDP
can be obtained using value iteration. The above four kinds of algorithms can,
in principle, be employed in computing the optimal policy of an MDP over an
infinite planning horizon. For each state, VI uses the following value iteration
equation (Sutton and Barto 2018; van Otterlo 2009; van Otterlo and Wiering 2012)
to calculate the expected total reward:

V (s) := maxa

∑

s′
P
(
s, a, s′) (R

(
s, a, s′) + γV

(
s′)) (1)

where R(s, a, s
′
) is the immediate reward of the transition from the state s to the state

s
′

due to the action a. P(s, a, s
′
) is the transition probability. V(s) and V(s

′
) are the

expected total reward in the state s and the state s
′
, respectively. A stopping criterion

is used to evaluate the convergence during the iterative process. The criterion is
that the value difference between two consecutive iterative steps is less than a given
tolerance.

Policy iteration: It aims to find a better policy compared with the previous policy.
It starts with an arbitrary initial policy. A greedy policy is performed through
choosing the best action for each state based on the current value function. An
iterative procedure of policy evaluation and policy improvement is terminated until

104 L. Wang et al.

two successive policy iterations lead to the same policy that indicates an optimal
policy is obtained (Sutton and Barto 2018; van Otterlo and Wiering 2012).

Linear programming: Unlike VI and PI, the LP method attempts to get a
static policy by solving a linear program because an MDP can be formulated and
expressed as a linear program (Sigaud and Buffet 2013).

Q-learning: It is a kind of reinforcement learning to find the best policy for the
most reward. It enables an agent to learn the optimal action-value function, i.e.,
Q-value function. It can converge to an optimal policy in both deterministic and
nondeterministic MDPs as well as allows learning an optimal policy when a model
is unknown. It can also be applied to non-MDP domains (Liu et al. 2017; Majeed
and Hutter 2018; Zanini 2014).

3 A Markov Decision Process Model of a Honeypot System

3.1 The MDP Model Structure

A honeypot system is set to lure attackers. A botnet (network-based devices) is used
to send spam, steal data, etc. A botmaster keeps a bot (autonomous program) online.
A honeypot can be in one of three possible states under one of three actions (Hayatle
et al. 2013). The three states are described as follows:

• State 1: The honeypot is not targeted by an attacker yet; it is waiting for attacks
to join a botnet.

• State 2: The honeypot has been compromised; it has been a member of a botnet.
• State 3: This is a disclosed state. The honeypot is not a member of the botnet

anymore because the real identity of the honeypot has been discovered or it has
lost interactions with a botmaster for a long time.

At each state, the honeypot chooses one of the following three actions:

• Action 1: The honeypot permits a botmaster to compromise the system and
execute commands.

• Action 2: The honeypot does not permit a botmaster to compromise the system.
• Action 3: The honeypot is reinitialized as a new honeypot and is reset to its initial

state.

An MDP-based model of the honeypot system is created. State transitions of
three states (State 1, State 2, and State 3) due to three various actions in the model
of the honeypot system are shown in Fig. 1.

Data Analytics of a Honeypot System Based on a Markov Decision Process Model 105

Fig. 1 State transitions under various actions: (a) Action 1, (b) Action 2, and (c) Action 3

3.2 The State Transition Matrix and the Reward Matrix

Transitions between various states in the MDP model of the honeypot system
depend on the actions as well as two main probabilities that indicate the transitions
from State 1 to State 2 and from State 2 to State 3 (Pauna et al. 2018). There is no
transition from State 1 to State 3 directly and no transition from State 3 to State
2. The probability of the transition from State 3 to State 1 is 0 (under Action 1
and under Action 2) or 1 (under Action 3). The two main probabilities are further
explained as follows:

1. Pwc: the probability of the transition from waiting (State 1) to being compromised
(State 2)

2. Pcd: the probability of the transition from State 2 to the state of being disclosed
(State 3)

State transitions (including self-transitions) lead to the following expenses or
benefits (Hayatle et al. 2013):

1. Eo: the expense of operation on deploying, running, and controlling the honeypot
2. Er: the expense in reinitializing the honeypot and resetting to its initial state
3. El: the expense of liability when the honeypot operator becomes liable due to

illicit actions
4. Bi: the benefit of information when the honeypot gets the attacker’s information

such as techniques

The above parameters are selected because they are necessary and main param-
eters. The state transition probability matrix and the reward matrix under various
actions can be computed using the parameters.

106 L. Wang et al.

4 Data Analytics of the Honeypot System and Results

4.1 Data Analytics of the Honeypot System over a Finite
Planning Horizon

Let Pwc = 0.6, Pcd = 0.7, Eo = 1.5, Er = 3, Bi = 30, and El = 20. The four kinds
of algorithms can be implemented. Expected total rewards for the three states are
computed by value iteration over a seven-step planning horizon (seven steps are
chosen as an example). The rewards at the end of the planning horizon are set equal
to 0 for all the three states to begin the backward recursion of value iteration. Table 1
and Table 2 show the results of the MDP with and without a discount, respectively.

V1(n), V2(n), and V3(n) represent the expected total rewards at step n for State 1,
State 2, and State 3, respectively. The results for the situation without a discount can
be obtained by setting γ = 1.0. The data analytics in this section and subsequent
sections is performed using R language and its functions.

4.2 Data Analytics of the Honeypot System over an Infinite
Planning Horizon

The above data (i.e., probabilities and expenses or benefits) are also used in the data
analytics of the honeypot system with a discount γ= 0.85 over an infinite planning
horizon. Policy evaluation is performed and the result for various policies is shown
in Table 3. A policy is a mapping from a state to an action. For example, the policy
c (1, 1, 3) indicates that Action 1, Action 1, and Action 3 are taken on State 1, State
2, and State 3, respectively. V1, V2, and V3 are the expected total reward of State 1,
State 2, and State 3, respectively.

Table 1 The expected total rewards of states computed by value iteration over a seven-step
planning horizon (without a discount)

Epoch n 0 1 2 3 4 5 6 7

V1(n) 72.81 64.28 55.70 46.99 37.98 28.20 16.50 0
V2(n) 59.50 51.00 42.50 34.00 25.50 17.00 8.50 0
V3(n) 61.28 52.70 43.99 34.98 25.20 13.50 –1.50 0

Table 2 The expected total rewards of states computed by value iteration over a seven-step
planning horizon (with a discount, γ= 0.85)

Epoch n 0 1 2 3 4 5 6 7

V1(n) 50.62 47.40 43.59 39.05 33.51 26.45 16.50 0
V2(n) 38.50 35.29 31.52 27.09 21.87 15.73 8.50 0
V3(n) 37.29 34.05 30.19 25.48 19.48 11.03 –1.50 0

Data Analytics of a Honeypot System Based on a Markov Decision Process Model 107

Table 3 The expected total rewards of states with various policies (γ= 0.85)

Policies c (1, 1, 1) c (1, 1, 2) c (1, 1, 3) c (1, 2, 3)

V1 68.7879 68.7879 68.7879 19.2377
V2 56.6667 56.6667 56.6667 −7.4571
V3 –10.0000 –10.0000 55.4697 13.3520

Table 4 Data analytics of the honeypot system over an infinite planning horizon using various
algorithms (γ= 0.85)

Methods and algorithms V1 V2 V3

Value iteration (Jacob’s algorithm) 66.9210 54.7998 53.6028
Value iteration (Gauss-Seidel’s algorithm) 68.7879 56.6667 55.4697
Policy iteration 68.7879 56.6667 55.4697
Linear programming algorithm 68.7879 56.6667 55.4697
Q-learning 68.8000 56.6667 55.4160

As mentioned before, value iteration, policy iteration, linear programming, and
Q-learning are used to check the validity of the MDP model. Table 4 shows results
over an infinite planning horizon based on a discounted MDP with γ=0.85. All
optimal policies obtained using various algorithms are c (1, 1, 3). Jacob’s algorithm
and Gauss-Seidel’s algorithm are used in value iteration, respectively. The accuracy
of Gauss-Seidel’s algorithm is better than that of Jacob’s algorithm. The results of
Gauss-Seidel’s algorithm, policy iteration, and linear programming are the same
and very close to the result of Q-learning (when the number of iterations n is equal
to 100,000), indicating that the MDP model is valid and the parameters in the model
are reasonable.

4.3 Data Analytics of the Honeypot System with Various
Transition Probability Parameters

Policy iteration is used in the data analytics over an infinite planning horizon with
various transition probability parameters. The following data are used in the data
analytics: Pcd =0.5, Eo = 1.5, Er = 3, Bi = 30, El = 20, and γ =0.85. Expected
total reward V = (V1, V2, V3) for State 1, State 2, and State 3 at various Pwc (Pwc =
0.1, 0.3, 0.5, 0.7, 0.9) is analyzed; results are shown in Fig. 2. V2 does not change
with the increase of Pwc, while V1 and V3 increase with the increase of Pwc. V1 is
higher than V3 (see Fig. 2).

Let Pwc =0.5, Eo = 1.5, Er = 3, Bi = 30, El = 20, and γ =0.85. Expected
total reward V = (V1, V2, V3) at various Pcd (Pcd = 0.1, 0.3, 0.5, 0.7, 0.9) is
analyzed; results are shown in Fig. 3. The optimal policy c (a1, a2, a3) at various
Pcd (Pwc = 0.5) is shown in Table 5. The optimal policy is changed from c (1, 2,
3) to c (1, 1, 3) when Pcd increases. The optimal policy is dependent on system

108 L. Wang et al.

Fig. 2 Expected total reward V (V1, V2, and V3) at various Pwc

Fig. 3 Expected total reward V (V1, V2, and V3) at various Pcd

parameters, and optimal policy changes are obtained based on the computation at
changed parameter(s), for example, increased Pcd. V1, V2, and V3 are decreased
when Pcd is increased from 0.1 to 0.3; they are slightly decreased when Pcd is from
0.3 to 0.5; and they do not change when Pcd is from 0.5 to 0.9. It is shown that V1
has higher values than V3 in Fig. 3.

Data Analytics of a Honeypot System Based on a Markov Decision Process Model 109

Table 5 The optimal policy
c (a1, a2, a3) at various Pcd
(Pwc = 0.5)

Pcd 0.1 0.3 0.5 0.7 0.9

a1 1 1 1 1 1
a2 2 2 1 1 1
a3 3 3 3 3 3

Fig. 4 Expected total reward V (V1, V2, and V3) at various Bi

4.4 Data Analytics of the Honeypot System with Various
Transition Reward Parameters

Similarly, the policy iteration algorithm is used in the data analytics over an infinite
planning horizon with various transition reward parameters. The following data are
used: Pwc =0.5, Pcd =0.5, Eo = 1.5, Er = 3, El = 25, and γ = 0.85. Expected total
reward V = (V1, V2, V3) at various Bi (Bi = 15, 20, 25, 30, 35) is analyzed; results
are shown in Fig. 4. V1, V2, and V3 are increased when Bi is increased. V1 is higher
than both V2 and V3.

Let Pwc =0.5, Pcd =0.5, Eo = 1.5, Er = 3, Bi = 25, and γ = 0.85. Expected total
reward V = (V1, V2, V3) at various El (El = 15, 20, 25, 30, 35) is analyzed; results
are shown in Fig. 5. V1, V2, and V3 are decreased when El is increased from 15 to
25; they do not change when El is increased from 25 to 35. It is shown that V1 has
higher values than both V2 and V3.

110 L. Wang et al.

Fig. 5 Expected total reward V (V1, V2, and V3) at various El

5 Conclusion and Future Work

The data analytics of a honeypot system based on an MDP model has demonstrated
that the methods in this paper are effective in finding optimal policies to maximize
the expected total rewards at various transition probability parameters and transition
reward parameters. The methods are efficient in the data analytics over a finite
planning horizon as well as an infinite planning horizon. Value iteration (Gauss-
Seidel’s algorithm), policy iteration, and linear programming achieve the same
result that is very close to the result of Q-learning, which demonstrates that the
MDP model is valid and parameters in the model are reasonable. The integration of
the four kinds of algorithms based on MDP with R and its functions can build up
a powerful modeling approach and an efficient simulation technology that enhance
the functions of honeypot system and help practice good cybersecurity. The future
work is (1) the ability to add possible new states when the MDP solution does not fit
with the observations as extreme situations can happen when attacks fall outside a
trained pattern, (2) the big data analytics of a honeypot system based on POMDP and
the real-time simulation of the POMDP, and (3) the resilient design of a honeypot
system based on POMDP.

Acknowledgments This paper is based upon work performed under Contract No. W912HZ-17-
C-0015 with the US Army Engineer Research and Development Center (ERDC). Any opinions,
findings, and conclusions or recommendations expressed in this paper are those of the author(s)
and do not reflect the views of the ERDC.

Data Analytics of a Honeypot System Based on a Markov Decision Process Model 111

References

Alsheikh, M.A., D.T. Hoang, D. Niyato, H.P. Tan, and S. Lin. 2015. Markov Decision Processes
with Applications in Wireless Sensor Networks: A Survey. IEEE Communications Surveys &
Tutorials 17 (3): 1239–1267.

Bao, N., and J. Musacchio. 2009. Optimizing the Decision to Expel Attackers from an Information
System. In 47th Annual Allerton Conference on Communication, Control, and Computing
(Allerton), IEEE, pp 644–651.

Bar, A., B. Shapira, L. Rokach, and M. Unger. 2016. Scalable Attack Propagation Model and
Algorithms for Honeypot Systems. In 2016 IEEE International Conference on Big Data (Big
Data), IEEE, pp. 1130–1135.

Baykara, M., and R. Das. 2018. A Novel Honeypot-Based Security Approach for Real-Time
Intrusion Detection and Prevention Systems. Journal of Information Security and Applications
41: 103–116.

Chen, Y., J. Hong, and C.C. Liu. 2018. Modeling of Intrusion and Defense for Assessment of Cyber
Security at Power Substations. IEEE Transactions on Smart Grid 9 (4): 2541–2552.

Hayatle, O., H. Otrok, and A. Youssef. 2013. A Markov Decision Process Model for High
Interaction Honeypots. Information Security Journal: A Global Perspective 22 (4): 159–170.

Liu, Y., H. Liu, and B. Wang. 2017. Autonomous Exploration for Mobile Robot Using Q-Learning.
In 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM),
IEEE, pp. 614–619.

Madni, A.M., M. Sievers, A. Madni, E. Ordoukhanian, and P. Pouya. 2018. Extending Formal
Modeling for Resilient Systems Design. INSIGHT 21 (3): 34–41.

Magalhaes, A., & G. Lewis. 2016. Modeling Malicious Network Packets with Generative
Probabilistic Graphical Models, pp. 1–5.

Majeed, S.J., and M. Hutter. 2018. On Q-learning Convergence for Non-Markov Decision
Processes. In IJCAI, pp. 2546–2552.

Mohri, M., A. Rostamizadeh, and A. Talwalkar. 2012. Foundations of Machine Learning. Adaptive
Computation and Machine Learning. MIT Press, 31, p. 32.

Pauna, A., A.C. Iacob, and I. Bica. 2018. QRASSH-A Self-Adaptive SSH Honeypot Driven by Q-
learning. In 2018 International Conference on Communications (COMM), IEEE, pp. 441–446.

Sigaud, O., and O. Buffet, eds. 2013. Markov Decision Processes in Artificial Intelligence. Wiley.
Sutton, R.S., and A.G. Barto. 2018. Reinforcement Learning: An Introduction. MIT Press.
van Otterlo, M. 2009. Markov Decision Processes: Concepts and Algorithms. Course on ‘Learning

and Reasoning’.
van Otterlo, M., and M. Wiering. 2012. Reinforcement Learning and Markov Decision Processes.

In Reinforcement Learning, 3–42. Berlin\Heidelberg: Springer.
Zanini, E. 2014. Markov Decision Processes. [Online]. https://www.lancaster.ac.uk/pg/

zaninie.MDP.pdf

https://www.lancaster.ac.uk/pg/zaninie.MDP.pdf

Probabilistic System Modeling for
Complex Systems Operating in Uncertain
Environments

Parisa Pouya and Azad M. Madni

Abstract Complex systems that continuously interact with dynamic uncertain
environments need the ability to adapt their decision-making based on observed out-
comes of their decisions and actions. Traditional deterministic modeling approaches
are invariably inadequate for modeling systems whose models are not fully known
initially. For such systems, we need the ability to start with an incomplete model and
then progressively complete the model with observations made along the way. To
address this problem type, we propose an extendable-partially observable Markov
decision process (extendable-POMDP) to model the system’s state space and
decision-making in the presence of uncertainties. The extendable-POMDP model
is able to account for unknown-unknowns by incorporating “new hidden states”
that result in expanding the model state space which in turn extends the associated
probability distributions. This paper provides an online algorithm for solving a
POMDP model by employing a heuristic search algorithm that estimates long-
term rewards in a finite-horizon look-ahead in a sense-plan-act cycle. Heuristics
are employed in model definition, expansion, and online look-ahead search to
contain the otherwise inevitable computational complexity arising from state-space
explosion.

Keywords Decision-making and planning · Probabilistic modeling · Partially
observable Markov decision processes · Complex systems · Model-based systems
engineering (MBSE) · Heuristic search

P. Pouya (�) · A. M. Madni
University of Southern California, Los Angeles, USA
e-mail: pouya@usc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_11

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_11&domain=pdf
mailto:pouya@usc.edu
https://doi.org/10.1007/978-3-030-82083-1_11

114 P. Pouya and A. M. Madni

1 Introduction

Understanding the dynamic behavior of complex systems that undergo state changes
as a result of ongoing interaction with the environment is a challenging system
modeling problem. Existing techniques that are employed for these purposes are
either deterministic or stochastic. Deterministic models fully determine a model
based on setting up initial assumptions and conditions, while stochastic models
exhibit required randomness needed to characterize stochastic properties. Recent
studies on modeling a system’s dynamic behavior can be classified as the following:
(1) inferring the underlying model and parameters for classifying and making
predictions about the future and (2) identifying the conditional dependencies,
relationships between variables, correlations, and changes in variables over time
(Robinson and Hartemink 2009). The main objective of the former class of problems
is to find patterns and parameters from the behavioral data and make predictions
about the future. Examples of this class of problems are speech recognition,
activity or behavior detection, and anomaly detection. Markovian models, such as
Markov chains and hidden Markov models (HMMs), are usually employed in these
applications. The latter class of problems focuses on identifying the underlying
(system or environment) states and correlations resulting from a system’s interaction
with its environment. The main goal in these problems is to design an abstract
representation (model) of the real system-environment interaction and use it for
understanding and reasoning about the system (Madni and Sievers 2018). This paper
focuses on adapting existing modeling techniques for the latter class of problems
that require ongoing decision-making in complex systems operating in dynamic
uncertain environments.

Various techniques, such as time-varying Gaussian graphical models (Talih and
Hengartner 2005; Xuan and Murphy 2007), dynamic Bayesian networks (DBNs)
(Robinson and Hartemink 2009), and different Markovian models, are employed for
designing models based on state variables and correlations. In this paper, we focus
on Markov model family because they offer a strong mathematical framework and
probabilistic structure capable of modeling systems for a wide range of applications.
These models perform well in practice if applied in the right way when modeling
complex systems (Rabiner 1989). For instance, HMMs (also viewed as stochastic
generalization of finite-state automata) are examples of Markovian models in which
state variables and dependencies are modeled as states and probability distributions,
respectively. Markovian models are also employed for developing modeling tools,
such as state diagrams that are mainly used in MBSE and control system design
(Madni and Sievers 2018; Wray and Zilberstein 2019).

To make decisions and plan actions with respect to state variables and their
correlations, decisions and their influences on state variables should be embedded
within the system model. Markov decision processes (MDPs) are Markov models
that capture the transitions and correlations between various state variables dur-
ing system-environment interactions that occur during system’s decision-making.
Basically, MDPs can be viewed as Markov chains that include decisions within

Probabilistic System Modeling for Complex Systems Operating in Uncertain. . . 115

the model that allows for making decisions over time (Alagoz et al. 2010).
POMDPs are generalization of MDP models extended to a probabilistic domain
in which uncertainty regarding the state of the system model is allowed, and state
variable information is completely hidden or only partially known. This implies
that an observation (signal) from the environment (1) can identify more than one
state at a time or (2) cannot be explained based on the existing state variables
and correlations in the model. The former implies that the most probable states
should be considered, instead of one unique state, while the latter means that a
new “hidden state” is required in the model to represent the new observation.
POMDPs are widely used in modeling sequential planning in various applications
in which systems interface noisy and uncertain environments (Cassandra 1998).
For instance, Hubmann et al. (2017), Song et al. (2016), and Ulbrich and Maurer
(2013) employ POMDPs for decision-making in autonomous vehicles (AVs) where
there exist uncertainties in observed information and intensions of passengers
and drivers. Machine maintenance, structural inspection, machine vision, search
and rescue, and target identification are other examples of complex systems with
uncertain environments where POMDPs are successfully employed for planning
and decision-making (Cassandra 1998). Generally, with POMDP applications, the
former definition of hidden information is widely addressed through the probability
distributions within the model. However, the latter definition of hidden information,
i.e., unknown-unknowns, should also be considered in the model design to ensure
accurate and correct response when faced with unknown-unknowns.

In this paper, we propose an extended version of the standard POMDP models
that accounts for unknown-unknowns and unexplainable signals, in addition to
uncertainties, by incorporating new hidden states, expanding the model, and
retuning the probability distributions when needed (Madni et al. 2018a; b; Sievers et
al. 2019a, b). Also, an online look-ahead heuristic search algorithm is provided that
solves the extended POMDP model by estimating the possible future decision paths
for each available decision and calculating the expected long-term reward associated
with that decision and path. An example of model setup and decision-making using
the new POMDP model and online algorithm for a simulated autonomous vehicle
(AV) in a specific scenario is also provided.

2 Review of Markov Models and Decision Processes

2.1 Markov Models and Hidden Markov Models (HMMs)

A Markov model (chain) is defined as a triplet <S, T, π> in which S denotes a finite
set of states that are directly observable from the system-environment interaction,
T : S × S → [0, 1] is the transition function (matrix) that includes the probabilities
associated with transitioning from a state to another, and π : p(si) → [0, 1] where
si ∈ S is the initial state probability distribution. In contrast with the Markov models

116 P. Pouya and A. M. Madni

Fig. 1 (a) A Markov chain with eight states. (b) An HMM with four hidden states and eight
observations. ti, j and oi, k transition and emission probabilities, respectively

that assume state variables and their changes over time are directly observable,
HMMs assume an underlying “hidden” process associated with state variables that
is modeled as a Markov chain and that process is obtained from noisy observations.
In other words, an HMM is a statistical Markov model. Basically, an HMM can
be defined as a tuple <S, �, T, O, π> in which S denotes the state space in the
model; � = {o0, . . . , on} is the observation space in which distinct observations
associated with states are defined; T : S × S → [0, 1] shows the transition matrix;
O : S × � → [0, 1] represents the observation probabilities in the emission matrix,
where Oi(oj) is the probability associated with observing oj at state si at time t; and
π : p(si) → [0, 1] defines the probabilities associated with being at a state at time t
= 0 (Rabiner 1989). Figure 1a shows a Markov model where various observations
from the system-environment interaction are modeled as individual states, whereas
Fig. 1b shows the same example with hidden states identified based on observations.

2.2 Markov Decision Processes (MDPs)

To keep track of the impacts of transitions in between states, values can be embedded
within the model definition. These values can be defined with respect to an objective
or goal defined for the model under a specific scenario. Moreover, the capability of
making decisions or reacting to changes in state variables can also be integrated
with a Markov model. Adding the ability of making decisions based on observed
changes in state variables to a Markov model and storing the impacts of changes
and transitions defines an MDP model. In general, an MDP model is defined as a
tuple <S, A, T, R> where S identifies a set of finite states (state space), A identifies an
action space, T : S × A × S → [0, 1] represents the transition function that identifies
the transition probabilities between states based on actions, and R : S × A × S→R

shows the reward function which identifies the rewards or penalties associated with
being in a state and making a decision. The overall objective in MDPs is to find
the most optimal mapping between the actions and states, so-called optimal policy
that maximizes the sum of long-term rewards by achieving the goal of the MDP

Probabilistic System Modeling for Complex Systems Operating in Uncertain. . . 117

using minimum possible number of decisions or in the shortest time. A commonly
applied approach for finding an optimal policy associated with an MDP model is
using value iteration (Eq. 2) that employs dynamic programming for solving the
Bellman’s equation in an iterative process until the optimal value is achieved. For
each state at time t, the action corresponding to the maximum value is considered
the optimal mapping between that state and available actions (Eq. 3):

V ∗
t (s) = maxa∈A

∑

s′
p
(
s|s′, a

) [
R
(
s|s′, a

) + γV ∗
t−1

(
s′)] (2)

π∗
t (s) = argmaxa∈A

∑

s′
p
(
s|s′, a

) [
R
(
s|s′, a

) + γV ∗
t−1

(
s′)] (3)

2.3 Partially Observable Markov Decision Processes
(POMDPs)

POMDPs are generalization of MDPs to uncertain environments where partially
available data could potentially result in incomplete information about the state
space. Uncertainty may appear as (1) uncertainty in actuation, whether an action
is carried out successfully; (2) uncertainty in sensor and data interpretation due to
sensor noise and limited sensor capabilities; (3) uncertainty about the environment;
and (4) uncertainty about intensions of other systems in the environment (Koenig
and Simmons 1998; Bai et al. 2015). In contrast with the MDP models that assume
full access to state space, partial observability implies that the system only receives
an indication of its current state that only allows for probabilistic identification
of the state. A POMDP model can be defined as a tuple <S, A, �, T, O, R> in
which S determines a finite state space which is hidden; A identifies a finite set of
actions; � = {o0, . . . , on} is a finite set of observations; T : S × A × S → [0, 1] is
the transition function that identifies the probabilities associated with transitions in
between states; O : S × A × � → [0, 1] defines the emission function (or matrix),
which provides the probabilities associated with performing an action in a state and
observing an observation from the observation space; and finally R : S ×A×S→R

is the reward function that provides rewards/penalties associated with performing
an action in a state and transitioning to another state (Spaan 2012). Figure 2 shows
the differences between a problem modeled using both an MDP and a POMDP
model with four states S = {s0, s1, s2, s3} and three actions A = {a0, a1, a2}. In
this figure, [t0, t1, t2]i, j and [r0, r1, r2]i, j represent the transition probabilities and
rewards/penalties of performing actions [a0, a1, a2] ∈ A at state si and transitioning
to state sj in both MDP and POMDP models, respectively. In addition, [o0, o1, o2]i, k

are the emission probabilities of observing ok ∈ � after performing [a0, a1, a2] ∈ A
at state si in the POMDP model.

118 P. Pouya and A. M. Madni

Fig. 2 A problem modeled with an MDP model if the states are observable (left) and a POMDP
model where the full-observability assumption is relaxed

Since the state space is only partially observable, POMDPs employ a probabilis-
tic distribution, so-called belief, over the state space to determine the most recent
state based on received observations. At time t = 0, with no available observation,
the belief can be initialized as a uniform distribution over all the states. Later, as the
system interacts with the environment and receives feedback (i.e., observations and
rewards), the belief vector gets updated based on Bayes’ rule as follows:

bt+1 (si) = p
(
si |bt , a, o

) = p (o|si, a)
∑

s∈S p (si |s, a) bt (s)∑
s′∈S p (o|s′, a)

∑
s∈S p (s′|s, a) bt (s)

(4)

where p(o| si, a) and p(si| s, a) show the emission probability of performing a at si

and observing o and the probability of transitioning to si after performing action a
at state s. A POMDP can be formulated as an MDP to find the optimal policies
associated with all possible belief states by solving Bellman’s equation using
techniques such as dynamic programming (Eq. 5):

V ∗
t

(
bt
) = maxa∈A

[
∑

s∈S

bt (s)R (s, a) + γ
∑

o∈Ω

p
(
o|bt , a

)
V ∗

t−1

(
b|bt , a, o

)
]

(5)

The techniques, such as dynamic programming, that evaluate every imaginable
belief and action pair and provide an optimal policy prior to execution are known
as “offline algorithms.” Offline algorithms assume that the initial model setup and
the environment are fixed. While the offline algorithms can achieve very good
performance, they often take significant amount of time, e.g., hours, to solve slightly
large problems in which there exist numerous possible situations to consider (Ross
et al. 2008). On the other hand, online algorithms circumvent the complexity of
computing a policy by only considering the current belief and a small horizon to
search for contingency plans. Since online algorithms evaluate the actual belief
achieved from real interactions between a system and its environment, they can

Probabilistic System Modeling for Complex Systems Operating in Uncertain. . . 119

handle changes in the environment (e.g., changes in goals) without recomputing the
full policy for the whole model (Sunberg and Kochenderfer 2018; Ye et al. 2017).

3 Proposed POMDP and Solution

In dynamic and uncertain environments, there is no guarantee that all information
is initially known and considered in the model. This means that there may be
observations that cannot be explained using the existing states in the model, which
require expanding the current state space to include “new hidden states,” when
discovered during the execution phase. The current definition of the POMDPs and
offline solutions are not able to accommodate the issues associated with unknown-
unknowns.

To accommodate this issue, we further extended the standard definition of the
POMDP models to allow for expanding the model and incorporating new hidden
states. Thus, the definition of the POMDP updates to a tuple <S+, A, �+, T+,
O+, R+> in which S+ : S ∪ H is the extended finite set of states including the
hidden state(s), H, and �+ : � ∪ � is the extended finite set of observations.
Initially, H and � are empty sets and the model is a tuple of <S, A, �, T, O,
R>. As the model discovers unknown-unknowns during its interaction with its
environment, the sets are accumulated by the new observations and hidden states.
T+ : S+ × A × S+ → [0, 1] is the extended transition function that includes the
probabilities of transitioning to and from the hidden states, R+ : S+ × A × S+→R

determines the extended reward function, and O+ : S+ × A × �+ → [0, 1] identifies
the extended observation function that contains the probabilities of observing both
o ∈ � and o

′ ∈ � (Fig. 3). On the other hand, definition of states, observations,
and reward function in the proposed POMDP model are slightly different from a
standard POMDP model. State space is defined based on various, high-level events
that generally describe different conditions in the system-environment interaction.
Generalization of the state space to high-level events helps with reducing the number
of state space and decreasing the related computational complexities.

Fig. 3 Example of how a POMDP expands as a new hidden state is added to incorporate an
unknown-unknown

120 P. Pouya and A. M. Madni

Moreover, variables that identify the goal and failure events are also modeled
as states in the model. Since the goal and failures are also embedded as states
within a model, the reward function assigns rewards/penalties (r > 0 or r < 0)
to the states depending on whether a state is identified as goal, failure, or transient,
which changes the reward matrix to a reward vector R+ : 1 × S+→R. Optimal
policy in the proposed POMDP is identified as an action that updates the belief
so that, considering all possible observations in the model, the goal state has a
higher probability (failure has less probability) in the future belief. In other words,
the optimal policy is the mapping between the belief and actions that maximizes
the long-term sum of rewards by constantly moving along a plan trajectory that
improves the belief state (Eq. 6):

π∗
t

(
bt
) = argmaxa∈A

⎡

⎣
∑

o∈Ω+

∑

s∈S+
p (o|s, a)

(
bt+1(s)|bt (s), a, o

)
R+(s)

⎤

⎦

(6)

Thus, since the belief represents the probabilities assigned to most probable
states and optimal policy improves the belief probability distribution by assigning a
higher probability to the goal state, the combination can be used for explaining the
decisions made and reasoning about the model.

3.1 Initializing New Hidden States

Hidden states are associated with the events that cannot be interpreted from the
initialized state in the model state space (Sievers et al. 2019a, b). When a new hidden
state is initialized in the proposed POMDP model, the transition and emission
probabilities of the hidden state are empirically initialized using the following
heuristics depending on the model and scenario:

Heuristic 1: “Expected Outcome: Assign higher probabilities to the most expected
states/observations based on how the action changes the state variables of the
model.” After performing a certain action (e.g., a), depending on the influence of
the action on the predetermined state variables, the most expected observations
or states are assigned with higher probabilities, and the less expected ones will
have lower probabilities.

Heuristic 2: “Safest Outcome: Assign probabilities so that the optimal policy asso-
ciated with the hidden state is the safest action (e.g., neutral action) or updates
the belief so that the safest/most neutral state receives a higher probability.”

On the other hand, transition and emission probabilities from known states to the
hidden state(s) are initially assigned with small probabilities (e.g., 0.01), because
this transition (or emission) is not repeated enough compared to the known states.

Probabilistic System Modeling for Complex Systems Operating in Uncertain. . . 121

3.2 N-Step Look-Ahead (Online Policy Estimation Algorithm)

Since the hidden states and unexplainable observations are discovered during the
execution phase, there exists no prior information, such as pre-planned policies,
associated with them. Thus, even if an offline solution can efficiently calculate and
estimate optimal policies for a model prior to execution, the solution still lacks
the optimal policies associated with the newly added hidden state. In other words,
offline algorithms also lack the ability of updating a pre-estimated solution when
a model or environment changes that results in changing the model objective or
goal (Ross et al. 2008). This implies that the offline algorithms are not applicable
to the problems with highly dynamic environments and objectives, because they
require to recompute the optimal policies after any changes. On the other hand,
online algorithms that rely on combining offline calculations in estimating optimal
policies during the look-ahead search in estimated future beliefs are not sufficient,
since there is no prior information that exists for newly initialized hidden states.
To this end, we implemented the online, “N-Step Look-Ahead,” policy estimation
algorithm that (1) defines a belief tree with the current belief state as its top node,
“root”; (2) recursively, explores the possible plan/decision paths by traversing the
expected beliefs located on the lower levels of the tree; and (3) calculates the
expected long-term rewards for available possible plans in that tree to select the
plan with the highest long-term reward.

The algorithm recursively expands the belief states at each level (l ≤ N) until
it reaches the deepest level (N) or a termination condition for a belief is met. The
tree is explored bottom to top and left to right, meaning that initially the values
associated with the leftmost branches are calculated starting from the bottom of
the tree and moving to the top node, then the next branch is explored, and value is
calculated until all branches are traversed (Eq. (7)). A learning rate 0 < γ < 1 is
also considered, so that the largest rewards are collected as early as possible. The
depth of the tree determines the finite horizon for the look-ahead search. Basically,
at each level of the tree, the expected beliefs at level l < N are calculated based on
the beliefs at level l − 1, available actions, and possible observations:

V N
(
bt , a

) =
∑

o∈Ω+′
Pr
(
o| bt , a

) ∗ γ
∑

a′∈A

V N
l+1

(
bt+1
a,o , a′) (7)

Since this algorithm is designed to provide a policy anytime it’s required, the
execution time of the algorithm (time complexity) is very important. As N increases,
the search algorithm explores deeper levels and the estimated long-term reward
becomes more accurate. On the other hand, larger N requires more computation
time, so there is a trade-off between the accuracy and execution time. Various
techniques, such as sampling and heuristic search, are employed to reduce the
computation time of a search algorithm (Ye et al. 2017; Kurniawati and Yadav 2016;
Etminan and Moghaddam 2018a; b). We employ a heuristic search that reduces

122 P. Pouya and A. M. Madni

the time complexity of the search by only considering the exploration of the belief
nodes that satisfy the conditions defined in our heuristics. Our heuristic summarizes
as follows:

Search Heuristic1: “Expand non-terminal/non-failure belief nodes.” Using this
heuristic, the search algorithm only expands and explores the belief nodes that
have low probabilities assigned to failure states.

Search Heuristic2: “Expand the belief nodes using possible actions and associated
reachable observations only.” Based on this heuristic, the belief nodes in the
lower levels (l-1) of the tree are calculated based on observations with high
probabilities from a parent belief node at level l and an action a. Reachable
observations are identified using the criteria represented in Eq. 8:

o ∈ Ω+′ (
bt , a

)
iff

∑

s∈S+
bt (s)p (o|s, a) ≥ L (8)

Where �+′ ⊆ �+ denotes the reachable observation and 0 ≤ L ≤ 1 is the minimum
reachability probability defined empirically based on the size or the problem and
emission matrix. Figure 4 shows how applying the heuristic search reduces the
computation time in the N-Step Look-Ahead search from an exponential growth
rate to a linear growth rate for a given model that includes four states and three
actions.

4 An Exemplar POMDP Model

In an exemplar scenario, we simulated an AV in a multilane freeway using
PythonVTK. As shown in Fig. 5a, the AV (green) is surrounded by traffic in
different lanes (different relative distances and velocity/speed). The AV has two
main objectives with respect to its surrounding environment (freeway + traffic).
These are (1) safely drive within one lane and (2) safely change lanes when it
becomes necessary (Pouya and Madni 2020a).

For the purpose of this paper, we define a POMDP model, including the
states and probabilities associated with the former objective, and test the model
in the simulated multilane freeway using the N-Step Look-Ahead function for
constant decision-making. Later, we tune the parameters and demonstrate model
expansion for including hidden states. The initial step in POMDP model definition
is identification of candidate states with respect to various high-level general
conditions. However, due to partial observability (e.g., sensor noise and hidden
driver intensions), the states can be identified based on observations. Figure 5b
demonstrates various observation classes (candidate states) defined based on vehicle
speed and relative distances (difference between distance in front and rear, dF − dR)
using the simulated traffic data around the AV with two different traffic setups.

Probabilistic System Modeling for Complex Systems Operating in Uncertain. . . 123

Fig. 4 Look-ahead policy estimator computation time as different heuristics are applied

Fig. 5 (a) Traffic simulation dashboard. (b) High-level traffic conditions (patterns) based on data

The datapoints that fall into the dashed classes are observations that cannot fully
determine a state, which we refer to as noisy and partially available observations. In
addition, according to pre-determined speed and distance limits in the simulation,
the datapoints that exceed these limits are identified as failures or crashes. The
next step after identifying the state candidates is defining the probabilities and
reward values. Since the objective of the model is to drive safely within a lane,
the goal state is s2 : safe and steady with R(s2) = + 10, the failure state is
s3 : crashed/failure with R(s3) = − 20, and s0 : slower, s1 : faster are transient
states with R(s0) = R(s1) = + 1 reward values. In addition, actions associated with
this model are a0 : maintain status quo, a1 : speed up, and a2 : slow down. The
transition and emission matrices can be learned from the simulation data or can be

124 P. Pouya and A. M. Madni

initialized based on expert’s judgment and tuned within the simulation. Later, the
probability and reward matrices are expanded as the model receives an observation
that cannot be explained using the current state space.

To expand and initialize the probability matrices when a new observation is
realized, we have applied the “most expected outcome” heuristic. As an example,
the transition probability associated with h0 and a1 has the highest probability
assigned to s1, because the vehicle expects to drive faster as it applies a1 and speeds
up.

In this simulation and for the purpose of this exemplar scenario, hidden obser-
vations are generated as outputs of a random function invoked in random times in
the simulation. After tuning the probabilities and defining the extension technique
within the POMDP model, the model is tested in the simulation by having the
N-Step Look-Ahead function evaluate the possible decisions at every time step
based on the most recent belief. N equal to 2 is selected for the depth of
look-ahead search with a sampling rate of 0.1s, and the POMDP decisions and
performance are compared to a rule-based algorithm designed based on time-to-
collision measurements.

Figure 6 (left) shows a series of changes in the AV’s belief, and the right figure
represents the values for possible actions estimated for each belief with N = 2.

As a new hidden state is identified and the belief is expanded at t = 15, the
look-ahead value estimation decides to maintain status quo (a0) as long as the belief
probability assigned to the hidden state is high but changes its decision as soon
as the belief in the known states goes higher. The dashed line demonstrates the
sum of long-term rewards associated with the belief series. Figure 7 demonstrates
the performance of the POMDP model in comparison with a rule-based algorithm
that makes decisions based on TTC criteria with full observability. As shown in
the figure, the overall pattern of the decisions made by the POMDP matches the
rule-based with full-observability pattern. However, the number of the changes in
decisions made by the POMDP is smaller (smoother pattern) than the rule-based,
which implies that the rule-based is more aggressive and reacts to every single

Fig. 6 (left) Belief updates, expanded at t = 15 to include a new hidden state; (right) estimated
long-term reward (dashed line)

Probabilistic System Modeling for Complex Systems Operating in Uncertain. . . 125

Fig. 7 POMDP performance evaluation and comparison with a TTC rule-based. (Pouya and
Madni 2020b)

observation. In contrast, the POMDP ensures about the consistency of the received
observation and reacts when its belief with respect to the received observation is
high.

5 Summary and Future Work

In this paper, we emphasized the importance of understanding the behavior of
a complex system from its interactions with its environment to design accurate
models for resilient decision-making with partially available data. We presented an
extendable-POMDP model that is initialized using available information, and then
adapts to new information by incorporating new hidden states, and thereby extends
the related probability distributions using heuristics, so they can be learned incre-
mentally. The flexibility introduced by incorporating new hidden states results in
risk associated with evaluating the accuracy of decisions made for the hidden states
with less or no prior information about the state, which we manage by employing
heuristics in model expansion. To address the risk associated with computational
complexity, the N-Step Look-Ahead online value estimation algorithm is employed.
This algorithm uses heuristic search, to solve the extendable-POMDPs in an any-
time fashion. We intend to extend the work presented in this paper to realize a
probabilistic modeling paradigm that can be used for decision-making and planning
of complex systems and system of systems that operate in highly dynamic, uncertain
environments. For model testing and verification purposes, we currently compare
with rule-based algorithms and full observability, but in the future, we intend to
employ machine learning (e.g., Q-learning (Pouya and Madni 2020c)) and formal
reasoning methods to create a formal verification technique for POMDP models.

126 P. Pouya and A. M. Madni

References

Alagoz, O., H. Hsu, A.J. Schaefer, and M.S. Roberts. 2010. Markov Decision Processes: A Tool for
Sequential Decision Making Under Uncertainty. Medical Decision Making 30 (4): 474–483.

Bai, H., S. Cai, N. Ye, D. Hsu, and W.S. Lee. 2015. Intention-aware Online POMDP Planning
for Autonomous Driving in a Crowd. In 2015 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, pp. 454–460.

Cassandra, A.R. 1998. A Survey of POMDP Applications. In Working Notes of AAAI 1998 Fall
Symposium on Planning with Partially Observable Markov Decision Processes, Vol. 1724.

Etminan, A., and M. Moghaddam. 2018a. Electromagnetic Imaging of Dielectric Objects Using
a Multidirectional-Search-Based Simulated Annealing. IEEE Journal on Multiscale and
Multiphysics Computational Techniques 3: 167–175.

——— 2018b. A Novel Global Optimization Technique for Microwave Imaging Based on the
Simulated Annealing and Multi-Directional Search. In 2018 IEEE International Symposium on
Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE, pp. 1791–
1792.

Hubmann, C., M. Becker, D. Althoff, D. Lenz, and C. Stiller. 2017. Decision Making for
Autonomous Driving Considering Interaction and Uncertain Prediction of Surrounding Vehi-
cles. In 2017 IEEE Intelligent Vehicles Symposium (IV), 1671. 1678: IEEE.

Koenig, S., and R. Simmons. 1998. Xavier: A Robot Navigation Architecture Based on Partially
Observable Markov Decision Process Models. Artificial Intelligence Based Mobile Robotics:
Case Studies of Successful Robot Systems, (Partially), pp. 91–122.

Kurniawati, H., and V. Yadav. 2016. An Online POMDP Solver for Uncertainty Planning In
Dynamic Environment. In Robotics Research, 611–629. Cham: Springer.

Madni, A.M., and M. Sievers. 2018. Model-Based Systems Engineering: Motivation, Current
Status, and Needed Advances. In Disciplinary Convergence in Systems Engineering Research,
311–325. Cham: Springer.

Madni, A.M., M. Sievers, A. Madni, E. Ordoukhanian, and P. Pouya. 2018a. Extending Formal
Modeling for Resilient Systems Design. INSIGHT 21 (3): 34–41.

Madni, A., D. Erwin, A. Madni, E. Ordoukhanian, and P. Pouya. 2018b. Formal Methods in
Resilient Systems Design using a Flexible Contract Approach (No. SERC-2018-TR-119).
SYSTEMS ENGINEERING RESEARCH CENTER HOBOKEN NJ HOBOKEN United
States.

Pouya, P., and A.M. Madni. 2020a. Expandable-Partially Observable Markov Decision-Process
Framework for Modeling and Analysis of Autonomous Vehicle Behavior. IEEE Systems
Journal. https://doi.org/10.1109/JSYST.2020.30.

———. 2020b. Leveraging Probabilistic Modeling and Machine Learning in Engineering Com-
plex Systems and System-of-Systems. In AIAA Scitech 2020 Forum, p. 2117.

———. 2020c. A Probabilistic Online Policy Estimation for Autonomous Systems Planning and
Decision Making. In 2020 IEEE International Conference on Systems, Man, and Cybernetics
(SMC), IEEE.

Rabiner, L.R. 1989. A Tutorial on Hidden Markov Models and Selected Applications in Speech
Recognition. Proceedings of the IEEE 77 (2): 257–286.

Robinson, J.W., and A.J. Hartemink. 2009. Non-stationary Dynamic Bayesian Networks. Advances
in Neural Information Processing Systems: 1369–1376.

Ross, S., J. Pineau, S. Paquet, and B. Chaib-Draa. 2008. Online Planning Algorithms for POMDPs.
Journal of Artificial Intelligence Research 32: 663–704.

Sievers, S., A.M. Madni, and P. Pouya. 2019a. Trust and Reputation in Multi-agent Resilient
Systems. In 2019 International Conference on Systems, Man, Cybernetics (SMC), 741–747.
IEEE.

Sievers, M.M., A.M. Madni, and P. Pouya 2019b. Assuring Spacecraft Swarm Byzantine
Resilience. In AIAA Scitech 2019 Forum, p. 0224.

http://dx.doi.org/10.1109/JSYST.2020.30

Probabilistic System Modeling for Complex Systems Operating in Uncertain. . . 127

Song, W., G. Xiong, and H. Chen. 2016. Intention-Aware Autonomous Driving Decision-Making
in an Uncontrolled Intersection. In Mathematical Problems in Engineering, 2016.

Spaan, M.T. 2012. Partially Observable Markov Decision Processes. In Reinforcement Learning,
387–414. Berlin/Heidelberg: Springer.

Sunberg, Z.N., and M.J. Kochenderfer. 2018. Online Algorithms for POMDPs with Continuous
State, Action, and Observation Spaces. In Twenty-Eighth International Conference on Auto-
mated Planning and Scheduling.

Talih, M., and N. Hengartner. 2005. Structural Learning with Time-Varying Components: Tracking
the Cross-Section of Financial Time Series. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 67 (3): 321–341.

Ulbrich, S., and M. Maurer. 2013. Probabilistic Online POMDP Decision Making for Lane
Changes in Fully Automated Driving. In 16th International IEEE Conference on Intelligent
Transportation Systems (ITSC 2013), 2063–2067. IEEE.

Wray, K.H., and S. Zilberstein. 2019. Generalized Controllers in POMDP Decision-Making. In
2019 International Conference on Robotics and Automation (ICRA), 7166–7172. IEEE.

Xuan, X., and K. Murphy. 2007. Modeling Changing Dependency Structure in Multivariate Time
Series. In Proceedings of the 24th International Conference on Machine Learning, 1055–1062.
ACM.

Ye, N., A. Somani, D. Hsu, and W.S. Lee. 2017. Despot: Online Pomdp Planning with Regulariza-
tion. Journal of Artificial Intelligence Research 58.

Identification of Adverse Operational
Conditions in Sociotechnical Systems:
A Data Analytics Approach

Taylan G. Topcu, Konstantinos Triantis, and Bart Roets

Abstract Sociotechnical systems (STSs) such as infrastructure management sys-
tems operate under highly dynamic, contextual, and environmental conditions;
therefore they depend on specifically trained group of individuals known as
Controllers for their safety-critical decision-making activities. The dependency of
STS on human decision-makers introduces additional complexity to the system
due to the intertwined social and technical factors that influence the operational
decision-making process. While the role allocated to autonomous decision-making
units in STSs is rapidly increasing, hard-to-estimate and the inherently unique
nature of safety-critical situations render high levels of automation infeasible and
require manual control in many instances. In this paper, we investigate real-world
operational data from INFRABEL (Belgian Railways) and utilize data analytics
techniques to understand how Controllers behave during adverse operational con-
ditions. The identification and evaluation of adverse operational instances can also
support the design of future decision support or automation tools. To achieve this,
we first provide a brief discussion of social and technical factors that influence the
Controllers and their decision-making process. We then introduce robust principal
component analysis that is a rigorous data analytics technique to identify influential
observations (leverage points and outliers). We finally provide a brief discussion
of how operations during adverse conditions differ from nominal conditions. We
observe that adverse operational conditions in our application typically occur in 5%
of the observations. The proposed approach will be implemented at INFRABEL,
the Belgian Railways.

Keywords Sociotechnical systems · Data analytics · System safety ·
Human-machine teaming · Systems engineering

T. G. Topcu (�) · K. Triantis
Virginia Tech, Virginia, USA
e-mail: ttopcu@vt.edu

B. Roets
INFRABEL and Ghent University, Brussels, Belgium

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_12

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_12&domain=pdf
mailto:ttopcu@vt.edu
https://doi.org/10.1007/978-3-030-82083-1_12

130 T. G. Topcu et al.

1 Introduction

Sociotechnical systems are complex interdependent systems that rely on the suc-
cessful collaboration between human decision-makers and autonomous systems
to deliver critical services that allow for a community to sustain its economy
(O’Sullivan and Sheffrin 2007). We define the term sociotechnical systems (STSs)
as systems that rely on the collaboration of humans with engineered systems to fulfil
their mission. To elaborate, management of air traffic, railroad traffic, metro, nuclear
power plants, and the international space station are all examples of STSs. These
systems are usually large in terms of size, operate under highly dynamic conditions,
are managed by hierarchical organizations that consist of multiple decision-makers
with sometimes conflicting objectives, and are tasked with a safety-critical mission.
The multifaceted nature of STS and the severe consequences of their failures
(National Transportation Safety Board 2016; Salmon et al. 2016) require a holistic
systems thinking approach to address these interrelated mechanisms.

In STSs such as infrastructure management systems, safety-critical decision-
making activities are allocated to specifically trained individuals denoted as Con-
trollers. Controllers work in shifts 24/7 to make decisions regarding the daily
operation and service delivery. In this paper, we adopt a descriptive research
approach and investigate Traffic Controllers (TCs) at INFRABEL, the Belgian
national railroad company that owns and runs the Belgian railway infrastructure,
within their Traffic Control Centers (TCCs). INFRABEL manages one of the
world’s most complex and dense railroads; therefore it constitutes an excellent
observation case. Each INFRABEL TC manages a workstation that has a built-
in automated decision aid system (ADAS, i.e., the automatic setting of a train
route when a train approaches a signal). ADAS can be activated within the TC’s
dedicated control area for a given time period, a train, or a certain node within
the railroad network. Moreover, each TC is an individual; thus it has strictly
subjective preferences (Keeney and Raiffa 1993) and varying experience levels and
could be subject to different cognitive and work environment-related influences.
Consequently, it is difficult to assess which combinations of sociotechnical factors
constitute nominal or adverse operational conditions.

We live in the information age (Jin et al. 2015). Our society is currently
experiencing drastic changes in many aspects such as the stock exchange (Dugast
and Foucault 2018), the workforce (Lohr 2012), and even election security (Russell
Neuman et al. 2014). Arguably, the current abundance of data is even transforming
the way research is conducted, changing the impetus from theory-driven approaches
to empirical data-based approaches (Kitchin 2014). We consider that rigorous
research could benefit from the strengths of both theoretical and data-driven empir-
ical approaches. In line with this thinking, the purpose of this paper is threefold.
First, by using data analytics techniques, we statistically identify deviations from
nominal or regular operational conditions given sociotechnical complexity. To
achieve this, we utilize the infrastructure management system at INFRABEL that
provides us with a unique sociotechnical dataset that is composed of disaggregate

Identification of Adverse Operational Conditions in Sociotechnical Systems:. . . 131

measurements of a large-scale infrastructure management system. Second, based on
the insights obtained from the data, we articulate the necessary steps to improve
our understanding of safe management of a complex sociotechnical system. Third,
we pave the way for a real-world implementation at Belgian Railways, which will
allow for further expert feedback and face validation. The rest of the paper is
organized as follows: Sect. 2 provides a concise literature review, Sect. 3 describes
the methodology along with the description of the data, Sect. 4 presents the results,
and Sect. 5 concludes.

2 A Concise Literature Review

We start our coverage of the literature by differentiating between the terms
engineered systems and STSs. In engineered systems (such as missiles, satellites,
cars, etc.), the performance of the system is purposefully decoupled from its end
user (Blanchard and Fabrycky 2011). Stakeholder preferences that are considered
important by the designer are reflected into the system design through the systems
engineering approach (Topcu and Mesmer 2018). In the case of STSs, usually
the most context-dependent, complex, and safety-critical function of the system
is allocated to a group of humans (Wilson 2000). Thus, the performance of STSs
is coupled with the performance of its Controllers. The issue with that is human
performance is dependent on physiological and social considerations such as fatigue
(Ferguson et al. 2008; Roets and Christiaens 2019), mental stress (Beehr 2014),
situational awareness (Salmon et al. 2009), prospective memory (Grundgeiger
et al. 2015), management style (Barling et al. 2002), and organizational culture
(Reiman and Oedewald 2007), among others. While these factors appear to be
only influencing Controllers and not the rest of the system, Controller errors are
one of the leading contributors of system failures (Rasmussen 1997; Cook and
Rasmussen 2005; Roets and Christiaens 2019). In addition, TC tasks with a highly
variable workload are more prone to human error (Roets et al. 2018). A recent study
documented that disregarding the influence the contextual factors on the safety-
critical decision-makers may lead up to 50% underestimation of system failure risk
(Topcu et al. 2019). To summarize, human performance and thus the performance of
STSs is of interdisciplinary nature (Leveson 2011) and emerges from the interaction
of social and technical elements (Kroes et al. 2006).

We mentioned that in STS, the operational conditions can vary drastically;
therefore it is difficult to fully automate (Balfe et al. 2015). Thus, it is extremely
important to learn from accident-free operational performance during adversity.
Sometimes adversity factors originate from the Controllers themselves, which
intuitively leads some engineers to assume that increasing levels of automation is
a dominant accident prevention strategy. For example, in 2013, a train derailment in
Spain was caused by excess speed around a sharp curve that killed 79 passengers,
while the train driver was distracted by a telephone call (Dawber 2015). Clearly,
this accident could have been prevented with an autonomous controller. However,

132 T. G. Topcu et al.

as manifested by some of the recent tragedies, increased automation could also
introduce hard-to-react failure modes. The Boeing 737 MAX anti-stall system
has contributed to two fatal crashes that resulted in 346 fatalities when pilots
could not retake control from the system when erroneous information detected a
nonexistent stall (The Aircraft Accident Investigation Bureau of Ethiopia 2019;
Tjahjono 2018). Against this kind of hard-to-estimate safety-critical circumstances,
reliance on humans offers considerable benefits. This is because the Controllers
have the ability to adjust the STS performance based on the changing needs of
the environment (Osorio et al. 2011). Going back to the case of Boeing 737 MAX
crashes, the same aircraft had a similar problem on the previous day, but an extra
pilot correctly diagnosed and disabled the malfunctioning system, preventing an
accident from occurring (Levin and Suhartono 2019). Clearly, there is no linear
pattern here as even the culture and subjective personal factors play an important
role (Helmreich 2000). Some in the literature proposed using STS risk measures
instead of traditional engineering risk measurement approaches (Battles and Kanki
2004). However, concerns regarding completeness and holism of such approaches
remain valid because of the complexity of the phenomena and the importance of
lower-level contributions (Hulme et al. 2019).

We consider that it is necessary to focus on successful Controller behavior
during instances of adverse operational conditions so that we could learn from
best practices. This raises a fundamental question: Given the multidimensional
and intertwined relationship between social and technical factors, how could one
objectively differentiate between nominal and adverse operational conditions? One
potential way of achieving this is through machine learning. One machine learning
technique that had success in identifying and labeling outliers has been the local
outlier probability approach (Kriegel et al. 2009). This approach provides a score for
the degree of being an outlier, which simply labels how much of an observation is an
outlier from a scale of zero to unity. However, it requires predetermining the number
of nearest neighbors (Wong and Lane 1983). Another alternative, among many
others (Maronna et al. 2019), is the use the robust principal component analysis
(ROBPCA) (Hubert et al. 2005). This approach does not require any predetermined
value, performs exceptionally well with high-dimensional data (Filzmoser et al.
2008), and subsets the data in four segments based on their degree of difference
(Herrera-Restrepo et al. 2016). Due to framing concerns, in this study we only focus
on the ROBPCA algorithm.

3 Methodology

3.1 The Data

The operational data used in this study is from one of INFRABEL’s busiest TCCs,
for an anonymized month in 2018. Our dataset consists of 1914 observations with 9
dimensions that correspond to 1 work hour of the individual TCs. Table 1 provides
variable definitions and descriptive statistics.

Identification of Adverse Operational Conditions in Sociotechnical Systems:. . . 133

Table 1 Data description and its descriptive statistics

Variable name Description Mean Range

Manual
movement
decisions

Number of signals that are manually opened
by TCs

397.49 [0;1355]

Auto movement
decisions

Number of signals that are automatically
opened by the ADAS

344.77 [0;1580]

Adaptation
decisions

Number of decisions that change the state of
the railroad such as merging or splitting
trains, rerouting of trains, or special
procedures at single-track lines, performed
manually by TCs

317.49 [0;1272]

Anticipation Measure (in seconds) of Controller time
spent using the forecast tool that anticipates
the future state of the network

13.65 [0;840]

Responded phone
calls

Number of phone calls addressed by
Controllers. Controllers receive phone calls
from other INFRABEL personnel about
decisions that require further information

0.43 [0;14]

Traffic complexity Measure of traffic complexity of control
area. Estimated by using the number of
control signal passes and performed
adaptation decisions

1022.95 [0;24000]

Traffic density Measure of traffic density in control area.
Calculated by dividing the number of train
movements with the number of large traffic
control signals controlled by that Controller

899.91 [0;6087.91]

Fatigue level This variable represents the mental fatigue of
TCs. It is calculated by INFRABEL’s
predictive tool that is conceptually based on
the fatigue risk index (Roets and Christiaens
2019; Folkard, Robertson, and Spencer
2007)

0.87 [0.67;1.37]

Delay Average train delays within the control area.
Measured from the scheduled time in
seconds. If negative, it indicates that the train
is early. Large positive or negative delays are
due to freight trains

208.74 [−7470;5563]

3.2 The Robust Principal Component Analysis

Before we proceed to the details of the ROBPCA, we would like to emphasize
the importance of identifying influential observations that contain the most amount
of information in a dataset. Given the safety-critical mission of STS, the adverse
events and their consideration in the design and management of STSs could
have dire consequences. Therefore, we would like to identify and learn from
these instances. We will not go into the details of the ROBPCA method as it
is described elsewhere in detail (Hubert et al. 2005). However, we will provide

134 T. G. Topcu et al.

Fig. 1 Visualization of ROBPCA adopted from Hubert et al. (2005)

a summary. Essentially, ROBPCA is a robust multivariate method to classify
statistically different subgroups in high-dimensional complex datasets (Rousseeuw
and Hubert 2018). To elaborate, ROBPCA reduces the dimensionality of data by
computing the principal component hyperplanes (PCs) that represent the majority of
the observations in the dataset. In traditional principal component analysis (Wold et
al. 1987), position of these PCs is computed by using variance measures; hence the
definition of the hyperplanes is sensitive to outliers. Instead, ROBPCA computes the
PCs by incorporating principals from projection pursuit (Huber 1985) and minimum
covariance determinant estimators (Rousseeuw 1984). In short, these are median
least squared bases estimators that are capable of capturing the variation of regular
observations without being influenced by the outlying or extreme observations.
Once the PCs that describe the majority of the observations are computed, we
classify the remaining observations based on their respective Euclidian distance
from these hyperplanes. Two distance measures are used for identifying the data
points: the first is the orthogonal (vertical) distance and the second is the score
(horizontal) distance. We provide a visualization of how these measures are used in
Fig. 1.

The first subset is denoted as regular observations. These observations constitute
the general body of the dataset. These data points are located on the PCs, meaning
that their respective distance is below the threshold values on both orthogonal and
score axes. We consider that these points represent nominal operational conditions
and represent with color black in Fig. 1. The second group is denoted as good
leverage points, and this group is composed of observations that are parallel to the
PCs, but they are horizontally located away from the cluster of regular observations
(only exceed the threshold for score distance). We represent these observations with
color green in Fig. 1. The third group is denoted as orthogonal outliers. These
observations are located vertically away from the PCs, meaning that they only
exceed the orthogonal distance measure. They correspond to the blue dots in Fig. 1.
The projection of these data points on the hyperplanes is aligned with the regular
observations. The final group is represented with the color red in Fig. 1 and is
denoted as bad leverage points. This group is composed of observations that are

Identification of Adverse Operational Conditions in Sociotechnical Systems:. . . 135

furthest away from the PCs both in terms of horizontal and vertical distances. In
other words, these are the observations that significantly influence the distribution
because they represent the most information. For the sake of this study, we will
consider the bad leverage points as a proxy for extreme operational conditions.

4 Results and Discussion

There are 1914 observations in our dataset each corresponding to 1 hour of traffic
control activities at a TC workstation. We use the “rrcov” package in R to conduct
our analysis. When we optimize for the ideal number of PCs that would describe
the data, we observe that two hyperplanes explain most of the variance, with
PC 1 explaining %83.31 and PC 2 explaining %16.69. The cutoff distances that
represent the categories the observations belong to are calculated as 2.71 for the
score (horizontal) distance and 838.17 for orthogonal distance. By using these cutoff
distances, we calculate that 88 observations are classified as bad leverage points;
these are the observations that we consider as adverse operational conditions. In
other words adverse operational conditions occur on %4.59 of all hours in this
TCC. The number of orthogonal outliers is calculated as 104, the number of good
leverage points is calculated as 81, and finally, the remaining 1641 observations are
identified as regular or nominal observations. Figure 2 presents the breakdown of
these points on the PCs. In Fig. 2, black dots represent nominal observations, green
dots represent good leverage points, blue points represent the orthogonal outliers,
and red points represent the bad leverage points.

Now that we have identified the adverse operational conditions, we could take an
in-depth look into how they differ from regular data points that represent nominal
operational conditions. In Table 2, we present the descriptive statistics for the regular
observations that statistically represent nominal operational conditions (n = 1641)
and the bad leverage points that statistically represent the extreme operational
conditions (n = 88).

Table 2 indicates interesting insights regarding the operational trends. The first
takeaway is that during adverse conditions, as expected, the range of the variables
and their standard deviations are much larger, specifically for delays, traffic density,
complexity, and anticipation usage. The second insight we observe is that during
adverse conditions, the use of the ADAS is at a bare minimum with a median value
of zero where far less manual movement decisions are being made. This could be
attributed to the inability of the ADAS to perform adaptation decisions. Regardless,
further research is necessary to understand the relationship between automation
usage and extreme conditions. We don’t observe a drastic difference between the
amount of phone calls and mental fatigue levels. There is a strong contrast between
nominal and extreme cases in terms of traffic complexity and density, which is in
line with the observations of INFRABEL’s domain experts. We note that the range
of these variables are far larger than the median and mean values, indicating that
there are outliers among the adverse conditions during which TCs have to handle
excessive amounts of traffic complexity.

136 T. G. Topcu et al.

Fig. 2 Identification of extreme operational conditions through ROBPCA

Table 2 Descriptive statistics of nominal and extreme operational conditions

Variable
Name

Mean Median Range Standard Dev

Nominal Extreme Nominal Extreme Nominal Extreme Nominal Extreme

Manual
Move
Decisions

329.50 263.69 295.00 55.00 [0;1150] [0;1485] 245.95 400.75

Auto Move
Decisions 434.20 45.40 435.00 0.00 [0;1355] [0;780] 278.07 115.06

Adapt
Decisions 310.30 341.18 270.00 165.50 [0;1,243] [10;1,272] 259.49 359.79

Anticipation 16.42 15.11 0.00 0.00 [0;430] [0;840] 44.13 92.17

Phone Calls 0.43 0.50 0.00 0.00 [0;14] [0;5] 0.96 0.87

Traffic
Complexity 780.84 5,215.63 757.89 3,152.78 [0;2,470.59] [1,329.27;24,000] 570.79 4,840.46

Traffic
Density 808.24 1,814.72 625.00 1,000.00 [0;3,175.82] [0;6,087.91] 779.08 1,837.84

Fatigue
Level 0.86 0.91 0.81 0.79 [0.67;1.37] [0.67;1.35] 0.15 0.21

Delay 210.13 232.46 185.90 210.44 [-539.67;999.84] [-7,122.75;5,173.00] 169.13 1,606.63

Identification of Adverse Operational Conditions in Sociotechnical Systems:. . . 137

5 Conclusion and Future Work

As documented in this exploratory research paper, highly intertwined social and
technical relationships influence the STS performance. Additionally, operational
conditions can vary drastically almost instantaneously. Nevertheless, our approach
demonstrated the power of interdisciplinary research in terms of bringing together
theoretical and data-driven empirical approaches to pursue insights regarding
complex sociotechnical phenomena. Findings of this research support our reasoning
that the identification of adverse operational circumstances will lead to an increased
better understanding of Controller behavior during these situations and can support
the design of future automation tools. Given that we are in the age of data, we believe
that there is great potential for systems research to be rooted in reality rather than
crude approximations or rough mathematical models. While we haven’t focused on
use of other data-intensive methods such as deep learning or predictive modeling,
availability of rich and large datasets offers great potential for data-driven research.
That being said, data-intensive methods should be approached with caution given
the complexity of the issues that we are interested in. A robust strategy to avoid
misconceptions that could originate from the masking effects in data is to establish
collaborations with domain experts and seek verification (at least face validity).

Acknowledgments All intellectual materials discussed in this paper are protected under the
nondisclosure agreement between Virginia Tech and INFRABEL. We would like to thank Dr.
Renaat van de Kerkhove, Dr. Alex Fletcher, Leslie Steen, and Kristof van der Strieckt from
INFRABEL for preparing the data and assisting our research with their feedback. The views
expressed in this paper are those of the authors and do not necessarily reflect the opinions of
INFRABEL.

References

Balfe, Nora, Sarah Sharples, and John R. Wilson. 2015. Impact of Automation: Measurement
of Performance, Workload and Behaviour in a Complex Control Environment. Applied
Ergonomics 47 (March): 52–64. https://doi.org/10.1016/j.apergo.2014.08.002.

Barling, Julian, Catherine Loughlin, and E. Kevin Kelloway. 2002. Development and Test of a
Model Linking Safety-Specific Transformational Leadership and Occupational Safety. Journal
of Applied Psychology 87 (3): 488.

Battles, James B., and Barbara G. Kanki. 2004. The Use of Socio-technical Probabilistic Risk
Assessment at AHRQ and NASA. In Probabilistic Safety Assessment and Management, ed.
Cornelia Spitzer, Ulrich Schmocker, and Vinh N. Dang, 2212–2217. London: Springer. https://
doi.org/10.1007/978-0-85729-410-4_356.

Beehr, Terry A. 2014. Psychological Stress in the Workplace (Psychology Revivals). Routledge.
Blanchard, Benjamin S., and Wolter J. Fabrycky. 2011. Systems Engineering and Analysis. 5th ed.

Upper Saddle River: Pearson Education.
Cook, R., and J. Rasmussen. 2005. ‘Going Solid’: A Model of System Dynamics and Conse-

quences for Patient Safety. BMJ Quality & Safety 14 (2): 130–134. https://doi.org/10.1136/
qshc.2003.009530.

http://dx.doi.org/10.1016/j.apergo.2014.08.002
http://dx.doi.org/10.1007/978-0-85729-410-4_356
http://dx.doi.org/10.1136/qshc.2003.009530

138 T. G. Topcu et al.

Dawber, Alistair. 2015. Driver Facing 80 Homicide Charges over Spanish Train Crash. The Inde-
pendent, October 8: 2015. http://www.independent.co.uk/news/world/europe/spanish-train-
crash-driver-facing-80-homicide-charges-but-rail-bosses-cleared-a6686951.html.

Dugast, Jérôme, and Thierry Foucault. 2018. Data Abundance and Asset Price Infor-
mativeness. Journal of Financial Economics 130 (2): 367–391. https://doi.org/10.1016/
j.jfineco.2018.07.004.

Ferguson, Sally A., Nicole Lamond, Katie Kandelaars, Sarah M. Jay, and Drew Dawson. 2008.
The Impact of Short, Irregular Sleep Opportunities at Sea on the Alertness of Marine Pilots
Working Extended Hours. Chronobiology International 25 (2–3): 399–411.

Filzmoser, Peter, Ricardo Maronna, and Mark Werner. 2008. Outlier Identification in High
Dimensions. Computational Statistics & Data Analysis 52 (3): 1694–1711. https://doi.org/
10.1016/j.csda.2007.05.018.

Folkard, Simon, Karen A. Robertson, and Mick B. Spencer. 2007. A Fatigue/Risk Index to Assess
Work Schedules. Somnologie-Schlafforschung Und Schlafmedizin 11 (3): 177–185.

Grundgeiger, Tobias, Penelope M. Sanderson, and R. Key Dismukes. 2015. Prospective Memory
in Complex Sociotechnical Systems. Zeitschrift Für Psychologie.

Helmreich, Robert L. 2000. Culture and Error in Space: Implications from Analog Environments.
Aviation, Space, and Environmental Medicine 71 (9): NaN–NaN.

Herrera-Restrepo, Oscar, Konstantinos Triantis, William L. Seaver, Joseph C. Paradi, and Haiyan
Zhu. 2016. Bank Branch Operational Performance: A Robust Multivariate and Clustering
Approach. Expert Systems with Applications 50: 107–119.

Huber, Peter J. 1985. Projection Pursuit. The Annals of Statistics 13 (2): 435–475. http://
www.jstor.org/stable/2241175.

Hubert, Mia, Peter J. Rousseeuw, and Karlien Vanden Branden. 2005. ROBPCA: A New Approach
to Robust Principal Component Analysis. Technometrics 47 (1): 64–79. https://doi.org/10.1198/
004017004000000563.

Hulme, Adam, Neville A. Stanton, Guy H. Walker, Patrick Waterson, and Paul M. Salmon. 2019.
What Do Applications of Systems Thinking Accident Analysis Methods Tell Us about Accident
Causation? A Systematic Review of Applications between 1990 and 2018. Safety Science 117
(August): 164–183. https://doi.org/10.1016/j.ssci.2019.04.016.

Jin, Xiaolong, Benjamin W. Wah, Xueqi Cheng, and Yuanzhuo Wang. 2015. Significance and
Challenges of Big Data Research. Big Data Research, Visions on Big Data 2 (2): 59–64. https:/
/doi.org/10.1016/j.bdr.2015.01.006.

Keeney, Ralph L., and Howard Raiffa. 1993. Decisions with Multiple Objectives: Preferences and
Value Trade-Offs. Cambridge.

Kitchin, Rob. 2014. Big Data, New Epistemologies and Paradigm Shifts. Big Data & Society 1 (1):
2053951714528481.

Kriegel, Hans-Peter, Peer Kröger, Erich Schubert, and Arthur Zimek. 2009. LoOP: Local Outlier
Probabilities. In Proceedings of the 18th ACM Conference on Information and Knowledge
Management, 1649–1652, CIKM’09. New York: ACM.

Kroes, Peter, Maarten Franssen, Ibo van de Poel, and Maarten Ottens. 2006. Treating Socio-
Technical Systems as Engineering Systems: Some Conceptual Problems. Systems Research
and Behavioral Science 23 (6): 803–814.

Leveson, Nancy G. 2011. Applying Systems Thinking to Analyze and Learn from Events. Safety
Science 49 (1): 55–64. http://www.sciencedirect.com/science/article/pii/S0925753510000068.

Levin, Alan, and Harry Suhartono. 2019. Pilot Who Hitched a Ride Saved Lion Air 737 Day
Before Deadly Crash. Bloomberg, March 19: 2019. https://www.bloomberg.com/news/articles/
2019-03-19/how-an-extra-man-in-cockpit-saved-a-737-max-that-later-crashed.

Lohr, Steve. 2012. The Age of Big Data. New York Times 11 (2012).
Maronna, Ricardo A., R. Douglas Martin, Victor J. Yohai, and Matías Salibián-Barrera. 2019.

Robust Statistics: Theory and Methods (with R). Wiley.
National Transportation Safety Board. 2016. Amtrak Train Collision with Maintenance-of-Way

Equipment, Chester, Pennsylvania, April 3, 2016. In Accident Report NTSB/RAR-17/02.
Washington DC: NTSB.

http://www.independent.co.uk/news/world/europe/spanish-train-crash-driver-facing-80-homicide-charges-but-rail-bosses-cleared-a6686951.html
http://dx.doi.org/10.1016/j.jfineco.2018.07.004
http://dx.doi.org/10.1016/j.csda.2007.05.018
http://www.jstor.org/stable/2241175
http://dx.doi.org/10.1198/004017004000000563
http://dx.doi.org/10.1016/j.ssci.2019.04.016
http://dx.doi.org/10.1016/j.bdr.2015.01.006
http://www.sciencedirect.com/science/article/pii/S0925753510000068
https://www.bloomberg.com/news/articles/2019-03-19/how-an-extra-man-in-cockpit-saved-a-737-max-that-later-crashed

Identification of Adverse Operational Conditions in Sociotechnical Systems:. . . 139

Osorio, Carlos A., Dov Dori, and Joseph Sussman. 2011. COIM: An Object-Process Based
Method for Analyzing Architectures of Complex, Interconnected, Large-Scale Socio-Technical
Systems. Systems Engineering 14 (4): 364–382.

O’Sullivan, Arthur, and Steven M. Sheffrin. 2007. Economics: Principles in Action. Boston, MA:
Pearson/Prentice Hall.

Rasmussen, Jens. 1997. Risk Management in a Dynamic Society: A Modelling Problem. Safety
Science 27 (2): 183–213.

Reiman, Teemu, and Pia Oedewald. 2007. Assessment of Complex Sociotechnical Systems –
Theoretical Issues Concerning the Use of Organizational Culture and Organizational Core Task
Concepts. Safety Science 45 (7): 745–768.

Roets, Bart, and Johan Christiaens. 2019. Shift Work, Fatigue, and Human Error: An Empirical
Analysis of Railway Traffic Control. Journal of Transportation Safety & Security 11 (2): 207–
224. https://doi.org/10.1080/19439962.2017.1376022.

Roets, Bart, Marijn Verschelde, and Johan Christiaens. 2018. Multi-Output Efficiency and
Operational Safety: An Analysis of Railway Traffic Control Centre Performance. European
Journal of Operational Research. https://doi.org/10.1016/j.ejor.2018.04.045.

Rousseeuw, Peter J. 1984. Least Median of Squares Regression. Journal of the American Statistical
Association 79 (388): 871–880.

Rousseeuw, Peter J., and Mia Hubert. 2018. Anomaly Detection by Robust Statistics. WIREs Data
Mining and Knowledge Discovery 8 (2): e1236. https://doi.org/10.1002/widm.1236.

Russell Neuman, W., Guggenheim Lauren, S. Mo Jang, and Soo Young Bae. 2014. The Dynamics
of Public Attention: Agenda-Setting Theory Meets Big Data. Journal of Communication 64
(2): 193–214. https://doi.org/10.1111/jcom.12088.

Salmon, Paul M., Neville A. Stanton, Guy H. Walker, Daniel Jenkins, Darshna Ladva, Laura
Rafferty, and Mark Young. 2009. Measuring Situation Awareness in Complex Systems:
Comparison of Measures Study. International Journal of Industrial Ergonomics 39 (3): 490–
500. https://doi.org/10.1016/j.ergon.2008.10.010.

Salmon, Paul M., Guy H. Walker, and Neville A. Stanton. 2016. Pilot Error versus Sociotechnical
Systems Failure: A Distributed Situation Awareness Analysis of Air France 447. Theoretical
Issues in Ergonomics Science 17 (1): 64–79.

The Aircraft Accident Investigation Bureau of Ethiopia. 2019. Preliminary Accident Investigation
Report of B737-8 (MAX), Registered ET-AVJ. Accident Report AI-01/19.

Tjahjono, Soerjanto. 2018. Preliminary Accident Investigation Report of PT. Lion Mentari Airlines
Boeing 737-8 (MAX); Registered PK-LQP. Accident Report KNKT.18.10.35.04. Jakarta:
Komite Nasional Keselamatan Transportasi (KNKT).

Topcu, Taylan G., and Bryan L. Mesmer. 2018. Incorporating End-User Models and Associated
Uncertainties to Investigate Multiple Stakeholder Preferences in System Design. Research in
Engineering Design 29 (3): 411–431.

Topcu, Taylan G., Konstantinos Triantis, and Bart Roets. 2019. Estimation of the Workload
Boundary in Socio-Technical Infrastructure Management Systems: The Case of Belgian
Railroads. European Journal of Operational Research 278 (1): 314–329.

Wilson, John R. 2000. Fundamentals of Ergonomics in Theory and Practice. Applied Ergonomics
31 (6): 557–567.

Wold, Svante, Kim Esbensen, and Paul Geladi. 1987. Principal Component Analysis. Chemomet-
rics and Intelligent Laboratory Systems 2 (1–3): 37–52.

Wong, M. Anthony, and Tom Lane. 1983. A Kth Nearest Neighbour Clustering Procedure.
Journal of the Royal Statistical Society. Series B (Methodological) 45 (3): 362–368. http://
www.jstor.org/stable/2345405.

http://dx.doi.org/10.1080/19439962.2017.1376022
http://dx.doi.org/10.1016/j.ejor.2018.04.045
http://dx.doi.org/10.1002/widm.1236
http://dx.doi.org/10.1111/jcom.12088
http://dx.doi.org/10.1016/j.ergon.2008.10.010
http://www.jstor.org/stable/2345405

Dynamic Causal Hidden Markov Model
Risk Assessment

Michael Sievers and Azad M. Madni

Abstract Understanding system vulnerabilities to risk factors during operation
is essential for developing dependable systems. By implication, assessing in-
use risk factors requires monitoring system parameters that contribute to making
probabilistic inferences. We argue, however, that naïve use of statistical data
without regard to causality can yield surprising and often erroneous risk predictions.
Making reliable risk predictions is further complicated by lack of full awareness of
system states and the existence of unobservable parameters in complex systems.
Overly conservative risk assessment leads to increased life-cycle cost and reduced
system availability resulting from overly aggressive preventive maintenance or
replenishment strategies, while overly optimistic risk assessment can lead to even
higher life-cycle cost and potential harm when otherwise preventable failures occur.
This paper discusses a causality-aware, dynamic risk assessment model based
on hidden Markov model construct. This model employs the concept of hidden
system states that account for otherwise unexplainable observations. The model is
continuously evaluated during system operation and updated when new observations
warrant reevaluation.

Keywords Risk assessment · Markov model · Causality · Causal modeling ·
Probabilistic inference

1 Introduction

Telling a risk analyst to ‘just specify the likelihood,’ is like telling a homeless person to
‘just get a house’ (Ferson 2005).

M. Sievers (�) · A. M. Madni
University of Southern California, Los Angeles, CA, USA
e-mail: michael.sievers@usc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_13

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_13&domain=pdf
mailto:michael.sievers@usc.edu
https://doi.org/10.1007/978-3-030-82083-1_13

142 M. Sievers and A. M. Madni

Nomenclature
a State transition probability
β Covariance of two system events
O Set of observations
π Initial state distribution
PN Probability necessity
S Finite set of states

Risk analyses methods generally predict events that can potentially occur and
the impact of those events on system behavior. A commonly used approach by
NASA and the US Department of Defense assesses and tracks risk by assigning
qualitative values to the likelihood and severity of events (DoD 2014; NASA 2010).
An obvious question is whether the relevant data needed for risk assessment is
available, especially when the events of interest may have minimal or no prior
history of occurrence (Huff 1954). Furthermore, the events selected for analysis
are usually based on analyst judgment and reflect analyst’s biases, not on hard
evidence. When complex systems are involved, uncertainty in the models used
may mask system realities, thereby resulting in questionable potentially misleading
conclusions.

Several authors have noted that Bayesian modeling methods can potentially
help in understanding the true nature of events and event impacts (Ferson 2005;
Homayoon 2009; NASA 2010; Baru 2016). When applied appropriately, Bayesian
models can accurately converge on the right parameters which influence or are
indicators of risk. This is an expected outcome in that Bayesian models account
for both parameter and model uncertainties. However, the proper application of the
Bayesian approach needs to clearly distinguish between correlation and causation.

Briefly, Bayes’ theorem, P(A & B) = P(A| B)P(B), has been successfully applied
in multiple, disparate domains. Of course, if improperly applied, it can lead to
surprising, potentially erroneous conclusions. Consider the oft cited example of ice
cream sales and drowning. If the data collected considers only number of ice cream
sales and number of drownings, then Bayes shows a correlation between increased
ice cream sales and people drowning. That is, if A is “drowning” and B is “ice cream
sales,” then as the priori, P(B), and likelihood, P(A| B), increase so does the apparent
correlation P(A & B). Obviously, this is flawed reasoning because both ice cream
sales and people swimming increase in hot weather. Bayes is not at fault here; rather,
it is that the “wrong” data set was used in the analysis. While finding correlations
is relatively easy, understanding causality is far more difficult (Pearl 2001, Pearl
2009).

At the heart of most forms of risk assessment are so-called weak assertions of
the form: if event A occurs, then event B occurs. If B occurs, then there is a higher
probability that A also occurs. Weak assertions are expressed by Bayes:

Dynamic Causal Hidden Markov Model Risk Assessment 143

Fig. 1 Two simple models of causality in which exogenous variables UA and UB are connected to
each other and to endogenous variables A and B with dashed lines. ß represents the direct effect A
has on B

P (A|B) = P(A)
P
(
B|A

)

P
(
B
) (1)

and are the basis for probabilistic risk assessment (PRA) (NASA 2010).
When considering risk though, simply observing a collection of parameters

without understanding causality can lead to false alarms or misinterpretation of
potentially hazardous situations. While this seems reasonable, unfortunately, in
complex systems, requisite observations and state knowledge for making sound
decisions may not be available. Moreover, systems that degrade with time may inval-
idate priors that frequentists depend on or prevent proper updating of subjectivists’
beliefs.

Pearl (2009) describes a causality construct that represents the probability that an
event, B=b, will occur whenever action, A=a, is enforced over the entire population
as P(B = b| do(A = a)). In essence, do(A) implies a controlled experiment with
randomized A.

Pearl shows that causality can be associated with directed graphs in which
nodes represent observed or unobserved system factors connected by a term that
represents the causal effect of one factor on another. The model comprises so-called
exogenous variables that are not influenced by other system variables but have an
impact on other system variables called endogenous variables. Figure 1 shows two
simple examples based on Pearl’s paper. In Fig. 1a, Cov(A, B) = β and in Fig. 1b,
Cov(A, B) = β + Cov(UA, UB). Note that in some situations Cov(UA, UB) = 0 in
which case the covariance is β as in Fig. 1a.

The evaluation of probabilities needed for causality needs more care than simply
collecting data and looking at frequencies of occurrence. For example, Bayesian
analyses are strongly influenced by the assumptions made on prior probabilities as
shown in Eq. 1. As sample size increases, the sensitivity to those priors is reduced.
However, in the case of causality, sensitivity to prior causal assumptions remains
strong regardless of sample size. Moreover, hidden and indirect effects confound
faithfully representing the relationships between events and actions. Recalling the
example of eating ice cream and drowning, a naïve statistical analysis will conclude
a strong correlation.

144 M. Sievers and A. M. Madni

One solution for reducing the likelihood of false correlations uses Pearl’s concept
of probability necessity, PN. Under the assumption that event, A, is monotonic
relative to action, B, then

PN = P (A|B) − P
(
A|B ′)

P (A|B)
+ P

(
A|B ′) − P

(
A|do

(
B ′))

P (B,A)
(2)

Equation 2 subtracts the likelihood that event, A, occurs even when action B
does not. In the case of eating ice cream, the likelihood of drowning will be roughly
the same regardless of ice cream consumption which eliminates confounding and
incorrect bias.

2 Risk

Loosely, risk assesses the likelihood some event will occur and the impact that
event has on a system or on a system’s environment. Assessments run the gamut
of subjective analyses by subject matter experts (SMEs) to more rigorous and
formal mathematical constructs. SME risk assessments are essential during system
formulation, design, and test phases because hard data are usually not available.
While far from perfect, methods have been created that help mitigate the impact
of SME bias and incorrect assumptions that often underlie subjective assessments.
Also, while some systems are heavily instrumented for post-deployment data
collection, that data may not always be useful for evaluating the cause of a particular
event or the probability that an unexpected and dangerous event is likely to occur in
the near future.

Dynamic assessment of system state from post-deployment data can provide
insights into design weaknesses and aid in scheduling maintenance and replenish-
ment activities. This is not a matter of simply collecting large quantities of data
and doing a statistical analysis because dependencies in complex systems can be
difficult to untangle. For example, suppose there is a risk of event occurring when
exogenic variable P1 > x but never when endogenic variables P2 < y and P3 = true.
A correct assessment of event risk depends on knowing the correlation of P1 to
P2 and P3. Knowing only that an event occurs based on the value of P1 is akin to
correlating increased ice cream sales to drowning while disregarding the correlation
with increased swimming and summer temperatures.

2.1 Hidden Markov Causality Risk Model

Traditionally, risk assessments are used by managers and engineers in tradespace
and early design evaluations and focus attention on design changes needed for

Dynamic Causal Hidden Markov Model Risk Assessment 145

removing or reducing the likelihood of serious, undesirable future events. While
using risk assessments in the design process is essential, it is equally important
to understand post-deployment system vulnerabilities. That is, systems must be
monitored during operation so that risks of serious or dangerous events can be
estimated. As previously noted, naïve data collection without consideration of
causality will not suffice as a reliable predictor of risk. What is needed is the creation
of models in which prior probabilities account for probability necessity as in Eq. 2.

A state machine construct is a natural model for evaluating system risk in which
states represent a notion of vulnerability, transitions occur as the result of system
events, and outputs result from system state and system events. In an ideal world, the
Markov property holds, i.e., the conditional probability distribution of future states
depends only on the present state and events and not on the trajectory taken to arrive
at that state. When the Markov property holds, we can create an understanding of the
state space and the probability distribution for future states based on straightforward
statistical analysis of observations made.

In the real world, there might be ambiguity in the knowledge of system state
or uncertainty that an event will have the expected result. That is, some aspects
of a system may be unobservable or hidden. Hidden Markov models (HMMs)
accommodate uncertainty by including hidden states associated with initially
unknown observation and transition distributions. HMMs are trained during system
use and over time refine distributions by evaluating how well a model predicts
system behavior. In essence, continuous model updates are a Bayesian process that
improves HMM priors and consequently improves the reliability of the predictions
made by the model.

HMMs for real-time vulnerability assessment of network cyberattacks are not
new (Årnes et al. 2005; Liu and Liu 2016). Conceptually, these assessments involve
the creation of a HMM-based attack graph in which states represent a method of
attack and transition probabilities reflect the difficulty or vulnerability of an attack
causing an unwanted operational change. Monitors collect an observation sequence
that is used for evaluating how well the HMM predicts that sequence but can also
be used in determining a state probability distribution (belief state). That is, given
an observation sequence, O, it is possible to predict P(O| model) using the forward
algorithm as well as the belief state distribution after observing the sequence, O.
Additionally, the state sequence can be determined using the Viterbi algorithm
which determines the most probable path the model takes as each observation is
made. The state sequence is useful in understanding the events that caused the
system to arrive in its current state, that is, it provides the notion of causality.
Additionally, if P(O| model) is below a threshold, then it is likely that there is a
new hidden state at play or the model parameters need adjustment.

In a similar vein, a more general risk model can be created. This model comprises
known states that represent system conditions, transitions, and observations associ-
ated with system conditions. The model is augmented with hidden system conditions
and initially unknown transition and observation probabilities. For example, Fig. 2
shows a HMM comprising two known and two hidden system conditions. The

146 M. Sievers and A. M. Madni

Fig. 2 A four-state Markov
model comprising two
observable states, S0 and S1,
and two hidden states, S3
and S4

transition and observation probabilities associated with the hidden states must be
nonzero but can be arbitrarily small.

A HMM is conventionally defined by:

• A finite set of states, S = {s0, s1, . . . sn − 1}; the state at time, t, is qt.
• A set of observations, O = {O0, O1, . . . OT − 1}.
• State transition matrix, A, in which element ai, j = P(qi + 1 = sj � P(qt = si).
• Observation distribution matrix, B, in which bj(k) = P(ok| qt = sj) where

0 ≤ j ≤ n − 1 and
0 ≤ k ≤ T.

• An initial state probability distribution, π , in which π j = P(q0 = si) for
0 ≤ i ≤ n − 1.

2.2 Assessing Risk

In evaluating risk, HMM states represent hazard conditions, e.g., the condition that
pressure in a tank exceeds a specified threshold. State transitions are determined
by substituting the HMM parameters into Eq. 2. Equation 3 computes ai, j by
considering whether there is a causal link between si and sj if observation, o, occurs
while in sj:

ai,j = P
(
sj |si, o

) − P
(
sj |si ′, o

)

P
(
sj |si

) + P
(
sj |si ′, o

) − P
(
sj |do

(
si

′, o
))

P
(
sj , si

) (3)

Dynamic Causal Hidden Markov Model Risk Assessment 147

The HMM is developed by choosing a set of hazard conditions either randomly
or through analyses such as fault tree or branch termination. Hidden states are then
added and connected to the initial state set. Hidden state transition and observation
probabilities are assigned nonzero, but low values so that they do not exert undue
influence on model parameter initialization. However, the consequence of overly
high values is that model parameter convergence could take more iterations.

The initial risk algorithm comprises five steps:

1. Determine initial values for A, B, and π ; these may be set randomly if initial
values are unknown.

2. Collect observations and update the initial model Baum-Welch (Baum and Petrie
1966) using Eq. 3 for evaluating transition updates.

3. Given an observation sequence, O, compute P(O| model) using the forward algo-
rithm, i.e., determine whether the observations match a risk scenario predicted
by the model.

4. Given the state distribution determined in Step 3, use the model to predict the
probability of transitioning to another risk.

5. Go back to Step 2 until P(O| model) exceeds a threshold.

The algorithm changes once P(O| model) is above a threshold. That is, observa-
tions are made, P(O| model) is computed, and a risk prediction is made. P(O| model)
below a threshold is an indication of a novel condition that requires returning to
Step 2. Figure 3 shows the risk algorithm flow diagram.

3 Observation Clusters

Making observations to evaluate risk in a real system is more complicated than
simply collecting data from monitors. Factors such as noise, faulty monitors, and
transient events can potentially create variances that need accommodation without
necessarily adding to an already large state space. Moreover, some monitors may
have greater influence on the state space than others in certain system operational
modes. For example, a fault in an entry-descent-landing (EDL) subsystem during
the early cruise phase to Mars is less important than the same fault occurring in the
EDL activity.

Dealing with transient effects and certain types of noise is readily managed by
requiring persistence on monitor samples. Modal information is collected as a data
point in an observation. That is, rather than trust that a commanded mode has been
achieved, for the purposes of risk, we depend on correlation of mode-dependent
variables that represent the mode the system is actually in. Note too that variations
in mode-dependent variables are also likely.

However, normal variations in samples imply the need for n-dimensional clus-
tering in which each snapshot of monitor values is compared with a distance to
observation clusters. Snapshots within a cluster are characterized by the cluster
centroid. Ambiguous or unassignable snapshots are considered novel and trigger

148 M. Sievers and A. M. Madni

Fig. 3 Basic risk evaluation algorithm including learning iteration and observation-based risk
evaluation

both a reevaluation of the cluster space and, as needed, execution of the Baum-
Welsh algorithm for updating model parameters.

Not shown in Fig. 3 is the cluster step that occurs during initial observations
made for updating the initial HMM parameters. Because clusters may not be known
initially, clustering is performed using an expectation maximization-Gaussian mix-
ture model (GMM) (Dempster et al. 1977). Briefly, GMM is initialized by choosing
a set of clusters and randomly assigning a mean and distribution to each cluster.
After initialization, the probability that each data point belongs to that cluster is
computed by evaluating the proximity to the cluster centroid. The results are then
used to update the clusters and repeat the probability evaluations until the probability
distributions convergence.

During operation, the Mahalanobis distance from the observation to the clus-
ters determines whether an observation belongs to a cluster. An observation is
subsequently classified by the mean of the cluster it belongs to. We should note
too that clusters likely will change with time, especially as the system encounters
new usage, new environments, and changes. For this reason, when practical, offline
GMM is periodically performed to update the cluster definitions. In this regard,
it may be necessary to include heuristics for assessing the importance of certain
monitor values when offline GM is not practical. Using the EDL example from
above, it might be necessary to “disable” certain clusters when they no longer apply,
e.g., during EDL any cluster related to cruise operation is not applicable, and any

Dynamic Causal Hidden Markov Model Risk Assessment 149

observation that would fall into a cruise-mode cluster now falls into an observation
associated with an active fault or a fault vulnerability.

4 Conclusions and Future Prospects

The prevalence of autonomous systems in automotive, aircraft, military, space, and
commercial sectors is increasing making human-in-the-loop assessment of risk less
and less viable. Moreover, with increasing complexity, classical diagnosis methods
such as fault dictionaries that match syndromes to cause become less reliable due to
false or unaccounted-for correlations. The upshot is that maintaining future systems
will either become unacceptably expensive due to false alarms or, worse yet, systems
will become vulnerable to serious but unpredicted risks.

In this paper, we have defined a modeling construct and assessment algorithm
that, once trained, will provide a causality-aware assessment of risk. Our approach
has the advantage of reducing the influence of false correlations, thereby enabling a
more accurate understanding of system health. Moreover, there is a built-in learning
process that adds new hidden states or adjusts model parameters when needed to
explain a novel set of observations.

A distinguishing feature of our approach is that it relies less on individual
observations and more on whether a sequence of observations fits a causality
pattern. When a pattern is recognized, the model can provide a probability of
the pattern as well as the probability of escaping to another pattern. Given both
pieces of information, system operators can then decide whether and when repair
or replacement is needed. For example, is it necessary to ground an airplane
now due to a high probability of a near-term, serious fault condition, or can the
airplane complete a mission and receive service later? Additionally, knowing with
confidence failure risk simplifies maintenance scheduling and acquisition of spares.

It is well-known, however, that state-based models can be very large and difficult,
if not practically impossible, to analyze. General approaches to managing large
models comprise breaking them up into smaller models and/or using heuristics that
approximate completely rigorous analyses. An issue we have not yet addressed is the
impact on causality when decomposition or approximations are used. We understand
that practical use of our approach will necessitate a thorough evaluation of state-
space explosion.

Our primary work-to-go is to apply this concept to a realistic problem. To that
end we have created an unmanned aerial vehicle (UAV) simulation in which we can
“fly” multiple UAVs that are tasked with completing a reconnaissance mission. The
simulation allows an arbitrary number of monitors and also allows injecting noise,
transient upsets, and failures (Madni 2019).

To test-drive these concepts on realistic problems, we have created a minimum
viable testbed (Madni 2019). The testbed employs an open-source infrastructure,
multiple modeling and simulation methods, a library of components for rapid
scenario development, software and hardware building blocks, and an open-source

150 M. Sievers and A. M. Madni

repository. The testbed employs an open, extensible architecture, with the ability
to incorporate both virtual models and physical systems. This testbed is different
from traditional hardware-in-the-loop testbeds that employ proprietary models and
focus on specific system instantiation. We intend to report our findings from testbed
experimentation in a follow-on paper.

References

Årnes, A., K. Sallhammar, K. Haslum, T. Brekne, M.E.G. Moe, and S.J. Knapskog. 2005.
Real-Time Risk Assessment with Network Sensors and Intrusion Detection Systems. In
Computational Intelligence and Security. CIS 2005, Lecture Notes in Computer Science, ed.
Y. Hao et al., vol. 3802. Berlin/Heidelberg: Springer.

Baru, S. 2016. Bayesian Network Based Dynamic Operational Risk Assessment. Journal of Loss
Prevention in the Process Industries 41.

Baum, L., and E. Petrie. 1966. Statistical Inference for Probabilistic Functions of Finite State
Markov Chains. The Annals of Mathematical Statistics 37 (6): 1554–1563.

Dempster, A., N. Laird, and D. Rubin. 1977. Maximum Likelihood from Incomplete Data via the
EM Algorithm. Journal of the Royal Statistical Society, Series B 39 (1): 1–38.

Department of Defense Risk Management Guide for Defense Acquisition Programs, 7th Edition,
2014

Ferson, S. 2005. Bayesian Methods in Risk Assessment. Unpublished Report Prepared for the
Bureau de Recherches Geologiques et Minieres (BRGM), New York.

Homayoon, D., et al. 2009. Bayesian Inference for NASA Probabilistic Risk and Reliability
Analysis. NASA Technical Report NASA/SP-2009-569, June 2009.

Huff, D. 1954. How to Lie with Statistics. New York: W.W. Norton & Company.
Liu, S., and Y. Liu. 2016. Network Security Risk Assessment Method Based on HMM and aTtack

Graph Model. In Proceedings of the 17th IEEE/ACIS International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 517–522.
New York: IEEE.

Madni, A.M. 2019. Minimum Viable MBSE Testbed for Exploring Models and Algorithms for
System Resilience and Risk Assessment, SAE-TR-01/05/2020.

NASA Risk-Informed Decision-Making Handbook, NASA/SP-2010-576, 2010
Pearl, J. 2001. Causality Models, Reasoning, and Inference, Cambridge University Press, ISBN

0-521-77362-8.
———. 2009. Causal Inference in Statistics: An Overview. Statistical Surveys 3: 96–146.

Part III
Use of Ontologies in MBSE

Minimum Viable Model to Demonstrate
Value Proposition of Ontologies for
Model-Based Systems Engineering

Azad M. Madni

Abstract With increasing connectivity and digitalization, systems continue to
become increasingly more complex. To meet this challenge, the model-based
systems engineering community has begun exploring the use of ontologies to scope
the modeling effort and demonstrate the value of MBSE without resorting to full-
blown modeling. To this end, this paper presents a minimum viable model (MVM)
approach to system modeling. In the MVM approach, a system model with the
requisite structure and just enough semantics is created to resolve semantic incon-
sistencies in the model, achieve interoperability, and answer a few key questions
at the right level of detail posed by stakeholders from the systems acquisition and
engineering communities. The larger intent is to have potential customers buy into
the viability of an ontology-enabled approach to MBSE.

Keywords Ontology · Metamodel · Semantic model · Model syntax · Digital
engineering · MBSE

1 Introduction

Systems engineering (SE) is undergoing a transformation in response to the growing
complexity of systems resulting from increasing system scale, interconnectedness,
and digitalization of enterprises. Two potential enablers of such transformation are
ontologies (Madni et al. 2001; Kaiya and Saeki 2005; Mayk and Madni 2006;
Madni et al. 1998, 1999, 2002; Gruninger and Lee 2002; Wand 1996; Orellana and
Madni 2014; Sievers 2019) and metamodels (Saeki and Kaiya 2002). An ontology
is a thesaurus of words (which represent concepts), the relations among them,
and the rules that help with model correctness checking. In other words, these
model-checking rules help with identifying lack of model elements (i.e., gaps) and

A. M. Madni (�)
University of Southern California, Los Angeles, CA, USA
e-mail: azad.madni@usc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_14

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_14&domain=pdf
mailto:azad.madni@usc.edu
https://doi.org/10.1007/978-3-030-82083-1_14

154 A. M. Madni

semantic inconsistencies. A metamodel defines the abstract syntax (i.e., grammar) of
model description languages. For example, the UML metamodel defines the abstract
syntax for various UML diagrams. More generally, metamodels express the logical
syntactical structures that domain-specific models need to conform to for scalability,
reuse, and extensibility. However, metamodels do not specify the semantics of the
model. In this regard, the work of Saeki and Kaiya (2002) shows how ontologies
can provide the semantics for domain-specific models and metamodels.

2 Minimum Viable Model (MVM)

In the past few years, the SE community has begun exploring the use of ontologies
in MBSE to reduce complexity and facilitate interoperability and reuse. However,
the few ontology-related SE initiatives that were undertaken in the past few years did
not produce the expected outcome. A key lesson learned from these projects is that
modeling a complex system with no simplifying assumptions or guiding paradigm
can quickly become a never-ending modeling task with no tangible results to show.
What is needed is a more pragmatic approach with clear goals and reduced modeling
scope to show tangible results. The minimum viable model (MVM) approach
is intended to accomplish this objective. A MVM is a model with just enough
semantics and structure to demonstrate ability to resolve semantic inconsistencies in
the model, demonstrate interoperability, and answer customer questions at the right
level of detail posed by stakeholders without resorting to full-blown modeling. One
target customer for MVM is the systems acquisition and engineering communities.
The larger intent is to have potential customers buy into the viability of an ontology-
enabled approach to MBSE.

The MVM approach is concerned with identifying the essential system elements
and their relationships that underpin representative use cases (which define and
limit the scope of the modeling problem) and help answer questions associated with
them. The key idea with MVM is to focus on developing the requisite structure and
minimum vocabulary needed to represent the selected use cases. The use cases, for
example, can be defined in conjunction with representatives from the DoD systems
acquisition and systems engineering communities, as well as from industry. What
uniquely differentiates this approach is the emphasis on a minimum vocabulary set
and a minimum requisite representation (using the minimum vocabulary set) that
can represent the core concepts and their relationships described or implied in the
use cases. The value proposition can then be demonstrated in terms of ability to (a)
search and query models; (b) perform correctness analysis; (c) add new concepts
and relationships; (d) achieve model scalability, interoperability, and reuse; and (e)
generate custom documentation on demand.

The MVM approach is essentially concerned with creating a system representa-
tion that is a slice of the total system model to demonstrate the value of ontologies in
MBSE. It leverages ontologies and metamodels to realize a scalable system model

Minimum Viable Model to Demonstrate Value Proposition of Ontologies for. . . 155

with several desirable properties (e.g., reduced modeling effort, semantically and
syntactically correct model, potential for reuse, interoperability).

So, what is a minimal system representation? A minimal system representation
is one that has just enough semantics (vocabulary) to represent the system, facilitate
search, and answer questions associated with the selected use cases in the domains
of interest. It has just enough structure and grammar to organize words and symbols
in a logical way. The reason we need a minimal representation is to limit the
modeling effort and minimize model complexity when demonstrating the value
proposition of an ontology-enabled approach to SE.

3 Ontologies and Metamodels in MVM

Ontologies have been used in a variety of applications such as requirements analysis
(Kaiya and Saeki 2005), metamodeling (Wand 1996), enterprise integration (Fox
and Gruninger 1994), interoperability (Gronmo and Oldevik 2005), model-driven
engineering (Guarino and Welty 2000), ontology merging (Noy and Musen 2000),
formal concept analysis (Stumme 2005), architecture development (Terrasse et al.
2002), and systems engineering (Madni et al. 2001; Mayk and Madni 2006; Madni
et al. 1998, 1999, 2002; Van Ruijven 2014). The interest in ontologies has surged
in the past 3 years as systems have become more increasingly complex and as
digitalization is being pursued in large-scale enterprises.

Ontology and metamodel are complementary and synergistic concepts with
respect to system modeling (Parreiras et al. 2007). Quite simply, an ontology
represents concepts (i.e., classes) and their relationships, along with rules for model
correctness checking (Sowa 2001). The model-checking rules help with identifying
lack of model elements (i.e., gaps) and semantic inconsistencies. Metamodeling
is concerned with defining the symbols and structure for a predefined class of
problems, along with rules that operate on the symbols. These properties allow
the instantiation of a model from a metamodel. A metamodel is itself a model that
is used to describe a predefined class of problems using a modeling language. In
other words, a metamodel defines the general structure, constraints, and symbols
that can be used to model a system. A metamodel by itself has no practical value
until it is used to create a model. That is, a metamodel does not assign semantics
(i.e., meaning) to the symbols and rules. The latter are under the purview of
an ontology. Thus, ontologies and metamodels are complementary concepts. The
following discussion should further clarify these two concepts.

An ontology can represent concepts and relationships formally using the struc-
ture provided by the metamodel. While ontologies are not required to have a
metamodel, those that do are more formal and have certain desirable properties (e.g.,
scalability, reuse, interoperability). Not having a metamodel for an ontology is akin
to saying you can write sentences in a domain using an informal language that may
work fine for the limited problem at hand but that may not be grammatically correct
(i.e., abide by the metamodel).

156 A. M. Madni

Fig. 1 Metamodel for a generic programming language

The following example clarifies the difference between a metamodel and an
ontology. Consider the symbols used to create a map. They typically include lines,
arrows, dots, boxes, colors, etc. These symbols and the rules for connecting them are
under the purview of the metamodel. However, by themselves, these symbols have
no meaning. For example, if we were to draw a map without a legend, we would not
understand the meaning or purpose of the diagram. The same lines, colors, boxes,
etc. could be used to define a variety of maps such as a voting map, bicycle routes,
or population density. When we assign meaning to the symbols, we are creating
an ontology for the domain. Moreover, we can use formal languages for creating
ontologies. Such languages allow semantic reasoning and analysis.

Figure 1 presents a metamodel for a generic programming language. This
metamodel consists of basic programming concepts that can be used in any software
program. In this diagram, class has type, property has type and multiplicity, opera-
tion has typed element and multiplicity, and parameter has type and multiplicity.
Property is an owned attribute of class, and parameter is an owned attribute of
operation. And, finally, operation is an owned operation of class.

Now, let us apply this metamodel to create domain-specific ontologies (Fig. 2).
In this example, the voltage divider assigns electrical interpretations to the general
metamodel construct to create a voltage divider class. The electrical ontology in
this case consists of electrical parameters. Similarly, the physics ontology shown
in the figure comprises concepts of mass, acceleration, and force and implements
Newton’s second law. The ontology in this case comprises physics parameters.

As should be evident from the preceding examples, a metamodel defines syntac-
tical constructs. Consequently, it is not applicable to reasoning within a semantic
domain. Thus, it is important to understand the applicability and limitations of both

Minimum Viable Model to Demonstrate Value Proposition of Ontologies for. . . 157

Fig. 2 Examples of
metamodel used to create two
domain-specific ontologies

metamodels and ontologies. To begin with, it is difficult to create a metamodel or
ontology that covers all possible architectures. For example, system models based
on the SysML-centric construct suffer from the same limitations as SysML. In
particular, the current metamodel does not appear helpful in developing system-of-
systems (SoS) architectures in which connectivity, functionality, and purpose are not
known until the need arises. Moreover, with a SysML foundation, the current mod-
eling construct is not useful for creating architectures for hard real-time systems,
dynamically reconfigurable systems, nondeterministic systems, systems comprising
transient functions, complicated state models, and human-system models.

It is important to note that this limitation may not surface if the architecture
domain is limited to what SysML can model today. That is, define an ontology for
a specific type or class of architecture in which the goal is to define the system’s
appearance. For example, suppose we want to build a spacecraft. An essential
aspect of the architecture is “grounding.” Other important characteristics are total
incident dose (TID), single-event effect (SEE) tolerance, thermal interfaces and
thermal architecture, propulsion architecture, attitude determination, and control
architecture (not just the Automated Data Capture System (ADCS) boxes, but the
mathematical architecture), for example. Conversely, the metamodel could be used
for defining structures but due to its SysML foundation lacks rigorous semantics
for time, time synchronization, and models of computation. Given the scope and
size of the required metamodel, it is not entirely obvious what value it can provide
beyond that of being an academic exercise. Without adequate tools that facilitate
architecture creation using the metamodel and then reasoning and analyzing those
architectures, there would be little to gain for the effort expended to create a usable
metamodel.

158 A. M. Madni

4 MVM Modeling Heuristics

In light of the foregoing, the MVM approach is focused on reducing the complexity
of the modeling problem by creating a narrowly scoped ontology that is sufficiently
rich to demonstrate the value proposition of ontologies for MBSE. In this regard,
modeling heuristics can help in circumscribing the modeling scope and in choosing
the right problem. The following heuristics can be used to inform and guide problem
selection and model scoping.

Heuristic #1: If you do not know the domain and you do not know what you want to
know about the domain, you are not ready to start.

If one knows the domain and the concerns associated with performing work in
that domain, then one can define the questions that need to be answered; otherwise,
one is not ready to start. With domain knowledge, stakeholder use cases can be
defined and employed to develop an ontology. Preferably the ontology conforms to
a metamodel.

Heuristic #2: Define the simplest possible problem/system that is sufficiently rich to
convey the benefits of an ontology-enabled SE approach over the status quo.

This heuristic assures that system model development does not become a never-
ending exercise, and the benefits can be demonstrated in a relatively short time.

Heuristic #3: Employ selective fidelity in models to limit the modeling effort.

Not all sub-models require the same level of fidelity in the overall model to
provide useful results. What this means is that certain sub-models can be abstracted,
while others need more details. For example, in an electromechanical system, if the
intent is to study the behavior of the mechanical system, then the electrical system
can be abstracted.

Heuristic #4: Choose a well-defined objective and a “small” problem to demon-
strate impact in 4 to 6 months.

The problem selected should be of interest to the customer organization, be off
the critical path of the organization’s core processes (i.e., failure does not adversely
affect customer organization’s ongoing operations), and have high leverage (i.e.,
success in one area can be leveraged in other areas because it is a frequently
occurring problem).

Heuristic #5: The solution for the status quo should be derivable readily, or by brute
force, if necessary, to provide a comparison yardstick.

A comparison yardstick is essential to convey the value proposition. Comparison
against the status quo is the most straightforward way to convey the value
proposition of the use of ontologies in MBSE.

Heuristic #6: Define the metrics that will be used for comparison ahead of time.

Minimum Viable Model to Demonstrate Value Proposition of Ontologies for. . . 159

It is much easier to define the metrics for comparison of MVM against the status
quo ahead of time than after the fact.

Heuristic #7: Probe model development objectives to ensure that objectives are not
being confused with options.

People inadvertently can adopt an option as an objective when developing a
system model. As a result, one can end up solving a subproblem. To prevent this
from happening, it is important to probe the initial objective for a higher-level
objective. If such an objective is found, adopt that as the new objective. Then repeat
the process until no higher-level objective is discovered. At that point, it can be
concluded that one has the right objective.

Heuristic #8: Explicitly state assumptions and other factors that define problem
context before defining use cases.

This requirement will ensure comprehensive formulation of use cases with no
hidden implications.

Heuristic #9: Capture stakeholder concerns in viewpoints that create views into the
model.

Viewpoints are associated with views into the model. There is typically a
hierarchical structure behind the views which allows abstraction or going into depth
in the models. Viewpoints represent information that stakeholders need and imposes
constraints on what they want to view.

Heuristic #10: Explicitly identify the dimensions in which the model should scale,
and make sure that the MVM will scale along those dimensions.

The key dimensions along which the model should scale include the number of
nodes, number of links, and number of components/subsystems. Also, there should
be loose binding between function and technology to ensure ability to incorporate
new technology.

Heuristic #11: Focus on demonstrating value proposition through unique capability,
not accuracy of results.

Accuracy of results requires high-fidelity models which requires significant
effort. When the focus is on rapidly conveying the value proposition, it pays to
have the minimum model to convey value.

Heuristic #12: Make sure the use cases explicate hidden or implied trade-offs.

This capability can be a key differentiator of the MVM approach if these trade-
offs can be illuminated without full-blown system model development.

In the MVM approach, the above exemplar heuristics can be used to choose and
simplify an appropriate problem in the domain of interest. The basic idea then is to
show the solution with the status quo, and then with MVM, and compare the two
using appropriate metrics (e.g., model scalability, model reusability, model exten-

160 A. M. Madni

sibility, model verification speed, and interoperability with third-party ontologies).
The MVM, in essence, is a “thin slice” of the total capability of the envisioned
system that can convince potential customers of the value proposition of ontology-
enabled SE.

5 A Real-World Interoperability Problem

Today system modeling is becoming an increasingly important activity within
companies that build systems and products. In fact, detailed system models are
viewed as valuable knowledge assets and a source of competitive advantage. As
digitalization (i.e., the conversion of text, pictures, and sound into a digital form)
and the need to automate processes and facilitate automated data exchange continue
within customer organizations, a tension has emerged between these organizations
and application providers/software tool vendors that support them. This tension is
rooted in the need for customer organizations to disclose proprietary information
models to vendors to interoperate with their tools. On the flip side, vendors are
reluctant to share the information models underlying their tools with customers.
Each perceives sharing such information as a loss of competitive advantage in
their respective markets because of the concern that their respective information
models can be reverse engineered. Despite this tension, economic forces are such
that systems companies have no choice but to use the software tools provided by the
software tool vendors.

The following true story conveys the magnitude of problems that can arise.
Organization XYZ had developed a significant simulation that was heavily tied
to the semantics of a particular vendor’s tool. Documentation of the structures
underlying the tool was sparse and, in some cases, turned out to be incorrect.
However, after significant back-and-forth between Organization XYZ and the
vendor, Organization XYZ was able to build the simulation. This simulation was
part of an effort to accommodate V&V continuously with model and design
development. About halfway through the project, the vendor released an upgraded
tool that promised more efficiency for simulations. After switching to the upgraded
tool, Organization XYZ discovered that none of their existing simulations worked
because the underlying model semantics had changed. As with the previous version
of the tool, the vendor’s documentation wasn’t clear about the new semantics.
Therefore, it became impossible for Organization XYZ to determine whether it was
possible to update their simulation. As a result, Organization XYZ was forced to
go back to the previous version of the tool. Such horror stories exist in various
industries.

To address this problem, customer organizations concluded that they need to
create a semantic interface, a separation layer, between the semantics of their
knowledge assets/data and the semantic model of the software tool vendors. With
such a semantic interface, customer organizations would be able to define their own
data views, while the tool vendors would be able to integrate their tools within the

Minimum Viable Model to Demonstrate Value Proposition of Ontologies for. . . 161

Fig. 3 Semantic mapping between customer knowledge assets and vendor tool semantics

customer’s information environment without exposing the behavioral semantics of
their tools. To ensure that the two views map to each other requires developing
a semantic mapping between customer and vendor ontologies, thereby achieving
interoperability. The problem of ontology mapping to achieve alignment between
the customer and vendor ontologies is currently performed manually making it a
labor-intensive and error-prone activity.

Borrowing on concepts from the Semantic Web and other advances in semantic
technologies, several researchers have begun working on developing techniques for
semiautomatic creation of semantic mappings between ontologies. The key chal-
lenge in semantic mapping is determining the correspondence between the elements
of the two ontologies. Semantic correspondence has been defined as the “glue” that
holds ontologies together, thereby achieving interoperability. Machine learning is
one promising approach to determine the correspondence among ontology elements
of two different ontologies (Doan et al. 2004).

Figure 3 shows how a separation layer, in the form of a semantic interface, can
be realized in practice and how customer and vendor semantics can be mapped to
each other through this semantic interface. Here, we distinguish between epistemic
semantics and behavioral and language semantics. Epistemic semantics is about
naming things and what we wish to view. This is where epistemic ontology needs
to be created on large projects within customer (systems) organizations. Behavioral
and language semantics come into play within vendor tools which employ vendor-
proprietary semantics and modeling language. Accomplishing this mapping requires
additional semantics that need to be “tied” in some way to the epistemic ontology

162 A. M. Madni

or mapped to it. Ontologies of both the customer (i.e., systems organization) and
vendor have to be populated, and then customer and vendor ontologies are mapped
onto the semantic interface. Representing this separation layer formally is essential
for customer organizations (i.e., systems companies) to avoid getting inadvertently
“locked into specific vendors.”

As noted earlier, metamodeling is a complementary construct to ontology. It
pertains to the schema for the semantic data and the language needed to express
semantic extensions to existing information mechanisms to assure that the tools can
interoperate with a broad class of models at run time. The key takeaway from this
discussion is that the focus should be on the intentions of the stakeholders, which
then leads to the need for representing their respective ontologies and developing a
mapping between the two to achieve semantic interoperability without either having
to disclose their proprietary information to the other.

6 Concluding Remarks

For the last few years, the introduction of ontologies into SE, and more specifically
MBSE, has been recognized as a promising direction in that it has the potential
of reducing modeling complexity, assuring semantic consistency, and achieving
interoperability among heterogeneous systems. However, ontology initiatives in SE
have not yielded the expected results. In hindsight, the SE community believes that
these initiatives did not have a clear scope and expectations. This recognition led to
the creation of the MVM construct to demonstrate the potential value of ontologies
for MBSE. A MVM is defined as a “thin slice” representation of the system with
just enough semantics (vocabulary) and structure to answer questions associated
with specific stakeholder use cases.

The paper discusses the complementarity and synergism between ontologies
and metamodels and provides specific examples of how they complement each
other. The paper also presents an important interoperability challenge problem (i.e.,
protection of proprietary knowledge of customer organization while seeking to
interoperate with third-party tools) and discusses how ontologies can be exploited
to achieve required interoperability. This situation frequently arises when customer
organizations wish to integrate software vendor tools into their development or IT
environments. Both customer organizations (e.g., aerospace companies, automotive
companies, national labs) and software tool vendors wish to achieve interoperability
without having to disclose their proprietary knowledge assets and tool behavioral
semantics, respectively. To this end, they can employ ontologies to represent their
respective knowledge and tool assets and then create a semantic interface that
enables mapping these ontologies to each other through that interface. This approach
assures that neither has to disclose proprietary information to the other while
accomplishing the necessary tool integration in the customer environment.

It is hoped that the MVM approach, MVM heuristics, and recommendations in
this paper will encourage researchers to undertake well-scoped ontology-enabled
SE initiatives that help further formalize and extend MBSE capabilities.

Minimum Viable Model to Demonstrate Value Proposition of Ontologies for. . . 163

Acknowledgments The author acknowledges productive discussions on ontologies and MBSE
with Michael Sievers of the University of Southern California and helpful feedback of Carla Madni
of Intelligent Systems Technology, Inc., who reviewed the final draft. I also want to acknowledge
Shatad Purohit of the University of Southern California who reviewed earlier drafts of this paper.

References

Doan, A., J. Madhavan, P. Domingos, and A. Halevy. 2004. Ontology Mapping: A Machine
Learning Approach. In Handbook on Ontologies. International Handbook on Information
Systems, ed. S. Staab and R. Studer. Berlin/Heidelberg: Springer.

Fox, M., and M. Gruninger. 1994. Ontologies for Enterprise Integration. In Proceedings of the 2nd
Conference on Cooperative Information Systems, Toronto, May.

Gronmo, R., and J. Oldevik. 2005. An Empirical Study of the UML Model Transformation Tool
(UMT). In Proceeding of the 1st International Conference on Interoperability of Enterprise
Software and Applications, Switzerland.

Guarino, N., and C. Welty. 2000. Towards a Methodology for Ontology-Based MDE. In Proceed-
ings of the First International Workshop on MDE.

Kaiya, H., and M. Saeki. 2005. Ontology Based Requirements Analysis: Lightweight Semantic
Processing Approach. In QSIC 2005, Proceedings of the 5th International Conference on
Quality Software, 223–230.

Madni, A.M., C.C. Madni, and W. Lin. 1998. IDEON™/IPPD: An Ontology for Systems
Engineering Process Design and Management. In Proceeding of the 1998 IEEE International
Conference on Systems, Man, and Cybernetics, San Diego, CA, Oct. 11–14, pp. 2597–2602.

Madni, A.M., W. Lin, and C.C. Madni. 1999. IDEON™: An Ontology for Modeling and Managing
Distributed Enterprises. In Proceedings of the 13th International Conference on Systems
Engineering, Las Vegas, Nevada, Aug 10-12, pp. SE199-SE204.

———. 2001. IDEON™: An Extensible Ontology for Designing, Integrating, and Managing
Collaborative Distributed Enterprises in Systems Engineering. Systems Engineering 4 (1): 35–
48.

———. 2002. Human-agent Collaboration: Ontology and Framework for Designing Adaptive
Human-agent Collaboration Architectures, Proc. of 12th INCOSE International Symposium,
Las Vegas, NV, July 28 – Aug. 1.

Mayk, I., and A.M. Madni. 2006. The Role of Ontology in System-of-Systems Acquisition. In
Proceedings of the 2006 Command and Control Research and Technology Symposium, San
Diego, CA, June 20–22.

Noy, N., and M.A. Musen. 2000. PROMPT: Algorithm and Tool for Automated Ontology Merging.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), USA.

Orellana, D.W., and A.M. Madni. 2014. Human System Integration Ontology: Enhancing Model
Based Systems Engineering to Evaluate Human-System Performance, Conference on Systems
Engineering Research (CSER 2014) (Eds. Azad M. Madni, et al.) Redondo Beach, CA, March
21–22.

Parreiras, F.S., S. Staab, and A. Winter. 2007. On Marrying Ontological and Metamodeling
Technical Spaces, ESEC/FSE’07, September 3–7. Croatia: Cavtat near Dubrovnik.

Saeki, M., and H. Kaiya. 2002. On Relationships among Models, Meta Models, and Ontologies,
DSM 2006 Gruninger, M. and Lee, J. Ontology: Applications and Design. Communications of
ACM, 45(2).

Sievers, M., 2019. Several Personal Discussions.
Sowa, J.F. 2001. Signs, Processes, and Language Games — Foundations for Ontology. In

Proceedings of the 9th International Conference on Conceptual Structures, ICCS’01.

164 A. M. Madni

Stumme, G. 2005. Ontology Merging with Formal Concept Analysis. In Y. Kalfoglou, M.
Schorlemmer, A. Sheth, S. Staab, and M. Uschold, eds., Semantic Interoperability and
Integration, no. 04391 in Dagstuhl Seminar Proceedings.

Terrasse, M.N., M. Savonnet, G. Becker, and E. Leclercq. 2002. A UML-Based Meta-Modeling
Architecture with Example Frameworks, WISME, Workshop on Software Model Engineering,
Dresden, Germany, Available at URL http://www.metamodel.com/wisme-2002/terrasse.pdf.

Van Ruijven, L.C. 2014. Ontology for Systems Engineering as a Base for MBSE., INCOSE IS.
Wand, Y. 1996. Ontology as a Foundation for Meta-Modelling and Method Engineering. Informa-

tion and Software Technology 38 (4): 281–288.

http://www.metamodel.com/wisme-2002/terrasse.pdf

Ontological Modeling of Time
and Time-Based Reasoning for Systems
of Systems

Surya Vamsi Varma Sagi and Leonard Petnga

Abstract This paper explores the critical issue of temporal modeling and reasoning
for successful systems of systems (SoS) architecting and operations. The increasing
complexity of missions results into needs to leverage capabilities of constituent
systems (CSs) in multiple domains, distributed geographically and temporally
(different time zones) too. This introduces issues capable of hindering mission
success including clock drifts and synchronization as well as communication delays.
To assure correctness of SoS functionality in the face of these challenges, we
develop and introduce a new ontological framework for modeling and time-based
reasoning in SoS. Knowledge representation of time and temporal semantics in SoS
modeling are discussed with a focus on the central role description logics (DL)
and interval-based time semantics play in the development of the new framework.
The latter consists of a DL-backed theoretical foundation providing formalisms
to ontological models encapsulating temporal knowledge on top of which time-
based modeling and reasoning applications for SoS can be built. A prototype
implementation with a military-directed SoS has been illustrated and is currently
under development.

Keywords Ontology · Temporal semantics · Systems of systems · Reasoning ·
Systems engineering

1 Introduction

This paper introduces an ontological framework for time modeling and time-
based reasoning in systems of systems (SoS). These systems are defined as “set
or arrangement of systems that results when independent and useful systems are
integrated into a larger system that delivers unique capabilities” (Department of

S. V. V. Sagi (�) · L. Petnga
University of Alabama in Huntsville, Huntsville, AL, USA
e-mail: ss0293@uah.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_15

165

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_15&domain=pdf
mailto:ss0293@uah.edu
https://doi.org/10.1007/978-3-030-82083-1_15

166 S. V. V. Sagi and L. Petnga

Defense (DoD) 2004). Based upon the way that constituent systems (CSs) interact
with each other, a SoS can be categorized into four different types: (1) virtual SoS,
which lacks a central management authority and a centrally agreed-upon purpose;
(2) collaborative SoS, where each entity knows its predefined role and interacts with
the other to fulfill agreed-upon central purposes; (3) acknowledged SoS, where each
constituent system maintains its independent status, but a designated manager is
in charge of ensuring achievement of recognized objectives; and (4) directed SoS,
where CSs maintain an ability to operate independently, but a central manager is
in charge of decision-making to fulfill specific purposes (DeLaurentis 2007). SoS
(especially acknowledged, collaborative, and directed ones) generally involve the
coordination of multiple, safety-critical CS spatially distributed across multiple time
zones, domains, and stakeholders. Thus, establishing and maintaining the temporal
order of events and their synchronization as well as processes across a multiplicity
of distributed CS while accounting for delays in communication between them are
critical to effective decision-making and mission success.

In this work, we investigate the formal representation of domains across disci-
plines to extend a base ontology of time in order to include core concepts relevant to
its semantic modeling in SoS context. A special attention is paid to three aspects
critical to the description and handling of time in SoS: time zone, delays, and
clock synchronization. Description logics (DL) is found to be the most appropriate
knowledge representation formalism for our framework, and extensions as well as
mapping to the web ontology language (OWL) are performed to ensure decidability
of SoS time reasoning. In Sect. 2 we review existing models and semantics of time in
SoS and make the case for a new framework. The latter is introduced and discussed
in Sect. 3. Its capabilities are illustrated in a prototype implementation involving
time-based reasoning in a military-directed SoS in Sect. 4.

2 Models, Frameworks, and Semantics for Knowledge
Representation of Time in Systems of Systems

2.1 Time Modeling in SoS: Need for Semantics and Existing
Frameworks

Need for a Framework for Time Modeling and Reasoning in SoS In order
for formal verification approaches for SoS to be effective, there is a need for
formal models to capture each of the domains involved and their multi-hierarchy
interactions at the appropriate levels of granularity. This is particularly important
for meta-domains such as time and space. They play a central role in safety-critical
SoS, i.e., those for which correct and precise answer at all time to the question
of “What is going on Where and When?” is critical to the correct planning and
execution, thus success of complex missions. Answering such a question in an
accurate, precise, and consistent way in the temporal dimension in the context of

Ontological Modeling of Time and Time-Based Reasoning for Systems of Systems 167

Fig. 1 Total temporal ordering of events on a global timeline

SoS requires (1) mechanisms for mapping and aligning local times (from internal
clocks of CS as shown in Fig. 1) to a global time with account for time zones; (2)
procedures for identification, processing, and managing clock drift as well as delays
in communication between CSs; and (3) total ordering of temporal entities for better
understanding of relationships between events across the SoS. These needs add to
some well-known challenges in modeling time stemming from its frequent under-
specification in natural language expressions.

Overview of SoS-Related Time Frameworks Researchers and engineers have
recognized the need for mechanisms to handle the complex, distributed nature
of time in SoS. For instance, in acknowledged SoS such as air traffic control
(ATC), the need to ensure safe operation of thousands of aircrafts and users
of the airspace across continents has resulted to the adoption of the Universal
Coordinated Time (UTC) as a reference for clocks across systems (Fayadh and
Hasson 2019). Mechanisms for handling clock synchronization have been found
central in the operation of Collaborative SoS, as procedures are needed to ensure
effective coordination of operations between constituent systems. The multiplicity
of algorithms (e.g., Cristian and Berkley algorithms, network time protocol) for
clock synchronization across platforms in distributed computer network systems
testifies of the researcher’s interest (Leela et al. 2018). Other frameworks have
pursued a broader perspective of time in SoS. Campbell et al. (Campbell et al.
2005) introduce a time model based on a State Model Object (SMO) to support
time simulation and analysis of any number of systems including cross-platform
dependencies and across SoS missions. Similarly, among large-scale projects, the
Architecture for Multi-criticality Agile Dependable Evolutionary Open System-
of-Systems (AMADEOS) effort stands as the only one to explicitly provide a
comprehensive model of time for SoS in the form of a taxonomy (AMADEOS
Consortium 2016). However, this framework, as the others, fails to provide an
approach for formal representation of the time domain and mechanisms for formal
reasoning about SoS time.

168 S. V. V. Sagi and L. Petnga

2.2 Description Logics (DL) Semantics

Knowledge representation formalisms provide means to formally capture and rep-
resent domains knowledge (e.g., time) in a rigorous, ambiguity-free, and systematic
way. Out of the numerous approaches, logic-based formalisms (Baader et al. 2003)
have emerged as a leading player in the evolution of artificial intelligence (AI)
formalisms. We will be using description logics (DL) in this work, considering
that (i) some results for DL were found by translating results from variations of
modal logics (propositional dynamic logics, μ-calculus) and (ii) the ability of DL
to support multi-values attributes formalization (a critical need in complex domains
description).

In DL, knowledge is represented through the description of domains in terms
of concepts (classes in OWL), roles (properties, relationships), and individuals
(objects) (Petnga and Austin 2016). Universal (∀), existential (�), intersection (�),
union (), and negation (⇁) operators are used for restriction specifications to
make the language decidable with low complexity. In DL, semantics are defined
by interpretations. An interpretation I is defined as follows.

I = (ΔI,.I), where ΔI is the domain of interest (non-empty set) and,.I is an
interpretation function that maps:

• Concept name C: a subset CI of ΔI

• Role name R: a binary relation RI over ΔI

In DL, interpretations are conceived as potential “realities” or “worlds” and need
in no way comply with the actual reality. However, in the context of SoS (i.e., safety-
critical systems), this is a nonnegotiable requirement as failure of the reasoner to
properly capture systems (temporal) reality can lead to disastrous consequences.
Additional information on interpretation and a summary of DL concept constructors
can be found in (Rudolph 2011). Atomic concepts (A) in the attribute language
(AL) DL can be extended to support arbitrary concepts (C), thereby enabling the
description of any domain of interest and leading to ALC (Attributive Language
with Complements) or (ALC where we allow transitivity statements) DL on which
interpretations I are defined. Therefore, the latter are the means through which
concepts, roles, and individuals build up to the DL knowledge base K <T, A> of a
domain D. Here, T is a set of terminological Tbox axioms and A is a set of assertional
Abox axioms; x,y are individual names. Further extension of the ALC or S DL with
role (R), nominal (O), inverse (I), and qualified cardinality restriction (Q) leads to
the SROIQ DL whose mapping to OWL 2 has been shown to ensure the decidability
of the latter (Petnga and Austin 2016). We will use OWL 2 as our ontology language
in this work.

Ontological Modeling of Time and Time-Based Reasoning for Systems of Systems 169

3 A Time-Based Modeling and Reasoning Framework for
SOS

3.1 Concepts and Calculus for SoS Time Ontological Modeling
and Reasoning

Core Concepts for SoS Time Ontology and Reasoning The challenges of
addressing the complexity of handling time in SoS require successful framework
and models to formally define and describe concepts beyond the ones associated
with current basic time concepts. The left side of Fig. 2 introduces some of those
concepts, the relationships among them and with base time concepts. Standards
such as the ISO/IEC/IEEE 24765E:2017 provide recognizable and accepted def-
initions for most concepts. However, architectural definitions framework such as
AMADEOS can help fill in the gap while also providing comprehensive temporal
domain-based definitions. For illustration, in the AMADEOS framework, a timeline
is a dense line denoting the independent progression of time from the past to the
future, while an event is viewed as a happening at an instant. The latter is a cut
of the timeline, while an interval is a section of the timeline between two instants.
A timestamp of an event is the state of a selected clock at the instant the event
occurs. A clock is an autonomous system consisting of an oscillator and a register.
As such, it is subject to drift and generally indicates the local time in a specific
time zone. Coordination of distributed clocks across CS of an SoS requires some
synchronization mechanisms.

Allen’s Temporal Interval Calculus (ATIC) Support for Reasoning with Time
Several studies have shown that models are built over interval-based temporal logics
such as Allen’s Temporal Interval Calculus or Moszkowski’s Interval Temporal
Logic as the most appropriate for formal analysis (including reasoning tasks)
involving time-dependent behavior (Allen 1983; Moszkowski et al. 1984). At the
core of the ATIC is the relationship between time intervals (as introduced above
and represented in Fig. 1) constructed over a given timeline. Thus, given two
time intervals I1 and I2, a time point t, and a proposition
, we might ask a
variety of questions over the time domain such as (1) mereological or “part-of”

Fig. 2 Base time concepts and relationships with SoS temporal concepts

170 S. V. V. Sagi and L. Petnga

questions (e.g., Doesn’t occur within I1?), (2) topological or “connects” questions
(e.g., Does interval I1 happen before or after interval I2?), and (3) logical or
“rules-based” questions (e.g., Does proposition Φ hold within the interval I1?).
The ATIC identifies and specifies 13 relationships between any ordered pair of
“convex” time intervals including with the main 7 relationships being “intEquals,”
“intBefore,” “intMeets,” “intStarts,” “intFinishes,” “intDuring,” and “intOverlaps.”
In previous work (Petnga and Austin 2013), we have illustrated these relationships
and demonstrated ATIC’s powerful ability to support time-based reasoning. Also,
for decidability of reasoning, the intervals must be proper time intervals (see Fig. 2).

3.2 System Architecture and Description

The system architecture for framework is shown in Fig. 3. It consists of three layers
where each layer uses the layer below and builds upon it.

Layer 1: Theories and Standards This layer provides the foundational theories
and formalisms on which the SoS time model and the corresponding reasoning
mechanism are built. The DL formalism supports explicit, formal, and ambiguity-
free representation of temporal knowledge and related axioms. Concepts are

Fig. 3 Time-based reasoning framework for SOS

Ontological Modeling of Time and Time-Based Reasoning for Systems of Systems 171

borrowed or expanded from well-established standards or architectural description
framework’s taxonomy providing temporal domain-based definitions. In this work,
we build from a subset of the time view of the AMADEOS framework as introduced
in Sect. 3.1. Thanks to its ability to manipulate and relate intervals and express
temporal properties and their evolution over those intervals, the Allen’s Temporal
Interval Calculus (ATIC) is used as the main algebra for reasoning about time in
our framework. However, in the case of SoS, it’s critical for intervals to be fully
specified using the granularity of a time as represented on a SoS global timeline
with the proper mapping to local timelines of CS. This mapping accounts for
clock drift, daylight time saving, and communication delays across the SoS. These,
coupled with system-wide synchronization of clocks, provide a solid backbone for
time-based reasoning in SoS. One key benefit of such approach is the formulation
of restricted axioms which, when expressed in an ontology language, will ensure
that time reasoning is decidable. Finally, physical quantity theory provides the
mathematical foundations needed to enable equivalence (via conversion) between
temporal entities represented using various units (e.g., hours, minutes, seconds) and
date time representations.

Layer 2: Temporal Knowledge This layer leverages the formalisms from Layer
1 to capture and represent SoS temporal knowledge in its complexity and in an
integrated manner. Three types of interrelated entities are used to that aim (from left
to right): ontologies, rules, and computations modules. In this work, ontologies are
expressed in a DL-compliant web ontology language (OWL). OWL-Time, the base
time ontology for the semantic web published by World Wide Web Consortium
(W3C) (World Wide Web Consortium 2006), is one such ontology, and it is
expressed in OWL DL. Thus, we extend this base ontology with SoS time-related
concepts as discussed in Sect. 3.1 and summarized in the left side of Fig. 2.

SoS time rules (e.g., clock synchronization, timestamp ordering, delay compu-
tations) add to ATIC axioms and rules from basic time domains. The ontology
provides the terminological Tbox (as in Sect. 2.2) needed by the rules to transform
the SoS time semantic graph using assertions (Abox) constructed from various
temporal instances (timestamped events) across the SoS. During the execution of
rules, calls to a unit semantics and computation platform allow for the resolution
of temporal units differences across temporal entities in the semantic graph.
This computation platform is also responsible for the ordering of events’ time
instants along a timeline of interest. A time synchronization module (not shown)
is responsible for the resolution of time zones and clock drifts across the SoS to a
single (global) timeline.

Layer 3: Applications This is the layer where we implement the application
utilizing the time model and realization of the ontology specific for the problem
at hand. Thus, all the application domains involved are captured in ontologies and
integrated with the time ontology for full description of system-relevant events
with their timestamps. The latter are the main data from the various clocks used
to construct time instances (Abox) stored in a data store for query or further

172 S. V. V. Sagi and L. Petnga

processing. Mission requirements and constraints as well as scenarios of interest
are used to drive the formulation of application-level rules that are further mapped
or integrated with SoS time rules. Data from scenario and mission planning are
used to configure and initialize the semantic graph. Thus, the ontology, populated
with minimal amount of data, will be transformed through controlled application
of set of basic and SoS time rules as well as domain rules for effective time-based
decision-making across the SoS.

4 Prototype Implementation in Military-Directed SoS: Eye
in the Sky

4.1 Overview

For the purpose of the illustration of the framework, let us consider a simplified
SoS time-based modeling and reasoning scenario adapted from the movie “Eye in
the sky” (Hood 2016). The military mission aims at taking down a terrorist cell
congregating and operating in Nairobi, Kenya. A directed SoS is assembled and
used for a military mission to that aim. The unique capabilities of four main CSs
responding to a central command (mission control) are leveraged and coordinated
to safely and timely destroy the cell with limited collateral damages. The resulting
directed SoS is depicted in the scenario in Fig. 4b. The operation of the SoS spans
four different time zones across three different continents (Fig. 4a). This makes
issues of communication delays (e.g., between the drone and its operation center),
clock drifts (mission control timeline), and synchronization (e.g., via a GPS clock)
across multiple time zones critical to the success of the mission. The SoS time
modeling and reasoning framework and its temporal knowledge layer capabilities
are used to (1) collect CSs selected events relevant for SoS-level decision-making
and, simultaneously, (2) collect and instantiate CSs local clock time as timestamps
for the events and then synchronize them as per predefined SoS and mission time
rules (Fig. 4c). An application graphical user interface (GUI) is used to configure the
framework, set up scenarios, perform analyses, and control the time-based reasoning
goals of the mission (Fig. 4d).

4.2 Illustration of a Simplified Time-Based Reasoning
Scenario

Mission Threads on SoS Global Timeline We consider and track core events
on two critical mission threads to be integrated for its success: (A) accurate and
timely identification and movement tracking of terrorists and (B) mission “kill
chain,” i.e., combination of means to actually take them down. From a temporal
prospective, the success of the mission is dependent on the proper sequencing of
events (past and future) as they unfold along the SoS global timeline as well as the

Ontological Modeling of Time and Time-Based Reasoning for Systems of Systems 173

Fig. 4 Prototype application for time-based reasoning in SoS

establishment (and maintenance) of proper relationships between intervals of time
across the various mission threads. Figure 4d depicts, from bottom to the top, the
representation of past events (in gray) and ones expected (in blue) and their mapping
and time synchronization to the SoS time given by the GPS (Fig. 4a and c) on the
global timeline (Fig. 4d). In thread (A), the group of unidentified suspects has left a
compound (at t1) and is expected to arrive and stay at their suspected headquarter (at
t5) just after their IDs are all confirmed (at t3) by Hawaii. In between, in thread (B),
mission control will secure (at t4) the authorization to terminate the (now confirmed)
terrorists and will get the drone operation command to fire the missile (at t7) to
eliminate the threat (at t8). The two main intervals constructed for both threads (i.e.,
IA and IB) result into an IntOverlaps relationship between them, one that must be
established for the success of the mission.

Time-Based Reasoning for Decision Support in the Military SoS For the sake
of simplicity, we assume that (A1) each event timestamp on the global timeline
already accounts for possible communication delays and drifts in CS clocks and
(A2) the mission control manages the SoS clock and constructs the intervals as
needed. With these foundations, we can construct the temporal reasoning scheme
and use it to reason about mission success based on the “intOverlaps” relationship
between temporal intervals across the two threads. First, a minimal ATIC-compliant

174 S. V. V. Sagi and L. Petnga

SROIQ DL knowledge base (KB) is defined from the taxonomy in Fig. 2 as follows
(subset in first-order logic – FOL):

• Rbox (R): before, after, begins, ends (for ordering of temporal entities); intE-
quals, intBefore, intMeets, intStarts, intFinishes, intDuring, intOverlaps (main
ATIC relationships); intOverlaps ≡ intOverlaps- (“The overlaps relation between
ATIC intervals is symmetric, i.e., it is equivalent to its own inverse”)

• Tbox (T): Instant � Interval � ⊥ (i.e., “Instants and intervals are disjoints”); Tem-
poralEntity ≡ Instant Interval (“Every temporal entity is either an instant or an
interval”); ProperTimeInterval � Interval � ∃begins.Instant � �ends.Instant (“A
proper time interval is an interval that begins and ends with nonnull instants”)

• Abox (A): Instant(ti) (“Individual ti is an instant” with i ε {1,2,3,4,5,6,7,8});
ProperTimeInterval(IA) (“Individual IA is a proper time interval”); Proper-
TimeInterval(IB) (“Individual IB is a proper time interval”)

Thanks to the mapping between the SROIQ DL and OWL 2, the knowledge
base is translated into an SoS time ontology model [[KB]] with its own domain
rules (Fig. 4c). One such rule is the one that establishes the ATIC “intOverlaps”
relationship between two proper time intervals I and J beginning and ending with
instants w,x,y,z. The rule of overlapping relation between I and J is as follows
(implemented with Jena ontology API (Apache Jena 2013)):

[OverlapsInterv:(?I rdf:type te:ProperTimeInt)(?J rdf:type
te:ProperTimeInt)(?w te:begins ?I)(?x te:ends ?I) (?y te:begins
?J)(?z te:ends ?J)(?w te:before ?y)(?x te:before ?z) =>
(?I overlaps ?J)]

where “te” is a prefix abbreviating the namespace (e.g., http://www.petnga.org/
time#) for the resources (individual, concept, and role names) in the SoS time
ontology. In [[KB]], concepts are captured as classes and relations as object or data
properties as defined in the Tbox and Rbox of KB. Unique namespaces are used
to differentiate and keep track of the type of various entities for expressiveness
(human and machine readability) and effective reasoning. The latter requires the
correct interpretation of the DL concepts. As for every DL ontology, we base
our ontology on three finite sets of signature symbols to be used to drive the
interpretation I = (ΔI,.I), where ΔI is the SoS time domain: a set NI of individual
names (we use names of events), a set NC of concept names, and a set NR of role
names. In this case, they are defined as follows: NI = {Suspects_leave_coumpound,
Suspects_ID_requested, Drones_catches_suspects, Suspects_ID_confirmed,
Authorization_to_kill, Terrorist_arrive_at_HQ, Missile_fired, Terrorists_HQ_hit,
Tracking_thread_A, Tracking_thread_B} (all individual names of entities in the
Abox); NC = {Instant, Interval, ProperTimeInterval} (all individual names in the
Tbox); and NR = {begins, ends, before, after, intEquals, intBefore, intMeets,
intStarts, intFinishes, intDuring, intOverlaps} (all individual names in the Rbox).
Using these elements, we define the interpretation I over KB and the corresponding
function as follows (emphasis on formulations that are relevant to threads A
and B):

http://www.petnga.org/time

Ontological Modeling of Time and Time-Based Reasoning for Systems of Systems 175

– Concepts/classes: InstantI = {t1,t3,t4,t5,t7,t8}; ProperTimeIntervalI = {IA, IB}
– Individuals: Suspects_leave_coumpoundI = t1; Suspects_ID_confirmedI = t3;

Terrorist_arrive_at_HQI = t5; (thread A); Authorization_to_killI = t4; Mis-
sile_firedI = t7; Terrorists_HQ_hitI = t8; (thread B)

– Relationships: beforeI = {〈t1, t2〉, 〈t2, t3〉〈t4, t5〉〈t5, t6〉〈t6, t7〉〈t7, t8〉} (these
appear as facts in [[KB]], stemming from the partial ordering of entities in
the time domain); beginsI = {〈t1, IA〉〈t4, IB〉}; endsI = {〈t5, IA〉〈t8, IB〉}
The latter pair of relationships leads to four facts created by the reasoning system

automatically through the tracking of events as they (expect to) unfold and appear
with their timestamps on the SoS global timeline (as per assumptions A1 and
A2). We note that, for operation purpose, the location of the “now” instant on the
timeline determines the order in which each pair is created as future time instants
can’t be part of the interval. This is less relevant for simulation purpose. Thanks
to the transitivity of the relation “before,” the reasoner infers 〈t5, t8〉 and adds the
corresponding fact to the beforeI set. With this, we have all the conditions on the
left-hand side of the OverlapsInterv rule above satisfied. Thus, the rule will
fire and an “intOverlaps” relationship created between IA and IB with interpretation
intOverlapsI = {〈IA, IB〉}.

5 Conclusion and Future Work

This work has introduced an ontological framework for time modeling and reason-
ing for systems of systems (SoS) architecting. The framework is shown appropriate
for SoS for which mission success is dependent on the correct time-based prediction
of the future state of the system. It is equipped with mechanisms to account
for spatially and temporarily distributed, drift-prone clocks across multiple time
zones. The needs for clock synchronization and account for communication delays
are also discussed. These results have been achieved, thanks to Allen’s Temporal
Interval Calculus (ATIC) as well as description logics (DL) formalisms backing
the decidability of our reasoning framework. An illustration of its usage has been
described on a directed military SoS example. A Java-based implementation is
currently under development.

References

Allen, J.F. 1983. Maintaining Knowledge about Temporal Intervals. Communications of the ACM
26 (11): 832–843.

AMADEOS Consortium. 2016. AMADEOS conceptual model, Deliverable D2.3, Revised.
Apache Jena., http://www.jena.apache.org, 2013.
Baader F., D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider. 2003. The Description Logic

Handbook: Theory, Implementation, and Applications. Cambridge.

http://www.jena.apache.org

176 S. V. V. Sagi and L. Petnga

Campbell J.E., D.E. Longsine, D. Shirah, and D.J. Anderson. 2005. System of Systems Modeling
and Analysis, SAND Report #SAND2005-0020, Sandia National Laboratories, January 2005.

DeLaurentis, D. 2007. System of Systems Definition and Vocabulary. School of Aeronautics and
Astronautics: Purdue University, West Lafayette, IN.

Department of Defense (DoD). 2004. Defense Acquisition Guidebook Ch. 4 “System of Systems
Engineering,” Washington, DC: Pentagon.

Fayadh A.M., and S.T. Hasson. 2019. Insights of Models for Air Traffic Management System.
International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878,
8(3S3), November 2019.

Hood, G. Eye in the Sky, Drama/Thriller, 1h 43m, Released April 1, 2016 (USA).
Leela, M., Kumar D. Manoj, and G. Bhavana. 2018. Clock Synchronisation in Distributed Systems:

A Review. International Journal of Recent Engineering Research and Development (IJRERD)
03 (04): 14–17.

Moszkowski, H., et al. 1984. Reasoning in interval Temporal Logic and Tempura. In Proceeding
ofthe AMC/NCF/ONR Workshop on Logics of Programs, volume 164 of LNCS, pp. 371 – 383.
Springer, 1984.

Petnga, L., and M.A. Austin. 2013. Ontologies of Time and Time-based Reasoning for MBSE of
Cyber-Physical Systems, 11th Annual Conference on Systems Engineering Research (CSER
2013). Atlanta, GA, March 19–22.

———. January 2016. An Ontological Framework for Knowledge Modeling and Decision Support
in Cyber-Physical Systems. Advanced Engineering Informatics 30 (1): 77–94.

Rudolph, S. 2011. Foundations of Description Logics. Germany: Karlsruhe Institute of Technology.
World Wide Web Consortium (W3C), Time Ontology in OWL, accessible at: http://www.w3.org/

TR/owl-time/, 2006.

https://www.google.com/search?rlz=1C5CHFA_enUS724US724&q=USA&stick=H4sIAAAAAAAAAOPgE-LWz9U3MDTIMDaLz1PiBHEsk83LDbSMspOt9NMyc3LBhFVJRmpiSVFmcmKOQlFqemZ-nkJieWJRKpCTk5pYnKqQkliSuoiVOTTYEQBsjGXkVAAAAA&sa=X&ved=2ahUKEwi15NqJ7ODlAhUPsZ4KHbzPAtkQmxMoATAuegQIFxAG
http://www.w3.org/TR/owl-time/

Ontology-Enabled Hardware-Software
Testbed for Engineering Adaptive
Systems

Edwin Ordoukhanian and Azad M. Madni

Abstract Adaptive systems are class of systems that change their behavior in
response to external or internal disrupting events. These kinds of system are
of interest to government, industry, and research community. An instance of an
adaptive system is a multi-UAV swarm operating in open, dynamic environment.
Such systems are employed to carry out missions such as search and rescue and
disaster relief. Developing adaptive systems requires a hardware-software testbed to
explore system behavior and make adjustments to achieve desired behaviors. This
paper presents an ontology-enabled approach for developing integrated hardware-
software testbed for engineering adaptive systems. Multi-UAV operation is used as
an illustrative example of an adaptive system that stands to benefit from a hardware-
software experimentation testbed.

Keywords Ontology · Hardware-software testbed · Multi-UAV operation ·
Adaptive systems

1 Introduction

Robot-assisted missions have gained considerable interest in recent years such as
search and rescue, reconnaissance, or surveillance missions. In this context, various
types of robots such as unmanned aerial vehicles (UAVs) or unmanned ground
vehicles (UGVs) are used. For instance, UAVs perform tasks such as surveillance,
medicine delivery, or area mapping, while UGVs perform tasks such as inspec-
tion. With advances in swarm technology, multiple robots are deployed to assist
humans in such missions (e.g., mapping an area using multiple UAVs). Operating
multiple vehicles (e.g., UAVs) simultaneously often requires flexible allocation of
requirements to multiple vehicles to reduce operational complexity and increase

E. Ordoukhanian (�) · A. M. Madni
Systems Architecting and Engineering, Viterbi School of Engineering, University of Southern
California, Los Angeles, CA, USA
e-mail: ordoukha@usc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_16

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_16&domain=pdf
mailto:ordoukha@usc.edu
https://doi.org/10.1007/978-3-030-82083-1_16

178 E. Ordoukhanian and A. M. Madi

overall mission coverage. Each UAV collects information from multiple sources
(using onboard sensors), share that information with other members, and execute
actions in coordinated fashion in multiple locations. This capability brings more
time efficiency into mission execution as vehicles perform assigned or negotiated
tasks in parallel to fulfil mission objectives. The latter is important for time-critical
mission such as medicine delivery.

Operational missions that employ multi-UAV systems are typically carried out
in dynamic and open environment subject to disrupting events. The combination
of multi-UAV system and human needs to jointly adapt to changing circumstances.
Adaptation is the capacity of a system to change its state in response to change
in the environment. Adaptive systems change their behavior given some external
perturbation to optimize or maintain their condition within that environment.
Adaptation occurs in different aspects of a system. For example, system structure,
sensing capabilities, or control law are some of the aspects that can be adapted due
to changes in the environment.

Designing adaptive multi-UAV systems requires in-depth exploration and exper-
imentation. Such exploration and experimentation requires a platform where system
designer can rapidly test-drive various algorithms, model and simulate different sys-
tem behavior, and draw sensible conclusion from experimentation. Such platforms
for experimentation and exploration should not be built in an ad hoc fashion. Instead,
there should be a well-thought-out methodology, enabled by an ontology, behind
developing such sophisticated platforms.

This paper focuses on developing a hardware-software testbed for engineering
adaptive multi-UAV systems. While researchers have explored simulation tech-
niques to demonstrate adaptive behavior of multi-UAV systems, these systems
have not been tested in real world. Some researchers have developed application-
specific testbeds and performed experimentation. However, these tend to be point
solutions. Therefore, there is a need for an integrated and extendable hardware-
software testbed that can enable exploration and experimentation of adaptive system
behaviors.

This paper reviews the state of the art on hardware and software approaches for
multi-UAV systems and discusses current gaps in this area. It then introduces an
ontology-enabled approach for developing integrated hardware-software testbed for
adaptive systems with discussion of how it impacts multi-UAV system design. This
paper is organized as follows. Section 2 presents literature review on the current
hardware and software approaches. Section 3 identifies current gaps. Section 4
discusses ontology-enabled approach for developing testbed for adaptive systems.
Section 5 discusses the way forward.

Ontology-Enabled Hardware-Software Testbed for Engineering Adaptive Systems 179

2 Review of Current Approaches to Engineering Multi-UAV
Systems

Researchers over the years have tried to develop various control techniques for
developing adaptive multi-UAV systems. Many of these approaches have adopted
different techniques from domain outside engineering to develop adaptive multi-
UAV systems. While these techniques perform incredibly well in simulated envi-
ronment, their applicability in the real world remains questionable. Many of these
techniques either neglect key aspects such as dynamics of the environment and the
vehicle or get into very specific and specialized aspects of the system that ignore the
bigger picture and the fact that UAVs are required to perform a variety of missions.

Table 1 summarizes some of the current techniques that are successfully demon-
strated in the simulated environment and are promising approaches for the real
world. However, these approaches have not been tested in real-world application.

Several researchers have been working on advancing hardware testbeds for multi-
UAVs. However, many of these approaches solve a piece of the problem. Purta et
al. (2013) introduce dynamic data-driven application system. In this structure, real
data is shared between hardware (actual vehicle) and simulation. Control orders are
being sent to the environment as well as getting sensory data from it. It consists
of the command module where all the main swarm control algorithms are stored
and operated, the GUI module (allows users to switch between environments and
checking current status of vehicles), the environment module (simulation or actual

Table 1 Current simulation techniques

Ref. Techniques Application

Lidowski (2008) Behavior rules Multi-UAV search mission in 2D,
primarily focused on communication

Milam (2004) Behavior rules No specific target area * utilizing
genetic algorithm

Price (2006) Behavior rules Formation flight *using
self-organizing approach

Pack and Mullins (2003) Behavior rules Search missions, applied to robots but
can be extended to UAVs

Barnes et al. (2007) Gradient vector Formation flight
Liu et al. (2008) Graph theory No specific target area, primarily

studying leader-follower
Vincent and Rubin (2004) Mathematical patterns No specific target area
WangBao and XueBo (2008) Mathematical patterns Formation; applied to robots but can

be extended to UAVs
Parunak et al. (2002) Artificial pheromones Use potential field for drone

formation; mostly used for search
applications

Gaudiano et al. (2005) Artificial pheromones Search and search and destroy mission

180 E. Ordoukhanian and A. M. Madi

hardware), and the middleware module (service-oriented architecture to enable
communication between modules). Using MASON multi-agent simulation library
as a backbone of many swarming techniques, MASON does most of the heavy
lifting while also being able to connect to another simulation environment to acquire
data or actual drones for acquisition of real-world data.

O’Neil et al. (2005) developed a simulator based on a game engine to simulate
real world. Their approach is primarily applied to wireless communication with
specific focus on human interaction. It describes TATUS which is a computing
simulator. TATUS is novel in that it removes the need for experimenters to develop
games level code, while retaining a large level of flexibility in the scenarios that can
be readily developed by researchers.

D’Andrea and Babish (2003) developed hybrid environment specifically
designed for RoboFlag game. Some aspects are simulated such as communication
link; however, the robots are real. Their testbed has four main components:
vehicles, global sensor information, centralized control, and human interfaces and
communications network. In their approach communications network subsystem is
completely simulated. Bandwidth and latency limitations are all simulated in the
corresponding software module. For example, errors in transmissions are captured
by the transmission latency. The simulation occurs at a relatively high level.

Montufar et al. (2014) developed a testbed for multi-UAV primarily focusing on
moving objects. Their testbed gives experimenter two environments to choose from,
simulation and/or real world. Schmittle et al. (2018) developed an open-source,
cloud-based simulation testbed for UAVs. Their testbed utilizes commercially avail-
able tools and cloud servers to reduce time to setup. It is easy to use and specifically
addresses scalability and usability. Palacios et al. (2017) develop a heterogenous
testbed based on a specific drone model and demonstrate its application in two
different scenarios. It enables users to select four different environments to test
their control algorithms. Afanasov et al. (2019) developed a testbed called FlyZone.
In their methodology they use tags for vehicle localization. Onboard computer is
responsible for giving high-level commands. They have decoupled testbed with
the real application. Their approach only considers static obstacles and wind
disturbances as disruptions. Their testbed also utilizes vehicle dynamics model to
determine the influence of winds on the UAV’s behavior.

Michael et al. (2008) identified robustness and reliability as one of the main
requirements of the hardware-software testbeds. Scalability and capability of
estimating system states are among other key requirements for an integrated
hardware-software testbed (Michael et al. 2008). Michael et al. (2008) successfully
demonstrate application of formation control algorithm on ground vehicles by
utilizing specific type of a ground vehicle platform called Scarab.

Ontology-Enabled Hardware-Software Testbed for Engineering Adaptive Systems 181

3 Gaps in Current Approaches

Many of the current hardware-software testbed approaches for adaptive multi-UAV
systems consider only specific type of vehicles and furthermore focus on a specific
model such as Parrot AR.Drone 2.0 (Purta et al. 2013; Montufar et al. 2014). While
this is valuable, it still doesn’t show the applicability of the current approaches
to other vehicles with sophisticated sensor suites. After all, Parrot AR.Drone is a
specific type of a quadcopter, and findings cannot be generalized unless rigorous
testing is performed with different types of quadcopters.

Environment is often a misused terminology. Some researches (Purta et al. 2013)
look at environment as either simulation (software) or hardware. But at the same
time, the term environment can also be associated with operational environment
where system is performing the mission. Some approaches in hardware-software
testbed development (Purta et al. 2013) do not focus on a specific mission and only
focus on a portion of the overall operation. While this divide and conquer technique
is valuable to address the bigger problem, however, often times the link between the
smaller portion of the problem and the bigger problem is not identified, which in
turn creates misunderstandings.

Some testbeds focus only on the simulation aspect (O’Neill et al. 2005; Montufar
et al. 2014) with almost no discussion of physical aspect of the system. In
simulations the vehicle is often considered as a point mass which performs some
basic actions. Neglecting dynamical aspects of the system may decrease simulation
fidelity which can lead to performing insufficient analysis on the outcome.

In some cases (O’Neill et al. 2005) human interactions have been the focus of the
testbed with no onboard sensor systems. Some approaches (D’Andrea and Babish
2003) have put vehicle’s high-level control on a workstation and not specifically on
the robot. While this is a good approach for rapidly testing an algorithm, it lacks
enough flexibility for real-world application. Such approaches put extra emphasis
on the communication among the workstation and the vehicle to ensure commands
are sent and sensory data are received on time.

Current approaches in hardware-software development lack system engineering
processes. In that, key steps such as requirement development are explicitly missing.
While some researchers have identified a set of the requirement, those requirements
are simple and are only applicable to the instance of the testbed they have developed.
Furthermore, requirements usually are not validated or verified (Montufar et al.
2014; Schmittle et al. 2018; Palacios et al. 2017).

Current approaches while letting researchers change their control algorithm
do not explicitly discuss adaptive behavior of the systems. Particularly, what is
missing in the current approaches is how the operational environment changes in
the laboratory or the facility where the vehicle is being tested. In many of the
current approaches, for instance (Schmittle et al. 2018; Palacios et al. 2017), there is
no explicit ontology that defines key concepts and relationships. Many approaches
jump directly into an instance to solve their problem without proper consideration
of the overall requirements and underlying ontology.

182 E. Ordoukhanian and A. M. Madi

In summary, current methods tend to jump into a specific instance of a testbed
without exploring other alternatives, primarily because requirements are not iden-
tified or are ill-defined. For instance, many researchers select a specific model of
an UAV or vehicle (Michael et al. 2008) without showing any justification for
why specific model has been chosen. Currently, there is no explicit discussion
of formal ontology for creating hardware-software testbed. Furthermore, current
literature in hardware-software testbed fails to address adaptive behavior of multi-
UAV systems. Most of the current methods do not consider realistic scenarios
and do not consider or overly simplify the operational context. Many applications
involving development of hardware-software testbeds have been focused on simple
scenarios such as formation fly with no complicating factors. Often times, safety
constraints are neglected or implied. In hardware-software testbeds, two types of
safety requirements need to be considered, experimenter’s safety and vehicle’s
safety. Both have been lacking in the current literature and partly lack of formal
ontology is to be blamed.

4 Ontology-Enabled Approach

The approach introduced and discussed in this paper is focused on developing
hardware-software testbed for adaptive systems with application to multi-UAV
systems. Most testbeds for multi-UAV systems tend to be ad hoc and point solution.
Thus, this area can benefit from such ontological approach. This approach takes a
step back and defines key concepts and their relationships. Then, by defining an
ontology and reasoning about it, a comprehensive, scalable, and robust testbed can
be created.

Ad hoc approaches for developing hardware-software testbed tend to be costly
in the longer run since they lack requisite flexibility and scalability. An ontology-
enabled approach in developing such testbeds will have significant impact on cost
reduction by eliminating unnecessary rework and ensuring requisite flexibility and
scalability are considered during architecting process of the testbed.

A testbed which is developed based on an explicit ontology will have requisite
formal architecture to support testing of adaptive behavior of systems. In essence,
what is needed is a systematic approach to develop an integrated hardware-software
testbed by considering the bigger picture and all interacting components (Madni et
al. 2019).

Adaptive systems change their behavior given some external perturbation in
order to optimize or maintain their condition within operational environment (Madni
and Jackson 2009; Ordoukhanian and Madni 2019). In doing that, they employ
adaptation logics to deal with disrupting events (Ordoukhanian and Madni 2019).
Adaptation logics can affect different aspects such as adapting mission objectives
or adapting control laws (Ordoukhanian and Madni 2019). An adaptive system has
both hardware and software components that interact with each other. Hardware

Ontology-Enabled Hardware-Software Testbed for Engineering Adaptive Systems 183

components are those that directly interact with the environment. Software compo-
nents are primarily responsible for processing the information and send out control
commands.

Any adaptive system is deployed in the operational environment to satisfy set
of mission requirements (Ordoukhanian and Madni 2019). These requirements
are dictated by the stakeholders and the specific operational environment that
the system will operate in. Often times, operational environment is open and
dynamic which can be source of many disrupting events (Madni and Jackson
2009; Ordoukhanian and Madni 2019). Disruptions can be categorized into three
main groups (Madni and Jackson 2009). External disruptions are associated with
environmental obstacles and incidents. They are often random and with unknown
severity and duration (Madni and Jackson 2009). Systemic disruptions happen when
an internal component’s functionality, capability, or capacity causes performance
degradation (Madni and Jackson 2009). They are easily detectable in technological
systems. Human-triggered disruptions are associated with human operators inside
or outside of system boundary impacting system performance. In general, these
disruptions can be predictable or random (Madni and Jackson 2009).

Hardware-software testbed supports adaptive system development by enabling
an environment where multiple adaptation schemes can be tested. Hardware or
software components of the adaptive system can be tested in a physical world
(hardware) or virtual world (software) (Madni et al. 2019). A world is a geospatial
region which supports experiments (Madni 2019). It may be as simple as an empty
room in which a vehicle (e.g., quadcopter) operates, or it may be more complex
such as a mountainous terrain (at reduced scale) for a quadcopter search and rescue
mission. The world can be virtual (i.e., exist only in simulation), physical (i.e., exist
in the laboratory), or a combination of the two. The latter would be the case for
an experiment involving both physical and simulated vehicles. The vehicle can be
a quadcopter, ground vehicle, or fixed-wing aircraft. Each vehicle can be under
manual control (i.e., a human is operating a radio controller) or autonomous. To
facilitate autonomous behavior, vehicles can incorporate controllers consisting of
single-board computers such as Raspberry Pi.

An experiment is a scientific procedure undertaken to test a hypothesis or
demonstrate a capability. An experiment sets a scenario in motion and logs the
resulting activity. An experiment can be conducted purely in simulation, entirely in
hardware with vehicles moving in the physical laboratory, or in a mixed environment
with both simulated and physical elements (Madni 2019). An experiment can be
viewed as a specific realization of a scenario. In other words, multiple experiments
can be performed based on the same scenario. The results of different experiments
will vary in general, for a variety of reasons, which include random differences
in initial conditions, equipment differences such as changed battery state, use of
random numbers in control algorithms, or algorithm changes due to learning from
previous experiments (Madni 2019).

A scenario provides the contextual backdrop for experiments. It incorporates ele-
ments such as terrain, weather, and time. A scenario also has specific mission/goals
which adaptive system needs to perform. The mission is part of larger set of

184 E. Ordoukhanian and A. M. Madi

requirements that needs to be fulfilled by the adaptive system. The adaptive system
has two parts: human agent (e.g., operator, troops, civilian) and system/devices
(e.g., ground system, UAV, handheld device). Mission goals (or sub-goals) can
be assigned to one or more systems (or agents) which will be achieved through
planned or opportunistic collaboration (Madni 2019). In every scenario, systems (or
agents) start in specified initial conditions and operate under the control of various
control algorithms. The scenario also includes elements related to various events,
particularly disrupting events.

An integrated hardware-software testbed is facilitated by a middleware. Mid-
dleware is responsible for connecting all components together in the testbed.
Hardware-software testbed is also comprised of hardware and software components,
simulation environments, and user-friendly dashboard. A customizable dashboard
program will allow the user to import scenarios. This will result in a dashboard view
which provides default capabilities such as a plan view (or “mission view”) of the
world showing all vehicles, views from one or more vehicle cameras, state indicators
for all vehicles of interest, and controls to start and stop an experiment (Madni
2019). It will be possible to customize the dashboard layout either graphically (by
moving, scaling, adding, and deleting elements) or by modifying the layout script. A
Scenario Creation Tool facilitates the creation of new scenarios and the modification
of existing scenarios. The most complex part of scenario creation is the creation of
the virtual world (i.e., the world model). For UAVs such as quadcopters, terrain and
boundaries are the key elements. Figures 1 and 2 show these main concepts and their
relationships.

…

• Convoy
• Destruc�on
• Reconnaissance

• Night
• Midnight
• Morning
• A�ernoon

• Sea
• Dessert
• River
• Mountain
• Street

Scenario

Adap�ve System

Human Agent

Opera�onal
Environment

Mission/Goal IsPartOf

Weather

Terrain

Time

IsPartOf

IsPartOf

IsPartOf

• Snowy
• Sunny
• Cloudy
• Windy

IsPartOf

LocatedIn
Performs

OperatesAt

Clock

Events

IsPartOf

RespondsTo

Troops

IsSubclassOf

System/Device

IsPartOf

Hardware
Component

So�ware
ComponentCivilian

IsSubclassOf

Disrup�ons

Requirements
SourceOf

Impacts

Instan�atedIn
TestedIn Impacts

Impacts

Adapta�on
Logic

Employs

IsSubClassOf

Sa�sfies

IsPartOf IsPartOf

IsPartOf

Fig. 1 Overall ontology for hardware-software testbed (part a)

Ontology-Enabled Hardware-Software Testbed for Engineering Adaptive Systems 185

…

Hardware
Component

So�ware
Component

Integrated
Hardware-
So�ware
Testbed

• Algorithms• Actuator
• Sensor
• Camera
• Processor
• Etc.

Middleware

Facilitates

IsPartOfIsPartOf

Simula�on
Environment

Dashboard
IsPartOf

IsPartOf

• Scenario Crea�on
• Data Analysis

• Simula�on Engine

User

isPartOf

Fig. 2 Overall ontology for hardware-software testbed (part b)

5 Summary and Future Work

In this paper authors reviewed the state-of-the-art approaches for developing
hardware-software testbeds for multi-UAV systems. The strength and limitation
of current approaches were identified along with the key gaps in them. To fill
the current gap, in this paper authors presented an ontology-enabled approach
for developing integrated hardware-software testbed for multi-UAV systems. This
approach explicitly identifies key components and their relationships. Furthermore,
it explicitly takes into account adaptive behavior of such systems. In future work, the
ontology developed in this paper will be instantiated within a sufficiently complex
scenario for “what-if” experimentation and exploration. Additionally, a process will
be created to develop models from actual hardware so accurate information can be
used in the simulation.

186 E. Ordoukhanian and A. M. Madi

References

Afanasov, M., A. Djordjevic, F. Lui, and L. Mottola. 2019. FlyZone: A Testbed for Experimenting
with Aerial Drone Applications. In The 17th Annual International Conference on Mobile
Systems, Applications, and Services (MobiSys ’19), June 17–21, 2019, Seoul, Republic of
Korea. ACM, New York, 13 pages.

Barnes, L., M. Fields, and K. Valavanis. 2007. Unmanned Ground Vehicle Swarm Formation
Control Using Potential Fields. In Mediterranean Conference on Control and Automation.

D’Andrea, R., and M. Babish. 2003. The Roboflag Testbed. In Proceedings of the 2003 American
Control Conference, 2003. 2003 Jun 4 (Vol. 1, pp. 656-660). IEEE.

Gaudiano, P., E. Bonabeau, and B. Shargel. 2005. Evolving Behaviors for a Swarm of Unmanned
Air Vehicles, In Proceedings of IEEE 2005, IEEE, 2005, online. Available from IEEEXplore.

Lidowski, R.L. 2008. A Novel Communications Protocol Using Geographic Routing for Swarming
UAVs Performing a Search Mission, Master’s thesis, Air Force Institute of Technology.

Liu, B., et al. 2008. Controllability of a Leader Follower Dynamic Network With Switching
Topology. IEEE Transactions on Automatic Control 53: 1009–1013.

Madni, A.M. 2019. Ontology-Enabled Testbed for Developing, Integrating, and Testing of Adap-
tive Cyber-Physical-Human Systems. Systems Architecting and Engineering, White Paper, July
10, 2019.

Madni, A.M., and S. Jackson. 2009. Towards a Conceptual Framework for Resilience Engineering.
IEEE Systems Journal. 3 (2): 181–191.

Madni, A.M., C.C. Madni, and S.D. Lucero. 2019 Mar. Leveraging Digital Twin Technology in
Model-Based Systems Engineering. Systems. 7 (1): 7.

Michael, N., J. Fick, and V. Kumar. 2008. Experimental Testbed for Large Multirobot Teams.
Milam, K.M. 2004. Evolution of Control Programs for a Swarm of Autonomous Unmanned Aerial

Vehicles, Master’s thesis, Air Force Institute of Technology.
Montufar, D. I., F. Munoz, E. S. Espinoza, O. Garcia, and S. Salazar. Multi-UAV Testbed for aerial

Manipulation Applications. In 2014 International Conference on Unmanned Aircraft Systems
(ICUAS) 2014 May 27 (pp. 830–835). IEEE.

O’Neill, E., M. Klepal, D. Lewis, T. O’Donnell, D. O’Sullivan, and D. Pesch. 2005. A Testbed
for Evaluating Human Interaction with Ubiquitous Computing Environments. In First Interna-
tional Conference on Testbeds and Research Infrastructures for the Development of Networks
and Communities 2005 Feb 23 (pp. 60–69). IEEE.

Ordoukhanian, E., and A.M. Madni. 2019. Model-Based Approach to Engineering Resilience in
Multi-UAV Systems. Systems 7: 11.

Pack, D.J., and B.E. Mullins. 2003. Toward Finding an Universal Search Algorithm for Swarm
Robots, in: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligence Robots
and Systems, 2003, pp. 1945–1950.

Palacios, F.M., E.S. Quesada, G. Sanahuja, S. Salazar, O.G. Salazar, and L.R. Carrillo. 2017. Test
Bed for Applications of Heterogeneous Unmanned Vehicles. International Journal of Advanced
Robotic Systems. 14 (1): 1729881416687111.

Parunak, H.V.D., M. Purcell, and R. O’Connell. 2002. Digital Pheromones for Autonomous Coor-
dination of Swarming UAVs, Tech. rep., American Institute of Aeronautics and Astronautics.

Price, I.C. 2006. Evolving Self-Organized Behavior for Homogeneous and Heterogeneous UAV or
UCAV Swarms, Master’s thesis, Air Force Institute of Technology.

Purta, R., M. Dobski, A. Jaworski, and G. Madey. 2013. A Testbed for Investigating the UAV
Swarm Command and Control Problem Using DDDAS. Procedia Computer Science 18: 2018–
2027.

Schmittle, M., A. Lukina, L. Vacek, J. Das, C.P. Buskirk, S. Rees, J. Sztipanovits, R. Grosu,
and V. Kumar. 2018. Openuav: A uav Testbed for the cps and Robotics Community. In 2018
ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS) 2018 Apr 11
(pp. 130–139). IEEE.

Ontology-Enabled Hardware-Software Testbed for Engineering Adaptive Systems 187

Vincent, P., and I. Rubin. 2004. A Swarm-Assisted Integrated Communication and Sensing
Network. In Battlespace Digitization and Network-Centric Systems IV, SPIE, SPIE Digital
Library, ed. R. Suresh, vol. 5441, 48–60.

WangBao, X., and C. XueBo. 2008. Artificial Moment Method for Swarm Robot Formation
Control. Science in China Online.. Available from http://www.springerlink.com.

http://www.springerlink.com

An Ontology for System Reconfiguration:
Integrated Modular Avionics IMA Case
Study

Lara Qasim, Andreas Makoto Hein, Sorin Olaru, Marija Jankovic,
and Jean-Luc Garnier

Abstract System reconfiguration (SR) is essential in system management, as it is
an enabler for system flexibility and adaptability, attendant ilities being reliability,
availability, maintainability, testability, safety, and reuse of system entities and
technologies. Within current industrial practice, the development of reconfiguration
tools is a real challenge. The development of these tools demand clear identification
of reconfiguration data. In this paper, key concepts of the reconfiguration process,
and relations among them, are represented in the form of the OSysRec ontology.
These concepts are applied to the integrated modular avionics case study to test the
proposed ontology within the aerospace domain.

Keywords System reconfiguration · Ontology · Model-based systems
engineering · Operation

1 Introduction

Companies are currently concerned with designing and developing systems, which
have considerable lifetimes and diversity of employments. Systems can possibly
undergo evolutions in response to changing operational contexts and environments.
Configuration management is key to ensuring effective management of an evolving

L. Qasim (�) · A. M. Hein · M. Jankovic
Industrial Engineering Research Department (LGI), Ecole CentraleSuepelc, France

Signal & Systems Research Department (L2S), Ecole CentraleSuepelc, France

Thales technical directorate, Thales Group, Palaiseau, France
e-mail: lara.qasim@centralesupelec.fr

S. Olaru
Signal & Systems Research Department (L2S), Ecole CentraleSuepelc, France

J.-L. Garnier
Thales technical directorate, Thales Group, Palaiseau, France

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_17

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_17&domain=pdf
mailto:lara.qasim@centralesupelec.fr
https://doi.org/10.1007/978-3-030-82083-1_17

190 L. Qasim et al.

system during its life cycle (ISO/IEC:15288 2015; Walden and Roedler 2015). Thus,
system configuration management plays a crucial role in systems engineering.

Systems engineering sustains activities to satisfy internal and external stakehold-
ers requirements (ISO/IEC:15288 2015; Walden and Roedler 2015). In systems
engineering, system configuration is defined as a set of elements that compose
a system in terms of hardware devices, software, interfaces, human profiles,
and processes (Walden and Roedler 2015). Hence, diverse aspects (economic,
environmental, legal, operational, behavioral, structural, and social aspects) can
impact system configuration. These aspects are critical for capability demonstration.
Any change in these aspects can lead to system reconfiguration (SR) to maintain
the operational effectiveness of the system. In accordance, Qasim et al. (2019b)
define system reconfiguration in systems engineering as subsequent changes of
system configurations with the objective of maintaining or adapting (increasing or
decreasing) the capabilities provided by the system. SR is of value for stakeholders.
It allows for system performance, effectiveness, and affordability improvement to
ensure increased reliability, availability, maintainability, testability, safety, reusabil-
ity, and reuse of system entities and technologies. To support SR in the context of
a large international company in aerospace, space, ground transportation, defense,
and security domains, the model-based systems engineering (MBSE) approach is
proposed. MBSE aims to reduce cost and time via models use and reuse, often
including ontology development to support domain knowledge formalization. An
initial SR ontology (OSysRec) development has been discussed and presented in
Qasim et al. (2019a). SR relies on three aspects: The structural aspect concerns
resources constituting the system, their functions, and the connections between
them. Likewise, SR relies on the dynamic aspect which describes mechanisms
of transitions and their causes and effects. The management aspect deals with
optimizing the existing resources to meet the requirements of systems context and
mission. In practice, this aspect is key for an efficient reconfiguration process. The
OSysRec ontology synthesizes these aspects (structure, dynamics, and management)
in one ontology.

This paper aims at applying the OSysRec ontology to a case study from the
aerospace domain. For this purpose, the integrated modular avionics case study
is used. The remainder of this paper is organized as follows: Section 2 gives the
literature review related to ontologies or models used for reconfiguration purposes
within different domains. Section 3 presents an overview of the OSysRec ontology.
Section 4 displays the IMA case study to illustrate and test the proposed ontology.
The last section discusses the results and draws conclusions.

2 Literature Review

Runtime reconfiguration (or reconfiguration during system operation) has been
addressed and researched by several scientific domains proposing related definitions
of this concept. These domains include control engineering, software systems
and computing, reconfigurable manufacturing systems, embedded systems, and

An Ontology for System Reconfiguration: Integrated Modular Avionics IMA. . . 191

autonomous systems (Provan and Chen 1999; Rodriguez et al. 2009; Alsafi and
Vyatkin 2010; Saxena et al. 2010; Krichen and Zalila 2011; Regulin et al. 2016).
The definitions provided by these domains discuss system reconfiguration either
in terms of transitions between modes or changing software or hardware elements.
Thus, reconfiguration is referred to as a transition between system modes: functional
or failure modes. Qasim et al. (2019b) have attempted to define SR in systems engi-
neering as the subsequent changes of the system configurations with the objective of
maintaining or adapting (increasing or decreasing) the capabilities provided by the
system. Based on the definition of system configuration in systems engineering, we
identified three main aspects that are essential for the management of systems when
considering SR (Qasim et al. 2019a). These aspects include structure, dynamics, and
management. The structural aspect integrates the resources constituting the system,
their functions, and connections between them. The mechanisms of transitions and
their causes and effects are referred to as the dynamic aspect. On the other hand,
optimizing the existing resources with regard to the considered context and the
mission is referred to as the management aspect.

A model-based approach that has risen to become a current trend in systems
engineering is model-based systems engineering (MBSE) (Madni and Sievers
2017). MBSE aims at reducing the cost and time via models using and reusing
(Wymore 1993). In MBSE, ontology is the commonly used approach toward domain
knowledge construction (Medina-Oliva et al. 2014) and formalization. In practice,
they provide the vocabulary for a domain and relations among them using formal
language (Nadoveza and Kiritsis 2014). The object-oriented model is a way of
representing ontologies in which they build on classes, properties of the classes,
and instances. Classes represent the domain concepts, and the association relations
represent their interactions (Gruber and Özsu 2009). Ontologies have already been
used to describe different domains as presented in Obitko and Márík (2002) and
Liang et al. (2011). Likewise, several ontologies aiming at supporting SR exist
(Walsh et al. 2005, 2006; OMG 2010; Ali et al. 2011; Bermejo-alonso et al.
2011; Krichen and Zalila 2011; Witt et al. 2013; Gogniat et al. 2013; Meyer et
al. 2013; Hernández et al. 2015; Bermejo-Alonso et al. 2016). In our research,
we aim to propose an ontology for SR synthesizing the three essential aspects
which we have previously identified and upon which relies the reconfiguration
process from systems engineering perspective: structure, dynamics, and manage-
ment. Correspondingly, we used these aspects to analyze and classify the existing
ontologies. To our knowledge, no model or ontology which integrates these aspects
exists (Qasim et al. 2019a). However, from the systems engineering perspective, a
comprehensive model integrating all three aspects is needed for system management
via reconfiguration. To address this gap, we proposed to integrate these aspects
into a synthesizing SR ontology (OSysRec) to ensure effective and efficient system
management (Qasim et al. 2019a). Section 3 gives an overview of the OSysRec
ontology.

192 L. Qasim et al.

3 Overview of the OSysRec Ontology for System
Reconfiguration

This section gives an overview of the OSysRec ontology which integrates the three
aspects of SR conjointly. The extensive survey of the literature and the analysis
of use case scenarios have allowed us to extract the fundamental concepts of the
ontology and their characteristics (Qasim et al. 2019a). We have classified the
identified concepts into three main categories representing the main three aspects
of the reconfiguration process: structure, management, and dynamics.

Systems generally exist to satisfy a Mission which is the purpose to which all
resources should be directed (see the management package of the OSysRec ontology,
Fig. 1). The Mission definition is linked to the applied Strategy. A Mission can
have a single or multiple Mission Phases. Each of these phases has its Objectives
that can be achieved by realizing the mission Tasks. System reconfiguration can

Fig. 1 OSysRec ontology

An Ontology for System Reconfiguration: Integrated Modular Avionics IMA. . . 193

happen to adapt the system to its Context changes. Thus, it is crucial to understand
what Context elements can impact systems, as systems do not work in isolation
from their contexts. In the OSysRec management package, the Context is composed
of Regulations, Environment, Budget, Context System, and User. If the Mission
and the Context of use are constant, the system can still undergo a process of
reconfiguration to adapt itself in case of faults. Therefore, information about the
correctness of the expected behavior (Effective Mode) and the health state of the
system (Effective State) should be reported to the management part. The Effective
Mode and the Effective State characterize the Effective Situation. The Effective
Situation is compared to the Expected Situation to detect changes. When a Change
(mission, context, or situation change) is detected, an evaluation should be done, and
actions need to be taken. Actions can either be at the management level by changing
the Strategy or at the dynamic and structural levels by generating an Event.

At the dynamic level, the Event triggers a Transition from one Mode to another
when Conditions are met. Knowing the source and target Modes, an Action List
is generated. Actions ensure the transition between modes and act directly on
the system. The Mode is satisfied by a Configuration and it is characterized by
Functions. Thus, we refer to Configuration as the allocation of Functions on
Resources. Hence, it is obvious that Configuration represents the core element that
links the dynamic and the structural levels.

The structural level shows that the System is characterized by Configurations. The
System is composed of Resources (physical Assets, Services, or human Operators)
and Interfaces. Resources can be an aggregation of other resources. Similarly, their
Configurations can be aggregated from the Configuration of the engaged Resources.

4 Case Study: Integrated Modular Avionics (IMA)

In this section, we demonstrate the application of the OSysRec ontology to integrated
modular avionics (IMA) system which is currently deployed in modern aircraft
architectures for both civil and military applications such as the Airbus A380
and the Rafale (Personnic 2002). IMA is a real-time computer network airborne
system. IMA consists of a number of common function modules (CFM) populated
in racks to allow for the replacement of the different modules. Six different CFM
exist for IMA systems: (1) data processing module (DPM) for data-dependent
processing activities, (2) signal processing module (SPM) for data-independent
processing activities, (3) graphics processing module (GPM) for image composition
and formatting, (4) mass memory module (MMM) for nonvolatile storing, (5)
network support module (NSM) for network and protocol control, and (6) power
conversion module (PCM) to allow for two-stage power conversion to 48V. These
CFM will be used to run different application processes depending on the type of
the application (program). A functional configuration in this context refers to a
mapping of application processes to CFM. The functional configuration can have
a logical configuration and a physical configuration (ASAAC 2004). The logical

194 L. Qasim et al.

configuration defines the application requirements in terms of types and numbers of
CFM, number of processing elements, and communication channels. The physical
configuration, on the other hand, is one implementation of a logical configuration
which is translated (instantiated) for a specific physical configuration.

In order to operate properly, the system will require a number of tested, verified,
and certified configurations that should have been made available for operating
the aircraft. During operation, the crew or the operator requests a system mode
which can be satisfied by one or more logical and physical configurations. Mode
selection is done via an application manager, and the reconfiguration is realized
by the generic system management element. Within IMA systems, each mode can
be satisfied by a nominal configuration, meaning that the required applications
run on the main CFM. For each nominal configuration, one or more safety
configurations exist. These configurations allow for running the same applications
but on different CFM. In this case, the visible functionality does not change.
Furthermore, for each nominal configuration, one or more degraded configurations
exist. The degraded configurations provide a limited functionality of the IMA
system. Changing between these associated logical or physical configurations
will not impact the measured functionality level (external visible functionality).
Changing from one mode to another may require a reconfiguration through the
execution of action predefined in the runtime model. Civil and military avionics
have different natures of reconfiguration. Civil IMA undergo static reconfiguration
where only changing the hardware element is involved. On the contrary, IMA in the
military applications can reconfigure SW elements dynamically.

The types of events that can be encountered within the IMA systems are
(1) equipment fault, (2) software (application) fault, (3) change mode, and (4)
global relaunch of IMA systems. Depending on the detected event and the current
configuration, the system management can propose different actions. These actions
may or may not require a reconfiguration. The possible actions include:

• No action: In this case, the processing on the considered modules continues.
• Program re-initialization: the program run on a given module is stopped and

relaunched. In this case, no module reconfiguration.
• Program stop: in case of a software error, the program is stopped. When stopping

a program, a change of the execution module is necessary.
• Module re-initialization: all the programs run on one module are stopped and

relaunched.
• IMA re-initialization: all the programs on all modules are stopped and

relaunched.
• Module stop: in this case, the IMA system will detect an absence of this module

and hence a reconfiguration is necessary.

To illustrate the ontology described in Sect. 3, we use a simplified example of an
IMA system with only four process modules and eight applications. Time intervals
refer to events sequencing. Initially, at time t0, the IMA system is organized to
ensure the operation of the take-off (Fig. 2a). For this case, the needed applications
for this logical configuration are 1, 2, 3, 4, 6, and 8 (see Fig. 2b). Applications 2

An Ontology for System Reconfiguration: Integrated Modular Avionics IMA. . . 195

Fig. 2 (a) Mapping of applications on available modules of IMA. (b) Reconfiguration of IMA
based on different events

and 4 are run on DPM1. Application 1 is run on DPM2. Application 6 is run on
the PCM. Finally, the GPM is used to run applications 3 and 8. In this context,
the applications and the modules are considered the Resources. The mapping of the
applications on modules represents the Configurations. The Configuration satisfies
a functional Mode, in this example the nominal take-off mode.

At time t0+t1, when the take-off is completed, the pilot requests the flight
mode. The User controls the Mission Phase. For the flight mode (mission phase),
the resources and their configuration are different. Hence, this mission change is
considered as a Change. After evaluation with regard to the new mission objectives
in terms of required resources, the result would be to generate an Event at the
dynamic level in order to implement the Flight Mode. Technically, being in the take-
off mode and receiving the Event to pass to the flight mode will trigger a Transition
to implement the configuration corresponding to the Flight Mode (application 1
on DPM2, applications 4 and 5 run on DPM1, application 6 on the PCM, and
applications 3 and 7 on the GPM). A Condition on this transition would be the
availability of all the required applications and modules (Resources). The resulting
Actions list can include the following Actions: (1) stop application 2 on DPM1, (2)
run application 5 on DPM1, (3) stop application 8 on the GPM, and finally (4) run
application 7 on the GPM. This procedure is illustrated in Fig. 2b.

At time t0+t2, a detection of a fault in the module DPM1 (Resource), while
in the flight nominal mode (Effective_mode), will be reported to the management
part via the Effective_State. Thus, comparing the IMA effective state for the current
flight mode (Effective_Situation) to the expected one will lead to a change at the
management level. This change when evaluated a signal of failure (SYSFAIL) is
considered an event demanding a reconfiguration of the IMA at the dynamic level.
This event triggers a transition toward the safety flight mode where DPM11 replaces
DPM1. In this case, the condition on this transition is the availability of DPM11.
In order to achieve the transition (reconfiguration), the actions needed are (1) stop

196 L. Qasim et al.

application 5 on module DPM1, (2) stop module DPM1, (3) relaunch DPM11, and
(4) run applications 4 and 5 on DPM11. This procedure is illustrated in Fig. 2b.

5 Discussion and Conclusions

The work presented in this paper is part of ongoing research initiated to support
SR within industry. In a previous work, we proposed an ontology for SR. The
proposed OSysRec ontology integrates the three aspects which are essential for the
management of systems via reconfiguration: structure, dynamics, and management.
This ontology is considered as a comprehensive conceptual framework within which
it is possible to study and support dynamic evolutions of systems.

This paper seeks to go beyond the proposal of the OSysRec ontology and its
validation within the defense domain. Thus, we propose to extend the validation
process by using an additional case study from the aerospace industry. The scenario-
based test and validation is used to demonstrate that the proposed ontology is
sufficiently generic and can be applied to a variety of cases. For this purpose, we use
a case study from our industrial context. In this case study, we discuss the integrated
modular avionics (IMA) systems and we use it to test the OSysRec ontology. To do
so, we used a simplified example of IMA systems. The demonstration shows that
the OSysRec ontology is able to represent the chosen reconfiguration scenario of
IMA systems.

The overarching research objective is to explore and propose a tool for SR (recon-
figuration engine) based on the OSysRec ontology. Ongoing research activities are
investigating the possibility of using multi-agent systems to develop such a tool.
The main feature we seek to obtain from this tool is the evaluation of a system’s
ability to accomplish missions based on the system’s health and context. Moreover,
we expect this feature to support system users by informing them on actions that are
necessary to ensure effectiveness.

Many issues and challenges can be encountered when developing reconfiguration
features. In order to reconfigure systems based on models, it is necessary to use
models which reflect reality exhaustively and precisely. Thus, future works should
address model fidelity by developing formalisms and formal languages to allow
for better representation of the real world. Systems which have the reconfiguration
feature pass through transition states and modes. To master reconfiguration, we
should be able to capture the system states and modes at any moment. For
this reason, we believe that future work should address the states and modes
determinism. Reconfiguration implies implementing configurations which have not
been previously tested and validated via the IVVQ process. Thus, certifying is a real
issue that needs to be addressed.

An Ontology for System Reconfiguration: Integrated Modular Avionics IMA. . . 197

References

Ali, A.B.H., et al. 2011. Safe Reconfigurations of Agents-Based Embedded Control Systems. In
IECON Proceedings (Industrial Electronics Conference). IEEE, pp. 4344–4350. https://doi.org/
10.1109/IECON.2011.6120023.

Alsafi, Y., and V. Vyatkin. 2010. Ontology-Based Reconfiguration Agent for Intelligent Mecha-
tronic Systems in Flexible Manufacturing. Robotics and Computer-Integrated Manufacturing
26 (4): 381–391. https://doi.org/10.1016/j.rcim.2009.12.001.

ASAAC. 2004. ASAAC Final Draft of Proposed Guidelines for System Issues Document reference:
ASAAC2-GUI-32450-001-CPG.

Bermejo-alonso, J., et al. 2011. Engineering An Ontology for Autonomous Systems – The OASys
Ontology, pp. 47–58. https://doi.org/10.5220/0003634600470058.

Bermejo-Alonso, J., C. Hernandez, and R. Sanz. 2016. Model-Based Engineering of Autonomous
Systems Using Ontologies and Metamodels. In ISSE 2016 – 2016 International Symposium on
Systems Engineering – Proceedings Papers. https://doi.org/10.1109/SysEng.2016.7753185.

Gogniat, G., et al. 2013. Dynamic Applications on Reconfigurable Systems: From UML Model
Design to FPGAs Implementation. In 2011 Design, Automation & Test in Europe. IEEE, pp.
1–4. https://doi.org/10.1109/date.2011.5763315.

Gruber, T., and M. Özsu. 2009. Encyclopedia of Database Systems. Ontology.
Hernández, C., et al. 2015. Model-Based Metacontrol for Self-adaptation. In International

Conference on Intelligent Robotics and Applications. Springer, pp. 643–654. 10.1007/978-3-
319-22879-2_58.

ISO/IEC:15288. 2015. ISO/IEC/IEEE/15288: Systems and Software Engineering – System Life
Cycle Processes.

Krichen, F., and B. Zalila. 2011. Towards a Model-Based Approach for Reconfigurable DRE
Systems Towards a Model-Based Approach for Reconfigurable DRE Systems. In European
Conference on Software Architecture. Springer, pp. 295–302. https://doi.org/10.1007/978-3-
642-23798-0.

Liang, Q., et al. 2011. Ontology-Based Business Process Customization for Composite Web
Services. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans
41 (4): 717–729. https://doi.org/10.1109/TSMCA.2011.2132710. IEEE.

Madni, A.M., and M. Sievers. 2017. Model-Based Systems Engineering: Motivation, Current
Status, and Needed Advances. In Disciplinary Convergence in Systems Engineering Research,
pp. 311–325. https://doi.org/10.1007/978-3-319-62217-0_22.

Medina-Oliva, G., et al. 2014. Predictive Diagnosis Based on a Fleet-Wide Ontology
Approach. In Knowledge-Based Systems. Elsevier B.V., 68, pp. 40–57. https://doi.org/10.1016/
j.knosys.2013.12.020.

Meyer, F., et al. 2013. An Approach for Knowledge-Based IT Management of Air Traffic Control
Systems. In 2013 9th International Conference on Network and Service Management, CNSM
2013 and Its Three Collocated Workshops – ICQT 2013, SVM 2013 and SETM 2013, pp. 345–
349. https://doi.org/10.1109/CNSM.2013.6727856.

Nadoveza, D., and D. Kiritsis. 2014. Ontology-Based Approach for Context Modeling in
Enterprise Applications. Computers in Industry 65 (9): 1218–1231. https://doi.org/10.1016/
j.compind.2014.07.007.

Obitko, M., and V. Márík. 2002. Ontologies for Multi-agent Systems in Manufacturing Domain. In
Proceedings – International Workshop on Database and Expert Systems Applications, DEXA.
IEEE, 2002–Janua, pp. 597–602. https://doi.org/10.1109/DEXA.2002.1045963.

OMG (Object Management Group). 2010. UML profile for MARTE Object Management Group.
Personnic, G. 2002. Asaac: The Way to Flying Military Open Systems. 3rd European Systems

Engineering Conference Systems Engineering: A focus of European Expertise Pierre Baudis
Congress Centre, Toulouse, 21st–24th May 2002.

http://dx.doi.org/10.1109/IECON.2011.6120023
http://dx.doi.org/10.1016/j.rcim.2009.12.001
http://dx.doi.org/10.5220/0003634600470058
http://dx.doi.org/10.1109/SysEng.2016.7753185
http://dx.doi.org/10.1109/date.2011.5763315
http://dx.doi.org/10.1007/978-3-642-23798-0
http://dx.doi.org/10.1109/TSMCA.2011.2132710
http://dx.doi.org/10.1007/978-3-319-62217-0_22
http://dx.doi.org/10.1016/j.knosys.2013.12.020
http://dx.doi.org/10.1109/CNSM.2013.6727856
http://dx.doi.org/10.1016/j.compind.2014.07.007
http://dx.doi.org/10.1109/DEXA.2002.1045963

198 L. Qasim et al.

Provan, G., and Y.-L. Chen. 1999. Model-Based Diagnosis and Control Reconfiguration for
Discrete Event Systems: An Integrated Approach. In Proceedings of the 38th IEEE Conference
on Decision and Control, pp. 1762–1768. https://doi.org/10.1109/CDC.1999.830888.

Qasim, L., A.M. Hein, S. Olaru, et al. 2019a. An Overall Ontology for System Reconfiguration
Using Model-Based System Engineering. Submitted to IEEE Transactions on Systems, Man,
and Cybernetics: Systems.

Qasim, L., A.M. Hein, M. Jankovic, et al. 2019b. Towards a Reconfiguration Framework for
Systems Engineering Integrating Use Phase Data. In Proceedings of ICED 2019, the 22nd
International Conference on Engineering Design: Responsible Design for Our Future, Delft,
Netherlands, 05.-08.08. 2019.

Regulin, D., et al. 2016. Model Based Design of Knowledge Bases in Multi Agent Systems
for Enabling Automatic Reconfiguration Capabilities Of Material Flow Modules. In IEEE
International Conference on Automation Science and Engineering, pp. 133–140. https://
doi.org/10.1109/COASE.2016.7743371.

Rodriguez, I.B., et al. 2009. A Model-Based Multi-level Architectural Reconfiguration Applied
to Adaptability Management in Context-Aware Cooperative Communication Support Sys-
tems. In 2009 Joint Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture. WICSA/ECSA 2009: 353–356. https://doi.org/10.1109/
WICSA.2009.5290829.

Saxena, T., et al. 2010. Enabling Self-Management by Using Model-Based Design Space Explo-
ration. In Seventh IEEE International Conference and Workshops on Engineering of Autonomic
and Autonomous Systems, pp. 137–144. https://doi.org/10.1109/EASe.2010.22.

Walden, D., and G. Roedler. 2015. INCOSE Systems Engineering Handbook: A Guide for System
Life Cycle Processes and Activities, 4th ed. Available at: http://eu.wiley.com/WileyCDA/
WileyTitle/productCd-1118999401.html.

Walsh, D., F. Bordeleau, and B. Selic. 2005. A Domain Model for Dynamic System Reconfigura-
tion. pp. 553–567. https://doi.org/10.1007/11557432_42.

———. 2006. Change Types of Dynamic System Reconfiguration. in Proceedings of the Interna-
tional Symposium and Workshop on Engineering of Computer Based Systems, pp. 3–12. https:/
/doi.org/10.1109/ECBS.2006.28.

Witt, R., et al. 2013. Implementation of Fault Management Capabilities for the Flying Laptop Small
Satellite Project through a Failure-Aware System Model. pp. 1–16. https://doi.org/10.2514/
6.2013-4661.

Wymore, A.W. 1993. Model-BASED Systems Engineering. CRC Press.

http://dx.doi.org/10.1109/CDC.1999.830888
http://dx.doi.org/10.1109/COASE.2016.7743371
http://dx.doi.org/10.1109/WICSA.2009.5290829
http://dx.doi.org/10.1109/EASe.2010.22
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1118999401.html
http://dx.doi.org/10.1007/11557432_42
http://dx.doi.org/10.1109/ECBS.2006.28
http://dx.doi.org/10.2514/6.2013-4661

Reducing Design Rework Using
Set-Based Design in a Model-Centric
Environment

Shawn Dullen, Dinesh Verma, and Mark Blackburn

Abstract Digital engineering (DE) provides an opportunity to reduce engineering
design rework. However, this potential depends significantly on the approach
used in exploring the design tradespace. A classical approach, using a traditional
point-based design (PBD), has the likelihood of creating engineering rework even
within the context of digital engineering. To address limitations of PBD, several
researchers have proposed the use of set-based design (SBD). However, there is
no formal definition of SBD and there is limited guidance on how to effectively
implement it in a DE environment. To address such concerns, a literature review
was conducted around the following questions: (1) What is the current state of SBD
application – approaches and models? (2) What are the strengths and limitations
to these approaches and models? (3) How is knowledge developed, captured, and
reused to cause convergence of sets? (4) What DE tools were recommended/used to
enable SBD?

Keywords Rework · Set-based design · Lean product and process development ·
Product development · Systems engineering · MBSE · Model-centric engineering

1 Introduction

Engineering design rework has been a persistent problem in product/system devel-
opment for several decades. Most design efforts have significant rework, accounting
for 30–67% of the total design hours on a project. It has a detrimental impact
on a program’s cost and schedule as indicated by several Government Account-

S. Dullen (�)
Combat Capabilities Development Command (CCDC) Armaments Center, Picatinny Arsenal,
NY, USA
e-mail: shawn.m.dullen.civ@mail.mil

D. Verma · M. Blackburn
Systems Engineering Research Center (SERC), Stevens Institute of Technology, Hoboken, NJ,
USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_18

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_18&domain=pdf
mailto:shawn.m.dullen.civ@mail.mil
https://doi.org/10.1007/978-3-030-82083-1_18

200 S. Dullen et al.

ability Office (GAO) reports (GAO 2011, 2014). Based on the literature review
conducted by Dullen et al. (2019), most of the research addressing rework has
been on understanding the impact of information exchange and organizational
structure related to task dependencies, process execution, project complexity, design
complexity, information evolution, and information completeness. Several modeling
approaches have been used to understand the nature of rework. These include
design structure matrix models (Cho and Eppinger 2001), system dynamic models
(Taylor and Ford 2006), dynamic network models (Braha and Bar-Yam 2007),
discrete-event simulation models (Yang et al. 2014), graphical evaluation and
review technique network models (Nelson et al. 2016), and agent-based models
(Lévárdy and Browning 2009). The primary reasons for engineering rework have
been identified to be downstream sensitivity to upstream preliminary information,
upstream sensitivity to downstream feedback, information uncertainty (e.g., design
mistakes, requirement changes, model fidelity, knowledge level, feedback delays,
etc.), information ambiguity (e.g., novel design), and organizational misalignment.
The varying modeling approaches used by the researchers help with understanding
and analyzing variables influencing rework, but they do not provide means to
improve these variables (task and design dependencies, uncertainty, sensitivity, and
ambiguity). Potential improvements can include desensitizing activities to informa-
tion changes, improving knowledge evolution, and effectively reusing knowledge.

Model-centric engineering (Blackburn et al. 2018), more formally known as
digital engineering (DE) (Bone et al. 2018), can address some of these design
rework concerns. DE has the potential to allow better communications (Bone
et al. 2018) and accelerate learning across a team (West and Blackburn 2018),
improve knowledge discovery (Bandaru et al. 2017), and improve data reuse (Li
et al. 2018; Noy 2004). However, a classical approach to converging too early to
a point design (point-based design – PBD) can get in the way of these potential
benefits (Kennedy et al. 2014). PBD requires decisions to be made with uncertain
information (Canbaz et al. 2014), and when new information becomes available, the
design needs to be reworked. The sequential approach to PBD also suffers from the
potential of constraints being imposed by one design team (e.g., thermal analysis)
to cause design rework (Kennedy et al. 2014) by another team (e.g., structures).
Singer et al. (2009) propose the use of set-based design (SBD) as an alternative to
traditional PBD. In SBD, engineers develop a set of design alternatives in parallel;
as design progresses, they gradually narrow their prospective set of alternatives
based on additional information until they converge to a final solution (Sobek II
et al. 1999). SBD has been identified as a methodology that is robust to changes
in information (Kennedy et al. 2014). Limited experimental results from Thomas
A McKenney et al. (2011a) indicate SBD is robust to requirement changes. B.
M. Kennedy et al. (2014) identified the positive impact of SBD on engineering
and design rework. This is because the engineering team is able to (1) accelerate
learning using rapid prototyping and limit curves to represent knowledge; (2) use
sets (instead of point values) for stakeholder needs, system specification, and sub-

Reducing Design Rework Using Set-Based Design in a Model-Centric Environment 201

subsystem specifications, where final specifications emerge from the convergent
learning process; and (3) reuse knowledge developed and captured for narrowing
the tradespace.

Conceptually, implementing DE using SBD methodology can significantly
reduce rework. The engineering and design community can benefit from a method-
ology that encapsulates the precepts of SBD to allow its promulgation. This seems
to be a limitation. There is little evidence of such a methodology within the literature
(Al-Ashaab et al. 2013; Ghosh and Seering 2014). Case studies reflecting the
implementation of SBD are sparse in the open literature. This further limits an
understanding of how the conceptual underpinnings of SBD can be translated into a
pragmatic set of methods (Ammar et al. 2017; Dag S Raudberget 2011). In addition,
there seems to be a misconception of what SBD is resulting in confused discussions
regarding its similarities and differences vis-à-vis multi-attribute utility theory and
multi-objective optimization (Thomas Abbott McKenney 2013). Irrespective, there
has been a significant research interest on SBD over the past last 20 years given its
potential benefits. The remainder of this paper is as follows: (2) Background, (3)
Literature Review, and (4) Conclusion and Future Work.

2 Background

SBD’s first literature appearance is in Ward (1989) dissertation on “A Theory of
Quantitative Inference for Artifact Sets, Applied to a Mechanical Design Compiler.”
Allen Corlies Ward (1989) made inferences on sets of artifacts to eliminate the sets
that would not perform, rather than to identify optimal solutions. Allen C Ward et al.
(1990) demonstrated constraint propagation of intervals can be used to reason about
a set of physical objects. What distinguishes SBD from the more widely practiced
PBD is the emphasis on reasoning about sets of design options (Braha et al. 2013).
Allen C Ward and Seering (1993) used an SBD approach to apply their theory of
quantitative inference on a mechanical design problem. SBD is also known as set-
based concurrent engineering (SBCE). A. Ward et al. (1995) define SBCE as an
approach where designers focus on design alternatives at both the conceptual and
parametric levels. As elimination of inferior alternatives occurs, the sets gradually
narrow until there is convergence upon a final solution.

In the early 1990s, several studies conducted by Allen Ward, Jeffery Liker,
John Cristiano, and Durward Sobek generated more literature development break-
throughs for SBD. They surveyed 92 Japanese and 119 US automotive companies
(Liker et al. 1996) and performed empirical testing to show that high-performing
companies use a set-based approach, as opposed to their lower-performing coun-
terparts. The results of the studies revealed Toyota demonstrated a more advanced
set-based approach than any of the other Japanese and US automotive companies
(Ward et al. 1995). There were four key observations made about Toyota’s SBCE
approach (Ward et al. 1995): (1) system and subsystem solutions were defined as
sets; (2) exploration of subsystems was done in parallel to systems solutions; (3)

202 S. Dullen et al.

sets of solutions slowly converged to a point solution using analysis, design rules,
and experiments; (4) teams stayed committed to a converged point solution and did
not change unless it was absolutely necessary.

Toyota’s principles of SBCE were later discovered and documented by Sobek II
et al. (1999) during their subsequent research of Toyota product development pro-
cess. The first principle is to map the design space which includes defining feasible
regions, exploring trade-offs by designing multiple alternatives, and communicating
the sets of possibilities. The second principle is to integrate by intersections
such as looking for intersections of feasible sets, imposing minimum constraints,
and seeking conceptual robustness. The third principle is to establish feasibility
before commitment by narrowing sets gradually while increasing the details for the
design, staying within sets once committed, and maintaining control by managing
uncertainty at process gates. Ward (2007) further expanded upon the previous work
on SBCE in his manuscript on Lean Product and Process Development (LPPD)
that was published in 2007. This work focused on emergent learning. M. Kennedy
(2008) later goes on to develop the learning first product development model that
integrates the knowledge value stream with the product value stream.

3 Literature Review

Limited guidance on how to apply SBD is available in the literature. To narrow this
gap, this literature review focused on the state of the art for SBD procedural models.
Procedural models are models that convey best practices intended to guide real-
world situations (Wynn and Clarkson 2018). This section provides a brief overview
of the literature published in the past 10 years that intends to provide guidance in the
form of procedural models for SBD, SBCE, and LPPD. A comparison between the
models is in Table 1 (at the end of Sect. 3.1). The following questions are addressed:
(1) What are the strengths and limitations to these approaches and models? (2) How
is knowledge developed, captured, and reused to cause convergence of sets? (3)
What DE tools were recommended/used to enable SBD?

3.1 Procedural Models

In support of a collaborative European research project titled “Lean Product and
Process Development,” Al-Ashaab et al. (2010) developed the Conceptual Lean
Product and Process Development (cLPPD) model, expanding upon the previous
research on Toyota’s principles of SBCE (Sobek II et al. 1999). M. Khan et al.
(2013) further refined the cLPPD model to include five core enablers: (1) SBCE
process, (2) chief engineer technical leadership, (3) value-focused planning and
development, (4) knowledge-based environment, and (5) continuous improvement
culture. To allow for more practical application of the cLPPD, M. Khan et al. (2011)

Reducing Design Rework Using Set-Based Design in a Model-Centric Environment 203

Table 1 SBD process model comparison

Source

What are the strengths
and limitations to these
approaches and
models?

How is knowledge
developed, captured,
and reused to cause
convergence of sets?

What DE tools were
recommended/used to
enable SBD?

Ström et al.
(2016)

The process model
provides general
guidance on methods
that can be used in a
day to generate and
evaluate alternatives.
The process is aligned
to two of three SBCE
principles (mapping
the design space and
integrating by
intersection). There are
limited ties to SE
technical processes.
The tools
recommended for
model implementation
are limited to
innovation techniques
and Pugh matrix. No
mention of rapid
prototyping

How knowledge will
be developed,
captured, and reused
was not defined

No evidence of DE

Dag S
Raudberget
(2011)

The process model
provides a rich set of
activities for
developing
alternatives. The model
does not have a clear
tie to the SE processes.
The model lacks detail
for stakeholder needs,
requirements
definition, architecture
definition, interface
definition, decision
analysis, rapid
prototyping, and how
sets are established and
narrowed. Very limited
guidance on tools and
methods to implement
model. No use of rapid
prototyping

Knowledge will be
developed by testing.
How knowledge will
be captured and reused
was not defined

No evidence of DE

(continued)

204 S. Dullen et al.

Table 1 (continued)

Source

What are the strengths
and limitations to these
approaches and
models?

How is knowledge
developed, captured,
and reused to cause
convergence of sets?

What DE tools were
recommended/used to
enable SBD?

Wade (2018) The process model
provides a rich
understanding of the
design parameters that
drive the overall value
of the system through
the use of data
visualization and
statistical tests. The
process has limited ties
to the SE technical
processes. No guidance
was provided on how
to narrow sets while
improving the level of
abstraction of the
system. No use of rapid
prototyping. There was
limited guidance on
tools and methods to
enable process

Knowledge is
developed using
performance and cost
models with Monte
Carlo simulations. The
knowledge was
captured in the form of
trade-off curves. How
knowledge will be
reused was not defined

Trade study performed
using Engineered
Resilient Systems
Tradespace Toolkit

B. M. Kennedy
et al. (2014)

The process model
provides ties to the SE
technical processes.
There is a strong
emphasis on rapid
prototyping. Limited
guidance was provided
on how to map the
design space, develop
sets, communicate sets,
and narrow sets. There
was limited guidance
on the tools and
methods to enable
process

Knowledge is
developed using rapid
prototyping and
captured in the form of
limit curves.
Knowledge reuse was
not clearly defined

No evidence of DE

(continued)

developed a SBCE process model with five phases. Each phase is decomposed into
lower-level steps (e.g., 1.1). M. S. Khan (2012) dissertation proposes the finalized
LPPD model with more refined lower-level sub-steps (e.g., 1.1.1) for each of the
phases. Maulana et al. (2016) provide a detailed (step-by-step) application case
study instantiating M. Khan et al. (2011) SBCE process model on a surface jet
pump and highlight the use of specific methods and tools.

Reducing Design Rework Using Set-Based Design in a Model-Centric Environment 205

Table 1 (continued)

Source

What are the strengths
and limitations to these
approaches and
models?

How is knowledge
developed, captured,
and reused to cause
convergence of sets?

What DE tools were
recommended/used to
enable SBD?

Frye (2010) The process model
includes developing
organization structure,
highlights the
difference in narrowing
sets at different
abstraction levels (e.g.,
system, subsystem, and
component), and
distinguishes measure
types (e.g., discrete vs.
continuous). There is
no clear tie to the SE
technical processes
(e.g., stakeholder
needs, requirements
definition, architecture
definition, and
verification). No use of
rapid prototyping or
methods for
developing alternatives

Knowledge is
developed from DOEs.
How the information
will be captured and
reused was not clearly
defined

Performance data was
developed using
computer code
(software/tool not
specified). Statistical
analysis was performed
using JMP

Mebane et al.
(2011)

The process model
directly ties to the
TMRR phase of the
DOD life cycle. The
model provides clear
flow of detailed
activities to include
their interrelationships.
The tools and methods
to enable the process
are not well defined.
The process did not
include activities for
functional and logical
architecture. No
mention or use of rapid
prototyping. There was
limited guidance on the
tools and methods that
should be used to
enable the process.
Model lacks detail for
how to narrow sets
while improving the
level of abstraction

Knowledge is
developed from DOEs.
How the information
will be captured and
reused was not clearly
defined

The only tool explicitly
defined was DOORS.
The use of analysis,
data management, and
statistical tools were
mentioned, but no
specific tool was
defined

(continued)

206 S. Dullen et al.

Table 1 (continued)

Source

What are the strengths
and limitations to these
approaches and
models?

How is knowledge
developed, captured,
and reused to cause
convergence of sets?

What DE tools were
recommended/used to
enable SBD?

Garner et al.
(2015)

The process model
incorporates the
following SE technical
processes and technical
management
processes: mission
analysis, stakeholder
needs, and decision
management. The
process lacks details
for alternative
generation, functional
and logical
architecture, and how
to narrow sets while
improving the level of
abstraction. No use of
rapid prototyping. It
was not clear what
tools and methods
should be used to
enable process

Knowledge is
developed from DOEs.
Knowledge captured as
regression models and
trade-off curves. How
knowledge will be
reused was not defined

Performance data was
developed using
Advanced Evaluation
Tool and Rapid Ship
Design Environment.
Statistical analysis
performed using JMP.
Trade study performed
using Engineered
Resilient Systems
Tradespace Toolkit

Ammar et al.
(2017)

The process model ties
nicely with the SE
technical processes
during the early phases
of product
development. There is
limited guidance on
how to execute
process. The tools and
methods are not clearly
defined. There is no
guidance on how to
narrow sets while
improving the level of
abstraction. No use of
rapid prototyping.
Verification and
validation were listed
as activities; however
the techniques were
not (modeling and
simulation, testing, or
the combination of
both)

Requirements are
captured in tables, and
architecture
information is captured
in SysML. There is no
evidence of design data
being developed,
captured, or reused

SysML was utilized for
architecture

(continued)

Reducing Design Rework Using Set-Based Design in a Model-Centric Environment 207

Table 1 (continued)

Source

What are the strengths
and limitations to these
approaches and
models?

How is knowledge
developed, captured,
and reused to cause
convergence of sets?

What DE tools were
recommended/used to
enable SBD?

Gumina (2019) The process model
provides clear
guidance on how to
create sets,
communicate sets,
integrate sets, and
narrow sets. Sets were
created using design of
experiments. The
process lacks details
for alternative
generation,
architecture definition,
and how to narrow sets
while improving the
level of abstraction of
the system. There are
limited ties to SE
technical processes. No
use of rapid
prototyping

Knowledge is
developed using
low-fidelity modeling
of the measures of
effectiveness and
measures of
performance using
Latin hypercube
sampling. Knowledge
is captured in graphical
format (e.g., trade-off
curves) and
communicated using
action reports. How
knowledge will be
reused was not defined

No evidence of DE

Ammar et al.
(2018)

The process model
provides general
guidance on mapping
the design space,
integrating by
intersection, and
establishing feasibility
before commitment.
There are limited ties
to SE technical
processes: stakeholder
needs, requirements
definition, architecture
definition, design
definition, integration,
verification, and
validation. No use of
rapid prototyping. The
tools and methods to
enable the process
were not clearly
defined

Knowledge is
developed from DOEs.
The results are
captured in the form of
trade-off curves.
Requirements are
captured in tables, and
architecture
information is captured
in SysML. How
knowledge will be
reused was not defined

DOE results came
from CAE models that
were developed and
integrated using
Modelica.
Optimization was
performed using
ModelCenter.
Architecture was
developed in SysML.
This approach was
effective at facilitating
communication
between functional
team

(continued)

208 S. Dullen et al.

Table 1 (continued)

Source

What are the strengths
and limitations to these
approaches and
models?

How is knowledge
developed, captured,
and reused to cause
convergence of sets?

What DE tools were
recommended/used to
enable SBD?

M. S. Khan
(2012)

The process model is
very detailed and
incorporates some
aspects of systems
engineering activities
with SBD such as
stakeholder needs,
requirements
definition, design
definition, and
integration. For each of
the sub-steps, there is a
recommended list of
tools to enable
activities and guidance
for innovation,
conceptual robustness,
and producibility. It is
not clear how the
model is integrated into
a concept development
process. The model
lacks detail for
architecture definition,
interface definition,
decision analysis, rapid
prototyping, and how
to narrow sets while
improving the level of
abstraction

Knowledge will be
developed for
life-cycle cost, quality,
and performance using
simulations,
prototyping, and
testing for each design
alternative. The
knowledge will then be
captured in graphical
formats (e.g., limit
curves and trade-off
curves). This
knowledge will be
communicated using
an A3 report. A3
reports will be reused
for later decisions and
future projects

Limit curves, trade-off
curves, and A3 reports
were stored in
knowledge database
(product lifecycle
management (PLM)).
Computer-aided design
(CAD) and
computer-aided
engineering (CAE)
were mentioned but no
specific tool defined.
There was no evidence
of the use of the
Systems Modeling
Language (SysML) or
integration of CAE
models

Al-Ashaab et
al. (2013)

The process model has
a clear tie to
implementing SE using
SBD during TMRR
phase of DOD life
cycle. The model
includes applicable SE
technical processes and
technical management
processes. Tools and
methods were listed for
each step of the
process without clear
guidance on how to
implement them.
Model lacks detail for
how to narrow sets
while improving the
level of abstraction

Knowledge is
developed from design
of experiments (DOEs)
and functional means
analysis. The
information is
documented in the
form of trade curves
and decision matrices.
The process identifies
the reuse of
information from
previous projects but
not what type of
information or how it
would be facilitated

No evidence of DE

(continued)

Reducing Design Rework Using Set-Based Design in a Model-Centric Environment 209

Table 1 (continued)

Source

What are the strengths
and limitations to these
approaches and
models?

How is knowledge
developed, captured,
and reused to cause
convergence of sets?

What DE tools were
recommended/used to
enable SBD?

Dobrovolskyte
(2015)

The process model has
the same strengths as
Al-Ashaab et al. (2013)
with the additional
benefit of using terms
more familiar for
design engineers. No
clear guidance on how
to execute model or the
tools to implement
model. Model lacks
detail for how to
narrow sets while
improving the level of
abstraction

Knowledge is
developed, captured,
and reused as
Al-Ashaab et al. (2013)

Knowledge is
developed, captured,
stored, and reused
using SBD Navigator.
SBD Navigator
includes CAD, CAE,
CAE model
integration, A3 reports,
requirements,
architecture, etc. The
tool is utilized at the
system and subsystem
level

In 2013, Al-Ashaab et al. (2013) developed a new RR-LeanPD model that
integrates M. S. Khan (2012) LPPD model with Rolls-Royce System Design and
Integration (SD&I) model. The RR-LeanPD model was developed for the first
two SD&I system design reviews (SDR). The first SDR is focused on defining
customer value and understanding system requirements. The second SDR is focused
on developing system-level specification and assuring system concepts are capable
of meeting system-level specification. The RR-LeanPD model uses an integrated
systems engineering approach (Walden et al. 2015) with SBCE, intended for early
product development equivalent to the Technology Maturation and Risk Reduction
(TMRR) phase of the DOD acquisition life cycle (Defense 2015). As a part of
the Configuration Optimization of Next Generation Aircraft (CONGA) project
initiative (Al-Ashaab et al. 2014), the RR-LeanPD model was further refined to
align with Rolls-Royce vision of SBD (Dobrovolskyte 2015). The new procedure
model is the Rolls-Royce Set-Based Design (RR-SBD) model. The modifications
allowed for improved SBD collaboration within Rolls-Royce (Dobrovolskyte 2015).
The CONGA project also defined a phased-gate model that uses a model-centric
tool, Knowledge Shelf, that captures, compares, and reuses key project design
information to support designers with knowledge they need to implement SBD (Al-
Ashaab et al. 2014). In 2016, Araci et al. (2016) developed a process to generate
trade-off curves, further improving the SBCE process developed by M. S. Khan
(2012).

In 2010, as part of a 3-year joint-venture study between Swedish industry, the
School of Engineering in Jönköping University, and Swerea IVF Research Institute,
D. Raudberget (2010) investigated if SBCE (Sobek II et al. 1999) could improve the
efficiency and the effectiveness of a company’s development process. His research

210 S. Dullen et al.

identified barriers for implementing SBCE, the need for a methodology or model to
help implement SBCE, and recommendations for implementing/introducing SBCE.
Next, Dag S Raudberget (2011) developed a ten-step framework to implement
SBCE for system-level design and detailed-level design. In 2014, D. S. Raudberget
et al. (2014) integrated functional means modeling for platform design with SBCE.
Later in 2016, Ström et al. (2016) developed an instant set-based design (ISBD)
framework considering just two principles of SBCE (Sobek II et al. 1999). They
emphasized utilizing generic methods to enable teaching and implementation of
SBD in 1 day. In 2017, Ammar et al. (2017) developed a proposed methodology
called DMIV (Development, Mapping, Integration, and Verification) that has 2
phases and 21 steps. The next year, Ammar et al. (2018) developed a new SBD
process model to include verification and validation. The process was applied to an
electronic throttle body using the Systems Modeling Language (SysML).

The US Navy and their affiliated universities, the University of Michigan, Naval
Postgraduate School, and Massachusetts Institute of Technology, have performed a
significant amount of research on SBD. One of the most cited papers on SBD for the
Navy that has sparked a lot of interest in the research on SBD was written in 2009
by Singer et al. (2009). This paper documented general implementation guidance
on SBD, described early research conducted at the University of Michigan (1999–
2003) on SBD, and described how SBD can help the Navy design ships during the
early phases of product development, during the Material Solution Analysis (MSA)
phase of the DOD acquisition life cycle (Defense 2015).

More guidance on implementing SBD can be found in Frye (2010) publication
on a generic SBD framework model, which is based on lessons learned from the
Ship-to-Shore Connector (SSC) project. The process includes six high-level steps.
This research indicates that a definition of the organizational structure must occur
prior to executing SBD. The following year Mebane et al. (2011) generated a more
detailed SBD process model integrating SBD into the TMRR phase of the DOD
life cycle for the SSC project. Thomas A McKenney et al. (2011b) developed a
limited-scope SBD process model to study the impact of requirement changes to the
SBD process. A set reduction process was later introduced by T. McKenney et al.
(2012) for SCC that incorporated an SBD rigor standard to evaluate design activity
against five SBD elements: (1) characterization, (2) flexibility, (3) convergence, (4)
communication, and (5) facilitation. In 2013, Thomas Abbott McKenney (2013)
published dissertation proposes a decision support framework that introduces the
use of design space mapping, longest path problem (LPP) as a Markov decision
process, and preference change simulations.

In response to the Secretary of Defense direction to the Department of the Navy,
the Small Surface Combatant Task Force (SSCTF) developed a SBD process to
submit alternate proposals for procurement of a capable and lethal small surface
combatant (Garner et al. 2015). The authors describe the process of developing
a model-centric environment to implement aspects of their SBD process using
tools such as Advanced Surface Ship and Submarine Evaluation Tool (ASSET),
Rapid Ship Design Environment (RSDE), and Engineered Resilient Systems (ERS)
Tradespace Toolkit. Using an example use-case illustration, Parker et al. (2017)

Reducing Design Rework Using Set-Based Design in a Model-Centric Environment 211

provide guidance on set reduction during the MSA phase of the DOD life cycle.
Toshon et al. (2017) expanded upon T. McKenney et al. (2012) set reduction process
using Taguchi robust design methods for Naval shipboard power systems. In 2019,
in her dissertation, Gumina (2019) proposes an “improved SBD process” due to a
speculation that the Navy process models are missing intermediate steps.

B. M. Kennedy et al. (2014) propose a process model for the front end of the
SE Vee model (Walden et al. 2015). Yannou et al. (2013) developed a SBD process
model that integrates physics-based models with usage models. The usage scenarios
consider the physical surroundings, social surroundings, temporal surroundings,
task definition, and antecedent states. In his thesis, Wade (2018) proposed a
convergent SBD process. The process is iterative, where the fidelity and sample
size increase with increased narrowing of the design space. Specking et al. (2018)
proposed a SBD process for early design tradespace exploration that is integrated
with model-centric engineering.

The procedural models with the most details were selected to address the
following questions: (1) What are the strengths and limitations to these approaches
and models? (2) How is knowledge developed, captured, and reused to cause
convergence of sets? (3) What DE tools were recommended/used to enable SBD?
The results in Table 1 are ordered by progressive level of detail from least to most
descriptive.

4 Conclusion and Future Work

Based on this literature review, the Rolls-Royce System Design and Integration
model (Al-Ashaab et al. 2013) provided the most detail on how to implement SBD
during the equivalent TMRR phase of the DOD life cycle. This model is clearly
tied to the SE technical processes and technical management processes. The tools,
methods, and templates to execute the process were clearly defined and readily
available for those within the Rolls-Royce internal organization. A more complete
picture would have included how the tools and methods are used to define sets
and reason about them, as well as descriptions on how knowledge is developed
and reused. There exists an opportunity to solidify guidance on how to implement
SBD, how to narrow sets while improving the level of abstraction of the design,
how to define and reason about sets, and how to reuse knowledge. There also exist
opportunities to improve the connection of SBD to SE technical processes.

The most detailed illustration of DE was the SBD Navigator (Dobrovolskyte
2015). The SBD Navigator was developed to enable the activities defined in the
RR-SBD model (Dobrovolskyte 2015). This approach was missing an industrial
application, a way to define and reason about sets, and how to narrow sets
while improving the level of abstraction and analysis. Therefore, there exists an
opportunity to develop a DE approach to execute SBD for knowledge development,
capturing, and reuse. The approach should include use of multi-fidelity models,
multi-physics models, and their integration. An observation made based on literature

212 S. Dullen et al.

review was there was no distinction of developing knowledge for ambiguous prob-
lems versus uncertain problems. Another observation was there was no indication
that the models used for developing knowledge were verified or validated; in order
for this to be a viable option for deductive reasoning, the models need to have some
level of model validation.

Based on this literature review, the following research questions are proposed:

• What is the most effective way to develop, capture, and reuse knowledge during
the TMRR phase of the DOD life cycle?

• What level of model fidelity is required for SBD?
• When do critical long-lead items become PBD decisions?
• Can ambiguous problems be handled the same way as uncertain problems for

SBD?
• How can models be shared in a noncooperative environment?
• Does a noncooperative environment impede SBD?
• What challenges exist that prevent SBD from being applied to industrial applica-

tions?

References

Al-Ashaab, A., E. Shehab, R. Alam, A. Sopelana, M. Sorli, M. Flores, et al. 2010. The Conceptual
LeanPPD Model. In New World Situation: New Directions in Concurrent Engineering, 339–
346. Springer.

Al-Ashaab, A., M. Golob, U.M. Attia, M. Khan, J. Parsons, A. Andino, et al. 2013. The
Transformation of Product Development Process into Lean Environment Using Set-Based
Concurrent Engineering: A Case Study from an Aerospace Industry. Concurrent Engineering
21 (4): 268–285.

Al-Ashaab, A., M. Golob, J. Oyekan, Z.C. Araci, M. Khan, D. Deli, and E. Al-Ali. 2014. Flying
Into Aerospace’s Next Generation. Industrial Engineering 46 (10): 38–43.

Ammar, R., M. Hammadi, J.-Y. Choley, M. Barkallah, J. Louat, and M. Haddar. 2017. Architectural
Design of Complex Systems Using Set-Based Concurrent Engineering. Paper presented at the
Systems Engineering Symposium (ISSE), 2017 IEEE International.

Ammar, R., M. Hammadi, J.-Y. Choley, M. Barkallah, and J. Louati. 2018. Mechatronic System
Design with Manufacturing Constraints Using Set-Based Concurrent Engineering. Paper
presented at the 2018 Annual IEEE International Systems Conference (SysCon).

Araci, Z.C., A. Al-Ashaab, and M. Maksimovic. 2016. Knowledge Creation and Visualisation by
Using Trade-off Curves to Enable Set-Based Concurrent Engineering. Cranfield University.

Bandaru, S., A.H. Ng, and K. Deb. 2017. Data Mining Methods for Knowledge Discovery in
Multi-objective Optimization: Part A-Survey. Expert Systems with Applications 70: 139–159.

Blackburn, M., Verma, D., Dillon-Merrill, R., Blake, R., Bone, M., Chell, B, and Giffin, R. (2018).
Transforming systems engineering through model centric engineering. Stevens Institute of
Technology Hoboken, United States.

Bone, M.A., M.R. Blackburn, D.H. Rhodes, D.N. Cohen, and J.A. Guerrero. 2018. Transforming
Systems Engineering Through Digital Engineering. The Journal of Defense Modeling and
Simulation 1548512917751873.

Braha, D., and Y. Bar-Yam. 2007. The Statistical Mechanics of Complex Product Development:
Empirical and Analytical Results. Management science 53 (7): 1127–1145.

Reducing Design Rework Using Set-Based Design in a Model-Centric Environment 213

Braha, D., D.C. Brown, A. Chakrabarti, A. Dong, G. Fadel, J.R. Maier, et al. 2013. DTM at 25:
Essays on Themes and Future Directions. Paper presented at the ASME 2013 international
design engineering technical conferences and computers and information in engineering
conference.

Canbaz, B., B. Yannou, and P.-A. Yvars. 2014. Preventing Design Conflicts in Distributed
Design Systems Composed of Heterogeneous Agents. Engineering Applications of Artificial
Intelligence 28: 142–154.

Cho, S.-H., and S.D. Eppinger. 2001. Product Development Process Modeling Using Advanced
Simulation. Paper presented at the ASME 2001 Design Engineering Technical Conferences
and Computers and Information in Engineering Conference.

Defense, D.o. (2015). DoD Instruction 5000.02: Operation of the Defense Acquisition System. In:
Author Washington, DC.

Dobrovolskyte, N. 2015. Preliminary Design Enhancement by Incorporating Set-Based Design
Principles and a Navigator. Cranfield University.

Dullen, S., D. Verma, and M. Blackburn. (2019). Review of Research into the Nature of Engineering
and Development Rework: Need for a Systems Engineering Framework for Enabling Rapid
Prototyping and Rapid Fielding. Paper presented at the 17th Annual Conference on Systems
Engineering Research (CSER), Washington, DC.

Frye, M.C. 2010. Applying Set Based Methodology in Submarine Concept Design. Massachusetts
Inst of Tech Cambridge.

GAO. 2011. Trends in Nunn-McCurdy Breaches and Tools to Manage Weapon Systems Acquisition
Costs. Retrieved from (GAO Publication No. GAO-10-106). Washington, DC: U.S. Govern-
ment Printing Office.

Government Accountability Office. (2013). Where Should Reform Aim Next. (GAO Publication
No. GAO-14-145T). Washington, DC: U.S. Government Printing Office.

Garner, M., N. Doerry, A. MacKenna, F. Pearce, C. Bassler, S. Hannapel, and P. McCauley. 2015.
Concept exploration methods for the Small Surface Combatant. Paper presented at the World
Maritime Technology Conference.

Ghosh, S., and W. Seering. 2014. Set-Based Thinking in the Engineering Design Community
and Beyond. Paper presented at the Proceedings of the ASME 2014 International Design
Engineering Technical Conferences & Computers and Information in Engineering Conference.

Gumina, J.M. 2019. A Set-Based Approach to Systems Design Ph. D. thesis, Naval Postgraduate
School.

Kennedy, M. 2008. Ready, Set, Dominate: Implement Toyota’s Set-Based Learning for Developing
Products and Nobody Can Catch You. Oaklea Press.

Kennedy, B.M., D.K. Sobek II, and M.N. Kennedy. 2014. Reducing Rework by Applying Set-
Based Practices Early in the Systems Engineering Process. Systems Engineering 17 (3): 278–
296.

Khan, M.S. 2012. The Construction of a Model for Lean Product Development. Cranfield
University.

Khan, M., A. Al-Ashaab, A. Doultsinou, E. Shehab, P. Ewers, and R. Sulowski. 2011. Set-Based
Concurrent Engineering Process Within the LeanPPD Environment. In Improving Complex
Systems Today, 433–440. Springer.

Khan, M., A. Al-Ashaab, E. Shehab, B. Haque, P. Ewers, M. Sorli, and A. Sopelana. 2013.
Towards Lean Product and Process Development. International Journal of Computer Integrated
Manufacturing 26 (12): 1105–1116.

Lévárdy, V., and T.R. Browning. 2009. An Adaptive Process Model to Support Product Develop-
ment Project Management. IEEE Transactions on Engineering Management 56 (4): 600–620.

Li, Z., X. Zhou, W. Wang, G. Huang, Z. Tian, and S. Huang. 2018. An Ontology-Based Product
Design Framework for Manufacturability Verification and Knowledge Reuse. The International
Journal of Advanced Manufacturing Technology 99: 1–15.

214 S. Dullen et al.

Liker, J.K., D.K. Sobek, A.C. Ward, and J.J. Cristiano. 1996. Involving Suppliers in Product
Development in the United States and Japan: Evidence for Set-Based Concurrent Engineering.
IEEE Transactions on Engineering Management 43 (2): 165–178. https://doi.org/10.1109/
17.509982.

Maulana, M., J.W. Flisiak, A. Al-Ashaab, Z.C. Araci, P.W. Lasisz, N. Beg, and A. Rehman. 2016.
The Application of Set-Based Concurrent Engineering to Enhance the Design Performance of
Surface Jet Pump. WSEAS Transactions on Business and Economics 13: 634–643.

McKenney, T.A. 2013. An Early-Stage Set-Based Design Reduction Decision Support Framework
Utilizing Design Space Mapping and a Graph Theoretic Markov Decision Process Formula-
tion. Ph. D. thesis, University of Michigan.

McKenney, T.A., L.F. Kemink, and D.J. Singer. 2011a. Adapting to Changes in Design Require-
ments Using Set-Based Design. Naval Engineers Journal 68: 3.

———. 2011b. Adapting to Changes in Design Requirements Using Set-Based Design. Naval
Engineers Journal 123 (3): 67–77.

McKenney, T., M. Buckley, and D. Singer. 2012. The Practical Case for Set-Based Design in Naval
Architecture. Paper presented at the International Marine Design Conference.

Mebane, W.L., C.M. Carlson, C. Dowd, D.J. Singer, and M.E. Buckley. 2011. Set-Based Design
and the Ship to Shore Connector. Naval Engineers Journal 123 (3): 69–82. https://doi.org/
10.1111/j.1559-3584.2011.00332.x.

Nelson, R.G., A. Azaron, and S. Aref. 2016. The Use of a GERT Based Method to Model
Concurrent Product Development Processes. European Journal of Operational Research 250
(2): 566–578.

Noy, N.F. 2004. Semantic Integration: A Survey of Ontology-Based Approaches. ACM Sigmod
Record 33 (4): 65–70.

Parker, M., Garner, M., Arcano, J., and Doerry, N. (2017). Set-based requirements, technology, and
design development for SSN (X). Warship 2017. Submarines & UUVs, 14-15. June 2017.

Raudberget, D. 2010. Practical Applications of Set-Based Concurrent Engineering in Industry.
Strojniski Vestnik 56 (11): 685–695.

Raudberget, D.S. 2011. Enabling Set-Based Concurrent Engineering in Traditional Product
Development. Paper presented at the DS 68-1: Proceedings of the 18th International Conference
on Engineering Design (ICED 11), Impacting Society through Engineering Design, Vol. 1:
Design Processes, Lyngby/Copenhagen, Denmark, 15.-19.08. 2011.

Raudberget, D. S., M.T. Michaelis, and H.L. Johannesson. 2014, December 9–12. Combining
Set-Based Concurrent Engineering and Function—Means Modelling to Manage Platform-
Based Product Family Design. Paper presented at the 2014 IEEE International Conference on
Industrial Engineering and Engineering Management.

Singer, D.J., N. Doerry, and M.E. Buckley. 2009. What is Set-Based Design? Naval Engineers
Journal 121 (4): 31–43.

Sobek, D.K., II, A.C. Ward, and J.K. Liker. 1999. Toyota’s Principles of Set-Based Concurrent
Engineering. MIT Sloan Management Review 40 (2): 67.

Specking, E., G. Parnell, E. Pohl, and R. Buchanan. 2018. Early Design Space Exploration with
Model-Based System Engineering and Set-Based Design. Systems 6 (4): 45.

Ström, M., D. Raudberget, and G. Gustafsson. 2016. Instant Set-Based Design, an Easy Path to
Set-Based Design. Procedia CIRP 50: 234–239.

Taylor, T., and D.N. Ford. 2006. Tipping Point Failure and Robustness in Single Development
Projects. System Dynamics Review: The Journal of the System Dynamics Society 22 (1): 51–71.

Toshon, T., R. Soman, C. Wiegand, M. Israel, M. Faruque, and M. Steurer. 2017. Set-Based Design
for Naval Shipboard Power Systems Using Pertinent Metrics from Product Development Tools.
Paper presented at the 2017 IEEE Electric Ship Technologies Symposium (ESTS).

Wade, Z. 2018. Convergent Set-Based Design in Integrated Analysis of Alternatives: Designing
Engineered Resilient Systems. University of Arkansas.

Walden, D.D., G.J. Roedler, K.J. Forsberg, D. Hamelin, and T.M. Shortell. 2015. INCOSE Systems
Engineering Handbook: A Guide for System Life Cycle Processes and Activities. 4th ed. Wiley.

http://dx.doi.org/10.1109/17.509982
http://dx.doi.org/10.1111/j.1559-3584.2011.00332.x

Reducing Design Rework Using Set-Based Design in a Model-Centric Environment 215

Ward, A.C. 1989. A Theory of Quantitative Inference for Artifact Sets, Applied to a Mechanical
Design Compiler. Massachusetts Institute of Technology.

Ward, A. C. 2007. Lean Product and Process Development Cambridge, MA: The Lean Enterprise
Institute Incorporation.

Ward, A.C., and W.P. Seering. 1993. Quantitative Inference in a Mechanical Design ‘Compiler’.
Journal of Mechanical Design 115 (1): 29–35.

Ward, A.C., T. Lozano-Perez, and W.P. Seering. 1990. Extending the Constraint Propagation of
Intervals. AI EDAM 4 (1): 47–54.

Ward, A., J.K. Liker, J.J. Cristiano, and D.K. Sobek. 1995. The Second Toyota Paradox: How
Delaying Decisions can make Better Cars Faster. Sloan management review 36: 43–43.

West, T.D., and M. Blackburn. 2018. Demonstrated Benefits of a Nascent Digital Twin. INSIGHT
21 (1): 43–47.

Wynn, D.C., and P.J. Clarkson. 2018. Process Models in Design and Development. Research in
Engineering Design 29 (2): 161–202.

Yang, Q., T. Lu, T. Yao, and B. Zhang. 2014. The Impact of Uncertainty and Ambiguity Related to
Iteration and Overlapping on Schedule of Product Development Projects. International Journal
of Project Management 32 (5): 827–837.

Yannou, B., P.-A. Yvars, C. Hoyle, and W. Chen. 2013. Set-Based Design by Simulation of Usage
Scenario Coverage. Journal of Engineering Design 24 (8): 575–603.

Knowledge Representation
and Reasoning in the Context of Systems
Engineering

Hanumanthrao Kannan

Abstract Large-scale systems engineering projects may be construed essentially as
multi-agent problems wherein decisions are made by several people (stakeholders,
managers, designers, etc.) across the organizational hierarchy. All agents in an
enterprise possess knowledge in one form or the other, be it the knowledge
gained from requirements gleaned from stakeholders, domain-specific knowledge,
knowledge of rules and regulations, knowledge gained from experience on other
projects, etc. Lack of a formal means of representing the knowledge shared among
these agents often results in miscommunication which in turn results in poor
decision-making and, thereby, schedule delays and cost overruns. Such issues can
hinder the competitive advantage in a mission-critical environment. It is equally
important to capture the knowledge possessed by systems engineers, who have
a great deal of experience having worked on multiple long-term and large-scale
complex projects, who are leaving the workforce. This paper focuses on formally
capturing knowledge that exists in various phases of systems engineering lifecycle
by leveraging epistemic modal logic. The approach in this paper aims to address
some of the issues with the traditional document-centric approaches.

Keywords Knowledge representation · Reasoning · Systems engineering ·
Formal logic · Epistemic modal logic

1 Motivation and Introduction

Current systems engineering practices use document-centric approaches to rep-
resent and communicate information within the organization (examples include
requirements documents, interface control documents, etc.) (NASA 2007). With
the rising complexity of large-scale complex engineered systems, document-centric

H. Kannan (�)
Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
e-mail: hkannan@vt.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_19

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_19&domain=pdf
mailto:hkannan@vt.edu
https://doi.org/10.1007/978-3-030-82083-1_19

218 H. Kannan

approaches bring with them a host of challenges. A major limitation is the difficulty
of such approaches in ensuring traceability to the origin of the information. Version
control is another big challenge in cases like having to update a diagram or a
table that recurs in a document or across multiple documents. In short, document-
centric approaches are cumbersome, open to misinterpretation, difficult to update,
and difficult to be reused and have extremely limited reasoning capabilities. With the
advent of digital engineering, it is all the more critical to transition from document-
centric approaches to model-centric approaches.

Model-based systems engineering (MBSE) is a new approach to system devel-
opment that treats a system “model” as the sole source of truth (Madni and Sievers
2018). The model is essentially a central repository that stores all the system-related
information, and it continually evolves as the system development progresses. This
approach has the capability to create documents representing the current state of the
system tailored to different stakeholders/agents. It provides a common visualization
of the evolving system, thereby improving communication and reasoning based
on the shared knowledge. It aims to improve quality while reducing costs and
time to market. However, MBSE is still in its infancy and has yet to provide
a significant demonstrable improvement in terms of elimination of rework, cost
and time reduction, etc. It requires methodological advances and development of
supporting tools and processes (Madni and Sievers 2018). The biggest roadblock to
widespread adoption of MBSE in the systems engineering community, however, is
the deeply ingrained culture of using document-centric approaches.

Some researchers have adopted model-centric approaches, to represent knowl-
edge, specifically in the context of requirements (Fraga et al. 2015, 2019), evaluate
inconsistencies in MBSE (Herzig 2015), etc. These approaches, although promising,
have limited reasoning capabilities. Some of the capabilities that the current
approaches lack include assessing what an agent knows and does not and what an
agent knows about the knowledge of other agents, thereby identifying knowledge
gaps and potential knowledge gathering activities, making inferences with existing
knowledge, etc. Formal knowledge representation is not a new research area.
Researchers in computer science have used multiple approaches to represent
knowledge – rule-based systems, semantic nets, frames, and epistemic modal logic
(widely used in distributed systems).

This paper focuses on expanding epistemic modal logic (Ditmarsch et al. 2015)
to enable representation and reasoning of knowledge in systems engineering. The
approach provided in this paper will facilitate the following:

• Assessing the state of knowledge of agents
• Evaluation of inconsistencies in knowledge in a multi-agent organization
• Communication of knowledge to other entities in the organization
• Inferences from the knowledge base

The paper is organized as follows. Section 2 provides a discussion of knowledge in
systems engineering, and the necessary formalism for knowledge representation is

Knowledge Representation and Reasoning in the Context of Systems Engineering 219

provided. In Sect. 3, descriptive examples are used to demonstrate the capabilities
of the knowledge representation formalism, followed by the conclusion and future
work in Sect. 4.

2 Knowledge Representation in Systems Engineering

Any organization that acquires, develops, and operates large-scale complex engi-
neered systems is comprised of a number of entities (subsystem teams, disciplines,
contractors, etc.), wherein decisions are made by several people (stakeholders, team
managers, engineers, etc.). Knowledge is essential to solve complex problems in
systems engineering. Knowledge about the system exists and evolves at all phases
of the system lifecycle, including but not limited to functional and structural knowl-
edge, properties, conditions, assumptions, constraints, knowledge about interfaces
and the environment (physical and organizational), etc. Any knowledge pertinent
to the system is only as good as its reusability. In order to be reusable, knowledge
needs to be stored in a repository that facilitates easy access, understanding, and
reasoning, across the organizational hierarchy.

The knowledge of agents in a multi-agent organization developing large-scale
complex engineered systems can be broadly categorized into descriptive and
procedural knowledge. Descriptive knowledge involves basic facts, whereas pro-
cedural knowledge deals with “if . . . then . . . ” rules. For example, the proposition
“satellite antenna gain is directly proportional to signal-to-noise ratio” is descriptive
knowledge, whereas “if antenna material is aluminum, then use aluminum fixtures”
is procedural.

A major motivation behind representing knowledge in a formal manner is
reasoning. Reasoning includes assessing the state of knowledge of individuals
in a multi-agent organization, making inferences with existing knowledge, and
evaluating inconsistencies in knowledge. Specifically assessing what an agent
knows and does not know, what an agent knows about the knowledge of other
agents, and vice versa is helpful in identifying the knowledge gaps that can be
fulfilled through knowledge gathering activities. Making inferences with existing
knowledge is applicable in a number of scenarios including feasibility analysis,
making decisions consistent with the knowledge, etc. It is also critical to identify
and address inconsistencies in the knowledge base of a single agent and multiple
agents, as a failure to do so may lead to expensive rework in the later stages
of the system lifecycle. One can argue that a formal framework that can enable
representation and reasoning of knowledge in a systems engineering context must
have all the reasoning capabilities discussed above. It is for these reasons that
epistemic modal logic has been adopted in this paper. The following subsection
provides the necessary background for epistemic modal logic.

220 H. Kannan

2.1 Epistemic Modal Logic

Syntax for Epistemic Modal Logic

As with any formal language, the syntax for epistemic modal logic consists of a non-
empty set (Φ) of atomic propositions that represent basic facts about the situation
under consideration and are usually denoted by p, q, r, etc. “It is raining” and
“Mars is a planet” are examples of atomic propositions. Compound sentences or
formulas, typically represented using Greek symbols ϕ, ψ , etc., can be formed
by closing off under conjunction and negation. Additionally, we have an additional
modal operator (Ki) that represents if agent (e.g., stakeholder) i knows something or
not. The epistemic or knowledge operator (K) can be applied to atomic propositions
as well as to formulas. For example, if ϕ is a formula, then K1(ϕ) means “agent 1
knows ϕ.” Another example of a compounded formula using K can be seen in Eq. 1:

K1 (K2 (ϕ)) ∧ K2 (¬K1 (ψ)) (1)

Equation 1 means “Agent 1 knows that agent 2 knows ϕ and agent 2 knows that
agent 1 does not know ψ .” The set of primitive propositions, all formulas that can be
formed using the atomic propositions, connectives and the modal operators K,and
the agent number (denoted by subscript), together define language L. Such a formal
language L that enables representation and reasoning of knowledge can be defined
formally by the following Backus-Naur/Backus normal form (BNF)(McCracken and
Reilly 2003):

ϕ := p |¬ϕ | (ϕ ∧ ψ) | Ki (ϕ) (2)

Semantics for Epistemic Modal Logic

In epistemic modal logic, knowledge is evaluated based on the classical possible-
worlds approach. In the case of the knowledge operator, an individual knows a
statement if and only if the statement is true in all the states he considers possible.
Such a concept behind knowledge can be represented and evaluated using Kripke
models (Ditmarsch et al. 2015). A Kripke model for a single-agent epistemic logic
(M) is a structure given by the tuple shown in Eq. 3, where i corresponds to the
agent:

M = (�, Pi, π) (3)

In Eq. 3, Ω is the set of all states, also sometimes called the domain of M. For
example, in the case of an agent rolling a die, this can be considered as the sample
space, Ω = {1,2,3,4,5,6}. In the context of large-scale systems, Ω can be considered
as the set of possible alternatives or values a decision-maker considers possible for
a particular attribute or a vector of attributes. In Eq. 3, Pi is a binary relation on

Knowledge Representation and Reasoning in the Context of Systems Engineering 221

Fig. 1 Possible worlds

Table 1 Properties of accessibility relation

Properties Description Class of Kripke models

Reflexive If (w, w) ∈ Pi for all w ∈ Ω kT

Symmetric If (u, v) ∈ Pi implies that (v, u) ∈ Pi for all u, v ∈ Ω kB

Transitive If (u, v), (v, w) ∈ Pi implies (u, w) ∈ Pi, for all u, v, w ∈ Ω k4
Equivalence Pi is reflexive, transitive, and symmetrical S5

Ω , called the possibility relation or accessibility relation. Pi can be considered as a
function representing the states that an agent considers possible when in a particular
state. This can be visualized using a directed graph as shown in Fig. 1. The arrows
in the figure indicate states that an agent considers possible in a particular state.
For instance, at w1, the agent considers w1, w2, and w3 to be the possible worlds.
Formally Pi can be defined as follows:

Pi(w) = {
w′ : (w,w′) ∈ Pi

}

Pi ⊂ Ω × Ω
(4)

The class of all Kripke models is denoted by k. A number of classes of Kripke
models can be defined in terms of the properties of the possibility or accessibility
relations Pi. These properties (Fagin et al. 2004, Ditmarsch et al. 2015) define how
an agent perceives these cognitive attitudes. Some of the properties that can be
defined on Pi to capture the agent’s perceptions are given in Table 1.

Considering the possibility relation to be reflexive is the primary property
that distinguishes knowledge from belief. Reflexive means that the agent always
considers the actual state (w) to be in the set of possible states (Pi). In Eq. 3, π is a
valuation function, as defined in Eq. 5, that assigns truth values to each of the atomic
propositions in Φ (set of all atomic propositions) at each state, i.e., π (w, p) = TRUE
means that the proposition p is true at state w. The state w is emphasized here as the
truth assignment changes when the state changes:

π(w) :
 → {T RUE,FALSE} for each state w ∈ � (5)

With the elements of the Kripke structure defined, the semantic relation can be
recursively defined as (M, w) � ϕ which can be read equivalently as “ϕ is true in

222 H. Kannan

structure M at state w” or “structure M satisfies ϕ at state w.” Equation 6 states that
atomic proposition p is TRUE at state w in structure M, if and only if π assigns
TRUE. This is the same as in propositional logic. The atomic propositions represent
basic facts about the domain we are interested in reasoning about. For example, “The
system passed the test” may be considered as an atomic proposition. Compound
formulas can be constructed using the atomic propositions, conjunction (∧), and
negation (¬) terms, as seen in Eq. 7, which represents the satisfaction of compound
formulas involving conjunction and negation:

(M,w) |� p iff π (w, p) = TRUE (6)

Also, we have

(M,w) |� ϕ ∧ ψ iff (M,w) |� ϕ and (M,w) |� ψ

(M,w) |� ¬ϕ iff (M,w) � ϕ
(7)

Similarly, “(M, w) satisfies the proposition that agent i knows ϕ” is defined as
follows:

(M,w) |� K (ϕ) ⇐⇒ (
M,w′) |� ϕ for all w′ ∈ Pi(w) (8)

This means that the agent knows ϕ if and only if ϕ is true in all the states the agent
considers possible at state w in structure M. Here w

′
represents all the worlds that

are considered possible by the agent, as dictated by the possibility or accessibility
relation Pi.

The properties of the notion of knowledge are further characterized through
some of the following axioms and rules of inference, which represent some form
of idealizations (Fagin et al. 2004, Ditmarsch et al. 2015) (Table 2).

Axiomatic logic systems can be formed by carefully selecting the axioms and
rules of inference to reflect the problem of interest. The validity of these axioms
depends on how we represent the possibility relation. For instance, when we
consider Pi to be an equivalence relation (reflexive, symmetric, and transitive),
then we can see that axiom T follows from Pi being reflexive, axiom 4 from
transitive, and axiom 5 from symmetric and transitive. Various axiom systems can
be constructed to capture how we want the possibility relation to look like. For
instance, system S5, which includes axioms K, T, 4, and 5, is typically used to
capture properties of knowledge.

The following section provides simple descriptive examples that demonstrate the
reasoning capabilities of epistemic modal logic in a systems engineering context.

Knowledge Representation and Reasoning in the Context of Systems Engineering 223

Table 2 Axioms and rules of inference

Axioms/rules of
inference Mathematical representation Description
All instances of
propositional
tautologies

All axioms and rules of inference
associated with propositional logic

Distribution axiom (K) Kiϕ ∧ Ki(ϕ ⇒ ψ)) ⇒ Kiψ Agents are powerful reasoners who
know all the logical consequences of
their knowledge. For example, if an
agent knows ϕ and knows that ϕ

implies ψ, then he knows ψ

Knowledge
generalization rule (N)

From ϕ infer Kiϕ This means that if a statement ϕ is
true in all the states the agent
considers possible, then the agent
knows ϕ. This does not mean that the
agent knows all statements that are
true

Knowledge or truth
axiom (T)

Kiϕ⇒ϕ Agent only knows things that are true

Positive introspection
axiom (4)

Kiϕ ⇒ KiKiϕ Axioms 4 and 5 mean that the agent
has introspection of his own
knowledge base, i.e., the agent knows
what he knows and does not know

Negative introspection
axiom (5)

¬Kiϕ ⇒ Ki ¬ Kiϕ

Modus ponens From ϕ and ϕ ⇒ ψ infer ψ

3 Descriptive Examples

3.1 State of Knowledge of Single Agent

Let us consider two atomic propositions – p: Electrical system is verified and
q: Mechanical system is verified. Assuming that the agent has no information
available to her at the moment, she considers multiple situations (i.e., worlds) to be
possible that are consistent with the information (i.e., no information). The possible
worlds considered by the agent are represented in Fig. 2a, where in w1, both p
and q are true; in w2, p is true and q is false; and so on. The arrows indicate the
accessibility/possibility relation. Suppose the agent receives information from the
mechanical systems engineer that all the verification activities in the mechanical
system have passed. This information makes it possible for the agent to know q and
thereby reduces the set of possible worlds to just w1 and w2 as shown in Fig. 2b.

224 H. Kannan

Fig. 2 (a) State of knowledge – single agent with no information. (b) With information on q

The following represents the state of knowledge of the agent at w1:

• At w1, the agent knows q, since q is true in all worlds that are accessible from
w1 – represented by the following equation:

(M,w1) |� K(q) (9)

• Also, at w1, the agent does not know p, as represented by the following equation:

(M,w1) |� ¬K(p) (10)

As mentioned earlier, one of the major advantages of using epistemic logic in
representing knowledge is to reason about what an agent knows and does not know
at a particular moment. Knowing this “state of knowledge” of an agent is useful
in identifying steps that aid in achieving a specific knowledge state from an initial
state.

3.2 State of Knowledge of Multiple Agents

Let us consider two atomic propositions – q: Design activity x done on time and p:
Design activity y done on time – and two agents A (designer A) and B (designer B)
responsible for design activities x and y, respectively. Designers A and B belong to
different teams and are working on separate components the need to be integrated.
Assuming that p and q are the only propositions in consideration, the state of
knowledge of both the designers can be visualized using the graph in Fig. 3.

The following can be said about the state of knowledge of designers A and B.

Designer A:

• Designer A knows q, (M, w1) � KA(q).
• Designer A does not know p, (M, w1) � ¬ KA(p).

Knowledge Representation and Reasoning in the Context of Systems Engineering 225

Fig. 3 State of knowledge –
multiple agents

• Designer A knows that B knows whether p is true or not,
(M, w1) � KA(KB(p) ∨ KB(¬p)).

Designer B:

• Designer B knows p, (M, w1) � KB(p).
• Designer B does not know q, (M, w1) � ¬ KB(q).
• Designer B knows that A knows whether q is true or not,

(M, w1) � KB(KA(q) ∨ KB(¬q)).

3.3 Evaluation of Inconsistencies

Let us consider a scenario wherein the stakeholder (S) and the system architect
(A) are in the process of finalizing the requirements. The stakeholder has three
requirements represented as propositions, p: The satellite shall image Earth in IR
band; q: The satellite shall image Earth in X band; and r: The cost of the satellite
shall be under $100M. The state of knowledge of the architect can be represented
as follows:

• KA(KS(p ∧ q ∧ r)).
• However, the architect knows that it is impossible to have cost under $100M if

both p and q are to be satisfied. This is represented as KA((p ∧ q) → ¬ r).

From these two knowledge statements, one can see that the knowledge of the two
agents are contradictory, i.e., there is an inconsistency. The architect can then bring
this to the attention of the stakeholder and request for a revision of requirements.
This simple example demonstrates the cognitive process of the architect. For a
case with only a few requirements, it may be straightforward to reason without a

226 H. Kannan

formal representation. But in the case of an actual system development, cognitively
reasoning through several requirements may be not adequate.

4 Conclusion and Future Work

Knowledge exists in all the aspects of system development. It is crucial to represent
knowledge in a formal manner to enable reuse and effective communication,
avoid misinterpretation, facilitate inferences, evaluate inconsistencies in knowledge
bases, etc. This paper focuses on such a formal representation of knowledge using
epistemic modal logic. Simple descriptive examples are used to demonstrate the
use of epistemic modal logic in representing and reasoning of knowledge in a
systems engineering context. Examples show that such a representation will aid in
reasoning about the state of knowledge of agents, inferences related to knowledge,
and evaluation of inconsistencies in knowledge bases. As seen in the examples,
an epistemic modal logic-based representation and reasoning of knowledge is
applicable to any phase in the system lifecycle, i.e., architecture, design, verification,
etc.

The process of translating the existing knowledge in the form of models,
diagrams, texts, etc. to logical statements is challenging. Future work will focus
on developing a framework to facilitate such translation. Another research direction
will be to explore representation and reasoning of uncertainties within the context
of epistemic modal logic. Information and evaluation are two main aspects in any
decision-making activity. This paper is a step toward representing information as
knowledge. In order to make decisions (or evaluate), one needs an additional layer.
Future work will focus on having requirements and/or preferences as an additional
layer for evaluation. Future work will also focus on integrating the proposed
approach in SysML.

References

Ditmarsch, H., J.Y. Halpern, W. van der Hoek, and B.P. Kooi. 2015. Handbook of Epistemic Logic.
College Publications.

Fagin, R., J.Y. Halpern, Y. Moses, and M. Vardi. 2004. Reasoning About Knowledge. MIT Press.
Fraga, A., J. Llorens, L. Alonso, and J.M. Fuentes. 2015. Ontology-Assisted Systems Engineering

Process with Focus in the Requirements Engineering Process. Complex Systems Design &
Management, 149–161. Springer.

Fraga, A., J. Llorens, and G. Génova. 2019. Towards a Methodology for Knowledge Reuse Based
on Semantic Repositories. Information Systems Frontiers21 (1): 5–25.

Herzig, S.J. 2015. A Bayesian Learning Approach to Inconsistency Identification in Model-Based
Systems Engineering. Georgia Institute of Technology.

Knowledge Representation and Reasoning in the Context of Systems Engineering 227

Madni, A.M., and M. Sievers. 2018. Model-Based Systems Engineering: Motivation, Current
Status, and Research Opportunities. Systems Engineering 21 (3): 172–190.

McCracken, D.D., and E.D. Reilly. 2003. Backus-naur form (bnf).
NASA. 2007. NASA Systems Engineering Handbook. National Aeronautics and Space Adminis-

tration: Washington, DC.

Ontology-Driven Knowledge Modeling
and Reasoning for Multi-domain System
Architecting and Configuration

Leonard Petnga

Abstract Our work is concerned with the development of model-based systems
engineering (MBSE) procedures for multi-domain system architecting, configura-
tion, and reasoning. This class of problems is characterized by the presence of
multiple domains (which could be cyber, physical, or hybrid), each with their rules
and constraints that need to be integrated in a correct-by-design systems and pro-
cesses in order to satisfy stringent constraints on performance, safety, and effective
management of system functionality. To that aim, there is a strong need for formal
methods of analysis that can enable effective assembly of components into correct-
by-design and provable systems capable of delivering desired capabilities. Thus,
this paper discusses semantics and their central role in the development of a new
ontology-driven knowledge modeling and reasoning approach for multi-domain
system architecting and configuration. Three interdependent modules supporting
each other are integrated to make up the system. A foundation module (1) with
description logics (DL) as core knowledge representation formalism provides the
necessary mathematical foundations to a semantic platform module (2) constituted
of semantic blocks (i.e., ontology, rules, and specialized computational capabilities).
A configurator module (3) later assembles systems from instantiated semantic
blocks as per architectural configurations of interest to generate valid system
design alternatives. An implementation of the system on rule-based generation of
architectural configurations for satellite robotic arms demonstrates the capability of
our approach.

Keywords Ontology · Architectural configuration · Multi-domain · Semantics
Web · Model-based systems engineering (MBSE)

L. Petnga (�)
University of Alabama in Huntsville, Huntsville, AL, USA
e-mail: leonard.petnga@uah.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_20

229

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_20&domain=pdf
mailto:leonard.petnga@uah.edu
https://doi.org/10.1007/978-3-030-82083-1_20

230 L. Petnga

1 Introduction

This paper examines knowledge representation and modeling and their use for
effective multi-domain system architecting and configuration. The central role
ontologies play in formally capturing and representing the domains of interest
across disciplines is discussed. A particular attention is paid to augmenting the
ontologies with associated domain and design rules as well as needed computational
capabilities in order to enable the systematic creation of system semantic mod-
els consistent to selected/desired configurations, from libraries of configurations
and components. We review and use description logic (DL) as the knowledge
representation formalism for our framework. DL extensions as well as mapping
to the web ontology language (OWL) are investigated to ensure decidability of
reasoning within and across domains. We develop and introduce a three-part
modular architecture comprising DL formalisms, semantic platform, and a system
configurator. The mathematical foundations provided by the DL formalisms to a
reconfigurable semantic platform enable it to empower a system configurator in
creating and assembling a full, multi-configuration design space. We illustrate the
capability of our approach on a problem that involves the successful rule-based
generation of a two-configuration design space for a satellite robotic arm using a
small library of components (e.g., arms and tool).

2 System Ontology and Description Logic Semantics
Support for Knowledge Representation and Reasoning

2.1 Engineering Systems: Overview and Conceptual
Representation

Our view of a system is as a collection of interconnected components having
system-level functionality (as a whole) that is beyond the execution capabilities
of individual components. In other words, the system is more than the sum of its
parts. In this work, we focus on man-made (e.g., a satellite) engineering systems
that either are specifically designed to provide a set of predefined functions (i.e.,
single stand-alone systems) or are assembled on demand from independent systems
working collaboratively (i.e., system of systems) to realize a given mission. Either
way, describing a system would most likely involve common concepts/character-
istics: Boundary (i.e., the perimeter separating it from the environment), Inputs
and Outputs (i.e., the entities that enter and exit the system), Components and
(Sub)systems (i.e., elements or group of elements performing a set of functionality),
Interface (i.e., the point where two components, subsystems, or systems meet
to interact by exchanging inputs and/or outputs), Connectivity (i.e., contact or
noncontact connections between components/subsystems), and Environment (i.e.,
elements external to the system but that might influence its functioning and/or

Ontology-Driven Knowledge Modeling and Reasoning for Multi-domain. . . 231

Fig. 1 A simple ontological view of the system domain: (a) as a conceptual Tbox, (b) an example
domain Tbox extension, and (c) domain Abox (instance)

performance). Additional concepts would have to be defined when considering the
process through which the system is created, i.e., the system development lifecycle
(SDLC) as in model-based systems engineering (MBSE). Thus, one might need to
specify the Requirements (i.e., the needs and wants) to be satisfied by the system,
its Configurations (i.e., the forms of the arrangement of elements), as well as
corresponding Rules. The latter encapsulate the set of domain-related constraints
(e.g., environment, design) applicable to the system of interest and/or the domain
of the design. The necessary scope and depth of the description of the domain are
dependent on the usage needs. For the purpose of this work, we will use the subset
of concepts and relationships represented in Fig. 1a.

2.2 Knowledge Representation Formalisms and Description
Logic (DL) Semantics

Multi-domain systems are heterogeneous by nature. Thus, reconciliation of differ-
ences between the domains and handling of meta-domains such as time in complex
systems (e.g., cyber-physical systems) modeling requires sound semantics. The
latter are also needed for effective modeling of distributed behaviors in spatially and

232 L. Petnga

temporally distributed components (Derler et al. 2012; Eidson 2010). Knowledge
representation formalisms provide means to formally capture and represent domain
knowledge in a rigorous, ambiguity-free, and systematic way. Out of the numerous
approaches, i.e., semantic networks (Sowa and Borgida 1991), frame systems
(Hayes 1980), description graphs (Pavlic et al. 2013), and logic-based formalisms
(Baader et al. 2003), the latter have emerged as a leading player in the evolution of
artificial intelligence (AI) formalisms. Thus, two of its subset, modal and description
logics, appear to be the most appealing logic-based formalisms for framework like
ours. Considering that (i) some results for DL were found by translating results from
variations of modal logics (propositional dynamic logics, μ-calculus) (Schild 1994)
and (ii) the ability of DL to support multi-values attributes formalization (a critical
need in complex domain description), we will be using it in this work.

In DL, knowledge is represented through the description of domain in terms
of concepts (classes in OWL), roles (properties, relationships), and individuals
(objects) (Baader et al. 2003). Universal (∀), existential (∃), intersection (�), union
(), and negation (¬) operators are used for restriction specifications to make
the language decidable with low complexity. In DL, semantics are defined by
interpretations. An interpretation I is defined as follows:

I = (ΔI,.I), where ΔI is the domain of interest (non-empty set) and,.I is an
interpretation function that maps:

Concept name C: a subset CI of ΔI

Role name R: a binary relation RI over ΔI

A summary of DL concepts constructors can be found in Fig. A.11 of (Petnga
and Austin 2016). Atomic concepts (A) in the attribute language (AL) DL can be
extended to support arbitrary concepts (C), thereby enabling the description of any
domain of interest and leading to ALC DL on which interpretations I are defined.
Therefore, the latter are the means through which concepts, roles, and individuals
build up to the DL knowledge base K <T, A> of a domain D. Here, T is a set
of terminological Tbox axioms and A is a set of assertional Abox axioms; x,y are
individual names.

2.3 DL Extensions for the Web Ontology Language (OWL)

Building knowledge models capable of addressing the challenges of multi-domain
modeling stated earlier in Sect. 2.2 requires the backing of ontologies that have
well-defined semantics and support for formal reasoning. Fortunately, DLs can
provide these formal foundations to the web ontology language (OWL) (Baader et
al. 2005). However, the ALC DL is missing important pieces to that aim (Baader
et al. 2005). Notable required extensions are role hierarchy (H), nominals (O),
inverse and transitive roles (I), cardinality/number restriction (N), qualified number
restrictions (Q), role restrictions (R), and concrete domains. In (Petnga and Austin
2017), we show how these extensions can be organized and mapped to semantics

Ontology-Driven Knowledge Modeling and Reasoning for Multi-domain. . . 233

for the OWL sublanguages. As a result, OWL1-DL is found to be a first-order logic
(FOL) restriction based on SHOIN DL (S is a simplified, yet equivalent, notation
for ALC). This DL is decidable, thanks partially to well-defined semantics and
proven reasoning algorithms. However, it presents some weaknesses that reflect
on the expressiveness power of OWL1-DL. To that extent, OWL2 (standardized
in 2009) overcomes a number of those weaknesses (e.g., relational expressivity,
syntax deficiencies, species definitions) through its mapping with the SHROIQ DL.
Leveraging the full power of these formalisms for effective modeling and reasoning
for system architecting and configuration requires sound decidable reasoning
capabilities as enablers. These capabilities need to be provided by reasoners that can
derive, through inferencing, additional facts about the concepts of the domain(s) of
interest. Among the key reasoning services needed are satisfiability (i.e., for a given
concept C, ∃I, I |=T such that CI �= ∅), subsumption (i.e., concept C is subsumed
by D, i.e., C �T D with C, D ∈ C if for all interpretations I, if I |= T, then CI ⊆ DI),
equivalence (i.e., two concepts C and D ∈ C are equivalent with respect to T if for all
interpretations I, if I |= T, then CI = DI), and disjointness (i.e., two concepts C and
D ∈ C are disjoint with respect to T if for all interpretations I, if I |= T, then CI ⋂

DI). Also, the decidability of the SHROIQ DL is formally established in Appendix
C of (Petnga and Austin 2016). Hence, given its mapping with OWL2-DL, the latter
will be the language of development of our ontological framework that we introduce
in the next section.

3 An Ontological Framework for Multi-domain System
Architecting and Configuration

The system architecture for our ontological framework is shown on Fig. 2.
It’s comprised of three integrated modules: domain and knowledge management
foundations, semantic platforms, and system configuration platform.

3.1 Module 1: Mathematical Foundations

The primary role of this module (see Fig. 2a) is to provide the mathematical
foundations needed to support the formal description of domains and meta-
domain knowledge. Thus, we need knowledge representation formalisms to that
aim. Description logic semantics introduced and described in Sect. 2.2 have been
shown appropriate to support the formal description of the domains involved.
Selected theories are used to inform the formulation of the description as per
the modeling needs of the system/domains of interest. Specifically, meta-theories
(for known cross-cutting domains such as time, space, communication, etc.) are
distinguished from plain ones, which could be well-accepted domain standards

234 L. Petnga

Fig. 2 High-level architecture of the ontology-driven framework for multi-domain system archi-
tecting and configuration and its core modules: (a) mathematical foundations, (b) DL-powered
semantic platform, and (c) system configuration framework

(e.g., construction, electrical, etc.). Unlike the former, the latter might not always
be available for the problem at hand. In previous work, we have shown that both
the Region Connectedness Calculus (RCC-8) and Allen Temporal Interval Calculus
(ATIC) were effective theories for the formal description of spatial and temporal
domains (Petnga and Austin 2017). This module is completed with users’ expected
capabilities and requirements (in a separate compartment) that are needed to inform
the proper configuration of the platform and the validation of selected design
alternatives at the application level.

3.2 Module 2: Semantic Platform

The basic premise of our approach is that any complex system (CS) application
can be developed using limited domain-specific (DS) components provided they are
consistent with the relevant CS of interest semantic platform. The latter encapsulates
and integrates design and domain knowledge (not just raw data) in models (i.e.,
common semantics) that are determinate, provable (ambiguity-free), executable,
and with semantic parameters and rule engines that can work and reason with

Ontology-Driven Knowledge Modeling and Reasoning for Multi-domain. . . 235

physical quantities. As such, DL formalisms provide means through which domains
and meta-domains semantics can be captured in formal and reusable models.
The building blocks of platforms are semantic blocks which encode knowledge
in the form of a three-part “knowledge block” made of (1) an ontology, (2) set
of rules, and (3) interfaces that enable cross-block communication and linking
with computation platforms via customized (built-in) functions (Petnga and Austin
2017). The flexibility and generality of this representation scheme allows for
the capture of system (geometric) configurations along with its corresponding
constraints as well as organizational or operational policies, standard operating
procedure/process (SOP), or directives that are applicable to the system at hand
in part or as a whole. The OWL2-DL is shown to be effective in the implementation
and integration of the semantic blocks, thanks to its DL extensions as introduced in
Sect. 2.3.

3.3 Module 3: System Configurations

We build from the actionable semantic foundations provided by the SP module to
design (via composition) systems models of various levels of complexity that can
be formally verified against (user) requirements. The ontology, logic, proof, and
trust stemming from the DL foundations introduce vocabularies, logical reasoning,
establishment of consistency and correctness, and evidence of trustworthiness into
the framework. Thus, we employ semantic descriptions via semantic graphs (i.e.,
network of semantic resulting from the rule-based integration of semantic blocks) of
application domains and configurations and use ontologies and rule-based reasoning
to enable a semantic configurator to generate candidate system design alternatives
from the set of available components/systems and library of configurations for the
environment model of interest. The design alternatives are then validated against
domain and meta-domain laws and (user) requirements as pictured in the top part
of Fig. 2. Semantic graphs are used to model architectural configurations, design
requirements and their relationships, and the attributes of the CS components as
illustrated in Fig. 2a. Synthesized graph models are employed for libraries of design
requirements and component systems, as well as the mapping of requirements to
design solutions.

236 L. Petnga

4 Prototype Implementation: Knowledge-Driven Design
Space Generation for Satellite Robotic Arms

4.1 Overview

To illustrate the use and effectiveness of the ontological framework for multi-
domain system architecting and configuration, we consider the problem of rule-
based generation of architectural configurations for satellite robotic arms. Recent
research at NASA and universities across the USA has shown promise in robotic
satellite servicing by articulating the huge economical and environmental benefits
of sending a satellite into space to robotically service a large number of older, but
mostly functional satellites (Knizhnik et al. 2017). In previous work, researchers
have investigated graph transformations for downselecting the number of design
options (Nassar and Austin 2013) and applications to trade-space downselection
for servicing spacecraft (Knizhnik et al. 2017). This prototype illustrates how our
semantic framework takes the next step forward, with the demonstration of how the
semantic graph could support the generation of candidate design alternatives across
multiple possible system architectural configurations. For the sake of simplicity, we
consider hypothetical robotic arms – as illustrated in the right-hand side of Fig. 1b
and c – to be mounted on a servicing satellite.

4.2 Multi-configuration and Multi-domain Generation
of Satellite Robotic Arm Design Alternatives: Prototype

Robotic Arm Architectural Configurations The set of possible architectural
(structure viewpoint) configurations of the robotic arms to be included in the library
of system configuration are considered. We identify and group configurations in
three types (as ontologically defined in Fig. 3): centralized, decentralized, and
hybrid (any combination of both). Decentralized configurations are characterized
by a leaderless organization of elements into a regular geometry (e.g., circle). In
centralized architectural configurations, there is one leader, whose position is central
to the distinction between configurations. Two such configurations – Chain and
Star – are illustrated in the far right-hand side of Fig. 1b. An “X” is used to indicate
the leader (i.e., the main arm in our case), while other elements are simple nodes in
the graph representation. Each architectural configuration represents a “blueprint”
for the assembly of components. Architectural rules specify additional constraints
that provide a context to the configuration as well as necessary clarifications.
Instances of resulting elements and systems are shown in Fig. 1b.

Ontology Models for the Semantic Platform The system components (e.g., arms,
effectors, tools) and the architectural configurations (e.g., Chain, Star) are all
modeled as “semantic blocks” (see example in Fig. 7 of (Petnga and Austin 2016)).

Ontology-Driven Knowledge Modeling and Reasoning for Multi-domain. . . 237

-isHybrid = “false”
-isHybrid = “false”

-isHybrid = “true”
-isClosed = “false”

-isClosed = “true”

-hasIndexPivot

-hasFormationBoundary

CHAIN STAR Y CIRCLE ALL CHANNEL

-hasNumberOfTop
-hasOrder = 2

-hasOrder > 2-hasConfiguration = “cirlce”

-hasPart

-hasld
-hasName
-hasAspect

-hasSize
-hasPurpose

-isHybrid
-isClosed
-hasParent

-hasOrder-hasConfiguration

Chain Star Why

Centralized Hybrid Decentralized

Circle AllChannel

ConfigurationeEntity

Fig. 3 Ontological perspective of sample architectural configurations

These are compact knowledge representations that leverage the DL formalisms
in the foundation layer (Fig. 2a) to encapsulate meta-domain and generic domain
knowledge. We create a semantic block for the configuration domain and one for
the satellite domain where concepts stem from extensions of a general component
ontology as pictured in Fig. 1. Note that interfaces are specialized to ensure
correct assembly of components via rule-driven checking of compatibility between
interfaces, beyond the predefined association constraints imposed by architectural
configurations. For instance, in a chain-based robotic arm system, the arm (leader)
connects to the end effector, which connects to a tool, and the tool interacts with
the client satellite. Ontology models in the semantic blocks are created with OWL2,
while rules are implemented in Jena by a (decidable) reasoner, and the assembly and
integration of heterogeneous domain data/knowledge are performed using Java.

System Configuration and Reasoning for Design Alternatives Generation For
the purpose of this example, acceptable design alternatives are ones that satisfy
domain, meta-domain, and configuration rules. First, we instantiate both the satellite
and the architectural configurations Tbox with corresponding sample data borrowed
from (Knizhnik et al. 2017). This is done via creation of scenarios as illustrated
in Fig. 4a and b. Thus, a library of semantically enabled elements is created as
instance of the Tbox, resulting into an Abox of components as illustrated in the
left side of Fig. 1c. For the sake of simplicity, the interface types are treated as
attributes of components (class). For instance, grip21 is a Tool with two distinct
interfaces (i.e., M1 and F2). Similarly, there are two instances of the entity Arm
in the library: Arm1 and Arm2. The latter presents two F1, one M5, one F2, and
one F5 interfaces. With the individual primitive component ready, the configurator
can assemble them according to predefined architectural configurations as created
in Fig. 4b. We note here that the number of nodes in the configuration graph can
be adjusted to accommodate the designer need. This results into a semantically
annotated library of components and architectural configurations. Next, a Java-

238 L. Petnga

Fig. 4 Illustration of the generation of valid Chain and Circle design alternatives from input
libraries of configurations and components using the configurator for the satellite robotic arm case
study

implemented configurator generates configuration-compliant design alternatives
through careful orchestration of inference rules first at the domain levels and then for
each of the candidate configurations. It starts by generating an unconstrained design
space as baseline. With the execution of each rule, the baseline is progressively
constrained, and designs that do not satisfy expressed constraints are removed,
leaving only qualified alternatives. Figure 4c and d illustrates resulting acceptable
designs, respectively, for a three-component chain-based arm system with Arm2
as leader (pivot) at index 1 of the list and a five-component star-based system (for
the sake of illustration purpose only) encompassing an arm. Two of the systems
illustrated in Fig. 1c, i.e., Chain Syst�300 and Star Syst�66, are pointed
out in Fig. 4c and d, respectively.

5 Conclusion and Future Work

In this work, we have introduced, described, and prototyped a new ontology-driven
knowledge modeling and reasoning approach for multi-domain system architect-
ing and configuration. Our framework supports ontological and multi-domain

Ontology-Driven Knowledge Modeling and Reasoning for Multi-domain. . . 239

rule-based generation of complex system design alternatives as per predefined
configurations. Its capability includes mechanisms to integrate multiple domains,
each captured as semantic blocks made of (meta)-domain ontologies, rules, and
specialized computations modules. These results have been achieved, thanks to
description logic (DL) formalisms supporting the decidability of our reasoning
framework and enabling a configurator to correctly assemble components from a
library according to a given architectural configuration. An illustration of the imple-
mentation of the system on rule-based generation of architectural configurations
for satellite robotic arms has shown promising results. Future work would include
extensions to enable trade studies based on system-level measures of effectiveness,
semiautomatic procedures for loading data for scenarios generation, as well as
support for more complex architectural configurations, especially hybrid ones.

References

Derler, P., E.A. Lee, and A. Sangiovanni. 2012. Modeling Cyber-Physical Systems. Proceeding of
the IEEE 100 (1): 13–28.

Eidson. 2010. A time-centric Model for Cyber-Physical Applications. MoDELS 2010 ACES-MB
Workshop Proceedings, Oslo October 4, 2010.

Sowa, J.F., and A. Borgida. 1991. Principles of Semantic Networks: Explorations in the Represen-
tation of Knowledge, ed. John F. Sowa.

Hayes, P.J. 1980. The logic of frames. In Frame Conceptions and Text Understanding, ed. D.
Metzing, 46–61. Berlin: de Gruyter.

Pavlic, M., A. Mestrovic, and A. Jakupovic. 2013. Graph-Based Formalisms for Knowledge
Representation. 17th World Multi-Conference on Systemics, Cybernetics and Informatics, July
9–12, Orlando, Florida, USA.

Baader, F., D.L. McGuinness, D. Nardi, and P.F. Patel-Schneider. 2003. The Description Logic
Handbook: Theory, implementation, and applications. Cambridge: Cambridge University
Press.

Schild, K. 1994. Terminological Cycles and the Propositional With Mu- Calculus. In 4th Int.
Conference on the Principle of Knowledge Representation and Reasoning(KR-94), eds. J.
Doyle, E. Sandewall, and P. Torasso, 509–520.

Baader, F., I. Horrocks, and U. Sattler. 2005. Description Logics as Ontology Languages for the
Semantic Web. In Mechanizing Mathematical Reasoning: Essays in Honor of Jrg Siekmann on
the Occasion of His 60th Birthday, number 2605 in Lecture Notes in Artificial Intelligence, eds.
Dieter Hutter and Werner Stephan, 228–248. Springer.

Petnga, L., and M.A. Austin. 2016. An Ontological Framework for Knowledge Modeling and
Decision Support in Cyber-Physical Systems. Advanced Engineering Informatics 30 (1): 77–
94.

———. 2017. Semantically-enabled Model-based Systems Engineering of Safety-critical Network
of Systems. 27th Annual INCOSE International Symposium (IS 2017), Adelaide, Australia,
July 15–20, 2017.

Knizhnik, J., M.A. Austin, and C. Carignan. 2017. Robotic Satellite Servicing Trade Space
Down Selection. 27th Annual INCOSE International Symposium (INCOSE 2017), Adelaide,
Australia, July 15–20, 2017.

Nassar, N., and M. Austin. 2013. Model-Based Systems Engineering Design and Trade-off Analysis
with RDF Graphs. Conference on Systems Engineering Research. GA, US: Atlanta.

Part IV
MBSE Processes and Languages

A Literature Review of the Integration
of Test Activities into the Product
Development Process

Aksel Elkjaer, Geir Ringen, and Cecilia Haskins

Abstract The purpose of this paper is to investigate product development test
processes. A literature review examines research on test activities in product design,
product development and systems engineering research fields. The publications
reviewed have been categorized based on the stage in development and placed
into a proposed test process framework. The proposed framework sets an agenda
of functions and characteristics important for the integration of test processes
into model-based systems engineering. The findings presented are of interest
to researchers by structuring test activities from product development, systems
engineering and prototyping research into a context for the design process. The
findings also allow practitioners to identify research at the level of planning and
development stage relevant to their test processes.

Keywords Product development · Test activity integration · Literature review

1 Introduction

Testing is an essential component of the development process; however, it’s
integration into the design process has received limited attention (Engel 2010;
Tahera et al. 2018). A test of a design provides the possibility either to confirm a
rationale or to learn from the discovery of unknown (and unexpected) outcomes,
offering vital information to the design process. From this viewpoint, the purpose of
a test in product development can be considered as a method to reduce uncertainty
(Bjorkman et al. 2013). The reduction of uncertainty supports decision-making
at any stage in development, but the value of information and new knowledge is
inversely proportional with time (Kennedy 2008). Reduced uncertainty offers two
outcomes. If the performance is as expected, the result is evidence which confirms

A. Elkjaer (�) · G. Ringen · C. Haskins
Norwegian University of Science & Technology, Trondheim, Norway
e-mail: aksel.elkjaer@ntnu.no

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_21

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_21&domain=pdf
mailto:aksel.elkjaer@ntnu.no
https://doi.org/10.1007/978-3-030-82083-1_21

244 A. Elkjaer et al.

quality in a context. If the performance is not as expected (or expectation unknown),
the result provides a pathway to new understanding.

Experience tells us that test activities incur a significant financial burden,
typically accounting for a substantial proportion of total development costs (Tahera
et al. 2017). In contrast, even greater costs from a late-stage failure are often
attributed to the deficiency of untested decisions (Kukulies and Schmitt 2018).
The planning of test activities during development requires carefully balancing the
potential benefits of new knowledge relevant to risk mitigation against the applicable
programmatic constraints.

Model-based systems engineering (MBSE) promotes the utilization of models
throughout the development process, from needs analysis and requirement definition
to the end of a product life cycle, to enhance development (INCOSE 2007). Such
models offer the potential for the explicit connection of test processes to design,
supporting traceability to both knowledge gains and risk mitigations. Model-based
testing has arisen from the need to test formalized models generated from analysis
and simulations. The research on how MBSE and model-based testing should be
integrated, especially in a context outside of software development, is lacking.
Raz et al. (2018) have used Design of Experiments methodology to link system
architecting and the system design space through formal models showing the
potential for the further integration of test processes. In this study perspectives
from research on test activities of products and systems are presented to support
the integration of testing perspectives into MBSE.

The motivation of this paper is to orient the reader to research into test activities
and to provide a synthesis of research into test processes related to early devel-
opment stages. A literature review has been conducted to classify research on test
activities based on their aims, perspectives to planning and stage in development.
The objective of the review is to develop a framework of test activity that supports
integration into the development process. Two research questions were proposed as
a foundation for establishing the framework.

1. In which stages of product development have the integration of test activities into
the development process been researched?

2. What perspectives are taken in the planning of test activities?

The paper is structured as follows: Section 2 Methodology presents the literature
search strategy; the findings are given in Sect. 3 Results, analysed in Sect. 4
Discussion and summarized in Sect. 5 Conclusion.

A Literature Review of the Integration of Test Activities into the Product. . . 245

2 Methodology

2.1 Search Strategy

The review was performed with guidance from procedural literature by Machi
and McEvoy (2016). The SCOPUS electronic database was searched for any
combination of product development keyword AND testing keyword shown in
Table 1. The search was conducted within the title, abstract and keywords. The
search was limited to the journal sources listed in Table 2 with no restriction on year
of publication. The sources were selected due to their focus on technical engineering
design and their high reputation within the field, but are not considered exhaustive.
Sources focused on engineering management were excluded to concentrate on the
technical implementation of testing rather than related business and management
topics.

2.2 Inclusion and Exclusion Criteria

The discovered articles were processed in three subsequent steps to remove articles
not relevant to the intention of the study. First articles were removed based on title,
then abstract and finally after reading the paper. The sample population for each
stage is shown in Fig. 1 with a final population of 34 articles.

Table 1 Keyword search terms

Topic Keywords

Product development “product development” OR “product design” OR “system
development” OR “design and development” OR “system design” OR
“design method*” OR “design theory” OR “system engineering” OR
“v model” OR “development process” OR “design process” OR
“design for” OR “robust design” OR “knowledge based engineering”
OR “knowledge management” OR “organi*ational learn” OR
“model-based” OR “set*based”

Testing “test and evaluation” OR “test plan” OR “test definition” OR “test
specification” OR “test verification” OR “test validation” OR “test
management” OR “verification activities” OR “physical test” OR
“virtual test” OR “test activities” OR “testing” OR “set*based test” OR
“prototyp*”

Table 2 Journal sources

Journals Research in Engineering Design, Journal of Engineering Design, Systems
Engineering, Concurrent Engineering, CIRP Journal of Manufacturing Science and
Technology, Journal of Mechanical Design

246 A. Elkjaer et al.

Stage 1

N=281 N=130 N=42 N=34

Keyword database search
in selected journals

Exclusion on title Exclusion on abstract Exclusion on critical
review

Stage 2 Stage 3 Stage 4

Fig. 1 Search processing stages

The article was included if the research addressed:

• The engineering design process, new product development practice, system
engineering/design, development activities or design approach.

• Test activities or processes were integral to the paper’s research question/thesis.
• Test activities were discussed in relation to the design process (e.g. use of test

results contributing to design process/decisions).
• Tests were analysed as a method of verification/validation or source of discov-

ery/learning/reusable knowledge.

The article was excluded if:

• “Test” used in reference to testing paper’s hypothesis and not product develop-
ment test activity. This includes the “testing” of a new design method – if test
activities are not relevant to that design method.

• Studies addressing solely software products or construction projects.
• Studies focusing solely on the design improvement of a specific product for

the benefit of that specific product – as opposed to development process/design
methodology in general.

• “Design methodology” referred to as the methodological design of the study
itself (i.e. not product development methodology).

• Virtual prototype, virtual testing, simulation or analysis research not discussed
in a context of impact on the design/development process (i.e. research into
improving specific modelling technique for a design problem was not included).

3 Results

Results from the literature review are summarised in the following two subchapters.
First, the number of articles addressing each stage in development is presented, fol-
lowed by their categorization into a model of perspectives on product development
testing. Appendix A provides a complete list of the reviewed literature showing the
classification of each article according to the presented frameworks.

A Literature Review of the Integration of Test Activities into the Product. . . 247

Fig. 2 Stage of product development in which testing was being investigated

3.1 Stage of Product Development

The research on test activities identified in this paper has been categorized with
respect to the stage of the development process being investigated. Four stages,
unique in respect to test activities, have been defined by the authors covering the
fundamental stages from textbook literature (Ulrich and Eppinger 2012). The stages
are concept generation, detailed design, product qualification and in-service life.
The number of articles addressing each stage in development is shown in Fig. 2.

A test process is not necessarily unique to only one stage in development. It is
possible for research to be conducted solely on testing during concept generation
(one stage) or with a broader perspective of the development process covering
multiple stages. Figure 2 therefore includes boxes spread across the applicable
stages with the number of articles for each box specified.

3.2 Test Process Perspective

The perspective of testing that was studied was categorized into three areas of
activity suggested by the literature. In test design, the research addressed the best
way to perform a specific test. A second area was defined as test objectives and
focused on determining what to test. Finally, test strategy is where a test campaign
of defined test objectives was studied for optimization. The number of articles
discovered for each perspective is shown in Fig. 3.

4 Discussion

Splitting the development process into stages allows the objective of testing in each
phase to be discretized. In essence, testing with respect to stage in development
can be considered as progressive investigations to discover: Will the idea work?

248 A. Elkjaer et al.

Fig. 3 Test process perspectives

Will the solution work? Does the product/system work? And finally how well did
the product/system work? The greatest number of research articles addressed the
earliest phase, concept development, which reflects the importance of starting with
the right idea by frontloading activities and generating knowledge when it is most
valuable. Whilst the understanding and maturity of the product is often limited
in the concept phase, expanding the potential to answer the subsequent questions
as early as possible achieves compounding benefits. Furthermore, it is specifically
these compounding benefits that are the focus of integrating test activities into the
development process.

Three test process perspectives are proposed as relevant for the integration of
test activities in the development process. The following discussion highlights the
key insights from the identified research from each perspective. The purpose is to
distil the important considerations for the integration of testing into the development
process.

4.1 Test Strategy

The category “test strategy” considers a holistic perspective of test activities during
development. It concerns overall aspects of development, such as the duration, cost,
quality or risk management. This requires analysing the test activities collectively
and establishing the appropriate approach.

The systems engineering processes of verification and validation align with this
perspective. Testing is technically a method of verification and validation. However
due to testing’s critical role in the process, it is considered a test strategy in the
context of the proposed framework. Several articles were discovered modelling
the set of activities in a verification and validation plan to compare and query
development approaches.

A Literature Review of the Integration of Test Activities into the Product. . . 249

Engel and Barad (2003) and Engel and Shachar (2006) developed a quantitative
methodology of modelling the cost and duration of activities in a verification
plan. Subsequently, Hoppe et al. (2007) performed a multi-case study analysis
of the quantitative methodology, along with qualitative guidelines, and showed
how frontloading of test verification activities was critical for the development life
cycle. This advocates for the close integration of test strategy in the design phase.
Similar models, which estimate the characteristics of a set of test activities for
the mathematical assessment of optimal solutions, have been developed by Salado
(2015) and Shabi et al. (2017). These approaches achieve optimized test strategies
for given designs which, although useful for comparison of different designs, do
not influence directly the design process. They view an optimized test strategy as
output for a given design problem. This is similar to Tahan and Ben-Asher (2005)
who investigated specifically the ideal number of incremental stages for verification
for a design.

Two studies which did explicitly integrate test strategy into the design process
were (Tahera et al. 2018) and (Shin et al. 2017). Tahera et al. (2018) addressed
the importance of incremental stages of testing with direct dependences to design
iterations, and Shin et al. (2017) modelled the sequence of design tasks and
test activities to establish the process with the shortest duration. These studies
emphasized the efficiency and effectiveness to overall development which testing
can provide when considered early and throughout development.

A different area of research concerning test strategy was research on prototyping.
The following three studies examined the role of prototypes on a strategic level:
Barkan and Iansiti (1993), Camburn et al. (2015) and Lauff et al. (2018). They
all addressed aspects of using prototypes throughout development, such as timing,
scope and prototype characteristics, to understand how they influenced the process.

4.2 Test Objectives

Articles in this category investigated the objective of specific test activities. Three
general approaches were discovered in the identified research. Test objectives
could be defined from either (i) evaluation of design uncertainty, (ii) supporting
virtual/simulation activities or (iii) leveraging benefits of physical tests.

Goh et al. (2007) proposed a method of modelling uncertainty to inform design
decisions. The method addressed the trend of increased analysis during development
by structuring the uncertainty of design decisions based on untested assumptions.
In a similar manner, Bjorkman et al. (2013) and Kukulies and Schmitt (2018)
have both established test objectives by evaluating the performance uncertainty
of functional product characteristics. Whilst those studies prioritized attention
to design parameters with greatest uncertainty, Sanders et al. (2013) examined
unforeseen and low-probability aspects with high consequences. These potential
high-consequence characteristics required discovering them in very early testing
before necessary changes were unfeasible.

250 A. Elkjaer et al.

Another key area of focus within the test objectives category was physical
versus virtual testing. Research in this category was addressing directly the role of
simulation to reduce the need for physical testing or prescribing physical testing for
model correlation (to achieve even greater use of virtual models). Sutcliffe and Gault
(2004) exposed potential benefits that can be achieved by integrating virtual tests,
from CAD models to augmented reality, highlighting possible objectives during
development from such test methods. Mejía-Gutiérrez and Carvajal-Arango (2017)
reported on the latest integration of development software in a case study directly
linking virtual prototypes into systems engineering modelling software.

The final area of study defining objectives for test activities focused on leveraging
the benefits of physical testing. Viswanathan has published a number of studies
(Viswanathan et al. 2014; Viswanathan and Linsey 2012, 2013) investigating the
effect of design fixation and sunk costs on physical models. Design fixation
considers an unnoticed integration of test activities, which prevents improved
solutions being discovered. Campbell et al. (2007) on the other hand showed that
physical models provide the best understanding to the customer and therefore allow
the best feedback to be gathered.

The research into test objectives considered a greater level of integration into the
design process than the other framework perspectives due to the strong link between
key design parameters and definition of tests.

4.3 Test Design

Research in the final category, “test design,” investigated methodology for a defined
objective. This category would be broad and extensive if it was to consider
methodology for specific applications, e.g. what test methodology is best for
measuring the health of batteries or the performance of passive dampers. However,
the nature of such application-specific methodology has been excluded, according
to the criteria defined in Sect. 2.2, as it is independent to the development process
(or at most only applicable to development of a specific product type).

The eight articles identified in this category discuss the methodology in relation
to the development process which means the methodology is generalizable to
different development contexts. Two general areas of test design were discovered.
The first was a Design of Experiments or Robust Engineering approach where the
test process is structured statistically around the identification of parameters that will
have greatest impact on performance. The second topic was related to understanding
customer needs or, in a wider context, stakeholder analysis.

The impact of Design of Experiments theory on the design process was presented
in case studies by Herrmann (2007, 2009). The case studies show how implemen-
tation of Taguchi methodology identifies the parameters with greatest effect on
performance. This allows for informed concept tradeoffs to be performed based on
maximizing intended performance and minimizing undesired effects.

A Literature Review of the Integration of Test Activities into the Product. . . 251

The second area of test design methodology researched addressed the less
quantitative field of stakeholder analysis. Research by Deininger et al. (2019),
Starkey et al. (2019) and Wall et al. (1992) all investigated methodology relating
to the influence of product representations on conclusions gathered. In contrast,
Tovares et al. (2014), Artacho et al. (2010) and Engelbrektsson and Söderman
(2004) emphasized the importance of capturing stakeholders’ perceptions and
preferences.

5 Conclusion

A broad search was conducted on a limited set of prominent sources within product
development research. The resulting literature was not exhaustive for the discovered
topics yet achieved a wide overview covering all stages in the product development
process. The purpose of the review was to uncover the literature addressing the
definition and utilization of testing throughout the development life cycle.

The literature review identified methods from the start of the development
process to qualification testing and in-service life. This answers the first research
question by showing that integration of test activities is important and has been
considered in all stages of development. Research focusing on the integration of
testing was most prominent in concept development where the greatest impact is
achievable.

Answering the second research question, What perspectives are taken in the
planning of tests?, prompted the first author to devise a framework of test planning
perspectives that established three areas of importance. The research was catego-
rized based on the contribution in defining: what key objectives can be realized by
testing, how such tests should be designed and how to establish the overall strategy
of test activities in development. The proposed framework with classification into
three areas provides insight into different levels of detail needed during planning
of tests in the development process. The dependencies and overlap between these
groups highlighted both their sequential and iterative nature as represented in the
framework in Fig. 3.

This study provides an overview of relevant research structured in a framework
to assist the future analysis and development of test processes for integration into
MBSE approaches.

Acknowledgements This study has been conducted as part of the KPN project VALUE, supported
by the Norwegian Research Council and the industry partners Hydro and Alcoa.

252 A. Elkjaer et al.

Appendix A. Literature Review Study Sources, Evidence
Categories and Aims

Study
Evidence
categorya

Stage of
developmenta Aim

Salado and Kannan
(2019)

TS 2 Formalize the application of
Bayesian networks to verification
problems to facilitate instruction
and communication among
verification engineers and with
researchers from other domains

Tahera et al. (2018) TS 1–4 Establish importance of testing in
product development to inform the
development of pragmatic support
methods

Shabi et al. (2017) TS 2,3 Propose a method for determining
the optimal verification activities
with respect to product quality/risk

Shin et al. (2017) TS 3 Demonstrate that model-based
integration of T&E process and
system safety process reduces
development time

Salado (2015) TS 3 Demonstrate the benefit of trade
space exploration in the
optimization of test strategy

Hoppe et al. (2007) TS 1–4 Develop a generic verification,
validation and testing methodology
guideline and an economic VVT
process model in order to realize
improved product quality

Engel and Shachar
(2006)

TS 2,3 Measure systems quality cost/times
in a typical development project as
well as suggest ways to optimize it
in order to meet business objectives

Tahan and
Ben-Asher (2005)

TS 3 Demonstrate that incremental
integration offers both time and cost
benefits vs single stage integration

Engel and Barad
(2003)

TS 3 Propose a novel approach for
modelling VVT strategies as
decision problems

Lauff et al. (2018) TS 1–3 Define the roles of prototypes in
industry

Camburn et al.
(2015)

TS 1,2 Provide a method to repeatedly
enhance the outcome of prototyping
efforts

Barkan and Iansiti
(1993)

TS 1–4 Examine roles which prototyping
plays in product development

(continued)

A Literature Review of the Integration of Test Activities into the Product. . . 253

Study
Evidence
categorya

Stage of
developmenta Aim

Isaksson et al. (2000) TS 1–3 Evaluate alternative design
strategies and methods with respect
to their impact on the development
process time

Kukulies and
Schmitt (2018)

TO 3 Investigate the use of uncertainty
modelling to support design
verification

Bjorkman et al.
(2013)

TO 3 Present a methodology that uses an
MBSE framework and Monte Carlo
simulation to define uncertainty
reduction goals for test planners to
use in developing test strategies and
detailed test designs for evaluating
technical performance parameters

Sanders et al. (2013) TO 1 Propose model for discovery of low
probability events in the formative
stages of the requirements definition
and risk management planning
activities in order establish the
safety requirements and responsive
conceptual designs for mitigation

Goh et al. (2007) TO 4 Create framework for organizing
uncertainty in product development
simulation results therefore
improving understanding between
simulations and tested results for
the purpose of assisting design
decisions

Takala (2005) TO 1 Propose a concept that bridges the
gap between physical and virtual
domains prototyping

Sutcliffe and Gault
(2004)

TO 1 Propose guidelines for configuring
virtual engineering technology and
design of requirements analysis
sessions

Mejía-Gutiérrez and
Carvajal-Arango
(2017)

TO 1,2 Investigate the usefulness of
integrated virtual design verification
simulation

Kiefer et al. (2004) TO 1,2 Present the design development of a
new product that explored many of
the different prototyping
technologies

Wang and Chen
(2011)

TO 1 Introduce users’ participation in the
conceptual design stage of product
development to avoid interpreting
biased from marketers’ information

Viswanathan et al.
(2014)

TO 1 Study how physical models can
assist novices in mitigating design
fixation on undesirable features

(continued)

254 A. Elkjaer et al.

Study
Evidence
categorya

Stage of
developmenta Aim

Viswanathan and
Linsey (2013)

TO 1 Investigate physical modelling role
in idea generation and design
fixation

Viswanathan and
Linsey (2012)

TO 1 Investigate if physical models
supplement designer’s mental
models and if physical models
induce design fixation

Campbell et al.
(2007)

TO 1–3 Demonstrate that physical models
are the single presentation format
that is readily understood by most
customers

Wall et al. (1992) TD 1–4 Develop a systematic method of
evaluating prototyping processes in
order to determine the best process
for a given situation

Engelbrektsson and
Söderman (2004)

TD 1 Investigate the use and perceptions
of methods and product
representations in Swedish
companies and its possible impact
on problems associated with
late-discovered customer
requirements

Starkey et al. (2019) TD 1 Investigate the impact of prototype
fidelity, concept creativity and risk
aversion on perceived riskiness and
concept selection

Deininger et al.
(2019)

TD 1 Provide insights into how prototype
type, group membership
(stakeholder characteristics) and
question type can influence
stakeholders’ perceptions of a
design concept and the resulting
feedback they provide

Tovares et al. (2014) TD 1 Develop a method to elicit, capture
and model consumer preference
through experiential preference
judgements

Artacho et al. (2010) TD 1 Analyse how slight changes might
affect users’ perception as well as
influence their intention to purchase
a product

Herrmann (2009) TD 2 Demonstrate that the successful use
of Taguchi test methodology
provides efficient and reliable
design knowledge

Herrmann (2007) TD 2 Demonstrate the successful use of
Taguchi test methodology to
support system design

aTS test strategy, TO test objectives, TD test design, 1 concept generation, 2 detailed design, 3
product qualification, 4 in-service life

A Literature Review of the Integration of Test Activities into the Product. . . 255

References

Artacho, M.A., A. Ballester, and E. Alcántara. 2010. Analysis of the Impact of Slight Changes in
Product Formal Attributes on User’s Emotions and Configuration of an Emotional Space for
Successful Design. Journal of Engineering Design 21: 693–705.

Barkan, P., and M. Iansiti. 1993. Prototyping: A Tool for Rapid Learning in Product Development.
Concurrent Engineering 1: 125–134.

Bjorkman, E.A., S. Sarkani, and T.A. Mazzuchi. 2013. Using Model-Based Systems Engineering
as a Framework for Improving test and Evaluation Activities. Systems Engineering 16: 346–
362.

Camburn, B., B. Dunlap, T. Gurjar, C. Hamon, M. Green, D. Jensen, R. Crawford, K. Otto, and
K. Wood. 2015. A Systematic Method for Design Prototyping. Journal of Mechanical Design
137: 081102.

Campbell, R.I., D.J. De Beer, L.J. Barnard, G.J. Booysen, M. Truscott, R. Cain, M.J. Burton, D.E.
Gyi, and R. Hague. 2007. Design Evolution Through Customer Interaction with Functional
Prototypes. Journal of Engineering Design 18: 617–635.

Deininger, M., S.R. Daly, J.C. Lee, C.M. Seifert, and K.H. Sienko. 2019. Prototyping for Context:
Exploring Stakeholder Feedback Based on Prototype Type, Stakeholder Group and Question
Type. Research in Engineering Design 1–19.

Engel, A. 2010. Verification, Validation, and Testing of Engineered Systems. Hoboken, United
States: Wiley.

Engel, A., and M. Barad. 2003. A Methodology for Modeling VVT Risks and Costs. Systems
Engineering 6: 135–151.

Engel, A., and S. Shachar. 2006. Measuring and Optimizing Systems’ Quality Costs and Project
Duration. Systems Engineering 9: 259–280.

Engelbrektsson, P., and M. Söderman. 2004. The Use and Perception of Methods and Product Rep-
resentations in Product Development: A Survey of Swedish Industry. Journal of Engineering
Design 15: 141–154.

Goh, Y.M., C.A. McMahon, and J.D. Booker. 2007. Development and Characterisation of Error
Functions in Design. Research in Engineering Design 18: 129–148.

Herrmann, D.K. 2007. Taguchi Optimization in the Design of a Printer Registration System.
Journal of Engineering Design 18: 1–11.

———. 2009. Application of Multiparameter Optimization for Robust Product Design. Journal of
Mechanical Design 131.

Hoppe, M., A. Engel, and S. Shachar. 2007. SysTest: Improving the Verification, Validation, and
Testing Process—Assessing Six Industrial Pilot Projects. Systems Engineering 10: 323–347.

INCOSE. 2007. Systems Engineering Vision 2020. INCOSE-TP-2004-004-02.
Isaksson, O., S. Keski-Seppälä, and S.D. Eppinger. 2000. Evaluation of Design Process Alterna-

tives Using Signal Flow Graphs. Journal of Engineering Design 11: 211–224.
Kennedy, M. 2008. Ready, Set, Dominate: Implement Toyota’s Set-Based Learning for Developing

Products and Nobody Can Catch You. Oaklea Press.
Kiefer, S., L. Silverberg, and M. Gonzalez. 2004. A Case Study of Prototyping Methods and Design

for Manufacture: Electrostatic Window Blinds. Journal of Engineering Design 15: 91–106.
Kukulies, J., and R. Schmitt. 2018. Stabilizing Production Ramp-Up by Modeling Uncertainty for

Product Design Verification Using Dempster–Shafer Theory. CIRP Journal of Manufacturing
Science and Technology 23: 187–196. https://doi.org/10.1016/j.cirpj.2017.09.008.

Lauff, C.A., D. Kotys-Schwartz, and M.E. Rentschler. 2018. What is a Prototype? What Are the
Roles of Prototypes in Companies? Journal of Mechanical Design 140: 061102.

Machi, L.A., and B.T. McEvoy. 2016. The Literature Review: Six Steps to Success. Corwin Press.
Mejía-Gutiérrez, R., and R. Carvajal-Arango. 2017. Design Verification Through Virtual Prototyp-

ing Techniques Based on Systems Engineering. Research in Engineering Design 28: 477–494.
Raz, A.K., C.R. Kenley, and D.A. DeLaurentis. 2018. System Architecting and Design Space

Characterization. Systems Engineering 21: 227–242. https://doi.org/10.1002/sys.21439.

http://dx.doi.org/10.1016/j.cirpj.2017.09.008
http://dx.doi.org/10.1002/sys.21439

256 A. Elkjaer et al.

Salado, A. 2015. Defining Better Test Strategies with Tradespace Exploration Techniques and
Pareto Fronts: Application in an Industrial Project. Systems Engineering 18: 639–658.

Salado, A., and H. Kannan. 2019. Elemental Patterns of Verification Strategies. Systems Engineer-
ing 22: 370–388.

Sanders, G.A., S. Sarkani, and T. Mazzuchi. 2013. High Consequence Systems Phenomenological
Characterization: A Tutorial. Systems Engineering 16: 464–472.

Shabi, J., Y. Reich, and R. Diamant. 2017. Planning the Verification, Validation, and Testing
Process: A Case Study Demonstrating a Decision Support Model. Journal of Engineering
Design 28: 171–204.

Shin, Y.-D., S.-H. Sim, and J.-C. Lee. 2017. Model-Based Integration of Test and Evaluation
Process and System Safety Process for Development of Safety-Critical Weapon Systems.
Systems Engineering 20: 257–279.

Starkey, E.M., J. Menold, and S.R. Miller. 2019. When Are Designers Willing to Take Risks? How
Concept Creativity and Prototype Fidelity Influence Perceived Risk. Journal of Mechanical
Design 141: 031104.

Sutcliffe, A., and B. Gault. 2004. The ISRE Method for Analyzing System Requirements with
Virtual Prototypes. Systems Engineering 7: 123–143.

Tahan, M., and J.Z. Ben-Asher. 2005. Modeling and Analysis of Integration Processes for
Engineering Systems. Systems Engineering 8: 62–77.

Tahera, K., C. Earl, and C. Eckert. 2017. A Method for Improving Overlapping of Testing and
Design. IEEE Transactions on Engineering Management 64: 179–192.

Tahera, K., D.C. Wynn, C. Earl, and C.M. Eckert. 2018. Testing in the Incremental Design and
Development of Complex Products. Research in Engineering Design. https://doi.org/10.1007/
s00163-018-0295-6.

Takala, R. 2005. Product Demonstrator: A System for Up-Front Testing of User-Related Product
Features. Journal of Engineering Design 16: 329–336.

Tovares, N., P. Boatwright, and J. Cagan. 2014. Experiential Conjoint Analysis: An Experience-
Based Method for Eliciting, Capturing, and Modeling Consumer Preference. Journal of
Mechanical Design 136: 101404.

Ulrich, K.T., and S.D. Eppinger. 2012. Product Design and Development. 5th ed. New York:
McGraw-Hill.

Viswanathan, V.K., and J.S. Linsey. 2012. Physical Models and Design Thinking: A Study of
Functionality, Novelty and Variety of Ideas. Journal of Mechanical Design 134: 091004.

———. 2013. Role of Sunk Cost in Engineering Idea Generation: An Experimental Investigation.
Journal of Mechanical Design 135: 121002.

Viswanathan, V., O. Atilola, N. Esposito, and J. Linsey. 2014. A Study on the Role of Physical
Models in the Mitigation of Design Fixation. Journal of Engineering Design 25: 25–43.

Wall, M.B., K.T. Ulrich, and W.C. Flowers. 1992. Evaluating Prototyping Technologies for Product
Design. Research in Engineering Design 3: 163–177.

Wang, C.-H., and R.C.-C. Chen. 2011. A MPCDM-Enabled Product Concept Design Via User
Involvement Approach. Concurrent Engineering 19: 19–34.

http://dx.doi.org/10.1007/s00163-018-0295-6

Implementing a MOSA Decision Support
Tool in a Model-Based Environment

Michael Dai, Cesare Guariniello, and Daniel DeLaurentis

Abstract The Modular Open Systems Approach (MOSA) is a DoD initiative that
requires major defense acquisition programs to employ modular architectures using
widely accepted standards. In order to realize the benefits of modular and open
architectures, program stakeholders must successfully navigate various technical
and programmatic decisions throughout the acquisition life cycle. Our observation
is that many programs do not have sufficient methods and tools to perform analysis,
assess trades, and produce evidence for decisions that produce good program
outcomes in general and in specific respect to modularity. This paper presents a
model-based approach to rigorously collect and present acquisition context data
and data from analysis tools in a Decision Support Framework (DSF). Through
an example multi-domain mission engineering problem, we demonstrate how the
DSF enables comparison of modular/non-modular mission architectures in terms
of cost and performance. In addition, an MBSE enterprise architecture model is
used to implement the DSF and is shown to (1) provide detailed visualizations
of alternative architecture solutions for better comparison; (2) allow traceability
between features of the architecture and organizational requirements to better
document adherence to MOSA principles; and (3) lay the groundwork for continued
model-based engineering development downstream of the Analysis of Alternatives
activity to the rest of the acquisition life cycle.

Keywords System of systems · Model-based systems engineering · Mission
engineering

M. Dai (�) · C. Guariniello · D. DeLaurentis
Purdue University, West Lafayette, IN, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_22

257

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-82083-1_22

258 M. Dai et al.

1 Introduction

1.1 The Modular Open Systems Approach (MOSA)

MOSA is a strategy to implement “highly cohesive, loosely coupled, and severable
modules” into system designs that can be “competed separately and acquired from
independent vendors” (DDR&E(AC) n.d.). This is to be achieved using widely
supported and consensus-based (i.e., “open”) standards, as they are available and
suitable (ODASD 2017). The Office of the Under Secretary of Defense for Research
and Engineering states that the approach intends to realize the following benefits
(DDR&E(AC) n.d.):

1. Enhance competition – open architectures with severable modules allow compo-
nents to be openly competed.

2. Facilitate technology refresh – new capabilities or replacement technology can
be delivered without changing all components in the entire system.

3. Incorporate innovation – operational flexibility to configure and reconfigure
available assets to meet rapidly changing operational requirements.

4. Enable cost savings/cost avoidance – reuse of technology, modules, and/or
components from any supplier across the acquisition life cycle.

5. Improve interoperability – severable software and hardware modules to be
changed independently.

MOSA compliance has become a mandate by law for all major defense acqui-
sition programs (10 USC §2446a). However, effective tools for DoD programs to
conduct analysis and produce evidence of MOSA implementation are still lacking.
This, combined with inconsistent understanding on how to balance MOSA with
other trade variables, has produced a situation where many programs struggle to
make effective choices and document the rationale for these decisions.

1.2 Barriers to Achieve MOSA Benefits

While MOSA promises great benefits, challenges remain to successfully realize
them. Through workshops and interviews, we have interacted with expert prac-
titioners from industry, military, and DoD to better define these challenges (see
DeLaurentis et al. 2017, 2018). Practitioners identified among the challenges the
need to understand how modular and open architecture alternatives modify technical
trades on system life cycle cost, development schedule, performance, and flexibility
toward changing mission requirements. There are also many programmatic difficul-
ties associated with the adoption of MOSA. For example, data rights and intellectual
property often incentivize vendors from sharing detailed design information that
may impact other modules. Selection of working groups, compartmentalization

Implementing a MOSA Decision Support Tool in a Model-Based Environment 259

of information, and other organizational structure features can also have a strong
impact on how modular systems are successfully realized.

Thus, guidance is needed to navigate the technical trade space regarding modular
architectures and the organizational requirements that would best enable modular
system designs. A Decision Support Framework (DSF) is being developed to
address these challenges.

2 A Decision Support Framework to Guide MOSA
Implementation

Figure 1 shows the basic concept of the Decision Support Framework. The idea is to
create an executable software that can provide key information to program managers
and other stakeholders to guide MOSA-related decisions throughout the acquisition
life cycle.

2.1 DSF Inputs – Mission Engineering and Early-Stage
Acquisition Contexts

The inputs to the software are the parameters of the mission engineering problem
that would surround an acquisition: a mission Concept of Operations, a description
of capability gaps to be fulfilled, and a library of candidate systems to be selected

Fig. 1 Workflow of the Decision Support Framework concept. The decision-making scatterplot is
a figure taken from SERC research efforts led by Blackburn, described in Bone et al. (2018). RPO,
SODA, and SDDA are tools from the Purdue Analytic Workbench described in DeLaurentis et al.
(2016)

260 M. Dai et al.

and integrated to achieve mission objectives. This library represents the capabilities
of current and to-be-acquired systems, each involving varying degrees of modular-
ity. The alternative systems in the library will allow us to explore how the selection
of modular and open systems will impact the mission architecture as a whole.

The user will also input the mission-level requirements that all solution SoS
architectures must satisfy. These requirements will be based on mission capability
metrics relevant to the mission category. For example, an amphibious assault
mission may require SoS capabilities like naval superiority, air superiority, tactical
bombardment, and land seizure. Rigorously defining metrics for this level of
capability is challenging and is outside the scope of this paper.

2.2 DSF Analysis – Quantitative and Qualitative Analysis
Threads

The DSF analysis is divided into two threads: a quantitative analysis addressing the
technical trade-offs associated with modularity and a qualitative analysis addressing
programmatic considerations for MOSA.

The quantitative analysis could eventually use a set of tools that are most familiar
and trusted by a particular program, as long as they are configurable to represent
choices related to modularity and openness. Our prototype DSF employs tools from
Purdue’s SoS Analytic Work Bench, described in DeLaurentis et al. 2016. Robust
Portfolio Optimization (RPO), detailed in Davendralingam and DeLaurentis 2013,
generates alternative architectures and analysis of cost and performance. In RPO,
hierarchies of systems are modeled as nodes on a network that work cohesively
to fulfill overarching capability objectives. Capabilities (outputs) from existing
nodes connect to fulfill requirements (inputs) of other nodes, amidst compatibility
constraints. The end goal is to generate a set of “portfolios” from a library of
constituent systems (or components) that are pareto-optimal with respect to SoS-
level performance goals and constraints, under measures of uncertainty. In its
application to the DSF, the portfolios represent feasible mission architectures in
terms of their constituent systems, including both modular and monolithic assets.
Systems Operational Dependency Analysis (SODA) and Systems Developmental
Dependency Analysis (SDDA), developed by Guariniello and DeLaurentis (2013,
2017), are AWB tools that provide additional quantitative assessment of the
architectures in terms of operational and schedule risks.

Qualitative considerations on MOSA architectures are also analyzed. In many
cases, our prior research has found that programs first need a way to explore and
understand the various aspects of modularity, their interplay with key program
cost-schedule-performance outcomes, and long-term sustainment considerations
(DeLaurentis et al. 2017, 2018). This context, along with the initial sparsity of data
in early life cycle phases, makes the qualitative thread important in the benefits of
the DSF. The qualitative portion uses quality function deployment (QFD) techniques

Implementing a MOSA Decision Support Tool in a Model-Based Environment 261

Fig. 2 Cascading matrices in the DSF are used to trace mission needs through alternative
architectures to organizational and business requirements. Waterfall representation is adapted from
a figure by the American Society for Quality in Revelle (2004)

and cascading matrices to trace features of alternative architectures to the ideal
organizational requirements associated with them (Fig. 2). The idea is to use a
series of matrices to map mission-level capability needs to certain mission-level
requirements. These requirements are then mapped onto the alternative architectures
(identified by RPO) which satisfy them. Finally, alternative architectures are
mapped to the organizational and MOSA-related resources needed to achieve them.

2.3 DSF Outputs – Integrated Decision-Making Views
in a Model-Based Environment

Finally, projected outputs of the DSF software will display the implications on cost,
schedule, and risk of modular architectures and relationships between features of
system solutions and the organizational structures that would best support them.
We are presently assembling a comprehensive synthetic problem to exercise and
demonstrate both the qualitative and quantitative tracks of the DSF. A simplified
multi-domain battle scenario problem is used in this work to demonstrate the use of
MBSE to support the application of RPO in the DSF.

We apply the concept of an MBSE system model with visualizations to the
implementation of the DSF. Using a model-based environment allows DSF inputs
and outputs to be collected and linked together in a central database. This will enable
an integrated means to visualize pertinent data and facilitate DSF decision-making.
Our application of MBSE to this problem domain is inspired by SERC research

262 M. Dai et al.

efforts led by Blackburn and leverages principles and best practices in model-centric
engineering from his work. Bone et al. (2018) and Blackburn (2019) demonstrate
how integrating data from various engineering analysis tools in a model-based
workflow can be achieved and presented in a single decision-making window. His
decision-making window is shown as part of in Fig. 1 as the envisioned means of
displaying the DSF outputs.

3 Implementation Results Using an Example Mission
Engineering Problem

In this section, the idea of implementing the Decision Support Framework using
MBSE concepts is expounded upon and illustrated through a simple example
problem. In it, a multi-domain mission is to be performed using five concept roles:
a surveillance system, a communications system, an air superiority system, a power
supply system, and a maritime superiority system. They interact as a network to
achieve generic SoS capabilities.

3.1 MBSE Views Establishing Mission Context for the DSF

The general premise of the DSF is to allow the analysis and comparison of
modular/non-modular architecture solutions in a given mission context. Thus,
before the analysis is performed, the mission engineering problem must be clearly
stated. The enterprise architecture model is therefore instantiated with high-level
operational concept information expressed in OV-1 and OV-2 DoDAF models
(Fig. 3). The OV-1 shows the general concept roles that will later be filled by
alternative system solutions, in addition to notional dependency relationships. The
OV-2 specifies the intended flow of information, energy, and material entities
between the general system categories (Fig. 3b). Creating these views is helpful
for validating to-be architectures against the original mission needs and assessing
their ability to adapt to changes in mission configuration.

3.2 Identification of Feasible Architectures with RPO

To identify feasible architectures, a library of component systems is collected along
with their individual performance, requirements, compatibility constraints, and
associated uncertainties, shown in Appendix A. Among the candidate component
systems are modular and non-modular options. The tool is used to generate the set

Implementing a MOSA Decision Support Tool in a Model-Based Environment 263

Fig. 3 (a) OV-1 high-level operational concept view of the mission and capability roles to be
fulfilled. (b) OV-2 operational resource flow description detailing how each performer concept
will exchange information, energy, and material flows (see DoD CIO 2010)

Fig. 4 Pareto frontier of SoS portfolios identified by RPO in terms of SoS performance, cost, and
risk aversion toward constraint violations on the communications requirements

of architectures that are optimal with respect to SoS-level capabilities, cost, and risk
protection against constraint violations.

Running the optimizer results in the pareto-optimal portfolios shown in Fig. 4.
Here the SoS capabilities have been consolidated into a single “SoS Performance
Index” metric. Each portfolio has a different performance index, cost, and level of
protection with respect to communications constraints. This level of protection is
essentially an inverted measure of how likely node-level communication bandwidth
requirements are to be violated due to uncertainties in system communication
capabilities.

3.3 MBSE Representations of Output Data

After feasible architectures have been identified, they are filtered through three QFD
cascade matrices. The first matrix maps user-selected mission needs to mission per-
formance requirements. The second matrix connects these SoS-level requirements

264 M. Dai et al.

Fig. 5 The selected SoS portfolio is expanded to show its composition details in a SysML block
diagram. This level of granularity reveals that the architecture incorporates a modular power
generation system

to the RPO feasible architectures that can fulfill them. The third cascade maps
the features of the alternative architectures to organizational requirements needed
to effectively realize them. The result of the QFD cascades is a set of feasible
alternative SoS architectures. Imposing a single mission requirement that the SoS
Performance Index ≥ 5, the results from RPO identify four architectures on the
Pareto frontier as the final set of alternatives.

The result of the analysis portion of the DSF is a listing of alternatives that can be
compared in terms of architecture cost, acquisition timeframe, and performance (but
here, only cost and performance). The Pareto frontier plot allows these architectures
to be visually compared at a high level. More detailed architecture information can
be obtained by linking each pareto-optimal point to a MBSE representation of that
alternative. In Fig. 5, a block definition diagram is used to model a selected portfolio,
containing information on the systems comprising it and how each collectively
contributes to the SoS-performance objectives. In this example, the model and
visualization were made manually for the selected portfolio. While steps toward
automated diagram generation and linkage are described in the closing section, this
is reserved for future work.

In addition to showing portfolio composition, MBSE can also represent the
results of the QFD cascades by showing the traceability from system alternatives
to organizational requirements using a SysML requirements diagram. For example,
additional organizational requirements may be specifically tied to modular features
of a system. Representing this traceability enables programs to provide evidence of
MOSA principles in their design decisions. This is illustrated in Fig. 6. Specifying
these organizational requirements will be based on MOSA case study data –
however, for now, they remain notional.

Implementing a MOSA Decision Support Tool in a Model-Based Environment 265

Fig. 6 Requirements diagram showing the traceability of system features to organizational
requirements

4 Summary

4.1 Key Takeaways

This paper examined how the Decision Support Framework can be used as a tool
toward better achieving the benefits of modularity, as motivated by the MOSA
initiative. The DSF addresses key challenges concerning MOSA implementation,
primarily those related to evaluating technical trades involving modularity, and
tracing modular architectural features to organizational requirements needed to
enable them. The simplified example problem demonstrated the use of Robust
Portfolio Optimization in the DSF to enable comparison between architectures
with modular/non-modular system alternatives, in terms of cost and performance.
In addition, the example portrays how the DSF utilizes an MBSE enterprise
architecture model to store and visualize mission context, architecture structural
features, and requirement traceability.

MBSE adds value to the DSF in three ways:

1. Linked visualizations can provide more detailed architecture data upon user
inquiry. This allows decision-makers to quickly jump between levels of gran-
ularity when comparing alternative architectures.

2. MBSE system models allow clear traceability between mission requirements,
selection of modular/non-modular alternatives, and MOSA-relevant organiza-

266 M. Dai et al.

tional requirements. This digital thread records the rationale behind program-
matic decisions and can provide evidence for use of MOSA principles.

3. Creating a high-level architecture model capturing results from the Analysis of
Alternatives (AoA) activity paves the way for continued model-based engineer-
ing throughout the acquisition life cycle. The MBSE model developed from
the DSF can come to establish an authoritative source of truth, allowing more
detailed system models to directly build off the mission and enterprise level
models.

4.2 Future Work

There are many directions for future work on this project. One is to consider addi-
tional metrics to compare mission architectures. Other analysis tools in Purdue’s
AWB will be added to the DSF to assess flexibility and schedule metrics. With
more dimensions of comparison, having an integrated decision-making window as
a DSF output, such as that shown in Fig. 1, will become even more important.

A second area of ongoing work is to understand what organizational require-
ments are necessary for different kinds of modular mission architectures. This work
is being performed through case study analysis of successful MOSA programs and
through collaboration with ongoing partner programs.

A third area of future work is in creating a digital linkage directly from RPO
Pareto fronts (or other decision windows) to the MBSE portfolio visualizations.
Practically, this would entail being able to click on a certain portfolio in the decision-
making windows in Figs. 1 or 5 and having its visualizations directly be generated.

Acknowledgments This material is based upon work supported, in whole or in part, by the U.S.
Department of Defense through the Systems Engineering Research Center (SERC) under Contract
HQ0034-19-D-0003 WRT-1002. SERC is a federally funded University Affiliated Research Center
managed by Stevens Institute of Technology. We further acknowledge the contributions of research
collaborators Gary Witus, Charles Domercant, and Thomas McDermott.

A.1 Appendix A: RPO Input Data for Example Mission
Engineering Problem

In this example, candidate systems are labeled generically (e.g., Satellite System 1–
5) and use notional data. The data in Fig. A.1 can be read as follows: Satellite System
1 contributes 100 to “SoS Capability 3” and requires 75 [units] in communication
bandwidth and 95 [units] in power input. Likewise, Power System 3 offers no SoS
or communication capabilities, but is capable to supply 300 [units] of power to other
systems. Each capability is subject to an uncertainty that may result in violating node
input requirements. This information is reflected in a risk aversion metric shown

Implementing a MOSA Decision Support Tool in a Model-Based Environment 267

Fig. A.1 Example of RPO input data for the example problem

on the horizontal axis of Fig. 4. Finally, compatibility and selection constraints
are set in the input spreadsheet as well. Here, the optimizer can select one option
from systems 1–5 (Ground Systems) and 11–15 (Aerial Systems) and up to two
options from systems 6–10 (Satellite Surveillance Systems). Likewise, the optimizer
is constrained to select one Naval System (16–18) and two Power Systems.

References

Blackburn, M. 2019. Transforming Systems Engineering through Model Centric Engineering.
Systems Engineering Research Center Workshop.

Bone, M., M. Blackburn, B. Kruse, J. Dzielski, T. Hagedorn, and I. Grosse. 2018. Toward an
Interoperability and Integration Framework to Enable Digital Thread. Systems 6 (4): 46.

Davendralingam, N., and D. DeLaurentis. 2013. A Robust Optimization Framework to Architect-
ing System of Systems. Procedia Computer Science 16: 255–264.

DeLaurentis, D., N. Davendralingam, K. Marais, C. Guariniello, Z. Fang, and P. Uday. 2016. An
SoS Analytical Workbench Approach to Architectural Analysis and Evolution. OR Insight 19
(3): 70–74.

DeLaurentis, D., N. Davendralingam, M. Kerman, and L. Xiao. 2017. Investigating Approaches to
Achieve Modularity Benefits in the Acquisition Ecosystem. (Report No. SERC-2017-TR-109).
Retrieved from the Systems Engineering Research Center.

DeLaurentis, D., N. Davendraligam, C. Guariniello, J.C. Domercant, A. Dukes, and J. Feldstein.
2018. Approaches to Achieve Benefits of Modularity in Defense Acquisition. (Report No.
SERC-2018-TR-113). Retrieved from the Systems Engineering Research Center.

268 M. Dai et al.

Directorate of Defense Research and Engineering for Advanced Capabilties (DDR&E(AC)). (n.d.).
Modular Open Systems Approach. Retrieved from Office of the Under Secretary of Defense for
Research and Engineering: https://ac.cto.mil/mosa/

DoD Deputy Chief Information Officer. 2010. The DoDAF Architecture Framework Ver-
sion 2.02. Retrieved from Chief Information Officer- US Department of Defense: https://
dodcio.defense.gov/library/dod-architecture-framework/

Guariniello, C., and D. DeLaurentis. 2013. Dependency Analysis of System-of-Systems Opera-
tional and Development Networks. Procedia Computer Science 16: 265–274.

———. 2017. Supporting Design via the System Operational Dependency Analysis Methodology.
Research in Engineering Design 28 (1): 53–69. https://doi.org/10.1007/s00163-016-0229-0.

Office of the Deputy Assistant Secretary of Defense. 2017. MOSA Definition. FY17 National
Defense Authorization Act (NDDA), 10 USC §2446a.

Revelle, J.B. 2004. Quality Essentials: A Reference Guide from A to Z. ASQ Quality Press.
Retrieved from American Society for Quality: https://asq.org/quality-resources/qfd-quality-
function-deployment.

https://ac.cto.mil/mosa/
https://dodcio.defense.gov/library/dod-architecture-framework/
http://dx.doi.org/10.1007/s00163-016-0229-0
https://asq.org/quality-resources/qfd-quality-function-deployment

Change Management Processes in MBSE

Isabeta Rountree, Victor Lopez, and L. Dale Thomas

Abstract Changes are intrinsic to system development. These changes regularly
cause cost and schedule overruns due to design rework. Existing techniques seem
unable to provide an adequate change management process. Model-based systems
engineering (MBSE) allows for the creation of new change management processes
that improve on the traditional methods. A change management process for projects
developed in a MBSE environment is outlined. This process depicts the advantages
of using MBSE to reduce time spent on a project when faced with high-level system
changes. This process was then applied in the development of a CubeSat project and
reduced the time spent on changes compared to the traditional process.

Keywords SysML · MBSE · Change

1 Introduction

Project changes are recognized as key concerns (Stare 2011) relating to schedule
delays and cost overruns while being considered intrinsic to system development
(Stare 2011). Traditional project management methods seem unable to properly
address changes in these complex systems (Saynisch 2010). Dynamic environments
are a contributing factor in the difficulty of managing complex systems. Environ-
ments are constantly changing, making it hard to predict changes during early
planning phases in projects (Stare 2011). Traditional systems engineering methods
seem inadequate to account for this inability to predict factors of change. While
changes have negative programmatic consequences, such as schedule excess or
incurred cost, the benefit to system development from a change can sometimes
outweigh the repercussions. Thus, identifying which changes will ultimately result
in a better system becomes critical.

I. Rountree · V. Lopez · L. D. Thomas (�)
The University of Alabama in Huntsville, Huntsville, AL, USA
e-mail: ldt0001@uah.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_23

269

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_23&domain=pdf
mailto:ldt0001@uah.edu
https://doi.org/10.1007/978-3-030-82083-1_23

270 I. Rountree et al.

2 Origin of Changes

Introducing change to a system creates a new design space, with alternatives
that need to be compared and evaluated. This comparison is usually performed
by looking at the impact of the change in the performance and capabilities of
the system as well as the cost and schedule impacts. In traditional, document-
based, systems engineering practice, when a change is proposed, subject-matter
experts are contacted to evaluate the impact of the change by rerunning analysis
and simulations. Oftentimes, physical and behavioral system models must be
reorganized based on the change incurred, and an iterative approach must be used
to find the new feasible solution. This iterative process typically includes multiple
non-integrated physical simulations and is resource-intensive.

During the iterative analysis and design process, unforeseen issues may arise.
The introduction of a new solution may interfere with an existing design solution
or system interface. Existing interfaces and solutions must then be evaluated and
corrected to ensure system success. One change can lead to many smaller changes
that may have less apparent or perceived impact and therefore are easier to overlook.
These changes have the potential to cause issues during later system development.

Changes can manifest due to controllable and uncontrollable factors. McMahon
identifies five modes of design change, two of which involve types of change that
may arise during system development due to uncontrollable factors (Mcmahon
1994). It is the uncontrollable factors that are most difficult to anticipate. The
first of these two modes introduces changes due to an improved understanding of
the development of analytical or experimental techniques. The second introduces
changes due to external factors resulting in a change to the product design
specification such as changes in the market conditions and stakeholder interests
(Mcmahon 1994). The other modes outline change necessitated by the ability to
create a more optimized design through parameter space exploration, modification
of the feasible design space, and the selection of alternative designs. Changes
can incur significant schedule cost, but this loss may be outweighed by system
performance and capability enhancements.

3 Current Change Management Methods

Changes can be dealt with in a couple of ways. When change is not managed,
changes may be made with little to no regulation. This approach leads to a great
number of changes that make system integration and development difficult due
to constant rework of interfaces and designs. Change is usually managed with a
configuration change management process in traditional systems engineering.

Change management processes vary depending on the organization and project.
As an example, NASA’s configuration change process is shown in Figure 1
(National Aeronautics and Space Administration 2016). NASA defines configura-

Change Management Processes in MBSE 271

Fig. 1 Illustration of the normal NASA configuration change process (National Aeronautics and
Space Administration 2016)

tion change management as the “systematic proposal, justification, and evaluation of
proposed changes followed by incorporation of approved changes and verification
of implementation” (National Aeronautics and Space Administration 2016).

The NASA change management process outlined in the figure involves many
steps designed to moderate the number of changes made and ensure there is more
benefit than detriment to the system.

This process depicts the participation of six parties, four of which involve multi-
ple people and actions. The coordination of this amount of people, the compilation
of a decision package, and iteratively evaluating design alternatives are all very
involved and time-consuming processes. The traditional change control process
is lengthy and can be difficult to implement cleanly and effectively. Additionally,
even with the effective implementation of change management processes like the
afore outlined one, schedule detriment due to incurred system changes is still a
significant issue. This is due to the large number of steps and involved parties in the
development and delivery of a change and its respective repercussions.

Other limitations with document-based approaches include limitations in “The
completeness, consistency, and relationships between requirements, design, engi-
neering analysis, and test information are difficult to assess since this information
is spread across several documents” (Friedenthal et al. 2015) which translate into
“to poor synchronization between system-level requirements and design and lower-

272 I. Rountree et al.

level hardware and software design. It also makes it difficult to maintain or reuse
the system requirements and design information for an evolving or variant system
design.” (Friedenthal et al. 2015).

The difficult traditional change management process paired with the traditional
document-based systems engineering approach results in a systems management
reality that is unequipped to efficiently address modern complex systems. Further-
more, changes implemented in a system because of the change process may in turn
affect other aspects of the system and necessitate rework of system components.
With the emergence of model-based systems engineering (MBSE), there is the
opportunity to re-evaluate and possibly reduce the length of the traditional process of
change management in document-based systems engineering. Due to this fact, this
is an area of interest for improvement of future processes in systems engineering.

4 Using MBSE for Change Management

MBSE has emerged as a process to improve traditional systems engineering
practices; “MBSE is intended to facilitate systems engineering activities that have
traditionally been performed using the document-based approach and result in
enhanced specification and design quality, reuse of system specification and design
artifacts, and communications among the development team” (Friedenthal et al.
2015). This paper will focus on how MBSE can be used to reduce schedule impacts
associated with change management in large complex systems.

When implementing MBSE, “The system model can also be integrated with
engineering analysis and simulation models to perform computation and dynamic
execution” (Friedenthal et al. 2015). This capability allows management of all
compatible engineering analysis and simulation models in a singular location
that can be executed simultaneously when faced with changes to a system. The
advantages of MBSE could potentially include “Increased productivity; Faster
impact analysis of requirements and design changes, more effective exploration of
trade-space, reuse of existing models to support design evolution, reduced errors
and time during integration and testing, and automated document generation”
(Friedenthal et al. 2015).

The Systems Modeling Language (SysML) is a widely used language for
MBSE. This language “supports the practice of model-based systems engineering
(MBSE) that is used to develop system solutions in response to complex and often
technologically challenging problems” (Friedenthal et al. 2015). There is extensive
documentation on this language in texts such as A Practical Guide to SysML: The
Systems Modeling Language by Friedenthal, Moore, and Steiner (Friedenthal et al.
2015), and it is well known as an extension of the Unified Modeling Language
(UML). For this reason, the implementation of MBSE using SysML is explored
towards improving the change management process to reduce time spent managing
change when faced with new requirements in complex systems.

Change Management Processes in MBSE 273

It should be noted, however, that while MBSE does have the potential to realize
the stated benefits, there are some obstacles. First the implementation of MBSE
usually requires the creation of a system model which requires proficiency in both
the model’s language, usually SysML, and the software tool used, No Magic’s
Cameo or IBM’s Rhapsody for example. Needing to be proficient would mean
having to train current systems engineers and might steepen the learning curve
for new hires. This necessitates a significant time investment prior to being able
to effectively develop a system model.

Additionally, for large complex projects, an integrated system model would
likely be developed by multiple system modelers. Different approaches to model
development could lead to consistency or compatibility issues. However, the
software development industry has encountered similar issues in software modeling
resolved through methodologies and tools such as Agile software development:
“ . . . agile methods aim to answer a need to develop software quickly, in an
environment of rapidly changing requirements” (Greer & Hamon 2011). Similar
approaches are and will need to be developed for systems modeling (Schindel &
Dove 2016).

In order to take full advantage of the MBSE approach, a system model should
include integrated engineering analysis and simulation models. This integration is
not trivial, especially when dealing with very specialized analyses, legacy tools, or
geographical and organizational barriers. Although some work and tools are aimed
at improving this situation, there is still work to be done until this can become
standard practice.

Finally, different common processes in system development such as contracting,
acquisition, trade studies, scheduling, and communication rely on traditionally pro-
duced documentation. The change from document-based to model-based systems
engineering would require an adaptation of all these processes.

5 Methodology

Change management practices with respect to MBSE have been introduced as
a topic of interest. However, little research has been done on the process itself.
Authors Friedenthal, Moore, and Steiner introduce the idea that MBSE needs
processes to manage change in their text A Practical Guide to SysML: The Systems
Modeling Language: “Disciplined processes and associated tools must be put in
place to manage changes to models” (Friedenthal et al. 2015). Further in the text,
configuration management approaches with regard to MBSE models are discussed.
The general configuration management responsibilities include: “Manage the set
of artifacts (often called configuration items) being developed, including managing
access to the current working set of artifacts (often called a configuration) and
archiving significant versions of that working set (called baselines),” and “Ensure
that products built from a project baseline are complete and consistent, including
the identification of different variants of system components and the compatibility

274 I. Rountree et al.

between them” (Friedenthal et al. 2015). Regarding change management, the
configuration management responsibilities implied personnel were to “Manage
changes to that working set, including enforcing a consistent change control process,
for example based on change requests, and analyzing the impact of changes to
configuration items. Tools that fulfill this function are typically called change
management tools, and often incorporate configuration management functions”
(Friedenthal et al. 2015). This text also includes a reference to the Object Man-
agement Group (OMG) Meta Object Facility (MOF) versioning standard (https://
www.omg.org/spec/MOFVD/2.0/PDF) as a possible framework for configuration
management of models.

The OMG MOF versioning specification was designed to “manage the co-
existence of multiple versions of such metadata in a Meta Object Facility and
their inclusion in different configurations (for example, a specific version of a
Platform Independent Model (PIM), the corresponding version of the derived
Platform Specific Model (PSM), and the corresponding version of the generated
system)” (https://www.omg.org/spec/MOFVD/2.0/PDF). This specification focuses
on the management of specific configurations (model variations and baselines)
rather than the process of change management itself. There is otherwise little
documentation on a change management process for systems using MBSE. A
change management process will be proposed that supports a MBSE-centered
environment and highlights the time saving advantage of using a model when faced
with system changes.

In a MBSE environment, changes occur just as in a document-based system
engineering environment. However, there are some noticeable differences in the
management of system artifacts. The following is an outline of a MBSE change
process. Likewise, to traditional processes, assume a change request is submitted by
someone on the project. This change order would go to a configuration management
representative who would then have it reviewed. Then, in preparation for the
decision package, the change request would be disseminated to a model owner.
The model owner would then execute the change in a branch model and record
highlighted changes based on modelled metrics and traceability. This information
would then be sent to the change control board (CCB). Following the traditional
method, then the CCB would approve or deny the change. Since a model allows the
capability of uniformly updating model artifacts through all model documentation
and accompanying simulations by a singular model editor, the “actionees” step of
the traditional method is skipped. The change control board would send the change
decision to the configuration management representative, who would then notify the
model owner of approved changes. The model owner would then be able to cleanly
and uniformly implement the changes in the model. An illustration showing this
potential shortened methodology is shown in Figure 2. This method was developed
to be tested using the accompanying case study example.

The traditional NASA change management process depicted in Figure 1 involves
many steps. These steps include preparation and submittal of a change request,
reception and distribution of the change request by configuration management, a
review of the change request by a panel, compilation by the organization, scheduling

https://www.omg.org/spec/MOFVD/2.0/PDF
https://www.omg.org/spec/MOFVD/2.0/PDF
https://www.omg.org/spec/MOFVD/2.0/PDF

Change Management Processes in MBSE 275

Fig. 2 Potential change control process for a MBSE project

of a change control board meeting, preparation of a decision package, an analysis
of tasks associated with the change, performance of designated tasks, tracking
of task completion, execution of approved changes, preparation of final change
documentation, and official change documentation release.

The change management methodology shown in Figure 2 varies from the
methodology in Figure 1 in a few key aspects. Firstly, it removes the creation and
handling of documents between different actors. Information normally depicted in
documents is contained within the model. Secondly, it reduces the actions generated
by the change. The model being linked to most physics models, the subsequent
actions needed from the change are automatically generated before the change goes
to the CCB. Finally, it allows the CCB to make a more informed decision. Since
the model automatically assesses the impact of the change to other parts or metrics,
the CCB can use that information to make their decision instead of the information
being generated as an action after the change has been approved.

A model allows changes to be implemented quickly and uniformly through all
model documentation. This saves time in updating model artifacts and increases
document consistency as it is uniform and automatic. Additionally, engineering
analysis models will automatically update when tied to model parameters, and
affected subsystems can be easily identified. These capabilities significantly reduce
the time taken in the traditional method due to the centrally located definition
of model artifacts and simulations. A singular model owner has the capability to
evaluate a change, see what the change affects, and make the change which will
update related model artifacts and simulations.

6 Case Study

The planned NASA Artemis 2 mission solicited proposals in the fall of 2019
for secondary payload CubeSat missions aimed at addressing NASA’s strategic
knowledge gaps. The Alabama Space Grant Consortium has organized a cooperative

276 I. Rountree et al.

project between seven universities in Alabama to build a CubeSat. The mission is
being called Alabama Experiment for Galactic-ray In-situ Shielding (AEGIS), and
it originally was conceived – prior to release of the Artemis 2 secondary payload
solicitation – to study gamma ray bursts in cislunar space to improve the ability to
localize the source of celestial gamma ray bursts.

A SysML model was developed representing the programmatic, structural,
and behavioral aspects of the system. The science mission requirements were
determined by the science group and served as the starting point of the model. All
the design decisions and system requirements were derived and traced back to the
mission requirements. With the requirements established the engineering solution
selected was modelled structurally with the corresponding physical models linked to
it. Finally, the behavior of the system was determined and captured in a set of SysML
diagrams. Using the behavioral and structural representation, different performance
parameters of the system were calculated. The MBSE approach taken allowed for
every part of the system to be traced back to the mission requirements.

The design was started before NASA released the specific criteria by which the
missions would be selected for secondary payloads. After the official solicitation
was released, it was determined that the planned scientific mission was not well
aligned with the solicitation criteria and as such was inadequate for the project. The
science mission was then modified to study the shielding properties of lunar regolith
in a cislunar environment to be more responsive to the Artemis 2 secondary payload
solicitation criteria. This change in mission scope would then change the mission
requirements and cause multiple changes across different aspects of the design.

In a traditional system one would have to either go into a long change process for
every single change or redo the entire design process from the start. The first option
would then result in a long process where different changes have individual change
processes. These individual changes would have been extremely resource expensive.
Additionally, these changes would have been accompanied by the risk that an
approved change might have to be reworked after another change is implemented.
If the design were to be restarted, the whole documentation would then need to
be remade, and all the work previously done would have been useless. In either
case, when the change resulted in a parameter change used in one of the physical
analyses, the new parameter would need to be sent to the analyst. This analyst would
do his analysis and send back the result. Since this project has very strongly coupled
analysis, this would result in an iterative loop until a feasible solution is found.

Instead, since the system was under development in a MBSE environment, the
requirements that changed were able to be changed in the model; from there it was
easy to see what design decisions and what requirements were derived since there
was a traceable connection. This was then followed until the complete impact of
the design change was evaluated. The changes were translated into changes in the
behavioral and structural diagrams. The main difference is that the parametrized
physics models relating to model elements did not require rework. When all the
changes were made, all the models were able to be run by the systems engineer
without the need of the individual analyst, thereby greatly reducing the time to

Change Management Processes in MBSE 277

evaluate the impact of the change, although some specialized analyses that were
not included in the model had to go through the traditional change process.

Currently, additional physics models are being parametrized and included in the
model. The generation of the flight software will also be incorporated into the model
through the implementation of F Prime. The introduction of these aspects into the
model will allow a quantitative way to measure the benefit of having physics models
included in the MBSE approach. An analysis will be done comparing how long
some changes took at the beginning of the project against at the end of it. This
difference in time could then be used to determine if the benefit of the MBSE
approach outweighed the time and resources needed to implement the approach.

7 Conclusion

The AEGIS project encountered change during system development. The MBSE
change management approach outlined was applied to the project to assist in
managing these changes. The result was a CM process with fewer numbers of steps
and individuals involved in the process, thereby reducing the time taken to address
changes. This implementation allowed for faster change response and continuous
system development.

Change is inevitable in large systems; the ability to properly manage them can
be the difference between successful and failed systems. Existing traditional change
management processes seem unable to properly address the changes of new systems
resulting in cost increases and schedule overruns. These effects originate in part
from a lengthy process involving multiple parties, people, and actions. MBSE opens
the door for new change management processes that could improve on the traditional
processes. MBSE allows for the systems engineer to quickly create a different
version of the model with the modified physics results. This can then be used to
evaluate figures of merit to decide if the change should happen or not. The ability
to reduce the number of people involved in the change process coupled with lower
analysis time allows reduction in the overall schedule and cost impact incurred due
to a change. These new processes could be faster and more reliable and thus could
contribute to designing better systems, faster and at a lower cost. Looking forward, a
proper change management process should be studied to learn exactly the best way
to handle change in a MBSE environment.

Further study is needed to assess the applicability of a MBSE change man-
agement process like the one outlined to larger complex projects. Larger projects
are likely to include several model-based systems engineers all operating in an
integrated model space. With the introduction of more modelers, more steps may
be necessary in model management procedures. Further development and analysis
of a MBSE change management process applying to variously sized projects needs
to be done to broaden the applicability of a general MBSE change management
process and validate its effectiveness. The current CM methodologies are the result

278 I. Rountree et al.

of years of evolution through many system developments; it can be expected that as
new projects are developed in a model-based environment the CM will also evolve
to meet a system or organization’s needs.

References

Friedenthal, Sanford, Alan Moore, and Rick Steiner. 2015. A Practical Guide to Sysml: The
Systems Modeling Language. Waltham: Morgan Kaufmann.

Greer, D., and Y. Hamon. 2011. Agile Software Development 41 (9): 943–944. https://doi.org/
10.1002/spe.1100.

Mcmahon, Christopher A. 1994. Observations on Modes of Incremental Change in Design. Journal
of Engineering Design 5.3: 195–209. Web.

National Aeronautics and Space Administration. 2016. NASA Systems Engineering Handbook. Rev
2. Washington, DC: National Aeronautics and Space Administration. Print.

Object Management Group. “Meta Object Facility (MOF) Versioning and Development Lifecycle
Specification, v2.0.”. https://www.omg.org/spec/MOFVD/2.0/PDF.

Saynisch, M. 2010. Mastering Complexity and Changes in Projects, Economy, and Society via
Project Management Second Order (PM-2). Project Management Journal 41 (5): 4–20. https:/
/doi.org/10.1002/pmj.20167.

Schindel, Bill, and Rick Dove. 2016. Introduction to the Agile Systems Engineer-
ing Life Cycle MBSE Pattern. 26th Annual INCOSE International Symposium (IS
2016) Edinburg, Scotland, UK, July 18–21, 2016, www.parshift.com/s/160718IS16-
IntroToTheAgileSystemsEngineeringLifeCycleMBSEPattern.pdf.

Stare, Aljaz. 2011. Reducing Negative Impact of Project Changes with Risk and Change
Management. Zagreb International Review of Economics & Business 14.2: 71–85. Web.
https://search-proquest-com.elib.uah.edu/docview/875892187/9D0A393C3B564AF3PQ/
1?accountid=14476.

http://dx.doi.org/10.1002/spe.1100
https://www.omg.org/spec/MOFVD/2.0/PDF
http://dx.doi.org/10.1002/pmj.20167
http://www.parshift.com/s/160718IS16-IntroToTheAgileSystemsEngineeringLifeCycleMBSEPattern.pdf
https://search-proquest-com.elib.uah.edu/docview/875892187/9D0A393C3B564AF3PQ/1?accountid=14476

The Need for Semantic Extension
of SysML to Model the Problem Space

Paul Wach and Alejandro Salado

Abstract Requirements in natural language, like shall statements, while commonly
used, present inherent limitations in terms of accuracy and precision. Modeling
requirements within a model-based systems engineering MBSE) framework shows
promise to cope with these issues. Common approaches include either the definition
of textual requirements as model objects or the flagging of system models as
requirements. The first approach inherits the weaknesses of natural language. We
show in this paper that the second approach necessarily leads to a poor set of
requirements. We therefore argue that modeling languages, in particular SysML,
need to be semantically extended to adequately model the problem space. We
demonstrate with a specific example that simply flagging model elements as
requirements is not effective to model the problem space. In fact, we show that
such an approach produces a deficient definition of the problem space, since it
inherently discards solutions that could otherwise be potentially acceptable to solve
the problem that is being addressed. In addition, we leverage this example to discuss
potential semantic extensions of SysML that could enable adequate modeling of the
problem space that fulfills the formal conditions of good requirements.

Keywords Model-based requirements · SysML · Model-based systems
engineering · MBSE · Modeling semantics

P. Wach
Virginia Tech, Blacksburg, VA, USA

A. Salado (�)
The University of Arizona, Tucson, AZ, USA
e-mail: alejandrosalado@arizona.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_24

279

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_24&domain=pdf
mailto:alejandrosalado@arizona.edu
https://doi.org/10.1007/978-3-030-82083-1_24

280 P. Wach and A. Salado

1 Introduction and Background

Defining the problem space, usually in the form of requirements, is a critical
activity in system development (Buede 2009). Failure to correctly frame the problem
to be solved has led to the development of systems that are not fit for purpose
once deployed (Bahill and Henderson 2005). The problem space is arguably most
commonly defined in systems practice through the use of requirements captured in
natural language (e.g., shall statements) (INCOSE 2012; Buede and Miller 2016).
However, natural language poses inherent limitations in terms of accuracy and
precision (Pennock and Wade 2015). This inherent ambiguity of shall statements
contributes to major problems in acquisition programs (GAO 2016; Gilmore 2011),
even if good practices of writing requirements are followed (such as those defined
in (INCOSE 2012; Tjong et al. 2006; Salado and Nilchiani 2014a)). In order to
attenuate this problem, some may opt to increase the amount of words employed
in a requirement statement to reduce ambiguity when formulating requirements
(Salado and Wach 2019). However, this effort is usually fruitless because leveraging
this flexibility provided by natural language also leads to deviating from good
requirement writing practices (INCOSE 2012; Salado and Nilchiani 2014a; Salado
and Nilchiani 2017) and results in poor requirement sets overall (Salado and
Nilchiani 2017; Salado and Nilchiani 2014b).

A potential solution to the ambiguity problem of natural language consists of
substituting traditional shall statements by models of requirements within a model-
based systems engineering (MBSE) framework (Schneidera et al. 2012; Helming
et al. 2010; Mordecai and Dori 2017; Fockel and Holtmann 2014; Soares and
Vrancken 2008; Adedjouma et al. 2011). In systems modeling in general, and in
the Systems Modeling Language (SysML) in particular, modeling requirements
has primarily taken two paths. In the first path, the modeling environment directly
incorporates requirement elements. For example, SysML incorporates object types
called requirement element and requirements diagram (Friedenthal et al. 2015).
These are intended to model the requirements the system is expected to fulfill.
This path fails to fulfill its objectives however, “because the resulting requirement
elements are no more than an encapsulation of a textual requirement in natural
language as a model element” (Salado and Wach 2019).

In the second path, behavioral and structural models of the system of interest
are used (or flagged) as requirements. That is, the specific models captured in the
diagram themselves become the requirements, without the need for a statement
in natural language that contains a shall clause (Soares and Vrancken 2008;
Adedjouma et al. 2011; Pandian et al. 2017). While this approach is promising
because “it directly leverages behavioral and structural models of the system without
requiring statements in natural language” (Salado and Wach 2019), we show in this
paper that using system models directly as requirements necessarily leads to a poor
set of requirements because of an unnecessary constraining of the problem space.

In this paper, we argue that modeling languages, in particular SysML, need to be
semantically extended to adequately model the problem space. We suggest that this

The Need for Semantic Extension of SysML to Model the Problem Space 281

extension is necessary if requirements in natural language are to be truly substituted
by requirements in model form. We demonstrate with a specific example that simply
flagging model elements as requirements is not effective to model the problem
space. In fact, we show that such an approach produces a deficient definition of
the problem space, since it inherently discards solutions that could otherwise be
potentially acceptable to solve the problem that is being addressed. In addition, we
leverage this example to discuss potential semantic extensions of SysML that could
enable adequate modeling of the problem space that fulfills the formal conditions of
good requirements (Salado et al. 2017).

2 Theoretical Justification for Semantic Extension

Consider first a formal definition of system model. Building on systems theory,
a system can be generally described (modeled) as a transformation of input
trajectories into output trajectories (von Bertalanffy 1969), since closed systems do
not exist in nature, at least in the context of engineered systems. This paradigm is
applicable regardless of the type of system model that is defined, be it a continuous
system model (Sterman 2000) or a discrete system model (Wymore 1993).

Definition 1 A system model is an explicit definition of a transformation of input
trajectories into output trajectories.

The purpose of working in the problem space is to derive or define the conditions
by which some systems will be considered acceptable as solutions to the problem
that is being addressed and some solutions will be considered inacceptable. In this
paper, we call the set of acceptable solutions the solution space, and requirements
refer to the conditions that enable evaluating a system solution as acceptable or not
acceptable. Note that, for the purpose of this paper, and for simplicity and without
loss of generality, we consider indifference between all acceptable system solutions.

Definition 2 A problem space is a set of conditions.

Definition 3 A solution space is a set of systems that fulfill a predefined set of
conditions.

By the definitions, it follows that:

Proposition A problem space yields a solution space.
Hence, a problem space yields a set of systems, specifically all those that fulfill

the conditions that define the problem space. By extension, it follows that a critical
aspect of a model of the problem space is that it must yield a set of systems (or
system models). We note that a solution space can be empty. This specific case does
not change the theoretical implications of the discussion in this section.

Theoretical work in how requirements affect the solution space indicate that a
good model of the problem space would include all those solutions that belong to the
problem space it models (Salado et al. 2017). This insight is supported by practice,
which indicates that requirements should be solution-independent (INCOSE 2012).

282 P. Wach and A. Salado

Failing to do so unnecessarily shrinks the solution space (Salado et al. 2017) and
could lead to automatically rejecting system solutions that could be preferred over
those that remained in the solution space (Salado and Nilchiani 2015).

Consider now the approach of flagging a system model as a requirement, as
predominantly proposed in the literature for adopting model-based requirements
(Soares and Vrancken 2008; Adedjouma et al. 2011; Pandian et al. 2017). If such a
system model is used as the model of the problem space, then the solution space will
consist of all systems that are homomorphic to such system model. In plain words
that means that the solution space will only include systems that refine (are like)
the system model that is used as the problem space. In this case, since a model of a
specific system solution is used as the starting point to define the problem space, the
resulting problem space is necessarily solution dependent. As discussed previously,
however, a solution-dependent problem space is considered a deficient model of the
problem space, both from the perspective of systems engineering practice and of
systems theory.

A good model of the problem space should yield a solution space that allows
for including heterogeneous models that are not necessarily homomorphic images
of each other. In fact, we suggest that a homomorphic relationship between any
solution in the solution space and the problem space should be infeasible because
the former captures a transformation of inputs into outputs and the latter captures
conditions that discriminate acceptance of transformations of inputs into outputs.

Therefore, we propose that flagging system models as requirement should be
avoided. Instead, modeling the problem space necessitates its own distinct seman-
tics. Capturing conditions that yield sets of heterogeneous system models instead
of system models themselves enables modeling solution-independent requirements.
Formal modeling could yield higher precision and accuracy than natural language
(Salado and Wach 2019).

3 Application Example: Operational Scenarios vs System
States

3.1 Problem Statement

Consider a need for a system to detect fires in certain area. Two different operational
conditions may be present: Clear Sky and Rain. Regardless of the operational
condition, the system is required to continuously capture images of the surveilled
area and send them to a station. In addition, the system is required to detect fires
and send alarms to a station, at least when the operational condition is Clear Sky.
Therefore, the problem space is defined by four conditions:

1. Imaging of surveilled area in all weather conditions.
2. Detection of fires in surveilled area in Clear Sky condition.
3. Provision of gathered image data in all weather conditions.

The Need for Semantic Extension of SysML to Model the Problem Space 283

4. Provision of a fire alert for detected fires in Clear Sky condition.

In a natural language requirements paradigm, those conditions would be typically
reworded as shall statements. We show in the next section how the conditions may
be captured in the form of a system model flagged as a requirement and show later
the weaknesses of such approach.

It should be noted that the formulation of the conditions has been simplified for
presentation purposes. However, this limitation does not affect the generality of the
results presented in this paper.

3.2 System Model Flagged as a Requirement

Consider the system model given in Fig. 1, using the form of a state machine
diagram. The system has two states, S1 and S2, which are triggered as a function
of the operational conditions clearSky and rain. Given the operational condition of
clearSky, the system will imageArea&detectFire (which is defined as a behavior in
which the system will provide gathered images, as well as an alert to the station).
Given the operational condition of rain, the system will imageArea (which is defined
as a behavior in which the system will only provide gathered images to the station).
Since the model captured in Fig. 1 seems consistent with the conditions given in
Sect. 3.1, we assume that the system model is directly flagged as a requirement. No
other requirement in natural language (i.e., shall statement) is given.

To be compliant with this model-based requirement, a system should exhibit two
different states. When in one of them, the system will need to provide image data
and fire alerts; and when in the other one, the system will need to provide just image
data. In addition, the system will have to be in the first state only when Clear Sky
conditions are present and in the second state only when Rain conditions are present.

Consider now the system model given in Fig. 2. We assess if such a system is
compliant to the requirements dictated by the system model in Fig. 1. The system

Fig. 1 System model used as a model of the problem space

284 P. Wach and A. Salado

Fig. 2 System model
compliant with the required
conditions in Sect. 3.1, but
not with the problem space
model yielded by Fig. 1

exhibits only a single state, in which, regardless of the operational condition, it will
provide image data and fire alerts. Formally, it can be shown that the system model
in Fig. 1 is not a homomorphic image of the system model in Fig. 2. Clearly, the
behavior of such a system is different than the behavior of the system model in Fig.
1: under same input conditions, both systems provide different outputs. Therefore,
the solution in Fig. 2 is not compliant to the requirements captured by the system
model in Fig. 1, and, as a result, the system in Fig. 2 cannot be considered an
acceptable solution.

However, let’s examine more deeply if the system in Fig. 2 fulfills the conditions
originally specified in Sect. 3.1. If it does, then it follows that using the system
model in Fig. 1 unnecessarily constraints the solution space and, therefore, it would
be a poor requirement.

Given the conditions in Sect. 3.1, we need the following test vectors:

1. Provide reference spectral features representative of surveilled area with no
figure when in Rain condition and confirm the system provides images of such
input.

2. Provide reference spectral features representative of surveilled area with no
figure when in Clear Sky condition and confirm the system provides images of
such input.

3. Provide spectral features of a fire when in Clear Sky condition and confirm the
system provides a fire alert.

Table 1 summarizes the required conditions described in Sect. 3.1, the test
conditions mentioned above, and the results obtained with the system models in
Figs. 1 and 2 when applying such test conditions. As can be seen, both system
models successfully pass the various test vectors, and, therefore, both system models
fulfill the conditions defined in Sect. 3.1. However, as previously discussed, the
system model in Fig. 2 yields a different behavior than that displayed by the system
model in Fig. 1. That means that, when the model in Fig. 1 is used as the system
requirement, the system solution modeled in Fig. 2 would be assessed as being not
compliant with the requirement, as previously indicated. Consequently, using the
model in Fig. 1 unnecessarily constraints the solution space by discarding the system
model in Fig. 2. Since this is a characteristic of a poor requirement (INCOSE 2012;
Salado et al. 2017), we suggest this system model in particular, and any system
model in general, should not be used as a model of the problem space.

The Need for Semantic Extension of SysML to Model the Problem Space 285

Table 1 Verification of system models in Figs. 1 and 2

Required condition Test vector System model Fig. 1 System model Fig. 2

1. Imaging of surveilled area in
all weather conditions

1
2

S1. Provide image
S2. Provide image

S1. Provide image
S1. Provide image

2. Detection of fires in
surveilled area in Clear Sky

3 S2. Provide alert S1. Provide alert

3. Provision of gathered image
data in all weather conditions

1
2

S1. Provide image
S2. Provide image

S1. Provide image
S1. Provide image

4. Provision of a fire alert for
detected fires in Clear Sky

3 S2. Provide alert S1. Provide alert

3.3 Potential Extension of SysML to Model Different Required
Operational Conditions in the Problem Space

Based on the discussion in the previous section, a model of the problem space
should be able to capture, among others, the requirement for a system to fulfill
different sets of requirements (conditions in general) depending on the presence of
different operational conditions. In requirements jargon, one could think of this as
requirements that are applicable only in certain conditions, but not always. We show
a small example of how SysML could be semantically extended to model effectively
this aspect of the problem space while overcoming the two main limitations of
existing approaches, as previously identified: first, without falling into the trap of
enforcing specific solutions; second, without leveraging natural language as the
main vehicle to convey information and meaning.

We leverage prior work (Salado and Wach 2019) and use mode requirements,
which extend SysML to capture sets of requirements that do not have to be fulfilled
simultaneously necessarily. An example is provided in Fig. 3. Note that the diagram
should not be interpreted as the standard state machine diagram in SysML; this is
why we have purposefully omitted the formal identification of the diagram in the
figure. We are representing a semantic extension of SysML. Hence, while we use
some in this paper existing SysML objects, the model represented in Fig. 3 has a
different meaning than that of a state machine. Similarly, other elements in Fig. 3
have been modeled according to the larger true model-based requirements (TMBR)
SysML extension, of which mode requirements are part. The same idea regarding
model interpretation applies therefore for other elements in Fig. 3. Details about
how to fully read the model-based requirements depicted in Fig. 3 are provided in
(Salado and Wach 2019).

Coming back to mode requirements, the model in Fig. 3 captures the idea that
the system must fulfill two different sets of requirements (Clear Sky requirements
and Nominal requirements) depending on the presence of different operational
conditions, although not necessarily simultaneously. The two yellow boxes capture
this aspect: each box indicates the existence of a unique set of requirements that need
to be fulfilled; they do not represent system states, as a state machine diagram would
do in SysML. Sequence diagrams are used to model the specific requirements that

286 P. Wach and A. Salado

Fig. 3 Potential semantic extension of SysML to capture different operational conditions

Table 2 Explanation of how the system model in Fig. 3 captures the problem presented in Sect.
3.1

Required condition Model element

Imaging of surveilled area Elaborated in sequence diagram Image area &
provide data

Detection of fires in surveilled area Elaborated in sequence diagram Detect fire & provide
alert

Provision of gathered image data Elaborated in sequence diagram Image area &
provide data

Provision of a fire alert Elaborated in sequence diagram Detect fire & provide
alert

Clear Sky conditions Described/elaborated in sequence diagram
Operational conditions

In Clear Sky conditions; In all Weather Two different sets of requirements are informed,
captured by yellow boxes Clear Sky requirements and
Nominal requirements, respectively. The linkage
between the sequence diagram Operational
conditions and the transitions between the yellow
boxes capture when each set of requirements is
applicable

In Clear Sky conditions, do (2) and (4) Sequence diagram Detect fire & provide alert is
linked to yellow box Clear Sky requirements

In All weather, do (1) and (3) Sequence diagram Image area & provide data is
linked to both yellow boxes

apply under the different operational conditions. The transitions between the yellow
boxes, mapped to another sequence diagram, capture the conditions that make each
set of requirements applicable. Table 2 describes how the model in Fig. 3 captures
all the problem conditions (requirements) listed in Sect. 3.1.

The model does not imply that the system solution will have two states, each
one with a specific behavior and each one being activated depending on certain
conditions. In fact, the model has no implication as to the number or type of states
the system will have. This is because Fig. 3 models the problem space, not a
particular system. The two yellow rounded rectangles simply act as collectors of
the subsets of requirements that need to be satisfied simultaneously. Hence, the
diagram reads that the requirements captured in Nominal requirements must not

The Need for Semantic Extension of SysML to Model the Problem Space 287

Table 3 Consistency between system alternatives 1 and 2 and the requirement model in Fig. 3

Required conditions in requirement model in Fig. 3 Can Syst. Alt. 1? Can Syst. Alt. 2?

In not Clear Sky, image area and provide data Yes, through S1 Yes, through S1
In Clear Sky, image area and provide data Yes, through S2 Yes, through S1
In Clear Sky, detect fire and provide alert Yes, through S2 Yes, through S1

necessarily be fulfilled while also fulfilling those captured in Clear sky require-
ments. No inference about potential system solutions is made. As an example, the
two solutions shown in Figs. 1 and 2 are compliant with the requirement model
presented in Fig. 3 (ref. Table 3).

It should be noted that this diagram is not intended to substitute the state
machine diagram that is used to model system behavior. Instead, the diagram in
Fig. 3 should be interpreted as a visualization of an additional model, visually
similar, but semantically different to the SysML state machine diagram. The
model in Fig. 3 should however substitute all requirement elements and diagrams
in standard SysML, since it offers an alternative way to capture requirements.
Specifically, it enables capturing requirements in a true model-based form instead of
as textual requirements encapsulated as a model element (Salado and Wach 2019),
potentially improving precision and accuracy when modeling the problem space.

4 Conclusion

We have demonstrated in this paper that using system models directly as require-
ments should be considered as bad practice in problem formulation. We have
supported this claim with a theoretical argumentation and a specific application
example. Since a problem space yields a solution space, using a specific system
model as a model of the problem space could unnecessarily constrain the solution
space. This effect is well known in requirements engineering practice as formulating
design-dependent requirements: by using a system model as the requirement, such
a solution is enforced in the form of requirements.

This major weakness of using system models as requirements (more generally, as
models of the problem space) informs the need for a semantic extension of SysML
(and likely other modeling languages). New model elements and model diagrams
and/or additional semantics that can extend the interpretation of existing model
elements and diagrams are necessary to formally, and correctly, model the problem
space. Given that problem formulation is a key activity in systems engineering,
we suggest that the semantic extension we propose is paramount for a successful
implementation of MBSE.

In this paper, we have shown the effects of using a system model as a model of the
problem space (i.e., as a requirement) by specifically addressing how to capture sets
of requirements that are applicable (i.e., that need to be fulfilled simultaneously)

288 P. Wach and A. Salado

under different conditions. In the example, we have leveraged the state machine
diagram in SysML for such purpose. We have also described a potential semantic
extension, based on our prior work, which allows for capturing such type of
requirements without enforcing any specific design solution on the states that the
system must exhibit.

Acknowledgments This material is based on work sponsored by the Department of the Navy,
Naval Engineering Education Consortium, award number N00174-19-1-0012. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the Naval Engineering Education Consortium.

References

Adedjouma, M., H. Dubois, and F. Terrier. 2011. Requirements exchange: From specification
documents to models, in 16th IEEE international conference on engineering of complex
computer systems, 350–354. Las Vegas.

Bahill, A., and S. Henderson. 2005. Requirements development, verification, and validation
exhibited in famous failures. Systems Engineering 8 (1): 1–14.

Buede, D. 2009. The engineering design of systems: Models and methods. Hoboken: Wiley.
Buede, D., and W. Miller. 2016. The engineering design of systems: Models and method. Hoboken:

Wiley.
Fockel, M., and J. Holtmann. 2014. A requirements engineering methodology combining models

and controlled natural language, in 2014 IEEE 4th International Model-Driven Requirements
Engineering Workshop (MoDRE), 67–76. Karlskrona.

Friedenthal, S., A. Moore, and R. Steiner, eds. 2015. A practical guide to SysML – The systems
modeling language. 3rd ed. Waltham: Morgan Kaufman.

GAO. 2016. Defense acquisitions – Assessments of selected weapon programs. General Acconting
Office.

Gilmore, J.M. 2011. Key issues causing program delays in defense acquisition. ITEA Journal 32:
389–391.

Helming, J., et al. 2010. Towards a unified requirements modeling language. in 2010 Fifth
International Workshop on Requirements Engineering Visualization. Sydney.

INCOSE. 2012. Guide for writing requirements. The International Council of Systems Engineer-
ing.

Mordecai, Y., and D. Dori. 2017. Model-based requirements engineering: Architecting for system
requirements with stakeholders in mind, in 2017 IEEE International Systems Engineering
Symposium (ISSE), 1–8 Vienna, Austria.

Pandian, M.K.S., et al. 2017. Towards industry 4.0: Gap analysis between current automotive
MES and industry standards using model-based requirement engineering, in 2017 IEEE
International Conference on Software Architecture Workshops (ICSAW), 29–35. Gothenburg.

Pennock, M.J., and J.P. Wade. 2015. The top 10 illusions of systems engineering: A research
agenda. Procedia Computer Science 44: 147–154.

Salado, A., and R. Nilchiani. 2014a. A categorization model of requirements based on max-neef’s
model of human needs. Systems Engineering 17: 348–360.

———. 2014b. Categorizing requirements to increase the size of the solution space: Moving away
from NASA and ESA’s requirements categorization models. in 6th international systems &
concurrent engineering for space applications conference. Stuttgart.

———. 2015. On the evolution of solution spaces triggered by emerging technologies. Procedia
Computer Science 44: 155–163.

The Need for Semantic Extension of SysML to Model the Problem Space 289

———. 2017. Reducing excess requirements through orthogonal categorizations during problem
formulation: Results of a factorial experiment. IEEE Transactions on Systems, Man, and
Cybernetics: Systems 47 (3): 405–415.

Salado, A., and P. Wach. 2019. Constructing true model-based requirements in SysML. Systems 7
(2): 19.

Salado, A., R. Nilchiani, and D. Verma. 2017. A contribution to the scientific foundations
of systems engineering: Solution spaces and requirements. Journal of Systems Science and
Systems Engineering 26 (5): 549–589.

Schneidera, F., H. Naughtona, and B. Berenbach, 2012. New challenges in systems engineering and
architecting, in Conference on Systems Engineering Research (CSER) 2012. St. Louis: Elsevier
B.V.

Soares, M.D.S., and J. Vrancken. 2008. Model-driven user requirements specification using
SysML. J. Softw 3 (6): 57–68.

Sterman, J. 2000. Business dynamics: Systems thinking and modeling for a complex world.
New York: Irwin MGraw-Hill.

Tjong, S.F., N. Hallam, and M. Hartley. 2006. Improving the quality of natural language
requirements specifications through natural language requirements patterns. in Proceedings
of the Sixth IEEE International Conference on Computer and Information Technology. Seoul.

von Bertalanffy, L. 1969. General systems theory – Foundations, development, applications.
New York: George Braziller, Inc.

Wymore, A.W. 1993. Model-based systems engineering. Boca Raton: CRC Press.

Variant Modeling for Multi-perspective,
Multi-fidelity Systems Simulation

Ryan Colletti, Ahsan Qamar, Sandro Nuesch, William Bailey,
and Christiaan Paredis

Abstract Current methods of Model-Based Product Line Engineering (MBPLE)
do not seamlessly extend to the management of variants of system simulation
models. Both architectural exploration activities and product line verification and
validation analyses could be streamlined by applying MBPLE to simulations.
However, this new application requires careful consideration to mitigate new
challenges associated with simulation variant management, such as consistency
between architecture and simulation models, the addition of simulation context
and model fidelity as new areas of variation, and management of both plant and
controller models. This paper presents an in-depth literature review of previous work
on variant management of simulation models, a discussion of the complexity of the
problem, and a preliminary proposal for an approach of simulation model variant
management in which SysML and variant modeling capabilities are used to define
150% black box representations of simulation models in order to automatically
create full simulation models.

Keywords Integration of MBSE with simulation technology · Model-Based
Systems Engineering · Model-Based Product Line Engineering · Variant
modeling · Model-centric engineering · Model-based verification and testing

1 Introduction

As system development tools and methods have progressed and systems become
more complex, so the customer’s expectations have heightened. Customers not only
demand robust systems that are safe, reliable, and full of features, but they also

R. Colletti (�) · C. Paredis
Clemson University International Center for Automotive Research, Greenville, SC, USA
e-mail: racolle@clemson.edu

A. Qamar · S. Nuesch · W. Bailey
Ford Motor Company, Dearborn, MI, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_25

291

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_25&domain=pdf
mailto:racolle@clemson.edu
https://doi.org/10.1007/978-3-030-82083-1_25

292 R. Colletti et al.

value a customized system that fits their specific needs. This is no truer anywhere
than it is in the automotive industry. Standard practice is to allow the customer to
select from a plethora of options, including engine size, transmission type, interior
and exterior colors, and upholstery material, along with technology-packed features
such as adaptive cruise control and automatic parking. All of this must be available
while also meeting ever-increasing standards for safety and environmental impact.
This current design landscape calls for Product Line Engineering (PLE) methods
that facilitate the development of a family of products instead of only individual
products. Modeling variants and capitalizing on reuse of elements, subsystems, and
behaviors are essential for product lines as this greatly reduces the amount of time
and effort necessary to develop the system. Current system modeling tools allow
for the implementation of reusable assets, but most of these tools are focused in the
architecture definition space. The lack of variant management tools and practices
in the simulation space has led to a bottleneck in the development process at the
system analysis step, which costs companies valuable development time.

Variant management methods have proven beneficial in Model-Based Systems
Engineering (MBSE) by making opportunities for reuse more obvious and hastening
verification and validation activities of architectural variants within a product line.
It is possible that similar benefits could be seen in the system analysis phase by
applying variant management techniques to simulation models. Other potential
benefits include clearer guidelines for the creation of new simulation models,
faster parameterization of existing simulation models, and increased consistency
between specification and simulation models. This research aims to investigate this
possibility by exploring the relevant problem space.

Before a method for applying variant management techniques to simulation
models can be found, a greater understanding of the challenges surrounding variant
management of simulation models is required. Therefore, the motivating question
for this paper is “what are the current challenges of variant management of
simulation models?” Once the problem space is better understood, an approach
can be formed. The corresponding research question is “what is a good way to use
Model-Based Product Line Engineering to manage variants of simulation models?”
It is important to note that this research is ongoing, so this paper only presents a
preliminary idea for an approach. Further research intends to refine this idea and
test it with a case study.

The rest of the paper is organized as follows: In Section II, we give a brief
history of variant modeling and show the gaps this paper aims to fill. Next, we
detail the challenges of variant management that are specific to the simulation space
as compared to the architecture design space in Section III. In Section IV, a potential
technique of 150% modeling and feature modeling as part of Model-Based Product
Line Engineering (MBPLE) to perform variant management of simulation models
is proposed. Finally, a brief summary of the paper and future work that could stem
from this research is presented in Section V.

Variant Modeling for Multi-perspective, Multi-fidelity Systems Simulation 293

2 Literature Review

2.1 MBSE, SysML, and Early PLE

Several product line engineering methods have emerged from the practice of Model-
Based Systems Engineering. MBSE is a method of formalizing the application of
modeling to support all steps of the systems engineering development life cycle,
including requirements, design, analysis, verification, and validation (INCOSE
2007). Traditional MBSE uses a system modeling language to create a cohesive
model of the system, which allows for components to be designed using domain-
specific tools and brought back together for validation (Friedenthal et al. 2014). The
most common language used to create these models is SysML, a graphical system
modeling language that facilitates MBSE by enabling the creation of a cohesive and
consistent model of the system (ISO 2017).

The inaugural variant modeling practice is often referred to as the “clone-and-
own” approach, where the first product in a family is developed, then the design
documents are copied and modified for subsequent products (Schulze et al. 2013).
While this works for a simple system of two or three variants, it has proven
to be inefficient with significant amounts of duplicated work and difficulty of
traceability (Schulze et al. 2013). The first formalized variant modeling method was
the Carnegie Mellon University’s Software Engineering Institute’s (SEI) Product
Line Practice (PLP), which consists of domain engineering, application engineering,
and the management of both (Clements and Northrop 2002). Domain engineering
includes the development of a common platform for a product line to be designed
and implemented, as well as a set of reusable artifacts that support the various
features of the product line (Krueger and Clements 2013). Application engineering
is the derivation of a product variant from the set of artifacts and product line
platform developed in the domain engineering phase (Deelstra et al. 2005). The
goal of PLP is for the benefits of rapid product variant development to outweigh the
additional effort of creating reusable assets.

SEI also developed Feature-Oriented Domain Analysis (Kang et al. 1990).
FODA allows for variants in a product line to be described by their features, or the
various functions a product performs, regardless of the specific hardware or software
that realizes those functions. A feature model organizes features into hierarchies
and uses symbols to denote cardinality and relationships, such as mandatory or
optional features (Kang et al. 1990). Features from the feature model are connected
to elements in the domain model; this denotes which of the system’s elements
implements each feature (Czarnecki and Kim 2005). In later work, SEI extended
FODA into the Feature-Oriented Reuse Method (FORM) (Kang et al. 2002).
This method not only supports architecture design and object-oriented component
development, but it also incorporates a marketing perspective, facilitating analysis
and design problems from a marketing standpoint (Kang et al. 2002). This is
important as marketing is the engineer’s connection to the customer, and the
customer ultimately decides which features a system should have, thus dictating

294 R. Colletti et al.

product line variants. The majority of SEI’s work in PLP, FODA, and FORM deals
with the management of variations in an architecture model. This research aims to
apply similar variant modeling methods to a simulation model.

2.2 MBPLE

A challenge with using PLP, FODA, and FORM is the modeling of variability
between core assets of the domain model and their applications in the variant
model. Other research describes four approaches to modeling variability – parame-
terization, information hiding, inheritance, and variation points – and it introduces
a method called the Variation Point Model that allows application engineers to
extend components at variation points specified by domain engineers (Webber and
Gomaa 2004). Currently, one of the most common methods for variant modeling
and management is a combination of PLP and FODA using variation points
called Model-Based Product Line Engineering (MBPLE) (Pohl et al. 2005). In
this method, system engineers first build a reference architecture model which acts
as a central starting point for the development of a product line. The reference
architecture formally defines the key subsystems of the product line and maps the
interactions between them (Branscomb et al. 2013). The system architect also works
with stakeholders to decide which features the product line will provide, and he
maps these features onto a feature model (Thiel and Hein 2002). Concurrently,
domain engineers further define the reference architecture into a 150% model which
encompasses the entire variability spectrum within the product line. In the 150%
model, a superset of all subsystems and components are defined such that any variant
of the product could be built from a subset of the 150% model (Grönniger et al.
2008). Variation points are used in this model to distinguish which of the model’s
elements are needed to provide each feature. These variation points supply the
connection between the feature model and the 150% architecture model, and they
include a logical expression that determines the behavior of the associated element
in the superset model based on the state of one or more features (Böckle et al. 2005).
Variants of the product line are defined by selecting a state for each feature of the
product line, i.e., the inclusion, omission, or kind of each feature for a given variant
(Krueger 2008). Since a variant is defined by its features, and the variation points
in the 150% model distinguish which components are required for each feature, the
150% model can automatically be pared down to a variant model using a model
transformation tool (Krueger 2008). Finally, specification documents are generated
from the variant model that guide the programmers in the development of code for
the system, or, in some instances, code is automatically generated (Schaefer and
Hähnle 2011).

MBPLE has been used extensively to manage variants of architecture description
models. The majority of research has focused on the management of variations in
the structural aspect of the system model, but recent work has been looking into
variant management of the behavioral side of these models. Proper organization and

Variant Modeling for Multi-perspective, Multi-fidelity Systems Simulation 295

abstraction of the system’s behaviors have been identified as keys to recognizing
opportunities for reuse of behavioral elements of the model (Karban et al. 2016a).
In particular, the use of modeling patterns helps improve consistency and reduce the
amount of effort needed to create and maintain models. Two complimentary variant
modeling patterns are the 150% and encapsulation patterns (Colletti et al. 2020). In
the 150% pattern, all actions and pins for all variants of an activity are represented
together in a diagram, and variation points are used to indicate which actions and
pins are present for a given variant of the activity. In the encapsulation pattern, each
variant of an activity is modeled as its own activity, and then all variants of that
activity are gathered in a wrapper activity which contains a superset of the input
and output pins and uses variation points to indicate the appropriate activity for
each variant. Selection of the best pattern for each modeling context facilitates the
modeling process by reducing the total number of modeling elements used to define
the 150% model and separating parts of the model that are maintained by different
modelers or teams, ultimately reducing the total cost of modeling a product line
by improving manageability of the model, increasing consistency across the model,
and promoting reuse of assets throughout the product line (Colletti et al. 2020).
These patterns could possibly be extended to simulation models to realize similar
benefits, and this research intends to investigate this proposition. The Executable
System Engineering Method (ESEM) takes advantages of modeling patterns that
involve structural, behavioral, and parametric diagrams to integrate requirements
and executable behavior and performance models for certain system level analyses
(Karban et al. 2016b). However, ESEM patterns and processes do not account for
variants within a product line as the 150% and encapsulation patterns do.

2.3 SysML and Simulation Modeling

SysML is primarily intended for creating architecture description models, with
structural decompositions, behavior models, requirements tracing, and parametric
relationships (Friedenthal et al. 2014). SysML can also be used to support basic
simulation activities, such as observing behavioral models by executing activity dia-
grams and modular analyses based on constraints modeled in parametric diagrams
(Peak et al. 2007). However, SysML does not support modeling continuous system
dynamics using differential algebraic equations. Modelica, an object-oriented mod-
eling language, is well suited for simulating continuous system dynamics based on
energy transfer among system components because it is an equation-based language
that does not require the user to assign causality (Modelica Association 2014).
Simulink, on the other hand, is a causal, signal-flow modeling environment that
is often used to model control algorithms (The MathWorks, Inc 2019). It is not
uncommon to see a Simulink model of a system outsource the plant models to
a language like Modelica and represent the control models natively to execute a
full system simulation; however, SysML is rarely brought into this mix for either
architecture management or variant modeling.

296 R. Colletti et al.

It is possible to use SysML to support modeling system dynamics with an
extension called SysML4Modelica. The custom profile allows a modeler to use a
representation of the most common Modelica language constructs in SysML; then,
a Triple Graph Grammar is used to link the SysML and Modelica meta-models
(Paredis et al. 2010). Doing this not only encourages consistency between the
SysML and Modelica models, but it also allows for an integration of simulation
experiments with other SysML constructs to support MBSE activities (Johnson et
al. 2012). Another method for using SysML to analyze dynamic system behavior
is with a SysML extension developed by NIST called SysPhS (Object Management
Group 2018). More accurately, SysPhS and its accompanying translator are intended
to enable both physical interaction and signal flow simulation contexts in SysML.
The creators of SysPhS identified the core simulation constructs common to most
simulation tools, and then they designed SysPhS to extend four SysML constructs
to include the information necessary for simulation modeling using only SysML
(Matei and Bock 2012). To increase SysPhS’s capabilities, the same authors
developed a translator to transform a SysML model extended with SysPhS into
simulation files for Modelica or Simulink, and the translator can go the other
direction as well (Barbau et al. 2019). Neither SysPhS nor SysML4Modelica tackles
the challenge of variant modeling; however, since both use SysML as the root of
their approach, MBPLE methods could likely be used in conjunction with these
approaches to accomplish variant management. This research intends to investigate
this conjecture as a possibly viable method.

While Modelica is well-suited for physics-based simulations, Simulink is cur-
rently the standard for signal flow simulations. Several approaches for handling
variability within Simulink models exist, each with their own strengths and weak-
nesses. To facilitate the 150% modeling pattern, Simulink includes conditional
elements such as If blocks, Switch blocks, and logical operators. To support
the encapsulation modeling pattern, Simulink supplies Model Variant blocks and
Variant Subsystem blocks (Weiland and Manhart 2014). However, these constructs
are rather unwieldy to use for variant modeling, and they provide no connection to
the system architecture model in SysML. As an alternative, a Simulink extension
called Delta-Simulink has been developed to enable 150% modeling in Simulink
based on the concept of delta modeling (Haber et al. 2013). Delta-Simulink is
a transformational approach which applies color-coded deltas to a base model
to indicate changes that are made to the model for different variants, similar to
variation points (Kolassa et al. 2015). However, Delta-Simulink does not include
a rigorous method for relating the deltas in the Simulink model to a feature model
as is done in MBPLE with SysML. One way of making this connection is with
an ontology-assisted approach which uses the variant modeling capabilities within
Simulink and the System Entity Structure ontology to synchronize an external
variant model with the dynamic system models in Simulink (Pawletta et al. 2014).
Similarly, this research plans to use a feature model developed in SysML using
MBPLE to manage the dynamic system models.

Some research has been done in the area of using MBPLE to manage variants in
domain-specific simulations. One approach uses SysML as a central repository to

Variant Modeling for Multi-perspective, Multi-fidelity Systems Simulation 297

generate a source model where a trade study is defined and requirements are rep-
resented. Then, through either automatic code generation, model transformation, or
model parameterization, the trade study is executed in a domain-specific simulation
tool, and the results are sent back to the SysML model (Ryan et al. 2014). However,
since this approach focuses on architecture trade studies, it only supports variations
in selected components within the architecture, not variations in the architecture
itself. Alternatively, other work has developed a framework for using a reference
architecture model in SysML to manage the block interfaces and signal flow in the
Simulink model (Bailey et al. 2018). While this framework effectively used SysML
to manage variants – even architectural variants – in Simulink, much of the modeling
effort must still be accomplished manually. It did not employ MBPLE methods such
as feature models and variation points in SysML to automate much of the process.

3 Additional Challenges to Variant Management
of Simulation Models

MBPLE has tackled many of the challenges of modeling variants of a product
line in an architecture model, including identifying opportunities for reuse, relating
variable features to the components that realize them, and managing variations
in components, interfaces, and architectural structures across the product line.
Consequently, applying MBPLE to simulation models will require the identification
and mitigation of additional challenges in order for an approach to be effective. One
challenge will be maintaining consistency between the architecture and simulation
models. As seen in Sect. 2.3, consistency management has been achieved through
several approaches. The most popular approaches are a direct mapping between
model elements of two languages and an abstraction or extension of one language
to another.

Another challenge will be the management of the multitude of analysis models.
In the architecture description model, there is already the challenge of managing
variants of the product line, the features they provide, and the hardware and software
that implement each feature. MBPLE successfully manages these by employing
150% models, feature models, and variation points. However, the simulation space
must manage not only variants of a product line but also the simulation context
(environmental conditions), the simulation test (the analysis to be run on the
system), and the various levels of fidelity for each plant and controller model used
in the simulation (Sinha et al. 2001). As an example in the automotive domain, a
particular variant of a vehicle product line could be simulated doing an acceleration
test, a braking test, a drive cycle, or any number of maneuvers, and each of
these tests could occur in hot or cold temperatures, sunny or rainy conditions,
and on various road surfaces. In addition, there is not only one vehicle simulation
model that is used for each simulation test but likely a different vehicle model
for each test, where each plant and controller model may be at a different level

298 R. Colletti et al.

of fidelity to maximize the execution speed of the simulation without sacrificing
accuracy (Sinha et al. 2001). Varying fidelity could also vary a simulation model’s
structure, so an effective variant management approach must take this into account.
Finally, synchronizing the interfaces of interacting plant and controller models will
be required at each fidelity level. Managing all these additional variables could
quickly become cumbersome and must be considered in an approach for variant
management of simulations.

A third challenge will be the management of both plant and controller simulation
models. Current MBPLE practices already manage variants in the system structure,
and this will likely translate well to the management of the system’s plant models,
but this becomes much more difficult for the controller models. As stated before,
MBPLE has mostly been used to manage variations of the structural aspect of
architecture models, and only minimal research has been completed in managing
variations of the behavioral models. This is because behaviors are often much
more tightly coupled together than structural components. Learning how to properly
abstract controller models such that they can be built and combined in a modular
fashion at various levels of fidelity will be the key to this aspect of variant
management (Paredis et al. 2001).

4 Overview of Proposed Approach

This section introduces an approach to variant management of simulation models
that the researchers are currently in the process of investigating. Unfortunately, no
quantifiable results are ready at time of writing; however, based on the presented
literature review and the authors’ experience in the field of variant management,
the approach seems promising. The proposed variant management approach is in
three steps: 150% and feature modeling in SysML, composable simulation modules
creation in Simulink, and derivation of the full simulation in Simulink using the
SysML 150% and feature models.

First, SysML is used to create a 150% architecture description model of the entire
product line of interest as well as a feature model to link the components of the
description model to variable features offered by the product line. A variant can
be instantiated by selecting a set of features, and the variation points automatically
pare down the 150% model to a variant model. All of these steps are already a part
of traditional MBPLE practices. To include management of simulation models, the
SysML architecture model will require two more parts – additional features and a
reference architecture for the simulation model. In order to use the SysML model
to manage variants of the simulation model, features corresponding to variation
among simulation models of the product line of interest must be added to the
existing feature model in SysML. These features will represent the objective of
the simulation model, such as predicting fuel economy or testing autonomous
functionality, which would be analyzed through one or more simulation tests. Each
simulation objective feature would also have several levels of fidelity associated

Variant Modeling for Multi-perspective, Multi-fidelity Systems Simulation 299

with it that correspond to the milestones within the development process. Describing
the simulation models in this way allows for traditional MBPLE methods to be used
to manage both variants and levels of fidelity of the simulation models. Additionally,
a reference architecture for the simulation model serves as a baseline for how the
simulation modules should be put together to form a full simulation model. Each
plant or controller module is represented by a black box in SysML, showing only the
inputs and outputs of each module and abstracting away the internals. In this way,
all of the connections among the simulation modules can be modeled in SysML,
taking advantage of existing variant management techniques. A 150% model of the
simulation model can be built and managed in SysML such that no 150% modeling
is necessary in Simulink.

Concurrently, simulation modules corresponding to the black boxes in the
SysML simulation reference architecture are developed in Simulink. As stated in
Sect. 3, these modules will need to be abstracted and organized such that they can
be combined in the same way they are in the SysML black box representation. This
approach allows for the system dynamics to be modeled in Simulink instead of
in SysML, minimizing both duplication of modeling effort and the need for any
modeler to work in both SysML and Simulink. Additionally, the only synchroniza-
tion between the SysML and Simulink models will be the inputs and outputs of
each simulation module; the simulation module’s internals can be updated without
affecting the SysML reference architecture.

Finally, once the SysML 150% architecture description model, SysML 150%
simulation reference architecture, SysML architecture and simulation feature
model, and Simulink plant and controller model library are built, they can be
combined to form a full simulation model. A variant is instantiated in the SysML
model, and the 150% model is pared down to a variant model. That variant model
is then used to combine the simulation modules to match the simulation reference
architecture. Ideally, this last step would require as little human effort as possible
since all of the information necessary to build the simulation already exists.

5 Summary

The objective of this research is to determine a good way to apply and extend
MBPLE practices to manage variants of simulation models. The purpose of this
paper is to, through an in-depth literature review, identify the unique challenges of
this endeavor and propose a potential method for simulation variant management.
This research is ongoing, and the researchers are currently in the process of building
a test case using existing simulation models at Ford Motor Company. As this
space is further explored, additional challenges may become apparent that must be
dealt with, and the proposed approach will be duly modified to best support both
architecture and simulation modelers in their respective tasks.

Acknowledgments The research for this paper was funded in part by Ford Motor Company.

300 R. Colletti et al.

References

Bailey, W.C., J. Che, P. Tsou, and M. Jennings. 2018. A framework for automated model interface
coordination using SysML. Journal of Computing and Information Science in Engineering 18
(3).

Barbau, R., C. Bock, and M. Dedfarnia. 2019. Translator from extended SysML to physical
interaction and signal flow simulation platforms. Journal of Research of the National Institute
of Standards and Technology 124: 1–3.

Böckle, G., K. Pohl, and F.J. van der Linden. 2005. A framework for software product line
engineering. In Software product line engineering, 19–38. Berlin, Heidelberg: Springer.

Branscomb, J.M., C.J.J. Paredis, J. Che, and M.J. Jennings. 2013. Supporting multidisciplinary
vehicle analysis using a vehicle reference architecture model in SysML. Procedia Computer
Science 16 (1): 79–88.

Clements, P., and L. Northrop. 2002. Software product lines: Practices and patterns. Vol. 3.
Reading: Addison-Wesley Reading.

Colletti, R., A. Qamar, S. Nuesch, and C.J.J. Paredis. 2020. Best practice patterns for variant
modeling of activities in model-based systems engineering. IEEE Systems Journal.

Czarnecki, K., and C.H.P. Kim. 2005. Cardinality-based feature modeling and constraints: A
progress report. In Proceeding of the international workshop software factories, 16–20. San
Diego.

Deelstra, S., M. Sinnema, and J. Bosch. 2005. Product derivation in software product families: A
case study. Journal of Systems and Software 74 (2): 173–194.

Friedenthal, S., A. Moore, and R. Steiner. 2014. A practical guide to SysML: The systems modeling
language. San Mateo: Morgan Kaufmann.

Grönniger, H., H. Krahn, C. Pinkernell, and B. Rumpe. 2008. Modeling variants of automotive
systems using views. In Proc. of Workshop Modellbasierte Entwicklung von eingebetteten
Fahrzeugfunktionen (MBEFF), 76–89. Berlin.

Haber, A., C. Kolassa, P. Manhart, P.M.S. Nazari, B. Rumpe, and I. Schaefer. 2013. First-class
variability modeling in Matlab/ Simulink. In Proceedings of the 7th international workshop on
variability modelling of software-intensive systems, 11–18. New York.

INCOSE. 2007. Systems engineering vision 2020. In International Council on Systems Engineer-
ing, ver. 2.03. Seattle.

ISO, ed. 2017. Information technology: Object management group systems modeling language
(OMG SysML). 1.4.1 ed ISO/IEC 19514:2017.

Johnson, T., C.J.J. Paredis, and R. Burkhart. 2012. Integrating models and simulations of continu-
ous dynamics into SysML. Journal of Computing and Information Science in Engineering 12
(1): 135–145.

Kang, K.C., S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson. 1990. Feature-oriented
domain analysis (FODA) feasibility study. Pittsburgh., CMU/SEI-90-TR-021: Software Engi-
neering Institute.

Kang, K.C., J. Lee, and P. Donohoe. Jul-Aug 2002. Feature-oriented product line engineering.
IEEE Software 19 (4): 58–65.

Karban, R., N. Jankevičius, and M. Elaasar. 2016a. ESEM: Automated systems analysis using
executable SysML modeling patterns. In 26th Annual INCOSE International Symposium.
Edinburgh.

Karban, R., F.G. Dekens, S. Herzig, M. Elaasar, and N. Jankevičius. 2016b. Creating systems
engineering products with executable models in a model-based engineering environment. In
Proc. Modeling, Systems Engineering, and Project Management for Astronomy VI, 99110B1–
99110B16. Edinburgh.

Kolassa, C., H. Rendel, and B. Rumpe. 2015. Evaluation of variability concepts for Simulink in the
automotive. In 48th Hawaii International Conference on System Sciences, 5373–5382. Kauai.

Krueger, C. 2008. The BigLever software gears unified software product line engineering
framework. In 12th international software product line conference, 353. Limerick.

Variant Modeling for Multi-perspective, Multi-fidelity Systems Simulation 301

Krueger, C., and P. Clements. 2013. Systems and software product line engineering. Encyclopedia
of Software Engineering 2: 1–14.

Matei, I., and C. Bock. 2012. SysML extension for dynamical system simulation tools. National
Institute of Standards and Technology, NISTIR 7888.

Modelica Association. 2014. Modelica Language Specification. [Online]. Available: https://
www.modelica.org/documents/ModelicaSpec33Revision1.pdf

Object Management Group. 2018. SysML extension for physical interaction and signal flow
simulation. [Online]. Available: https://www.omg.org/spec/SysPhS/1.0/PDF

Paredis, C.J.J., A. Diaz-Calderon, R. Sinha, and P.K. Khosla. 2001. Composable models for
simulation-based design. Engineering with Computers 17 (2): 112–128.

Paredis, C.J.J., Y. Bernard, R.M. Burkhart, H. de Koning, S. Friedenthal, P. Fritzson, N.F.
Rouquette, and W. Schamai. 2010. An Overview of the SysML-Modelica Transformation
Specification. INCOSE International Symposium 20 (1): 709–722.

Pawletta, T., D. Pascheka, A. Schmidt, and S. Pawletta. 2014. Ontology-assisted system modeling
and simulation within MATLAB/Simulink. SNE Simulation Notes Europe 2: 59–68.

Peak, R.S., R.M. Burkhart, S.A. Friedenthal, M.W. Wilson, M. Bajaj, and I. Kim. 2007. Simulation-
based design using SysML part 1: A parametrics primer. INCOSE International Symposium 17
(1): 1516–1535.

Pohl, K., G. Böckle, and F.J. van der Linden. 2005. Software product line engineering: Founda-
tions, principles and techniques. Springer.

Ryan, J., S. Sarkani, and T. Mazzuchi. 2014. Leveraging variability modeling techniques for
architecture trade studies analysis. Systems Engineering 17 (1): 10–25.

Schaefer, I., and R. Hähnle. Feb. 2011. Formal methods in software product line engineering.
Computer 44 (2): 82–85.

Schulze, M., J. Mauersberger, and D. Beuche. 2013. Functional safety and variability: Can it be
brought together? In Proceedings of the 17th International Software Product Line Conference,
236–243. Tokyo.

Sinha, R., C.J.J. Paredis, V. Liang, and P.K. Khosla. 2001. Modeling and simulation methods for
design of engineering systems. Journal of Computing and Information Science in Engineering
1 (1): 84–91.

The MathWorks, Inc. 2019. Simulink Release Notes. [Online]. Available: https://
www.mathworks.com/help/pdf_doc/simulink/rn.pdf

Thiel, S., and A. Hein. Jul-Aug 2002. Modelling and using product line variability in automotive
systems. IEEE Software 19 (4): 66–72.

Webber, D.L., and H. Gomaa. 2004. Modeling variability in software product lines with the
variation point model. Science of Computer Programming 53 (3): 305–331.

Weiland, J., and P. Manhart. 2014. A classification of modeling variability in Simulink. In
Proceedings of the 8th international workshop on variability modelling of software-intensive
systems, 7–14. Sophia Antipolis.

https://www.modelica.org/documents/ModelicaSpec33Revision1.pdf
https://www.omg.org/spec/SysPhS/1.0/PDF
https://www.mathworks.com/help/pdf_doc/simulink/rn.pdf

An Executable Systems Modeling
Language (ESysML): Motivations
and Overview of Language Structure

Matthew Amissah and Holly Handley

Abstract In this paper we offer an overview of concepts and implementation of the
Executable Systems Modeling Language (ESysML). ESysML is a domain-specific
language (DSL) developed in response to challenges regarding executability and
support for time-based simulation models, which are often necessary for analysis
in a Model-Based Systems Engineering (MBSE) effort. ESysML is loosely based
on the Systems Modeling Language (SysML). It downsizes the language schema
of SysML in favor of model execution. Consequently, only language concepts
such as Block, Ports, Activity, Events, etc. which are essential for defining system
structure and behavior are retained in ESysML. While this presents a tradeoff of
language expressivity for execution, the objective here is to offer precise semantics
for a kernel of SysML constructs which can be extended to support fit-for-purpose
applications in other domains.

Keywords SysML · Model-Based Systems Engineering · Simulation

1 Introduction

The Systems Modeling Language (SysML) (OMG 2017a, b) is an adaptation of the
Unified Modeling Language (UML) (OMG 2015) aimed at offering a UML profile
tailored to modeling engineered systems in general. A SysML model supports
specification of requirements for a designed system. Additionally, it offers a
representation of system components, their interconnections, interfaces, constraints,
and the resulting behavior they exhibit. SysML provides an underlying schema that

M. Amissah (�)
Worcester, MA, USA
e-mail: mamissah@wpi.edu

H. Handley
Norfolk, VA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_26

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_26&domain=pdf
mailto:mamissah@wpi.edu
https://doi.org/10.1007/978-3-030-82083-1_26

304 M. Amissah and H. Handley

supports an improved data management strategy particularly regarding exchange
and reuse of data in systems architecture and design models.

The primary challenge with SysML model execution is one of language formality
and standardization. While there are myriad approaches and tools offered both by
the research community and tool vendors for model execution, there remains the
challenge of a uniform implementation of the language. This is in part due to the
complexity of the language infrastructure and its arcane specification, most of which
stems from similar challenges with the UML (Cook 2012).

SysML like the UML consists of several independently derived modeling
formalisms (i.e., use cases, state charts, activity models, etc.) which have been
co-opted into a single modeling framework. This, together with the lack of an
overarching meta-model that specifies the relationships and rules governing the use
of various modeling constructs beyond their respective diagrams, has resulted in at
best a semiformal language specification, with adverse implications for uniformity
of language implementation and execution across modeling tools.

In response to these challenges, we propose the Executable Systems Modeling
Language (ESysML), an executable domain-specific language (DSL) aimed at
refining SysML. Analogous to the foundational UML (fUML) (OMG 2018) and its
textual action language, i.e., Alf (OMG 2017a, b), ESysML essentially reimagines
SysML as a simulation language. It prescribes an approach for time advance,
execution of time-based actions, and logging of the resulting change in model
attributes. ESysML is an internal DSL implemented in Python. Internal DSLs are
languages embedded in a host programming language. This affords the capability
to reuse syntax and existing runtime, as well as access to third-party libraries which
reduces the language development effort (Ghosh 2010). A relatively well-known
example of an internal DSL is the SystemC (Arnout 2000).

Given current trend towards increasingly interconnected systems such as Internet
of Things and Artificial Intelligence, there is a need for model-driven engineering
languages and methods that support formal architecture description and analysis
for such highly interconnected real-time systems. This work leverages the relatively
popular and accessible graphical syntax of SysML to support a formal model-driven
engineering process. The aim here is to support a consistent systematic approach
for realizing conceptual models and corresponding executable models useful for
architecture analysis and decision-making.

Subsequent sections of the paper are organized as follows: Section 2 discusses
motivation and design goals for ESysML. Section 3 discusses an overview of the
major language constructs, textual syntax, and implementation in structural and
behavioral modeling perspectives and concludes with a discussion on the approach
for simulation execution and model logging. We conclude in Sect. 4 with proposed
future work and the implications of this work and similar efforts on MBSE practice.

An Executable Systems Modeling Language (ESysML): Motivations. . . 305

2 Motivation and Language Design Goals

As formerly mentioned, the primary challenges with SysML are a lack of precise
semantics, complexity of language structure and support for modeling and execution
of time-driven behavior. Notwithstanding, SysML offers useful constructs for
conceptual modeling in systems engineering (SE). Additionally, it retains essential
features from UML for extending language breadth and depth (i.e., through profiles
and opaque expressions respectively).

ESysML was designed with the aim of leveraging SysML’s relatively popular
and accessible modeling constructs and features for language extension to support
development of executable models within the MBSE framework. Given executabil-
ity as the primary goal of this effort, the initial emphasis here is on simplicity in
favor of expressivity or breadth. As such a number of SysML constructs have been
removed from ESysML while preserving the language’s essentials of structural,
behavioral, and parametric modeling perspectives (Friedenthal et al. 2014).

The fourth perspective pertinent to Requirements is not supported here since
ESysML is primarily aimed for modeling and simulation of architecture and
design concepts; this is essentially descriptive contrary to the prescriptive nature
of Requirements engineering. We recognize that the outcomes of Requirements
engineering are necessary inputs for model validation; in ESysML this may be
implemented using constructs for constraint modeling to support model-based
validation of requirements. A more complete approach for requirement modeling
leveraging language features for extension is proposed as future work. The follow-
ing points summarize the design goals for this effort:

• Ontological foundation: Primary language concepts shall be based on SysML
with the aim of supporting structural, behavioral, and parametric modeling
perspectives.

• Execute ability: An implementation that serves as a standard demonstration of
language semantics shall be offered.

• Support for time: The language shall offer constructs to reference time, as well
as event-based simulation time advance and logging of dynamic attributes in a
model.

• Extensibility: The language shall offer constructs to enable extension through
new meta-constructs and specializing of existing model elements, i.e., language
profiles and model libraries respectively.

• Model governance: The language shall underlie a framework of tools and
methods for efficient model development in MBSE. This entails offering a devel-
opment environment with capabilities for model checking, code completion,
model libraries, etc.

• Graphical syntax: The textual syntax shall be compatible with SysML graphical
syntax where possible to support automated/semiautomated generation of graph-
ical models.

306 M. Amissah and H. Handley

• Simplicity: The language shall offer a concise/simplified schema relative to
SysML. This should be measurable using metrics such as total number of
language constructs and traceability of derived constructs from primitive ones.

3 ESysML: Taxonomy of Primary Concepts

An ESysML comprises model elements and properties. A model element here is
parallel to the concept of fundamental concept of Thing traceable to the Bunge-
Wand-Weber (BWW) ontology (Wand and Weber 1990). A model element may
own zero or more properties, which specify its relation to other model elements.
Properties are implemented here as unidirectional relations with a single source
and zero or more target model elements. Figure 1 illustrates the concept of model
element and property using UML notation.

Model elements are further categorized under the two main types of instance
and type. Instances reference real or notional things present in the world. Types
are definitional elements, used to specify a template for creating instances and
defining action executions. A distinction is made between real instances with
spatiotemporal extent, which are typed by block and notional/conceptual ones typed
by data type. Data instances serve as attributes of block instances. Attributes here
are observer imputed properties useful for exposing the nature of real things. Block
(i.e., physical) and data (i.e., conceptual) instances are differentiated from each other
solely by the time attribute. Time is defined here as a Value (i.e., has a unit and value
property with a singular instance).

Activity is the primary construct for modeling behavior. It specifies the rules by
which model elements are created, destroyed, or transformed. Constraints, events,
and opaque actions are special kinds of activities in ESysML. Constraints specify
restrictions on the values the properties of model elements may assume. Events
refer to time- or condition-based change triggers defined for activation of actions.
Opaque actions represent an abstraction for black box behavior. To enable execution,
the implementation details for opaque actions may be specified using a prescribed
executable formalism. Figure 2 illustrates a hierarchy of the main model element
categories.

Properties specify relations between model elements. These are broadly cate-
gorized into dependency and characterization relationships. Characterization is a
property between types. Characterization properties are further specialized into

«ModelElement»
A

<<Property>> C
target: B[*]

<< ModelElement>>
A

<<ModelElement>>
B

*source

1 target

<< Property>>
C

Fig. 1 UML notation for primary constructs

An Executable Systems Modeling Language (ESysML): Motivations. . . 307

block

model
element

value primitive

data

constrainteventinterface link

stringnumber boolean time
event

type

primitive
action

activity

opaque
action

null

instance

collection

change
event

Fig. 2 Hierarchy of model elements

property

inheritance

characterizationdependency

instantiation extension participationattribution operationalizationprogressionparameterization

Fig. 3 Hierarchy of property classes

attribution, operationalization, and participation. In an attribution relation, the
element at the target end of the relation serves as a descriptor to the source element.
Operationalization is a relation between a type and one or more actions, which
prescribe how the properties of the type change/evolve in a model. Participation is
a relation between block instances. It specifies a whole-part relationship between
block instances. Parts on the boundary of a block are termed Ports. These may
be typed by the specialized interface block which offers inbuilt functionality for
exchange across blocks via links.

The Dependency property is used broadly to specify logical dependence relations
between model elements. This is specialized into inheritance, instantiation, parame-
terization, extension, and progression properties. Instantiation is a relation between
an instance and its type; this enables implementation of the instance based on rules
specified in the type. Inheritance is a relation between types that implies the element
at the target end may exhibit all of the properties of the element at the source.

A progression property denotes an ordering relation between actions which
specifies precedence or parity of action execution sequence. The parameterization
property specifies relations between an action and model elements required for its
execution (i.e., inputs) or model elements created or transformed as a result of
its execution (i.e., output). Figure 3 illustrates the hierarchy of property types in
ESysML.

308 M. Amissah and H. Handley

3.1 Overview of Textual Syntax

ESysML adopts a C-style syntax in order to support some level of continuity
with fUML and Alf. As such, language statements and blocks are delimited with
semicolons and curly braces respectively. Additionally C syntax for comments “if”
and “while” statements are retained.

Unlike most C-like languages, ESysML is dynamically typed. Type declarations
can be optionally included and enforced similar to a strongly typed language. This
feature is retained from Python as it generally engenders simpler and more readable
code without necessarily trading off simplicity for a more robust specification.
Additionally Python syntax for creation and access of collections is retained.
Specifically in ESysML, Bag, Sequence, and Set are equivalent to and use the syntax
of Dictionary, List, and Set respectively.

The main departures from this general style are in the syntax for Actions, Events,
Collections, and Value types. Further detail on these constructs is provided in later
sections.

Finally the textual syntax maps to SysML graphical notation with minor modifi-
cations. Based on this ESysML model elements may be visualized using block and
activity diagrams. Depending on the scope and type of language elements featured,
block and activity diagrams may be used to visualize abstract domain concepts and
actual physical connections and relationships as well as behavior. Ultimately the
goal is to support automated generation of fit-for-purpose visualizations of model
data.

3.2 Structural Modeling

With regard to structural modeling, ESysML is aimed at supporting three primary
levels of specification, namely, meta-modeling/language specification, ontological/-
domain reference specification, and instance/physical concept specification. Meta-
modeling use cases develop model libraries that support new language constructs in
line with the language profiling mechanism of UML. Ideally meta-models should
offer novel language concepts that transcend more than one application context as
well as provide reusable functionality for specifying novel concepts. The primary
language construct that supports meta-modeling is the extension property.

Ontological/reference specification entails models of categories, concepts, rela-
tionships, assumptions, etc. relevant to characterizing the model referent or problem
domain. The constructs of block and data and their associated properties are
the language constructs typically applied at this level. Instance models/physical
concept specifications are models of real or notional entities with interconnections,
constraints, and behaviors which are bound by the laws of a real or notional universe.
Block diagrams may be used to illustrate both the high-level domain concepts

An Executable Systems Modeling Language (ESysML): Motivations. . . 309

«block»
Human

«value»
Weight

unit =”kilogram”
value:Real

weight1 location

1

1

Coordinates: Real[1,3]

«data»
Point

input: SimpleInterface

x: MVS

jes: Server

cpu1: Server cpu2: Server

prt: Server

la: SimpleLink

lb: SimpleLink
lc: SimpleLink

ld: SimpleLink lf: SimpleLink

lg: SimpleLinkle: SimpleLink

output: SimpleInterface

Fig. 4 Modeling domain and physical constructs with blocks

and instantiation of structural constructs which are typically implemented using
activities. Figure 4 illustrates textual and graphical models specifying domain level
and instance level constructs.

3.3 Behavioral Modeling

Behavioral modeling entails specifying rules that govern change in model structure.
Change here can be characterized under creation, transition, or destruction of
model elements. The goal in behavioral modeling is to offer underlying constructs
that support a coherent construction of models under various perspectives of how
change occurs in a system. In line with SysML, (1) state/event, (2) process, and
(3) parametrics are the three main views supported in behavioral modeling. Unlike
SysML, in ESysML constraint modeling and parametrics are considered behavioral,
as this aligns with the given definition of behavior as rules governing change in
model structure.

The primary behavioral modeling construct in ESysML is the activity. Spe-
cializations of activity include primitive actions, opaque expressions, events, and
constraints. Similar to primitive types, primitive actions are predefined model
elements with user-specified slots. Examples of primitive actions are start, final,
instance creation, assignment, conditionals, and loops.

The order of action execution is determined by either progression relations
between action calls, which may be specified using the control and object flow
notation of SysML activity diagrams. Actions do not have the typical return
statement such as in C or Python. Action outputs specify zero or more elements
that are assigned in the action method (i.e., activity) and available to the caller of
the action once the output is assigned in the method.

As an example the gen_request action definition in Fig. 5a specifies a name
request that must be assigned a value of type FlowItem. The first statement in the
action’s body assigns the request name to the returned instance generated by the

310 M. Amissah and H. Handley

Fig. 5 (a) Activity definition; (b) opaque activity definition; (c) action invocation via time_event

constructor action for FlowItem. Opaque expressions may be similarly defined as
actions; this is shown in Fig. 5b.

Time-events and change-events enable the invocation of actions after a time delay
or a specified change in a model’s properties respectively. Time-events specify a
trigger which is a number or an expression that evaluates to a number, while change-
events must specify a Boolean-valued trigger. Figure 5c illustrates the syntax for
action invocation with events.

3.4 Simulation Execution and Data Logging

To support event scheduling and time advance, an implementation of a simulator
based on Tocher’s three-phase simulation worldview is proposed (2018). In the
three-phase simulation approach, changes to a system’s state can only occur under
two conditions for change, i.e., changes that are driven solely by the passage
of time and those that are triggered by conditions other than time. These two
alternatives for state change are termed as bound events (B’s) or conditional events
(C’s) respectively. In ESysML these are represented by the change and time event
constructs.

Simulation software can then be organized under Simulation Executive/Simu-
lator and Model. The Simulation Executive entails underlying infrastructure that
handles event scheduling. The executive maintains a global time variable and
updates it to the timestamp of the next imminent event(s). For each iteration the
simulator executes the following: (1) Advance simulation clock to time of next
imminent B event(s). (2) Execute B’s due at this time. (3) Scan C’s and execute
entities with conditions evaluating to true. This is illustrated in Fig. 6a.

Blocks in the model maintain a due_list, c_list, and local time variable. These
are abstract attributes which are inherited by all blocks; additionally these are
automatically updated during simulation run based on user-defined time event,
change_events, and constraints. Similar to change events, constraints are evaluated
and updated with every time step.

Finally, to support logging of simulation data, the construct of a model Observer
is introduced. Model observation can be considered here as a research and experi-
mentation viewpoint. As such model questions/queries can be developed along with
appropriate simulation run and data collection parameters. Blocks in the model can
access a global observe action, which enables modelers to specify properties to be
logged during simulation, as well as log_events which essentially prompts an update
of a log file during simulation run. The model execution architecture is illustrated in
Fig. 6b.

An Executable Systems Modeling Language (ESysML): Motivations. . . 311

Model

SimulationExecutive

Observer

Time: Real
FEL [*]: Entity
C_LIST[*]:Entity

schedule (entity, event)

commit (event , time)

do_now()

report()

log_event ()

due_list [*]: TimeEvent
c_list [*]: Event

User interface
set_run_par()

Fig. 6 (a) Execution process of a three-phase simulation (Pidd 2004) (b) ESysML model
execution architecture

4 Conclusion and Future Directions

This work introduced ESysML, a modeling language that simplifies and refines
UML/SysML modeling constructs. The primary goal here is to leverage a widely
accepted standard in SyML, to support executable model specification in Model-
Based Systems Engineering (MBSE) practice. This work lays an essential foun-
dation for a model development framework that enables a uniform and efficient
transition from high-level conceptual models to detailed computational models
which are often necessary for architecture analysis and verification.

Future research is aimed at offering a framework of tools and methods along with
the underlying language to enable model continuity and reuse across the various
levels of model specification. This requires research effort that extends ESysML
constructs to support implementation of novel and domain-specific concepts.
Particularly, an extension of the framework to support formal specification of system
requirements and their relation to current modeling constructs such as constraints is
proposed. Such an extension of the language will provide a more rigorous approach
to modeling the user/stakeholder domain, requirements, and architecture definition.

The time advance and model execution strategy offered here is essentially
sequential. An extension of this approach optimized for parallel and distributed
model execution is proposed to enhance scalability of the approach. Additionally,
further research is required to extend ESysML’s support for integration of other
programming languages in order to leverage opaque expressions to implement
libraries available in new languages. Besides programming languages, standards
that support graph visualization such as graph description language (Gansner and
North 2000) and data import/export libraries (XML, JSON, etc.) are required.
Finally a web-based repository of sample models of typical architecture patterns and
SE idioms is proposed; this is aimed at contributing to model reuse and collaboration
in the systems modeling community.

312 M. Amissah and H. Handley

Regarding the immediate future of MBSE practice, the next generation of tools
will be able to leverage a growing resource of structured architecture, design, and
operational data to facilitate self-design systems. This will essentially automate
much of the design function particularly activities such as architecture specification,
trade space analysis, design specification, testing, etc.

References

Arnout, G. 2000. SystemC standard. In Proceedings 2000. Design Automation Conference, IEEE
Cat. No. 00CH37106, 573–577. IEEE.

Cook, S. 2012. Looking back at UML. Software & Systems Modeling 11 (4): 471–480.
Friedenthal, S., A. Moore, and R. Steiner. 2014. A practical guide to SysML: The systems modeling

language. Morgan Kaufmann.
Gansner, E.R., and S.C. North. 2000. An open graph visualization system and its applications to

software engineering. Software: Practice and Experience 30 (11): 1203–1233.
Ghosh, D. 2010. DSLs in action. Manning Publications Co.
Object Management Group. 2015. OMG Unified Modeling Language. Version 2.5. Retrieved from

http://www.omg.org/spec/UML/2.5
———. 2017a. OMG Systems Modeling Language. Version 1.5. Retrieved from http://

www.omg.org/spec/SysML/20161101
———. 2017b. Action Language for Foundational UML (Alf): Concrete Syntax for a UML Action

Language. Retrieved from http://www.omg.org/legal/tm_list.htm.
———. 2018. Semantics of a Foundational Subset for Executable UML Models (fUML): Version

1.4. Retrieved from https://www.omg.org/spec/FUML/20180501/fUML_Syntax.xmi
Pidd, M. 2004, December. Simulation worldviews-so what? In Proceedings of the 2004 winter

simulation conference, 2004, vol. 1. IEEE.
Wand, Y., and R. Weber. 1990. Mario Bunge’s Ontology as a formal foundation for information

systems concepts. Studies on Mario Bunge’s Treatise 18: 123.

http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/SysML/20161101
http://www.omg.org/legal/tm_list.htm
https://www.omg.org/spec/FUML/20180501/fUML_Syntax.xmi

Quantitative System Reliability
and Availability Analysis Using SysML

Jaron Chen, Michael Hailwood, and Myron Hecht

Abstract A SysML library and method for calculating system reliability and
availability is described. The method can be used to model and predict reliability
and availability early in the design and continue through detailed design and system
integration. Values for failure rates, restoration rates, recovery probabilities, and
other parameters are stored in specialized reliability blocks that are defined from
a single parent reliability block, and equations for reliability block configurations
(series, parallel, active/standby, and k out of n) have been implemented and included
in the library. The paper includes an example demonstrating the application of the
library model elements and how the library can be extended to include additional
system redundancy configurations.

Keywords System reliability · System availability · MBSE · SysML

1 Introduction

To create systems that have operationally acceptable Reliability, Availability, and
Maintainability (RAM) attributes, developers must consider design issues asso-
ciated with these attributes from the beginning of the design process. System
engineers should define system-level RAM requirements based on user needs,
allocate these requirements to the functional architecture, and further allocate them
into the physical architecture and then to the lower-level subsystems, assemblies,
and components (both hardware and software) (Society of Automotive Engineers
(SAE) 2008). These requirements should drive design decisions as to what level
of rigor should be required of software development, what types of components
should be acquired, how much redundancy, monitoring and diagnostics capabilities,
prognostic indicators, the physical configuration of components to allow for repair

J. Chen · M. Hailwood · M. Hecht (�)
The Aerospace Corporation, El Segundo, CA, USA
e-mail: myron.j.hecht@aero.org

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_27

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_27&domain=pdf
mailto:myron.j.hecht@aero.org
https://doi.org/10.1007/978-3-030-82083-1_27

314 J. Chen et al.

and replacement accessibility, the nature of external support (test equipment, spares,
storage, training, personnel) required.

Although no system developer or product vendor would want to admit that RAM
design attributes are ignored during development until the late phases of the design,
it is common practice. The quantitative and qualitative analyses needed to support
design decisions early in the design are not performed, often because analytical
capabilities are not available or simply because the design leads are not aware
of problems. Model-Based Systems Engineering (MBSE) is intended to support
system requirements, design, analysis, and verification and validation activities
beginning from the conceptual design throughout the development and subsequent
phases (International Council on Systems Engineering 2007). SysML is a widely
used design language which supports MBSE (Object Management Group 2017). As
such, it can be used through all phases of development and even into operation and
sustainment.

This paper describes how SysML and an accompanying library of modeling
elements can be used to perform quantitative system reliability analysis. With
this library, RAM engineering can be integrated into the MBSE process from the
time of user needs analysis and be carried forward through all the later phases
of the development effort. With this capability, more informed decisions and
precise tradeoff analyses can be performed. The net result will be systems that are
operationally suitable for their intended use.

Previous work on the use of SysML for quantitative reliability analysis includes
a method for deriving series/parallel relationships using SysML Internal Block
Diagrams (Liu et al. 2013). However, this work did not describe how system
reliability results could be produced from this analysis from within the SysML tool.
Earlier work by David et al. (David et al. 2009) described how probabilities stored in
an external database could be used in conjunction with SysML to determine priority
risks in Failure Modes, Effects, and Criticality analysis. The Object Management
Group is developing a SysML reliability and availability standard for a profile and
library (Biggs et al. 2019). However, that work does not include reliability block
diagrams. Work describing how SysML constraint blocks could be used to calculate
reliability has also been described, but only for a series system (Myron Hecht 2014).
This paper extends that earlier work by adding model elements for additional system
configurations (passive parallel, passive k out of n, and active/standby) and describes
how this work can be further extended for more types of reliability blocks.

2 Methodology

Our method uses SysML parametric diagrams and an interpreter built into the
SysML tool we used to perform the calculations. Parametric diagrams allow for
modeling of low-level system constraints/requirements with values. While this is
beneficial, the SysML language is still limited by being a descriptive language and
needs a modeling tool with simulation capabilities for the realization of constraint

Quantitative System Reliability and Availability Analysis Using SysML 315

testing. Stemming from our use of Cameo Systems Modeler (CSM) (Cameo
Systems Modeler 2019) for our MBSE environment, we decided to use Dassault
Systemes’ commercial “plugin” Cameo Simulation Toolkit (Cameo Simulation
Toolkit 2019). This plugin specifically adds multiple layers of functionality to CSM,
but the ability to calculate parametric diagrams and pass objects across the SysML
Binding Connector Element is the most important for our reliability analysis. The
definition of any applicable SysML elements with practicality to our work is shown
in Table 1.

As noted above, parametric diagrams are used to model components in a
system and the configuration (series, parallel, k out of n, or active/standby). In our
implementation, part properties are used to hold the necessary reliability values,
and these values are updated when their corresponding part properties are passed
through constraint blocks via constraint parameters. The values on the lowest
level components are provided beforehand by the user. Every constraint block has
two constraint parameters, one that stores the input values and one that stores
the calculated output. Each constraint parameter has a corresponding multiplicity,
which determines how many corresponding part properties a constraint parameter
can have. Depending on the constraint block, an input constraint parameter can
accept a differing amount of part properties, but all the output constraint parameters
will allow for only one connected part property.

Each constraint block has a constraint embedded in them that updates the
availability and failure rate of its corresponding block. Constraints in Cameo usually
involve a set of mathematical expressions that are written up in a scripting language.
Jython, which is an implementation of Python designed to run on Java platforms
like CSM, was used as the scripting language for the constraints, and they evaluate
the system reliability equations shown in Table 2. To evaluate Jython or any other
scripting language, Cameo Simulation Toolkit uses Java scripting API, which allows
for embedding scripting language code into Java applications.

The Jython scripts perform the reliability calculations using basic arithmetic for
the series, parallel, and k out of n blocks. The other constraint blocks, namely,
the redundancy ones, were more complex, involving matrix manipulation to solve
Markov models. In general, constraint blocks will take in as input at least one
reliability block and extract the values it needs, such as failure rate and availability,
to calculate overall availability and failure rate. The constraint block will then output
the calculated availability and failure rate into another reliability block, which will
represent the owning system of the inputs. This can allow for reliability analysis
to be captured across the system hierarchy. In order to allow reliability blocks to
be passed as inputs and outputs, the values within the reliability blocks need to be
updated within the script. Fortunately, Cameo Simulation Toolkit offers a way to
get and set structural feature values like the ones found on part properties and the
reliability block through the Action Language Helper (ALH) class, which is used
within the scripts. A summary of the available constraint blocks can be found in
Table 2.

316 J. Chen et al.

Table 1 Summary of SysML elements

Model element Description

SysML block This is the foundational element of SysML that will represent our
system components in an MBSE environment. A general SysML
block includes 7 different compartments. This library and profile use
two of them: Value and part properties

Abstract reliability
block

The reliability block is a SysML block that has been given a
stereotype <<Reliability Block>>. General SysML blocks to inherit
value properties associated with reliability from the Abstract
Reliability Block required for reliability and availability prediction.
The relationship is structurally created with a generalization
(inheritance) relationship of system component to the reliability
block. Consequently, any instance of a system component is of type
Reliability Block, which is an important precondition for constraint
blocks

Value type A value type defines a kind of value (numerical, character, or more
complex). Value types used in the reliability profile and library are:
Repair rate (restorations per hour, applicable to both automated and
manual restoration actions)
Availability (proportion of uptime, a decimal number with a range
between 0 and 1)
Failure rate (failures per hour)
k – Number of system components necessary to operate in a k out of
n system, integer
n – Number of replicated system components available, integer
Switchover probability (active standby)

Value properties In SysML, a value property is a quantity in a block. For reliability
analysis, value properties are defined by the value types identified
above

Part properties In SysML, a part property is a lower-level component of a
higher-level block, i.e., the lower-level blocks (parts) are owned by
the higher-level block. In the reliability profile and library, the value
properties in the component blocks are combined to yield a
system-level reliability

Instances: In SysML, instances are data structures contained in a model and
defined by blocks whose value properties have been assigned values.
For the reliability profile and library, instances contain the values
used in system reliability calculations

Constraint blocks In SysML, constraint blocks contain mathematical or logical
formulas. Inputs and outputs are passed into a constraint block using
a port-like structure called a parameter. Parameters are connected to
value properties using binding connectors (see below). In the
reliability profile and model, constraint blocks contain equations for
series, parallel, k out of n, and active/standby redundancy

Binding connectors: This element connects two SysML parts and sets each end of a
connection between two elements equal. This element goes hand in
hand with our constraint blocks because the binding connectors are
connected to constraint parameters to make each end equal

Quantitative System Reliability and Availability Analysis Using SysML 317

Table 2 Summary of reliability constraint blocks

Name Type Availability expression

Series Series of n components As = ∏n
i=1Ai

Parallel n parallel components AS = 1 − ∏n
i=1 (1 − Ai)

k out of n Homogenous k out of n AS = ∑n
k

(
n
k

)
Ak(1 − A)n−k

Active/standby Active/standby parallel
system, imperfect switching

AS = P0 + P1
P = S−1U

S =
⎛

⎜⎝
1 1 1

(1 + c)λ − (μ + λ) 0

(1 − c)λ λ −μ

⎞

⎟⎠

P0 = Probability of no component failed
P1 = Probability of 1 component failed
λ = Component failure rate
μ = Component restoration rate
c = Recovery success probability

Fig. 1 Reliability block diagram of example system

3 Example

This example will demonstrate application of the reliability profile to an example
system. Figure 1 shows the example system in the form of a reliability block diagram
(RBD). There are four subsystems, A, B, C, and D, all in series. Subsystem A is an
active/standby redundant system with two channels, each having two components in
series (A1 and A2). Subsystem B is a non-redundant subsystem. Subsystem C has
four channels, with two required in a passive parallel configuration, and Subsystem
D has three channels, with only one required in a passive parallel configuration.

The SysML block definition diagram (BDD) in Fig. 2 represents (models) the
hierarchical composition of the system. Although this hierarchical composition
does not show the interconnection among the lower-level components, it is not

318 J. Chen et al.

Fig. 2 System composition

necessary. For the RAM analysis methodology shown here, the use of parametric
diagrams with constraint properties is sufficient and averts a limitation in SysML
and the Cameo Systems Toolkit used for the quantitative analysis.1 However, it is
required that the analyst understand the series, parallel, or other configurations of
the component blocks in order to correctly perform the analysis.

3.1 Using the Abstract Reliability Block

As noted above, the abstract reliability block is used as a parent to provide the
general SysML blocks that are part of the system analysis to inherit the value
properties necessary for our calculations such as “Availability,” “Failure Rate,”
“Repair Rate,” and also “k” and “n” recovery probabilities and others shown
in Table 1. Figure 3 shows the general SysML blocks are specialized to inherit
these features. This generalization to the reliability block is created for all blocks
representing system components, so all blocks gain the value types and properties
needed for reliability analysis. However, this step only creates the slots that will hold
the values. Only when we instantiate the blocks in the process of creating parametric
diagrams described below will we be able to add values.

1The parametric diagram’s functionality inherits limitations from both SysML and the CST, and as
such we must make an assumption. Part properties on each composition association’s composite
have a multiplicity of 1. For any valid configuration of a part requiring a higher multiplicity, the
reliability MBSE profile will satisfy this requirement by using multiple connections or changing
slot values equating to value properties instantiations on the parts. While this may not affect small
systems, larger systems with higher levels of complexity will need to take this into consideration.
Our example configuration in Figure 1 is relatively simple and will not be affect by the previously
mentioned limitations.

Quantitative System Reliability and Availability Analysis Using SysML 319

Fig. 3 Specialization relationship

Table 3 Application of constraint blocks

Reliability/availability analysis operation Applicable constraint block

Rollup of Component A1 and Component A2 in series in each
channel of Subsystem A

Series

Rollup of active and standby channel in Subsystem A with 0.1
probability of switchover failure

Active/standby

Rollup of the Subsystem D components (Component D1,
Component D2, component D3) in parallel

Parallel

Rollup of Subsystem C which has four channels in parallel and
only two are required

K out of n

Rollup of system-level reliability (Subsystems A, B, C, and D) Series

3.2 Reliability/Availability Modeling

The next step in the process is the application of the constraint blocks. Reliability
and availability analyses are performed “bottom-up,” i.e., component values are
calculated, followed by the channels and subsystems. The final calculation is taken
the subsystem reliability and availability probabilities and combining (usually by
multiplication because independence is assumed) to find the system level success
probability (reliability or availability, depending on the application of the system
and the nature of the requirements). Table 3 shows the allocation of the constraint
blocks listed in Table 2 to the system described in Fig. 1.

The constraint blocks are brought into the model by declaring them using the
block definition diagram shown in Fig. 4.

3.3 Calculation of Results

The next step is instantiating the blocks and constraints and blocks defined in Figs.
2, 3, and 4 on a parametric diagram and binding the parameters (i.e., ports) on the
constraint blocks to value properties in the system blocks as shown in Fig. 5.

320 J. Chen et al.

Fig. 4 Constraint blocks definition

After an instance is created, the failure rate and repair rate are manually added
for the lowest level elements’ slot values represented by value properties. For the
purposes of the demonstration, all component failure rates (Components A1, A2, B,
C1, C2, C3, C4, D1, D2, D3) were set to 0.01 (MTBF of 100 h), and all restoration
times were set to 1 h (MTTR of 1 h).

When the slots are filled with these values for those instances, the Cameo
Simulation Toolkit (CST), the interpreter within a module of the CSM tool,
calculates all the other instance slots cascading up to the highest level (channel,
subsystem, and system availability). Table 4 shows the results.

The system availability has been calculated to be 0.987 as shown on the top line
of Table 4.

Quantitative System Reliability and Availability Analysis Using SysML 321

Fig. 5 System reliability/availability parametric diagram

Table 4 Results of model calculations

Name Availability Failure rate Repair rate k n

System 0.9874968901 0.01262861 1.00 1 1
System.overallSubA 0.9973766705005475 0.00263022 1.00 1 1
System.overallSubC 0.9999961464688174 2.4E-5 1.00 1 1
System.subsystem A 0.9802960494049603 1.99E-2 1.00 1 2
System.subsystem A.component A2 0.9900990099 0.01 1.00 1 1
System.subsystem A.component A1 0.9900990099 0.01 1.00 1 1
System.subsystem B 0.9900990099 0.01 1.00 1 1
System.subsystem C 0.9900990099 0.01 1.00 2 4
System.subsystem D 0.9999990294098517 1.00E-6 1.00 1 1
System.subsystem D.component D1 0.9900990099 0.01 1.00 1 1
System.subsystem D.component D2 0.9900990099 0.01 1.00 1 1
System.subsystem D.component D3 0.9900990099 0.01 1.00 1 1

322 J. Chen et al.

4 Conclusions

This paper has demonstrated that it is possible to develop complex system reliability
and availability within SysML using a small library of constraint blocks and a single
abstract reliability block. The method is scalable. Authors have used this approach
to model the reliability and availability of a large satellite ground control system
consisting of more than 40 virtual machines and 4 equipment racks. Future work
includes (1) adding more constraint blocks to model more types of reliability and
availability configurations and (2) relaxing the assumption of a single multiplicity.

References

Biggs, Geoffrey, Andrius Armonas, Tomas Juknevicius, Kyle Post, Nataliya Yakymets, and
Axel Berres. July, 2019. OMG standard for integrating safety and reliability into MBSE:
Core Concepts and Applications. International Council on System Engineering (INCOSE)
International Symposium, Orlando, FL.

Cameo Simulation Toolkit. 2019. [Online]. Available: https://www.nomagic.com/product-addons/
magicdraw-addons/cameo-simulation-toolkit#intro.

Cameo Systems Modeler. 2019. [Online]. Available: https://www.nomagic.com/products/cameo-
systems-modeler.

David, Pierre, Vicent Idasiak, and Frederic Kratz. 2009. Improving reliability studies with SysML.
IEEE Reliability and Maintainability Symposium.

International Council on Systems Engineering. 2007. Systems Engineering Vision 2020 (INCOSE-
TP-2004-004-02), September.

Liu, Xaio, Yi Ren, Zili Wang, and Linlin Yiu. 2013. Modeling method of SysML-based reliability
block diagram. In International Conference on Mechatronic Sciences, Electrical Engineering,
and Computing (MEC). IEEE: Shenyang.

Myron Hecht. 2014. SysML reliability modeling of ground based systems with virtualized
architectures. Los Angeles: Ground Systems Architecture Workshop. Available at https://
gsaw.org/wp-content/uploads/2014/03/2014s05hecht.pdf.

Object Management Group. 2017. OMG SysML Version 1.5 Specification. Available online at http:/
/www.omg.org/spec/SysML/1.5/.

Society of Automotive Engineers (SAE). 2008. SAE-GEIA-STD-009, Reliability Program Stan-
dard for System Design, Development, and Manufacturing, August.

https://www.nomagic.com/product-addons/magicdraw-addons/cameo-simulation-toolkit#intro
https://www.nomagic.com/products/cameo-systems-modeler
https://gsaw.org/wp-content/uploads/2014/03/2014s05hecht.pdf
http://www.omg.org/spec/SysML/1.5/

Part V
Advances in MBSE

Towards Making the Business Case
for MBSE

Shatad Purohit and Azad M. Madni

Abstract In the face of ever-increasing system and program complexity, several
aerospace, automotive, and defense organizations have already begun transitioning
to model-based systems engineering (MBSE). A key challenge that organizations
face is determining whether it makes business sense and whether it is technically
feasible to transition to MBSE given legacy and budgetary constraints. This paper
presents a methodological framework for analyzing whether an organization is
likely to benefit from MBSE implementation on large-scale system programs. In this
approach, MBSE implementation is characterized in terms of: system complexity,
environment complexity including regulatory constraints, and system lifespan.
Twelve major industry sectors are evaluated to determine whether MBSE can be
of benefit to that sector. Then cost-benefit analysis is used to justify the decision to
invest in MBSE. The approach is generic and can be applied to different industry
sectors.

Keywords Model-based systems engineering · Return on investment · Economic
analysis · MBSE methodology · MBSE tools · Document-centric systems
engineering

1 Introduction

Industries which can potentially benefit from model-based systems engineer-
ing (MBSE) can be grouped into 12 major sectors: transportation and mobility,
aerospace and defense, industrial equipment, energy and utilities, architecture and
construction, life sciences, high-tech, marine and offshore, financial and business
services, consumer goods and retail, natural resources, and consumer packaged
goods and retail. The different industry sectors need the ability to quantify the

S. Purohit (�) · A. M. Madni
University of Southern California, Los Angeles, CA, USA
e-mail: shatadkp@usc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_28

325

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_28&domain=pdf
mailto:shatadkp@usc.edu
https://doi.org/10.1007/978-3-030-82083-1_28

326 S. Purohit and A. M. Madni

benefits of MBSE investment to justify making an investment in MBSE. Despite the
dearth of such quantitative data, some industry sectors (e.g., aerospace, energy, and
automotive) with systems engineering (SE) practices in place have begun to tran-
sition to MBSE. Others (e.g., consumer electronics, healthcare, and construction)
who have not adapted SE thus far are turning to SE to manage both development
and management complexity in their respective markets. Yet others have begun
exploring possible “on-ramps” to accelerate MBSE implementation that ensure
that their ongoing operations are not disrupted. However, most industries, with
traditional SE practices in place, are looking for ways to justify MBSE investment
to upper management.

Systems in the 12 industry sectors identified above differ along 3 dimensions:
system complexity, characteristics of the operational environment in which they
operate, and system lifespan. For example, an aircraft has high complexity and
long lifespan and operates in a strict regulatory environment. On the other hand,
consumer electronics has relatively low complexity, short lifespans, and a relatively
loose regulatory environment. Since industry sectors differ from each other along
these dimensions and the amount of investment and potential gains can be expected
to vary across industry sectors, the MBSE strategy needs to be industry specific.

2 Approach

2.1 Primary Methodology

The primary methodological flow begins with an analysis of industry sectors. We
investigated whether MBSE has been successful in the specific industry sector. If the
MBSE has not been successful in the given industry, then we examined the reasons.
If the causes are systemic, then MBSE adoption is not advised; on the other hand,
if the problem is related to implementation, then limitations and constraints related
to implementation need to be analyzed and incorporated in the constraint analysis
along with other restrictions related to legacy data, technology, cost, and schedule.
In the next step, we propose to investigate the systems engineering (SE) processes
associated with a specific company, which gives insights on whether the company
is ready to adopt the MBSE or SE processes need to be adjusted. Figure 1 presents
the methodological flow.

2.2 Detailed Approach

Our methodology is based on a multi-criteria evaluation framework for analyzing
the costs and benefits of MBSE adoption. The inputs to the evaluation framework
include (a) specifications and reports on MBSE tools; (b) lessons learned from

Towards Making the Business Case for MBSE 327

Fig. 1 Methodological flow

industry experts who have personal experience in MBSE implementation; and
(c) literature on the value proposition and economic justification of MBSE. The
literature on MBSE tools is needed to understand the amount and type of training
needed in general engineering, systems engineering, modeling languages, and
methodology. MBSE tool specifications and reports provide pertinent information
on the effort, cost, and talent required to implement MBSE. In addition, keynote
talks at various conferences and workshops from government and industry experts
provide a source of lessons learned along with anecdotal information pertaining to
investments and returns associated with traditional SE and MBSE.

The overall methodology takes into account interest rates, inflation rates, and
risk premiums when evaluating viability of MBSE adaptation and implementation.
The evaluation framework comprises: (a) SE life cycle processes; (b) guidelines
for tailoring SE life cycle processes for different industries; (c) key problem
characteristics such as system complexity, environment complexity, and system
lifespan that help assess MBSE value proposition for the different industries; (d)
parametric cost curves for traditional systems engineering and MBSE; (e) popular
MBSE tools and their coverage of the SE life cycle; (f) Process Structure Matrix
(PSM) approaches for process analysis, process sequencing, and database of lessons
learned on major government programs. The analysis of system life cycle processes
is essential to ensure that the framework is sufficiently general and applicable to a
wide range of industry sectors. Since each industry sector has somewhat different
processes, our approach calls for analyzing processes from the perspectives of flow,
dependencies, and parallelism and evaluating their temporal characteristics. These
factors are used to calculate the net present worth of investments and returns. For
example, there could be several real-world situations in the transition to MBSE. In
such cases, the framework can be applied to ensure maximum return on already
made investments.

In our approach, we parameterize the MBSE implementation problem using
the system’s internal, external, and temporal (i.e., lifespan) characteristics. These
characteristics were selected because they enable comparison of different industries
in terms of the MBSE value proposition for each industry sector. This parameteri-

328 S. Purohit and A. M. Madni

zation revealed that some industry sectors may not benefit significantly from MBSE
implementation in their current circumstance, but with rapidly changing internal
and external characteristics of systems in those sectors, MBSE implementation may
well turn out to be beneficial at some point in the future. The aforementioned three
problem characteristics also provide insights into the amount of time needed in
relative terms to accomplish MBSE implementation in the different industry sectors.
With this parameterization, we are able to cluster industry sectors based on their
similarities. These clusters can then help identify which sectors stand to potentially
benefit from MBSE implementation. Upon applying this MBSE implementation
problem characterization to each sector, it became apparent that not all sectors
derived the same benefit from MBSE implementation. This was quite expected
because based on the systems in each sector, the MBSE implementation problems
are different and vary in difficulty. The clustering of industry sectors also allowed
us to address MBSE implementation for each cluster as a whole. Thus, a MBSE
approach successfully employed in one industry sector within a cluster can also be
successfully applied to other industry sectors in the same cluster.

Evaluation metrics are typically associated with those variables whose values
we want to estimate using the methodology. The metrics encompass both generic
measures such as effort, cost, and cycle times and domain-specific measures. The
results of the evaluation are presented in the form of graphs and charts to facilitate
comprehension. Often, these results can contribute to actionable insights into when,
where, and what degree MBSE should be adopted to economically justify MBSE
investments and returns for a particular system development project or a family of
projects.

The key steps in the overall methodology begin with characterizing the MBSE
implementation problem in terms of system complexity, environment complexity,
and system lifespan. These attributes are used to characterize different industry
sectors in terms of their unique characteristics. The evaluation results along with
budgetary constraints are used to perform cost-benefit tradeoff analysis. Invest-
ments, payback, and their time frame are used in evaluating both benefits and
costs. If the benefits justify the cost of MBSE investment, then the next steps in
the methodology are to plan, schedule, and cost the effort to transition to MBSE.
After ensuring that the costs are within budget constraints, the plan is executed. If
on the other hand the benefits do not justify the cost, the organization stays with the
status quo (i.e., traditional SE practices).

2.3 Economic Analysis of Traditional SE Approach

Traditional document-centric systems engineering approaches tend to have hidden
costs. To illuminate the economics of document-centric SE approaches, we present
an important curve (Fig. 4) (Madni and Purohit 2019). The percentage cost for each
life cycle stage for systems engineering projects was evaluated based on a statistical
analysis conducted on the US Department of Defense, as reported by the Defense

Towards Making the Business Case for MBSE 329

Acquisition University (Forsberg et al. 2015). From the evaluation, we deduced that
investments in the early phases of system life cycle are comparatively lower than
they are in the later phases. Furthermore, concept, design, and development phase
cumulatively account for 20% of the total life cycle cost. The remaining 80% of
the cost occurs in the production, testing, operations, support, maintenance, and
disposal phases.

From an analysis of cost over the system life cycle for traditional SE, we can
create an approximate cost profile for SE initiatives as shown in Fig. 4. The red curve
indicates the traditional SE project cost across the system life cycle. In this figure,
the ordinate (i.e., the vertical axis) represents normalized system life cycle cost, and
the abscissa (i.e., the horizontal axis) represents time. As shown in this figure, SE
investment is relatively low in the early stages of the system life cycle. Specifically,
for conceptual design and preliminary design, investments are relatively low, but for
detailed design, manufacturing, production, and operation, the investment increases
sharply.

2.4 Economic Analysis of MBSE Approach

While cost curves for SE projects are described, it is difficult to find similar cost
curves for MBSE projects. This is because MBSE is a relatively more recent
development, and therefore, economic analysis data for MBSE initiatives is not
yet available. Therefore, we took a different approach in our study to approximate
cost curves for MBSE projects. Specifically, we combined historical data (evidence)
from a space mission with current MBSE coverage of the system life cycle processes
using the ISO 15288 process standard. One source of the former was a keynote
address at the 2016 No Magic World Symposium. The keynote speaker spoke
specifically about the scale of the investment to implement MBSE to “save” NASA’s
Mars mission with an overall project cost of $327 M (Technology & Enterprise
Architecture 2016). According to this speaker, an initial MBSE investment of $5–
$10 M from the project budget could have immeasurably helped that project. We
gathered additional evidence from a project manager from the industrial equipment
sector.

He indicated that for a $40 M equipment development project, basic MBSE
implementation took less than 1% additional investment to cover requirement
management, functional allocation, traceability, document generation, verification,
and validation. However, in this instance his team did not employ MBSE to
cover system analysis, simulation, and detailed integration with the design and
development processes of the system life cycle. From these sources, we were able
to make an informed inference about the relative cost of MBSE investment for a
system development project. Even so, it is not feasible to identify how such costs
should be distributed over the system life cycle. Therefore, we need to analyze
MBSE investment over the system life cycle based on the coverage of the system life
cycle by MBSE tools. To this end, we examined MBSE tool coverage of system life

330 S. Purohit and A. M. Madni

cycle processes. According to “System Life Cycle ISO/IEC/IEEE 15288 2015(E):
Processes in System Life Cycle,” there are four major processes that characterize the
system life cycle: technical processes, technical management processes, organiza-
tional project-enabling processes, and agreement processes (IEEE 2012). These four
major processes consist of 30 sub-processes. Each sub-process consists of activities,
and each activity consists of tasks. We evaluated the coverage of MBSE tools for
system life cycle processes for each task using four popular MBSE tools (e.g.,
No Magic Cameo Systems Modeler, IBM Rational Rhapsody, Eclipse Papyrus, and
Eclipse Capella) that are representative of the life cycle coverage provided by MBSE
tools. The data associated with SE life cycle process coverage by MBSE tools
provides important insights into the temporal spend profile for MBSE investment
over the system life cycle.

2.5 System Life Cycle Processes

In our study we evaluated the major MBSE tools against ISO 15288 processes
(which define the system life cycle and coverage requirements). Once again, we
decomposed the processes into activities and activities into tasks (Table 1). There
are 14 technical processes, 54 activities, and 240 tasks that resulted from the
decomposition (IEEE 2012). It was rather straightforward to determine whether or
not the exemplar MBSE tools addressed each task. Based on the total number of
tasks in a given process and the number of tasks covered by the MBSE tool, we were
able to calculate the percentage coverage by each tool of the corresponding technical
process. Since technical processes are the primary focus of MBSE tools, our study
focused mostly on technical processes. The remaining processes (i.e., technical
management, organizational project-enabling processes, and agreement processes)
were analyzed using system life cycle process dependency structure matrix (DSM)
shown in Fig. 2.

Our evaluation is based on research papers from the SE literature, our hands-
on experience with MBSE tools, available documentation on MBSE tools, and
models that we specially developed to complete the evaluation. To this end,
our study took into account plugins which allow these MBSE tools to integrate
with third-party tools related to requirement engineering, PLM, CAD integration,
analysis, simulation, design optimization, real-time and embedded development,
publishing, reviewing, and collaboration (No Magic Documentation 2018; Eclipse
Capella Documentation 2018; Eclipse Papyrus Documentation 2018; IBM Rational
Rhapsody Documentation Library 2018). Figure 3 presents the percentage coverage
of technical processes by MBSE tools.

Towards Making the Business Case for MBSE 331

Table 1 System life cycle ISO/IEC/IEEE 15288 2015(E): Processes in system life cycle (IEEE
2012)

Technical Processes

Technical
Management
Processes

Organizational
Project-Enabling
Processes Agreement Processes

1. Business or
Mission Analysis
Process
2. Stakeholder Needs
& Requirement
Definition Process
3. System
Requirements
Definition Process
4, Architecture
Definition Process
5. Design Definition
Process
6. System Analysis
Process
7. Implementation
Process
8. Integration
Process
9. Verification
Process
10. Transition
Process
11. Validation
Process
12. Operation
Process
13. Maintenance
Process
14. Disposal Process

1. Project Planning
Process
2. Project
Assessment and
Control Process
3. Decision
Management Process
4. Risk Management
Process
5. Configuration
Management Process
6. Information
Management Process
7. Measurement
Process
8. Quality Assurance
Process

1. Life Cycle Model
Management Process
2. Infrastructure
Management
Processes
3. Portfolio
Management Process
4. Human Resource
Management Process
5. Quality
Management Process
6. Knowledge
Management Process

1. Acquisition Process
2. Supply Process

2.6 Sequencing System Life Cycle Processes

After quantifying the coverage provided by MBSE tools of system life cycle
processes, we identified where these tools are employed in the system life cycle.
To this end, we created a Simulink® model of all 30 processes and their interfaces
using the processes identified in the INCOSE SE Handbook (Madni and Purohit
2019). We then converted this model in to a Process Structure Matrix (PSM) shown
in Fig. 2. From the PSM, it became possible to evaluate the parallel, sequential,
and coupled processes. We sequenced processes in accord with their coupling,
dependency, and parallelism. After sequencing the PSM, it became evident that
MBSE tools today are focused primarily on the front end of the system life cycle.
Furthermore, for SE projects that use an MBSE approach, projects can be expected

332 S. Purohit and A. M. Madni

Fig. 2 Sequenced process dependency structure matrix processes. (Madni and Purohit 2019)

Fig. 3 Percentage coverage of system life cycle processes by the four MBSE tools that we
selected. (Madni and Purohit 2019)

to make higher investment in conceptual design and preliminary design stages. In
these upfront engineering phases, considerable investment goes into the preliminary
design stage. Figure 3 indicates percentage coverage of MBSE tools for system
life cycle processes. In addition, with MBSE, substantial cost savings can be
expected during the latter stages of design. Since the MBSE approach is likely to
reduce the number of defects in latter stages of design, it follows that the cost in
these later stages will be significantly lower in comparison with the traditional SE
approach. The blue curve in Fig. 4 presents an approximate cost curve associated
with the MBSE spend profile based on the life cycle analysis and interaction with

Towards Making the Business Case for MBSE 333

Fig. 4 MBSE factors related to investments and gains. (Madni and Purohit 2019)

industry practitioners. As seen in this figure, MBSE cost is greater in conceptual and
preliminary design phases. In fact, the majority of the cost associated with MBSE
implementation can be expected to be in the preliminary design phase.

2.7 Cost Curves for SE Programs with MBSE Approach

The comparison of investments in MBSE and in traditional (i.e., document-centric)
SE is depicted in Fig. 4. At the conceptual and preliminary design stages, MBSE
projects require greater investment than traditional SE projects. However, in the
latter stages of design MBSE projects require substantially lower investment than
traditional SE projects. For economic justification, the net present worth (NPW) of
investment should be strictly less than the NPW of gains resulting from the MBSE
approach in the system life cycle.

As noted earlier, with MBSE, organizations invariably spend more money
upfront and early in the life cycle. Due to the time value of money, additional
expenditures early in the system life cycle should be considerably less than the
gains from the latter stages in the system life cycle. Discounting and converting
gains into present worth provide an accurate measure of return on investment
(ROI). Clearly, gains should be significantly more than investments to make MBSE
implementation successful. From approximate calculations on sample projects, the
NPW of traditional SE projects and MBSE projects is found to be comparable.

However, there exists a tipping point in MBSE implementation, where the NPW
of investment exceeds the gains from MBSE. This point could happen because of
excess investment early in the life cycle or lower than expected gains later in the life
cycle. The ROI also depends on the timing of investments and gains. The investment
NPW for traditional SE and MBSE is calculated from the following equations.

Investment NPW approximation for traditional SE P = ∑n
k=0Fk(1 + i)−k ≈

36.6597C. Investment NPW approximation for MBSE P = ∑n
k=0Fk(1 + i)−k ≈

34.7564C, where C is assumed to be a scaling constant, n is the number of time

334 S. Purohit and A. M. Madni

interval for investments considered to be 10 from the cost curves, i is overall interest
rate for time interval considered to be 3.5%, and Fk is investment made after k
time intervals depicted in the cost curves as normalized system life cycle cost.
Because approximate NPW investment for traditional SE and MBSE is comparable
in our study, the results are inconclusive about which is the preferred option. This
recognition suggests the need for a deeper analysis of factors related to MBSE
investment and gains.

2.8 Economic Analysis of MBSE Implementation

As discussed in the previous section, SE initiatives that employ an MBSE approach
require greater upfront investment than is needed with traditional SE. However,
such initiatives can be expected to produce greater gains in the latter stages of the
system life cycle (Architecture and Systems Engineering: Models and Methods to
Manage Complex Systems 2017). Therefore, an analysis of factors related to early
investment in MBSE and factors related to gains in the latter stages from MBSE
can be expected to provide useful insights for economic justification of MBSE
implementation.

2.9 Factors Related to MBSE Investment

MBSE investment covers costs associated with MBSE process definition, infras-
tructure, training, and model-related expenses. Each cost is briefly described next.

Process definition cost is a key consideration in calculating the cost of adopting
an MBSE methodology for organization-wide implementation. MBSE process
definition depends on the MBSE methodology selected. There are several MBSE
methodologies, such as INCOSE Object-Oriented Systems Engineering Method
(OOSEM), Object-Process Methodology (OPM), and JPL State Analysis (SA)
(Estefan 2007). Implementing a particular methodology and generating models
using that methodology have different costs associated with them. Infrastructure
cost is another cost category. Infrastructure cost consists of licenses, equipment,
environments, processing, and collaboration. Infrastructure cost for this study is
assumed to be specific to projects. In general, infrastructure cost is incurred at the
enterprise level, but that can be shared among projects to quantify costs specific
to each project. Training cost is a distinct category. It involves training on tools,
training on modeling languages, and training employees in systems engineering
and MBSE. Training cost involves the cost for learning curves and organization-
level resistance to change. Model-related costs are a major source of costs. Model
development efforts include identifying the goal, purpose, and scope of the model,
improving model capabilities, defining the intent of use, and configuring the model

Towards Making the Business Case for MBSE 335

for the intended number of users. Building federated, centralized, or hybrid models
have different costs (Architecture and Systems Engineering: Models and Methods
to Manage Complex Systems 2017). The scale of the model is also a cost modifier.
Unifying the model format has its own cost (Madni and Sievers 2018). Maintaining
model consistency is a source of costs. Building models are not enough; model
verification needs to be performed at each stage of model development to ensure
model correctness and credibility (Architecture and Systems Engineering: Models
and Methods to Manage Complex Systems 2017). Identifying criteria of model
verification and determining the right level of model abstraction have their own
costs (Carroll and Malins 2016). Identifying opportunities of model trading and
executing it in the right context also require effort. In the case of MBSE, an
increase in the number of stakeholders working on central digital models makes the
models more prone to errors and requires model curation efforts. Model curation
consists of gauging model characteristics, selecting models for implementation,
and devising model policies (Architecture and Systems Engineering: Models and
Methods to Manage Complex Systems 2017). Configuration management efforts
include maintaining ownership, managing data rights and distribution of rights,
reuse, or copyrights.

2.10 Factors Associated with MBSE Gains

The factors that relate to MBSE gains include early defect detection, reuse, product
line definition, risk reduction, improved communication, usage in supply chain,
and standards conformance (Architecture and Systems Engineering: Models and
Methods to Manage Complex Systems 2017; Estefan 2007; Madni and Sievers
2018; Carroll and Malins 2016). It is well known that the later in the system life
cycle that defects are detected, the greater the cost of correcting the defects. The
ability of MBSE to identify defects early in the system life cycle can contribute
to significant cost savings and thereby provide significant gains (Architecture and
Systems Engineering: Models and Methods to Manage Complex Systems 2017).
Another key factor is the ability to use legacy models and data during the latter
stages of system life cycle to eliminate extraneous activities and reduce rework. The
ability of MBSE to exploit legacy models and data also contributes to economic
justification. Since individual projects may not have the luxury of time to work
on data reuse, additional measures are needed at the enterprise management level
to incentivize projects to achieve this reuse. In particular, commercial aircraft and
automobiles which have product lines with variants can benefit from model and
data reuse. MBSE can be expected to provide significant gain to define product
line characteristics because of single, centralized configurable system models
(Estefan 2007). The adoption of MBSE can be expected to increase confidence
while reducing risks related to both processes and products. Also, with increasing
system complexity, it is becoming increasingly difficult to account for emergence.
Therefore, risk reduction in complex systems is a significant gain (Carroll and

336 S. Purohit and A. M. Madni

Malins 2016). With centralized digital repositories and data analysis capability,
MBSE promises to increase communication efficiency and reduce feedback loops.
These characteristics can potentially provide important gains (e.g., speed up the
process) during the system life cycle. MBSE also provides opportunities to share
data and knowledge in timely fashion, which translates into increased supply
chain efficiency (Madni and Sievers 2018). Additionally, MBSE provides cost
savings through quick traceability mechanisms that are built into today’s modeling
environments. However, the ever-increasing complexity of systems in multiple
domains is making it increasingly difficult to conform to standards.

From the analysis of factors related to both investments and returns/gains, it
became apparent that MBSE needs to derive value from a variety of systems
engineering activities across the system life cycle to produce convincing economic
justification. In other words, using model-based approach solely for requirements
engineering is not enough. The use of integrated digital models for data analysis,
trade studies, decision support, and communication is necessary throughout the
detailed design, implementation, production, maintenance, retrofit, operation, and
retirement stages of the system life cycle.

2.11 Assessing MBSE Implementation Benefit

The factors associated with MBSE investment and expected gains depend largely on
the system’s intrinsic characteristics such as complexity, operational environment
characteristics, and system lifespan. The system’s complexity can be considered to
be a function of the number of unique components in the system, the interactions
between them, the amount of knowledge required for developing the system, and
the amount of information needed to describe the system (De Weck et al. 2011;
Kolmogorov 1983). A system’s environment can be characterized in terms of the
number of stakeholders and the number of external entities the system needs to inter-
act with which are outside the system’s boundary and the regulatory environment.
In other words, the system’s environment consists of stakeholders, external systems
which impose regulatory and interface constraint, and applicable standards that the
system needs to conform to. This factor includes system interaction with humans or
entities outside the system boundary. A system’s lifespan can be characterized by
the system’s useful life. The system life cycle spans the time required for concept
formulation, development, production, operation/utilization, and retirement stages.
Before transitioning to operation, a system must conform to the various applicable
standards.

As discussed earlier, we parameterized MBSE implementation problem using
systems complexity, environment complexity, and system lifespan as distinguishing
characteristics. We then identified those industry sectors in which maximum gains
are likely to be achieved with the adoption of MBSE. Figure 5 presents MBSE
implementation problem in terms of system complexity, environment complexity,

Towards Making the Business Case for MBSE 337

Fig. 5 Industry sectors on approximate scale of system complexity, environment complexity, and
lifespan. (Madni and Purohit 2019)

and system lifespan for 12 industry sectors. The constructed scale of system
complexity, environmental complexity, and lifespan are divided into three segments:
high, medium, and low. For example, aerospace systems such as airliners have more
than ~100,000 parts (high), which is more complex than high-tech industry sector
systems like copying machines which have ~2000 parts (medium). The systems used
by household consumers on a daily basis have up to ~300 parts (low) (Miller 1956).
Here, complexity of systems is determined on the basis of the number of unique
components, interactions between components, amount of knowledge required to
develop the system, and amount of information needed to describe the system. High,
medium, and low scales of environmental complexity are evaluated based on the
number of stakeholders, external systems which impose regulatory and interface
constraint, and applicable standards that the system needs to conform to related to
a particular industry sector. Systems with a relatively short useful lifespan of 0–1
year are attributed to the low score in parameterization compared to systems with a
lifespan of more than 30 years.

3 Conclusion

This paper has presented a methodological framework to justify the business case for
MBSE implementation. MBSE is compared to traditional SE approaches in terms
of upfront investment and expected gains. Compared to traditional SE, MBSE is
shown to require greater upfront investment with gains showing up in the latter
stages of the system life cycle. The different sectors are characterized in terms
of implementation problem characteristics (i.e., system complexity, environment
complexity, and system lifespan). These factors are the key discriminators for
evaluating MBSE implementation in the different sectors. Specifically, these factors
are used to evaluate the different industry sectors in terms of MBSE costs and MBSE
returns (Fig. 6).

338 S. Purohit and A. M. Madni

Fig. 6 3D visual representation of MBSE implementation problem in industry sectors. (Madni
and Purohit 2019)

By parameterizing the MBSE implementation problem in terms of system com-
plexity, regulatory and operational environment complexity, and system lifespan,
we were able to identify those industries that stand to derive the most value from
the adoption of the MBSE approach. As shown in Fig. 6, MBSE can be expected
to greatly benefit the transportation and mobility, aerospace and defense, energy,
processes and utilities, and natural resources industries. With increasing complexity
of systems in the marine and offshore sector, architecture, engineering and construc-
tion, life sciences, and industrial equipment sectors, MBSE can potentially play an
important role throughout the system life cycle. Industry sectors such as financial
and business services and high-tech are not likely to benefit from MBSE as much as
the other industries. From our study, systems related to home, lifestyle and fashion,
consumer packaged goods, and retail are likely to benefit less than the other sectors.

In sum, the MBSE value proposition for a particular industry and the affordable
transition from the current practice to a model-based approach are the two key
challenges that need to be addressed in quantifiable terms before committing to
an MBSE implementation. By identifying when and where in the system life cycle
processes MBSE is likely to have a major impact and then quantifying the factors
that contribute to MBSE investments and gains, organizations can make informed
decisions. By parameterizing individual SE projects in this way, we can identify the
leverage points where maximum gains are likely to be achieved with the adoption
of MBSE. Future research can employ this framework with additional factors to

Towards Making the Business Case for MBSE 339

provide more comprehensive economic justification for MBSE in the different
industries. Finally, MBSE is itself evolving with a great emphasis on experiential
storytelling where economic analysis can be used to engage broader stakeholder
communities (Madni et al. n.d.).

References

Architecture and Systems Engineering: Models and Methods to Manage Complex Systems. 2017.
Course 3 Model-Based Systems Engineering: Documentation and Analysis. Massachusetts
Institute of Technology Online Professional Education Program. Available online: https://
sysengonline.mit.edu/course-3/. Accessed on 7 Aug 2017.

Carroll, E., R. Malins. 2016. Systematic Literature Review: How Is Model-Based
Systems Engineering Justified? Sandia National Laboratories. Available online:
https://www.incose.org/docs/default-source/enchantment/161109-carrolled-howismodel-
basedsystemsengineeringjustified-researchreport.pdf?sfvrsn=2&sfvrsn=2. Accessed on 4 Dec
2018.

De Weck, O., D. Roos, C. Magee, and C. Vest. 2011. Engineering Systems Meeting Human Needs
in a Complex Technological World. Cambridge, MA: MIT Press.

Eclipse Capella Documentation. Available online: https://www.polarsys.org/capella/. Accessed on
4 Oct 2018.

Eclipse Papyrus Documentation. Available online: https://www.eclipse.org/papyrus/
documentation.html. Accessed 4 Oct 2018).

Estefan, J.A. 2007. Survey of model-based systems engineering (MBSE) methodologies. INCOSE
MBSE Focus Group 25: 1–12.

Forsberg, K., R.D. Hamelin, G.J. Roedler, T.M. Shortell, D.D. Walden, et al. 2015. Systems
Engineering Handbook: A Guide for System Life Cycle Processes and Activities. Hoboken:
John Wiley & Sons Inc.

IBM Rational Rhapsody Documentation Library. Available online: https://www-01.ibm.com/
support/docview.wss?uid=swg27041286. Accessed on 4 Oct 2018.

IEEE Guide—Adoption of ISO/IEC TR 24748-2:2011 Systems and Software Engineering—Life
Cycle Management—Part 2: Guide to the Application of ISO/IEC 15288 (System Life Cycle
Processes) (24748-2-2012). USA: IEEE, 2012. Web.

Kolmogorov, A.N. 1983. Combinatorial Foundation of Information Theory and the Calculus of
Probability. Russ. Math. Surv. 38: 29–40.

Madni, A.M., and S. Purohit. 2019. Economic Analysis of Model-Based Systems Engineering.
Systems 7 (1): 12.

Madni, A.M., and M. Sievers. 2018. Model Based Systems Engineering: Motivation, Current
Status, and Research Opportunities. Syst. Eng. 21: 172–190.

Madni, A.M., M. Nance, M. Richey, W. Hubbard, and L. Hanneman. Towards an Experiential
Design Language: Augmenting MBSE with Technical Storytelling in Virtual Worlds. Procedia
Computer Science 28: 848–856.

Miller, G.A. 1956. The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity
for Processing Information. Psychol. Rev. 63: 81–97.

No Magic Documentation. Available online: https://www.nomagic.com/support/documentation.
Accessed 12 Dec 2018.

Technology & Enterprise Architecture: Economical Modeling: Minimizing Effort, Maximizing
Modeling Return on Investment (ROI), Speaker: Michael Vinarcik—Booz Allen Hamil-
ton, May 24th, 2016 Keynote from the No Magic World Symposium. 2016. Available
online https://vimeopro.com/nomagic/no-magic-world-symposium-2016-presentations/video/
170588353. Accessed on 4 Dec 2018.

https://sysengonline.mit.edu/course-3/
https://www.incose.org/docs/default-source/enchantment/161109-carrolled-howismodel-basedsystemsengineeringjustified-researchreport.pdf?sfvrsn=2&sfvrsn=2
https://www.polarsys.org/capella/
https://www.eclipse.org/papyrus/documentation.html
https://www-01.ibm.com/support/docview.wss?uid=swg27041286
https://www.nomagic.com/support/documentation
https://vimeopro.com/nomagic/no-magic-world-symposium-2016-presentations/video/170588353

COSYSMO 3.0’s Improvements
in Estimating and Methodology

James P. Alstad

Abstract The COSYSMO 3.0 systems engineering cost estimating model was
introduced at CSER 2019 (Alstad 2019). That introduction summarized the sources
for the model, notably COSYSMO 1.0 (Valerdi 2005), and explained its updated
and new features; however, the actual impact of the new features was not analyzed.
Specifically, these impacts were not discussed: the differential impact on larger
programs of having Process Capability as a scale factor, rather than a cost driver;
the quantitative results of the model’s solution to the impact-of-a-step-is-too-large
problem; the possible numerical impact on size estimates due to COSYSMO 3.0’s
greater emphasis on (exponential) scale factors versus (multiplicative) cost drivers;
the comparative impact of the four size drivers; and an overall comparison of model
features in COSYSMO 3.0 versus previous models.

Keywords Systems engineering economics · Cost modeling · Systems
modeling · Cost estimation

1 Introduction

1.1 COSYSMO 3.0’s Improvements

The COSYSMO 3.0 systems engineering cost estimating model was introduced at
CSER 2019 (Alstad 2019). That introduction summarized the sources for the model,
notably COSYSMO 1.0 (Valerdi 2005), and explained its updated and new features;
however, the actual impact of the new features was not analyzed. Specifically, these
impacts were not discussed: the differential impact on larger programs of having
Process Capability as a scale factor, rather than a cost driver; the quantitative results
of the model’s solution to the impact-of-a-step-is-too-large problem; the possible
numerical impact on size estimates due to COSYSMO 3.0’s greater emphasis on

J. P. Alstad (�)
Center for Systems and Software Engineering, University of Southern California, Los Angeles,
CA, USA
e-mail: jalstad@usc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_29

341

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_29&domain=pdf
mailto:jalstad@usc.edu
https://doi.org/10.1007/978-3-030-82083-1_29

342 J. P. Alstad

(exponential) scale factors versus (multiplicative) cost drivers; the comparative
impact of the four size drivers; and an overall comparison of model features in
COSYSMO 3.0 versus previous models.

In addition, some innovative methods in model development were used in
creating COSYSMO 3.0; these also have not been published in conjunction with
COSYSMO. These are the use of covariance and ad hoc prior information in
Bayesian computations of model parameters; a brief discussion of some difficulties
in model fitting; and the impact of symmetrical cost driver values.

1.2 Review of the Key Elements of COSYSMO 3.0

COSYSMO 3.0 is a parametric cost estimating model. That means that the model
requires a user to rate aspects of an anticipated systems engineering project; for
example, an aspect such as CONOPS and Requirements Understanding may be
rated on a Very Low/Low/Nominal/High/Very High (Likert) scale, or it may be an
anticipated quantity of some element of the system, such as the number of system
requirements. Given these ratings, the model provides an estimated effort (in person-
hours) for the project’s systems engineering labor.

Figure 1 gives COSYSMO 3.0’s top-level estimating equation. The aspects that
need to be rated are:

• The adjusted size, which includes anticipated numbers of each of the following,
with each rated both on an Easy/Nominal/Difficult scale provided by the model
and on a scale for degree of reuse from a previous project:

– System requirements
– System interfaces
– Algorithms
– Operational scenarios

The adjusted size is expressed as an equivalent number of Nominal system
requirements (eReqs).

• The exponent E is computed from ratings for the project aspects Risk/Op-
portunity Resolution, Process Capability, and Requirements Volatility; these
exponential aspects are called “scale factors.” The value of E is the sum of a
base value plus model-defined numerical values for the scale factor ratings.

Fig. 1 The top-level estimating equation of COSYMO 3.0 In this equation, PH is the estimated
person-hours, A is a calibration parameter, AdjSize is the adjusted size of the project, E is the
exponent (a sum of terms), and each EM is an effort multiplier

COSYSMO 3.0’s Improvements in Estimating and Methodology 343

• Each of the EMs (Effort Multipliers) is computed from the Likert rating of a Cost
Driver aspect; for each Cost Driver, the model provides a definition and a specific
rating scale. Example Cost Drivers are Tool Support, Technology Risk, and
Level of Service Requirements. Together the 13 Cost Drivers cover these aspects
of the project: Understanding, Complexity, Operational aspects, Personnel, and
(project) Environment.

COSYSMO 3.0 is based on these earlier models and model elements:

• COSYSMO 1.0 (Valerdi, 2005), which established the basic form of COSYSMO
estimating models

• Model elements addressing reuse, notably work by Wang (Wang et al. 2008;
Fortune 2009; Wang 2016)

• A model element addressing requirements volatility (Pena 2012)
• A submodel covering estimating in a system-of-systems context (Lane 2009)

(this part of COSYSMO 3.0 is not further discussed in this paper)

2 Impact of New Features of COSYSMO 3.0

2.1 Impact of Process Capability as a Scale Factor

Process Capability was a cost driver in COSYSMO 1.0, but it was changed to be a
scale factor in COSYSMO 3.0. The motivation was to increase the impact of Process
Capability ratings on larger projects, as that effect was believed to be more realistic.
The result is shown in Fig. 2.

2.2 Ensuring the Impact of a Step Is Not Too Large

An influential paper in the COSYSMO community was (Wang 2008), wherein the
authors argued that taking a single step – changing the rating of one cost driver from,
say, Nominal to High – caused too large an impact (23% reduction in estimated
effort, in their example). The goal of COSYSMO 3.0 was to generally reduce the
impacts of such single steps in cost driver ratings. One way of assessing overall step
size impact is to consider a model’s Total EMR measure. The EMR (effort multiplier
ratio) of a single cost driver is the ratio of its numerically maximum effort multiplier
value to its numerically minimum effort multiplier value; this is a good measure of
the impact of that cost driver. The Total EMR of a model is given by multiplying
together the EMRs of all cost drivers of the model; it is therefore a measure of the
total impact of a model. The Total EMR of the COSYSMO 1.0 model is 44,095.

The COSYSMO 3.0 model reduced its Total EMR in two ways. One was to
reduce the number of cost drivers from 14 to 13 (the Documentation cost driver

344 J. P. Alstad

Effect of Different Process Capability Ratings (VL/N/EH)
on Projects of Different Sizes

Showing Effort Ratios to VL Rated Project

100%

100%
100%C

O
S

Y
S

M
 3

.0
 E

st
im

at
ed

 E
ff

o
rt

 (
h

o
u

rs
)

2.469 2.271 2.002

92% 81%

88%

31.296

500

VL N EN

Projectʼs COSYSMO 3.0 size (eReqs)
500050

0

100.000

200.000

300.000

400.000

500.000

600.000

25.62735.758

72%

83%
517.807

431.393

328.022

63%

Fig. 2 The increasing impact of Process Capability rating
As the project size increases from 50 to 500 to 5,000 eReqs, the effort ratio due to better process

capability (comparing Very Low to Extra High ratings) goes from 81% to 72% to 63%. (All other
parameters are Nominal in this example)

was eliminated; the Process Capability cost driver was changed to be a scale factor;
however, the Developed for Reuse cost driver was introduced). The second way
was to generally reduce the EMRs of all cost drivers via the technique described
in Section III.A. The result is that the Total EMR of COSYSMO 3.0 is 23,001.
(Compare the Total EMR row of Table 1.)

2.3 Impact of Shifting Emphasis from Cost Drivers Toward
Scale Factors

The Total EMR reduction just discussed tends to reduce the impact of Cost Drivers
in a COSYSMO 3.0 estimate. However, there are two other changes in emphasis
that also affect estimate sizes.

First, the size of A, the calibration parameter (see Fig. 1), has been reduced from
38.55 to 26.33. Under some circumstances, this will mean that the COSYSMO
3.0 estimate is smaller than that for COSYSMO 1.0. For example, for a project
of size 1500 eReqs with all Cost Drivers Nominal, the COSYSMO 1.0 estimated
effort is 89,677 hours. With all scale factors having numerically minimum values,
the COSYSMO 3.0 estimate is 50,355 hours; even with all scale factors having
Nominal ratings, the COSYSMO 3.0 estimate is only 6% above COSYSMO 1.0, at

COSYSMO 3.0’s Improvements in Estimating and Methodology 345

95,313 hours. (However, with all scale factors at numerically maximum values, the
COSYSMO 3.0 estimate is 152,731 hours.)

Second, under COSYSMO 3.0, scale factor ratings can now have a strong effect
on estimated effort (in COSYSMO 1.0, the exponent is constant at 1.06, so there is
no effect of scale factors). (Scale factors and the resulting exponent E are explained
in Section I.B.) On the 1500 eReq example just given, changing the scale factor
ratings can have an effect of a factor of 3.03. As project size increases, the effect of
scale factor ratings increases. Consider now a project of 25,000 eReqs. If all scale
factor ratings are Nominal, the value of the COSYSMO 3.0 exponent is 1.12, which
has the effect of multiplying the estimate by a factor of 3.39 (the corresponding
factor for COSYSMO 1.0 is 1.84). Furthermore, scale factor ratings have a range in
the exponent of 0.151; for the 25,000 eReq project, this corresponds to a factor of
4.63. (Another aspect of scale factor impact was covered in Section II.A.)

2.4 Comparative Impact of the Four Size Drivers

Table 1 This shows the
relative impacts of the four
elements of size (eReqs) for a
particular data set

Calculated Sizes in eReqs, by Size Driver
Statistic SysReq SysIntf Alg OpScen Total

Mean 299.14 45.01 56.33 57.51 457.99
Std. Dev. 476.51 109.12 185.65 75.57 655.56
Median 136.02 16.38 12.59 31.26 221.73
Mean % 65% 10% 12% 13% 100%

This data set consists of 68 projects. For this data set, almost
2/3 of the size comes from system requirements. Other data
sets will have different percentages

2.5 Overall Comparison of COSYSMO 3.0 Features Versus
Previous Models

Table 2 compares some model features across models in the COSYSMO family.

3 New Techniques Used in Developing the Model

3.1 Use of Covariance and Ad Hoc Prior Information
in Bayesian Computation

COSYSMO 3.0, like most validated cost estimating models, needs to be calibrated
against a data set of actual project data. Such a data set will include several actual,
completed projects; data for each project will consist of the project’s actual effort

346 J. P. Alstad

Table 2 Comparison of features across the COSYSMO family

Parameter COSYSMO 1.0

Previous
proposals
(together) Expert-based C3

Final (v4)
COSYSMO
3.0

Cost drivers 14 - 14 13
CD DOCU? Yes Yes No No
CD PROC? Yes Yes No No
CD interoper-
ability?

No Yes Yes No

CD DFR? No No Yes Yes
Scale factors 0 2 3 3
SF RVOL? No Yes Yes Yes
SF PROC? No No Yes Yes
SF ROPM? No Yes Yes Yes
Total EMR 44,095 - 145,745 23,001
A (productivity
factor)

38.55 - 38.55 26.33

Nominal
exponent

1.060 1.060 1.116 1.120

Multiplier, on
25,000 eReq
project

1.84 1.84 3.24 3.39

Max-min
exponent

0.000 0.038 0.153 0.151

Multiplier, on
25,000 eReq
project

1.00 1.47 4.73 4.63

Size drivers Yes Same Same Same
Reuse size
factors

No Yes Yes Yes

This table summarizes the key features of the COSYSMO models that were considered
and specified during the development of COSYSMO 3.0. The Previous Proposals column
encompasses the papers and the intermediate complete models of COSYSMO. The Expert-Based
model was developed entirely from my Delphi sessions gathering expert opinion on parameter
values; the Final model is COSYSMO 3.0. One use of this table is as a (summary) historical
record of COSYSMO model development
Here are the meanings of the abbreviations: CD cost driver; SF scale factor; EMR effort multiplier
ratio (see section II.B); eReq equivalent Nominal system requirements (see section I.B); DOCU
document; PROC Process Capability; DFR development for reuse; RVOL requirements volatility;
ROPM risk/opportunity management

and its actual ratings on the variables (parameters) of the model. Standard statistical
techniques, such as linear regression, are used on the data set to yield the values
of coefficients in the model. Some model calibrations use a more sophisticated
“Bayesian” analysis to allow expert opinion to influence the coefficient values.

COSYSMO 3.0’s Improvements in Estimating and Methodology 347

This subsection describes how calibration proceeded in COSYSMO 3.0, empha-
sizing the use of newer techniques. The statistics used were based on Chapter 14 of
(Gelman 2013).

Previously, some Bayesian computations in models (COCOMO II, in Section
4.5.2.3 of (Boehm 2000), and COSYSMO 1.0 (Valerdi 2005)) used the “single-
variable” approach to computing posterior means and variances from data and
expert opinion. Each variable was considered independently of the other variables;
a mean and variance of the variable were determined from the data, a mean and
variance were determined from the expert opinion, and they were combined to
produce a mean (and variance) for the posterior value of that variable’s coefficient.
Then the resulting means were taken to be the posterior values of the variables’
coefficients.

That approach does not account for the correlations between variables that may
be present in both the data and the expert opinions. The rest of this subsection lays
some groundwork and then explains how to account for such correlations in the
resulting variable values.

Our approach uses matrix arithmetic to compute its results; we used the free
matrix manipulation package R (Unknown 2003) to do our computations. If M is
a matrix, then MT denotes its transpose, and M-1 denotes its inverse. We use the
terminology in Fig. 3 (some of which will be explained later).

The usual computation for determining the calibrated coefficients is given in the
left side of Fig. 4; this gives the same result as a linear regression.

Suppose one had prior information about one of the variables, say β j, specifically
its mean and covariance. A key insight (Gelman 2013) is that this information can
be treated as an additional data point – an additional element of y and an additional
row of X. The added element of y would be the prior mean of β j; the added row
of X would include the prior covariance of β j, plus “ratings” having a 1 under β j

and zeroes elsewhere. The intuition is that this new row is an additional “vote” on

Fig. 3 Terminology for matrix approach to calibration

348 J. P. Alstad

Fig. 4 Formulas for calculating the calibrated coefficients and the corresponding covariance
matrix The formulas on the left are used when covariance input is not available; it assumes that all
coefficients have the same variance and no covariance. The formulas on the right are used when
covariance input (�y) is available

Fig. 5 How to add additional rows to the input matrices to include prior information in a
calibration computation

the value and covariance of β j; the ordinary rows can also be regarded as votes –
complex ones – on the means and covariance of the results.

For COSYSMO 3.0, the expert opinion data from Delphi sessions was provided
in the form of ballots, with each expert providing one ballot with her opinions about
all the coefficients. Some experts tended to give higher values for all coefficients;
others tended to give lower values; therefore, the coefficient votes covary. So the
COSYSMO 3.0 calibration data included a covariance matrix for the (prior) Delphi
data.

The upshot is that the project data matrices can be enhanced per Fig. 5, and those
enhanced matrices can be fed directly into the formulas on the right side of Fig. 4 to
yield the posterior coefficients in a single step. (Compare the additional step for the
Bayesian computation in previous model calibrations.)

COSYSMO 3.0’s Improvements in Estimating and Methodology 349

As mentioned in section I.B, it was desired to reduce the impact of a step
size. This was easily accomplished by adding prior rows (via the technique just
discussed) that tended to lower the impact of step sizes.

3.2 Comparison of Least-Squares Versus Absolute Deviation
Model Fitting

In the course of fitting the COSYSMO 3.0 model coefficients, I discovered that
there were some opposing tendencies at work. One was between data-only fits
and Bayesian fits; with a data-only fit, the data tended to be close to the fitted
model, but some of the coefficients had non-credible1values; with a Bayesian fit,
the data was somewhat dispersed from the fitted model, but all the coefficients were
credible. Another opposing tendency was between least-squares fits (e.g., via linear
regression or the F statistic) and absolute-deviation fits (e.g., via MMRE or PRED).
With a least-squares fit, data far from the middle have more influence on the fit,
and the logarithmic form of the estimating equation had to be used to match the
assumption of a Gaussian distribution; with an absolute-deviation fit, each datum
has an equal influence on the fit, and the estimating equation can be used directly.

I was able to resolve these tendencies by searching for appropriate coefficient
values using a hill-climbing procedure (specifically, by using R’s nlm built-in
function). This resulted in a fully credible fit that was reasonably close to the data
(specifically, PRED (.30) was greater than 50%).

3.3 Use of Symmetrical Cost Driver Ratings

COSYSMO 1.0’s cost driver ratings were set, in part, by expert input. Those experts
felt that it was more accurate to allow a cost driver to have different step sizes below
and above Nominal (though all a cost driver’s step sizes below Nominal were the
same and likewise above Nominal; in fact, such below/above step sizes didn’t differ
very much). The negative feature of this approach was that each cost driver really
has two coefficients that need to be fit: the step size below Nominal and the step size
above Nominal. This doubled the number of degrees of freedom for cost drivers in
doing the fit, thereby reducing the significance of the fit, or otherwise introduced
noise into the fitting process.

1“Non-credible” here means that the coefficient had a value that was obviously wrong. As an
example of non-credibility, consider the cost driver CONOPS and Requirements Understanding.
As the rating here goes up, the estimated cost should obviously go down. However, with a data-only
fit, an increased rating caused the estimated cost to go up.

350 J. P. Alstad

To avoid such difficulties, I made each cost driver in COSYSMO 3.0 symmetri-
cal: its step size was the same above and below Nominal.

References

Alstad, J.P. 2019. Development of COSYSMO 3.0: An Extended, Unified Cost Estimating Model
for Systems Engineering. Procedia Computer Science 153: 55–62.

Boehm, B.W. 2000. Software Cost Estimation with COCOMO II. Upper Saddle River: Prentice-
Hall, Inc.

Fortune, J. 2009. Estimating Systems Engineering Reuse with the Constructive Systems Engineer-
ing Cost Model (COSYSMO 2.0). Los Angeles: USC.

Gelman, A.e. 2013. Bayesian Data Analysis. 3rd ed. Boca Raton: Chapman & Hall/CRC Texts in
Statistical Science.

Lane, J.A. 2009. Cost Model Extensions to Support Systems Engineering Cost Estimation for
Complex Systems and Systems of Systems. In 7th Annual Conference on Systems Engineering
Research. CSER.

Pena, M. 2012. Quantifying the Impact of Requirements Volatility on Systems Engineering Effort.
Los Angeles: USC.

Unknown. 2003, November 23. R (Programming Language). (wikipedia, Editor) Retrieved
November 1, 2019, from wikipedia: https://en.wikipedia.org/wiki/R_(programming_language)

Valerdi, R. 2005. The Constructive Systems Engineering Cost Model. Los Angeles: University of
Southern California.

Wang, G.V. 2008. Proposed Modification to COSYSMO Estimating Relationship. INCOSE
International Symposium 18 (1): 249–262.

Wang, G. 2016. The Generalized Reuse Framework—Strategies and the Decision Process for
Planned Reuse. INCOSE 2016. INCOSE.

Wang, G., A. Ankrum, R. Valerdi, and C. Millar. 2008. COSYSMO Reuse Extension. In 18th
INCOSE Symposium. Utrecht: INCOSE.

https://en.wikipedia.org/wiki/R_(programming_language)

Assurance Case Property Checking
with MMINT-A and OCL

Nick L. S. Fung, Sahar Kokaly, Alessio Di Sandro, and Marsha Chechik

Abstract Assurance cases are a means to argue about the safety, security, etc. of
software systems in critical domains. In previous work, we presented a tool called
MMINT-A to automate change impact assessment of assurance cases given system
design changes. In this paper, we argue that applying model-driven techniques to
assurance case development allows safety engineers and assessors to ask questions
about these artifacts and answer them using automated tool support – something not
achievable with traditional document-based approaches. To support this argument,
we present a library of well-formedness constraints on assurance cases structured
in the Goal Structuring Notation (GSN). The constraints are formalized using OCL
and implemented in MMINT-A. We also discuss other types of constraint checks
that are useful in the automotive domain given the ISO 26262 standard and internal
company processes.

Keywords Assurance cases · Model-based engineering · Property checking ·
Tool support

1 Introduction

Assurance cases are structured, evidence-based arguments that a system satisfies a
particular property for a given application in a given context (SCSC Assurance Case
Working Group 2018). For example, the use of assurance cases is generally accepted
as best practice in various industries for demonstrating the safety of safety-critical
systems, such as in healthcare (Health Foundation (UK) 2012). However, managing
assurance cases is also generally nontrivial due to their potential complexity;
an exemplar assurance case for the safety of infusion pumps contains around

N. L. S. Fung (�) · S. Kokaly · A. Di Sandro · M. Chechik
Software Engineering Group, Department of Computer Science, University of Toronto, Toronto,
ON, Canada
e-mail: nlsfung@cs.toronto.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_30

351

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_30&domain=pdf
mailto:nlsfung@cs.toronto.edu
https://doi.org/10.1007/978-3-030-82083-1_30

352 N. L. S. Fung et al.

100 claims (Larson 2014). Furthermore, an assurance case may require frequent
maintenance to reflect any updates to the system design.

To manage this complexity, we advocate the use of model-based tools and
techniques to create and maintain assurance cases along with the corresponding
system designs. Di Sandro et al. (2015) presented the generic tool MMINT to
support the management of collections of related models, and Fung et al. (2018)
presented a set of extensions to MMINT (collectively called MMINT-A) to automate
the change impact assessment of assurance cases. In this paper, we focus on
formalizing the properties of well-formed assurance cases, such as the absence
of circular arguments, allowing them to be automatically enforced in MMINT-A
and other such tools. More specifically, we present a library of well-formedness
constraints that were derived from the relevant assurance case and safety standards
(i.e., GSN and ISO 26262). They are formalized using OCL, which facilitates
portability to any assurance case tool based on UML (or MOF). The constraints have
been incorporated into MMINT-A and validated using a case study in the automotive
domain.

The rest of this paper is structured as follows. We present relevant background in
Sect. 2 and the well-formedness constraints in Sect. 3, and we conclude in Sect. 4.

2 Background

2.1 GSN: Goal Structuring Notation

A commonly used graphical standard for modelling assurance cases is the Goal
Structuring Notation (GSN) (SCSC Assurance Case Working Group 2018), which is
specified in natural language English and is the main source for our well-formedness
constraints. In general, arguments in GSN are organized into a tree of six types of
elements (Fig. 1): goals, strategy, solution, context, justification, and assumption.
The root is the overall goal to be satisfied by the system, and it is gradually
decomposed into other goals or solutions, possibly via some strategies. Goals and
strategies may also be associated with some contextual information (including
justifications and assumptions), which, along with solutions, form the leaves of the
tree.

Goal Strategy Solution Context Justification Assumption

Fig. 1 The six core elements in GSN. (SCSC Assurance Case Working Group 2018)

Assurance Case Property Checking with MMINT-A and OCL 353

2.2 ISO 26262 Standard

We apply our research to the automotive domain, which presents additional require-
ments on assurance cases. In particular, according to the ISO 26262 standard (ISO
2011), safety hazards and, therefore, safety goals must be assigned an automotive
safety integrity level (ASIL) to indicate its risk and required degree of assurance.
ASIL levels are QM (indicating the least stringent measures), A, B, C, or D (most
stringent).

2.3 MMINT: Model Management INTeractive

MMINT (https://github.com/adisandro/MMINT) is built on top of the Eclipse
platform and designed for managing collections of related models (Di Sandro et
al. 2015). In particular, MMINT allows the user to work at both the “instance”
level, in which models and their relations are instantiated and manipulated, as well
as the “type” level, in which the necessary metamodels, relation types, and model
operators are defined.

For example, to manage assurance cases, Fung et al. (2018) presented a collection
of extensions at the “type” level to form MMINT-A. Specifically, MMINT-A
includes a metamodel and an editor for creating and visualizing assurance cases
(Fig. 2) as well as some slicers and a workflow to perform change impact assessment
on them. Furthermore, Di Sandro et al. (2019) showed how the Eclipse VIATRA
framework can be incorporated into MMINT to perform queries on automotive
system models and assurance cases.

2.4 Assurance Case Metamodel

OCL constraints must be expressed in the context of a specific metamodel; for
this paper, we adopt the same assurance case metamodel as the one used in
MMINT-A, which is built using the Eclipse variant of OMG’s meta-object facility
(MOF) standard and is based on the GSN standard. Thus, as shown at the top
of Fig. 3, an assurance case is modelled to contain goals, strategies, solutions,
contexts, justifications, and assumptions, all of which are connected to each other by
either “supported-by” or “in-context-of” relations. However, it is extended for the
automotive domain by including ASILs (bottom left of Fig. 3) and by distinguishing
between two types of goals (basic and independence goals) as well as two types of
strategies (basic and ASIL decomposition strategies). To support impact assessment,
assurance case elements can also be associated with an impact annotation (bottom
of Fig. 3) indicating whether they can be reused or must be revised or rechecked for
validity (Fung et al. 2018).

https://github.com/adisandro/MMINT

354 N. L. S. Fung et al.

Fig. 2 Screenshot of MMINT-A showing a portion of an assurance case

2.5 OCL: Object Constraint Language

UML (including MOF) is generally insufficient to express all relevant aspects of
a model (Object Management Group 2014). Therefore, OCL was developed as
a formal language for specifying expressions on models. These expressions do
not have side effects and are generally used for querying models or specifying
constraints over them, a typical example of which looks as follows:

context Goal inv:
self.supportedBy -> forAll(s | s.premise.oclIsKindOf(Goal) or
s.premise.oclIsKindOf(Strategy)or s.premise.oclIsKindOf

(Solution));

context Goal inv: specifies that the accompanying OCL expression
is an invariant that applies to all instances of Goal in the metamodel; thus,
self in the subsequent line refers to the Goal model element being checked.
self.supportedBy traverses the supportedBy relation in goals, which
results in a set of SupportedBy model elements (see Fig. 3). The collection
operator -> and the forAll iterator cause an iteration to be performed on the
SupportedBy model elements, returning true if they all satisfy the condition

Assurance Case Property Checking with MMINT-A and OCL 355

Fig. 3 Simplified class diagram showing the main parts of the adopted assurance case metamodel.
Rectangles with italic text and dashed borders represent abstract classes; the rest are concrete

specified inside the forAll iterator. In this case, the condition is that the premise of
the SupportedBy element conforms to type Goal, Strategy, or Solution.

2.6 LMS: Lane Management System

As part of our evaluation process, we used MMINT-A to verify the well-formedness
of an assurance case for an automotive lane management systems (LMS). The LMS
(Blazy et al. 2014) is a safety-critical system for preventing a vehicle from straying
from its lane. It comprises multiple sub-systems such as the Lane Departure Warning
System (LDWS), which warns the driver of any possible unintentional lane changes,
as well as the Lane Keeping System (LKS), which can take control of the vehicle
to keep it within its lane. To assure its safety, the LMS assurance case consists of
26 goals, 28 strategies, 20 solutions, and 2 contexts, the full details of which can be
found in Fig. 10.4 of Kokaly 2019. In this paper, only the relevant excerpts will be
shown to illustrate various OCL constraints.

356 N. L. S. Fung et al.

3 OCL Constraints for Assurance Cases

Overall, we identified and formalized 16 constraints. As summarized in Table 1,
12 are derived from the GSN standard and therefore relate to assurance cases in
general, while 4 are derived from ISO 26262 and relate specifically to ASILs. These
constraints can also be divided into groups of four, with each group relating to one
of the following:

• Elements connected by “supported-by” relations
• Elements connected by “in-context-of” relations
• The overall structure of an assurance case
• Inheritance and decomposition of ASILs

The rules have been incorporated into MMINT-A and used to verify the well-
formedness of the LMS assurance case. Furthermore, intentional changes were
made to create incorrect assurance cases in order to expose errors and ensure that
the corresponding rules are correctly flagged. For details of the rules, including their
implementation and test cases, the user is referred to the technical report by Fung et
al. (2019).

As an example, consider Rule 15 in Table 1 which relates to the propagation
of ASILs from a parent goal to its children goals. In general, evidence supporting a
child goal must be sufficiently strong to support its parent goal; thus, the child should
inherit the same ASIL value as its parent. Figure 4a shows an excerpt of the LMS
assurance case that satisfies this rule, with goal G6 (ASIL B) being decomposed into
goals G27 (B), G7 (B), and G16 (B), while Fig. 4b shows an example that violates
it, with goal G1 (ASIL B) being decomposed into goals G2 (B) and G3 (A). The red
cross in Fig. 4b indicates that the rule is violated by G3.

This requirement can be formalized into the OCL constraint shown in Fig. 5,
which can be thought of as comprising the following steps:

• Retrieve all parent goals directly supported by the selected goal.
• Retrieve all parent goals supported by the selected goal via a basic strategy.
• Check that the ASIL of each parent is inherited properly:

– If the parent has no ASIL, then it is trivially true.
– If the child has no ASIL (but the parent does), then it is trivially false.
– Otherwise, the child ASIL must be higher than or equal to the ASIL of every

parent.

Note that Rule 15 only concerns goals that support other goals either directly or
indirectly via a basic strategy. When a goal is supported by an ASIL decomposition
strategy, it means that redundancy is added into the system, which, in accordance
with ISO 26262, allows the redundant elements (and therefore children goals) to be
supported by weaker evidence.

However, such decomposition is only valid if the safety of the redundant elements
is supported by completely independent goals and solutions (Rule 16). For example,

Assurance Case Property Checking with MMINT-A and OCL 357

Table 1 Overview of 16 well-formedness constraints on assurance cases.

Category Rule no. Description Source

“Supported-by” relations 1 Goals can only be supported by goals,
strategies, and solutions

GSN

2 Strategies can only be supported by
goals and solutions

3 Solutions cannot be supported by any
assurance case element

4 Contextual elements cannot be
supported by any assurance case
element

“In-context-of” relations 5 Goals can be in the context of contexts,
assumptions, and/or justifications

6 Strategies can be in the context of
contexts, assumptions, and/or
justifications

7 Solutions cannot be in the context of
any assurance case element

8 Contextual elements cannot be in the
context of any assurance case element

Overall structure 9 There cannot be any “supported-by”
cycles

10 There can only be one root in an
assurance case

11 The root of an assurance case must be
a basic goal

12 The leaves of an assurance case must
be solutions, not goals nor strategies

ASIL decomposition 13 An ASIL decomposition strategy must
be supported by one independence
goal

ISO 26262

14 An ASIL decomposition strategy must
be supported by two basic goals

15 Any child goal that supports a parent
goal directly or via a basic strategy
must have the same ASIL or stronger
as the parent goal (if any)

16 The two basic goals supporting an
ASIL decomposition strategy cannot
share any common descendant goal or
solution

Fig. 6a shows a goal (G5) relating to the LMS alarm system being decomposed
with an ASIL decomposition strategy into three goals (G19, G20, and G18) relating
to two independent alarms: a visual and an audible alarm. Although not shown,
these goals are supported by completely nonoverlapping descendants; thus, G19 is
permitted to have a less stringent ASIL (viz., QM) than its parent (A). On the other

358 N. L. S. Fung et al.

Fig. 4 An assurance case that (a) passes and (b) fails Rule 15. The pass case is extracted from the
LMS assurance case

context Goal inv:
let directParents : Set(Goal) = self.supports.conclusion ->

select(d |d.oclIsKindOf(Goal)).oclAsType(Goal) -> asSet(),
indirectParents : Set(Goal) = self.supports.conclusion ->

select(d|d.oclIsTypeOf(BasicStrategy)).supports.conclusion ->
select(d |d.oclIsKindOf(Goal)).oclAsType(Goal) -> asSet()

in indirectParents -> union(directParents) -> forAll(g |
if g.asil = null then true
else if self.asil = null then false
else g.asil.value = ASILLevel::QM or

(g.asil.value.toString() <= self.asil.value.toString() and
self.asil.value <> ASILLevel::QM) endif endif);

Fig. 5 OCL constraint for Rule 15

hand, Fig. 6b shows two children goals (G2 and G3) sharing the same solution (i.e.,
evidence); thus, the ASIL decomposition rule is violated.

As shown in Fig. 7, such requirement can also be formalized in a similar manner
as for Rule 15. In this case, OCL’s closure operator is used to extract all descendants
of the relevant goal, not just its immediate children. After extracting the descendants
of both children goals, OCL’s intersection operator is used to ensure that they are
completely independent.

4 Conclusions and Future Work

In this paper, we described constraint checks on assurance cases with the purpose
of checking well-formedness. We checked all of these constraints on our LMS
assurance case. While we did not uncover any problems because the assurance

Assurance Case Property Checking with MMINT-A and OCL 359

Fig. 6 An assurance case that (a) passes and (b) fails Rule 16. The pass case is extracted from the
LMS assurance case and shows a user alert being decomposed into two independent alerts, visual
and audible

context ASILDecompositionStrategy inv:
let goalSeq: Sequence(CoreElement) = self.supportedBy.premise

-> select(p | p.oclIsTypeOf(BasicGoal)),
g1Descendants : Set(CoreElement) = goalSeq -> at(1) ->

closure(c | if c.oclIsKindOf(DecomposableCoreElement) then
c.oclAsType(DecomposableCoreElement).supportedBy.premise

else null endif),
g2Descendants : Set(CoreElement) = goalSeq -> at(2) ->

closure(c | if c.oclIsKindOf(DecomposableCoreElement) then
c.oclAsType(DecomposableCoreElement).supportedBy.premise

else null endif)
in g1Descendants -> intersection(g2Descendants) = Set{};

Fig. 7 OCL constraint for Rule 16

case has been extensively validated, we believe that the library of constraints
we present provides a starting point to construct more complex and interesting
properties that are domain-specific, standard-specific, or company-specific. As the
library grows, it will enable safety engineers and reviewers of assurance cases to
automatically answer complex questions regarding the quality of the assurance cases
(e.g., completeness, correctness, compliance to standards, etc.) they are working
with.

As part of our ongoing research, we intend to define a constraint check taxonomy
to help practitioners work with constraints in a systematic manner. For example,
all the constraint checks presented in this paper are intra-model checks as they are
checked on a single model (the assurance case). Examples of inter-model constraints
are those which rely on the existence of traceability mappings between models. For
example, a check such as “Is there a fault tree analysis (FTA) conducted for all
hazards that are ASIL B and above?” is a multi-level inter-model constraint because
each “hazard” element in the Hazard Analysis document is mapped to an entire FTA

360 N. L. S. Fung et al.

document. Our MMINT tool already supports writing such constraints (Di Sandro
et al. 2019), but we are currently investigating how to make it easier for the user to
do so.

Moreover, some constraints deal with the content of artifacts while others with
the process to create them. For example, the constraints presented in this paper are
well-formedness checks of a GSN assurance case to ensure that it is meaningful.
These are clearly syntactic checks, although constraints on artifact contents may also
be semantic, which can check a broader range of properties, e.g., the consistency
between artifacts (e.g., “Are all system functions comprehended in the Hazard
Analysis?”). In contrast, a check like “Is there an FTA conducted for all hazards
that are ASIL B and above?” is a process constraint that ensures that a particular
artifact (in this case, FTA) is produced. Other kinds of distinctions that are relevant
to a taxonomy include constraints to check correctness vs. completeness, constraints
that are necessary vs. sufficient conditions, existential vs. universal constraints, etc.
The criteria for including a category in the final taxonomy can be based on how it is
relevant to supporting the safety process.

Acknowledgments The work reported in this paper has been funded by General Motors (GM)
and NSERC Canada. The authors thank their collaborators at GM and the McMaster Centre for
Software Certification for many useful discussions.

References

Blazy, B., A. DeLine, B. Frey, and M. Miller. 2014. Software Requirements Specification (SRS):
Lane Management System. Michigan State University.

Di Sandro, A., R. Salay, M. Famelis, S. Kokaly, M. Chechik. 2015. MMINT: A Graphical Tool for
Interactive Model Management. ACM/IEEE 18th International Conference on Model Driven
Engineering Languages and Systems (MoDELS), demo.

Di Sandro, A., S. Kokaly, R. Salay, M. Chechik. 2019. Querying Automotive System Models and
Safety Artifacts with MMINT and Viatra. 2nd Workshop on Modeling in Automotive Software
Engineering (MASE).

Evidence: Using safety cases in industry and healthcare, Health Foundation (UK), 2012.
Fung, N.L.S., S. Kokaly, A. Di Sandro, R. Salay, M. Chechik. 2018. MMINT-A: A Tool for

Automated Change Impact Assessment on Assurance Cases. 6th International Workshop on
Assurance Cases for Software-intensive Systems (ASSURE).

Fung, N.L.S., S. Kokaly, A. Di Sandro, and M. Chechik. 2019. Technical Report: Syntactic Checks
for Safety Cases. University of Toronto. Available at: https://www.cantab.net/users/nick.ls.fung/
mminta/OclConstraints.pdf. Last accessed: Sep. 20, 2019.

ISO 26262: Road Vehicles – Functional Safety, 1st version, International Organization for
Standardization, 2011.

Kokaly, S., 2019. Managing Assurance Cases in Model Based Software Systems. PhD dissertation,
McMaster University.

Larson, B. 2014. Open PCA Pump Assurance Case. Kansas State University.
Object Constraint Language, Version 2.4, Object Management Group, 2014.
SCSC Assurance Case Working Group. 2018. Goal Structuring Notation Community Standard

Version 2.

https://www.cantab.net/users/nick.ls.fung/mminta/OclConstraints.pdf

Interpretation Discrepancies of SysML
State Machine: An Initial Investigation

Ben Cratsley, Siwani Regmi, Paul Wach, and Alejandro Salado

Abstract Model-Based Systems Engineering (MBSE) is expected to improve
communication and consistency in system development over document-based
approaches. As systems become more complex, modeling languages increase the
information content of their semantics to simplify modeling construction and visu-
alization. We hypothesize in this paper that such increase in the complexity of the
semantics may be detrimental to the MBSE objectives of facilitating communication
and consistency. We present the results of an initial survey in which we asked
systems engineers individually to interpret the behavior captured by several models
in the form of Systems Modeling Language (SysML) state machines. Significant
discrepancies in their answers were found. In addition, we present a qualitative
assessment of the potential implications of such interpretation discrepancies for
system development, which include need for rework, modeling gaps, inefficient
solutions, and solutions that are not fit for purpose.

Keywords Model interpretation · SysML · Model-based systems engineering ·
MBSE · Modeling semantics

1 Introduction

Literature indicates that the construction and visualization of system models can be
simplified by embedding (or hiding) part of the complexity within the semantics
of the modeling language with which the model is created (Wach and Salado
2019). We suggest that such increase of the semantic complexity may lead to
discrepancies in how a model is interpreted by different engineers. If this were
the case, promised benefits of Model-Based Systems Engineering (MBSE) such as
improved communication (Piaszczyk 2011; Andersson et al. 2010) or consistency in

B. Cratsley · S. Regmi · P. Wach · A. Salado (�)
Virginia Tech, Blacksburg, VA, USA
e-mail: asalado@vt.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_31

361

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_31&domain=pdf
mailto:asalado@vt.edu
https://doi.org/10.1007/978-3-030-82083-1_31

362 B. Cratsley et al.

system development (Gregory et al. 2019; Vipavetz et al. n.d.) could be challenged.
We present the results of an initial investigation that addresses this hypothesis.
First, a theoretical assessment of intricate aspects of the semantics of SysML was
performed. Second, several models with potential semantic misinterpretation were
created and a survey with systems engineering practitioners conducted. SysML was
chosen due to its widespread within academia and the community of practice.

2 Interpretation Discrepancies in SysML: Theoretical
Insights

2.1 Semantic Vulnerabilities

Semantically rich modeling techniques have been instrumental to make modeling
of complex systems possible. For example, state machines had to evolve from the
mathematically rigorous (yet semantically simple) Moore (Bisht and Dhami 2015;
Moore 1956) and Mealy (Bisht and Dhami 2015; Mealy 1955) state machines
to Harel’s statecharts (Harel 1987), which were semantically richer but lacked
a mathematical description, in order to effectively handle state explosion. By
increasing the semantic expression of the model, Harel statecharts could, relative
to Mealy and Moore state machines, reduce the size of the model elements that
the modeler needed to define while capturing the same behavior. As with Harel
statecharts, UML (and by extension SyML) state machines (Friedenthal et al. 2015)
leverage semantic complexity to simplify diagrammatic complexity. In fact, UML
and Harel employ the same diagrammatic elements and understanding (actually, a
one-to-one mapping of model elements), even though their underlying semantics are
different. This means that, while a Harel and a UML state machines may be identical
diagrammatically (i.e., visually), their execution behavior may be different (Crane
2005). Failing to recognize (know) such semantic specifications could therefore lead
to misinterpreting the behavior captured by the model.

We define semantic vulnerability of a model as an unknown knowledge gap that
results from the precision with which the model captures aspects of an actual system.
For example, given a model of the behavior of a system, do two modelers interpret
the same behavior? If this were not the case, then there is a potential for an identified
conflict of understanding, leading to unfounded assumptions about expected system
behavior. Potential consequences to system development could include omission of
necessary functionalities/features, overlapping/inefficient implementation of neces-
sary capabilities, and interoperability problems, among others. When a large-scale
system is considered, where several engineers collaboratively build larger models,
the risk of semantic vulnerability explodes.

Interpretation Discrepancies of SysML State Machine: An Initial Investigation 363

2.2 Example of Potential Semantic Misinterpretations

We illustrate the problem of semantic vulnerability due to interpretation discrepancy
with two examples. Consider the SysML state machine depicted in Fig. 1a. This
diagram is consistent with the SysML specification and is correct. It captures three
states of a vehicle, with transitions between them triggered by inputs and/or events.
At the start of operation, the vehicle goes to the Idle state. Consider the following
question. Assume the vehicle is in Braking state. How does the system behave when
releaseBrake and speed = 0 are activated or occur simultaneously? Clearly, there
is no transition defined for such a situation in the diagram. Furthermore, if one
would start with one of the conditions randomly, for example, by first considering
releaseBrake, the system would transition to Accelerating/Cruising, but once there,
there is no transition defined for the event speed = 0. Similarly, if the vehicle would
transition to Idle first, there would be no transition defined on that state for the event
releaseBrake. However, the model has a specific behavior for that case, regardless
of whether we can tell from the diagram or not. Such is the effect of semantics. For
example, the actual behavior could be:

1. The vehicle does not execute any transition if a specific transition for the
combined event is defined. That means, when releaseBrake and speed = 0 are
activated or occur simultaneously, the vehicle will remain in Braking state.

2. The state of the vehicle is not controlled for undefined events. That means, we
do not know the state the vehicle will be in when releaseBrake and speed = 0 are
activated or occur simultaneously. It could even be a hidden state.

3. Conditions rule over events. Hence, when releaseBrake and speed = 0 are
activated or occur simultaneously, the vehicle will transition to Idle state.

4. Events rule over transitions. Hence, when releaseBrake and speed = 0 are acti-
vated or occur simultaneously, the vehicle will transition to Accelerating/Crusing
state.

5. The model is incomplete/incorrect as all possible conditions for transitions have
not been defined.

6. The vehicle cannot experience both the condition and the event at the same time.

A similar situation occurs if we consider the system to be, for example, in the
Braking state and ask how the system behaves if accelerate is activated. Will the
system stay in Braking state, or will it cause an unknown transition? Consider now
the state machine captured in Fig. 1b. Light goes on when turned on and goes off
when turned off. The model is correct and consistent with the SysML specification.
However, it is unclear, from the diagram, if there is any time associated to the
transitions. For example, if this would be a Moore machine, transitions are defined
to occur with no lapse of time; they are instantaneous. But, how should this SysML
state machine be interpreted? A modeler may generate different interpretations:

1. Transitions are instantaneous.
2. Time is undefined explicitly; hence, transitions are considered instantaneous.
3. Time is undefined explicitly; hence, the model is incomplete/incorrect.
4. Time is undefined explicitly; hence, transition times are uncontrolled.

364 B. Cratsley et al.

Fig. 1 (a) SysML state machine capturing the behavior of a vehicle; (b) SysML state machine
capturing the behavior of a light switch

These two examples show how certain behavioral aspects are embedded seman-
tically in the models to simplify visualization and construction. However, they play
a significant part in describing the behavior of the systems the models capture.
Such role is though not easily apparent. A deep understanding of the language
specification is necessary to correctly interpret the diagram.

3 Interpretation Discrepancies in SysML: Empirical
Evidence of State Machines

3.1 Design

Three instruments were developed and administered sequentially through an online
platform: (1) a consent form, (2) a demographic survey, and (3) a modeling
survey. The demographic survey was used to gather demographic information
of the participant, including experience and competence in systems engineering
and system modeling. The modeling survey was used to assess the participants’
interpretations of various system models using multiple-choice questions. Given a
model, the participant was asked to choose the behavior captured by the model out
of a set of predefined options. The specific questions are presented in Table 1, and
they refer to the models presented on Table 2. Models were consistent with SysML
specification (hence, they were not wrong), but only visual representations of the
models were presented, with no other information. In order to account for the case
in which a participant felt the model was incomplete and more information was
necessary to describe the behavior of the model, all questions had the choices Other
and I do not know.

Interpretation Discrepancies of SysML State Machine: An Initial Investigation 365

Table 1 Survey modeling questions

Question
Q1. The state machine depicts the nominal behavior of a car when it is in operation. Consider
the system is in the Braking state. How does the system behave when accelerate is activated?
(a) The system will not receive accelerate activation while in Braking state.
(b) Such situation is out of the scope of SysML.
(c) The system automatically defaults to an available transition.
(d) The system remains in Braking state.
(e) This is a non-nominal behavior and needs to be defined in a separate state machine.
Q2. The state machine depicts the nominal behavior of a car when it is in operation. Consider
the system is in the Braking state. How does the system behave when releaseBrake and speed
= 0 are activated/occur simultaneously?
(a) The system will not receive releaseBrake and speed = 0 simultaneously while in Braking
state.
(b) Such situation is outside the scope of SysML.
(c) The system automatically defaults to one of both transitions.
(d) This is a non-nominal behavior and needs to be defined as a separate state machine.
Q3. Assume the system enters Example State C. Choose the statement that best describes the
behavior by the state machine diagram.
(a) The system will execute Initialize behavior. Once the behavior is finalized, the system will
execute gatherData behavior. Once the behavior is finalized, the system will execute Finalize
behavior.
(b) The system cannot execute Finalize behavior because there is no transition exiting the
state.
(c) Behaviors Initialize, gatherData, and Finalize occur in parallel.
(d) Only one of the three behaviors (Initialize, gatherData, or Finalize) will be executed,
which will depend on the state from which Example State C is entered.
Q4. During the transition between the light switching on and off, how much time or delay
should be assumed?
(a) An amount of time determined by each user when using the system.
(b) A time that is determined by the system, depending on the system design.
(c) The time is undefined.
(d) Defining the time that it takes a transition between states is outside of the scope of SysML.
(e) Zero time.
Q5 and Q6. Choose the statement that best describes the behavior captured by the state
machine diagram.
(a) setTemp is a condition of the system, measured internally by the system.
(b) setTemp is an internal transition of the system.
(c) setTemp is a condition external to the system measured by the system.
(d) setTemp is an external input to the system that causes an internal transition.

3.2 Participants

Complete responses to the survey were obtained from a total of 11 participants who
completed the study, although 49 started the survey. Participants were recruited
using the LinkedIn platform, specially addressing professional groups in systems
engineering and system modeling, and directly through the sponsor. Participation
was voluntary and had no explicit benefits. Participants conducted the study at
their own location, using an online survey. Only practicing systems engineers and

366 B. Cratsley et al.

Table 2 Summary of survey results

Model Interpretation
Q1

Q2

Q3

Q4

Dark blue. The system will not receive releaseBrake
and speed = 0 simultaneously while in Braking state
Orange. The system automatically defaults to one of
both transitions
Grey. This is a non-nominal behavior and needs to be
defined in a separate state machine
Yellow. Other
Light blue. I do not know

Dark blue. The system will not receive releaseBrake
and speed = 0 simultaneously while in Braking state
Orange. The system automatically defaults to one of
both transitions
Grey. This is a non-nominal behavior and needs to be
defined in a separate state machine
Yellow. Other
Light blue. I do not know

Dark blue. The system will execute Initialize
behavior. Once the behavior is finalized, the system
will execute gatherData behavior. Once the behavior
is finalized, the system will execute Finalized
behaviour
Orange. The system cannot execute Finalize behavior
because there is no transition exiting the state
Grey. Other

Dark blue. An amount of time determined by each
user when using the system
Orange. A time that is determined by the system,
depending on the system design
Grey. The time is undefined.
Yellow. Defining the time that it takes a transition
between states is outside of the scope of SysML

Q5

Q6
Dark blue. setTemp is a condition of the system,
measures internally by the system
Orange. setTemp is an internal transition of the
system
Grey. setTemp is a condition external to the system
measured by the system
Yellow. setTemp is an external input to the system
that causes an internal transition

Dark blue. setTemp is a condition of the system,
measures internally by the system
Orange. setTemp is an internal transition of the
system
Grey. setTemp is a condition external to the system
measured by the system
Yellow. setTemp is an external input to the system
that causes an internal transition

Interpretation Discrepancies of SysML State Machine: An Initial Investigation 367

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1 2 3 4 5 6 7 8 9 1011

Ye
ar

s

Non-MBSE experience

MBSE experience

Fig. 2 (a) Participants with years of experience in systems engineering; (b) participants with years
of experience using MBSE; (c) balance of systems engineering experience and MBSE experience
of each participant

graduate students in systems engineering were invited to participate in the study.
A practicing systems engineer was defined as an individual who executes some
or all the activities described by the International Council of Systems Engineering
(INCOSE) as part of his/her professional work. Determination of compliance of
participants to selection criteria was performed by the researchers by evaluating
participants’ responses to demographic questions. Therefore, we cannot guarantee
accuracy of the participants’ answers to demographic questions. Goodwill of the
participants in responding to the survey has been assumed.

Demographic data is shown in Fig 2. Figure 2a shows the years of experience
that participants had in the field of systems engineering. Although participation was
low, participants uniformly represented a breadth of experience, spanning from 1–
5 years of experience to more than 26 years of experience. Figure 2b shows the
years of experience that participants had in using MBSE. The pattern of experience
in this case changes, with a higher number of respondents on the low end of the
spectrum and just one respondent with over 10 years of experience in applying
MBSE. We suggest that this is a good representation of the MBSE population, given
that, although initial efforts in MBSE started several years ago, widespread adoption
has begun more recently. This can also be visualized by showing the specific
MBSE experience of each respondent, with respect to their systems engineering
experience (ref. Fig. 2c). It is shown that around half of the participants have
significantly engaged in MBSE, while the other half used it less intensively. In terms
of professionalism in MBSE, four participants indicated that they had used SysML
and/or MBSE as part of their education, and ten of them indicated that they had used
MBSE and/or SysML in professional practice. In addition, one participant had an
OCSMP Model Builder Advanced certification.

368 B. Cratsley et al.

3.3 Results

Participants took an average of 32 minutes to complete the survey, with the fastest
completion in 16 minutes and the slowest in 78 minutes. Table 2 summarizes
the results (note that options that were not selected by any participants are not
shown). Results seem to support our initial hypothesis about the diversity of
interpretation of models, despite the small participation. In summary, there was
significant disagreement about the interpreted behavior for every single model that
was presented to the participants.

Evaluating the specific different interpretations selected by the participants
provides additional insights beyond the quantitative comparison. In particular, they
show the potential risks to system development that can stem from these various
interpretations. These are discussed individually for each model and question below.

Question 1 The model in this question referred to the behavior of a vehicle. About
half of the participants assumed that the vehicle would never receive a command
to accelerate while it was in Braking state, while around the other half of the
participants assumed that the vehicle would receive the command but ignore it. This
different interpretation is not subtle, but completely changes both the context and
the expectations for the system. First, both groups interpreted opposing assumptions
about the problem space (receiving vs not receiving an acceleration command when
in Braking state). Second, one group assumed an embedded behavior, whereas the
other group considered it inapplicable. As a result, whereas one group of participants
would further a design by implementing a given behavior in the Braking state, such
a design feature would be purposefully omitted by the other group.

Question 2 The model in this question remains the vehicle. In this case, the
diversity of opinions was even higher than for Question 1. Given a condition of the
inputs to the system and the state of the system, participants interpreted different
behaviors of the system. As in Question 1, such interpretations would lead to
vehicles exhibiting different functionality, depending on the engineer that read the
model.

Question 3 The model in this question does not capture any specific type of system;
it captures the behavior a notional system. Results show that participants uniformly
disagreed about the execution by the system of certain actions or behaviors that
occur once the system reaches a given state. Consider now two such engineers,
one creating the model under the assumption that all behaviors would execute
sequentially (as given by the blue answer) and one using it to produce the detail
design of the system, interpreting that the system cannot execute one of the actions
(as given by the orange answer). In the best case, the second engineer would raise
the concern to the first, and both would reach a consistent understanding. In the
worst case, the second engineer would design the system without the possibility to
execute the last action, which would be deficient with respect to how the system was
initially conceptualized in the model by the first engineer. Regardless, both cases
lead to rework, which negatively impacts the success of a system’s development.

Interpretation Discrepancies of SysML State Machine: An Initial Investigation 369

Question 4 The model in this question captures a light switch. While around half
of the participants interpreted that the time to transition from one state to the
other was determined by each used, other participants declared that such time was
determined by the system, undefined, or that it had to be defined outside of the
scope of the model. This is a common situation in system development that leads to
a modeling gap, where everyone assumes that the variable of interest (time in this
case) will be determined by someone else, and hence this reciprocal assumption
leads to the variable remaining undefined. These gaps eventually surface as the
system development progresses, usually leading to rework as well.

Questions 5 and 6 The model in these questions captures an oven-like system,
which is used to bake something. Results show that participants disagreed on
whether the condition that generates the state transition (in this case, the variable
setTemp) was internal of the system or external to the system. Clearly, these
two interpretations have considerable implications for system development. If the
condition is internal to the system, there is no need for an external interface to
receive the temperature or the information about the temperature. However, there
will be a need to design the capability to measure or determine the condition
internally. On the contrary, if the condition is external to the system, then the system
will need to be able to receive an external input (either the condition directly or
information about the condition). Falling into this misaligned interpretation can
easily lead, as discussed, to systems that are either inconsistent with the system
context (i.e., that are unable to interact with external systems as required) or unable
to provide the desired capabilities (i.e., that are not capable to identify the internal
condition). Regardless, the system solution would be inefficient, since either the
system would implement internal functionality that was not required, or it would
implement external interfaces that would remain unused.

4 Conclusion

The results of this study seem to support the hypothesis put forth at the beginning of
the paper: A lack of knowledge of SysML semantics leads to model interpretation
discrepancies. We suggest that such discrepancies in model interpretation could
generate problems during system development, including need for rework, modeling
gaps, inefficient solutions, and solutions that are not fit for purpose; we recognize
though that this needs to be empirically demonstrated in actual applications of
MBSE. Hence, while semantic sophistication is useful for simplifying model
construction and visualization, semantically rich modeling languages may actually
increase the risk of miscommunication and inconsistent system development. This
is contrary to current thinking in the field of MBSE, where communication and
consistency have been highly cited as key strengths of the approach. However,
because the results presented in this paper are based on a small sample, we suggest
that a continuation of the study with a higher sample is necessary to confirm the
hypothesis.

370 B. Cratsley et al.

Acknowledgments This material is based on work sponsored by the Northrop Grumman Under-
graduate Research Experience in Industrial and Systems Engineering at Virginia Tech project. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the Northrop Grumman Corporation.

References

Andersson, H., et al. 2010. Experience from introducing Unified Modeling Language/Systems
Modeling Language at Saab Aerosystems. Systems Engineering 13 (4): 369–380.

Bisht, R.K.D., and H.S. Dhami. 2015. Discrete Mathematics. Oxford: Oxford University Press.
Crane, M.L. 2005. On the Syntax and Semantics of State Machines. Kingston: Queen’s University.
Friedenthal, S., A. Moore, and R. Steiner, eds. 2015. A Practical Guide to SysML – The Systems

Modeling Language. 3rd ed. Waltham: Morgan Kaufman.
Gregory, J., et al. 2019. Early Validation of the Data Handling Unit of a Spacecraft Using MBSE.

In 2019 IEEE Aerospace Conference.
Harel, D. 1987. Statecharts: A visual formalism for complex systems. Science of Computer

Programming 8 (3): 231–274.
Mealy, G.H. 1955. A method for synthesizing sequential circuits. The Bell System Technical

Journal 34 (5): 1045–1079.
Moore, E.F. 1956. Gedanken-experiments on Sequential Machines, Automata Studies, Annals of

Mathematical Studies. Vol. 34. Princeton: Princeton University Press.
Piaszczyk, C. 2011. Model Based Systems Engineering with Department of Defense Architectural

Framework. Systems Engineering 14 (3): 305–326.
Vipavetz, K., D. Murphy, and S. Infeld. Model-Based Systems Engineering Pilot Program at NASA

Langley. In AIAA SPACE 2012 Conference & Exposition.
Wach, P., and A. Salado. 2019. Can Wymore’s Mathematical Framework Underspin SysML?

An Initial Investigation of State Machines. In Conference on Systems Engineering Research
(CSER). Washington, DC.

Fuzzy Multicriteria Optimization for
System Engineer’s Design of Myoelectric
Prostheses

Kenneth W. Garner and Kamran Iqbal

Abstract Fuzzy logic provides a means to address uncertainty in selecting optimal
elements in the systems design process. Using mathematical algorithms coupled
with existing system engineering tools has the potential to increase stakeholder
satisfaction and reduce lifecycle cost of the system. In this study we use Fuzzy
TOPSIS algorithm to demonstrate realization of top-level design choices as well as
enhancement of stakeholder satisfaction in the case of designing a prosthetic arm.
Although prosthetic industry is taken as an example, this research is valuable in
any situation where the exact intent of the stakeholder is uncertain; nevertheless,
the systems engineer seeks an optimal product design that would meet stakeholder
needs.

Keywords Prosthetic arm · Multicriteria optimization · Fuzzy TOPSIS
algorithm · Top-level design

1 Introduction and Background

In this study, the initial phases of the systems engineering design process in the
case of a prosthetic arm are presented. These include stakeholder requirement
analysis, system requirements, and top-level attribute and design selection. This
information is used to generate the systems architecture that sets a baseline for
specialization and procurement of system elements. The trade space for a prosthetic
arm defines a group of options with various performance ratings and costs. An
optimal selection of subsystem elements will greatly reduce the lifecycle costs of
the system. In the case of prosthetic arm, this aim is achieved through multicriteria
decision-making (MCDM) by using Fuzzy TOPSIS algorithm. This research aims to

K. W. Garner · K. Iqbal (�)
Department of Systems Engineering, University of Arkansas Little Rock, Little Rock, AR, USA
e-mail: kxiqbal@ualr.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_32

371

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_32&domain=pdf
mailto:kxiqbal@ualr.edu
https://doi.org/10.1007/978-3-030-82083-1_32

372 K. W. Garner and K. Iqbal

advance the study of systems engineering processes within the domain of advanced
mathematical optimization algorithms.

Throughout history, man has needed prosthetics to overcome limb loss. In the
United States, prosthetics first appeared after the civil war. With a large number of
amputees from World War II, a market for prosthetics began to grow. Focusing on
user satisfaction paved the way for plastics, resins, polycarbonates, and laminates
that were lightweight and easier to clean. Today, high-performance prosthetic
designs are changing the way prosthetics are viewed. Prosthetic arms are of three
main types: passive, body-powered, and electrical. Passive arm is mostly cosmetic.
Body-powered prosthetic uses a cable system, body harness, and existing muscles
to move the elbow and hand functionally. Myoelectric prosthetics are considered the
most psychologically natural yet remain the most expensive. A myoelectric upper
limb prosthetic arm uses motors with an external power source controlled by the
EMG signals from the existing limb via a microprocessor.

A myoelectric prosthetic arm is a system that can be broken down into three
main subsystems: mechanical, electrical, and communications. Each subsystem has
an extensive set of elements that in turn have attributes. Attributes of the device are
highly dependent on user preference, lifestyle, financial standing, and insurability.
Choosing the proper configuration of attributes and elements is paramount for
a quality prosthetic arm to thrive in its intended environment and increase user
satisfaction. The complexity of the device is directly correlated to cost; whether it
be the cost of consultation, manufacturing, learning, or maintenance complexity is
the problem. The systems engineering process is tailored to manage complexity and
achieve value for all stakeholders. Therefore, adroitness optimization techniques
in selecting attributes and elements could minimize cost and maintenance while
maximizing user performance and satisfaction.

Fuzzy logic, as opposed to Boolean logic, includes imprecise information in
the decision-making process. In Fuzzy logic, the truth value of a proposition may
be any real number between 0 and 1. Fuzzy logic emerged in the context of
fuzzy set theory introduced by Zadeh (1965). A fuzzy set contains elements with
varying degrees of membership. Fuzzy relations in MCDM problems are a common
model for analyzing alternatives with Pareto-optimal solutions. In the prosthetics
industry, stakeholders have conflicting preference structures and receive value from
the product in different ways, whether they are the doctor, insurance company, third
party, or prosthetics engineers. An optimal system should satisfy all stakeholders.
From the amputation type to daily use to maintenance costs of a prosthetic arm,
many system characteristics can be optimized to achieve more value.

From the insurance companies’ perspective, realizing patient’s needs assumes
paramount importance especially when it comes to expensive prosthetic devices.
Functional needs that are likely to be met include gripping, releasing, holding,
and coordinating movement during primary activities of daily living. Prosthetics
should meet the requirement of patients’ need for control, durability (maintenance),
function (speed, work capability), and usability. As technology increases, options
for amputees also increase, but not all options are covered under an insurance plan.
Many times, insurance companies will not pay for a prescribed arm due to the lack

Fuzzy Multicriteria Optimization for System Engineer’s Design of Myoelectric. . . 373

of medical necessity. For example, at BlueCross BlueShield a certain number of
conditions must be met for the prosthetic device to be covered; these are:

• Remaining muscle meets minimum microvolt threshold to allow operation of
device.

• The patient is free from any neuromuscular disease.
• Amputation is at the wrist or above.
• Body-powered prosthetics are insufficient in meeting functional needs.
• A functional evaluation indicating that the individual’s functional needs will be

met.

The main objective of this study is to use systems engineering tools in sequence
with fuzzy multicriteria decision optimization algorithms to develop stakeholder
needs, systems requirements, systems architectures, element trade space, and final
design definition. Classic systems engineering process models do not address
uncertainty in stakeholder preference structure which can lead to an inaccurate
selection of sub-elements in the design. Our approach is to use fuzzy logic in
addition to existing mathematical tools to address stakeholder ambiguity in their
needs. A problem from the prosthetic industry will be used to show the benefits of
using fuzzy logic within the decision analysis framework.

2 Multicriteria Optimization

Oftentimes a system has many attributes that must be optimized; this is formulated
as a multi-attribute objective function. For example, an engineering firm tasked to
build a race car would want more speed and more range. An objective function that
can handle both attributes is given as:

f (x) =
∑

i
wivi (ai)

where vi(ai) is a value function of the attribute ai and wi is a weight. This way the
decision-maker (DM) can have his/her value of individual attributes addressed. Yet,
there are times that the designer might want to maximize speed and range while
minimizing noise and cost. The extra function can be used as a constraint. Thus, a
multicriteria optimization problem is defined as:

max f (x) =
∑

i
wivi

(
ai, aj

)
such that ci

(
ai, aj

) ≥ ri

where ri is the satisficing level for ci (Chen 2000 & Chu and Lin 2003). In multi-
objective optimization problems, dominance is used to determine the best solution.
Therefore, if x1 is no worse than x2 in all objectives and x1 is at least better than
x2 in one objective, then x1 is considered as the nondominated solution, i.e., it is
Pareto-optimal.

374 K. W. Garner and K. Iqbal

2.1 Fuzzy TOPSIS Algorithm

The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS)
introduced by Hwang and Yoon (1981) is a multicriteria decision analysis technique
for establishing order preference in a multi-DM environment. It is based on the
concept that the selected alternative should be nearest to a certain positive ideal
solution (PIS) and farthest from a negative ideal solution (NIS). The TOPSIS
algorithm was extended to include linguistic variables and fuzzy sets by Chen
(2000). In fuzzy TOPSIS method (Chu and Lin 2003), linguistics terms are used
to represent DMs’ appraisal of alternatives. Thus, a fuzzy-PIS represents the best
performance descriptors of an alternative, whereas a fuzzy-NIS represents the worst
performance descriptors.

A fuzzy number represents a convex and normalized fuzzy set (Lee 2005).
Triangular fuzzy numbers are commonly used to represent linguistic preferences.
Using fuzzy numbers in the TOPSIS method for criteria analysis makes it natural to
apply in group decision-making. A triangular fuzzy number, represented as a triplet:
a = (a1, a2, a3), defines a membership function μa(x) that maps a range of values
over the universe of discourse to a real number in the interval [0, 1]. Further, let
a = (a1, a2, a3) and b = (b1, b2, b3) represent two triangular fuzzy numbers; then,
their geometrical distance is defined as:

d
(
a, b

) =
√[

(a1 − b1)
2 + (a2 − b2)

2 + (a3 − b3)
2] /3

As an example, the fuzzy numbers corresponding to commonly used linguistic
evaluation may be defined as (Table 1):

To illustrate the aggregation of fuzzy numbers, suppose vendors of coffee cups
are evaluated for purchase by a two-member committee. The decision-makers
(DM1, DM2) assess two alternatives (A1, A2) on criteria: C1 − C3 (e.g., size,
material, and cost) in linguistic terms. They also assign weights and risk to
each evaluation criteria, again in linguistic terms. Suppose fuzzy numbers a =
(a1, a2, a3) and b = (b1, b2, b3) describe the DM’s assessment of alternative
A1 on criteria C1; then, an aggregated assessment of A1 on C1 is obtained as:
c = (c1, c2, c3), where c1 = min (a1, b1), c2 = mean(a2, b2), c3 = max (a3, b3).

In multi-attribute decision-making (MADM), all available alternatives are
assessed on each criteria by the DMs and the results compiled in an evaluation
matrix (of size n × m, where n is the number of alternatives and m is the number
of criteria). In fuzzy MADM, their evaluations are translated into an aggregated

Table 1 Example of fuzzy numbers assigned to criteria evaluation in linguistic terms

Very poor (VP) Poor (P) Fair (F) Good (G) Very Good (VG)
Linguistic term Very low (VL) Low (L) Medium (M) High (H) Very High (VH)

Membership function < 1, 1, 3 > < 1, 3, 5 > < 3, 5, 7 > < 5, 7, 9 > < 7, 9, 9 >

Fuzzy Multicriteria Optimization for System Engineer’s Design of Myoelectric. . . 375

Table 2 Example of fuzzy numbers assigned to criteria weights in linguistic terms

Linguistic terms LOW MEDIUM HIGH

Membership function <0.01, 0.20, 0.40 > <0.11, 0.30, 0.60 > <0.25, 0.50, 0.80 >

fuzzy decision matrix
[
Dij

]
(of size n × m) using fuzzy numbers. Next, the entries

in the fuzzy decision matrix are normalized for comparison. Normalization using
maximum benefit and minimum cost compares each element in the decision matrix
to its best criteria value. For the max benefit case, we divide each alternative matrix
by the max benefit for its specified criteria. For the min cost, we multiply the min
cost by the inverse of each grouped evaluation matrix element. The fuzzy numbers
in the normalized fuzzy decision matrix are restricted to [0, 1].

The DMs also assess their preference toward the assessment criteria on each
alternative. The linguistic appraisal of criteria is similarly aggregated as fuzzy
numbers and assembled as W = [w1, w2, . . . , wm]. As an example, the criteria
weights may be represented as (Table 2):

The DMs may additionally attach a risk assessment to the criteria weights. The
risk is denoted by λ ∈ [0, 1], where λ = 0 represents “risk-averse,” λ = 0.5 is “risk-
neutral,” and λ = 1 may represent “risk-prone” criteria. The assigned weights can
then be modified by the risk involved.

The normalized fuzzy decision matrix is column-wise multiplied by the aggre-
gated weights assigned by the DMs to define the weighted normalized fuzzy
decision matrix [Vij]. The FPIS and FNIS are defined as row minimums and row
maximums on the normalized matrix.

The resulting ideal solution space is represented by two vectors: the max-
imum benefit at minimum cost for each alternative is represented as A+ ={
v+

1 , v+
2 , . . . , v+

m

}
; the minimum benefit at maximum cost is represented as: A− ={

v−
1 , v−

2 , . . . , v−
m

}
. These vectors establish a Euclidean space so the alternatives may

be compared geometrically between the upper and lower bounds of the solution
space. Using the distance formula, the distance of each alternative from the positive
and negative ideal solutions is given as:

d+
i =

√√√√
∑

j

(
vij − v+

j

)2
, d−

i =
√√√√
∑

j

(
vij − v−

j

)2
, i = 1, . . . , n

A closeness coefficient index allows the ability to rank each alternative based on
the distance from the positive and negative ideal solutions. The alternative with the
highest closeness coefficient is considered the best choice for the DMs preference
structure. The closeness coefficient is computed as:

cci = d+
i

d+
i + d−

i

, i = 1, . . . , n

376 K. W. Garner and K. Iqbal

3 Application to Prostheses Design

3.1 System Requirements

The system requirements were obtained from stakeholder surveys (customers and
insurance providers) covering device abatement and un-insurability constraints. The
following is a list of system requirements:

• Prosthetics system must use human cognition to control.
• Human control shall be observable.
• Prosthetics system user shall not fatigue the user.
• Prosthetics system shall be usable for a normal days’ time.
• Prosthetics system shall look and feel like a natural appendage.
• Prosthetics system down time shall be reduced.
• Prosthetic system shall be able to interact in its environment.
• Prosthetic system shall have a minimal learning curve.
• Prosthetics system shall maintain a comfortable temperature.
• Prosthetic system shall be able to withstand normal wear.
• Prosthetic system maintenance shall be minimized.
• Prosthetic system shall attach to the user easily.
• Prosthetic system shall have natural movement.
• Prosthetic system shall provide a useful grip.

3.2 Requirement Analysis and Criteria Selection

System requirements were refined using Quality Function Deployment (QFD)
diagram and N2 diagram. The relevant data taken from insurance surveys, prosthetic
device forecasts, and historical device abatement information was used in a QFD
to extrapolate the system requirements from the stakeholder requirements. The N2
diagram revealed how each element interfaced within the system. In addition to
the N2 diagram, the interface matrix shows the exact nature of interface between
elements.

Criteria selection was divided into four categories: functional ability, lightweight,
cost, and maintenance. Evaluation showed a high degree of importance for the
following criteria from the second-tier QFD: degrees of freedom, reaction latency,
total system weight, and operating temp. Likewise the N2 diagram showed the
following functional high-risk couplings: classifying data, processing information,
lifting, carrying, containing all elements, and attaching with comfort. Additionally,
N2 physical elements high-risk couplings were microprocessor, motor actuator,
rigid structure, natural appearance, and housing assembly. Criteria weights were
selected per each subsystem attribute.

Fuzzy Multicriteria Optimization for System Engineer’s Design of Myoelectric. . . 377

Prosthetic Arm

Electrical Sys.
1.2

Mechanical Sys.
1.3

Communications
Sys.
1.1

Electrodes
1.1.1

Sensors
1.1.2

Microprocessor
1.2.1

Motor / Actuator
1.2.2

Battery
1.2.3

Charging Unit
1.2.4

Rigid Structure
1.3.1

Harness / Strap
1.3.2

Housing
Assembly

Natural
Appearance

1.3.3

Fig. 1 A generic top-down hierarchy for prostheses design

The system architecture for the preliminary design of prostheses is shown in
Fig. 1. The figure shows top-level breakdown into the communications, electrical
system, and mechanical system units. The sub-assemblies in each configuration unit
are shown underneath.

3.3 Fuzzy TOPSIS Analysis

The fuzzy evaluation matrix for the prosthetic is shown in Table 3. Each subsystem
element has three alternatives that are measured against cost-and-benefit criteria.
Fuzzy linguistic terms are used for evaluation, and their numerical definition can be
seen next to the linguistic term entry. Additionally, the DM’s criteria weights for
each subsystem element are seen within the table.

Using the Fuzzy TOPSIS algorithm with lambda cuts for risk analysis, a
closeness coefficient index matrix was formed (Table 4), which shows how each
alternative ranks within the context of closeness to the positive ideal solution.
Furthermore, the lambda cuts for risk assessment allows the DM to view their
alternative selection from a risk-prone, risk-neutral, and risk-averse perspectives.

Once each subsystem alternative has been evaluated and ranked, the attributes are
ready to be selected for the next phases of the systems development process. Table 5
shows the effect lambda cuts have on the decision-making process. Dependent on
how lambda is shifted from risk-prone to risk-averse, optimal alternatives may be
switched in favor of the DM’s preference.

3.4 System Architecture

The final top-down hierarchy is created for each risk preference class within our
mathematical evaluation framework. The risk-neutral hierarchy (Fig. 2a) establishes
a baseline for a safe prosthetic architecture that should add value to any patient. The
risk-prone hierarchy (Fig. 2b) adds a metal rigid structure to the prosthesis. The
risk-averse hierarchy (Fig. 2c) deviates from risk-neutral in two areas: addition of

378 K. W. Garner and K. Iqbal

Ta
bl

e
3

Fu
zz

y
ev

al
ua

tio
n

m
at

ri
x

fo
r

de
te

rm
in

at
io

n
of

pr
os

th
et

ic
ar

ch
ite

ct
ur

e

E
V

A
L

U
A

T
IO

N
M

A
T

R
IX

E
va

lu
at

io
n

C
ri

te
ri

a
B

E
N

E
F

IT
C

R
IT

E
R

IA
C

O
ST

C
R

IT
E

R
IA

F
un

ct
io

na
lA

bi
li

ty
L

ig
ht

W
ei

gh
t

C
os

t
M

ai
nt

en
an

ce

C
1

C
2

C
3

C
4

E
L

E
C

T
R

O
D

E
C

R
IT

E
R

IA
W

E
IG

H
T

IN
G

L
L

0.
01

0.
2

0.
4

M
M

0.
11

0.
3

0.
6

H
H

0.
26

0.
5

0.
8

H
H

0.
25

0.
5

0.
8

C
om

m
un

ic
at

io
ns

el
ec

tr
od

es
A

1_
1

SU
R

FA
C

E
F

3
5

7
P

1
3

5
L

1
3

4
H

5
7

9

A
1_

2
F

IN
E

W
IR

E
G

5
7

9
G

6
7

9
M

3
5

7
L

1
3

4

A
1_

3
W

IR
E

L
E

SS
V

P
1

1
3

P
1

3
4

H
5

7
9

M
3

6
7

SE
N

SO
R

S
C

R
IT

E
R

IA
W

E
IG

H
T

IN
G

L
L

0.
01

0.
2

0.
4

M
M

0.
11

0.
3

0.
6

H
H

0.
25

0.
5

0.
8

H
H

0.
25

0.
5

0.
8

C
om

m
un

ic
at

io
ns

se
ns

or
s

A
2_

1
A

N
G

U
L

A
R

P
O

SI
T

IO
N

F
3

5
7

G
5

7
9

M
3

5
7

M
3

5
7

A
2_

2
G

Y
R

O
V

G
7

9
9

F
3

5
7

V
H

7
9

9
L

1
3

4

A
2_

3
A

C
C

E
L

E
TO

M
E

T
E

R
P

1
3

4
G

5
7

9
M

3
5

7
H

5
7

9

M
IC

R
O

P
R

O
C

E
SS

O
R

C
R

IT
E

R
IA

W
E

IG
H

T
IN

G
H

H
0.

25
0.

5
0.

5
M

M
0.

11
0.

3
0.

6
H

H
0.

25
0.

5
0.

8
H

H
0.

25
0.

5
0.

8

E
le

ct
ri

ca
l

m
ic

ro
pr

oc
es

so
r

A
3_

1
H

IG
H

P
E

R
F

O
R

M
A

N
C

E
V

G
7

9
9

F
3

6
7

V
H

7
9

9
M

3
5

7

A
3_

2
M

ID
P

E
R

F
O

R
M

A
N

C
E

G
5

7
9

G
5

7
9

H
5

7
9

M
3

5
7

A
3_

3
L

O
W

P
E

R
F

O
R

M
A

N
C

E
F

3
5

7
V

G
7

9
9

M
3

5
7

M
3

5
7

Fuzzy Multicriteria Optimization for System Engineer’s Design of Myoelectric. . . 379

M
O

TO
R

/A
C

T
U

A
TO

R
C

R
IT

E
R

IA
W

E
IG

H
T

IN
G

H
H

0.
25

0.
5

0.
8

L
L

0.
01

0.
2

0.
4

L
L

0.
01

0.
2

0.
4

L
L

0.
01

0.
2

0.
4

E
le

ct
ri

ca
l-

M
O

TO
R

/A
C

T
U

A
-

TO
R

A
4_

1
H

IG
H

P
E

R
F

O
R

M
A

N
C

E
V

G
7

9
9

G
5

7
9

V
H

7
9

9
L

1
3

4

A
4_

2
M

ID
P

E
R

F
O

R
M

A
N

C
E

G
5

7
9

F
3

6
7

H
5

7
9

L
1

3
4

A
4_

3
L

O
W

P
E

R
F

O
R

M
A

N
C

E
F

3
5

7
F

3
5

7
M

3
5

7
M

3
5

7

C
H

A
R

G
IN

G
U

N
IT

C
R

IT
E

R
IA

W
E

IG
H

T
IN

G
H

H
0.

25
0.

5
0.

8
L

L
0.

01
0.

2
0.

4
M

M
0.

11
0.

3
0.

6
L

L
0.

01
0.

2
0.

4

E
le

ct
ri

ca
l-

C
H

A
R

G
IN

G
U

N
IT

A
5_

l
T

H
E

R
M

A
L

F
3

5
7

F
3

5
7

H
5

7
9

H
5

7
9

A
5_

2
A

C
TO

D
C

V
G

7
9

9
F

3
5

7
L

1
3

4
V

L
1

1
3

A
5_

3
M

A
G

N
E

T
IC

IN
D

U
C

T
IO

N
G

5
7

9
G

5
7

9
V

H
7

9
9

M
3

5
7

B
A

T
T

E
R

Y
T

Y
P

E
C

R
IT

E
R

IA
W

E
IG

H
T

IN
G

M
M

0.
11

0.
3

0.
6

H
H

0.
25

0.
5

0.
5

L
L

0.
01

0.
2

0.
4

M
M

0.
11

0.
3

0.
6

E
le

ct
ri

ca
l

B
A

T
T

E
R

Y
T

Y
P

E
A

6_
1

L
IT

H
IU

M
IO

N
V

G
7

9
9

G
5

7
9

H
5

7
9

L
1

3
4

A
6_

2
N

IC
K

E
L

C
A

D
IU

M
G

5
7

9
F

3
5

7
H

5
7

9
L

1
3

4

A
6_

3
L

E
A

D
A

C
ID

P
1

3
4

P
1

3
4

V
L

1
1

3
L

1
3

4

(c
on

tin
ue

d)

380 K. W. Garner and K. Iqbal

Ta
bl

e
3

(c
on

tin
ue

d)

E
V

A
L

U
A

T
IO

N
M

A
T

R
IX

E
va

lu
at

io
n

C
ri

te
ri

a
B

E
N

E
F

IT
C

R
IT

E
R

IA
C

O
ST

C
R

IT
E

R
IA

F
un

ct
io

na
lA

bi
li

ty
L

ig
ht

W
ei

gh
t

C
os

t
M

ai
nt

en
an

ce

C
1

C
2

C
3

C
4

R
ID

G
E

D
ST

R
U

C
T

U
R

E
C

R
IT

E
R

IA
W

E
IG

H
T

IN
G

H
H

0.
25

0.
5

0.
8

L
L

0.
01

0.
2

0.
4

L
L

0.
01

0.
2

0.
4

M
M

0.
11

0.
5

0.
6

M
ec

ha
ni

ca
l

R
IG

ID
ST

R
U

C
T

U
R

E

A
7_

1
3D

P
R

IN
T

G
5

7
9

G
5

7
9

L
1

3
4

M
3

5
7

A
7_

2
M

E
TA

L
V

G
7

9
9

P
1

3
4

V
L

1
1

3
L

1
3

4

A
7_

3
H

A
R

D
P

O
LY

M
E

R
G

5
7

9
F

3
5

7
M

3
5

7
L

1
3

4

H
A

R
N

E
SS

ST
R

A
P

C
R

IT
E

R
IA

W
E

IG
H

T
IN

G
M

M
0.

11
0.

5
0.

6
L

L
0.

01
0.

2
0.

4
H

H
0.

25
0.

5
0.

5
H

H
0.

25
0.

5
0.

5

M
ec

ha
ni

ca
l-

H
A

R
N

E
SS

ST
R

A
P

A
8_

1
C

L
O

T
H

F
3

5
7

G
5

7
9

V
L

1
1

3
M

3
5

7

A
8_

2
N

Y
L

O
N

G
5

7
9

G
5

7
9

L
1

3
4

L
1

3
4

A
8_

3
P

L
A

ST
IC

P
1

3
4

F
3

5
7

L
1

3
4

M
3

5
7

E
X

T
E

R
IO

R
C

O
V

E
R

C
R

IT
E

R
IA

W
E

IG
H

T
IN

G
H

H
0.

25
0.

5
0.

8
L

L
0.

01
0.

2
0.

4
L

L
0.

01
0.

2
0.

4
M

M
0.

11
0.

3
0.

6

M
ec

ha
ni

ca
l-

E
X

T
E

R
IO

R
C

O
Y

E
R

A
9_

l
SI

L
IC

O
N

V
G

7
9

9
G

5
7

9
H

5
7

9
H

5
7

9

A
9_

2
A

L
U

M
IN

U
M

P
1

3
5

F
3

5
7

M
3

5
7

M
3

5
7

A
9_

3
H

A
R

D
P

O
LY

M
E

R
F

3
5

7
F

3
5

7
M

3
5

7
M

3
5

7

Fuzzy Multicriteria Optimization for System Engineer’s Design of Myoelectric. . . 381

Ta
bl

e
4

T
he

cl
os

en
es

s
co

ef
fic

ie
nt

s
fo

r
ri

sk
-p

ro
ne

,r
is

k-
ne

ut
ra

l,
an

d
ri

sk
-a

ve
rs

e
de

si
gn

of
pr

os
th

es
es

R
IS

K
-P

R
O

N
E

R
IS

K
-N

E
U

T
R

A
L

R
IS

K
-A

V
E

R
SE

E
L

E
C

T
R

O
D

E
A

LT
E

R
N

A
T

IV
E

SC
O

R
E

C
om

m
un

ic
at

io
n

el
ec

tr
od

e
A

1_
1

SU
R

FA
C

E
0.

37
01

0.
47

06
0.

34
73

A
1_

2
F

IN
E

W
IR

E
0.

49
27

0.
62

91
0.

49
87

A
1_

3
W

IR
E

L
E

SS
0.

16
9

0.
19

19
0.

26
02

SE
N

SO
R

S
A

LT
E

R
N

A
T

IV
E

SC
O

R
E

C
om

m
un

ic
at

io
ns

se
ns

or
s

A
2_

l
A

N
G

U
L

A
R

P
O

SI
T

IO
N

0.
59

58
0.

50
38

0.
47

78

A
2_

2
G

Y
R

O
0.

46
09

0.
61

59
0.

43
57

A
2_

3
A

C
C

E
L

E
TO

M
E

T
E

R
0.

29
58

0.
56

33
0.

46
06

M
IC

R
O

P
R

O
C

E
SS

O
R

A
LT

E
R

N
A

T
IV

E
SC

O
R

E

E
le

ct
ri

ca
lm

ic
ro

pr
oc

es
so

r
A

3_
1

H
IG

H
P

E
R

F
O

R
M

A
N

C
E

0.
60

87
0.

57
94

0.
48

21

A
3_

2
M

ID
P

E
R

F
O

R
M

A
N

C
E

0.
59

18
0.

57
26

0.
49

A
3_

3
L

O
W

P
E

R
F

O
R

M
A

N
C

E
0.

5
04

78
5

0.
45

49

M
O

TO
R

/A
C

T
U

A
TO

R
A

LT
E

R
N

A
T

IV
E

SC
O

R
E

E
le

ct
ri

ca
lM

O
TO

R
/A

C
T

U
A

TO
R

A
4_

1
H

IG
H

P
E

R
F

O
R

M
A

N
C

E
0.

70
37

0.
62

57
0.

52
99

A
4_

2
M

ID
P

E
R

F
O

R
M

A
N

C
E

0.
66

32
0.

56
39

0.
47

75

A
4_

3
L

O
W

P
E

R
F

O
R

M
A

N
C

E
0.

56
31

0.
45

4
0.

59
7

C
H

A
R

G
IN

G
U

N
IT

A
LT

E
R

N
A

T
IV

E
SC

O
R

E

E
le

ct
ri

ca
l-

C
H

A
R

G
IN

G
U

N
IT

A
5_

1
T

H
E

R
M

A
L

0.
55

83
0.

47
08

0.
35

49

A
5_

2
A

C
TO

D
C

0.
70

59
0.

61
78

0.
52

5

A
5_

3
M

A
G

N
E

T
IC

IN
D

U
C

T
IO

N
0.

66
3

0.
60

72
0.

48
85

(c
on

tin
ue

d)

382 K. W. Garner and K. Iqbal

Ta
bl

e
4

(c
on

tin
ue

d)

R
IS

K
-P

R
O

N
E

R
IS

K
-N

E
U

T
R

A
L

R
IS

K
-A

V
E

R
SE

B
A

T
T

E
R

Y
T

Y
P

E
A

LT
E

R
N

A
T

IV
E

SC
O

R
E

E
le

ct
ri

ca
l-

B
A

T
T

E
R

Y
T

Y
P

E
A

5_
1

L
IT

H
IU

M
IO

N
0.

56
18

0.
62

78
0.

53
06

A
6_

2
N

IC
K

E
L

C
A

D
IU

M
0.

51
63

0.
56

73
0.

44
39

A
6_

3
L

E
A

D
A

C
ID

0.
27

79
0.

33
96

0.
30

47

R
ID

G
E

D
ST

R
U

C
T

U
R

E
A

LT
E

R
N

A
T

IV
E

SC
O

R
E

M
ec

ha
ni

ca
l-

R
IG

ID
ST

R
U

C
T

U
R

E
A

7_
l

3D
P

R
IN

T
0.

66
24

0.
60

4
0.

47
41

A
7_

2
M

E
TA

L
0.

69
19

0.
57

17
0.

48
53

A
7_

3
H

A
R

D
P

O
LY

M
E

R
0.

65
99

0.
56

62
0.

45
65

H
A

R
N

E
SS

ST
R

A
P

A
LT

E
R

N
A

T
IV

E
SC

O
R

E

M
ec

ha
ni

ca
l-

H
A

R
N

E
SS

ST
R

A
P

A
8_

l
C

L
O

T
H

0.
43

7
0.

47
44

0.
43

4

A
8_

2
N

Y
L

O
N

0.
58

25
0.

58
36

0.
49

28

A
8_

3
P

L
A

ST
IC

0.
38

02
0.

33
91

0.
32

93

E
X

T
E

R
IO

R
C

O
V

E
X

A
LT

E
R

N
A

T
IV

E
SC

O
R

E

M
ec

ha
ni

ca
lE

X
T

E
R

IO
R

C
O

V
E

R
A

9_
1

SI
L

IC
O

N
0.

68
72

0.
62

41
0.

54
27

A
9_

2
A

L
U

M
IN

U
M

0.
41

8
0.

32
0.

33
88

A
9_

3
H

A
R

D
P

O
LY

M
E

R
0.

55
64

0.
45

15
0.

42
52

Fuzzy Multicriteria Optimization for System Engineer’s Design of Myoelectric. . . 383

Ta
bl

e
5

Su
bs

ys
te

m
at

tr
ib

ut
e

al
te

rn
at

iv
e

ra
nk

in
g

fo
r

pr
os

th
es

es
de

si
gn

A
ttr

ib
ut

e
al

te
rn

at
iv

e
ra

nk
in

g
R

IS
K

-P
R

O
N

E
R

IS
K

-N
E

U
T

R
A

L
R

IS
K

-A
V

E
R

SE

E
L

E
C

T
R

O
D

E
A

LT
E

R
N

A
T

IV
E

SC
O

R
E

C
om

m
un

ic
at

io
ns

el
ec

tr
od

es
A

1_
2

FI
N

E
W

IR
E

0.
49

27
0.

62
91

0.
49

87
SE

N
SO

R
S

A
LT

E
R

N
A

T
IV

E
SC

O
R

E
C

om
m

un
ic

at
io

ns
se

ns
or

s
A

2_
1

A
N

G
U

L
A

R
PO

SI
T

IO
N

0.
47

78
A

2_
2

G
Y

R
O

0.
46

09
0.

61
59

M
IC

R
O

PR
O

C
E

SS
O

R
A

LT
E

R
N

A
T

IV
E

SC
O

R
E

E
le

ct
ri

ca
l-

m
ic

ro
pr

oc
es

so
r

A
3_

1
H

IG
H

PE
R

FO
R

M
A

N
C

E
0.

60
87

0.
57

94
0.

48
21

M
O

T
O

R
/A

C
T

U
A

T
O

R
A

LT
E

R
N

A
T

IV
E

SC
O

R
E

E
le

ct
ri

ca
l-

M
O

T
O

R
/A

C
T

U
A

T
O

R
A

4_
1

H
IG

H
PE

R
FO

R
M

A
N

C
E

0.
70

37
0.

62
57

0.
52

99
C

H
A

R
G

IN
G

U
N

IT
A

LT
E

R
N

A
T

IV
E

SC
O

R
E

E
le

ct
ri

ca
l-

C
H

A
R

G
IN

G
U

N
IT

A
5_

2
A

C
T

O
D

C
0.

70
59

0.
61

78
0.

52
6

B
A

T
T

E
R

Y
T

Y
PE

A
LT

E
R

N
A

T
IV

E
SC

O
R

E
E

le
ct

ri
ca

l-
B

A
T

T
E

R
Y

T
Y

PE
A

6_
1

L
IT

H
IU

M
IO

N
0.

56
18

0.
62

78
0.

53
06

R
ID

G
E

D
ST

R
U

C
T

U
R

E
A

LT
E

R
N

A
T

IV
E

SC
O

R
E

M
ec

ha
ni

ca
l-

R
IG

ID
ST

R
U

C
T

U
R

E
A

7_
1

3D
PR

IN
T

0.
60

4
A

7_
2

M
E

TA
L

0.
69

19
0.

48
53

H
A

R
N

E
SS

ST
R

A
P

A
LT

E
R

N
A

T
IV

E
SC

O
R

E
M

ec
ha

ni
ca

l-
H

A
R

N
E

SS
ST

R
A

P
A

8_
2

N
Y

L
O

N
0.

58
25

0.
58

36
0.

49
28

E
X

T
E

R
IO

R
C

O
V

E
R

A
LT

E
R

N
A

T
IV

E
SC

O
R

E
M

ec
ha

ni
ca

l-
E

X
T

E
R

IO
R

C
O

V
E

R
A

9_
1

SI
L

IC
O

N
0.

68
72

0.
62

41
0.

54
27

384 K. W. Garner and K. Iqbal

Fig. 2 The top-level system architecture for the following categories: (a) risk-neutral; (b) risk-
prone; and (c) risk-averse

angular position sensor and metal rigid structure. What is interesting is both risk-
prone and risk-averse found the metal rigid structure optimum in the design.

In conclusion, the study’s main focus was to establish novel mathematical
techniques to fill the gaps in uncertain information within the stakeholder needs
and expectations of the actual trade space of the design process. The specific Fuzzy
TOPSIS method utilizes the availability of using several decision-makers. That gives
all the potential decision-makers an opportunity for input in the evaluation matrix
and criteria weights. The Fuzzy TOPSIS model can be applied to MCDM in other
technological fields.

Acknowledgments The authors would like to acknowledge the support from the Systems
Engineering Department and the Donaghey College of Science, Technology, Engineering, and
Mathematics at UA Little Rock.

Fuzzy Multicriteria Optimization for System Engineer’s Design of Myoelectric. . . 385

References

Chen, C.-T. 2000. Extension of the TOPSIS for group decision-making under fuzzy environment.
Fuzzy Sets and Systems 114: 1–9.

Chu, T.-C., and Y.-C. Lin. 2003. A fuzzy TOPSIS method for robot selection. International Journal
of Advanced Manufacturing Technology 21: 284–290.

Hwang, C.L., and K. Yoon. 1981. Multiple attributes decision making methods and applications.
Berlin/Heidelberg, Germany: Springer.

Lee, Kwang H. 2005. First course on fuzzy theory and applications. Berlin/Heidelberg: Springer.
Zadeh, Lotfi A. 1965. Fuzzy sets. Information and Control 8 (3): 338–353.
Chen 2000 & Chu and Lin 2003

Functional Decomposition: Evaluating
Systems Engineering Techniques

Cal M. Cluff and Dinesh Verma

Abstract The functional decomposition allows description of complex system
functionality with a hierarchy of simpler sub-functions. Determining the best set of
sub-functions for any given function should be an orderly and methodical process.
It is important that the method used captures the system without overlooking
any necessary functionality. Of the many techniques, this paper will examine six
(6) decomposition methods (operating modes, inputs and outputs, Hatley-Pirbhai
template, processing rates, organizational structure, and matching the physical
architecture). The LN-39, a standard inertial navigation system (INS), first deployed
in the A-10 and the F-16, is used as a sufficiently complex exemplar for applying
each method. Finally, the resulting LN-39 functional architectures are compared
from a number of perspectives in the product development lifecycle to illustrate
strengths and weaknesses of each decomposition technique. Each of the decomposi-
tion methods revealed aspects of the system function that were important to include
in the functional architecture, and no single method was clearly the best. Finally,
it is recommended that multiple methods be used to reveal a comprehensive set of
elementary functions. Thereafter, it is recommended that these elementary functions
are clustered and composed to develop the functional architecture.

Keywords Functional decomposition composition complex systems

C. M. Cluff (�)
Nothrop Grumman, Woodland Hills, CA, USA
e-mail: cal.cluff@ngc.com

D. Verma
Stevens Institute of Technology, Hoboken, NJ, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_33

387

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_33&domain=pdf
mailto:cal.cluff@ngc.com
https://doi.org/10.1007/978-3-030-82083-1_33

388 C. M. Cluff and D. Verma

1 Introduction/Background

Developing a functional decomposition of a system is an important systems engi-
neering activity. It is crucial for describing what the system does for the customer
and stakeholders and for use throughout the system lifecycle. Larson et al. (2009)
identify 11 different functional decomposition techniques for determining sub-
functions. Each technique has strengths and weaknesses, which draw out different
aspects of a system’s functional capabilities and how they are organized (Larson
151). According to (Summers et al. 2013), “Rather than develop a single, unified
definition of function, each approach has its own strengths and weaknesses; each
approach is useful and particularly well suited for different reasoning applications
and domains yet the transference across these being difficult at best. Therefore, a
set of comparative benchmarks that can be [applied] with the different modeling
approaches . . . to discover which elements of the representations and vocabularies
are most conducive for different elements of functional thinking” (Summers 2).

For this paper, the LN-39 Inertial Navigation System (INS) by Litton Company,
the USAF standard navigator (ENAC 77–1), is used as an exemplar to decompose
according to six of the techniques. The six techniques were chosen (operating
modes, inputs and outputs, Hatley-Pirbhai template, processing rates, organizational
structure, and matching physical architecture) because they each draw out an
important aspect of the LN-39 functional design that is not necessarily evident when
using the other methods. The INS has a single well-defined function – navigate.
That means to keep track of its position and orientation. The design to accomplish
this is sufficiently complex, and this complexity will help to better understand the
strengths and weaknesses to use as a basis for comparing the different functional
decomposition techniques (Komoto et al. 2011).

2 System Description

The LN-39 is an avionics instrument designed for high-performance aircraft. It
is equipped internally with accelerometers to sense linear acceleration and gyro-
scopes to sense torque. An internal processor integrates acceleration for velocity
and position. The angular rotation is integrated for orientation. Input from the
aircraft barometric altitude device is integrated into the vertical solution to dampen
instability due to the accumulated effect of changes in gravity over the course of
the aircraft flight path. The internal 6-DOF (six degrees of freedom) solution is
transformed into the various navigation parameters for pilot display.

A description of the LN-39 from the Litton sales brochure is as follows. “The LN-
39 inertial navigation system employs mature inertial navigation system technology
in a modern, high reliability design compliant with the Air Force Standard INS
requirements. The LN-39 provides high accuracy and reliability consistent with low
initial and life cycle costs for multiple applications. Performance options ranging

Functional Decomposition: Evaluating Systems Engineering Techniques 389

Fig. 1 LN-39 (genericized) Object Decomposition

from medium to high are available with the rapid-reaction necessary for military
environments.”

2.1 Object Decomposition

Figure 1 LN-39 (genericized) object decomposition shows a genericized object
decomposition of the LN-39. The object decomposition depicts the component
pieces; we need the accompanying functional description to write the system
requirements. The object and functional architecture hierarchy diagrams were
created using Cameo Enterprise Architecture 2019.

390 C. M. Cluff and D. Verma

3 Functional Decomposition

The functional decomposition provides the top-level function “navigate” and the
sub-functions necessary to accomplish the top-level function. What each decom-
position is describing is essentially the same thing. The terminology, organization,
and detail for a given level of decomposition are dictated by the approach. Strictly
speaking, the decomposition is recursive from abstract to concrete with as many
levels as necessary to describe the system. For this analysis, each approach is applied
to decompose “navigate” (zeroth level) to the second level representing elementary
functions.

3.1 Evaluation Method

A functional decomposition is produced using each decomposition method. Then
observations, pros and/or cons, using an approach that considers three different
dimensions: representation, cognition, and enabled reasoning (Kruse et al. 2014,
37–38). The three dimensions are considered from the perspective of different
phases of the product lifecycle: designer architect, product development, integration
and test, and sustainment.

Evaluation Dimensions

• Representation Evaluation Dimension.
This dimension is used to evaluate how well the decomposition captures the

“elementary functions” of the system. According to Kruse, elementary functions
are the terminus (last level of decomposition) of the decomposition and are
reusable in other contexts (37). In practical terms, it is the point at which
we would transition from “what” the system does to “how” the system is to
accomplish it. Decomposition of sub-functions to the second level is evaluated
based on how well they represent the system.

• Cognition Evaluation Dimension.
This dimension is used to evaluate the ability to decompose across abstraction

levels and commitment or decisions when information is available. In a hier-
archical approach, functions are decomposed into more detailed and concrete
sub-functions relative to the level above it. Kruse introduces the concept of “the
abstraction gradient, meaning the minimum and maximum levels of abstraction
that can be represented” and “how intuitive the resulting model is” (38). The
decomposition of sub-functions will be evaluated based on how abstract is
the resulting second level. The decomposition method is evaluated based on
how understandable the sub-functions are. The concept of level of information

Functional Decomposition: Evaluating Systems Engineering Techniques 391

available for “commitment or decisions” is difficult to apply in this analysis since
the system used for the example is well known.

• Enabled Reasoning Evaluation Dimension.
This dimension is used to evaluate consistency and precision across engi-

neering activity, domains, and expertise. Kruse uses an example related to this
evaluation dimension regarding how well a model is received by the other
engineering disciplines applied throughout the lifecycle of the product (38). For
this evaluation, the various decompositions are looked at from the perspective
of the engineering activity and their dependency on the original design team to
accomplish their tasks.

Product Lifecycle Perspectives

The functional architecture is one of the artifacts developed by the architect of a
system. Four product lifecycle activities (engineering roles) are used to provide a
perspective on the functional decompositions.

• Designer Architect
The designer architect develops the functional decomposition. The decompo-

sition approach evaluation is based on the ease with which the decomposition is
developed.

• Product Development
The product development activity creates the system that implements the

design. The decomposition approach evaluation is based on how well it conveys
information necessary for system development.

• Integration and Test
The integration and test (I&T) activity verifies that the system does what the

designer architect specified. System verification is done by verifying require-
ments, but the functional requirements are created in the context of the functional
architecture. The decomposition approach is evaluated on how well the decom-
position lends to the test approach.

• Sustainment.
The sustainment activity keeps the system operational when fielded. The

designer architect may have the product development and I&T team in mind as
the consumers of the architecture products, but it takes more disciple to consider
the sustainment activities when designing a system. The decomposition approach
evaluation is based on how well sustainment concepts are supported with the
design.

392 C. M. Cluff and D. Verma

3.2 Functional Decomposition by Operating Modes

The LN-39 has several operating modes that it must transition through before
it is operational, and the pilot can begin his/her mission. The performance of
accelerometers for sensing acceleration and gyros for sensing torque is temperature-
sensitive. The degree of sensitivity varies from part to part, even in the same
production lot. Each LN-39 is calibrated over the full operational temperature range.
The calibration coefficients are calculated with off-line software and uploaded to
the system for use when deployed. When the LN-39 is first powered up, it goes
through an initialization cycle and then waits for the operator to align the IMU.
The alignment defines level, heading, and local gravity (accelerometers measure the
vector acceleration, including acceleration due to gravity, which is subtracted before
integrating velocity and position). After alignment, the INS integrates the IMU data
to compute the position, velocity, and orientation of the vehicle based on changes
from the aligned position and orientation.

Figure 2 shows the second-level functional decomposition to sub-functions
accomplished in each operating mode. Table 1 lists the pros and cons from each
perspective and along each evaluation dimension.

3.3 Functional Decomposition by Inputs and Outputs

The LN-39 has well-defined inputs and outputs. Inputs include data from other
aircraft sensors for altitude. Barometric pressure altitude is identified here. The
physical motion of the aircraft is considered input as three-dimensional linear
acceleration, roll, pitch, and yaw of the aircraft. The outputs are the navigation
products that drive the pilot’s airspeed, altitude, heading, and artificial horizon
displays. The LN-39 is too complex for this approach. The designer architect and
the product development team will find the resulting functional architecture to
be insufficient. Figure 3 shows the sub-functions for processing the INS inputs
and outputs. Table 2 lists the pros and cons from each perspective and evaluation
dimension.

3.4 Functional Decomposition by Hatley-Pirbhai Template

The Hatley-Pirbhai template approach for functional decomposition is the most
comprehensive of the decomposition methods evaluated in this paper. It incorporates
the inputs and outputs as well as the operating modes for controlling the operations
of the system. It appears to contain all of the sub-functions of input and outputs
as well as sets the stage for the operating modes, albeit at the next level of

Functional Decomposition: Evaluating Systems Engineering Techniques 393

Fig. 2 Functional decomposition by operating modes

decomposition. In addition, the Hatley-Pirbhai template explicitly incorporates
functions to support sustainment.

Figure 4 shows the sub-functions associated with each category of the Hatley-
Pirbhai template. Table 3 lists the pros and cons from each perspective and
evaluation dimension.

394 C. M. Cluff and D. Verma

Table 1 Functional decomposition by operating mode observations

Engineering
role Representation Cognition Enabled reasoning

Designer
architect

Pros: Was able define
elementary functions
quickly because the
operating modes are
functional in nature
Cons: Potential for
redundancy for
sub-functions that
operate during multiple
modes

Pros: It is easy to think
about what the system
does during each mode.
Concrete sub-functions
were established at a
high level making the
overall decomposition
flat

Pros: Communicates
INS expertise
effectively
Cons: Missing the
input/output processing
need for integrating INS
with the larger system

Product
development

Pros: Sub-functions are
well compartmentalized
suitable for software
development teams
Cons: Hardware
functionality is hidden.
The same HW
development team
would have
responsibilities with
every operating mode

Pros: Easy for software
team to understand and
transition to “how”
Cons: The decision
regarding the allocation
of functionality between
HW and SW is
postponed,
unnecessarily to lower
levels of the
decomposition

Cons: While the process
flow is critical, much it
is implied. Organization
of blocks indicates
sequence, but that can
be misleading

Integration &
test

Pros: Easy mapping
between sub-functions
and test cases
Cons: Missing
input/outputs will make
it difficult to develop
test procedures

Pros: Easy to see what
to test as sub-functions
are concrete

Pros: The test engineer
is not dependent on the
original designer to
create test
cases/procedures

Sustainment Pros: Calibration
activities are clearly
represented
Cons: Sub-functions do
not represent
replaceable components

Pros: The sub-functions
lend themselves to
diagnostics

Cons: Failed
components would
disable many
sub-functions and
require designer
architect expertise to
decipher

3.5 Functional Decomposition by Processing Rates

The LN-39 software is real time embedded. The real-time operating system manages
software processing with a scheduler. There are three periodic schedulers (process
is automatically scheduled at the next periodic time) and intermittent scheduler
(processes are scheduled for “as soon as possible” for a single execution). Processes
in one scheduler can trigger processing in the other schedulers. During instantiation,
the initialize functions are loaded into the intermittent scheduler to “bootstrap” the
processing. By decomposing the “navigate” function by processing rate, there is a
one-to-one mapping of the functionality to the processing schedulers.

Functional Decomposition: Evaluating Systems Engineering Techniques 395

Fig. 3 Functional decomposition by inputs and outputs

Larson states that hardware functions and software functions are separated by
processing rates (164); while hardware is necessary for high-rate processing, the
LN-39 temperature and barometric pressure sensors are low-rate processing inputs.
This method did not facilitate hardware and software functional allocation during
the decomposition by processing rate. Figure 5 shows the sub-functions associated
with the internal processing rates of the real-time system. Table 4 lists the pros and
cons from each perspective and evaluation dimension.

3.6 Functional Decomposition by Organizational Structure

The Litton Systems, Inc., and its successor corporation are organizationally a matrix.
The engineering organization is partitioned by function and engineers are assigned
to programs as needed. Typically, each program will work with engineering to create

396 C. M. Cluff and D. Verma

Table 2 Functional decomposition by inputs and output observations

Engineering
role Representation Cognition Enabled reasoning

Designer
architect

Cons: Does not
represent processing
elements

Cons: Difficult to relate
inputs to outputs

Cons: Assumes the
processing elements are
trivial or left up to the
implementation

Product
development

Cons: Does not provide
enough details to
implement

Cons: Does not provide
a basis for decision, i.e.,
allocation between HW
and SW implementation

Cons: Highly dependent
on designers to
transition from what to
how

Integration &
test

Pros: Provides the
elements need to
construct test cases

Pros: Sub-functions are
described in terms of
known data elements

Pros: The system is a
black box and provides
what is needed to
understand interfaces

Sustainment Cons: Sub-functions
focus on data elements;
do not represent
replaceable
components.

Cons: The system is a
black box, provides no
information for fault
diagnostics

Cons: The system is a
black box, provides no
information for fault
diagnostics

Fig. 4 Functional decomposition by Hatley-Pirbhai template

a staffing plan to identify what type of engineer and when they are needed during the
execution of the program. The engineering organization manages the assignments
of each engineer moving from one program to another in order to fulfill the various
staffing plans at any given time. The LN-39 program needs engineers from five of
the broad engineering disciplines, hardware, software, firmware, mechanical, and
sustainment. In addition, a sixth discipline, systems engineers are needed, but they
are not included in the decomposition.

Figure 6 shows the sub-functions associated with the internal organizational
matrix structure of Litton Systems, Inc. Table 5 lists the pros and cons from each
perspective and evaluation dimension.

Functional Decomposition: Evaluating Systems Engineering Techniques 397

Table 3 Functional decomposition by Hatley-Pirbhai template observations

Engineering
role Representation Cognition Enabled reasoning

Designer
architect

Pros: Provides
comprehensive
perspective on elements
of a system
Cons: Implies recursive
decomposition to for
concrete sub-functions

Cons: Control and
processing model
elements are too
abstract; an extra level
of decomposition is
needed.
Compartmentalizes
sustainment early in the
decomposition

Pros: Addresses I&T
and sustainment in the
framework

Product
development

Pros: Provides context
for sub-functions with
an implied processing
structure

Pros: Organized in
modular categories for
modular
implementation

Cons: The processing
and control models are
too abstract to
implement

Integration &
test

Pros: Provides input and
output elements need to
construct test cases

Pros: Sub-functions are
described in terms of
known input/out data
elements

Pros: The system is a
black box and provides
what is needed to
understand interfaces

Sustainment Pros: Explicit elements
for sustainment
Cons: Sub-functions do
not represent
replaceable components

Pros: Concrete elements
for sustainment
Cons: Hidden
relationship of
sustainment
sub-functions to other
system sub-functions

Pros: Treats sustainment
as stakeholder, allows
for greater role in
system specification

Fig. 5 Functional decomposition by processing rates

398 C. M. Cluff and D. Verma

Table 4 Functional decomposition by processing rate observations

Engineering
role Representation Cognition Enabled reasoning

Designer
architect

Cons: Too much focus
on data, not enough on
function

Cons: Sub-functions are
too abstract at this level.
Processing rates add
artificial decomposition
level

Pros: Both development
and test teams would
benefit from the
processing rate
allocations

Product
development

Pros: Provides a clear
representation of the
real-time behavior in
non-behavior diagram

Pros: Provides initial
real-time process
scheduling architecture
Cons: Too abstract,
needs another level of
decomposition

Cons: Still relies on
designer architects for
function gaps

Integration &
test

Pros: Provides
description of data
elements needed to
construct test cases

Pros: Sub-functions are
described in terms of
data processing

Cons: Still relies on
designer architects for
functions related to
output data

Sustainment Cons: Sub-functions do
not represent
replaceable components

Cons: Sub-functions do
not relate to sustainment
activities

Cons: This functional
decomposition is not
beneficial for
sustainment

Fig. 6 Functional decomposition by organizational structure

Functional Decomposition: Evaluating Systems Engineering Techniques 399

Table 5 Functional decomposition by organizational structure observations

Engineering
role Representation Cognition Enabled reasoning

Designer
architect

Pros: Explicitly
includes function
aspects of hardware and
mechanical
Cons: Not clear (too
abstract) for software
function

Cons: Sub-functions are
too abstract at this level.
Possibly because it
includes broader scope

Pros: Includes
sub-functions for all
engineering disciplines
involved

Product
development

Pros: Explicitly
allocates between
hardware, software, and
firmware

Cons: Too abstract,
needs another level of
decomposition

Pros: Good hand off
between engineering
disciplines

Integration &
test

Cons: I&T is not
separate organization in
matrix, does provide
data needed to construct
test cases

Pros: Sub-functions are
concrete enough to
establish test categories,
if not test cases

Cons: Organizational
structure does not
provide system context,
need additional designer
architect for how
sub-functions relate to
one another

Sustainment Pros: Explicit elements
for sustainment
Cons: Sub-functions do
not represent
replaceable components

Pros: Concrete elements
for sustainment
Cons: Hidden
relationship of
sustainment
sub-functions to other
system sub-functions

Pros: Treats sustainment
as stakeholder, allows
for greater role in
system specification

3.7 Functional Decomposition by Matching Physical
Architecture

The physical architecture of the LN-39 shown in Fig. 2 1 LN-39 (genericized) object
decomposition provides the basis for the functional decomposition by matching
physical architecture. The inertial measurement unit (IMU) and the front panel are
components that were on multiple systems in the LN 3x product line. The IMU
was also a component on products not included in the INS product lines. The
decomposition by matching physical architecture promotes reuse of architecture
products on different products and different product lines by treating them as
subsystems within the functional decomposition. This approach works well as a
reverse engineering activity.

Figure 7 Functional Decomposition by Matching Physical Architecture shows
the sub-functions for associated with the internal organizational matrix structure
of Litton Systems, Inc. Table 6 Functional Decomposition by Matching Physical
Architecture Observations lists the pros and cons from each perspective and
evaluation dimension

400 C. M. Cluff and D. Verma

Fig. 7 Functional decomposition by matching physical architecture

Table 6 Functional decomposition by matching physical architecture observations

Engineering
role Representation Cognition Enabled reasoning

Designer
architect

Pros: Provides
functional purpose for
each physical
component. Addresses
hardware and
mechanical

Cons: Sub-functions are
too abstract; an extra
level of decomposition
is needed

Pros: Includes
sub-functions for all
components. Possible to
use branch as subsystem

Product
development

Cons: Hardware
oriented. Not clear for
software functions

Cons: Sub-functions are
too abstract; not clear
where software function
decomposition will take
place

Cons: Software
development dependent
on designer architects

Integration &
test

Pros: Provides
sub-functions for
interfacing.
Cons: Does not
represent the data on the
interfaces

Pros: Each physical
piece has a sub-function
allocated. Test case
coverage ensured

Pros: Information
provided for the
top-level test cases

Sustainment Pros: Sub-functions
represent replaceable
components

Cons: Not clear where
the sustainment
function will reside

Cons: Sustainment
activities are dependent
on additional
information from
architecture

Functional Decomposition: Evaluating Systems Engineering Techniques 401

4 Recommendations and Conclusions

Each of the decomposition methods had strengths and weaknesses. Some of the
weaknesses are addressed easily by including additional diagram/artifacts with the
architectural description. For instance, the processing rates, which are not apparent
unless explicitly decomposed by processing rate, can be described with concentric
processing cycles depicted with an activity diagram. Other weaknesses associated
with the functional architecture as a description of “what” the system does may
be remedied with additional levels of decomposition. However, not every approach
results in covering the entire system, even when developed with further levels of
decomposition.

4.1 Observations by Engineering Role Perspectives

The determination of a strength or weakness is given the perspective of the consumer
of the functional architecture. Table 7 Functional Decomposition Method Preference
by Engineering Perspective shows the different engineering perspectives used for
evaluating the functional decomposition methods and highlighting the preferred
method.

Each method has a different perspective for looking the functionality of the
system. While some were better than others were, each of the decomposition
methods revealed aspects of the system function that were important to include in
the functional architecture. There was no clearly preferred method.

4.2 Recommendation

Each decomposition method is a framework/template for thinking about the func-
tionality of the system. As the system functionality is decomposed, the framework
guides the architect’s thoughts for describing what is necessary to accomplish
the abstract/parent function. “Systems engineers and architects have traditionally
decomposed their systems; recently, they’ve also started using composition” (Lar-
son 154). By employing multiple decomposition methods and given the elementary
functions that result, engage in a functional composition to create the functional
architecture.

4.3 Functional Composition

The functional decomposition of the LN-39 by 6 different methods resulted in
a collection of 100+ sub-functions on the second level. Following the rule-of-
thumb of six sub-functions (Larson 154), sometimes seven sub-functions if the

402 C. M. Cluff and D. Verma

Table 7 Functional decomposition method preference by engineering perspective

Engineering
Role Preference

Designer
architect

The designer architect of the LN-39 would prefer describing the
functionality using the decomposition by operating mode approach. The
approach flowed naturally from a stream of consciousness description of
what the LN-39 does to “navigate.” each operating mode sets the stage for
the next, included the calibrate mode which must be addressed in the
system design and accomplished by the sustainment organization as the last
step in production before deployment

Product
development

The product development team is the first consumer to take the architecture
provided by the designers. The software developers create their top-level
design partitioning the functionality by processing rates. Then they identify
the interface between function with dissimilar rates to address specific
implementation for each interface. The software development team would
prefer if the functional architecture is provided in the form decomposed by
processing rates so that they did not need to “refactor” the architecture
while creating their top-level design. The hardware and firmware
developers would prefer the decomposition by organization as it clearly
identifies the functionality they are responsible. The mechanical developers
would prefer the decomposition by matching physical architecture as it
clearly maps the physical components to the allocated functionality

Integration &
test

The I&T team is less concerned with the internal functionality of the INS
except for the broad category of test configurations that are usually
provided in the environmental requirements. The I&T team would prefer in
the functional architecture was provided decomposed by inputs and outputs
to keep a clear black box representation of the system under test. The
Hatley-Pirbhai template method also contains decomposition categories for
inputs and outputs

Sustainment The sustainment organization would prefer a functional decomposition
using the Hatley-Pirbhai template method. This method specifically
identifies the functions supporting maintenance, self-test, and redundancy,
although it is still lacking in associating functionality to replaceable
components. The sustainment engineers participate in the peer-review
activities of the architecture during design phase. By explicitly including
sustainment in the decomposition, the review process would be more
efficient and beneficial to the design architecture team. This provides an
opportunity for the sustainment engineers to contribute to the initial
architecture

decomposition is not too complex (Larson 155), the sub-functions developed in
Sect. 3 were grouped into seven groups forming the first (middle) tier of the function
architecture of the system. See Fig. 9. Functional Composition of Navigation
Function for the groups, now the first tier of the functional architecture developed
by composition.

Of the 100+ sub-functions, some were duplicates; for instance, the decompo-
sition method by inputs and outputs yields similar sub-functions as the method
by Hatley-Pirbhai template, which also include inputs and outputs. Duplicate
sub-functions were consolidated, and similar sub-functions were combined for a
composition that represented each function identified, resulting in a functional
architecture as follows in Figs. 8 and 9:

Functional Decomposition: Evaluating Systems Engineering Techniques 403

Fig. 8 Functional composition of navigation function

Fig. 9 Functional composition of navigate function (continued)

4.4 Conclusions

Trying to find a single decomposition approach best suited for a specific system
becomes more difficult the more complex the system of interest is. Trying many
different methods was instructive as it revealed elementary functions from a
number of different perspectives. The composition approach allowed us to construct
the functional architecture from the collection of decomposed elementary sub-
functions. The approach of first decomposing using multiple methods and then
composing the functional architecture from the decomposed elementary sub-
functions allowed us to select the best of each approach, resulting in the best overall
functional architecture.

404 C. M. Cluff and D. Verma

References

Cameo Enterprise Architecture. 2019. No Magic, Inc.
Komoto, Hitoshi, and Tetsuo Tomiyama. August 2011. A theory of decomposition in system

architecting. In International conference on engineering design, ICED11, proceedings.
Kruse, Benjamin, et al. 2014. Systematic comparison of functional models in SysML for design

library evaluation. In 24th CIRP design conference proceedings, 34–39. CIRP.
Larson, Wiley J., et al. 2009. Applied space systems engineering. McGraw-Hill.
Sales Brochure, Litton Systems Inc., Guidance & Control Systems, 5500 Canoga Avenue,

Woodland Hills, CA., 1984.
Summers, Joshua D., C. Eckert, and A. Goel. August 2013. Function in engineering: Benchmark-

ing representations and models. In International conference of engineering design, ICED13,
proceedings.

Part VI
MBSE Applications

Model-Driven Safety of Autonomous
Vehicles

N. Annable, A. Bayzat, Z. Diskin, M. Lawford, R. Paige, and A. Wassyng

Abstract We make the case that since model-based development of complex
software-intensive systems has proven to be so effective, a model-based paradigm
that encompasses assurance of the system makes excellent sense and will result
in more rigorous, less ad hoc approaches to the development and maintenance
of assurance cases. This will become especially clear in the manufacturing of
autonomous motor vehicles. Adequate demonstration of the safety of autonomous
vehicles is a huge challenge. Doing it once for a single vehicle is difficult. Doing
it for multiple vehicles in a product family and coping with incremental changes
in design from one model version to the next without redoing the complete
safety analysis is even more difficult. We show that a comprehensive, rigorous
model-driven approach to development and assurance holds the promise of more
efficient and more effective assurance in general and also provides a mechanism for
incremental assurance. We also briefly compare that with one of the current staples
for documenting assurance cases – Goal Structuring Notation.

Keywords Model-based development · Model-based assurance · Assurance
cases

1 Introduction

Model-based development (MBD) of complex automotive systems is well estab-
lished and has proven to be the preferred approach. Analysis of models together with
model management and correct-by-construction software generation are convincing
reasons to use a model-based approach. The approach to the associated safety
assurance has lagged somewhat, but it makes good sense to utilize model-based
approaches for those same reasons. In addition, safety assurance needs to be planned

N. Annable (�) · A. Bayzat · Z. Diskin · M. Lawford · R. Paige · A. Wassyng
McMaster Centre for Software Certification, Department of Computing and Software, McMaster
University, Hamilton, ON, Canada
e-mail: annablnm@mcmaster.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_34

407

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_34&domain=pdf
mailto:annablnm@mcmaster.ca
https://doi.org/10.1007/978-3-030-82083-1_34

408 N. Annable et al.

ahead of development and tightly integrated with development as it proceeds. One
of the huge assurance hurdles we have to overcome is the inability to perform incre-
mental safety assurance. Incremental design is now the norm with manufacturers
routinely modifying existing vehicle (or vehicle product-line) designs for their next
model year. In doing this, manufacturers must be able to do the same with the
associated safety assurance. In other words, they need to be able to produce safety
assurance based on that of the previous model and changes in design as well as
changes in regulations, operating conditions, etc., without redoing the assurance
from scratch.

This is challenging right now with the current proliferation of Advanced Driving
Systems and introductory autonomous features. It is going to be even more difficult
with more autonomous features leading to full Level 5 autonomy (i.e., features that
completely replace the driver) (SAE J3016 2018), exacerbated by the fact that the
required levels of safety increase as the level of autonomy increases. A common
mitigating factor for early autonomous features is that there is a human driver who
can take over control of the vehicle. This will not be true for Level 5 autonomy,
drastically increasing the level of safety required for these future vehicles.

We believe that existing notations and tools for safety assurance fall far short
of what we need for achieving the necessary safety levels for (current and) future
vehicles. Together with an automotive partner, we have developed an approach to
safety assurance that better integrates the assurance processes and development
processes; is much more rigorous than existing techniques; is less ad hoc; includes
extremely comprehensive traceability; is compatible with current model manage-
ment techniques; and facilitates incremental assurance.

The remainder of this paper briefly introduces one of the most popular assurance
case notations used today, introduces our new methodology, and very briefly
compares them. Readers can find excellent publications on various aspects of
assurance/safety cases, for example, in (Rushby et al. 2015 and Rhinehart et al.
2015).

2 Goal Structuring Notation (GSN)

GSN is one of the most popular graphical notations for the presentation of assurance
cases (Kelly 1998). It presents its “argument” by stating Goals (representing claims)
and Strategies (reasons for decomposing goals into sub-goals) and supports terminal
goals using Solutions (representing evidence). It has a rich supporting notation
including Assumptions, Contexts, and Justifications.

Model-Driven Safety of Autonomous Vehicles 409

Fig. 1 GSN ASIL example

2.1 A GSN Example

Figure 1 provides an example of a GSN fragment representing the calculation of
ASILs (Automotive Safety Integrity Levels) for all identified system-level hazards
as described in ISO 26262 [ISO 26262, 2018]. Briefly, an ASIL captures the
risk associated with a system-level hazard and guides the development of its
mitigation. The context C1 is included to emphasize that this fragment would follow
demonstration that system hazards were adequately determined. There is no space
here to include other support nodes, such as assumptions.

The top-level claim G1 is decomposed into G2 and G3 as described in S1. G2
is further decomposed and supported by evidence that the severity, exposure, and
controllability ratings have all been correctly determined in accordance with ISO
26262 guidelines. G3 is supported by a calculated ASIL rating that utilizes the
correctly assigned severity, exposure, and controllability ratings.

2.2 GSN Benefits

GSN is intuitive. People understand it readily, and it seems to enable people to ask
critical questions related to the (somewhat) implicit argument presented by GSN.
It has motivated many developers and certifiers to consider seriously what must

410 N. Annable et al.

be demonstrated to ensure safety. There is significant work on automating aspects
of GSN, including safety case construction and formal approaches to dealing with
evidence. An excellent source for this is https://ti.arc.nasa.gov/profile/edenney/.

2.3 GSN Challenges

GSN promotes an ad hoc approach to structuring an assurance case. There is
nothing in GSN itself that helps us decide how to present a safety argument.
Patterns and experience are the basis of good GSN assurance cases. The tree-
like structure, while intuitive, results in cross-cutting concerns that make creating,
understanding, and maintaining a GSN assurance case extremely challenging. The
major challenges introduced by GSN are: (i) it leads to a false sense of confidence
because the reasoning in GSN is about why/how claims are decomposed, not as
to why premises (grounded in evidence) support parent claims, and (ii) rigorous
safety impact analysis is extremely difficult, bordering on impossible. The inherent
traceability in GSN is through arcs connecting nodes, and this will not detect the
impact of changes in parts of the tree that are not explicitly connected.

3 Workflow+

Workflow+ (WF+) is a modelling framework which aims to provide a way for all
information necessary for safety assurance to be captured in a single model. This
model shows relationships between development processes, assurance processes,
development outputs, assurance outputs, and the environment of the system(s) of
interest. WF+ grew out of our work with an automotive partner; an overview of
WF+ modelling and its core mechanisms can be found in (Diskin et al. 2019).

WF+ uses metamodels that define workflows to be followed during the devel-
opment of domain-specific safety-critical systems, complete with all process defi-
nitions, data definitions, control flow, data-to-data and data-to-process traceability,
and constraints over processes and data. These core mechanisms allow all necessary
validation, verification, checks, and reviews to be modelled and included. When
the process defined in the metamodel is executed, an instance of this metamodel
documents the development of the real-world system produced. This includes details
of the system data, reports generated by tasks within the process, etc.

A metamodel can be based on prevailing standards such as ISO 26262 (ISO
26262, 2018), best practices, internal company procedures, etc. and can also be used
to check compliance with the different types of guidelines mentioned. A metamodel
can be checked to see that it is well-formed based on rules suggested by the
mathematical foundations of these models. These checks on well-formedness result
in assurance steps, and these assurance steps can be viewed in different ways – one

https://ti.arc.nasa.gov/profile/edenney/

Model-Driven Safety of Autonomous Vehicles 411

Fig. 2 A simple WF+ example (metamodel on the left, instance on the right)

important view is a GSN-like structure. Metamodels can be thought of as templates
for development and/or assurance.

The WF+ metamodels presented in this paper are built using a profile of UML
class diagrams with the following features: (i) two types of classes, process and
data classes; (ii) two types of associations – dataflow associations (green) from data
to process classes and back and static data associations (black) from data to data
classes; (iii) a special type of process class to model reviewing; and (iv) several
constraints on the interactions of the features mentioned above, the most important
of which is that processes and their dataflow form a hierarchy, i.e., a directed acyclic
graph.

Figure 2 shows a simple example of a WF+ metamodel of the risk assessment
process described in ISO 26262 and an instantiation. In this example, the metamodel
(left) specifies that when executed, the Risk Assessment process takes in a hazardous
event, which is a pair of an operational situation and vehicle-level hazard, and
outputs an ASIL classification for that hazardous event. The output data are
connected to the input data, shown as a composition (black diamond) association
from Hazardous Event (HE) to ASIL. The multiplicities dictate that this process is
to be executed once for each HE and that each execution produces one ASIL. There
is also a review process (purple), which evaluates the execution of Risk Assessment
and the validity of its data. The instantiation (on the right) shows the documentation
of an execution of Risk Assessment for a particular hazardous event HE1, which
was determined to be ASIL A, and the output of a review process that validates this
ASIL classification for HE1.

3.1 A WF+ Example

Figure 3 is a refined version of the example metamodel in Fig. 2. (The added
argument elements will be explained later.) In this example, the input data definition
has been refined to capture the types of Intended Operational Situations that can
be part of a HE (operational situations are from (SAE J2980, 2015)) and the
Consequence(s) of HEs. The definition of the Risk Assessment process itself has

412 N. Annable et al.

Fig. 3 Refined version of the WF+ example

been refined by decomposing it into four steps. When executed, steps 1 and 2
take in one HE, including Consequences, and produce values for the Severity and
Controllability of that HE.

When executed, Step 3 takes in one HE and outputs Exposure as an attribute of
the Intended Operational Situation of that HE. This HE, which will have its Severity,
Controllability, and Exposure assigned, is then input to Step 4. Step 4 is a query (i.e.,
automatic process) that, when executed, assigns an ASIL classification to that HE.
As steps 1, 2, and 3 define processes that are to be executed by humans, they have
accompanying review processes to assess the validity of their output. As Step 4 is a
Query, its output does not require validation (more on this in 4.6 Automation).

3.2 Building Arguments Over a WF+ Example

When a WF+ metamodel is built, its creators include constraints designed to ensure
that its instances will be (i) syntactically correct (i.e., properly structured) and (ii)
semantically correct (i.e., valid). Assurance-related arguments can be created based
on these constraints almost mechanically. Light and dark pink elements in Fig. 3
are natural-language arguments based on syntactic and semantic constraints on the
data definitions in the metamodel. Syntactic constraints (light pink), such as the
multiplicity constraint that each HE must have exactly 1 Severity attribute, are put in
place in the process definition to ensure that instances documenting execution of the
metamodel are always properly structured. Violations of these syntactic constraints
in the instantiation of the metamodel could be detected automatically by tooling.
We can also set the tool to make such checks in the process of building the instance
so that the instance is syntactically correct by construction.

Model-Driven Safety of Autonomous Vehicles 413

Semantic constraints (dark pink), such as the constraint T on the attribute Valid?
of Severity, are put in place to ensure that all (critical) data in an instance are
validated by a review. In an instance documenting the execution of a process, if
the value of a Valid? attribute is False or missing, that constraint is violated.

Since ASIL is produced by an automated Query, we want to certify that the
Query itself will produce the correct result given correct inputs, rather than manually
review the Query’s output every time it is executed. This is represented by the pink
node attached to Step 4 (see 4.6 Automation).

By composing syntactic and semantic constraints, we can derive higher-level
constraints and add higher-level assurance-related arguments for those derived con-
straints (blue). For example, when combining the syntactic and semantic constraints
on Severity, we add the argument “Severity is correct.” That is, we claim that if a
severity value is present and it has been reviewed, then it is correct, as shown by the
blue arrows in Fig. 3. Derived constraints can be formed by combining syntactic,
semantic, and/or derived constraints. In a GSN setting, a strategy must be included
to explain the logic as to why sub-claims support their parent claim(s). In a WF+
setting, derived constraints (and their corresponding arguments) are based solely
on the logical composition of constraints and thus do not require a strategy. The
logical soundness of this approach enables us to ensure that any valid execution
of the process definition will satisfy all constraints and thus all arguments in the
process definition will hold for any valid instance (see (Diskin et al. 2019) for
details). This is useful as it allows process definitions to be used as templates for
the development of assurance cases (see 4.7 Templates). It is worth mentioning that
while WF+ itself does not ensure that considerations for safety are included in
some particular workflow, it does, however, provide a setting in which workflows
can be planned and evaluated by experts to ensure that we are adequately confident
they will result in safe systems. In safety-critical embedded systems, including AVs,
this usually amounts to ensuring that we must (i) demonstrate that the requirements
specification will result in a safe system; (ii) demonstrate that the system satisfies
its requirements; and (iii) demonstrate the system does not implement any behavior
not in the requirements specification.

4 Advantages of WF+ for Model-Based Assurance

4.1 Making Assurance Less Ad Hoc

Assurance of AVs using GSN can be ad hoc and reliant upon how individual
safety experts interpret the safety requirements, the certification standards, and the
GSN syntax itself. More specifically, there is no precisely defined methodology for
assurance when using GSN; it relies on individual expertise. There are benefits to
this, as engineers can optimize the process of constructing an assurance case based
on their experience with AVs, but this comes at a price in terms of repeatability and

414 N. Annable et al.

learnability. An important benefit of using WF+ is the clear methodology that is to
be followed when building assurance arguments; this will enable engineers to more
readily learn the techniques and for the steps to be repeatable.

By comparison with GSN, the semantics for each element of WF+, as well as the
role each element plays in the assurance process, are precisely defined. This should
lead to fewer opportunities for misinterpretation. Also, WF + ‘s structure makes
managing large assurance cases more systematic, repeatable, and inexpensive.

4.2 Improved Traceability

Detailed traceability is essential for assurance cases of complex systems such as
AVs, because it improves understandability and facilitates following all pertinent
links to an argument. In particular, change impact analysis is completely dependent
on accurate and complete traceability. Current approaches lack mechanisms to
include direct traceability and often rely on implicit (i.e., assumed) traceability
between arguments. For example, in Fig. 1, the traceability between hazards and
their respective severity, controllability, and exposure is left implicit through the
wording of the diagrammatic elements. This implicit traceability is easy to identify
and follow in this simple example, but in large-scale industrial safety cases it is
often much more difficult to identify and understand, especially when cross-cutting
concerns branch over multiple argument legs. This places an undue burden on
independent reviewers to discover this implicit structure on their own and, when
compounded with the ad hoc structure typical of GSN-style safety cases, can lead to
significant misunderstanding of the intended argument. This prevents independent
reviewers from being able to review an assurance case with sufficient confidence
and may result in potentially dangerous flaws in arguments.

WF+ was developed from the ground-up with this in mind and enables detailed
traceability. All traceability necessary between data and processes underlying
arguments is maintained explicitly and allows for cross-cutting concerns to be
accurately and explicitly represented. WF+ facilitates improved understandability
and independent reviewing and provides an excellent basis for change impact
analysis.

4.3 Change Impact Analysis

When dealing with highly complex embedded systems such as AVs, it can be
difficult to determine the impact of incremental design changes on the system’s
assurance case. As AV systems continue to increase in complexity, even experienced
engineers have trouble keeping up with the thousands of connections between
design and their respective elements of an assurance case. The model-based nature
of WF+ provides the necessary foundations for change impact analysis to be

Model-Driven Safety of Autonomous Vehicles 415

automated as much as is possible. The detailed granularity and traceability possible
in WF+ metamodels allow for tools to be built that can automatically follow
traceability links to all related data and their associated arguments, directing
engineers to areas of assurance that are affected by changes in design. On top of
this, the well-defined semantics of WF+ metamodels and assurance cases allows
for an explicit ontology of change propagation that enables a well-defined approach
to assurance of incremental changes to systems.

4.4 Integrating Assurance with Development

The model-based approach of WF+ opens up the opportunity for WF+ models
to be directly integrated with model-based development or V&V tools. This
allows assurance to be built directly over data from development, rather than
having an assurance case as a separate document with references to development
documentation. With direct access to artifacts from development, some aspects of
assurance cases can be generated automatically and validated based on the content
of those design artifacts (see 4.6 Automation). While it is possible to integrate
GSN approaches with development (Hawkins et al. 2015), integrating WF+ with
development will allow for more scalable solutions that are better suited to change
impact analysis. Also, its traceability into the environment facilitates dealing with
feature interactions that stretch into the environment.

4.5 Automation

As AV systems continue to increase in complexity, it is desirable to automate
as much of the assurance case development as possible to reduce development
costs. Building WF+ on well-established MBD principles allows tool developers
to leverage a wide range of pre-existing techniques for managing assurance cases,
including automated querying to search assurance cases, and transformations for
applying templates.

The model-based approach of WF+ allows for static syntactic correctness to
be checked automatically. As more granularity is added to the WF+ metamodel,
some semantically significant properties can be encoded in the structure of the
metamodel through the use of constraints. For example, if there are certain structural
properties of design-related elements desirable for safety, then the corresponding
constraints can be placed on the metamodel to allow these properties to be checked
automatically. Table 1 in ISO 26262-6 (ISO 26262, 2018) outlines properties of
software architectural design that are desirable for avoiding systematic faults. Many
of these properties such as restricted size of interfaces, restricted size of complexity
of software components, and loose coupling between software components are all
good candidates for automatic checking through constraints over detailed models.

416 N. Annable et al.

An MBD approach also allows for some processing to be automated, such as
Look Up ASIL in Fig. 3. It is possible for these automated tasks to be certified,
i.e., have trustworthy outputs given correct inputs. Time is saved by automating the
process, and time is saved by not requiring their outputs to be reviewed.

4.6 Templates

As with any safety-critical system, it is necessary to plan for the safety of AVs
ahead of development. Assurance case templates aim to specify a nearly-complete
assurance case for a particular type of system before development begins (see
Wassyng et al. 2015). A template includes sufficiently prescriptive limitations
on systems (as determined collectively by experts in the field) but still allows
enough flexibility so as to not unduly interfere with the creative design of a
system. Assurance case templates specify higher-level argumentation and the overall
structure of an assurance case, as well as acceptance criteria for required evidence.

WF+ is well suited for implementing assurance case templates using high-level
WF+ metamodels that must be conformed to. For a particular system, this WF+
template can be refined to fit the needs of the system of interest and can then be
executed. The modular nature of WF+ allows for assurance case templates to be
created hierarchically to produce different versions of the templates to fit different
use cases. Benefits of this include repeatability, ease of audit, and potentially
increased productivity as tools can be used to carry out refinements and instantiation.
Importantly, it also facilitates incremental assurance when changes that eventually
occur were already taken into account as options in the metamodel.

5 Conclusion

The modelling effort required by WF+ is substantial. However, the vast majority of
the required modelling is of the form “model once – use many times.” What do we
get from this effort? One of the most important attributes is that it facilitates effective
incremental assurance! Traceability links in WF+ are comprehensive and cover
planning, development, processes, work products, and the environment. The fact
that we start with metamodels that act as templates means we reduce confirmation
bias in the assurance process. We also conform to the dictum – design safety into the
vehicle, do not add it afterwards. Compared with existing notations/methods, WF+
is extremely rigorous, less ad hoc, facilitates automation of many aspects of safety
assurance, and reduces the difficulties associated with cross-cutting concerns.?

Model-Driven Safety of Autonomous Vehicles 417

Acknowledgments The authors want to thank our industry collaborators for the in-depth dis-
cussion and suggestions over the years we have been working on this topic. Input from Joseph
D’Ambrosio, Lucian Patcas, Galen Ressler, Ramesh S, and Sigrid Wagner has been invaluable to
our research.

References

Diskin, Z., N. Annable, A. Wassyng, and M. Lawford. 2019. Assurance via Workflow+ Modelling
and Conformance (an extended version). https://www.mcscert.ca/wp-content/uploads/2019/11/
McSCert-Technical-Report-32.pdf.

Hawkins, R., I. Habli, D. Kolovos, R. Paige, and T. Kelly. 2015. Weaving an Assurance Case from
Design: A Model-Based Approach. In IEEE 16th International Symposium on High Assurance
Systems Engineering, vol. 2015, 110–117. Daytona Beach Shores, FL.

International Organization for Standardization. 2018. ISO 26262: Road Vehicles – Functional
Safety. 2nd ed.

Kelly, T. 1998. Arguing safety – A systematic approach to managing safety cases. Ph.D.
dissertation, Univ. York, York UK.

Rinehart, D., J.C. Knight, and J. Rowanhill. 2015. Current practices in constructing and evaluating
assurance cases with applications to aviation. NASA Report NASA/CR–2015-218678.

Rushby, J., X. Xu, M. Rangarajan, and T.L. Weaver. 2015. Understanding and evaluating
assurance cases. NASA/CR–2015-218802.

SAE International. 2015. SAE J2980. Considerations for ISO 26262 ASIL Hazard Classification.
———. 2018. SAE J3016. Taxonomy and Definitions for Terms Related to Driving Automation

Systems for On-Road Motor Vehicles.
Wassyng, A., N. Singh, M. Geven, N. Proscia, H. Wang, M. Lawford, and T. Maibaum. 2015.

Can Product-Specific Assurance Case Templates Be Used as Medical Device Standards? IEEE
Design & Test 32 (5): 45–55.

https://www.mcscert.ca/wp-content/uploads/2019/11/McSCert-Technical-Report-32.pdf

A Model-Based Engineering Approach
for Development of ADAS Features

Arun Adiththan, Joseph D’Ambrosio, Prakash Peranandam, S. Ramesh,
and Grant Soremekun

Abstract Advanced Driver Assistance Systems and higher-level automated fea-
tures are rapidly being deployed in the automotive industry. A common development
approach taken for ensuring safe operation of these vehicles is to focus on driving
real vehicles in the planned operating environment. This approach has benefits,
including helping to identify challenging driving situations a vehicle may encounter
and providing evidence of safe operation. However, driving millions of miles during
vehicle development does not scale as more features are deployed. A model-
based engineering approach can be used to augment real-world driving to provide
a more efficient method for developing safe features. This paper describes key
elements of such a model-based approach that includes a mission plan containing
key parameterized use cases that trace down to simulation scenarios used to identify
scenario edge cases to support Safety of the Intended Functionality.

Keywords ADAS · SOTIF · Model-based engineering · Simulation · Model
fidelity

1 Introduction

The automotive industry is experiencing a revolution with the introduction of
new technologies associated with safe, connected electric vehicles. Specifically,
in the context of safety, a wide range of new features associated with Advanced
Driver Assistance Systems (ADAS) and higher levels of automation (SAE J3016
2018) are currently being deployed, for example, GM’s Super Cruise and Tesla’s
AutoPilot. These new features must operate in complex environments and must

A. Adiththan · J. D’Ambrosio (�) · P. Peranandam · S. Ramesh
General Motors Research Laboratories, Warren, MI, USA
e-mail: joseph.dambrosio@gm.com

G. Soremekun
General Motors Research Laboratories, Sunnyvale, CA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_35

419

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_35&domain=pdf
mailto:joseph.dambrosio@gm.com
https://doi.org/10.1007/978-3-030-82083-1_35

420 A. Adiththan et al.

ensure safe operation of the vehicle. Although traditional approaches to developing
safety critical systems, such as ISO 26262 (ISO 26262 2011), do apply, they
are not sufficient to ensure that these features operate correctly in such complex
environments.

ISO 26262 focuses on functional safety and covers the measures and means to
identify and contain risks arising out of failures in electronic subsystems. It does
not address issues associated with making design tradeoffs, such as the need to
balance false activations vs. lack of activation due to sensing/perception limitations
of safety-critical automated features. In addition, a method is needed to assure that
the risk of yet to be identified scenario edge-case conditions has been sufficiently
minimized. Finally, a rigorous safety case with sufficient evidence must be provided
to confirm that the above issues have been addressed.

ISO PAS 21448 Safety of the Intended Functionality (SOTIF) (ISO PAS 21448
2018) specifies a methodology to identify hazards associated with sensor technology
limitations and development process activities to help ensure the target feature
achieves an acceptable level of risk associated with these hazards. A key goal is
to evaluate SOTIF in the context of both potentially hazardous known and unknown
scenarios to provide an argument that these categories of scenarios are sufficiently
small and residual risk is acceptable.

A model-based engineering (MBE) process, in combination with test results
from operating development vehicles in the field, can produce evidence needed to
support the argument that acceptable minimal risk has been achieved. Testing of
development vehicles in the targeted operating domain, initially for environment
data collection/analysis purposes, and then transitioning into testing the evolving
feature being developed also support the feature safety case by helping to minimize
the number of unknown hazardous scenarios. In addition to driver takeover events
that are logged, development vehicle operator can tag challenging events they
experience for later analysis, such as unique pedestrian behavior or specific road
locations like difficult intersections or sharp turns. Without exposing a development
vehicle to the complex real-world operating environment, it is difficult to argue that
all possible hazardous operation situations have been identified.

Although operating development vehicles are essential, it is not sufficient for
building the SOTIF safety case. Creating repeatable tests is very difficult to
achieve with the use of development vehicles given the problems of orchestrating
the operating environment to the precise conditions needed for the test. Another
challenge is that even though a difficult scenario is identified by development vehicle
operations, there still may be even worse associated edge-case conditions than were
directly experienced by the test vehicle.

In this paper, we propose a model-based development approach to complement
development vehicle testing. The approach makes use of a mission plan that evolves
through the development process. Use cases, requirements, design models (both
descriptive and analytical), and automated test scenarios are used to support the
overall development of the intended functionality as well as the necessary evidence
for the SOTIF argument. One key aspect is capturing parameter ranges associated
with use case operating conditions. These use cases and associated parameter

A Model-Based Engineering Approach for Development of ADAS Features 421

ranges evolve throughout the development process as new operating conditions
are identified, and they are fundamental to the analysis that is performed during
each stage of the development process. The approach also makes use of a series of
increasingly higher-fidelity analytic models as the development process proceeds.
These models support analysis and simulation activities used to derive initial key
requirements associated with the feature being developed and are also used to ensure
robust operation, confirm scenario edge cases identified in the field, and provide the
ability for executing repeatable tests.

This paper is structured as follows. Section 1 provides an introduction, including
motivation for a MBE approach. Section 2 describes key elements of our proposed
model-based process and how it supports SOTIF and verification/validation. Section
3 describes the simulation approach implemented and requirements on simulation
models. Finally, Section 4 provides a summary and discussion.

2 Model-Based Development Approach

2.1 Initial Requirements Development

At the start of development of a complex vehicle feature, an initial set of require-
ments for the system(s) that will implement the feature can be developed using
different strategies, such as utilizing existing company knowledge/know-how from
past development efforts. We suggest a data-driven, model-based engineering
approach, especially if the feature is unique enough from anything developed
previously.

This approach utilizes a Mission Plan (MP) document for the feature. The MP
provides a high-level overview of the feature and describes all the use cases the
feature needs to execute in a safe, reliable, and robust/resilient manner. Ideally, much
of the information gold source for the MP is contained in models. These models
are comprised of properties and diagrams (e.g., context, allocation, architectural,
decomposition, use case, etc.) that describe various aspects of the feature, the
systems that implement the feature, and all the use cases (languages like SysML
(Hause 2006) can be used to develop the feature and system models).

The MP document is then generated/updated on demand by extracting relevant
information about the feature and use case descriptions from the corresponding
models. This methodology helps establish traceability and data consistency across
engineering teams as the gold-sourced feature and system models mature during the
development process.

The system models can also be linked to various types of analytical models that
describe mathematical and physics-based relationships about the system parameters
[SEBok]. In the Concept/Requirements development phase, the analytical models
are often low fidelity (models with reasonable accuracy that execute quickly). Value
ranges for environmental parameters (e.g., road surface type) and vehicle operation

422 A. Adiththan et al.

Fig. 1 Model-based approach for requirements and design development

parameters (e.g., min/max acceleration rates, velocities, etc.) defined in the feature
and system models can be mapped directly to parameters defined in the analytical
models that compute various performance metrics (e.g., vehicle stopping distance).
Each combination of parameter values represents a specific use case instance.

At this stage, a data-driven approach can be employed where tens of thousands
of use case instances are evaluated using the analytical models. The trade study data
can be post-processed to determine the operational envelope of the system(s) so
the feature can execute all use cases and an initial set of system requirements. To
maintain traceability and data consistency, the requirement specifications are gold-
sourced in a database that is linked to the feature and system model repository. The
overall approach is shown in Fig. 1.

Consider a Crash Imminent Braking (CIB) feature. Development of CIB would
involve creating a mission plan that provides a high-level overview of the feature and
its intended functionality. A feature model would be comprised of decomposition
diagrams describing different aspects of CIB functionality, and contextual diagrams
describing interfaces between CIB and the systems that implement the feature, and
CIB and its external environment. System models would describe all the systems
needed to implement the feature, including the braking system and sensor system
that needs to determine when braking needs to be activated.

Example use cases (described in the system model) are depicted in Fig. 2. The
first use case (a) describes the situation where the host (blue) vehicle, which is
equipped with the CIB feature, encounters a slower vehicle directly in front of
it. The intent of the CIB feature is to automatically apply the vehicles brakes if
the host vehicle and stopped vehicle are closing too quickly. The second use case
describes the situation where the host vehicle equipped with CIB passes a vehicle

A Model-Based Engineering Approach for Development of ADAS Features 423

V = Vtarget

Vtarget = 0 kph

V = Vhost kph

Host Veh. Target Veh.

Target Veh.

Host Veh.

Fig. 2 Two CIB use cases: (a) encountering a slower vehicle; (b) passing a stopped vehicle

that is stopped along the side of the road. The intent in this case is to not apply the
brakes given that the stopped vehicle is not in the path of the host vehicle.

Fundamental to the approach described in this paper is identifying parameters
and their associated ranges that characterize each of the above use cases. Low-
fidelity analytical models utilize these parameters to compute performance metrics
such as braking distance. The analytical models are iterated over a range of the
parameters to understand the performance envelope required of sensing and braking
systems so that initial requirements can be specified. A primary goal of using this
approach is to specify an initial set of requirements as accurately as possible so
that the number of design changes that occur during later development phases is
minimized.

2.2 SOTIF Scenarios and Triggering Conditions

As the development process progresses, SOTIF analysis is performed to ensure
that the intended functionality of the feature has acceptable safety risk. SOTIF
conceptually divides the relevant driving scenarios for a feature into four categories,
as shown in Fig. 3. The categories are (1) Known Safe scenarios, (2) Known
Hazardous scenarios, (3) Unknown Hazardous scenarios, and (4) Unknown Safe
scenarios (see Fig. 3). A fundamental aspect of SOTIF is to reduce the risk
associated with the Known and Unknown Hazardous scenarios by improving the
feature or by providing the supporting evidence such that the scenarios can be finally
classified as Known Safe scenarios.

To reduce both the Known and Unknown categories, SOTIF requires a systematic
analysis of potential triggering conditions that could lead to a hazard. A triggering
condition is a specific event or factor of a driving scenario that serves as an initiator
for subsequent system reaction. For example, if we consider the CIB situation for
SOTIF analysis, then a cutout (late reveal) of a vehicle as shown in Fig. 4(a) and
tailgating in Fig. 4(b) are such triggering events. All identified triggering conditions
are evaluated against the established acceptance criteria and must be shown to either
be acceptable. Otherwise functional modifications to the feature are required to drive

424 A. Adiththan et al.

1

4

Known Safe Scenarios (Area 1)

32
Known Hazardous Scenarios (Area 2)

Unknown Hazardous Scenarios (Area 3)

Unknown Safe Scenarios (Area 4)

Fig. 3 Categories of SOTIF scenarios

Host Veh. Host Veh.

V = Vhost kph V = 0 kph V = Vhost kph V << Vhost kphV = Vhost kphV = Vhost kph

Fig. 4 Challenging use cases: (a) cutout; (b) tailgating

the assessment of triggering conditions to an acceptable level. For the examples
shown in Fig. 4, there may need to be a tradeoff made between stopping fast enough
to avoid a collision in the cutout use case versus being rear ended due to stopping
too quickly in the tailgating use case.

An MBE approach can support the analysis of triggering conditions through
simulation of the scenarios associated with the identified use cases. SOTIF specifies
various methods to identify triggering conditions, and these conditions can be
evaluated in the context of relevant scenarios to assess the ability of the feature
to handle these situations in an acceptable manner. The identified use cases from
the MP specify the functional range and desired behavior for a driving situation.
These use cases can be refined into scenarios that describe the sequence of actions
and events that take place during a certain time interval of interest. Comparing MP
use cases versus SOTIF scenarios, a use case is a more general description that may
be comprised of multiple relevant scenarios. Note that the parameters available to
be controlled in a simulation may not directly match the parameters specified in the
use case. In this case, there may be a need to map use case parameters to the related
but nonidentical set of simulation scenario parameters.

2.3 Identifying SOTIF Scenario Edge Cases

Critical to the assessment of the scenarios is identifying the edge-case conditions
associated with scenarios and triggering conditions to help ensure worst-case
conditions are handled. In this paper, an edge case is defined as a specific set

A Model-Based Engineering Approach for Development of ADAS Features 425

of scenario parameter values that lead to a worst-case condition. Consider the
cutout scenario shown in Fig. 4. To help ensure the worse-case parameter value
combinations are identified, multiple simulations are performed with different
combinations of parameter values. The performance of the feature is evaluated
across these simulations, and the worst case observed in simulation represents the
edge case. Note that in some cases, especially for complex scenarios, there may be
more than one edge case for the scenario.

Exhaustively exploring the scenario input parameter space is a time- and
resource-intensive process and hence not desirable. Non-exhaustive parameter
sampling techniques such as random, structural, and statistical are inadequate to
effectively identify faulty input combinations in nonlinear and complex systems
such as automotive software (D’Ambrosio et al. 2019). Therefore, we employ
Quasi-random Technique (QRT) (Chen and Merkel 2007) for generating input com-
binations. The QRT sequences have low-dispersion and low-discrepancy properties,
and hence the sampled points are spread more evenly throughout the hypercube.
In contrast, random techniques (such as uniform distribution) might lead to regions
where there are clusters of points as well as regions with significantly less points.

2.4 MBE Support for Verification and Validation

Verification and Validation (V&V) of automotive systems involve testing and analy-
sis of the behavior of system features under various scenarios to ensure compliance
to specified functional and nonfunctional requirements. In the automotive domain,
V&V activity for ADAS features typically involves extensive exposure (or on-road)
testing and/or closed course testing. While closed course testing is more controllable
and reproducible compared to on-road testing, it is still both time- and resource-
intensive. In addition, it is difficult and/or dangerous to create certain conditions
in the real world. Simulation of driving scenarios, on the other hand, enables
generation of near real-world conditions in simulated environments without safety
and cost concerns of real-world testing.

An MBE approach provides the opportunity to perform V&V tasks using
simulation to augment exposure or development vehicle testing. Scenario tests
should be reviewed and classified with respect to the appropriate testing technique
(e.g., test track or simulation). In some cases, requirements testing of the sensors
and perception system may be performed in vehicle, while testing of planning and
decision-making is done through simulation. This approach helps address current
challenges related to sensor models (e.g., radar) that may run significantly slower
than real time, thus limiting the amount testing that can be done. For those to be
simulated, the simulations can build upon the same scenario models used to identify
edge-case conditions for SOTIF. The software targeted for final release is utilized in
the simulation environment for the feature behavior. Use of high-performance/cloud
computing environments may reduce the overall test time required and provide the
opportunity to comprehensively evaluate all known scenarios. The amount of testing

426 A. Adiththan et al.

required is a function of the number of known scenarios, the possible variability
associated with these scenarios, and demonstrating continued robust operation in
real-world conditions (lack of identification of new unknown scenarios).

3 Simulation Framework and Model Capabilities

Simulation-based validation of ADAS features requires models of the environment,
the feature, the base vehicle, and drivers (both host vehicle and traffic). The
models can range from low to high fidelity depending on how early or late in the
development process tasks are being performed. The general trend is to improve
model fidelity as the design matures. The fidelity of the model may also depend on
the scope of simulation such that high-fidelity models may be used at the component
level and relatively lower-fidelity models used at the feature/vehicle level. The
model fidelity determines the level of effort required to develop the model and the
accuracy with which it captures the characteristics of the actual system under test.

Our simulation framework is shown in Fig. 5. Using the QRT sampling method
described in Sec. 2.3, we generate hundreds of thousands of variations of a base
scenario. The generated combinations are then executed in the simulation platform
(e.g., VIRES VTD, CARLA) with controller model in-the-loop. The log data
for each scenario variation is collected using the simulation platform APIs. The
collected log data is then analyzed using a sensitivity analysis (Saltelli 2002)
technique. The sensitivity analysis allows us to identify and rank scenario input
parameters according to the effect on the output being tracked. This sensitivity
index is then used to identify whether the most sensitive parameters are considered
in the existing controller model. If they are not factored with sufficient detail, the
model can be refined in order to improve overall system performance. The resulting

Fig. 5 Simulation-based validation-driven model evolution

A Model-Based Engineering Approach for Development of ADAS Features 427

higher-fidelity model obtained after each iteration of the simulation-based validation
process can further be refined according to the desired level of model complexity
and expected performance.

4 Summary and Discussion

The MBE approach described in this paper can be a key element in supporting
the overall development of ADAS and higher-level automation features. A mission
plan capturing use cases serves as a focal point for coordinating the development
activities. The traceability provided by the model-based environment helps ensure
that all identified requirements are properly implemented and tested. Also, by
making best use of physical assets (e.g., real vehicles) and model-based assets,
the development process can transition from being focused on driving real vehicles
millions of miles to one more focused on scenario-based testing. Through the com-
bination of model-based analyses to support SOTIF and real-world testing focused
on challenging situations (vs. just driving many miles), efficient development of safe
ADAS features is possible.

References

Chen, T.Y., and R. Merkel. 2007. Quasi-random testing. IEEE Transactions on Reliability 56 (3):
562–568.

D’Ambrosio, J., A. Adiththan, E. Ordoukhanian, P. Peranandam, S. Ramesh, A. Madni, and P.
Sundaram. 2019. An MBSE Approach for Development of Resilient Automated Automotive
Systems. Systems 7 (1).

Hause, M. 2006. The SysML Modeling Language, Fifteenth European Systems Engineering
Conference, September.

ISO 26262 Road Vehicles- Functional Safety. 2011. International Organization for Standardiza-
tion, Geneva, Switzerland.

ISO PAS 21448 Safety of the Intended Functionality. 2018. International Organization for
Standardization. Geneva, Switzerland.

SAE J3016. 2018. Taxonomy and Definitions for Terms Related to Driving Automation Systems for
On-Road Motor Vehicles. Society of Automotive Engineers.

Saltelli, A. 2002. Sensitivity analysis for importance assessment. Risk analysis 22 (3): 579–590.
Systems Engineering Body of Knowledge (SEBoK). 2019. https://www.sebokwiki.org/wiki/

Types_of_Models

https://www.sebokwiki.org/wiki/Types_of_Models

Optimal Management and Configuration
Methods for Automobile Cruise Control
Systems

Arun Adiththan, Kaliappa Ravindran, and S. Ramesh

Abstract Autonomous systems incorporate varying degrees of adaptation behavior
to sustain their operations with acceptable quality of service (QoS). The QoS
capability of such highly complex dynamic adaptive systems depends on how
well they respond to hostile external events. The paper formulates model-based
assessment techniques to benchmark the QoS capability of a networked system of
cars S. We elaborate on this approach with a MATLAB-SIMULINK-based case
study of adaptive cruise control (ACC) system in automobiles: first, for in-vehicle
CC and then for multi-vehicle coordinated ACC. We employ model-predictive
intelligent control methods to dynamically adapt the ACC system configurations
to attain optimal behavior.

Keywords QoS of adaptive systems · Model-based assessment · Automobile
cruise control systems

1 Introduction

A quantitative assessment of the QoS (quality of service) capability of an embedded
software system S enables a sustained QoS behavior and/or reduced cost of system
operations, in the face of uncontrolled external environment conditions incident on
S (Gjorven and et al. 2006). In this paper, we study the autonomic management
of adaptive cruise control (ACC) processes in automobiles (Wiki 2016) based on a
model-based system assessment logic.

The managed system is a native in-vehicle CC operating under hostile road
conditions E∗ : e.g., road slipperiness and elevation, wind forces, air density, etc.
E∗ depicts the events that are hard to measure but nevertheless significantly impact

A. Adiththan (�) · S. Ramesh
General Motors R&D, Warren, MI, USA

K. Ravindran
The City University of New York, New York, NY, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_36

429

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_36&domain=pdf
https://doi.org/10.1007/978-3-030-82083-1_36

430 A. Adiththan et al.

Fig. 1 Functional blocks composed in our ACC system (=CC + AM)

the CC operations. The autonomic manager (AM) is a situation-based control
module that optimizes the in-vehicle CC behavior in a context of the sensed external
environment conditions E ⊂ E∗ . The AM is realized as a hierarchical control module
interacting with the in-vehicle CC system via a signaling interface – as advocated
in (Ravindran and Ramesh 2014). The paper extends our earlier preliminary study
on the infusion of intelligent control behavior by external management modules
(Adiththan et al. 2017).

The AM maps the user-level QoS-oriented preferences onto a CC logic. Here,
QoS depicts multiple attributes of the speed ramp-up behavior of a vehicle when
a reference speed is set, such as fuel consumption for speed ramp-up, latency in
reaching a reference speed, and speed jitter in steady-state. The CC logic determines
the torque generation from engine components to speed up/down the vehicle in
pursuit towards a desired speed while meeting a desired QoS specs. It is often based
on a proportional-integral (PI) controller with gain constants: (Kp,Ki) to map the
observed speed error onto a torque. We use a CC simulation module developed at
CalTech, written in MATLAB-SIMULINK, in our study of AM.

See Fig. 1. The AM consists of two functional modules: (i) monitor to assess the
QoS performance of CC under the prevailing E∗ and (ii) configuration generator
to determine the modified in-vehicle CC settings (Kp,Ki) to effectively deal with
E∗ . (i) quantitatively analyzes how the QoS attributes are affected by E∗ , whereas
(ii) dynamically changes the control algorithm and/or its parameters to achieve a
calibrated improvement under E∗ . For instance, the torque generated by the in-
vehicle CC is increased in the face of higher road elevations and/or wind forces (the
latency and steady-state speed are also suitably controlled). The AM dynamically
plugs in suitable in-vehicle CC parameters (Kp,Ki), as determined for the sensed
environment E ⊂ E∗ under a certain policy. A policy may also factor in other
situational inputs: say, road detours and barriers and multi-vehicle coordination
needs.

We also consider a multi-vehicle cruise control (MVC), realizable by coordinat-
ing the per-vehicle CC modules. The multi-vehicle coordination involves generating

Optimal Management and Configuration Methods for Automobile Cruise. . . 431

vehicle configurations that enforce the inter-vehicle safety spacing constraints while
maximizing the collective QoS experienced by the vehicle ensemble.

2 QoS-Oriented View of ACC System

The true model of a vehicle’s raw physical process (RPP), i.e., how the engine,
tires, and axles perform under various road conditions, is often not known in an
exact form. So, the CC logic uses an approximate model of the RPP, as absorbed in
a PI-control law (PI: proportional-integral) (CalTech 2014). The difference between
the model-expected and observed speeds during a control step is also factored in a
decision for the next step about the torque to be applied. An iterative sequence of
such control steps leads the CC to a steady state.

The number of observe-decide-act (ODA) steps needed to reach the steady-state
(Koda) is a measure of the latency of CC for speed-up, with Σ j = 1

Koda Q(j) being the
total torque expended for the speed ramp-up – and hence the fuel consumed – and
[Vref − V′(Koda)] being the steady-state error (SSE) (Kienke and Nielson 2005). The
latency, torque, and SSE are the QoS attributes for the in-vehicle CC. A parameter
setting of small values for the PI constants (Kp,Ki), for instance, yields a lower SSE,
albeit at the expense of a larger latency and/or more fuel consumption.

The controller generates a trajectory of torque values [Qj]j = 1,2,···,Koda that
finally leads to a sustainable speed V′, where V′ ≈ V. An optimal QoS q′

opt depicts
a scenario where the QoS utility of CC as perceived by the drivers is high, i.e., U(q,
q′

opt) ≈ 1.0. A control trajectory, as computed oblivious of the road conditions by
a static PI-control law, often leads to a less optimal QoS (when compared with its
intelligent counterpart). The suboptimality of QoS is more pronounced when the
road conditions are light to moderate, because the static controller is constrained to
a smaller region of the search space of [speed, torque] tuples for control trajectory
generation.

In our model-based approach, the CC employs user-supplied utility functions to
map a degradation in each of these QoS attributes onto user-level displeasure – and
hence a contribution to the overall cost. Here, a throttle action X contemplated for
speed ramp-up factors in the expected changes in [Koda, Q, SSE] – and hence the
cost incurred by X. Among various candidate actions {X}, the controller chooses
an X that is expected to incur the lowest cost and then unfolds X to be exercised
on the vehicle. Figure 2 illustrates a mapping of the system-level QoS of CC to an
user-perceivable utility index: U(q, q′) ∈ [0,1].

Our QoS-centric optimization approach for CC can be contrasted from the
control-theoretic optimization approach advocated in (Bauer and Gauterin 2016).
The latter too provides for model-predictive computation and horizon-based plan-
ning to deal with: (i) unexpected disturbances encountered on a road over short
timescales and (ii) control inaccuracies arising from model uncertainty itself. In
our approach, however, (i) and (ii) appear as a difference between the model-
computed and observed costs, thereby triggering a throttle action to lower the cost

432 A. Adiththan et al.

Fig. 2 Usefulness measure of a cruise control system

in a next control step. Because of its reliance on predefined cost relations and
utility functions, our approach is more amenable for incorporation as generalizable
software-level solutions (say, offloading the expensive model-predictive computa-
tions to a cloud).

3 Autonomic Control of In-Vehicle CC

We adjust the Kp and Ki parameters dynamically based on the sensed and/or
estimated environment conditions E. For example, if the wind speed increases,
Kp is jacked up to generate higher amounts of torque in the throttle actions that
would counter the wind forces more effectively (than what a statically set Kp would
otherwise do). Likewise, the Ki parameter that captures the accumulated modeling
error since the start of a CC action is also jacked up to accelerate the learning. Our
dynamic setting of (Kp, Ki) based on the estimating the environment parameters
such as road elevation (θ), air density (ρ), and road friction coefficient (Cr ∈ [0,1])
depicts an infusion of controller intelligence with the process level modeling of core
components of in-vehicle CC system.

3.1 Optimal Setting of In-Vehicle CC Parameters

Our study on how the QoS changes vis-a-vis some representative (Kp, Ki) parameter
values of the PI controller reveals two points. First, a different controller configura-
tion can yield a better QoS under the current ρ-Cr conditions. Second, an optimal
setting of the controller parameters can change with ρ-Cr. We thus reason that [Kp,

Ki] should be adjustable according to the current ρ-Cr conditions.
We comprehensively analyze the impact of [Kp, Ki] on the overall optimal

behavior of the CC sub-system of a vehicle. It involves determining how the optimal

Optimal Management and Configuration Methods for Automobile Cruise. . . 433

Fig. 3 Simulation results on optimal per-vehicle CC design

controller setting, denoted as [Kpo, Kio], changes under different ρ-Cr conditions.
We formulate a composite QoS index γ for the CC sub-system in terms of individual
QoS attributes [Koda,Q, SSE] attained with a controller setting[Kp, Ki], as:

γ = c1.Koda + c2.Q + c3.SSE, (1)

where c1, c2, and c3 are positive constants (we use the notations q and γ

interchangeably in the paper). The γ depicts a mapping of the QoS attributes onto
a scalar space, attaining an optimal value at: [Kp = Kpo, Ki = Kio]. The domain-
specific interpretation of [Koda,Q, SSE] attributes, namely, lower values mean a
better QoS, casts the optimization goal as finding the lowest γ value.

We conducted a gradient search of the [Kp, Ki]-space to determine the optimal
setting. The composite QoS index γ was computed from the [Koda,Q, SSE] data
output by the SIMULINK module for various [Kp, Ki] settings under a given ρ-Cr.
Figure 3 shows the γ values for different [Kp, Ki] and ρ-Cr values. It is found that
the setting [Kp0 = 0.7, Ki0 = 0.2] gives the optimal point, namely, the lowest γ

value. The system has a global minimum point, which is detected by the gradient
search algorithm in a short number of epochs.

434 A. Adiththan et al.

An optimal parameter setting [Kp0, Ki0] is tied to the external environment
conditions: [ρ,Cr]. So, a reasonably accurate (and low cost) estimation of the ρ-
Cr values is needed.

3.2 Declarative Specs for Autonomic Control

An infusion of the intelligent control capabilities however requires capturing the
domain-knowledge pertinent to CC operations by the AM, as described below.

The AM module may employ policy functions to adjust the (Kp, Ki) parameters –
c.f. Eq. 1. We assume that the information about [ρ,Cr, θ , . . .] is available to the
AM in some form (say, with estimators running in the CC system’s control plane).
The question then is: how does the AM orchestrate the changes to (Kp, Ki)? This
is because triggering these changes requires AM to capture the domain-knowledge:
such as an increase in θ or ρ requires generating a higher Q. Over a certain operating
region, the domain-knowledge can be codified as axioms and rules maintained by
the AM to relate a change in [ρ,Cr, θ , . . .] to a desired change in (Kp, Ki).

A declarative specs of the AM-level basic rule relates the current value of ρ to
the newly sensed value of ρ as:

> [ρsen, ρcur] →
incr_kp

[
diff (ρsen, ρcur) , α(p,1)

]∧
incr_ki

[
diff

(
ρsen, ρcur , δρ

)
, α(i,1)

] ;
incr_kp [x, y] →

The applicative functions incr_Kp[.] and assign Kp(.) are exported by the CC
system for use by the AM: first, to realize an increase of Kp subject to the condition
ρsen > (ρcur + δp) and second, to signal a plug-in of the modified Kp to the PI
controller. Similarly, the update rules for Kp based on the changes in Cr and θ can
be specified. Likewise, the update rules for Ki can be specified.

A declarative specs of the PI-controller update rules can make the AM oblivious
of the domain-knowledge, enabling its reuse (at a meta-level). The AM is basically
a symbolic processor that evaluates the truth or otherwise of various relations and
then plugs in a new (Kp,Ki) as needed.

4 Multi-vehicle Cruise Control (MVC)

We outline the key tenets of a multi-vehicle cruise control system (MVC) for
automobiles. Figure 4 shows the functional modules. The QoS depicts how safely a
set of vehicles maintain their set speeds within acceptable deviations while avoiding

Optimal Management and Configuration Methods for Automobile Cruise. . . 435

Fig. 4 Functional modules of a MVC system

drastic changes. We provide an empirical view of how an optimal QoS behavior can
be determined for a multi-vehicle ensemble.

4.1 Modeling Aspects of MVC

Suppose a vehicle X takes an action to speed up or down, as part of its local
CC action. X cannot hit any of the vehicles {X′} moving in its vicinity. To
satisfy this critical safety requirement, a coordination of the vehicles is needed
wherein an intended move of X is evaluated in conjunction with its effects on
one or more of the nearby vehicles {X′}. For instance, a slowdown of X can
force a vehicle X′ behind also to lower its speed (but may not affect the vehicles
ahead). The extent of slowdown of X′ is determined by many parameters, such
as its distance to X, environment conditions (e.g., road wetness, vehicle traction),
occupant characteristics (e.g., comfort level, children and old-aged passengers),
etc. We envisage that the multi-vehicle coordination controller C gets hosted on
a roadside assist compute node (possibly located at the edge of a compute cloud),
with adequate physical and logical sensors and computational resources to enforce

436 A. Adiththan et al.

the QoS needs of MVC. C interacts with the various vehicles under its control
realm over wireless signaling channels. Given that each vehicle itself implements
an onboard CC module, the coordination of multiple vehicles by C is deemed as a
hierarchical control.

The QoS in MVC scenario is determined by how far each car is forced to deviate
below from the driver expected speed. We define the speed deviation, Dv, as the
difference between a driver-set speed and a speed adjustment computed by the
MVC controller C. One scenario where C may choose to adjust the speed is when a
vehicle V interacts with other vehicles {X′} that have lower locally set speed limits.
The Dv is thus different from the in-vehicle SSE parameters, but the driver often
cannot distinguish between Dv and SSE. The adjusted speed computation done at C
may consider the safe following distance ds set by individual drivers while turning
ON the cruise control mode. Different drivers may independently choose ds values
according to the acceptable comfort level while the vehicle is on cruise mode.

The MVC works by potentially overriding the speed limits of individual car
drivers, to achieve a collective safe driving of the N-vehicle ensemble while striving
to keep the Dv of each vehicle low for a given ds setting (i.e., maximize the per-
vehicle QoS of CC). The QoS of MVC is thus gauged by how good the MVC
algorithm strives to keep all the N vehicles safe with minimal displeasure. An
assessment of this MVC capability requires a model of the multi-vehicle ensemble.

4.2 Optimal Configuration of MVC System

A globally optimal configuration for N vehicles is one that minimizes the cost:

Γm =
∑

k=1

N
1-Uk

[
Dv(k)–Dv

′
(k)

]
; (2)

subject to a constraint that the inter-vehicle distances are higher than the
safe-limit ds. Here, V(k) is the MVC-enforced speed limit of kth vehicle and
D0(k) = [Vref(k) − V(k)] and Uk(.) is the per-vehicle utility function. Here,
D′

v(k) = [Vref(k) − V(k)], where V′(k) is the actual speed sustained by the local
CC of kth vehicle, with ε(k) = [V(k) − V′(k)] being the steady-state error (SSE)
induced by the native PI-control law. D′

v(k) is not known to the kth driver, unless
the MVC signals about the speed override. Here, the computation of �m for a single
configuration would amount to running N instances of SIMULINK module (each
instance with potentially a different parameter set) and summing the per-driver
displeasure accrued in that configuration.

Determining the globally minimal �m is however an NP-complete problem, as
the MVC should conduct an exhaustive search of all feasible configurations. If L
is the number of distinct speed settings possible, the computational complexity of
an exhaustive search would then be O(LN). Therefore, one should employ a greedy
(and/or genetic) search algorithm to quickly come up with a reasonable suboptimal

Optimal Management and Configuration Methods for Automobile Cruise. . . 437

configuration. Such an MVC-level QoS definition would require knowing what
the global minimum would be – in order to determine how suboptimal a greedy-
computed solution is.

In the absence of accurate knowledge about the best configuration G*m, we
have the MVC specify a cost threshold to compute an acceptably suboptimal
configuration Ga. The use of situational knowledge by a management entity would
allow specifying Ga

m (say, through a GUI). We then use Ga as a reference
benchmark for analysis purposes. Now, the MVC would run its own heuristics-
based search of some representative configurations to quickly come up with its
own view of what the (sub-)optimal configuration would be – which we denote
as Ga

g. If �(Ga
g) > �(Ga), the search gets preemptively stopped; otherwise, the

search would end by a designer-set termination condition: say, the cost difference
[�(Ga) − �(Ga

g)] falls below a threshold. Thereupon, the MVC system is deemed
to have reached a steady state.

4.3 Configuration Search Algorithms

As outlined in the earlier section, we employed greedy search and genetic search
methods to decide a next state of the MVC system that would generate a close-
to-optimal trajectory. To determine how suboptimal the trajectory is, we also carry
out an exhaustive search of the state space to find the best solution �*m (which is
basically a brute-force computation).

For greedy search, the MVC controller treats a subset of the vehicles {X} as
ignoring its commands, when computing a new configuration (even though {X}
may be compliant) – where 1 < |X| � N. The non-consideration of vehicles {X}
in a decision-making by the MVC manifests as allowing them to stay course, as
determined by their native CC sub-systems – while the remaining vehicles (N − |X|)
are treated as controllable. This leads to a much small-dimensional search space:
O(LN − |X|). A deterministic search therein yields a candidate that incurs the lowest
cost among the small set of configurations considered.

A genetic search, on the other hand, occurs over the full-dimensional space
of N vehicles but with a random selection of candidate vehicle configurations. A
candidate configuration is produced after multiple crossover checks on the model-
computed vehicle states. The random mutation of multiple solutions (two or more)
occurs on those known to be good for at least a selected subset of the vehicles.
The rationale is that the sub-elements of parent configurations known to be good
for some vehicles will likely yield a better offspring when combined (i.e., a new
configuration good for additional vehicles as well). The evolutionary process leads
to a better offspring, albeit probabilistically, as a result of the crossovers of sub-
elements from good parents.

438 A. Adiththan et al.

Fig. 5 Avatar-based approach for MVC system benchmarking

4.4 Avatar-Based Benchmarking of MVC System

We employ avatars to generate multiple benchmarks for an MVC system S in a
simulated world. An avatar is basically a mathematical model of S executed in
a virtualized world, which is subjected to simulated environment conditions that
are close approximations to the actual conditions incident on S. A model
(S,E,G)
representing the current system S is used to benchmark the actual behavior of S.
This objectively verifies the goodness of S in meeting its QoS goal G in the face of
environment conditions e∈E. See Fig. 5.

Different models of S that represent alternate compositions of S from the core
functional components, namely, the per-vehicle CC processes and the configuration
parameters, may yield different QoS behaviors. For instance, an increase in speed
and/or lane change of one or more cars can be parameterized in the sub-system
models, thereby computing its effects on the MVC-wide QoS – and the associated
configuration cost (S,G,E). Such purported changes are first analyzed by a model-
driven simulation of the modified MVC processes (S + δ, e,G) in a virtualized
world, before committing a configuration change δ in the actual MVC system.
The analysis involves two things: (1) comparing the estimated behavior of model

(S + δ,E,G) with the currently observed run-time behavior of actual system S and
(2) infusion of system-level changes δ, if needed, in the operational processes of
S using compositional methods (e.g., changing the Kp/Ki parameters of in-vehicle
CC). In the above light, the behavior computed by the model (S, e,G) serves as a
“gold-standard”: first, to determine how good is the actual behavior of S relative to

Optimal Management and Configuration Methods for Automobile Cruise. . . 439

the expectations and second, to provide the basis for a calibrated change in S. In
general, the different benchmarks obtained from alternate compositions of S can be
analyzed to meet the desired optimality conditions. The model-driven simulations of

(S,E,G) and
(S + δ,E,G) can be seen as different avatars of S for benchmarking
and reconfigurations of S.

5 Conclusions

Our work adds a software cybernetics dimension to the autonomic management of
an in-vehicle CC system. The dynamically settable CC logic allows a vehicle to be
more responsive to the stringent demands in a multi-vehicle coordination scenario,
relative to a statically set CC. Our compositional design of ACC system promotes
incremental evolution and reconfiguration of ACC functionality by software and/or
model reuse. The paper also described a multi-vehicle coordination functionality
composed from the per-vehicle CC models (static or dynamic) – realizable on a
roadside unit (say, hosted on a cloud edge). Our adaptive control of vehicles meets
a critical functionality requirement for Intelligent Transport Systems, as enunciated
in (Koopman and Wagner 2014).

References

Adiththan, A., K. Ravindran, and S. Ramesh. July 2017. Management of QoS-oriented Adaptation
in Automobile Cruise Control Systems. In Proc. Intl. Conf. on Autonomic Computing, (ICAC),
79–80. Columbus.

Bauer, K. and F. Gauterin. 2016. A Two-Layer Approach for Predictive Optimal Cruise Control.
SAE Technical Paper: 2016-01-0634. https://doi.org/10.4271/2016-01-0634.

Caltech Research Group. Cruise Control. 2014. http://www.cds.caltech.edu/murray/amwiki/
index.php/Cruise control.

Gjorven, E., F. Eliassen, and J.O. Aagedel. 2006. Quality of Adaptation. In Proc. SELF: Self
Adaptability and Self-Management of Context-Aware Systems, Silicon Valley.

Kienke, U., and L. Nielsen. 2005. Road and Driver Models. Chap. 11. In Automotive Control
Systems: Engine, Driveline, and Vehicle. Springer.

Koopman, P., and M. Wagner. Jan 2014. Transportation CPS Safety Challenges. In NSF Workshop
on Transportation Cyber Physical System. Arlington.

Ravindran, K., and S. Ramesh. 2014. Model-Based Design of Cyber-Physical Software Systems
for Smart Worlds: A Software Engineering Perspective. In workshop on Modern Software Eng.
Hyderabad: Methods for Industrial Automation (MoSEMInA), ACM-ICSE.

Wikipedia. 2016. Autonomous cruise control system. https://en.wikipedia.org/wiki/Autonomous
cruise control system.

http://dx.doi.org/10.4271/2016-01-0634
http://www.cds.caltech.edu/murray/amwiki/index.php/Cruise
https://en.wikipedia.org/wiki/Autonomous

A Systems Modeling Illustration
of the Military Academy Doolie Cadet
System

Nathan Hasuk Oh and Martin “Trae” Span

Abstract Systems engineering process models provide the framework for visual-
izing and organizing a system life cycle guiding its design and development. The
systems engineering Vee process model is ubiquitous for describing systems. It
is the most widely used and often tailored for specific system types. This paper
models the doolie cadet as a system of interest using the Vee model. The term doolie
refers to a freshman at the United States Air Force Academy. The doolie year is a
rigorous year with difficult requirements to complete the transformation of high
school graduates into disciplined military academy cadets. This work describes the
challenges associated with the doolie year and models the doolie cadet as a system
of interest using the systems engineering Vee model. Beginning with decomposition
along the left side of the Vee, requirements, subsystems, and components that
need to be assessed for an evaluation of performance are identified, progressing
up the right side of the Vee; this work details verification events such as exams,
athletic assessments, and military tests and training. These events validate the
system, demonstrating that the doolie cadet is proficient and ready for acceptance
into the cadet wing. This work contributes a new perspective on modeling human
performance as a system of interest and new insights into uses of the systems
engineering Vee model.

Keywords Systems engineering · Systems engineering process model · Life
cycle · Military cadet · Education · first year student · Freshmen

N. H. Oh · M. “Trae” Span (�)
United States Air Force Academy, Colorado Springs, CO, USA
e-mail: martin.span@usafa.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_37

441

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_37&domain=pdf
mailto:martin.span@usafa.edu
https://doi.org/10.1007/978-3-030-82083-1_37

442 N. H. Oh and M. “Trae” Span

1 Introduction

Military academies provide a unique rigorous environment to facilitate and acceler-
ate character growth to develop high school graduates into leaders of hundreds of
young servicemen upon graduation. More specifically, the United States Air Force
Academy (USAFA) is a challenging institution whose goal is developing leaders
to commission as officers within four years. Each USAFA cadet year has a unique
set of challenges, rewards, and expectations that culminate into advancement to an
officer. There are three commissioning paths into the Air Force as an officer. The
first way is to attend the United States Air Force Academy; graduation confers both
a Bachelor of Science degree and a commission into the Air Force. The second
way is to attend a Reserve Officer Training Corps (ROTC) program at a civilian
undergraduate institution. There is no guarantee, however, that one will graduate
as an officer, but there is still a military training component to develop graduates
into people of character. The final way is to complete Officer Training School. It is
a rigorous nine and a half week program that only accepts persons with at least a
bachelor’s degree to attend (Officer Training School 2018). Upon completion of one
of the three programs, a candidate will be commissioned as a second lieutenant in
the United States Air Force. This work models the first year of officer development
at USAFA using the systems engineering Vee process model. Prior works have been
published in applications of systems engineering life cycles to human systems. The
health information systems domain has demonstrated benefit from the use of human-
centered design through the classical systems engineering method (George and
Samaras 2005). SE models provide value to ergonomics by enabling a systematic
human design approach. In a related application, this paper demonstrates a systems
life cycle model as applied to human systems, a first year undergraduate student
at USAFA. Section II introduces the reader with the requirements of doolie year
at USAFA in an effort to provide context and background understanding. Section
III describes the systems engineering Vee process model as the methodology used
to model the doolie cadet system. Section IV presents the doolie cadet system as
modeled by the Vee model, and Section V describes the impact of this unique human
systems modeling effort. Section VI provides a summary and possible extensions for
future work.

2 Background

The first year at the United States Air Force Academy (USAFA), infamously known
as “doolie year,” begins after the completion of summer basic training and builds
on what cadets learned including to become a follower, the first step in leadership
development. The separation of classes between a doolie cadet and the upper three
classes is extensive. The term “doolie” actually originates from the classical Greek
word doulos meaning “slave” or “bondservant.” While freshmen cadets are not

A Systems Modeling Illustration of the Military Academy Doolie Cadet System 443

indentured servants, they have significantly limited privileges and extensive military
training requirements to balance in addition to their first year of academics. There
are strict rules against fraternization or unprofessional relationships between anyone
of the upper three classes and a doolie, including social media relationships. There
are various ROEs (rules of engagement) that all doolies must follow, for example,
running on the long established strips (limited pathways between the dorms and
academic buildings), greeting all upperclassmen they pass in close proximity, and
other tasks focused on improving their discipline and bearing. Doolie cadets are
constantly being observed and corrected by upper-class cadets, enlisted members,
and officers. Unlike a civilian university, the USAFA doolie experience is split
into three different categories of assessment, grade point average (GPA), military
performance average (MPA), and physical education average (PEA). The combined
result of a weighted average is called the overall performance average (OPA) which
consists of 50% weighted GPA, 40% weighted MPA, and 10% weighted PEA. Each
category can be further decomposed into components that comprise each element
which are all factored into the validation of the doolie year (United States Air Force
Academy 2018).

The mission of the United States Air Force Academy is not only to train but also
to educate future leaders of the United States. This includes receiving a Bachelor of
Science degree with a focused major and optional minor. The 8-semester curriculum
averages 6 classes per semester, and each class is made up of 40 lessons with 53 min
per lesson. The student-to-faculty ratio is one of the lowest in the nation at 8:1,
meaning there are always instructors willing to help regardless of the time of day or
situation. The entirety of classes taken during the doolie year are core requirement
classes such as calculus I and II, chemistry, English, and physics and two classes
in a foreign language. It is also a time to consider which major to select since one
must declare no later than October of sophomore year. There are 27 majors offered
with an opportunity to minor in either a foreign language, philosophy, or religious
studies. At USAFA, courses are more structured than many other universities with
an extensive amount of graded events including participation points, pre- and post-
class quizzes, homework, graded reviews (tests), and final exams.

Most upper-class cadets will agree that while doolie year is the easiest academ-
ically since most classes are at the introductory level, it is the most challenging as
military and physical events occupy almost every non-class hour of the day. The
military aspects of doolie year are also very mentally challenging. Military training
within the squadron is focused on developing doolies into disciplined followers and
military personnel. A primary mechanism for military training in the squadron is
training sessions which occur two to three times a week at 1530. What they entail are
largely squadron dependent but are primarily focused around physical and mental
training. One of the most difficult aspects of doolie year militarily is greeting all
upper-class cadets and staff across the wing. A wing is comprised of the four
thousand cadets that attend USAFA. Greeting within squadrons is difficult because
every upperclassmen’s (upwards of 70–80 people) name, job, and rank need to be

444 N. H. Oh and M. “Trae” Span

memorized and recited out loud every time a doolie walks past any cadet of higher
rank than them. Another military aspect of doolie year is taking weekly knowledge
tests. The questions mostly consist of military quotes, specific information about
the Air Force, and military knowledge on aircraft. Passing or failing these will not
only affect doolies’ stratifications (the individual’s numerical rank based on their
performance contrasted with their classmates’ performance and their leadership’s
expectations), but they will also affect their upper-class MPA to some degree.
Another form of training is called “Minutes.” Every squadron does this multiple
times a week where the doolies wake up earlier than the rest of the upperclassmen
at around 0620 and yell out a pre-established script about the uniform of the day and
every meal the mess hall is serving that day. During minutes, every doolie recites
military knowledge and must have a current event ready to share upon the request
of an upperclassman. As a doolie, freshman cadets are not permitted to have or
wear civilian clothes any time the entire year and must wear the uniform of the day
(UOD) until TAPS (2300 Sun-Thur, 0130 Fri-Sat) unless going to the gym. Doors
in dorms must be open every night until 1950 with rooms in precise SAMI standard
at all times. This SAMI standard requires an extreme amount of time to arrange
the bedding and clothing to detailed and precise specifications with measurement
tolerances required within ¼ inch of preciseness.

As a cadet, everyone must participate in a sport, either an intercollegiate team
or a club sport competing against local schools or participating in intramural sports
which go against other squadrons within the academy. The actual PEA comprises
components such as physical education classes, the physical fitness test (PFT),
and the aerobic fitness test (AFT). The PFT consists of pull-ups, long jump, sit-
ups, push-ups, and a 600 yard run, whereas the AFT is a 1.5 mile run. There are
various PE classes that are mandatory graduation requirements, such as boxing,
water survival, and combatives, and also a variety of elective courses such as golf,
warrior enhanced yoga, and rock climbing.

Recognition is the most culminating and rewarding event of doolie year, occur-
ring in March. It is a highly anticipated three-day event for all doolies with the
purpose of earning the recognition of their upperclassmen as being ready to train
the next class of doolies and becoming upperclassmen themselves. It is a rigorous
capstone event of intense military and physical training that ends with pinning prop
and wings which symbolize the completion of the training aspect of doolie year.
After completion, now-recognized doolie cadets earn back their civilian clothes, the
ability to walk where they please, not having to greet, and several other privileges
taken away since basic training. The background on the doolie year experience
provided here provides context to understand the model elements presented in
Section IV.

A Systems Modeling Illustration of the Military Academy Doolie Cadet System 445

3 Methodology

Systems engineering’s most widely accepted definition is from INCOSE:

Systems Engineering is an interdisciplinary approach and means to enable the realization of
successful systems. It focuses on defining customer needs and required functionality early
in the development cycle, documenting requirements, then proceeding with design synthesis
and system validation while considering the complete problem. (Incose 2018)

Much of early systems engineering was focused on large-scale systems (Ryen
2008) but has progressed into a broad discipline of versatile applications. Systems
engineering is primarily focused on the system life cycle and ensuring the resulting
product meets the initial requirements and customer needs.

There are numerous process models of the system life cycle such as the waterfall
and Vee. The waterfall process model is a linear depiction of the system that
progresses in a logical fashion (Powell-Morse 2016). In the 1980s, however, systems
engineers decided they needed to modify the waterfall model, bringing the latter half
of the components up into the right side of the diagram which paved the way for the
new Vee model. This new model was able to verify early developmental stages to
the later tested stages and make progressive alignments with the right and left sides
as shown in Fig. 1 (Donald 2013). The verification and validation performed in the
right side of the model was imperative to the success of new engineering efforts
(Blanchard and Fabrycky 2011).

Although the Vee process model has numerous advantages, it does carry faults
such as being too simplistic and not iterative, as the figure alludes to a strict step-by-
step process. There are some levels where the activities can occur simultaneously or
repetitively regardless of the system block. While iteration is not explicitly shown

Fig. 1 Systems Engineering Vee Process Model. (Blanchard and Fabrycky 2011)

446 N. H. Oh and M. “Trae” Span

in the diagram, its value is in the clear representation of the system life cycle
incorporating testable activities with their aligned developmental activities (Donald
2013).

This next section will depict the doolie cadet system using the Vee model. The
USAFA doolie year has many components and can be modeled as a life cycle
following a systems engineering approach with detailed requirements, functions,
and components along with their associated verification and validation events.

4 Results

This section splits the Vee model into components and populates the doolie year
into respective sections of the system life cycle. There are numerous variants of the
Vee model tailored for specific scenarios and focuses. Figure 3 adapts the generic
Vee model from Fig. 1 to the doolie year. The details presented within each block
of the Vee model will be discussed with the understanding that the reader has been
familiarized with USAFA specific requirements and activities as described in the
background section of this paper.

4.1 Define System Requirements

The initial step in the Vee model is identifying overall system requirements. These
general requirements are typically the “what” in the system life cycle in identifying
the key necessities for everything that follows. In the example of the doolie life
cycle, the initial requirement for the Vee model is meeting the United States Air
Force Academy minimum standards. A cadet cannot fail any class or have more
than one academic grade of “D” per semester. An A is a 4.0, an A- is a 3.7, a B+ is
a 3.3, a B is a 3.0, a B- is a 2.7, a C+ is a 2.3, a C is a 2.0, a C- is a 1.7, etc. The
average GPA must be above a 2.0. If these requirements are not met, then a doolie
will be put on academic probation. Their MPA also needs to be above 2.0, or a doolie
will be put on aptitude or conduct probation. Finally, the PEA of a doolie needs to
be above 2.0, or they will be placed on athletic probation which requires the cadet
to attend reconditioning, a rigorous, scheduled, instructor-led workout regimen.

4.2 Allocate System Functions to Subsystems

The next step down the Vee model is the allocation of the system performance
goals. Using the requirement definitions, the objectives for performance are created
by decomposing the requirements previously identified in the process model.
Decomposing system-level functions to subsystems is necessary to further specify

A Systems Modeling Illustration of the Military Academy Doolie Cadet System 447

Fig. 2 A SysML physical requirements chart example

how the requirements will be met. In relation to the doolie year, the performance
goals at the subsystem level are divided into the three major components as shown in
Fig. 2. For the academic aspect, the goal is course completion. Completion of every
class is a major aspect as to whether the GPA meets the 2.0 requirement. This course
completion goal decomposes the GPA requirement into a lower-level definition of
success. The performance goal for the military aspect can be broken down into
military competency. Military competency is mostly assessed by upperclassmen
who inspect the doolie’s aptitude and ability to perform as a member of the US
Armed Forces throughout the year. For athletics, the performance goal identified
is athletic achievement. There are many components that go into the athletic
composite score, but an overall athletic achievement aspect allows for a foundational
breakdown of the requirement for PEA. Figure 2 illustrates how the Vee model can
be extended with SysML models specifically in this case a SysML requirements
diagram. High-level requirements should be decomposed to specific obtainable
goals in accordance with the decomposition effort on the left side of the SE Vee.
This work expands on this decomposition in the following sections.

4.3 Detail Design of Components

The final decomposition on the left side of the Vee model is the detailed design
block. This section breaks down the subsystems presented in the previous seg-
ment into more comprehensive and detailed allocation to components. This step
details the lowest-level components that will be verified as we work up the right
side of the Vee for the doolie cadet system. The GPA requirement and course
completion functions are allocated to class-specific knowledge at the component

448 N. H. Oh and M. “Trae” Span

level. Understanding the content for each class and preparing for validations are the
lowest-level components of a GPA. The PEA requirement and athletic achievement
goals are allocated at the component level to athletic ability. Athletic ability is
composed of individual exercise fitness and contributions to a team sport. These
lowest-level components aggregate together to result in athletic achievement and
the overall PEA. Finally, the MPA requirement and military competency functions
are allocated to military knowledge/performance at the component level. Similar to
academics, having military knowledge is essential in fulfilling the required military
competencies. Military performance also includes actively building character and
honor in order to do the right thing. This section is the lowest level and final step in
system decomposition which will be verified and validated as we work up the right
side of the Vee.

4.4 Verify Components

Verifying the components is the first step up the right side of the Vee diagram. This
step ensures that the lowest-level components identified on the left side are being
validated and integrated into the system. The specific events verifying the class-
specific knowledge component are graded reviews, quizzes, and homework. These
specific aspects, along with every academic event that affects the class specific GPA,
fulfill the detailed design components. For the physical fitness, specific scores in
graded physical tests verify the lowest component of athletic ability. For example,
for the PFT the component verification would be the push-up event or the sit-up
event. If it was a gym class, it would be a certain graded event in that class such as
swimming the timed mile in water survival. Military verifications of components are
the knowledge tests, performance in training sessions, minutes, and greeting – all
the activities upperclassmen can verify that will be rolled up into the total military
performance assessment.

A systems engineering tool that can be implemented within the Vee model is a
synthesis, analysis, and evaluation (SAE) loop. This loop can be used to improve
each specific component that needs development (Hall 1997). An example of an
SAE loop is applied to push-ups. If a physical training session demonstrates that
the max push-ups for a certain doolie was below the average, then push-ups may
be improved through a SAE loop. The first step is to synthesize the problem and
brainstorm potential causes and solutions to remedy the doolie’s poor push-up
performance. Synthesis would consider if strength, endurance, or another factor
is the issue. The next step, analysis, would consider actions that can be taken to
fix, improve, or eradicate the problem. Potential analysis for improving push-ups
could include daily repetition such as doing 100 push-ups split up into three or four
sets every day for a month. Alternatively one may analyze a weight-based (lifting)
workout plan tailored to increasing upper body strength. The final portion of the
SAE loop, evaluation, is testing the activities implemented as a result of the analysis
to evaluate their impact on the problem. In this example a timed assessment of max

A Systems Modeling Illustration of the Military Academy Doolie Cadet System 449

repetition push-ups would be a fitting evaluation of the performance improvements
gained since the initial start of the loop. At this point another SAE loop could begin
to continue performance improvements. While applied to a physical scenario in this
example, SAE loops could be applied to each aspect of the doolie cadet system.

4.5 Verification of Subsystems

Moving up the right side of the Vee model, verification of subsystems is a higher-
level activity combining the results of individual component verification efforts.
In this block the system performance goals are verified through a more inclusive
assessment of doolie performance across academics, athletics, and military. In
relation to the overall life cycle, the academic portions are the midterm and semester
grades. These grades culminate the individual academic assessments in verify
components along with validating the course completion component for academics.
The physical aspect aggregates the individual components in athletic assessments
and is concerned with the overall scores from the PFT, AFT, and grades from
gym classes. These physical component scores reflect the athletic achievement goal
identified on the left side of the Vee model. The military aspect has aggregated
the knowledge tests, upperclassmen assessments, training sessions, SAMIs, and
other military duties into military stratifications. Military stratifications are a major
factor into the doolie MPA. The MPA validates the left side performance goals of
military competency and allows for a tangible affirmation to the components. A
similar synthesis, analysis, and evaluation loop can be executed at the verification
of subsystems level. Expanding the original push-up SAE loop, the focus can now be
on the entire PFT in general. If the PFT score from the first semester is not as good
as the doolie intended, then a loop can be used to try and improve the score. The
doolie can synthesize causes of the low score and potential remedies to improve the
PFT score, analysis compares potential remediation plans, and the evaluation will
be the next PFT the following semester (Fig. 3).

4.6 Full System Operation and Verification

The final step in the Vee model is the full system operation and verification. In
this step the entire system is verified at the highest level. The accumulation for
academics is the actual GPA at the end of the year. All the individual class GPAs are
averaged according to the weight of each class (credits) and are brought together
to give the final GPA and class ranking in respect to academics. This final GPA
validates meeting the USAFA minimums of a 2.0 GPA and determines whether
the doolie is put on academic probation. The accumulation of grades and scores
for athletics is the actual PEA at the end of the year along with the class ranking in
athletics. It is the accumulation of the PFT, AFT, and gym classes that affect the final

450 N. H. Oh and M. “Trae” Span

Fig. 3 The doolie year represented using the systems engineering Vee model

PEA for the semester/year. The PEA can determine whether the minimum of a 2.0
PEA was met and if the cadet will be put on athletic probation and reconditioning.
The accumulation for military is a combination of MPA and Recognition. If the
MPA is over a 2.0, it validates the minimum USAFA requirements, and a doolie
must be seen fit by upperclassmen to be recognized during Recognition. This final
step completes the Vee diagram with a full validation of the doolie cadet resulting
in a promotion to the status of an upper-class cadet as they enter their sophomore
year at USAFA.

5 Impact

Understanding this Vee model as applied to a non-technical system allows for
multiple applications that can be effective for the development and planning of
any system. Using the Vee model to capture a military cadet development system
lends us to creating goals and specific objectives at the component levels that
would not be otherwise obvious without using the Vee model. Allocating systems
to subsystems and further decomposition into performance components enable a
specific actionable roadmap of goals to achieve successful doolie cadet performance
in athletics military and academics.

By applying the Vee model as we would for a complex technical system, the
effort of decomposing requirements, and allocating them to components, lets us
create lower-level objectives and goals to better meet the top-level requirements of
our human performance objectives. The conventional way of creating requirements
for human objectives is to think broadly and make high-level objectives. The
limitation is these requirements such as a 2.0GPA do not have actionable events at a

A Systems Modeling Illustration of the Military Academy Doolie Cadet System 451

lower level to ensure the goal is on track. Applying the Vee model to the doolie cadet
example of human performance goals allows for the successful decomposition of the
high-level doolie cadet requirements into specific actionable goals and objectives
spanning from detailed course test grade benchmarks to class grade objectives to
overall GPA. This work application to the doolie cadet system demonstrates new
utility of applying the Vee model to human performance objectives. It details the
value of using the decomposition of the requirements to form testable objectives for
verification efforts up the right side of the Vee. Using the SE Vee model for human
performance objectives provides unambiguous actionable goals to ensure the human
can attain the high-level overarching objectives.

6 Conclusion

This paper reflects on the military cadet experience describing the doolie cadet
year modeled using the systems engineering Vee model. This paper presents a
nontraditional example of a system modeled using the systems engineering Vee
model. It provides a unique perspective and insight as to how systems engineering
can be applied to many different areas beyond traditional software and mechanical
systems. This doolie year integration with systems engineering demonstrates the
widespread applicability and relevance of the field. More specifically, this paper
demonstrates how a human experience and development effort can be modeled
using a systems engineering process model. The authors intend to extend this work
to include more Model-Based Systems Engineering with many additional SysML
illustrations of the content covered in this work. The insights from the doolie system
apply not just to USAFA cadets but also freshmen undergraduates on the whole
and also high schoolers seeking to prepare for the rigors of a freshman experience
especially at a military academy.

Acknowledgments This work was inspired by the Introduction to Systems Engineering class
at the United States Air Force Academy. Completion of doolie year inspired the creation of the
relationship between systems engineering and cadet life.

References

Blanchard, B., and W. Fabrycky. 2011. Systems Engineering and Analysis. Upper Saddle River:
Prentice Hall.

Donald, F. “insights,” Carnegie Mellon University, 11 November 2013. [Online]. Avail-
able: https://insights.sei.cmu.edu/sei_blog/2013/11/using-v-models-for-testing.html. Accessed
09 Nov 2018.

George, R.L.H., and M. Samaras. 2005. A systems engineering perspective on the human-centered
design of health information systems. Journal of Biomedical Informatics 38 (1): 61–74.

Hall, M. “Mankind,” Models for concurrent Engineering design, 15 July 1997. [Online]. Available:
https://mankindsoftware.github.io/dissertation/model_27.htm. Accessed 09 Nov 2018.

https://insights.sei.cmu.edu/sei_blog/2013/11/using-v-models-for-testing.html
https://mankindsoftware.github.io/dissertation/model_27.htm

452 N. H. Oh and M. “Trae” Span

Incose. About Systems Engineering. [Online]. Available: https://www.incose.org/about-systems-
engineering. Accessed 10 Nov 2018.

Officer Training School. United States Air Force. [Online]. Available:https://www.airforce.com/
education/military-training/ots. Accessed 10 Nov 2018.

Powell-Morse, A. “Airbrake,” 16 December 2016. [Online]. Available: https://airbrake.io/blog/
sdlc/waterfall-model. Accessed 09 Nov 2018.

Ryen, E. 2008. Overview of the System Engineering Process. NDDOT.
United States Air Force Academy. 2018. [Online]. Available: https://www.usafa.edu/. Accessed 10

Nov 2018.

https://www.incose.org/about-systems-engineering
https://www.airforce.com/education/military-training/ots
https://airbrake.io/blog/sdlc/waterfall-model
https://www.usafa.edu/

Project Managers and Systems
Engineers, “Can two walk together,
unless they agree?”: Recent Research
Findings on Development Projects

Sigal Kordova, Eyal Kats, and Moti Frank

Abstract There are two significant “players” in development projects: the project
manager and the systems engineer. They work together with the aim of meeting
the technical (execution/performance, quality) and managerial (schedule, costs, and
customer satisfaction) goals of the project.

The purposes of the current study (Kordova S, Katz E, Frank M, Syst Eng 22(3).
https://doi.org/10.1002/sys.21474) are to identify the management processes shared
by project managers and systems engineers in the defense industry; to understand
which factors influence the ways in which joint project management is accomplished
and how it impacts meeting project goals; and to provide recommendations for joint
project management that will lead to project success.

The research method was qualitative, based on 16 semi-structured interviews
with project managers and systems engineers in defense companies that deal with
the development of technological systems.

The main recommendations for joint project management are: Set a clear distri-
bution of responsibility and delegation of authority between the both parties before
starting the project; choose a project manager who was once a systems engineer or
who possesses knowledge of engineering; insist on ongoing dialogue between the
two professionals; solve/prevent conflicts through discussion and persuasion; and
expand the common ground between the project manager and systems engineer’s
areas of responsibility.

Keywords Systems engineering · Development projects · Project management

S. Kordova (�)
Department of Industrial Engineering & Management, Ariel University, Ariel, Israel

E. Kats
HIT-Holon Institute of Technology, Holon, Israel

M. Frank
IAC-Israel Academic College, Ramat Gan, Israel

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_38

453

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_38&domain=pdf
http://dx.doi.org/10.1002/sys.21474
https://doi.org/10.1007/978-3-030-82083-1_38

454 S. Kordova et al.

1 Research Goals

The current study discusses project management methods and processes from the
perspectives of both project managers (based on the PMBOK) and systems engi-
neers (based on the SE Handbook). Our objective was to identify the management
processes shared by both project managers and systems engineers in the defense
industry; to understand which factors influence the ways in which joint management
is executed; to define the consequences of joint management for achieving project
targets; and to recommend joint project management methods that lead to project
success.

2 Literature Review

Systems engineering management is a practice that grows and develops together
with systems engineering. Therefore, its standards address the close relationships
linking systems engineering management and project management, emphasizing
their critical importance for improving project management. While project-related
methods have traditionally focused on issues such as scheduling, budget, and scope,
systems engineering management centers on managing the project-product and
issues related to developing project technology (Sharon 2010; Sharon et al. 2011).

Systems engineering management and project management flow together, a fact
addressed in at least three prominent project management and systems engineering
books:

1. The SE Handbook (INCOSE 2011) includes the technical processes, manage-
ment processes, and extra-organizational processes relevant to systems engi-
neers. The chapter dealing with project management processes focuses on
processes relevant to technical coordination of a project and presents manage-
ment processes referenced in the PMBOK (Project Management Institute 2013).

2. NASA Systems Engineering Handbook (NASA 2007a). Figure 1 is taken from
this book and depicts the overlap between systems engineering and project
management. According to NASA (2007a, b), systems engineering provides
information on the technical aspects in these areas, while project management
is concerned with management, costs, and scheduling aspects.

3. Defense Acquisition Guidebook (DoD 2010), an Internet source provided by the
US Department of Defense, outlining basic project management principles and
processes.

In October 2012, PMI and INCOSE conducted a joint survey in an attempt to
better understand the roles of project managers and systems engineers and determine
the level of integration between the two (Confronto et al. 2013). The survey included
a total of 680 systems engineers and project managers. The survey findings showed
that:

Project Managers and Systems Engineers, “Can two walk together, unless they. . . 455

Fig. 1 NASA: Overlaps between systems engineering and project management (NASA 2007a, b)

• A total of 30% of respondents believe there is a certain level of undesirable
tension between project managers and systems engineers.

• The three factors leading to this tension are:

– Lack of an integrated plan for carrying out project management/systems
engineering activities

– Failure to identify the responsibilities related to each area
– Conflicting project management and systems engineering practices

According to Lang and Stratton (1997) and Langley et al. (2011), the key
to successful project management in the twenty-first century is understanding
the complex relationships between the disciplines (e.g., project management and
systems engineering) and their shared processes and differences and then finding
the most efficient way to integrate the various components, thus maximizing project
management. Project management, systems engineering, and content supervision
are the three essential disciplines required for effective project management (MIT-
PMI-INCOSE 2012; Scott et al. 2015).

3 Methodologies

The study design was qualitative and based predominantly on semi-structured inter-
views with project managers and systems engineers employed in defense companies
dealing with the development, integration, and upgrading of technological systems.

456 S. Kordova et al.

The interview sample included 16 experienced project managers and systems
engineers, all recognized as experts in their fields, who were selected on the basis
on their position, education, and wide experience.

The main study findings, particularly recurring patterns, were first categorized
into groups and were then examined for frequency and intensity of repetition.
Several procedures were used to ensure the trustworthiness (internal validity) of
the qualitative study findings:

• Triangulation: A finding was considered trustworthy/valid if it appeared in at
least three interviews. Because this is a qualitative study based on semi-structured
interviews, the statistical analyses usually used in quantitative studies are not
applicable. In their stead, three interviewees mentioning the same topic is an
accepted triangulation procedure for ensuring trustworthiness or internal validity
of qualitative research.

• During the interviews, cross-validation was employed to examine the degree of
respondents’ agreement with the given definitions (respondent validation).

In order to ensure confirmability:

• The objectivity level was examined throughout the study.
• The interview questions were worded clearly and in an unbiased manner.
• Efforts were made to avoid errors due to false first impressions and premature

assumptions, so the research findings could be applied to the general population
(external validity – fittingness).

• The research sample was not biased towards either of the two domains (project
management/systems engineering); as far as was possible, an equal number of
project managers and systems engineers were interviewed.

• Known experts from the project management and systems engineering commu-
nities were chosen to represent their fields.

4 Research Results

The key objectives of the qualitative analysis were to identify conceptual similarities
and discover types, classes, processes, patterns, and key points. Therefore, after
transcribing and summarizing all of the interviews, their content was analyzed in
an attempt to find the patterns and common themes emerging from the interviews.
These patterns helped to illuminate the study questions. The content analysis process
included:

1. Mapping the management processes shared by project managers and systems
engineers (such as risk management, purchasing processes management, budget
management, customer relationship management, etc.)

2. Mapping the factors that influence joint management methods (such as per-
sonality, interpersonal relations, interpersonal communication, the project’s
organizational structure, professionals’ background and experience, etc.)

3. Consolidation of recommendations regarding the project’s joint management.

Project Managers and Systems Engineers, “Can two walk together, unless they. . . 457

The main findings of the study are as follows:

1. The overlapping areas between project management and systems engineer-
ing often cause conflicts between the two professionals. These areas include
risk management; procurement management; systems engineering-architecture-
related decisions; concept definition and integration processes; validation/verifi-
cation tests (impact on schedule and resources); and work program management
issues.

2. In most projects, cooperation between the two professionals is achieved through a
peer approach to determine project goals and how to best achieve them. Conflicts
relate mainly to professional orientation (meeting requirements and performance
demands/compliance with cost and schedule constraints). All organizations strive
towards processes that clearly state the responsibilities of each professional
involved in the process, with project managers and systems engineers at the top of
the management pyramid. If there is good synergy between them, they can help
one another and decide together on technical and management-oriented subjects.
Lack of effective cooperation between the two may inevitably hamper project
success (all interviewees unanimously agreed on this subject).

3. Factors influencing the joint project management method included the personal-
ity of the involved professionals; their organizational culture; project managers’
familiarity with systems engineering processes; level of mutual trust and profes-
sional appreciation; the project’s organizational structure (in particular, regarding
projects in which systems engineers are under the supervision of project man-
agers); and background (specifically, education and professional experience).

4. The main management problem resulting from overlapping responsibilities is
schedule delays, but there were additional consequences related to performance.

5. Recommendations for joint project management:

5.1. Coordinate responsibilities and authority between the two professionals
before the project’s onset.

5.2. Document the responsibility and authority in the PMP and SEMP docu-
ments.

5.3. Define a mechanism for settling disputes.
5.4. Train project managers in engineering development processes (the project

manager is the systems engineer’s boss, so he/she is also responsible for
technical supervision).

5.5. Use shared tools to manage the project (e.g., CORE systems engineering
software).

5.6. Ensure that the systems engineer takes cost and schedule considerations into
account when making systems engineering decisions.

5.7. Come to a clear agreement about project goals and how to achieve them.
5.8. Clarify interrelations between the project manager and the systems engineer

during professional training.
5.9. Appoint a project manager who has previous systems engineering experi-

ence.

458 S. Kordova et al.

5 Discussion

The current findings from the interviews indicate that the management processes
shared by both project managers and systems engineers are:

• Risk management
• Systems engineering processes
• Schedule management
• Procurement management
• Scope management
• Cost management
• HR management

Conversely, the literature review found that the overlapping management pro-
cesses appearing in both the PMBOK and the SE Handbook are:

• Management of lifecycle processes
• Requirements management
• Project planning
• Project monitoring and control
• Risk management
• Configuration management
• Information management
• Procurement processes management
• Portfolio management
• HR management

There is indeed some congruence between the findings of current study and those
of the literature review, including risk management, requirements management
(a top priority for systems engineering processes), procurement processes, HR
management, and schedule management (project planning). There is also partial
congruence with the work of Scott et al. (2015). Specifically, the shared management
areas in both studies are risk management, subcontractor management (procurement
processes management), quality management, and product lifecycle planning. The
overlapping management processes found in this study but not mentioned in the
literature reviewed above include scope management and cost management.

5.1 Overlapping Management Processes Found in the Current
Study

Risk Management Project risks include management-related risks (such as cost or
organizational expenses), as well as technical/engineering risks (regarding require-
ments, performance demands, and premature technology). During the project, there
is joint discussion about risk in which the relevant risks are ranked, and a risk

Project Managers and Systems Engineers, “Can two walk together, unless they. . . 459

reduction plan is created. Most of the interviewees mentioned that project managers
usually integrate all risks, while systems engineers are commonly responsible for
identifying and managing only technical risks. However, technical risks often have
managerial consequences, because risk reduction plans generally require allocation
of resources (scheduled time, budget), a task usually performed by the project
manager.

Systems engineering processes, managed by the systems engineer, include
major project decisions such as choosing the best technology for the project
(including level of maturity); determining the system architecture; defining the
concept behind the integrations and tests; choosing the optimal design; establishing
the number of development cycles (versions); and deciding how many prototypes
will be built, etc.

These decisions all have significant implications for project success and the
ability to meet project goals. Both professionals need be involved, because each of
these decisions requires resources and is therefore a subject that must be discussed
in depth. All technical requirements are the systems engineer’s responsibility;
therefore, attention must be given to each and every requirement and all relevant
aspects. If a requirement cannot be met, systems engineers may try to convince
their project managers that this is the case. If the project manager is convinced, it
will then be his/her responsibility to carry out the necessary negotiations with the
customer.

Project schedules aim to provide a framework for time constraints, as dictated
by the customer. Schedules for development entail identifying the scope of work
(SOW), dividing it into appropriate activities, and understanding the constraints
and order of activities involved in the different development processes. Project
milestones are usually determined according to project goals and dictated roughly
in a top-down manner by the project manager, while a bottom-up schedule is
drafted by the systems engineer. Striking a balance between vision and reality is
seldom achieved in the first planning cycle. This iterative process requires multiple
discussions between the project manager and the systems engineer.

Procurement management requires a detailed listing of all requirements and
SOW as part of the subcontractor’s agreement. Systems engineers usually define
the requirements, while the statement of work is written jointly with the project
manager. The project manager is interested in minimizing scheduling and cost
factors; however, this is not always in line with the specifications as defined by the
systems engineer. Therefore, there must be dialogue between them about resource
limitations and compliance with essential requirements.

Project scope relates to deciding which work packages are incorporated into
the project, including the tasks necessary to handle each project issue. Scope is
derived from project requirements in a process initiated by the systems engineer,
while the document listing the project’s detailed work contents is usually initiated
by the project manager. Scope is also derived from the system’s architectural design,
which clearly defines what the project entails. Thus, scope is deeply related to each
system’s engineering process, including the number of tests to be conducted, which

460 S. Kordova et al.

development and testing tools will be developed, etc. In technology development
projects, the systems engineer leads the systems development process from a
technological perspective and plays a large part in defining the SOW and building
the work breakdown structure (WBS). The project’s scope has an impact on both
project resources and project success. Therefore, the project’s SOW is also a subject
for discussion between the two professionals.

Project cost is managed solely by the project manager. Nevertheless, preparing
a rational, accurate cost estimate must be carried out together with the systems
engineer, who is usually able to evaluate how much time/scope must be invested
in engineering development processes.

HR management involves both professionals in identifying the skills required
for the project (defining the professionals needed, etc.) and ongoing manpower
management. The level of management varies between the “small” circle (project
management team) and the “large” circle (the rest of the matrix). In large develop-
ment projects, the systems engineer is usually in charge of all aspects of the work
done by several additional systems engineers, under his/her direct management.

5.2 Joint Processes that Failed to Meet the Validity Criteria

Customer Relations Management According to most of the interviewees, project
managers usually play the major role in customer relations. Nevertheless, there are
many dialogues around technological issues (design reviews, customer acceptance
tests, etc.), in which systems engineers are at the forefront. Both professionals must
agree on the messages they want to convey to customers and decide who oversees
discussions of each specific subject.

Product Lifecycle Management Project managers are responsible for planning
and managing the product’s lifecycle. Systems engineers must consider lifecycle
cost requirements throughout the development period. Additional project team
members are usually involved in managing the project production, system deploy-
ment, and maintenance processes.

6 Conclusions and Recommendations

The current study focuses on project-related management methods and processes
from perspectives of the project managers and systems engineers. The main factors
influencing joint project management methods are personality clashes between the
professionals, their background and experience, natural inclinations (the systems
engineer towards performance and engineering and the project manager towards
budget/schedule considerations), and the project’s organizational structure. Factors
that have less of an impact are mutual trust and appreciation, the project’s

Project Managers and Systems Engineers, “Can two walk together, unless they. . . 461

organizational culture, power struggles related to project resources (managed by
project managers), the extent to which each professional interferes in the other’s
area of responsibility, and the ability to see eye-to-eye regarding project goals and
how to achieve them (“goal unification”).

In most projects, the two professionals cooperate out of a shared motivation
to meet project goals. However, when conflicts arise between the two, it has a
negative effect on meeting the project’s goals, primarily in the form of failing to
meet schedule/budget targets.

Our main recommendations proposed for successful joint project management
are coordinating responsibilities and having a clear delimitation of authority
between the two professionals before beginning work on the project; choosing
a project manager who has previous systems engineering/engineering experience
(if not, the project manager should receive training in engineering development
processes); strict adherence to ongoing dialogue between the two professionals;
resolving/avoiding conflicts through discussion and persuasion; and expanding the
overlap between project managers and systems engineers’ areas of responsibility.

The secondary recommendations are to motivate systems engineers to think
about management considerations; train project managers and systems engineers to
discuss relevant management interfaces; provide both professionals with mentoring;
and appoint suitable project managers and systems engineers.

This study was conducted solely in security development firms and does not
include any additional data about the projects (budget, scope, systems complexity,
development time, etc.). Therefore, additional studies should be conducted in
civilian development companies. These future studies should attempt to integrate
quantitative tools to examine the relationship between project data and level of joint
project management among systems engineers and project managers.

Acknowledgments The authors would like to thank the Gordon Center for Systems Engineering
at the Technion, Israel Institute of Technology, for their support of this study.

References

Confronto, E., M. Rossi, E. Rebentisch, J. Oehmen, and M. Pacenza. 2013. Survey Report:
Improving Integration of Program Management and Systems Engineering. Boston: INCOSE
& PMI.

Department of Defense. 2010. Defense Acquisition Guidebook. Defense Acquisition University.
https://www.dau.edu/tools/dag.

INCOSE, SE Handbook Working Group. 2011. Systems Engineering Handbook. San Diego:
International Council on Systems Engineering.

Koral Kordova, S., E. Katz, and M. Frank. 2018. Managing Development Projects – The
Partnership between Project Managers and Systems Engineers. Systems Engineering 22 (3).
https://doi.org/10.1002/sys.21474.

Lang, C., and M. Stratton. 1997. Project Management, Configuration Management and Systems
Engineering: What’s Needed Most for the Next Century? PMI.

https://www.dau.edu/tools/dag
http://dx.doi.org/10.1002/sys.21474

462 S. Kordova et al.

Langley, M., S. Robitaille, and J. Thomas. 2011. Toward a New Mindset: Bridging the Gap
Between Program Management and Systems Engineering. In PMI Global Congress Proceed-
ings. Dallas.

MIT-PMI-INCOSE. 2012. The Guide to Lean Enablers for Managing Engineering Programs. Joint
MIT-PMI-INCOSE community of practice on Lean in Program Management.

NASA. 2007a. NASA Systems Engineering Handbook. Washington, DC: NASA.
———. 2007b. NPR 7120.5, NASA Space Flight Program and Project Management Handbook.

Washington, DC: NASA.
Project Management Institute. 2013. A Guide to the Project Management Body of Knowledge. 5th

ed. Newton, PA.
Scott, E., S. Townsend, and E. Carlos Confronto. 2015. Collaboration Across Linked Disciplines:

Skills and Roles for Integrating Systems Engineering and Program Management. In 122nd
ASEE Annual Conference.

Sharon, A. 2010. A Unified Product and Project Lifecycle Model for Systems Engineering. HAIFA:
Technion.

Sharon, A., D. Weck, L. Oliver, and D. Dori. 2011. Project Management vs. Systems Engineering
Management: A Practitioners’ View on Integrating the Project and Product Domains. Systems
Engineering 14 (4): 427–440.

A Plan for Model Curation at the US
Army Armaments Center

Christina Jauregui and Mary A. Bone

Abstract Model curation is an explicit requirement under the first goal of the
Digital Engineering Strategy. Model curation is the active archival of quality
models. Model curation traces to digital and data curation; however, research in
this area is within its infancy. A literature search identified the three major sources
that are pioneering the field. This paper provides a highlighted overview of the
three pioneering sources for model curation. The US Army Combat Capabilities
Development Command CCDC) Armaments Center (AC) is prioritizing the trans-
formation to digital engineering through Model-Based Systems Engineering and the
Integrated Model-Based Engineering Environment and has begun to investigate how
to implement a model curation capability.

Keywords Model curation · Digital engineering · MBSE · Model · Centric
engineering

1 Introduction

The office of the Deputy Assistant Secretary of Defense (ODASD) for Systems
Engineering issued the Digital Engineering Strategy in June of 2018. Model curation
is an explicit requirement under the first goal, which is to implement the use
of models to enable enterprise and program decision-making. The Department
of Defense (DoD) encourages implementation of digital engineering as a means
of modernizing the current engineering practice to enhance the way technologies
evolve during the conceptual phase and minimize costly expenditures during
testing (Department of defense digital engineering strategy 2018). The US Army

C. Jauregui (�)
US Army Combat Capabilities Development Command – Armaments Center, Picatinny Arsenal,
NJ, USA
e-mail: christina.jauregui.civ@mail.mil

M. A. Bone
Stevens Institute of Technolgoy, Hoboken, NJ, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_39

463

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_39&domain=pdf
mailto:christina.jauregui.civ@mail.mil
https://doi.org/10.1007/978-3-030-82083-1_39

464 C. Jauregui and M. Bone

Combat Capabilities Development Command (CCDC) Armaments Center (AC) is
prioritizing the transformation to digital engineering and has begun to investigate
how to implement a model curation capability. Dullen et al. have emphasized a
need to develop capabilities that enable reuse of knowledge in engineering analyses
(Dullen et al. 2019) – model curation can address this need.

Tom McDermott et al. cite the importance of future research in model curation.
They indicate the need to develop a process that controls and manages quality
models to enable future reuse. Further, they indicate a need to define standards
for model metadata to enable model curation (McDermott et al. 2019). Stimpson
discusses the importance of using the right data, or else experiments can go wrong
(Stimpson 2019). This is a key principle to consider for model curation; there is
no sense in curating a “bad” model or “bad” data, as this will cause experiments
to be misrepresented, leading to the wrong answer and wasted time. There must be
emphasis placed on developing good criteria for selection, review, and validation
of the curated models. Along with this emphasis, a better understanding of what a
model is and what are the types of models must be developed and understood. The
term model as defined in (DoD 1996) is abstract, and model curation will require
explicit definitions of models and types of models (Dod modeling and simulation
(m&s) verification, validation, and accreditation (vv&a) number 500.61 1996).

The first step in this endeavor was to develop and document a literature search.
The second step was to develop a high-level procedure for AC model curation.
Section two provides a background on Digital Engineering at AC. Section three
presents some highlights from the literature review. Section four discusses high-
level plans to begin implementing model curation. The conclusion and future
research are in Section five.

2 Digital Engineering at Armaments Center

Digital transformation calls for product development to occur in a model-centric
environment. There is an opportunity to improve research and development at
Armaments Center (AC) through digital engineering. Two digital engineering
efforts applied at the AC are Model-Based Systems Engineering (MBSE) and
the Integrated Model-Based Engineering (iMBE) project. The Interoperability and
Integration Framework (IoIF) is a research effort focused on implementing semantic
web technologies.

2.1 MBSE at AC

The Systems Engineering Directorate has embarked on the path to implement
Model-Based Systems Engineering (MBSE). MBSE at AC is “a Systems Engineer-
ing approach that emphasizes the application of integrated structured processes and

A Plan for Model Curation at the US Army Armaments Center 465

data, visual modeling principles, and best practices to systems engineering activities
throughout the Systems Development Life Cycle. The Systems Engineering Model
is the product of MBSE, which includes:

– Requirements Models
– Behavioral Models
– Structural Models
– Logical, Physical
– Parametric Models
– Performance Models
– Item, System, Aggregate
– Technical Baseline

MBSE intends to replace or augment the document-centric approach practiced
by systems engineers in the past and to influence the future practice of systems
engineering” (Mbe/mbse/mbent/mbde definition and end states 2018).

The MBSE Subject Matter Expert (SME) committee is a cross-competency
team that discusses and implements improvements in AC modeling techniques and
current trends in the field of MBSE. The MBSE SME committee shares information
to the rest of the engineers through an internal online community forum. They have
developed products to enable MBSE at AC; these products include a SysML starter
model. The starter model elements are the AC template, schema domain, AC profile,
sample mortar model, and an SE process model.

2.2 iMBE at AC

Developing armaments systems require modeling for both traditional and nontradi-
tional engineering disciplines. At AC, although modeling is extremely advanced,
most information developed from models is shared through PowerPoint reports.
Transitioning from this document-centered approach to an integrated model-based
sharing approach will require a paradigm shift. The Integrated Model-Based Engi-
neering (iMBE) project is developing the software capability to enable integration
of models and the IPTs.

The below is an excerpt from the IMBE Implementation Plan (Integrated model
based engineering environment implementation plan 2019):

The integrated Model Based Engineering (iMBE) initiative will accelerate development of
increasingly complex and advanced armament technologies and products by deploying a
collaborative engineering environment that integrates a variety of commercial and in-house
developed software tools across the technology development lifecycle.

The iMBE Environment will be deployed using a phased approach to enable end-to-
end digital continuity through all phases of design and prototyping of AC technologies.
The iMBE approach to delivering digital continuity is through the integration of software
tools, data, and models across engineering domains at various levels of model fidelity, and
across multiple levels of abstraction. Such an environment will facilitate Cross-Functional

466 C. Jauregui and M. Bone

Teams (CFTs) with participatory design and optimization activities and advanced analytics.
Additionally, teams will be able to search, retrieve and reuse previous design and analysis
data. The iMBE initiative is in alignment with the Army Future Command’s (AFC) stated
goal of accelerating development and delivery of more innovative solutions to meet the
future needs of the Warfighter, as well as the DoD Digital Engineering Strategy.

The iMBE project is exploring how the transformation to digital engineering
impacts research and development at AC. There are multiple efforts deployed under
the iMBE umbrella – one is model curation. Another effort that falls under the iMBE
purview is the development of a digital thread schema. The intent of the digital
thread schema is to identify a definition for the enterprise digital thread at AC and
to provide a means for projects to establish a digital thread, similar to establishing a
baseline for each phase of research and development. Model curation would enable
the authority and accuracy of a digital thread.

2.3 InterOperability and Integration Framework (IOIF)

The InterOperability and Integration Framework (IoIF) is being researched as a
semantic web technology framework to enable digital thread capabilities (Bone et
al. 2018) at AC. The IoIF is envisioned to take element-level data from multiple
digital artifacts to share, reason, and capture the data. Due to usage of open-source
tools , IoIF has usage limitations on a secure government network. However, AC
recognizes the importance of exploring semantic web technologies and continues to
fund the development of the IoIF.

One key question that had been thought to be understood but was identified to
have diverging meanings from the IoIF research is, “What is a model?” In Table
2 a list of metadata that needs to be captured with each model is presented. This
metadata is relative to the model itself, so the boundaries of the model must be well
defined; thus, the list of metadata should be exhaustive in order to enable reuse.

Although an exhaustive metadata list is a requirement for model curation and it
is a good start, there is likely a better model-based approach than collecting lists of
data. The IoIF research has taken the perspective that capturing a digital thread as
the model may be more advantageous than just a single file in a specific tool format.
For example, in Cameo Systems Modeler SysML models can import and utilize
other SysML model data. Those imported models can also import model data from
other models and so on. The data in one model may not make sense or be helpful
without data from a model many imports away. Therefore, the data from one model
becomes metadata for another model. Creating these boundaries or threads of data
has been identified as important research for both curation and digital engineering
effort overall. The IoIF would have the capability to gather all the data elements,
from multiple tool models, to create a meaningful snapshot of the digital thread
model.

There are many open questions, but the IoIF research has exposed that the current
view of a model, which is usually defined by one file of some tool format, may be

A Plan for Model Curation at the US Army Armaments Center 467

inadequate to achieve the goals of digital engineering. Therefore, more research
needs to focus on identifying what a model is and metadata elements that support
that concept of a model. Semantic web technology-enabled frameworks like the IoIF
can capture data elements across multiple tools, which may be more useful to curate
and maintain than a plethora of individual files from tools.

3 Background: Model Curation Literature Review

The intent of the literature review was to identify a definition for model curation and
the processes used to apply model curation and to compare model curation to model
governance.

3.1 Curation

Using data curation methods for scientific and research purposes is not a novel idea;
however, in the transformation to a digital way of practice, curation methods are
being extended to accommodate digital data (Ball 2010). The Systems Engineering
Advancement Research Institute (SEARI) produced a literature review on model
curation and likened it to digital curation and museum curation (Rhodes Lucie
Reymondet & Ross 2016). The biomedical engineering discipline uses model
curation to promote shareability and reuse by the research community (Le Novere
et al. 2006; Walters 2009; Waltemath & Wolkenhauer 2016; Nickerson & et al.
2006). Palmer et al. used a data curation lifecycle approach to enable a means of
collecting and curating data from geobiology researchers at Yellowstone National
Park (Palmer & et al. 2013).

3.2 Definition of Model Curation

A literature review on the term “model curation” identifies very few sources that
distinguish a precise definition on the term. Model curation is a newer field of
research and is similar to both data curation and digital curation. Table 1 provides
definitions for model curation, digital curation, and data curation. There are words
bolded in each definition; the bolded terms are common across the definitions.

The definitions in Table 1 were synthesized to a definition used herein for model
curation, which is active archival of quality models. Active indicates continuous
enhancement of the models to keep them current and avoid obsolescence. Archival
indicates that the models have been prepared for preservation and are accessible to

468 C. Jauregui and M. Bone

Table 1 Literature on definitions relevant for model curation

Definitions Sources

“Model curation is the lifecycle
management, control, preservation and
active enhancement of models and
associated information to ensure value for
current and future use, as well as
repurposing beyond initial purpose and
context.”

Rhodes, D. H. (2018, November 19, 2018).
“Model Curation.” OMG MBSE Wiki.
Retrieved August 27, 2019., 2019. (Rhodes
2018a)

“Digital curation involves maintaining,
preserving and adding value to digital
research data throughout its lifecycle.”

Centre, D. C. (2004-2019). “DCC Model
Curation Lifecycle Model.” Retrieved
06/27/2019, 2019. (Data Curation Centre
2004)

Data Curation is “The activity of, managing
and promoting the use of data from its point
of creation, to ensure it is fit for
contemporary purpose and available for
discovery and re-use. For dynamic datasets,
this may mean continuous enrichment or
updating to keep it fit for purpose. Higher
levels of curation will also involve
maintaining links with annotation and with
other published materials.”

Macdonald, P. L. a. A. (2003). Data curation
for e-Science in the UK: an audit to establish
requirements for future curation and
provision. e-Science Curation Report. T. D. A.
C. Limited. 2 Wayside Court, Arlington Road,
Twickenham, TW1 2BQ - UK, The JISC
Committee for the Support of Research
(JCSR): 85. (Lord & Macdonald 2003)

a wide audience. The term “quality models” indicates that the curated models have
gone through an elaborate selection and review process to identify their validity and
context for future use.

3.3 Model Curation Pioneers

Donna Rhodes and her team at SEARI have been pioneers in the field of model
curation. During a workshop discussing model-centric engineering, the participants
indicated a major gap in modeling practice. The gap was the ability to develop,
manage, and maintain key models and their associated information to allow for
reuse. Thus, the research topic of model curation kicked off (Ross & Rhodes 2019).
SEARI has developed a lexicon for model curation which includes key terms,
such as Accession, Acquisition, Cataloging, and Composability (Rhodes 2018a).
Through their research, they have identified a need for a “chief model curator”
who governs the curated model collection and has deep knowledge of it (Rhodes
2018b; Rhodes 2019). They have also identified challenges to curating models such
as inclusion of legacy models and how they will be handled, potential duplicated
model efforts, trust and legitimacy of models, and model competency distributed
across individuals and organizations (Blackburn et al. 2018).

The Data Curation Centre (DCC) developed the data curation lifecycle, a
lifecycle management approach for data curation. There is a starting point (models

A Plan for Model Curation at the US Army Armaments Center 469

are conceptualized) and an ending point (models are disposed of). At the center of
the model, there is an indication that description information is associated to the
data, and community watch and participation are key inputs to the curation and
preservation process. The main steps in the process are create; appraise and select;
ingest; preservation action; store; access, use, and reuse; and transform. The DCC
curation lifecycle model is foundational for data curation and model curation (Data
Curation Centre 2004).

The Consultative Committee for Space Data Systems Secretariat published a
reference model for an open archival information system (OAIS) as a framework
for developing and maintaining preservation archival systems that store referenced
materials. The OAIS is developed for the National Aeronautics and Space Admin-
istration (NASA 2012), but it can be extended to fit other enterprises. The OAIS is
published as a standard by the International Organization for Standardization as ISO
14721:2003 and is considered to be the standard for creating and preserving digital
repositories. While the OAIS maintains standards for archival, it does not prescribe
how to validate models as part of the review and selection process.

Science Applications International Corporation (SAIC) is a well-known con-
tracting company, which has a major research focus on digital engineering and
the transformation that is required to achieve it. They developed a model curation
process based on a searchable repository to identify candidates for reuse when
developing architecture for new products. Users search the repository to see if they
can find a “model” or anything else that can address the tasker at hand, and then
there is a decision node for Yes or No. This process is similar to the DCC lifecycle
model which contains all the keywords for model curation like appraise, access, use,
reuse, transform, create, ingest, execute, etc. (Michael & Vinarcik 2019).

3.4 Comparison of Model Governance to Model Curation

Proponents of digital engineering liken model curation to model governance. There
are key similarities between the two such as control, validation, and oversight
(Federal Deposit Insurance Corporation 2005). Khatri and Brown say that data
governance considers “data as an asset,” which is also the case in model curation
where models are considered assets with business value. Governance is a practice
that allows for a derivation of business value from data assets (Khatri & Brown
2010).

The major difference between governance and curation is their intent. IT gover-
nance emphasizes accountability of IT and data and decision-making activities in
five domains: IT Principles, IT Architecture, IT Infrastructure Strategies, Business
Application Needs, and IT Investment and Prioritization. These IT characteristics
translate to data governance (Weill & Ross 2005). Khatri and Brown extend the
IT domains to data, with an emphasis on decisions made in the context of the
organizational purpose for the data (Khatri & Brown 2010). Whereas curation is

470 C. Jauregui and M. Bone

a process that injects quality, archival and active enhancement to data and models.
Governance is also missing the composability factor, which is that the models are
accessible and categorized in a way that enables a more meaningful understanding
of a subject than the model alone.

4 Model Curation at Armaments Center

The Systems Engineering Directorate is spearheading the initiation of model
curation at AC and the development of an internal digital library specifically housing
a curated model catalog. A purpose for curation is to reuse quality models to prevent
rework. These quality models have gone through an extensive validation, cleaning,
and preservation process to be elevated as enterprise assets in the digital collection.
As more digital information becomes available, there is a growing need to identify
the works that should be curated and create a knowledge repository. A curated digital
library will not only offer new employees a starting point, but it will also serve as a
knowledge base so work is not lost as projects terminate. A digital library is under
development to enable model curation at AC.

Initial meetings have generated a high-level procedure for AC model curation.
This effort is in its initial stage and will continue to be refined with more experience
and knowledge gained. The initial stage will attempt to understand the intricacies
of model curation for MBSE. The procedure will be peer reviewed, piloted, and
iterated several times prior to formal implementation. Upon formal implementation
of model curation for MBSE models, the scope will broaden to the unique
armaments engineering disciplines within the AC.

4.1 Model Curation Procedure

When developing the first iteration of the process, the SMEs were presented with
terms from the model curation lexicon developed by SEARI (Walters 2009). The
SMEs confuted the word acquisition immediately, as acquisition professionals for
the US Army; this word has a slightly different intention than the definition provided
in the lexicon. Since most of the work to be curated is developed under government
contracts or by government employees on official duty, the models do not have to be
acquired because they already belong to the government. As discussions ensued,
it became apparent that the procedure should leverage common terms; they are
depicted in Figure 1.

Figure 1 shows the high-level procedure map with the steps that one would
follow to perform model curation at AC. This is a draft procedure and will continue
to be enhanced as the competency for model curation is developed. The entry
criteria indicate that in order for the process to begin, the model identification and
planning for receipt of the model are completed. This is in contrast to the idea that

A Plan for Model Curation at the US Army Armaments Center 471

Fig. 1 Model curation procedure map

accessioning occurs in one step; the plan to receive the model and addressing the IP
and ownership must be developed prior to receiving the model. After finalizing the
preservation activities, the model is archived in the digital library, and the procedure
is exited.

Minimum required metadata to begin with for model curation at AC is listed in
Table 2.

The next step is to peer review and pilot the procedure. The Systems Engineering
Directorate will soon receive a reference architecture for an artillery system as a
result from a Lean Six Sigma Green Belt project. The reference architecture handoff
will be the first instance of piloting the model curation procedure.

The engineers within the Systems Engineering Directorate are amenable to stand-
ing up this capability because access to curated models will improve the systems
engineering competencies. Engineers have remarked that the most important benefit
of model curation is access to quality models that can be reused. Other identified
benefits are:

• Knowledge management
• Tools for teaching new employees
• Enable quicker turnaround of artifacts since the curated models serve as starting

points
• Accessibility of good examples
• Archive work that was developed for projects that are terminated
• Archive work that was developed for projects that are transitioned
• A means of storing work that was completed by employees before they leave the

organization
• Validated models to represent the digital thread for a system

472 C. Jauregui and M. Bone

Table 2 Metadata for model
curation

Model curation metadata

POC for model
Model owning IPT, directorate, division and branch
Model creator
Category of model
Type of model
Project/customer/model consumer
Project S&T years
Date published
Repository location
Software used
Software version
How to run the model
External files required and provided
Inputs to the model
Validated by and for what conditions: list validation info
Validation results
Accreditation results
Assumptions
Known limitations
Conditions or bounds of the model
Test data location

5 Conclusion and Future Work

The field of model curation is new, but the meaning of curation is extended from
other disciplines. Digital and data curation are two disciplines that technically align
with model curation. The top three sources of literature on data and model curation
are the Data Curation Centre (DCC), the Systems Engineering Advancement
Research Institute (SEARI), and the National Aeronautics and Space Administration
(NASA).

At Armaments Center (AC), the model curation procedure begins with the
process of identifying a selected model and its metadata; the model is assigned
to a collection; a review is performed to confirm its validity; and upon a favorable
review, it is preserved and presented in a digital library. Curated models undergo a
transformation to enable reuse by those who access the digital library and pull the
curated models. The curated models are enhanced as needed, to ensure they remain
current and usable.

As more models are identified for curation, continued iteration of the procedure
and development of the digital library are expected. The AC will continue to mature
the model curation competency by participating in peer-reviewed conferences
and publishing findings in peer-reviewed journals. The SEARI research is the
cornerstone of model curation, and this research will continue to be leveraged into
application at AC.

A Plan for Model Curation at the US Army Armaments Center 473

Future research will identify the role that reference architectures play. The intent
is to gain an understanding of what is required and how a reference architecture
minimizes rework and increases competency. As the model curation scope broadens
outside of MBSE, understanding of what a reference architecture looks like for each
type of model must be developed.

Perhaps a more important future research topic is defining “what” a model is
and defining its associated information. Being able to articulate and directly state
what constitutes a model and specify information associated with that model is a
key concept for future research. There is an assumption that model and therefore
the data in the model is a known defined “thing,” but this is not typically the case.
There are research questions that straddle the topic of model curation and MBSE in
general that will affect how models are curated:

• What constitutes a model in digital engineering, and what are the different types
of models that are of interest to digital engineering?

• What data and metadata is needed to describe/recreate each model?
• Is model data unique to each tool or data format?
• How does a tool get captured with the model so that the model can be useful?
• Can a set of guidelines be developed that allow a model to be expressed

independent of a tool?
• How to version control a model that could be made up of multiple models?

References

Alex Ball 2010. Review of the state of the art of the digital curation of research data. in
“(unpublished).

Blackburn, Mark R., Donna H. Rhodes, Mary A. Bone, David N. Cohen, and Jaime A. Guerrero.
2018. Transforming systems engineering through digital engineering. Journal of Defense
Modeling and Simulation: Applications, Methodoology Technology: 1–17.

Bone, Mark Blackburn Mary, Benjamin Kruse, John Dzielski, Thomas Hagedorn, and Ian Grosse.
2018. Toward an interoperability and integration framework to enable digital thread. Systems 6
(46): 12.

Data Curation Centre. 2004-2019, 06/27/2019. Dcc model curation lifecycle model.
(2018). Department of defense digital engineering strategy.
(1996). Dod modeling and simulation (m&s) verification, validation, and accreditation (vv&a)

number 500.61.
Shawn Dullen; Dinesh Verma; Mark Blackburn 2019. Review of research into the nature of

engineering and development rework: Need for a systems engineering framework for enabling
rapid prototyping and rapid fielding. presented at the 17th Annual Conference on Systems
Engineering Research (CSER).

Federal Deposit Insurance Corporation. 2005, 9/19/2019. Supervisory insights - compliance
examinations - model goveernance.

(2019). Integrated model based engineering environment implementation plan.
Khatri, Vijay, and Carol V. Brown. 2010. Designing data governance. Communications of the ACM

53 (1): 148–152.

474 C. Jauregui and M. Bone

Le Novere, Nicolas, et al. 2006. Biomodels database: A free, centralized database of curated,
published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids
Research, Oxford Academic- Oxford Journals 34: D689–D691.

Philip Lord and Alison Macdonald 2003. Data curation for e-science in the uk: An audit to
establish requirements for future curation and provision. In ”e-Science Curation Report,“
The JISC Committee for the Support of Research (JCSR), 2 Wayside Court, Arlington Road,
Twickenham, TW1 2BQ - UK2003.

(2018). Mbe/mbse/mbent/mbde definition and end states.
Paul Collopy Tom McDermott, Molly Nadolski, Christiaan Paredis 2019. The future exchange

of digital engineering data and models: An enterprise systems analysis. Presented at the 17th
Annual Conference on Systems Engineering Research.

P.E. Michael J. Vinarcik 2019. FESD, Hypermodeling discussion.
NASA. 2012. Recommendation for space data system practices_reference model for an open

archival information system (oais)
David Nickerson et. al. 2006, Toward a curated cellml model repository. In 28th IEEE EMBS

Annual International Conference, New York City, USA.
Carole L. Palmer et. al. 2013. Building a framework for site-based data curation. In American

Society for Information Science and Technology, Montreal, Quebec, Canada.
Donna H. Rhodes. 2018a, August 27, 2019. Model curation [omgwiki.org].
——— 2018b. Model curation.
——— 2019. Model curation requisite leadership and practice in digital engineering enterprises.

Conference on Systems Engineering.
Rhodes Lucie Reymondet, Donna H., and Adam M. Ross. 2016. Considerations for model curation

in model-centric systems engineering. IEEE 16.
Adam Ross and Jack Reid Donna H. Rhodes 2019. Interactive model-centric systems engineering

(imcse) phase 6 tech report.
Daniel E. Stimpson. (2019) So much data, so little time. Army ALT Magazine, Commentary.

Available: https://asc.army.mil/web/news-alt-jas19-so-much-data-so-little-time/
Waltemath, Dagmar, and Olaf Wolkenhauer. 2016. How modeling standards, software, and

initiatives support reproducibility in systems biology and systems medicine. IEEE Transactions
on Biomedical Engineering 63 (10): 1999–2006.

Walters, Tyler O. 2009. Data curation program development in u.S. Universities: The georgia
institute of technology example. The International Journal of Digital Curation 4 (3): 83–92.

Weill, Peter, and Jeanne Ross. 2005. A matrixed approach to designing it governance. MIT Sloan
Management Review.

http://omgwiki.org
https://asc.army.mil/web/news-alt-jas19-so-much-data-so-little-time/

Executable Modeling of a CubeSat-Based
Space Situational Awareness System

Mostafa Lutfi and Ricardo Valerdi

Abstract As systems grow in complexity, systems engineers have embraced
Model-Based Systems Engineering (MBSE) to tackle this complexity. The Sys-
tems Modeling Language (SysML) is the most commonly used language by the
systems engineers to implement MBSE. SysML is not highly capable of expressing
conceptual but not executable models. In order to perform requirements/behavior
verifications, systems engineers/designers mostly use separate simulation tools.
Hence, the efficiency of the systems engineering process is often reduced due
to the isolated and consecutive use of both SysML modeling tool and other
simulation tools, for example, defining simulation inputs to each simulation tool
separately. Hence, executable SysML is the next logical step towards achieving
true MBSE support for all systems engineering activities in the life cycle phases –
system requirements, analysis, design, implementation, integration, verification,
transition, validation, acceptance testing, training, and maintenance. Therefore,
various research efforts are being conducted to develop executable SysML modeling
approaches. This research develops a SysML Executable Modeling Methodology
(SEMM), which is demonstrated by modeling a CubeSat-based Space Situational
Awareness (SSA) system in SysML. The SysML SSA-CubeSat system model is
made executable by integrating with Commercial-Off-The-Shelf (COTS) simulation
software, namely, Systems Tool Kit (STK) and MATLAB, following the approaches
defined in the SEMM.

Keywords MBSE · SysML · Executable modeling · Space Situational
Awareness

M. Lutfi (�) · R. Valerdi
Systems and Industrial Engineering, The University of Arizona, Tucson, AZ, USA
e-mail: mostafalutfi@email.arizona.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_40

475

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_40&domain=pdf
mailto:mostafalutfi@email.arizona.edu
https://doi.org/10.1007/978-3-030-82083-1_40

476 M. Lutfi and R. Valerdi

1 Introduction

Model-Based Systems Engineering (MBSE) focuses on formalized application of
modeling to support systems engineering artifacts development from the conceptual
design phase throughout the end of the system of interest (SOI) life cycle (Hart
2015). SysML has emerged as the de facto standard system modeling language
for MBSE (Delligatti 2014). MBSE is advancing in a way that intends to combine
modeling with its natural next step simulation, to support the definition of system
requirements, system design, system analysis, and system verification and valida-
tion. Therefore, SysML needs to be an executable language in order to directly
support system’s life cycle activities (Nikolaidou et al. 2016). This research paper
presents a practical approach for enabling execution of models described in SysML.
Specifically, the authors modeled a SSA system using CubeSats in SysML and
integrated with MATLAB and Systems Tool Kit (A. G. Inc 2013). The approach
described in the methodology can be expanded to other simulation tools too.

2 Literature Review

2.1 Recent Research on SysML Executable Modeling

Tsadimas et al. presented the transformation procedure of Enterprise Information
System (EIS) SysML models to executable simulation code (Tsadimas et al. 2014).
The author used QVT as the transformation tool. The paper also demonstrated how
simulation results can be incorporated into the source SysML model using Model-
Driven Architecture (MDA). Robinson et al. introduced a new analysis framework
to develop executable and object-oriented SysML models through Python pro-
gramming interface (Balestrini-Robinson et al. 2015). The analysis framework
demonstrated a new procedure to enable rapid prototyping through the integration of
SysML model and existing diagramming languages. In order to lower the financial
implications, the framework used the following open-source software (OSS) –
Python, MongoDB, Django, MongoEngine, OpenMDAO, RDFLib, BerkelyDB,
and Django Rest Framework.

Chabibi et al. presented a taxonomy of links between SysML and various
simulation environments (Chabibi et al. 2015). The paper studied an integration
approach of several simulation environments into a common platform and enable
two-way transformation between those environments and SysML. Chabibi et
al. in another paper proposed an integration of SysML and Simulink utilizing
modern techniques of Model-Driven Engineering (MDE) (Chabibi et al. 2016).
The proposed integration approach consists of following steps – SysML modeling
of a system using SysML4Simulink profile, executable MATLAB code generation
from SysML source diagrams, and conducting simulation in order to verify system
behavior through Simulink.

Executable Modeling of a CubeSat-Based Space Situational Awareness System 477

Kotronis et al. developed a framework that supports continuous performance
assessment of Railway Transportation System (RTS) SysML model (Kotronis et
al. 2016). The authors used QVT for generation of executable simulation models
from the RTS SysML model. The executable simulation models are simulated in
Discrete Event System Specification (DEVS) simulators, and the simulation results
are incorporated into the RTS SysML model. Cawasji and Baras studied different
methods to perform integration of SysML and other simulation tools (Cawasji
and Baras 2018). Then, they proposed a new method by constructing a SysML
executable model of a two-room house. They used the Functional Mock-up Interface
(FMI) standard to integrate the SysML model with a Modelica model. The authors
exported the Modelica model as Functional Mock-up Unit (FMU). Then, they used
Simulink as an interface between the FMU and the SysML model. Finally, a tradeoff
analysis was run through SysML, in MATLAB, to demonstrate the decision-making
capability of the proposed approach for SysML executable modeling.

In order to reduce the gap between high-level modeling and evaluation of
system performance through simulation, Gauthier et al. proposed a Model-Driven
Engineering (MDE) tooled approach for automatic system requirements validation
(Gauthier et al. 2015). The OMG SysML-Modelica working group has officially
adopted this integration approach as the “SysML4Modelica” profile.

Karban et al. proposed a new Executable Systems Engineering Method (ESEM)
for automatic requirements verification (Karban et al. 2016). ESEM is based on
executable SysML modeling patterns and consists of structural, behavioral, and
parametric diagrams. The authors used MagicDraw as the SysML modeling tool and
Cameo Simulation Toolkit (CST) as the simulation engine. The authors developed
an eight-step method to follow for executable SysML modeling – formalize
requirements, specify design, characterize components, specify analysis context,
specify operational scenarios, specify configurations, run analysis, and evaluate
requirement satisfaction.

2.2 Space Situational Awareness

Space Situational Awareness is the ability to observe, understand, and predict the
physical location and behavior of natural and manmade objects in orbit around the
earth (Space Situational Awareness n.d.). Space traffic (both physical and infor-
mational) is increasing at an exponential rate. Since the start of space exploration
in 1957, about 5500 rockets have been launched into earth orbit, resulting in
approximately 5000 satellites and 23,000 debris still in space (esa n.d.). SSA could
deliver knowledge of potential threats posed to both space assets and Earth by
adversaries and environments, including space weather, space debris, uncontrolled
spacecrafts, and space weapons (Gasparini and Miranda 2010; Kennewell and Vo
2013).

478 M. Lutfi and R. Valerdi

3 SysML Executable Modeling Methodology

SysML Models can be made executable by enabling integration of COTS simulation
software through scripting languages supported by the MBSE tool. For example,
Cameo Systems Modeler by Nomagic supports the following scripting languages –
JavaScript, Groovy, Ruby, MATLAB, Python, and BeanShell (N. M. Inc. 2020).
So, these scripting languages can take input from the SysML model and return the
output/result from the integrated simulation tool into the model (Fig. 1).

In this research paper, CSM with Cameo Simulation Toolkit (CST) plug-in from
Nomagic was used to create the SysML model. Moreover, MATLAB and Systems
Tool Kit (STK) were two other COTS simulation tools being integrated with the
system model to make it executable (A. G. Inc 2013). CST is a plug-in attached
to the CSM in order to provide extendable model execution framework based on
OMG fUML standards. fUML stands for Foundational Subset for Executable UML
Models (Seidewitz and Tatibouet 2015). STK is a physics-based 3D modeling,
simulation, and visualization tool used by engineers, space mission analysts, space
operators, and decision-makers in order to model and simulate complex land, sea,
air, or space systems (A. G. Inc 2013). The following steps describe the procedure
to implement the SEMM for any system of interest (SOI). For this research paper,
CubeSat-SSA system has been chosen as the SOI.

Model Organization The model is organized by the package names according to
the four pillars of SysML (Requirements, Structure, Behavior, and Parametric).
For this research paper, Parametrics package was excluded. SysML Requirements
diagram falls under Requirements package. SysML Block Definition Diagram and
SysML Internal Block Diagram reside inside Structure package. All the behavior
diagrams (SysML Use Case, SysML Activity Diagram, and SysML State Machine
Diagram) used in the model are being placed inside Behavior package. Further
package decomposition was used for organization of the model elements inside
these three major packages (Requirements, Structure, and Behavior) (Fig. 2).

Defining System Requirements/Use Cases/Concept of Operations (ConOps) The
research paper assumed preliminary stakeholder analysis and customer require-
ments identification already being conducted to produce the following operational
requirements for the CubeSat-SSA system (Fig. 3). The OpReq-03 has been tested
for automatic verification later in the paper. Use case diagram is drawn with the aid

Fig. 1 SysML executable modeling framework

Executable Modeling of a CubeSat-Based Space Situational Awareness System 479

Fig. 2 Model containment tree showing package

Fig. 3 Operational requirements for CubeSat-SSA system

of SysML Use Case diagram (Fig. 4). SysML State Machine Diagram enabled the
creation of Concept of Operations in the model (Fig. 4).

Modeling System Architecture (Physical)/Internal Structure/Subsystem Communi-
cation SysML Block Definition Diagram was used to model Physical Architec-
ture of the CubeSat-SSA system. Moreover, the physical architecture leveraged
INCOSE’s CubeSat Reference Model to represent standard CubeSat components
and subsystems (Kaslow et al. 2018). SSA Domain is comprised of Artificial Space

480 M. Lutfi and R. Valerdi

Fig. 4 (a) CubeSat-SSA system use cases (left); (b) concept of operations (right)

Fig. 5 (a) SSA Domain (top left); (b) CubeSat-SSA System Architecture (top right); (c) Space
Segment (bottom left); (d) SSA Mission Payload (bottom right)

Objects, Natural Space Objects, Orbital Debris, and Space Weather. CubeSat-SSA
System Architecture falls under Artificial Space Objects. CubeSat-SSA System
Architecture consists of Space Segment, SSA Command and Data Centre, Com-
mand and Data Centre Services, Transport, Launch and Deployment Services, and
GPS. Space Segment and SSA Command and Data Centre were further decomposed
into subsystems (Fig. 5).

Integration with the COTS Analysis/Simulation Tools After defining the system
context and corresponding behaviors for each of the scenario to be simulated, next
step was to integrate the COTS tools (MATLAB and STK) with those behaviors.
An activity diagram consists of different types of action elements. This research

Executable Modeling of a CubeSat-Based Space Situational Awareness System 481

paper used CSM’s Opaque Action, Read Structural Feature Action, and Read
Self Action to facilitate the integration process. Opaque Action facilitated the
integration of MATLAB script into CSM. CSM does not allow integration of
Systems Tool Kit (STK), which is a widely used space mission analysis tool. STK
was run from CSM via MATLAB scripts. STK and MATLAB interoperate with
each other through STK’s COM interface. STK_Relevance’s classifier behavior
used a MATLAB function script, which automated and modified the SSA relevance
function defined in a previous research. In that research work, authors used SSA
relevance measures of effectiveness for comparing SSA system architectures using
a network of CubeSats (Chandra et al. 2018). However, the authors were forced
to run the MATLAB script independently due to the non-executable nature of the
model they defined.

Illustrative Example Scenarios The first scenario utilizes co-simulation in STK
to visualize the scenario and calculate the results. In this scenario, an observation
satellite (CubeSat) tracks ten unknown objects. A pointing sensor is attached to the
observation satellite, namely, ADSLSat. Random creation of the unknown objects
is based on the following assumptions – radius of earth is 6371 km, low earth orbit
ranges from 100 to 2000 km, minimum semimajor axis is 6471 km, and maximum
semimajor axis is 8371 km. The scenario returns the access values (access start
times and access stop times) for each of the unknown object. The scenario can be
run/reset/closed solely from SysML model without opening the STK application.
SysML state machine diagram perfectly worked to create the scenario in STK by
a systematic process with signals and triggers. For example, when the “Access
Computation” state is running in CST, STK 3D model sends all the access data
to the CST console in real time (Fig. 6). Each state was integrated with activity
diagram which defines the MATLAB script.

In the second scenario, SSA Relevance function is simulated in MATLAB taking
“number of CubeSats” as input (through read structural feature action in the activity
diagram) from the CubeSat-SSA SysML model (Fig. 7). Value properties were
added to the system context in order to provide input and accept output from
MATLAB tool (Fig. 8). Relevance_percentage value was not populated initially
because it would be populated by the simulation result of an external MATLAB
script. Moreover, for simplicity the number of mesh layers (3), mesh resolution
(5 degrees), analysis period (30 days), orbit period (1 day), and time step (1 day)
for analysis were kept as constant. Moreover, inertial angle, altitude, camera line of
sight, and camera FOV were generated randomly.

After the simulation finishes, a MATLAB plot showing SSA relevance is
generated, and SSA relevance percentage is returned to the CubeSat-SSA system
model through Opaque Action in the activity diagram. The Operation Requirement-
03 states that the SSA system shall provide equal or greater than 99% SSA
Relevance. Based on the relevance percentage value property, the OpReq-03 was
automatically verified (Fig. 8). Satisfy relationship exists between the OpReq-
03 and SSA Relevance block (Fig. 3). When the “relevance_percantage” value
property automatically populated, it check whether it satisfies the requirement

482 M. Lutfi and R. Valerdi

Fig. 6 Synchronization of SysML state machine diagram with STK for Scenario 1

Fig. 7 Interaction between CSM and MATLAB for Scenario 2

Fig. 8 (a) Console panel showing requirements not satisfied (top), (b) red color indicating
requirement was not satisfied

specified value or not (Fig. 8). The following table summarizes the key Scenario
1 and 2 parameters (Table 1).

Executable Modeling of a CubeSat-Based Space Situational Awareness System 483

Table 1 Data exchange between integrated simulation tool and SysML model

Scenario no. Integrated simulation tool Simulation input
Simulation results to
SysML model

1 STK Space object properties Access between objects
2 MATLAB Number of CubeSats Relevance percentage

4 Discussion

The above section demonstrates the benefits of executable modeling instead of mod-
eling for communication purpose. Scenario 1 demonstrated how to create/run/resent
a STK scenario inside the SysML CubeSat-SSA system model. Moreover, access
values from a known satellite to a number of unknown objects were returned
to the system model automatically. In Scenario 2, a number of CubeSats were
fed into MATLAB simulation from the SysML CubeSat-SSA system model and
simulation result, i.e., relevance percentage was returned to the model in order to
verify a requirement. So, different CubeSat-SSA Architecture based on the number
of CubeSats network can be evaluated from the SysML CubeSat-SSA system model.
It was apparent that some of the SysML diagrams were not executable in nature that
may change when SysML v2 will be implemented. There were some lag between
the CST simulation and STK/MATLAB simulation scenario. Moreover, CSM does
not support all data types as input.

5 Conclusion

The purpose of the SysML model was to demonstrate how executable modeling
could incorporate the systems engineering artifacts, namely, system design (System
Architecture, ConOps, Use Case, and Requirements), analysis/simulation, and
requirements verification into the model itself. Hence, the user does not need to
create separate simulation parameters into a separate software as that software
can be run from SysML model with the capability of defining/exchanging all the
simulation parameters. Hence, SysML models alone will be sufficient for system
behavior verifications. Further work needs to be done to make the integration of
different COTS tools from a variety of domain with the SysML models to achieve
the true purpose of MBSE.

References

Balestrini-Robinson, S., D.F. Freeman, and D.C. Browne. 2015. An Object-oriented and Exe-
cutable SysML Framework for Rapid Model Development. Procedia Computer Science 44:
423–432. https://doi.org/10.1016/j.procs.2015.03.062.

http://dx.doi.org/10.1016/j.procs.2015.03.062

484 M. Lutfi and R. Valerdi

Cawasji, K.A., and J.S. Baras. 2018. SysML Executable Model of an Energy-Efficient House and
Trade-Off Analysis. IEEE International Systems Engineering Symposium (ISSE) 2018: 1–8.
https://doi.org/10.1109/SysEng.2018.8544402.

Chabibi, B., A. Anwar, and M. Nassar. 2015. Towards an alignment of SysML and simulation
tools. In 2015 IEEE/ACS 12th International Conference of Computer Systems and Applications
(AICCSA), 1–6. https://doi.org/10.1109/AICCSA.2015.7507216.

Chabibi, B., A. Douche, A. Anwar, and M. Nassar. 2016. Integrating SysML with Simulation Envi-
ronments (Simulink) by Model Transformation Approach. In 2016 IEEE 25th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE),
148–150. https://doi.org/10.1109/WETICE.2016.39.

Chandra, A., Lutfi, M., & Gross, D. C. (2018). Leveraging the Emerging CubeSat Reference Model
for Space Situational Awareness.

Delligatti, L. (2014). SysML Distilled: A Brief Guide to the Systems Modeling Language. Pearson
Education.

esa. n.d. Space debris by the numbers. European Space Agency. Retrieved August
3, 2019, from https://www.esa.int/Our_Activities/Space_Safety/Space_Debris/
Space_debris_by_the_numbers

Gasparini, G., and V. Miranda. 2010. Space situational awareness: An overview. In The Fair and
Responsible Use of Space: An International Perspective, ed. W. Rathgeber, K.-U. Schrogl, and
R.A. Williamson, 73–87. Vienna: Springer. https://doi.org/10.1007/978-3-211-99653-9_7.

Gauthier, J.-M., F. Bouquet, A. Hammad, and F. Peureux. 2015. Tooled Process for Early
Validation of SysML Models Using Modelica Simulation. FSEN. https://doi.org/10.1007/978-
3-319-24644-4_16.

Hart, L. 2015. Introduction to Model-Based System Engineering (MBSE) and SysML. 43.
Inc, A. G. 2013, July 24. Bringing in External Data to Model Space Objects in STK. https://

vimeo.com/70964608
Inc, N. M. n.d.. Cameo Systems Modeler. Retrieved June 19, 2020, from https://

www.nomagic.com/products/cameo-systems-modeler
Karban, R., N. Jankevičius, and M. Elaasar. 2016. ESEM: Automated Systems Analysis using

Executable SysML Modeling Patterns. INCOSE International Symposium 26 (1): 1–24. https:/
/doi.org/10.1002/j.2334-5837.2016.00142.x.

Kaslow, D., B. Ayres, P.T. Cahill, L. Hart, A.G. Levi, and C. Croney. 2018, September 17.
Developing an MBSE CubeSat Reference Model – Interim Status #4. 2018 AIAA SPACE
and Astronautics Forum and Exposition. 2018 AIAA SPACE and Astronautics Forum and
Exposition, Orlando, FL. https://doi.org/10.2514/6.2018-5328.

Kennewell, J.A., and B. Vo. 2013. An overview of space situational awareness. In Proceedings of
the 16th International Conference on Information Fusion, 1029–1036.

Kotronis, C., A. Tsadimas, G.-D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopou-
los. 2016. Simulating SysML transportation models. In 2016 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), 001674–001679. https://doi.org/10.1109/
SMC.2016.7844478.

Nikolaidou, M., G.-D. Kapos, A. Tsadimas, V. Dalakas, and D. Anagnostopoulos 2016. Challenges
in SysML Model Simulation.

Seidewitz, E., and J. Tatibouet 2015. Tool Paper: Combining Alf and UML in Modeling Tools -
An Example with Papyrus.

Space Situational Awareness. n.d. Retrieved August 4, 2019, from https://
www.spaceacademy.net.au/intell/ssa.htm

Tsadimas, A., G.-D. Kapos, V. Dalakas, M. Nikolaidou, and D. Anagnostopoulos. 2014. Integrating
simulation capabilities into SysML for enterprise information system design. In 2014 9th
International Conference on System of Systems Engineering (SOSE), 272–277.

http://dx.doi.org/10.1109/SysEng.2018.8544402
http://dx.doi.org/10.1109/AICCSA.2015.7507216
http://dx.doi.org/10.1109/WETICE.2016.39
https://www.esa.int/Our_Activities/Space_Safety/Space_Debris/Space_debris_by_the_numbers
http://dx.doi.org/10.1007/978-3-211-99653-9_7
http://dx.doi.org/10.1007/978-3-319-24644-4_16
https://vimeo.com/70964608
https://www.nomagic.com/products/cameo-systems-modeler
http://dx.doi.org/10.1002/j.2334-5837.2016.00142.x
http://dx.doi.org/10.2514/6.2018-5328
http://dx.doi.org/10.1109/SMC.2016.7844478
https://www.spaceacademy.net.au/intell/ssa.htm

Comparing Weighting Strategies for
SME-Based Manufacturability
Assessment Scoring

Emily S. Wall, Christina H. Rinaudo, and R. Cody Salter

Abstract Manufacturability involves many different influence factors from product
design and geometry to supply chain and ergonomics. Many software packages
are available for product assessments; however a gap in the available software
packages was discovered. The lack of a software that looked at both product
design and the design of the process, along with other variables that affect the total
manufacturability, was identified. From this research, the MAKE tool was created;
however how to score and weigh each assessed part of a product was still under
investigation. This paper outlines a comparison between two proposed weighting
methods for a manufacturability assessment. The first was the topic of a 2019 CSER
paper describing a weighting method conducted by SME inputs and counting risk
concerns and high scores. The second method, which is introduced in this paper,
uses a value curve method to assign weights to each aspect of manufacturability.
A case study is used to illustrate each method, and the results are compared and
graphically displayed to magnify similarities and differences between methods
along with conclusions and future research areas.

Keywords Weighting · Manufacturability · Scoring · Value curves

1 Introduction

Previous research has defined manufacturability as the ease in which a product
can be produced, delivered, and effectively utilized in its intended environment
(McCall et al. 2018). Manufacturability, as defined in this research, goes beyond
the focus of product geometry design and includes manufacturing process design

E. S. Wall (�)
Mississippi State University, Starkville, MS, USA
e-mail: ewall@cavse.msstate.edu

C. H. Rinaudo · R. C. Salter
U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_41

485

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_41&domain=pdf
mailto:ewall@cavse.msstate.edu
https://doi.org/10.1007/978-3-030-82083-1_41

486 E. S. Wall et al.

Fig. 1 Manufacturability
interaction matrix (MIM)

issues, supply chain concerns, and personnel issues such as labor and ergonomic
concerns. The research team identified a gap in the current software programs that
analyzed products for manufacturing and determined that a tool was needed that
not only investigated cost and design features but other factors that directly affect
the manufacturability (Shi et al. 2018; Shukor and Axinte 2009; Andersson et al.
2014). When assessing manufacturability, two primary categories emerge as areas
of focus: aspects of design (AD) and aspects of manufacturing (AM). Aspects of
design include material, product, manufacturing information, and geometry, while
aspects of manufacturing consider process, supply chain, quality, capital tooling and
equipment, labor, environment/health/safety/ergonomics, and capacity/scalability
(McCall et al. 2018). Previous research developed a manufacturability interaction
matrix (MIM) (Fig. 1). The three aspects of design and seven aspects of manu-
facturing create a scoring matrix that is the criteria used to assign rating scores to
product components (Fig. 1).

In the previous research, subject matter experts (SMEs) provided an individual
manufacturability assessment of the product under review. The assessment includes
assigning a risk score (between 1 and 10) from Fig. 2 for each of the interaction’s
categories in Fig.1.

This research compares two weighting strategies for manufacturability assess-
ment score generation using SME input. The first method weighs components by
tallying poor scores and risk concerns (Wall et al. 2019), while the second method
develops component weights using the swing weight matrix (Parnell and Trainor
2009).

Comparing Weighting Strategies for SME-Based Manufacturability Assessment Scoring 487

Fig. 2 Subject matter expert scoring guidelines

1.1 Value Modeling and Weighting Background

Value models could be used to aid with making informed decisions and allow for
transparency in the decision-making process. Value modeling is a method for the
determination of “how well candidate solutions attain stakeholder value” (Trainor
and Parnell 2011). Quantitative value models represent a set of “functions, weights,
and mathematical equations that are used to evaluate candidate solutions” (Trainor
and Parnell 2011). Value model development includes determining scaling factors
which help to “quantify the trade-offs between value measures” (Parnell and Trainor
2009).

Scaling factors indicate the importance of each value measure relative to all other
value measures. Although many techniques exist for determining scaling factors,
this research focuses on the use of the swing weight matrix methodology. The
swing weight matrix is a technique for understanding the importance of each value
measure and how impact changes as the value measure swings through its acceptable
range (Parnell and Trainor 2009; Trainor and Parnell 2011). The swing weight
matrix can consist of a 3 × 3 grid with categories of “Variation in measure range”
(High, Medium, and Low) and “Level of importance of the value measure” (Very
Important, Important, and Less Important) (Trainor and Parnell 2011).

2 Weighting Strategy Background

2.1 SME-Based Normalized Weighting Strategy

The previous SME-based weighting strategy process included the assumption that
SMEs will give red scores (High Impact of Interaction on Manufacturability) and

488 E. S. Wall et al.

Fig. 3 AIAG Rule of Thumb Scale with Scoring Scale (“Measurement Systems Analysis,” 2010)

more concerns to high-risk interactions and thus drive the weight given to each AM
category. The research team realizes that this assumption may not always be true
and that SME response will vary. For each AM, the tally of concerns and red scores
for an AM category is evaluated against the sum of all other AM tallies to arrive at
a percentage of the total number of concerns and red scores that fall in each AM
category. This percentage, which must correspond back to the rating scale (Figs.
1 and 2) to determine a weight, is then fitted to the rating scale (Fig. 3). These
weights are then multiplied by their corresponding averages of the AM for both
assemblies and components. Those final AM-weighted averages are then combined
to result in a final score. This score is normalized using a minmax normalization
equation of the new weighted scores to linearly transform the minimum and
maximum values to map to 0 and 1 score, respectively. By accomplishing the
weighting programmatically instead of manually, additional involvement of the
SME is avoided, and SME subjectivity is minimized.

2.2 SME-Based Swing Weight Matrix: SME Weighting
Methodology

While the previous research method utilized SME information to develop a nor-
malized weighting, the researchers investigated using the swing weight matrix
methodology in order to implement a weighting strategy accepted throughout the
systems engineering community. The swing weight matrix applies a weight to the
aspects of manufacturability average across all parts and assemblies assessed.

In order to transfer the previously generated SME ratings into the swing weight
matrix methodology, the seven aspects of manufacturability are evaluated against
the level of importance of the value measure and the variation in the measure
range. The researchers first analyzed the range of SME raw scores across each
aspect of manufacturability. This information was used to determine the variation

Comparing Weighting Strategies for SME-Based Manufacturability Assessment Scoring 489

Level of importance of the value measure
Very Important Important Less Important

V
ar

ia
tio

n
in

 m
ea

su
re

ra

ng
e

High
Quality, Process

f1 = 9
Capability/
Scalability

f3 = 6
f6 = 5

Medium f2 = 8
Capital Tooling &

Equipment
f5 = 4

EHS & Ergonomics
f8 = 2

Low f4 = 7 f7 = 3
Labor,

Supply Chain
f9 = 1

Fig. 4 Swing weight matrix for aspects of manufacturing (AM)

in measure range category (high, medium, low) for the AM swing weight matrix
assignments. For example, the AM aspects that displayed the highest range value
from their given scores were categorized as “high.” In order to determine the level
of importance of the value measure, the researchers used a short survey to gather
from the SMEs which AMs they felt were most important or carried the highest risk
in the manufacturing of the product. The survey results allowed the SMEs to rank the
aspects of manufacturability by importance to their individual industry and product.
Using the two rankings, the seven AMs are applied to the swing weighting matrix
that has already had a non-normalized swing weight, between 1 and 9, assigned to
each section (Fig. 4).

These weights are then applied to the corresponding aspect of manufacturability
raw/average score and multiplied to result in a non-normalized weighted score. The
seven AM scores are then averaged and normalized in order to develop a final
product score rating score between 0 and 10.

3 Case Study Results

The results of using the case study data from the previous 2019 conference paper
“Development of a weighting strategy for a manufacturability assessment” (Wall
et al. 2019) research reveal that the swing weight matrix-based weighting strategy
generated a higher final score overall than the normalized weighting strategy (Figs.
5 and 6). A higher final score indicates a higher level of concern for the overall
manufacturability of the product. By using the range of scores given across all parts
assessed and the aspect of manufacturing importance ranking survey, the weights
are applied to the scores to amplify risk areas that would otherwise not be as visible
using a non-weighting system. The research team has been aware of the need for
a logical application of weights to the results and felt that using the unweighted
final score did not adequately tell the whole story. A positive finding of the final
case study results shows that the weights given on both methods were applied in
generally the same areas and with the same amount of intensity. This indicated to

490 E. S. Wall et al.

Comparison Case Study: Product A
Swing
Weight
method

Assemblies Components Normalized
SME-based
method

Assemblies Components Non-
Weighted
method

Assemblies Components

Process 10 8.7 Process 10 5.4 Process 3.2 1.4
Quality 7.6 10 Quality 6.2 10 Quality 2.4 1.6
Supply
Chain

0.1 0.2 Supply
Chain

0.1 1.4 Supply
Chain

1 1.3

CT&E 3.8 2.9 CT&E 1.9 1.2 CT&E 2.8 1.2
Labor 0.1 0.2 Labor 0.1 0.1 Labor 1 1.2
EHS &
Ergo.

1.3 1.1 EHS &
Ergo.

1.5 0.1 EHS &
Ergo

2.3 1.2

Cap.
Scal.

5.5 7.2 Cap. Scal. 1.7 9.3 Cap.
Scal.

2.7 1.8

Final Score 4.19 Final Score 3.50 Final Score 1.80

Fig. 5 Case study results

0

0.2

0.4

0.6

0.8

1

Process Quality Supply Chain Capital
Equipment
and Tooling

labor EHS and
Ergonomics

Capability
and

Scalability

Non-Weighted Method

0

0.2

0.4

0.6

0.8

1

Process Quality Supply Chain Capital
Equipment
and Tooling

labor EHS and
Ergonomics

Capability
and

Scalability

Normalized SME-based Method

0

0.2

0.4

0.6

0.8

1

Process Quality Supply Chain Capital
Equipment
and Tooling

labor EHS and
Ergonomics

Capability
and

Scalability

Swing Weight Method

Fig. 6 Case study results – AM scores by method

the research team that the use of the swing weight method accurately placed weights
on the same aspects of manufacturability as dictated by the assessment results,
both scores and SME given concerns. Even though the final results between the
swing weight method and the normalized SME-based method were very similar, it
is unexpected that the swing weight method resulted in a higher final score. Initial
expected results from the research team suggested that, because of SME biases,
the SME-based method would most likely assign harsher weights, thus resulting in
higher final scores. The results show the opposite and indicate to the research team
that using SME-based judgments for weighting is not a reliable method and that the

Comparing Weighting Strategies for SME-Based Manufacturability Assessment Scoring 491

swing weight method adequately assigns weights where emphasis is needed but still
is based indirectly on SME inputs within the assessment process by a calculated
and assigned, well-known process using a swing weight matrix. Figure 6 breaks
down the normalized final scores for each aspect of manufacturability and displays
them via bar graphs. For supply chain and labor specifically, the application of
weights affects the overall averaged final score by almost negligible values on the
chart. This visualization is not meant to indicate that when weights were applied,
supply chain and labor scores were deemed unimportant; rather this shows that
overall these two aspects of manufacturability did not affect the overall final score of
manufacturability and had less variation in scores and concerns when compared to
other areas such as process and quality. The weights are meant to allow for problem
areas of a product to appropriately influence the final manufacturability score and
not allow other “high-scoring” areas to drown out key issues when calculating final
scores.

4 Conclusions and Future Work

Using the swing weight matrix method for SME-based manufacturability assess-
ments provides the researchers with the ability to implement a systems engineering
accepted weighting strategy methodology and compare the effects of the weights
with other published methods. Although the final score generated using the swing
weight matrix resulted in a higher final score than in previous research, additional
testing and case study analysis are needed to further investigate the feasibility
of using this methodology in future manufacturability assessments. Overall, the
swing weight method achieves two of the research goals: (1) reduce the SME
interaction in applying weights and (2) highlight risk areas not displayed in the
non-weighted method. Previous concerns related to the possibility of a zero or one
range factor resulting from common red scores in an interaction negatively affecting
the weighting score were addressed. These concerns are part of future research
to be investigated, and if the case of the range resulting in the AM ranking being
lower, the consistent red scores would already indicate risks, and thus a weighting
to indicate risks would not be needed due to the high-risk scores already assigned.
Future research could investigate additional case studies to provide the research
team with further insight into the most appropriate weighting methodology for the
manufacturability assessment.

Acknowledgments This material is based upon work performed under Contract No. W912HZ-
17-C-0018, with Mississippi State University. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors and do not necessarily reflect the
views of the US Army Engineer Research and Development Center. Disclaimer: Reference herein
to any specific commercial company, product, process, or service by trade name, trademark, man-
ufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the US government or the Department of the Army (DOA). The opinions of the

492 E. S. Wall et al.

authors expressed herein do not necessarily state or reflect those of the US government or the DOA
and shall not be used for advertising or product endorsement purposes.

References

Andersson, F., A. Hagqvist, E. Sundin, and M. Björkman. 2014. Design for manufacturing of
composite structures for commercial aircraft-The development of a DFM strategy at SAAB
aerostructures. Procedia CIRP. https://doi.org/10.1016/j.procir.2014.02.053.

McCall, T., L. Dalton, S. Fuller, N. Watson, E. Wall, B. Smith, et al. 2018. Developments of the
Manufacturability Assessment Knowledge-based Evaluation (MAKE) and Application of Case
Studies. Vicksburg: Technical Report for Engineering Research and Development Center.

Measurement Systems Analysis. 2010. Automotive Industry Action Group (AIAG), 4th, 78.
Parnell, G.S., and T.E. Trainor. 2009. Using the swing weight matrix to weight multiple objectives.

19th Annual International Symposium of the International Council on Systems Engineering,
INCOSE 2009 1 (July 2018): 283–298. https://doi.org/10.1002/j.2334-5837.2009.tb00949.x.

Shi, Y., Y. Zhang, S. Baek, W. De Backer, and R. Harik. 2018. Manufacturability analysis for
additive manufacturing using a novel feature recognition technique. Computer-Aided Design
and Applications 15 (6): 941–952. https://doi.org/10.1080/16864360.2018.1462574.

Shukor, S.A., and D.A. Axinte. 2009. Manufacturability analysis system: Issues and future trends.
International Journal of Production Research 47 (5): 1369–1390. https://doi.org/10.1080/
00207540701589398.

Trainor, T., and G.S. Parnell. 2011. Problem Definition. In Decision making in systems engineering
and management, ed. G.S. Parnell, P.J. Driscoll, and D.L. Henderson, 2nd ed., 297–352. Wiley.

Wall, E., B. Smith, S. Vick, N. Watson, and T. McCall. 2019. Development of a weighting strategy
for a manufacturability assessment. Procedia Computer Science 153: 309–316. https://doi.org/
10.1016/j.procs.2019.05.084.

http://dx.doi.org/10.1016/j.procir.2014.02.053
http://dx.doi.org/10.1002/j.2334-5837.2009.tb00949.x
http://dx.doi.org/10.1080/16864360.2018.1462574
http://dx.doi.org/10.1080/00207540701589398
http://dx.doi.org/10.1016/j.procs.2019.05.084

A Framework for Using the MAKE
Methodology and Tool for Objective
Manufacturability Decision Analysis

Sara C. Fuller, Tonya G. McCall, Emily S. Wall, Terril C. Falls,
Christina H. Rinaudo, and Randy K. Buchanan

Abstract The objective of the proposed research involves the challenge of devel-
oping a methodology and tool to assess the manufacturability of conceptual designs
at Milestone A, where minimal system design information is available. From a
practical standpoint, the idea of utilizing a subject matter expert SME) as a basis
for judgment on a design’s manufacturability early in the design process lacks fea-
sibility due to the inability to efficiently and effectively evaluate a large tradespace
of unique design alternatives. The practice of Design for Manufacturing (DFM)
analysis typically involves having access to design geometry and specifications with
some consideration of the manufacturing processes. However, in the conceptual
stage, the challenge involves assessing manufacturability based on a significant
number of unknown parameters and doing so in a manner which is nonsubjective.
Furthermore, evaluation of early stage product designs has significant influence on
program cost. So, how can programs realize the impact of design options that may
influence manufacturability and relate this back to a common frame of reference
(i.e., cost, schedule, risk)? A research challenge includes determining how to
harness the knowledge that is used to determine manufacturability from both factual
and heuristic-based approaches, which requires some knowledge of the design
parameters and the decision-making involved with assessing manufacturability.
There are different ways to explore this area of research, but one possible approach
rests in the exploration of artificial intelligence and how it can be applied in the area
of manufacturability assessments. There are various subsets of artificial intelligence;
some involve areas such as rule-based engines and systems, knowledge graphs, and
expert systems, while others explore more complex areas such as machine learning
and neural networks. The choice on which path to take requires some exploration
into these possibilities and an understanding of the design data available in pre-
milestone A and how feature-based information can be used to create an objective-

S. C. Fuller (�) · T. G. McCall · E. S. Wall · T. C. Falls
Mississippi State University, Starkville, MS, USA
e-mail: sfuller@cavse.msstate.edu

C. H. Rinaudo · R. K. Buchanan
U.S. Army Engineer Research and Development Center, Vicksburg, MS, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_42

493

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_42&domain=pdf
mailto:sfuller@cavse.msstate.edu
https://doi.org/10.1007/978-3-030-82083-1_42

494 S. C. Fuller et al.

based manufacturability assessment. This paper serves to explore the options for
incorporating artificial intelligence within the MAKE assessment methodology and
related software tool. Based upon feedback from the user community, one or more
of these options could be incorporated in future efforts.

Keywords Manufacturability · Analysis of alternatives · Tradespace

1 Manufacturability Assessment Knowledge-Based
Evaluation (MAKE) Background

According to McCall and Fuller (2018), the Manufacturability Assessment
Knowledge-based Evaluation (MAKE) tool draws upon a taxonomy of
manufacturability concerns (i.e., life cycle cost drivers), based on functional
areas of a manufacturing system (quality, EHS, supply chain, etc.). It exists to
identify concerns within areas of each manufacturing system that are impacted
by characteristics of the design. These concerns drive the determination of a
manufacturability metric, which can be used to compare alternatives of a design at
levels from the individual components up to the final assembly.

The Department of Defense (DoD) science and technology communities support
the analysis of model-based engineering early into the design process to support
decision-making for analysis of alternatives (AoA). Analysis of alternatives is a
DoD requirement of military acquisition policy to ensure that multiple design
alternatives have been analyzed prior to making costly investment decisions (US
Office of Management and Budget 2008). The objective of this research involves
the development of a methodology, more specifically a metric, intended to reflect the
manufacturability of a product design. The metric may reflect the manufacturability
of a total product design and subcomponents or subassemblies of that design.
Ultimately, the metric is intended to provide some guidance during AoA or trade-
off studies in order to understand the cost drivers or risk inherent to a particular
design. Through the evaluation of different design options, users can arrive at design
solutions that best meet the mission goals.

McCall et al. detailed the approach to the research which began with development
of a methodology at life cycle Milestone C, where fidelity of the design is at a
stage where relevant design and manufacturing parameters exist on which to base
the development of the architecture for the manufacturability assessment. As the
research progressed, more effort has been spent to understand how far to the “left”
in the product life cycle a particular design can be assessed. That is, “what is
the earliest point in the life cycle timeline at which a useful assessment can be
performed?” In addition, there is also the driving question of what is required of the
methodology to allow for the assessment of such designs in the early phases where
design fidelity is minimal and multiple alternatives are being considered. Figure 1
depicts the strategy of the manufacturability development.

A Framework for Using the MAKE Methodology and Tool for Objective. . . 495

Fig. 1 Strategy of MAKE

Previous case study assessments described in prior work by McCall et al.
(2016, 2017) focused on analysis of systems near Milestone C and utilized the
methodology referenced in Fig. 1 as MAKE C. Significant research effort has
supported understanding this scope of work and the extent to which the current
methodology can be applied at Milestones A and B. Understanding the limitations
of the current methodology established a research framework for determining the
architecture of the manufacturability methodology necessary for design fidelities
inherent to Milestone A.

2 MAKE Current Capabilities to Support Tradespace
Analysis

2.1 Existing Methodology and Tool Features

The existing structure of the MAKE tool allows for a user to perform an analysis
of alternatives in support of the decision-making process during the product design.
As part of the assessment process, the user creates a parts list and subsequently a
hierarchical bill of materials (BOM). By asking the question, “What is the impact
of a particular aspect of design on a particular aspect of manufacturing?”, the
user is able to review each part of the BOM, documenting design concerns and
recommendations for each of 21 different interactions. The “Scores” area of Fig. 2
shows the manufacturability interaction matrix (MIM) that guides the assessment.

496 S. C. Fuller et al.

Fig. 2 MAKE tool showing BOM and part assessment

After documenting the concerns for a particular part of the BOM, the assessor
then assigns a score to each of the interactions. The tool allows the assessor to
quickly and easily add, remove, and substitute parts and subassemblies in the BOM.
The design’s manufacturability metric is automatically “rolled up” from the BOM
giving instant feedback to the assessor as modifications are made. Once the parts
have been evaluated, the assessor can evaluate several variations of the design
by modifying the BOM as needed and documenting the resulting metric for that
variation.

In addition to assigning a score and documenting the concerns for each part, the
assessor can upload additional information such as part drawings, comments, and
photos to further document and justify the score for a specific part. Maintaining the
score and auxiliary information at the part level allows the assessor to:

• Assemble information needed to define the variation.
• List the concerns and recommendation for that variation.
• Assemble data that highlight issues within a variation.
• Collect, develop, and store other information pertinent to the variation.

2.2 Output Includes List of Prescriptive Measures for
Decision-Making

In addition to documenting the concerns identified during the assessment, docu-
menting recommendations for prescriptive measures to mitigate the concern is an
important element of the manufacturability assessment. The tool allows recommen-
dations for a concern to be documented while the assessor is evaluating the part
and captures the immediate response to remedy the concern (e.g., “using screws in

A Framework for Using the MAKE Methodology and Tool for Objective. . . 497

design rather than glue”). This, however, does not prevent assessors or other experts
from later revisiting the concerns and modifying or adding recommendations.

The tool allows the assessor to rate the level of concern and effort to implement
a recommendation and provides a listing of concerns for a specific part along with
the associated recommendations for mitigation. This list can be produced for an
individual part or “rolled up” for a part and its subassemblies. The tool also provides
a concern versus effort graph, which is a graph of the score of a concern versus effort
to implement recommendations to mitigate that concern.

2.3 Reliance upon Subject Matter Experts

The MAKE methodology relies heavily on subject matter experts (SMEs) to evalu-
ate the design areas in need of assessment. Furthermore, the entire manufacturability
product assessment is based on the existence or creation of a reliable BOM and
a thorough review of each part and assembly within that BOM. The assessor’s
knowledge of the best practices within the design area that he/she is evaluating
is paramount to the accuracy of identifying the concerns and providing viable
prescriptive measures for mitigation of manufacturing risk. The knowledge basis
of the SME is essential to the accurate portrayal of a product’s manufacturability
risk. While the reliance on SMEs may be acceptable for a MAKE C evaluation, it is
a significant concern as one looks toward an assessment for early life cycle designs.

2.4 Challenges of Applying MAKE to Early Life Cycle
Assessments

The challenge of developing a methodology (MAKE A, Fig. 1) to assess the
manufacturability of conceptual designs at Milestone A, where minimal system
design information is available, involves both the use of SMEs and the fidelity
of the design at this stage. A primary goal for early life cycle manufacturability
assessment is to support understanding the impact of these early design decisions
on manufacturing cost, time, and quality. From a practical standpoint, using SME
judgment on a design’s manufacturability at this stage lacks feasibility. The most
prominent issue relates to the inability to evaluate the large number of unique
alternatives in the tradespace environment.

The practice of DFM analysis typically involves having access to design geom-
etry and specifications with some consideration of the manufacturing processes.
However, in the conceptual stage, the challenge involves assessing manufacturabil-
ity based on a significant number of unknown parameters. Pre-Milestone A design
analysis primarily focuses on performance, cost, and other metrics for which the
methodology to evaluate at this stage has been developed and optimized through
years of experience and research.

498 S. C. Fuller et al.

Another challenge exists in the foundation for the tradespace evaluations.
Previous analysis of point-based design processes (using an existing design as a
foundation) has demonstrated that later iterations to refine that design solution
can be time-consuming and costly and lead to a suboptimal design (Iansiti 1995;
Kalyanaram and Krishnan 1997). The ability to examine many designs is made
possible by relying on past products and extrapolating information from those
past designs. This extrapolation process relies heavily on years of experience and
research. The attempt to similarly provide the manufacturability metric for each of
these designs is extremely problematic.

Tradespace exploration research by investigated various methods to integrate
cost models with tradespace analysis while requiring minimal user interaction. This
research used predictive modeling using artificial neural networks to develop a
surrogate model. Furthermore, various expert system methodologies could be inves-
tigated for implementation with the MAKE A methodology (Viral and Bhushan
2014). Using similar methods could provide the ability to reduce the reliance on
SME input and further automate the process for efficient analysis.

3 MAKE 2.0

3.1 The Connection with Tradespace Exploration

By using tradespace exploration in the AoA process, program analysts and decision
makers are provided with early system design and development analysis to support
understanding of potential system capabilities, gaps, and potential compromises and
implications. It informs decision makers regarding opposing system options and the
significance of decisions across various missions and objectives.

Tradespaces are essentially a matrix of information which contains design
parameters of a variation of a product’s design and the associated results of various
analyses for that design. During the product design, in addition to defining various
design variations, researchers investigate system attributes in order to derive other
parameters for that variation, such as suitability, performance, cost, maintainability,
etc. The design parameters and analysis results are collected into the tradespace.
The tradespace is analyzed by the teams using common data analytic techniques
and system engineering tools (e.g., multi-objective decision analysis) to determine
an optimal design.

Generating the manufacturability metric for each design variation of a large
tradespace could fully integrate the MAKE methodology into tradespace explo-
ration. However, attempting this with the current tool methodology is impractical
due to the requirements for intensive user input for each design. Attempting to use
the tool as previously described could require a cost prohibitive amount of effort.
The possibility of an objective-based assessment provides the means in which to
make the connection between manufacturability and life cycle cost.

A Framework for Using the MAKE Methodology and Tool for Objective. . . 499

Fig. 3 Cost methodology

Previous research by Buchanan et al. (2018) investigated analyzing set-based
design and incorporation of cost estimation using a notional cost model for ground
vehicles. The cost methodology in Fig. 3 from Cherwonik (2017) illustrates the flow
from physical design parameters (red) combined with programmatic cost drivers
(blue) and the cost factors generated from historic data (green) prior to integration.
A potential connection point for manufacturability assessment to support early Mile-
stone A tradespace analysis could be made by interfacing with the cost methodology
through the “step-up” factors. For example, the manufacturability assessment rating
could provide a multiplication factor between the prototype manufacturing (1.04)
and production development (2.02) costs. Linking the manufacturability assessment
rating to the cost model estimation process could provide decision makers with
additional cost and manufacturing insights while making system decisions for a
program.

3.2 Transitioning from Subjective to Objective Analysis

As stated previously, the current MAKE methodology is highly subjective due to
the extensive use of SMEs’ knowledge of the manufacturing process. The desire is
to remove as much subjectivity as possible and to create an objective system. The
advantages of such a system are apparent, such as:

• Remove biases that are the result of isolated events in the SME’s career.
• Available tradespaces with manufacturability metric, if the designs have the

fidelity required to analyze.

500 S. C. Fuller et al.

• Ability to perform the assessment without years and years of experience of an
SME.

• Ability to mix manufacturing processes without multiple SMEs participating in
the assessment.

Converting to an objective-based manufacturability assessment will require
creating computer models that assess the design against a set of manufacturability
criteria. The fact that the assessment will be used in the tradespace analysis will
also drive the decision as to the type of models needed to satisfy both requirements.
Several possible techniques that could be applied include:

• Physics-based models – These models would calculate the manufacturability
score of alternative design options based on certain physical characteristics of
the design (e.g., geometry), thus providing the basis for an objective manufac-
turability assessment model. However, due to the lower fidelity of data available
in early life cycle, they would not be realistic for use in the tradespace analysis.
In addition, even the basis of a physics-based model would require some level of
heuristic knowledge in order to truly identify the manufacturing impact.

• Expert system (rule-based) models – These models would utilize expert systems,
where the SMEs’ knowledge and experience for an interaction are coded into
rules and then passed through an inference engine to obtain the final metric.
Unfortunately, expert systems are not appropriate for use where much of the
input is unknown or vague due to the rigid structure of the system.

• Artificial intelligence/machine learning (AI/ML) models – These models use
modern AI techniques to build models that can handle the “fuzziness” of the
input. Bayesian networks, a type of probabilistic graphical model, appear to
be very promising. The networks can better deal with missing or unknown
information. The Bayesian network also assigns a probability to the computed
value providing a measure of confidence to value. Other techniques such as
neural networks not only provide the model but also are able to “learn” when
unknown conditions arise.

• Combination/ensemble models – These models use combinations of various
models, attempting to use the best part of each technique used. One such
possibility is the expert system combined with neural networks, under the
assumption that the neural network would learn new rules to handle the fuzziness
of the input.

While all the above techniques could possibly meet the requirements, the pure
AI/ML techniques may be the most promising in order to meet the requirements of
an objective, early life cycle manufacturability analysis resulting in a manufactura-
bility metric that could support for tradespace analysis.

A Framework for Using the MAKE Methodology and Tool for Objective. . . 501

4 Conclusions

While the current version of the MAKE methodology is suitable for a Milestone C
assessment, there is a desire to perform early life cycle assessments at Milestone
A or pre-Milestone A timing. A secondary goal is to transition the methodology
from a very subjective process to an objective assessment, which will integrate
the methodology into tradespace environments. This will serve to optimize the
assessment process by removing biases from SMEs and reduce the time and
expertise needed to perform the assessment.

It is possible to achieve these goals, by using various computer models such as
artificial intelligence, machine learning, expert systems, or physics-based models.
Each of these options has positives and negatives associated with them. Another
option is to use a combination of the aforementioned models. That transition would,
theoretically, allow the framework to provide the manufacturability metric for any
number of design variations in a tradespace.

Since most tradespaces are created to support the acquisition of new products,
solving the early life cycle challenge of low design fidelity is paramount. More
research will need to be done in the area of early life cycle assessments.

Acknowledgments This material is based upon work supported by the US Army Engineer
Research and Development Center (ERDC) under Contract No. W9I2HZ-17-C-00218. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the ERDC.

References

Buchanan, R.K., J.E. Richards, C.H. Rinaudo, and S.R. Goerger. May 2018. Integrating set-based
design into cost analysis. In 2018 Conference on Systems Engineering Research (CSER18),
8–9. Charlottesville.

Cherwonik, J. 2017. Engineered Resilient Systems (ERS) Lifecycle Cost Analysis for Trade-space
Generation. Internal ERDC: Vicksburg.

Iansiti, M. 1995. Shooting the Rapids: Managing Product Development in Turbulent Environments.
California Management Review 38: 37–58.

Kalyanaram, G., and V. Krishnan. 1997. Deliberate Product Definition: Customizing the Product
Definition Process. Journal of Marketing Research 34 (2): 276–285.

McCall, T., and S. Fuller. 2018. Manufacturability and the Product Design: Case Study Exploration
of Manufacturability Assessments across a Product Life Cycle. In Proceedings from the 2018
American Society for Engineering Management International Conference. Coeur d’Alene.

McCall, T., C. Walden, L. Dalton, et al. 2016. Manufacturability Assessment Methodology
for Reducing Life Cycle Costs. Vicksburg: Technical Report for Engineering Research and
Development Center.

———. 2017. Enhancements to the Manufacturability Assessment Knowledge-based Evaluation
and a Pilot Case Study. Vicksburg: Technical Report for Engineering Research and Develop-
ment Center.

502 S. C. Fuller et al.

U.S. Office of Management and Budget. 2008. Circular No. A–11, Preparation, Submission, and
Execution of the Budget. Washington, DC: Executive Office of the President.

Viral, Nagori, and Bhushan Trivedi. April 2014. Types of Expert System: Comparative Study.
Asian Journal of Computer and Information Systems 02 (02) ISSN: 2321–5658.

A Bioinspired Framework for Analyzing
and Predicting the Trade-off Between
System of Systems Attributes

Abheek Chatterjee, Richard Malak, and Astrid Layton

Abstract This research investigates a bioinspired framework for analyzing and
predicting trade-offs between system of systems’ (SoS) performance, affordability,
and resilience early in the design process – without the need for highly detailed
simulations or disruption models. This framework builds on ecological research that
has found a unique balance between redundancy and efficiency in biological ecosys-
tems. This balance implies that highly efficient ecosystems tend to be inflexible
and vulnerable to perturbations, while highly redundant ecosystems fail to utilize
resources effectively for survival. Twenty architectures for a notional hostiles’
surveillance SoS are investigated, showing that highly efficient SoS architectures
fail catastrophically in the face of disruptions, while highly redundant architectures
are unnecessarily expensive: indicating that engineered SoS architectures follow a
fitness trend akin to complex ecological networks. The results suggest that SoS may
benefit from mimicking a balance of redundancy and efficiency similar to that found
in ecological networks.

Keywords SoS architecture · Resilience · System design · Ecological network
analysis · Bioinspired design

1 Introduction

Successfully achieving mission objectives requires the intelligent utilization of all
participating systems. The term “system of systems” (SoS) is used to describe a
collection of independently operating systems, which interact with one another
to accomplish mission requirements that cannot be achieved by the individual
systems alone (Owens 1996; White 2006). These systems may provide essential
capabilities such as surveillance, detection, information processing and exploitation,

A. Chatterjee · R. Malak · A. Layton (�)
J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College
Station, TX, USA
e-mail: alayton@tamu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_43

503

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_43&domain=pdf
mailto:alayton@tamu.edu
https://doi.org/10.1007/978-3-030-82083-1_43

504 A. Chatterjee et al.

neutralization of hostiles, and the supply of aid, all within the larger SoS context.
SoS can have evolutionary tendencies (addition of new systems over time), a range
of geographic distributions, and operational independence of participating systems
(Maier 1998). Additionally, the functional interdependence of the systems within
the SoS creates challenges for their analysis and development. The attributes of
performance, affordability, and resilience (Pape et al. 2013; Uday & Marais 2015;
Dagli et al. 2013) are most commonly used to analyze and track SoS development.
Performance, as used here, quantifies the extent to which a SoS meets mission
objectives. Affordability is taken here to account for the capital and operational
costs of a SoS. Resilience is defined as the ability of a SoS to survive and recover
from disruptions (Uday & Marais 2013, 2015) and is of particular importance when
operations are in high-risk environments.

Assessment of SoS resilience requires highly detailed simulations and disruption
models, but such information is available only after the SoS design is complete.
Approaches based on graph/network theory have been used to investigate possible
architecture-based metrics that can be utilized to guide SoS designs toward desired
objectives (Yang 2014; Raz & DeLaurentis 2017; Dekker 2005). This study attempts
to take another step in this direction by proposing and investigating a bioinspired
architecture-based metric that can be utilized to guide SoS designs with favorable
trade-offs between important SoS attributes.

Ecological principles have the potential to provide design inspirations for
engineering resilience (Raz & Kenley 2019). Ecosystems are biological SoS that
are resilient to a wide variety of perturbations (Holling 1973). They are made up
of independent actors (species or functional groups) that perform essential roles in
the network (like producers, predators, and decomposers) and have an evolutionary
nature. Ecological network analysis (ENA) is a mathematical analysis method for
quantitatively linking ecosystem structure and functions (Ulanowicz 2004). The
ENA metric degree of system order, developed from Information and Graph Theory,
indicates the balance between efficient and redundant interactions in a network
(Ulanowicz et al. 2009). This metric ranges between 0 and 1, representing the
extremes of pathway redundant and pathway efficient networks, respectively.

Ecologists have found that ecological networks (which had survived for an
extended period of time) avoided both these extremes and maintained a unique
range of the degree of system order dubbed the “window of vitality [15].” This
balanced structure is believed to allow ecosystems to be both productive under
normal circumstances and have the reserve capacity and flexibility to survive and
recover from perturbations (Ulanowicz et al. 2009), presenting an interesting source
of SoS design inspiration.

The analysis of the degree of system order only requires knowledge of net-
work architecture: the participating actors and their interactions (the mathematical
framework is discussed in Section 2). As a tool for system engineers, degree
of system order could enable selection between SoS architectures for those with
the best attributes (such as performance, affordability, and resilience) without the
need for highly detailed simulations or disruption models. This paper models
and analyzes notional hostile’s surveillance SoS architectures as a network of

A Bioinspired Framework for Analyzing and Predicting the Trade-off Between. . . 505

interacting systems to gather evidence about whether the ecologically inspired
concept of the “window of vitality” applies to engineered SoS. Do SoS architectures
with bioinspired balances of efficient and redundant interactions present better
performance, affordability, and response to disruptions? Factors that govern an
engineering SoS “window of vitality” are expected to be clarified when compared
to highly efficient or redundant architectures.

2 ENA, the Degree of System Order, and the Ecological
Fitness Function

Ecologists use ecological network analysis (ENA) to study the complex interactions
among the species within a food web (an ecosystem modeled in terms of its
predator-prey-based interactions). A directional graph or digraph is created for the
food web, where the nodes represent the actors or species and the directed arcs
represent the transfer of energy or nutrients between them and their immediate
environment. Flow magnitude information between the nodes within the system
boundaries, as well as those with the surrounding environment (system inputs,
outputs, and dissipations), are all stored in the square (N+3) x (N+3) flow matrix T
(where N is the number of actors within the system or SoS boundaries). The matrix
elements Tij represent the magnitude of flow from node i (producers/prey) to node
j (consumers/predators). The nodes 1 to N in the flow matrix represent the actors
within the specified system boundary. The nodes 0, N+1, and N+2 are the system
imports (row “zero” in the T matrix) and system exports and dissipations (columns
N+1 and N+2, respectively). Figure 1a illustrates this process, with a hypothetical
food web (top-left) modeled as a digraph (bottom-left) and then quantified in its
flow matrix T (bottom-center). Readers interested in a more detailed description
may refer to Fath et al. (Fath et al. 2007).

ENA metrics are calculated using the T matrix. The sum of all the flows
through the network is the Total System Throughput (TSTp, Eq. 1). Ascendancy
(ASC) measures the network’s organizational development, or the ability of the
network to efficiently transport the medium of interest from one point to another.
When normalized by TSTp, ASC becomes Average Mutual Information (AMI,
Eq. 2) (Ulanowicz 1986). Nothing can grow in nature without bounds, including
network organization. The upper limit on ASC is the Development Capacity (DC).
Shannon Index (H, Eq. 3) is DC normalized by TSTp. These metrics are rigorously
derived using the concepts of information theory in scholarly works by Ulanowicz
(Ulanowicz et al. 2009; Ulanowicz 1986).

T STp =
N+2∑

i=0

N+2∑

j=0

Tij (1)

506 A. Chatterjee et al.

Fig. 1 (a) A schematic of the modeling procedure used in ENA, based on Layton et al. (Layton et
al. 2016), and (b) the ecological fitness (RECO, Eq. 9) curve with food webs (green dots) from the
dataset of Borrett et al. (Borrett & Salas 2010) illustrating the “window of vitality” (Ulanowicz et
al. 2009)

AMI =
N+2∑

i=0

N+2∑

j=0

Tij

T STp

log2

[
Tij • T STp

Ti. • T.j

]
(2)

H = −
N+2∑

i=0

N+2∑

j=0

Tij

T STp

log2

[
Tij

T STp

]
(3)

where

Ti. =
N+2∑

j=0

Tij (4)

T.j =
N+2∑

i=0

Tij (5)

These metrics are used for networks with only one medium or unit of flow.
Human SoS consists of multiple distinct and interdependent flows, however, and
the translation of these metrics requires their modification to allow for multiple
flows: AMI and H in Eqs. 6 and 7 have been reformulated to accommodate multiple
flows (Chatterjee & Layton 2019). The symbols retain their original meaning, and
the additional subscript l signifies the different types (mediums) of flows where
l ∈ [1, M] for a network composed of M distinct flow types.

A Bioinspired Framework for Analyzing and Predicting the Trade-off Between. . . 507

AMI =
∑N+2

i=0

∑N+2

j=0

{(∏M

l=1

Tij l

T STpl

)
log2

[∏M
l=1 Tij l

• T STpl∏M
l=1 Ti.l • T.j l

]}
(6)

H = −
∑N+2

i=0

∑N+2

j=0

{(∏M

l=1

Tij l

T STpl

)
log2

[∏M

l=1

Tij l

T STpl

]}
(7)

The ratio of AMI to H is the degree of system order (a) (Ulanowicz et al. 2009)
and has values ranging from zero to one. A value of a close to zero indicates that
a large number of redundant pathways exist in the network, and a value close to
one indicates that the network has a minimum number of highly constrained (or
efficient) flow pathways. These extreme cases correspond to networks where either
all actors are connected to each other (most redundant, a = 0) or all actors are
connected in a linear series (highest efficiency, a = 1). Neither of these extreme
cases results in a “fit” network. An excessively redundant network is not effective
at utilizing the available resources, and an excessively efficient network will be
vulnerable to disruptions. Fit, or optimal, network architectures can safely be
assumed to lie between these two extremes. This is mathematically reflected in
Ulanowicz’s formulation of the fitness function of a flow network (F), which is as
a function of the degree of system order and the Boltzmann measure of its disorder
(−k • ln [a]) (Ulanowicz et al. 2009; Ulanowicz 2009). Equation 8 is the general
form of this fitness function. The range of a where mature ecosystems reside, known
as the “window of vitality,” indicates that complex systems in nature have evolved
to a selection of a~1/e (). Equation 9 is the resulting ecological fitness function,
plotted in Fig. 1b with 48 different ecosystems residing near a~1/e.

F = − (
aβ
) • ln

(
aβ
)

(8)

Reco = −(a) • ln(a) (9)

3 Investigating the Fitness Trends in a Hypothetical Hostiles’
Surveillance SoS

Twenty feasible architectures of a hypothetical hostiles’ surveillance SoS are inves-
tigated here, consisting of a mission command center, the Continental United States
(CONUS) headquarters, and on-site surveillance and data exploitation systems. The
objective of this SoS is to monitor a 9000 sq. miles area continuously for any sign
of hostile activity and then select and implement appropriate response measures.
The available on-site surveillance systems are Joint Surveillance and Target Attack
Radar (JSTAR) aircrafts, unmanned aerial vehicles (UAV), and a military satellite.

508 A. Chatterjee et al.

Table 1 Performance characteristics for the available systems within the hostiles’ surveillance SoS
based on descriptions found in (Dagli et al. 2013)

System
Surveillance
quality

Max.
surveillance
area (sq.
miles)

Exploitation
capability

Operational
cost (103

$/hour-unit)

JSTAR 1 >9000 1 JSTAR 18
UAV 0.9 2250 – 2
Military satellite 0.7 >9000 – 1
Theater – – 2 UAVs 10
CONUS – – Unlimited –

Every two UAVs require a local, on-ground control and exploitation unit (theater),
while JSTAR has onboard crewmembers to perform data exploitation (Technology
AF 2019). CONUS handles the control and data exploitation of the satellite and
provides the mission command with the exploited data. CONUS also exchanges
commands and reports with the mission command center and acts as the mediator
between government agencies and the SoS. The mission command center receives
exploited surveillance data from all participating systems, monitors their status, and
commands their operations.

Table 1 shows the performance characteristics and operational costs of the
systems within this hypothetical SoS based on descriptions found in (Dagli et al.
2013). The satellite is assumed to already be in orbit and operational, only needing
to be commissioned for the mission, resulting in a low operational cost (Dagli et
al. 2013). All surveillance is assigned a quality value between zero and one for the
precision and clarity of the raw data collected. As this was an initial proof of concept
investigation, a deterministic approach was used for the performance, disruption,
and recovery assessment, and related uncertainties were considered to be outside
the scope of this analysis.

3.1 SoS Performance, Cost, and Response to Disruptions

The total operational cost of the SoS is calculated as the sum of the operational costs
of each participating system. The performance level (PL) of the SoS is formulated
as shown in Eq. 10 and is based on (Uday and Marais 2013). A is the area covered
by a surveillance system (in sq. miles), q indicates the quality of surveillance by
that system (q ∈ [0,1]), s indicates the state of the exploitation system associated
with the surveillance unit (s ∈{0,1}), and the subscript i indicates the systems under
consideration (i ∈ {1,2, . . . ,N}). The maximum surveillance performance level is
9000, for coverage of the entire area of interest.

A Bioinspired Framework for Analyzing and Predicting the Trade-off Between. . . 509

PL = max

[(
N∑

1

Ai • qi • si

)
, 9000

]
(10)

The loss of one, two, and three systems in the SoS (N-1, N-2, and N-3
contingencies) was randomly simulated to investigate the response of the SoS
architectures to external disruptions. The worst-case performance level of the SoS
right after disruption as well as after the mission command reallocates the remaining
systems that were then assessed. These contingency analyses consider any on-site
units as candidates for attack by hostiles. The satellite is assumed to have partial
immunity to hostiles, resulting in a loss of only communications. The mission
command center and CONUS are assumed to be safe from external disruptions.

3.2 Degree of System Order of SoS Architectures

The participating systems have two kinds of interactions: (a) the flow of surveillance
data and (b) the exchange of commands and reports. The magnitude of surveillance
data collected by surveillance units is assumed to be the product of the area they
cover and the surveillance quality of the system. Ten percent of the raw surveillance
data collected is assumed useful after exploitation. Fifty units of command and
report data are assumed to be exchanged between the mission command and each
surveillance/exploitation system. Three hundred units of commands and report
data are assumed to be exchanged between the mission command, CONUS, and
governing authorities.

Figure 2 shows the case study SoS architecture modeled as a flow network and
the associated flow matrices. The JSTAR imports surveillance data through imaging
(entry T01 in Fig. 2b), exploits the raw data, and provides useful data to the mission
command center (entry T12 in (b)). The remaining (non-useful) raw surveillance
data is modeled as dissipation (entry T15 in Fig. 2b). Mission command utilizes
the exploited data for decision-making, which is modeled as a useful export (entry
T24 in Fig. 2b). There is also a bidirectional flow of commands and reports between
mission command and the JSTAR (entries T12 and T21 in Fig. 2c), as well as CONUS
and mission command (entries T32 and T23 in Fig. 2c). CONUS receives orders from
the governing authorities outside the SoS boundary (import, entry T03 in Fig. 2c) and
reports back to them (useful export, entry T34 in Fig. 2c). AMI and H were calculated
using Eqs. 6 and 7 with the information from the two matrices in Fig. 2c and d. The
degree of system order was then calculated using the AMI and H values.

510 A. Chatterjee et al.

Fig. 2 (a) A schematic of the surveillance SoS represented as a data flow network (the numbers
on the directed arcs represent the magnitude of data flows) and the associated (b) surveillance data
flow matrix and (b) commands and reports data flow matrix

Fig. 3 The worst-credible SoS performance levels (a) immediately after the disruption and (b)
after reallocation of surviving systems

4 Results and Discussion

The twenty SoS architectures investigated utilize the techniques of physical redun-
dancy (e.g., multiple JSTARs), functional redundancy (e.g., surveillance using both
JSTAR and the satellite), and localized capacity (e.g., sharing the surveillance
load between multiple drones). Degree of system order values of the investigated
architectures ranged from 0.3 to 0.65. The worst-case performance levels of the
SoS immediately after the disruption and after reallocation of surviving systems are
presented in Figs. 3.a and 3.b, respectively.

Networks with a values closest to 1 (highly pathway efficient) suffered complete
failures and could not regain any functionality. Their lack of redundancy created
an inability to recover the lost functionality. The SoS architectures with lower
a values (higher pathway redundancy) were found to have the flexibility needed
to survive and recover from external disruptions. However, a tipping point was
observed (Fig. 3) beyond which higher pathway redundancy did not equate to
higher recoverability in the context of this SoS. This point is closer to one (efficient
architecture) for the N-1 scenarios and shifts toward a = 0 (redundant pathways) for
the more severe N-2 and N-3 scenarios.

Standard techniques for improving resilience in complex systems, like physical
and functional redundancy and localized capacity (among others) (Jackson and

A Bioinspired Framework for Analyzing and Predicting the Trade-off Between. . . 511

Ferris 2013), still beg the question of how much redundancy or distribution of
capacity is “enough” and how much is “too much?” An excessively redundant
or distributed SoS may be indifferent to the loss of a single system but would
be extremely expensive (Uday and Marais 2013) or could cause organizational
interoperability issues (Dekker 2005); both can reduce overall performance. A
highly efficient SoS may have an acceptable performance level at low operational
costs but would be vulnerable to catastrophic failure if even one of the participating
systems was disturbed.

The behavior of ecosystems offers a potential route to answer this question. The
case study here is inadequate to analyze interoperability issues, but it is possible
to analyze the trade-off between recoverability and operational cost of the various
SoS architectures. Recoverability was defined as the fraction of the undisrupted state
performance level that the SoS can regain after the surviving systems are reallocated
(Eq. 11). To investigate the trade-off between recoverability and operational cost for
the SoS architectures, recoverability to cost ratio (RCR) of the SoS architectures was
calculated as shown in Eq. 12.

Recoverability = PLafter re−allocation/PLundisrupted state (11)

RCR = Recoverability/Operational Cost (12)

The recoverability to cost ratios in the worst-case N-1, N-2, and N-3 scenarios for
the SoS architectures are plotted against their a values in Fig. 4. This analysis shows
that the recoverability to cost ratio of SoS architectures first improves with more
redundancy (lower a values) until it reaches a peak, after which there is a decreasing
trend. This overall behavior imitates the fitness of complex systems observed in
ecology, evidence that SoS architectures can learn to balance efficient and redundant
interactions from ecology to better manage their performance, affordability, and
response to disruptions.

Figure 4 also shows that each N-X case has a select number of designs covering
a slightly different a range that have significantly better recoverability-cost ratios
(indicating a better trade-off between affordability and response to disruptions).
The range of the favorable a values seems stricter than the ecosystems’ window
of vitality. This may be due to the ecosystem data covering biological SoS that
experience a range of disturbances, from mild to extreme, while the hypothetical
SoS investigated here has been grouped by specific N-X disturbance levels. The
fittest SoS architectures can be seen to favor values of a closer to 0 as the
severity of disruptions increases (with increasing X values in N-X). This observation
indicates that higher threat levels cause the SoS fitness trends to move toward the
ecological fitness function, suggesting that the level of threats in a SoS’s operating
environments may provide a governing factor in deciding its specific window of
vitality.

512 A. Chatterjee et al.

Fig. 4 The recoverability to cost ratios for all SoS architectures investigated, at the worst-credible
state after N-1, N-2, and N-3 contingencies. The best SoS designs reside near the peak of the
ecological fitness function for the N-3 disruptions

5 Concluding Remarks

This study suggests that the ecologically inspired concept of the window of vitality
may be useful for the design and management of engineered SoS. While the range
of degree of system order values presenting favorable SoS attribute trade-offs seems
stricter than for the ecosystems, this presents an opportunity to customize the
window of vitality for a SoS based on its specific needs and environment. Future
work will analyze SoS response to more complex threat models and seek to develop
a mathematical framework to predict the peak fitness (β parameter, Eq. 9) and the
range of favorable degree of system order values given SoS operating conditions.
More complex SoS case studies are also needed to further test for evidence of
organizational interoperability with excessive redundant interactions. Success may
be able to provide system engineers with a decision-making and design tool to select
SoS architectures without the need for costly simulations or detailed disruption
models.

Acknowledgments This manuscript is based on work supported, in whole or in part, by the
Systems Engineering Research Centre (SERC) under contract WRT-1011.

A Bioinspired Framework for Analyzing and Predicting the Trade-off Between. . . 513

References

Borrett, S.R., and A.K. Salas. 2010. Evidence for resource homogenization in 50 trophic ecosystem
networks. Ecological Modelling 221 (13-14): 1710–1716.

Chatterjee, A. and A. Layton. 2019. Bio-Inspired Human Network Design: A Multi-Currency
Robustness Metric Inspired by Ecological Network Analysis. in Proceedings of the 2019
International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference (IDETC/CIE). Anaheim, CA: ASME.

Dagli, C.H., et al., An advanced computational approach to system of systems analysis &
architecting using agent-based behavioral model. 2013.

Dekker, A.H. 2005. C4ISR, the FINC methodology, and operations in urban terrain. Journal of
Battlefield Technology 8 (1): 25.

Fath, B.D. 2014. Quantifying economic and ecological sustainability. Ocean & Coastal Manage-
ment 108: 13–19.

Fath, B.D., et al. 2007. Ecological network analysis: network construction. Ecological Modelling
208 (1): 49–55.

Holling, C.S. 1973. Resilience and Stability of Ecological Systems. Annual Review of Ecology and
Systematics 4: 1–23.

Jackson, S. and T.L.J. Ferris, Resilience principles for engineered systems. 2013. 16(2): p. 152-164.
Layton, A., B. Bras, and M. Weissburg. 2016. Ecological Principles and Metrics for Improving

Material Cycling Structures in Manufacturing Networks. Journal of Manufacturing Science
and Engineering 138 (10): 101002-1–101002-12.

Maier, M.W., Architecting principles for systems-of-systems. 1998. 1(4): p. 267-284.
Owens, W.A. 1996. The emerging US system-of-systems. Washington DC: Institute for National

Strategic Studies, National Defense University.
Pape, L., et al. 2013. A Fuzzy Evaluation method for System of Systems Meta-architectures.

Procedia Computer Science 16: 245–254.
Raz, A.K. and D.A. DeLaurentis. 2017. System-of-Systems Architecture Metrics for Information

Fusion: A Network Theoretic Formulation, in AIAA Information Systems-AIAA Infotech@
Aerospace. p. 1292.

Raz, A.K. and C.R. Kenley. 2019. Multi-Disciplinary Perspectives for Engineering Resilience in
Systems. in 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC).

Technology, A.F. 2019. JSTARS – Joint Surveillance and Target Attack Radar System. 10/13/2019];
Available from: https://www.airforce-technology.com/projects/jstars/.

Uday, P., and K. Marais. 2013. Exploiting Stand-in Redundancy to Improve Resilience in a System-
of-Systems (SoS). Procedia Computer Science 16: 532–541.

———. 2015. Designing Resilient Systems-of-Systems: A Survey of Metrics, Methods, and
Challenges. Systems Engineering 18 (5): 491–510.

Ulanowicz, R.E. 1986. Growth and Development: Ecosystems Phenomenology. iUniverse.
———. 2004. Quantitative methods for ecological network analysis. Computational Biology and

Chemistry 28 (5–6): 321–339.
———. 2009. The dual nature of ecosystem dynamics. Ecological Modelling 220 (16): 1886–1892.
Ulanowicz, R., et al., Quantifying sustainability: Resilience, efficiency and the return of informa-

tion theory. Vol. 6. 2009. 27-36.
White, B.E. 2006. Fostering intra-organizational communication of enterprise systems engineering

practices. in National Defense Industrial Association (NDIA), 9th Annual Systems Engineering
Conference, San Diego CA.

Yang, G., et al., Key potential-oriented criticality analysis for complex military organization based
on FINC-E model. 2014. 20(3): p. 278-301.

https://www.airforce-technology.com/projects/jstars/

Model-Based Systems-of-Systems
Healthcare: Coordinating
the Coordinators

Bernard P. Zeigler, Mark Redding, Pamela J. Boyers, and Ernest L. Carter

Abstract Achieving value-based healthcare – increasing quality, reducing cost,
and spreading access – has proven to be extremely challenging. In recent years,
a large variety of care coordination organizations have emerged at regional and
national scales. Unfortunately, each such health entity lives in its own definition
(silo) of care coordination leaving large gaps in care as well as duplicative or
inconsistent interventions where care domains overlap. This situation leads to the
need for higher-level coordination of the coordinators with well-defined population
health metrics and means for sharing of information and control of patient-centered
interventions. In “Value-based Learning Healthcare Systems: Integrative modeling
and simulation” (Zeigler et al. 2018), we presented a modeling and simulation
(M&S) approach to value-based healthcare within a system-of-systems framework
that enables designing, testing, and implementing care coordination based on
identifying and addressing risks at the individual and family level and tracking
progress though health information technologies (HITs). In this paper, we discuss
how a model-based system-of-systems design for HIT infrastructure can support
innovative “coordination of the coordinators” assuring that critical modifiable risks
spanning health and social issues are identified and addressed resulting in better
health and social outcomes. We describe existing foundations for implementing
such a design such as digital platforms, pathways-based community coordinator
organizations, risk factor registries, as well as comprehensive simulation facilities
where the design and its components can be tested. Research required to enable
integrating such foundations into a working whole is also described.

B. P. Zeigler (�)
RTSync, Corp, Chandler, AZ, USA
e-mail: zeigler@rtsync.com

M. Redding
Research and Quality Director, Pathways Community HUB Institute, Akron, OH, USA

P. J. Boyers
University of Nebraska Medical Center, Omaha, NE, USA

E. L. Carter
Health Department, Prince Georges County, MD, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_44

515

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_44&domain=pdf
mailto:zeigler@rtsync.com
https://doi.org/10.1007/978-3-030-82083-1_44

516 B. P. Zeigler et al.

Keywords Value-based healthcare · Care coordination · Health information
technology · Pathways · Simulation · Model-based system-of-systems design

1 Introduction

In response to the need for coordination of health and social services to identify
and address modifiable risks, a large variety of care coordination organizations have
emerged at regional and national scales. Unfortunately, each such entity lives in
its own definition (silo) of care coordination leaving large gaps in care as well as
duplicative or inconsistent interventions where care domains overlap. This situation
leads to the need for higher-level coordination of the coordinators with well-
defined population health metrics and means for sharing of information and control
of patient-centered interventions. In “Value-based Learning Healthcare Systems:
Integrative modeling and simulation” (Zeigler et al. 2018), the objectives of value-
based healthcare were broadly stated by the following equation:

Objectives = low Cost + high Quality + wide Accessibility

The exact meaning of the attributes, cost, quality, and accessibility can vary, as
can their priority, or even applicability, in different contexts. Nevertheless, when
we refer to measuring value, we mean some concrete formulation of increase in
quality while reducing cost and increasing access. The importance of the equation
becomes evident when we recognize that a healthcare service system is composed of
a large number of distributed components that are interrelated by complex processes.
Understanding the behavior of the overall system is becoming a major concern
among health and social service system managers and decision-makers intent on
increasing value for their systems.

An optimal health and social service delivery system requires methods to model
large-scale distributed complex systems (Dahmann 2018), a challenge that has been
identified under the rubric of model-based systems of systems (SoS) engineering
(Wymore 1993, Jamshidi 2008, Zeigler et al. 2018) in that the optimization cannot
be based on sub-optimization of the component systems but must be directed at the
entire system itself. People with multiple health and social needs are high consumers
of healthcare services and are thus drivers of high healthcare costs. The ability to
provide the right information to the right people in real time requires a system-
level model that identifies the various community partners involved and rigorously
lays out how their interactions might be effectively coordinated to improve the
effectiveness of the system in identifying and addressing modifiable risk in a whole
person approach for whose care costs the most.

Modeling and simulation (M&S) brings the latest methods and technologies
being adopted in SoS problems, ranging from missile defense systems to population
management systems. M&S is fast becoming the core knowledge generator for

Model-Based Systems-of-Systems Healthcare: Coordinating the Coordinators 517

Fig. 1 Modeling and simulation healthcare development paradigm

complex systems engineering. As illustrated in Fig. 1, the new holistic paradigm
places M&S at the top of ongoing knowledge accumulation in a learning health
and social service system in which it is at the center of multiple related core
activities involving a variety of health and social service providers. M&S spawns
new ambitious training and experimentation treatment simulation environments
enabling controlled experiments, design and engineering of interventions and
their coordination across multiple scales, as well as ongoing data collection from
multitudes of sensors with associated data analysis and prediction. We return to this
discussion in the “Research and Development” section. A modeling and simulation
methodology and framework model the entire health and social service system as
a loosely coupled distributed system (Zeigler 2016, Madni, 2018). The criteria for
such a model were laid out by Zeigler et al. (2018). Such a model systematically
represents the behaviors of patients who require coordinated care interventions and
the providers of such coordination services to render such behaviors amenable to
health and social service system design and engineering. Unfortunately, most of
the work concerning health and social service system modeling and simulation
(M&S) in the literature is unit or facility specific rather than taking a consistent
global whole person and family view. In contrast, Zeigler et al. (2018) present a
framework that encompasses common perspectives taken in the research literature
but also goes beyond them toward their integration with additional perspectives that
are becoming critical in today’s environment. It proposes a stratification of the levels
of abstraction into multiple perspectives. In each of these perspectives, models of
different components of healthcare systems can be developed and coupled together.
Concerns from other perspectives can be abstracted as parameters in such models.
The resulting global model can be coupled with a holistic experimental frame to
derive results that cannot be accurately addressed in any of the perspectives if taken
alone.

518 B. P. Zeigler et al.

2 Population Health Context

The health and social service system framework of Zeigler et al. (2018) is extended
here to include the level of population as is being developed in the context of a
population wellness management. The system design objectives expressed earlier
are replaced by the Triple Aim: the simultaneous pursuit of improving the patient
experience of care, improving the health of populations, and reducing the per capita
cost of healthcare. Introducing the population level is necessitated by the prolif-
eration of various care coordination service providers with independently defined
domains of care coordination leaving large gaps in care as well as duplicative or
inconsistent interventions where care domains overlap. This situation leads to the
need for higher-level coordination of the coordinators which can only be addressed
at a population level.

Figure 2 sketches in broad strokes, a UML system design that extends the
framework of Zeigler et al. (2018) by employing risk management and pathways of
care to provide SoS-level coordination of specialized modifiable risk identification
and mitigation interventions and coordination services. The process of induction
of a patient into coordinated care starts with a full-scale screening and assessment
of medical, social, and behavioral health risks and assignment to one of a small
set of categories of risk, each with its own distinct portfolio of interventions
and care coordination services. A primary distinction with current practice is
that a patient is assigned to single primary care provider (PCP, doctor) and
connected care coordination team who are responsible for all subsequent patient
interactions with the system. The PCP employs the output of risk screening and
patient category of risk to assign pathways that lay out steps of interventions and
services toward mitigation of modifiable risks. Interventions for identified risks span
medical, social, and behavioral health service interventions. The same PCP team is
continually updated with results of the patient’s encounters with such interventions
and mitigations of risk through system-provided tracking, thus enabling monitoring
of progress in addressing modifiable risk.

A Central Referral System (CRS) (Fig.3) provides the underlying digital infras-
tructure to initiate induction into the system as well as a host of necessary services.
The Consent2Share consent management tool is the key application which not only
controls the information that a patient allows to be shared but, most importantly,
serves as the patient registration portal that guarantees the unique coupling of patient
and PCP. Sharing of electronic, medical, and other patient health records is mediated
by a regional health information exchange (HIE) which allows health information
to move electronically among disparate health information systems employed by
hospitals and other providers. The goal of the HIE is to deliver the right health
information to the right place at the right time – providing safer, timelier, efficient,
effective, equitable, patient-centered care. Further this infrastructure supports mon-
itoring and tracking of a holistic registry of risk mitigation efforts tracked within
pathways and includes patient interactions with providers and agencies, progress
evaluation, health record keeping, and information sharing.

Model-Based Systems-of-Systems Healthcare: Coordinating the Coordinators 519

Risk
Management

Initial
Screening

‹include›
‹include›

Subsequent
Assessment

Assign

TrackAnd
Monitor

CareProvision

Hospital

Pathway

Patient

PrimaryCare
Physician

ExtraClinicProvider

Fig. 2 Sketch of UML system design

3 Risk Factor Registry

The health, social, and behavioral health assessment of modifiable risks and
the related risk stratification in the patient induction screening is an ultracritical
component of the system design. This sets up requirements for the management
of a comprehensive approach to identifying and addressing risk factors, including
their individual and combinatorial effects on outcomes. Risk factors spanning
medical, social, and behavioral health are interlocking and interconnected in their
impact across medical social and behavioral health domains. Current research is
starting to develop complete registries of risk factors (Redding et al., 2018) with
quantitative information including relative weight of impact of these factors on
dependent variable outcomes such as hospitalization, emergency room use, total
cost of care, school performance, and employment. Such research is needed to
discover the signature risk combinations, groupings of specific factors, across health
and social domains that exponentially amplify impact. Such a registry is critical

520 B. P. Zeigler et al.

Transaction

Registration

Consent
Management

Information
SharingMedication

Management

PCPTeam

CareCoordination
Agencies HospitalSystem BehavioralHealth

Services

CentralReferal
System

HiExchange

‹include›
‹include›

‹extends›

‹extends›

‹extends›

Fig. 3 UML sketch of transactions guarded by consent management

to the ability to intervene, enabling laser targeting of preventive actions toward
individuals likely to experience catastrophic and expensive outcomes. Moreover, it
is necessary to distinguish individually modifiable factors of risk spanning medical
social and behavioral health (reference) from those that are not so modifiable so that
intervention and coordination services can be targeted in the most effective manner.

4 Comprehensive Healthcare Simulation

For testing of SoS designs such as Fig. 1 prior to fielding, an approach involving
live, virtual, and constructive (LVC) simulation is advisable as has been developed
in defense system contexts (Wikipedia LVC). Figure 4 illustrates the functionality
and enabling capacities of such a comprehensive facility that is designed to replicate
the various healthcare settings. The generic description of Fig 4. is based on the
Dr. Edwin G. & Dorothy Balbach Davis Global Center (Davis Global Center) at
University of Nebraska Medical Center as detailed in the section “Davis Global
Simulation Center” (see below). Domains of simulation include both clinical
(hospital), social, and behavioral health individually and in combination. Types of
simulation include surgical and interventional, as well as simulated communicated
care and prehospital preparation. Live simulation includes human acting patients.
Virtual simulation includes virtual reality portrayal of internal anatomical and
physiological systems and clinical settings. Constructive model-based simulation
includes computerized representations such as simulated responses, manikins, robot
surrogates, etc. Supporting infrastructure includes networking including middleware

Model-Based Systems-of-Systems Healthcare: Coordinating the Coordinators 521

Fig. 4 UNMC Davis Global Center Design: A Comprehensive Healthcare Simulation Facility

supporting real-time and abstract simulation (Wikipedia High-Level Architecture).
Furthermore, pervasive recording of all events occurring with simulation experi-
ences enables post-event analysis and rerunning of protocols later for training.

5 Current Research and Development

The system design outlined earlier is forward looking, but several existing techno-
logical developments can serve as foundational for its realization. Here we briefly
review such technology components as well as the continued research needed to
bring them readiness for deployment in the near future.

5.1 Population Health Management

Maryland is the only state with Medicare waiver that affects all patients treated
in Maryland hospitals. Under its rules, every payer pays the same charge for
the same care. In return, Maryland must slow the rate at which total hospital
costs are increasing. The goal of the new waiver is to simultaneously improve
health, quality, and affordability. Prevention Link is a program being developed
under a 5-year cooperative agreement between the Centers for Disease Control and
Prevention (CDC) and the Prince George’s County Health Department to lead the
collaborative development of regional infrastructure for chronic disease prevention

522 B. P. Zeigler et al.

+Prevention Programs Medication Management

Central Referral System

Care Management Services

Referral ManagementProgram Management

Consent-to-Share Consent Management

Tasks/Activity ManagementAlerts & NotificationsCare Coordination

Applications

Patient Portals, Mobile Apps
PCP and Care
Team Portals Population Health Management Software

Behavioral Health Services

Scheduling Appointments

Digital Health Technologies

Hospitals
Clinicians

Regional Health Information Exchange (HIE)

Extra-clinical
Providers

Electronic Health Records

Fig. 5 Central Referral System Platform for Coordination of Coordinators

and care across Southern Maryland. It combines evidence-based prevention and
care approaches, technology, and communications strategies to create a multifaceted
integrated system for improving health and wellness related to chronic disease
in Southern Maryland. The hypothesis is that a well-developed care management
program is the key to better outcomes and cost savings, especially in populations
with chronic disease. The ultimate goal is an effective, sustainable, and replicable
model to demonstrate how the All Payer Maryland model can be adopted by
other states. A system design, which is abstracted in Fig. 5, is being developed
to implement such a management program. The CRS hosts a suite of tools aimed
at improving the facilitation of care for linked care providers. Such software
tools include tools for Population Health Management, Care Coordination, Alerts
and Notifications, Tasks/Activity Management, Scheduling Appointments, Pro-
gram Management, Referral Management, and Prevention Programs. Maryland’s
statewide HIE (CRISP) allows providers to track the current location of their
patients and provides a variety of alerts and notifications about their statuses.
External services such as Medication Management, Care Management Services, and
Behavioral Health Services are integrated into the system via the HIE and CRS.

As described below, pathways developed through the Pathways Community
HUB Institute (PCHI) can be utilized to confirm identification and mitigation or
failure of mitigation of modifiable risks spanning medical, social, and behavioral
health domains. These granular measurements of meaningful work product com-
pletions in mitigated risk are critical, quality, payment, and tracking components to
implement effective coordination of the coordinators and related reporting required
at the population level. As they represent meaningful events with future impact on
health and the ability to live normal productive lives, each confirmed risk mitigation
within the Pathways Community HUB model approach represents an intermediate
or final patient outcome. These risk mitigation outcomes work individually and in
combinations to impact larger outcomes of disease control, birth outcomes, cost of
care, future school and job performance, etc. Experience with physicians working
closely with community health workers in the Pathways HUB located in Alaska
should be exploited in the development of PCP-based coordination of coordinators.

Model-Based Systems-of-Systems Healthcare: Coordinating the Coordinators 523

5.2 Prerequisites for Healthcare Learning System

A learning health and social service system must provide the right data and models
to support human selection of alternatives likely to improve the quality of its
services. It follows that a) there must be working definitions of quality of service,
for example, Porter’s Healthcare Value, defined as outcome divided by cost; b) there
must be systems implemented to measure, in an ongoing manner, the elements
of clinical, social, and behavioral health interventions that can be aggregated to
compute quality of service as defined; c) there must be implemented systems that
allow alternative component configurations (protocols, processes, procedures) to be
continually tested; and there must be systems to correlate measured quality with
component configurations to provide evaluations that humans can employ to help
select the most promising options. A prerequisite for such conditions to prevail in
such a system is that sufficient organization and infrastructure exist to support their
implementation. The CRS infrastructure of Fig. 5 must be extended to satisfy these
requirements in order to become a true learning healthcare system.

5.3 Pathways Community HUB

The Pathways Community HUB model is a delivery system for care coordination
services provided in a community setting (28). The model is designed to identify
the most at-risk individuals in a community, assess modifiable risks, connect them to
evidence-based interventions to mitigate risks, and measure the results (17). Specific
nationally standardized pathways spanning medical social and behavioral health
are utilized to track each specific risk identification including mitigation success,
failure, and time to completion. Community care coordination works to coordinate
care of individuals in the community to help address health disparities including the
social barriers to health.

The Pathways Community HUB model is a construct that enforces threaded
distributed tracking of individual clients experiencing certain pathways of inter-
vention, thereby supporting coordination of care and fee-for-performance based
on end-to-end outcomes (Redding et al. 2018). As an essential by-product, the
pathway concept also opens up possibilities for system-level metrics that enable
more coherent transparency of behavior than previously possible, therefore greater
process control and improvement reengineering.

Zeigler (2016) developed a Coordination Model that abstracts essential features
of the Pathways Community HUB model so that the kind of coordination it offers
can be understood and employed, in a general SoS context. This allows development
of a M&S framework to design, test, and implement such coordination models in a
variety of SoS settings, exemplified by healthcare, that present the issues that such
coordination models address. Formalization provides a firm basis for capitalizing
on the transparency that is afforded by the Pathways Community HUB model

524 B. P. Zeigler et al.

(Redding et al., 2018). Such pathways were represented as DEVS atomic models
with implementation in the form of an active calendar that combines event-based
control, time management, and data architecture capabilities (Zeigler et al., 2016).
Further, such DEVS Pathways can become components of coupled models, thereby
enabling activation of successors and sharing of information. Such pathway models
represent steps in a pathway as states that can constrain steps to follow each other in
proper succession with limited branching as required; external input can represent
the effect of a transition from one step to next due to data entry. Moreover, temporal
aspects of the pathways, including allowable duration of steps, can be directly
represented by the DEVS atomic model’s assignment of residence times in states.

The Pathways Community HUB model is being implemented in 40 community
networks in eight states. The span of care coordination services extends from
infancy through adults and elders. Health, social, and behavioral health factors
are all required components of risk identification and mitigation. Initial publica-
tions have described and demonstrated improved outcomes and reduced cost of
care (Alley et al., 2016; Redding et al., 2015). The Pathways Community HUB
Certification Program (PCHCP) within the PCHI holds the national standards
and certification of HUBs and has committed to modification of the standards
based on the available scientific evidence. The model is currently deployed in
programs focusing on maternal and child health, adults with chronic disease, the
justice involved, behavioral health, substance abuse disorder, high-risk elementary
students, and others.

5.4 Risk Registry

Effective modeling and simulation outcomes research is clearly needed to produce
the guiding registries to inform the risk mitigation interventions and payment
approaches to improve health and economic success, starting with the most at-
risk individuals and families. Such research is needed to identify the signature
combinations to screen for supporting laser targeting of individuals and families
with specific, relationship empowered risk mitigation interventions with proven
predictive improvements in health and cost. The same modeling can inform hospital
systems, social service, childhood education, strategies for parenting intervention,
and related learning and behavior change approaches. The breadth of US health and
social services fits well within the strategic analysis of identified and addressed risk.
There is no current tracking or accountability for risk identification and mitigation.
Consistent with Toyota production methodology, LEAN production strategies, and
value chain analysis (Porter and Teisberg, 2006), this new strategic taxonomy, work
item tracking, and evaluation structure can help health and social services produce
outcomes using the driving and quality-focused approaches in American business.
Research is needed to help in finding the granular meaningful chunks of outcome
which can then be linked together in value chain analysis.

Model-Based Systems-of-Systems Healthcare: Coordinating the Coordinators 525

Multiple national research centers, policy centers, and a network of community
initiatives are engaged in research to develop the initial and ongoing registry of
trajectory intelligence for modifiable risks. The intent is to inform policy and
payment approaches to address risk mitigation. Research lines include:

• Continued growth of the risk registry and validation of the registry contents, as
well as the development of educational and training representational forms of the
registry.

• Modifiable risks that must be mitigated with learning-based (behavior change)
focused interventions represent more than one third of the total registry of risks.
These risks that include critical factors such as safe sleep, nutrition, parenting,
childhood education support, medication compliance, and many others represent
a substantial contribution to the outcomes the health and social service system
seeks to improve. The positive effect of supportive professional relationships
that serve to personally engage and substantially modify the learning-based risks
is a critical component that has been built into successful care coordination
approaches (Agency for Healthcare Research and Quality, 2016). It is known
that community engagement and involvement of community health workers
in these transformative efforts play essential roles in the culturally competent,
interpersonal relationships that empower and support behavior change and the
related risk reductions achieved as part of coordination of care (Redding et al.,
2018).

• Characterization of individually modifiable risks (need of a medical home,
medication adherence, clothing) and household risks (lack of housing, utilities,
food access) in contrast to population risks (such as lack of housing supply,
racism, neighborhood safety). Clarifying this taxonomy of risks further in the
published literature will substantially improve our ability to share strategic
information and improve the effectiveness of our efforts to focus programming
and payment on the specific components of the system where there are gaps. For
example, high recordings of incomplete pathways in Ohio for homeless expectant
mothers are helping to provide specific numeric data to inform the need for the
population-level interventions needed to increase the overall supply of housing
in communities.

• Continued development of appropriate metrics for pathways and the comparison
of their effectiveness in pay-for-performance in contrast to Healthcare Effective-
ness Data and Information Set (HEDIS), shared savings, and others.

6 Davis Global Simulation Center, Omaha, Nebraska

A simulation center and state-spanning network is well under development centered
at the University of Nebraska Medical Center in Omaha. The Davis Global Center
is a highly advanced clinical simulation facility purposefully designed to foster
the practice of patient care in highly functioning and effective interprofessional

526 B. P. Zeigler et al.

teams. The Center provides realistic replicated healthcare settings in which teams
can practice and experiment safely. Its mission (iEXCEL) is improving human
performance and effectiveness in healthcare by providing “Next-Gen” training
that is early and throughout a lifetime of training. The aim is to develop a
truly interprofessional training model (nurses, doctors, pharmacists, allied health,
public health, dentistry, etc.) and work together, using simulation to do hands-on
(experiential) procedures, team training, complex medical scenarios, etc. Simulated
care is patient centered with special focus on “hand-offs” from one provider or
team to a second. Training is to be outcomes-oriented, i.e., competency-based
(including communication, professionalism, value-based care, etc.) using XReality
(Wikipedia XReality) including holographic technology to foster innovation, new
ways of learning, patient care, etc. A high capacity/high speed network that connects
across the state (and globally) provides state-wide outreach using digital and visual
technologies (remote and distributed learning.) The simulation facility attempts to
replicate the entire healthcare system (home to hospital and back!) which includes
the following capabilities:

• Advanced simulation – including in situ live, virtual, constructive exercises
• Surgical and procedural labs
• XReality Labs – including immersive environments (CAD walls, interactive

digital walls, 5-sided CAVE, etc.)
• Clinical test bed for research and development using simulation and visualization
• Disaster preparedness training and emergency management skills
• Biocontainment and infectious disease readiness training
• Data capture capabilities (enabling computation of metrics for human perfor-

mance)

7 Conclusion

A design for a model-based system-of-systems design for HIT infrastructure
can support innovative high-level coordination of the coordinators. We described
existing foundations for implementing such a design such as digital platforms,
pathways-based community coordinator organizations, risk factor registries, as
well as comprehensive simulation facilities where the design and its components
can be tested. Challenging research and development based on modeling and
simulation are required to enable integrating such foundations into a working whole.
Research in population management coordination of coordinators, risk registry, and
comprehensive simulation facility will be particularly motivated in applications that
require integration of all three. For example, in learning-based risks, development
of appropriate learning pathway resources in which new parents are supported to
achieve parenting strategies is proven to reduce adverse childhood events, decrease
protective service involvement, and improve school performance. This intervention
combined with identifying and addressing interlocking risks of access to medical

Model-Based Systems-of-Systems Healthcare: Coordinating the Coordinators 527

care, housing, food, and others can be coordinated through interaction with all
agencies related to baby care, care team providers, and health workers. Team-based
providers of care as well as the individuals and families served can be educated
though virtual reality simulation critical to achieve the behavior change of parents.

References

Agency for Healthcare Research and Quality. 2016. Connecting Those at Risk to Care:
The Quick Start Guide to Developing Community Care Coordination Pathways. https://
innovations.ahrq.gov/sites/default/files/Guides/CommHub_QuickStart.pdf

Alley, D.E., C. Asomugha, P. Conway, and D. Sanghavi. 2016. Accountable Health Communities
— Addressing Social Needs through Medicare and Medicaid. The New England Journal of
Medicine 374: 8–11.

CRISP (Chesapeake Regional Information System for our Patients) https://www.crisphealth.org/
Dahmann, J. 2018. Systems Engineering Guide., MITRE Publication, McLean VA. https://

www.mitre.org/publications/systems-engineering-guide/about-the-seg. Accessed 11 Nov 2018.
iEXCEL https://www.unmc.edu/iexcel/
Jamshidi, M., 2008. (editor) Systems of Systems – Innovations for the 21st Century, Wiley, New

York.
Madni, A.M. 2018. Transdisciplinary Systems Engineering: Exploiting Convergence in a Hyper-

Connected World. Heidelberg: Springer.
ONC, Consent2Share, ttps://www.healthit.gov/topic/health-it-health-care-settings/behavioral-

health-consent-management
Porter, M. E. and Teisberg, E. O. 2006. Redefining Health Care: Creating Value-based Competition

on Results. Harvard Business Review Press; 1 edition
Redding, S., E. Conrey, K. Porter, J. Paulson, K. Hughes, and M. Redding. 2015. Pathways

community care coordination in low birth weight prevention. Journal of Maternal and Child
Health 19 (3): 643–650. https://doi.org/10.1007/s10995-014-1554-4.

Redding, R., Hoornbeek, J., Zeigler, B., Kelly, M., Redding, S., Falletta, L., Minyard, K., Chiyaka,
E., Bruckman, D., 2018. Risk Reduction Research Initiative: A National Community–Academic
Framework to Improve Health and Social Outcomes. Popul Health Manag, Published Online:13
Aug 2018, https://doi.org/10.1089/pop.2018.0099

Wikipedia High Level Architecture, https://en.wikipedia.org/wiki/High_Level_Architecture
Wikipedia LVC, https://en.wikipedia.org/wiki/Live,_virtual,_and_constructive
Wikipedia XReality (XR) https://en.wikipedia.org/wiki/X_Reality_(XR)
Wymore, A.W. 1993. Model-Based Systems Engineering. Boca Raton: CRC Press.
Zeigler, B.P. 2016. Discrete event system specification framework for self-improving healthcare

service systems. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2016.2514414.
Zeigler, B.P., Marvin, J.W.; Cadigan, J.J. 2018. Systems Engineering and Simulation: Converging

Toward Noble Causes. In Proceedings of the 2018 Winter Simulation Conference. Gothenburg,
Sweden.

Zeigler, B.P., S. Redding, B.A. Leath, E.L. Carter, and C. Russell. 2016. Guiding Principles for
Data Architecture to Support the Pathways Community HU Model. eGEMs 4 (1). https://
doi.org/10.13063/2327-9214.1182.

Zeigler, B.P., M. Traoré, and G. Zachariwicz. 2018. Value-based Learning Healthcare Systems:
Integrative Modeling and Simulation. London: IET Publication.

https://innovations.ahrq.gov/sites/default/files/Guides/CommHub_QuickStart.pdf
https://www.mitre.org/publications/systems-engineering-guide/about-the-seg
http://dx.doi.org/10.1007/s10995-014-1554-4
http://dx.doi.org/10.1089/pop.2018.0099
http://dx.doi.org/10.1109/JSYST.2016.2514414
http://dx.doi.org/10.13063/2327-9214.1182

Model-Based Systems Engineering for
CubeSat FMECA

Evelyn Honoré-Livermore and Cecilia Haskins

Abstract The CubeSat standard has given universities, small companies, develop-
ing countries, and others a new gateway to space exploration and space knowledge.
Combined with shorter development time and Commercial Off-The-Shelf compo-
nents, the cost has been lowered considerably. However, the combination of use of
low-maturity components and inexperienced development teams results in a short
lifetime and poor reliability for most CubeSats. The growth of model-based systems
engineering (MBSE) supports reuse of design architectures in many industries and
has lowered the costs of development and is gaining popularity in CubeSat teams.
This paper demonstrates the application of reliability methods for implementing
dependability analysis in MBSE and shows how this can benefit CubeSat teams
struggling with limited personnel resources and low experience with space systems.

Keywords CubeSat · MBSE · Model · FMEA · FMECA · Risk assessment ·
Systems engineering

1 Introduction

An increasing number of small satellite projects are conducted at universities,
many of which do not have previous space hardware or software experience or
relevant curriculum to support the development. There are several reasons for
this, such as better access to Commercial Off-The-Shelf (COTS) components,
cheaper launch opportunities, introductory courses from the National Aeronautics
and Space Administration (NASA) and the European Space Agency (ESA), multiple
papers and guidelines on how to develop and build small satellites, and an
increasing demand from students for projects with hands-on experience (Langer
et al. 2015; Langer and Bouwmeester 2016; Holtstiege and Bridges 2018; Luther

E. Honoré-Livermore (�) · C. Haskins
Norwegian University of Science and Technology, Trondheim, Norway
e-mail: evelyn.livermore@ntnu.no

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_45

529

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_45&domain=pdf
mailto:evelyn.livermore@ntnu.no
https://doi.org/10.1007/978-3-030-82083-1_45

530 E. Honoré-Livermore and C. Haskins

2016; Berthoud and Schenk 2016; Larsen and Nielsen 2011). Approximately 500
CubeSats are launched each year, where 40% of them are launched by universities
(Kulu 2019). However, research shows that the lifetime of a CubeSat mission is
short, with over 50% of the satellites DOA (dead on arrival) (Swartout 2019b).

Efforts to increase the reliability of CubeSats should increase the success rate
of missions. Having a more systematic approach to reliability and verification and
validation (V&V) of the satellite in early phases is strongly recommended by the
literature, as well as learning from other CubeSat or small satellite projects through
lessons learned databases or reuse of design. Universities without space experience
may not be aware of these resources when they start a new project and therefore
work in a more ad hoc manner without the rigor and discipline space projects require
(Swartout 2019a).

The use of model-based systems engineering (MBSE) has been promoted as an
option to provide a development platform to perform different types of analyses
to support the design of a small satellite. The International Council on Systems
Engineering (INCOSE) Space Systems Working Group (SSWG) is developing
a CubeSat Reference Model (CRM) for this purpose (Kaslow and Madni 2017;
Kaslow et al. 2018). By using the CRM as a starting point of a CubeSat project,
it is possible to take a more systematic approach to reliability and V&V, as the
reference model also includes guidelines on how to develop the CubeSat mission
itself and pointers on how to work with V&V.

This paper describes the use of MBSE within a RAM-SE (reliability availability
maintainability - systems engineering) framework for improved reliability analyses
through the application of failure mode, effects, and criticality analysis (FMECA)
and subsequent risk management. The case study is the HYPer-spectral Smallsat
for ocean Observation (HYPSO) satellite developed at the Norwegian University of
Science and Technology (NTNU) (Honoré-Livermore 2019). The paper builds on
the work submitted by three bachelor students in 2019 (Moen et al. 2019).

2 Background

CubeSats are satellites built on the standard of a 10 cm x 10 cm x 10 cm cube. While
both NASA and ESA recommend following strict reliability and quality approaches
for their long-term missions, these practices often are costly and not realistic
for universities. Both organizations have recommendations for CubeSat builders,
such as derating for electrical components, basic failure detection, isolation, and
recovery (FDIR) analysis guidelines, applying FMECA to both the functional and
physical product tree, and planning a high degree of early testing and verification
of subsystems as well as end-to-end functional testing (TEB 2016; CalPoly Sat
Program 2017; Capogna and Gupta 2018).

While traditional space projects conducted by NASA/ESA have access to a
large knowledge base and experienced people and may use 5–15 years in devel-
opment, CubeSat projects approach dependability analysis pragmatically. Access to

Model-Based Systems Engineering for CubeSat FMECA 531

resources determines the level of analysis performed under conditions of limited
knowledge, short schedules (2–3 years), and constrained budgets (Langer and
Bouwmeester 2016; Faure et al. 2017). In addition, it is typical for CubeSats
to use COTS components that have lower reliability, lower technology readiness
level (TRL), and less data available to perform the reliability analysis. Performing
FMECA on CubeSats has been discussed (Menchinelli et al. 2018) where a practical
approach to managing risk through FMECA is described.

CubeSat university projects face several challenges, most notably in access to
knowledge and experienced project management, which often directly influence
the success of any mission (Honoré-Livermore 2019; Cho and Mazui 2016;
Bouwmeester et al. 2008). University teams struggle with not having enough people,
high turnover due to graduation, lack of previous experience with project work
and multidisciplinary project teams, and finally, but not the least, the challenge
of building a satellite to work in space including the stringent requirements for
documentation and evidence of space systems testing results.

NTNU has been working on small satellites and CubeSats for the past decades
(Grande et al. 2017) but only recently with a mission based on oceanographic
research with funding from the Research Council of Norway for both hardware and
launch (Honoré-Livermore 2019). Previously, much of the work was conducted in
a student organization or loosely associated with course assignments. Today, there
is a team of 20–30 undergraduate and graduate students working on developing the
HYPSO satellite. As a part of this activity, there is research in systems engineering
and project management on how to improve the processes and methods applied in a
university-based CubeSat project to increase the probability of mission success and
the satisfaction of students and supervisors for their academic work.

3 MBSE for CubeSat

Systems engineering (SE) emerged from the engineering of complex systems and
is today an integral part of product development in many industries and fields
of research. Applying model-based systems engineering (MBSE) as a part of the
process is gaining popularity as the tools and methods mature and offer greater
interoperability between disciplines in complex product development and life cycle
management. The MBSE approach proposes a unified model that can provide
the different viewpoints necessary to perform analyses in all engineering domains
(Piggott et al. 2007). The viewpoints offer a variety of relevant information and
hide the nonrelevant data to focus analysis depending on the need (Friedenthal and
Oster 2016; Haberfellner et al. 2019). Recent advances in the realm of MBSE show
increased interoperability between the system model, mechanical analysis tools,
electrical analysis tools, and other design tools (Brower et al. 2019; Madni and
Sievers 2018).

Not all SE tools support the modeling elements needed for reliability analysis but
most offer customization options. There are also other approaches to add the failure

532 E. Honoré-Livermore and C. Haskins

analysis elements to the model, such as using export/import functions between the
system model and the safety model (Sango 2018). A failure mode is the absence of
a function or a nondelivery of a need (Schindel 2010), and an added benefit of using
MBSE is that the failure analysis can be performed at all phases of the development,
as it is possible to identify failure modes at the top level of a system even before the
system has been designed. Integrating failure analysis in MBSE can lower costs
and time spent on dependability analysis through providing a more systematic
framework and increase communication on safety analysis and design. Baklouti
et al. discuss the state-of-the-art research of FMECA and MBSE in their paper
(Baklouti et al. 2019) and describe a use case for analysis of an electromechanical
actuator system. The study by Gregory et al. (2020) recommends the use of MBSE
in Functional Avionics in spacecraft for Communication and Consistency and for
Template Model Framework. NASA discusses the requirements for a framework
for safety analysis of space missions in Evans et al. (2018). This is aligned with
ESA and NASA’s overall strategy to manage complex space missions with MBSE.

4 RAM and SE Framework

Reliability, availability, and maintainability (RAM) analysis aims at using engineer-
ing knowledge and techniques to control the risk of experiencing failures and to
reduce engineering uncertainties (O’Connor & Kleyner, 2012). The main activities
of RAM engineering cover (1) artificial experiments to test out the properties of a
given system or parts and (2) analysis and modeling techniques to reveal the cause-
effect relationships between failure and specific conditions (Verma et al., 2015).

RAM analysis can be both qualitative and quantitative. Qualitative analysis is
used to identify failure modes, mechanisms, and causes (such as FMECA) and
determine the possible maintenance and test strategies. As the design matures, these
analyses may be iterated and updated via communication and consultation with
operators, manufacturers, and designers.

Space system design is a concurrent and collaborative process, where different
engineering teams are involved. The RAM issues must be considered as early
as possible to support the decision-making about redundancy, modularization,
strategies for interventions, and the like. However, the effect of RAM considerations
is not easily observed by the whole engineering team, and RAM methods do not
have a well-defined interface with other analyses carried out in parallel phases of the
design. A similar problem is also identified by Barnard (2008) who points out that
the overemphasis on probabilistic modeling frequently leads to misinterpretation
of RAM analysis, which can lead to bad design or waste of engineering efforts. A
recently proposed RAM-SE framework recommends several activities to integrate
both the SE and RAM community as shown in Fig. 1a (Zhang et al. 2018).

Estimation of the reliability of the components and in-house developed software
is done by the team when better sources of data are not available. The results of the
analysis are thus dependent on the expertise and configuration of the team and may

Model-Based Systems Engineering for CubeSat FMECA 533

Fig. 1 (a) Conceptual RAM-SE (Zhang et al. 2018). (b) Classes used for modelling from (Kratzke
2018). The classes in black are the existing ones in the tool, while the classes in red are the ones
that needed to be added. Some of the attributes given in red already existed, while others had to be
added

Table 1 Advancements for RAM methods in SE context (Zhang et al. 2018)

Methods Objectives Advancements of systems thinking

FMECA Use a basis for detailed RAM
analysis and maintenance
optimization and planning

Systematically identify all operational modes
and functions attached to each potential failure
modes

Document the effect of failure
on system

Carry out an extended/revised type of FMECA
that is able to involve dynamic aspects of key
scenarios; see also the discussion in Issad et al.
(2017)

not be valid. However, the exercise of performing the analysis and the ranking of
critical failure modes and causes are valuable because they create awareness in the
team of potential issues in the design. In addition, the cognitive process of thinking
about dependability and reliability can lead to better design processes and decisions
in the future.

An FMECA analysis can be categorized broadly into two different types based
on the approach: top-down functional FMECA or bottom-up component FMECA –
given from MIL-STD-1629A (Department of Defense 1980). Depending on the
phase of the project and the maturity of design and other information available,
one is more appropriate than the other. Using a model-based approach allows for a
unification of these types.

When the system is continuously modeled from the operational, functional,
logical, and physical viewpoint, it is possible to combine the different types of
analysis and aggregate the data. The operational viewpoint is implemented through
the functional design which in turn is allocated onto logical units that are finally
realized in the physical design. Depending on the tools used for modeling, real data
from testing and verification can also be introduced and give a fifth viewpoint and
source of information for the dependability analysis (Schindel 2010; Bürger 2019).
Table 1 indicates benefits of integrating RAM and SE models.

534 E. Honoré-Livermore and C. Haskins

Incorporating RAMS aspects as early as possible gives several advantages in the
form of engineering efforts and budgets in many industry sectors such as nuclear,
satellite, and aviation, where the analysis is further amplified by the complexity of
design solutions (Zhang et al. 2018).

5 Modeling and FMECA Implementation

The SE tool used to implement FMECA in this research did not have the necessary
modeling elements natively. The classes that had to be added to the modeling tool
were based on a presentation given by Kratzke (2018) shown in Fig. 1(b). These
classes were added to represent failure mode, failure cause, failure reduction, and
the relationships between these and with the existing classes. The modeling and
FMECA were performed on the NTNU HYPSO mission. The CubeSat consists of
multiple subsystems, shown in Fig. 2. The payload (PLD) subsystem interacts with
the subject of interest and is the most critical part of the space segment. The payload
consists of several subsystems: HyperSpectral Imager (HSI), RGB camera (RGB),
Onboard Processing Unit (OPU), and Break-Out Board (BOB).

System to be analyzed HYPSO CubeSat mission. The mission of the satellite is
defined by a mission statement and mission success criteria. These are the most
important requirements of the mission, and therefore, the FMECA analysis chose
to focus on these. The system was modeled in a MBSE tool, with requirements,
component trees, functional trees and chains, and operational user scenarios. Since
the HYPSO team is tasked with developing the payload systems and ground
segment, while the other subsystems are COTS components with a higher TRL, the
analysis was limited to the space segment payload systems and the ground segment.

FMECA workshops FMECA workshops were conducted during which the
HYPSO team members were asked to identify the operational modes for each
of the subsystems and which functions were necessary for the operational modes

Fig. 2 The HYPSO CubeSat physical hierarchial structure in MBSE

Model-Based Systems Engineering for CubeSat FMECA 535

that would then be used as a basis to identify the failure modes. Using the mission
success criteria, which are reflected in the concept of operations of the system, the
FMECA focused on the critical parts of the performance of the system.

Failure mode assessment The assessment followed a procedure tailored from the
aforementioned Mil-Std-1629A (Moen et al. 2019). Each failure mode is assessed
with respect to severity (scale 1–5, where 1 is negligible and 5 is absence of
function) and occurrence (scale 1–5, where 1 hardly ever occurs and 5 is probable).
This analysis provides the criticality number, given by the multiplication of severity
and occurrence. Next, the failure modes are assessed according to their detectability
(scale 1–10). A high detectability is given index 1, meaning that it is easy to identify
the failure, i.e., that only one type of failure can give the effect that is observed. For
many CubeSats, having a high level of detectability is more important than avoiding
all failure modes, especially if there is a method to reset or remove the failure.
Identifying the failure mode can also allow for redesign of the system in the next
satellite. The attributes are evaluated and added to the model and used to calculate
the Risk Priority Number (RPN), which is given by the multiplication of severity,
occurrence, and detectability.

A total of 69 failure modes 65 causes and 45 failure reduction actions were
identified and modeled. The PLD subsystem BOB is used here as an example of
the actual implementation (see Fig. 3 and Fig. 4). The severity, occurrence, and
detectability attributes were determined based on the workshop input, resulting in
ranked failure modes. These attributes are assumed to be evaluated for nominal
operations, not for ground testing or integration.

Fig. 3 BOB with its failure modes displayed in a hierarchy diagram. One of the failure modes has
been expanded to show the failure causes and reduction methods

536 E. Honoré-Livermore and C. Haskins

Fig. 4 Risk matrix for BOB failure modes. The RPN is referenced to a scale of 100,and then into
ranges of 20 to give the resulting 1–5 indexing

The FMECA model and attributes are used to generate a risk matrix composed of
RPN and severity. The risk matrix includes severity as a high RPN number may not
indicate a true risk to the project. The risk matrices are given per subsystem to make
it simpler for the team to use. The critical failure causes and their corresponding
reduction methods should then be prioritized in project work.

6 Discussion

The process identified 13 risks for BOB. Of these, eight were of severity rating 5.
The risk matrix in Fig.4 was configured such that all causes with severity rating
5 would need corrective action, as this indicates a nonfulfillment of minimum
mission success criteria. Prior to the workshop and modeling, only the loss of power
transmission had been considered as a risk in design discussions. Based on this
analysis, the BOB component has been updated to reduce the number of critical risks
through implementation of failure reduction measures. This process agrees with the
RAM-SE process proposed in Fig. 1(a) where the design concept is modeled in
MBSE and the subsequent RAM analysis is integrated in the model.

The modeling tool supports the inclusion of actors (humans) and their influence
on the system through, e.g., use cases, but this was not considered in the modeling.
Human error can be a considerable cause of failure modes to the system. The focus
on mission success criteria when analyzing the system also left out an important
part of the CubeSat development life cycle: test and verification. Use cases can be
developed for test activities such as shock or vibration, which carry high risk of
damage to the device under test (DUT) and personnel. Including these use cases
for future CubeSat modeling would address additional risk areas. Additionally, the
choice of perspective when modeling and analyzing did not support evaluation
of simultaneous failure. A fault tree analysis (FTA) on a functional level would

Model-Based Systems Engineering for CubeSat FMECA 537

increase the chance of discovering if two faults would give a severe impact that they
individually would not in the FMECA. This is supported in the class relationship
implemented according to Fig. 1(b). Limited knowledge about the reliability of
low-TRL components lowers the validity of the analysis. It is largely dependent on
the people attending the workshop and their ability to properly assess the severity,
occurrence, and detectability of individual events. Modeling facilitates visualization
of the relationships between the failure modes, the components, the functions, and
the overall success criteria.

For CubeSat teams, the starting point of a reference model such as the CRM
provided by INCOSE SSWG lessens the burden on the faculty to have prior
experience with satellite systems and focuses the teamwork on specific subsystems.
The university teams can then populate the model with the known information
such as regulations, existing ground systems, communication capabilities, and
operational aspects specific to the organization. The reuse of a model with failure
analysis built in from the previous mission or other teams’ missions will reduce
the team resources needed to perform dependability analysis. An added benefit
from using MBSE is the potential of automated analyses on the same model. Each
element in a model will have attributes that can be analyzed automatically through
scripts or functions in the tool. For dependability analysis, it is then a matter of
checking what the change of one element will have on the overall dependability of
a system.

Swartout (2019a) highlights the need for “streamlined practices, experientially
developed” and recommends increasing the time spent on integration and test,
also supported in Faure et al. (2017). Designing the system in MBSE through the
application of a CRM and incorporated dependability analysis could be a part of
the “streamlined practices” to improve the design maturity faster, thereby allowing
more time to perform integration and test.

7 Conclusion

Developing and building complex systems is a challenge, and while CubeSats are
small, they are still complex systems requiring a systematic engineering approach.
Statistics show that there are still many CubeSat missions that fail, mostly because
of low dependability. However, performing the full dependability and quality
management that NASA and ESA recommend is not feasible for small university
teams lacking both people, money, and time. A pragmatic approach to dependability
analysis through the usage of MBSE systems that can support the FMECA analysis
offers promise to increase dependability for university CubeSat teams.

This paper has shown how the framework suggested by Kratzke (2018) can be
applied to an existing CubeSat MBSE model and can support the subsequent risk
management from the FMECA workshops. The FMECA workshop and modeling
enabled the HYPSO team to understand which failure modes are associated with
different subsystems and how these affect the overall success criteria for the mission.

538 E. Honoré-Livermore and C. Haskins

It also established a priority for completing different failure reduction activities
and highlighting critical interfaces and components/functions. Using visualization
through the operational scenario modeling and focusing the effort on making the
mission a success have proven to be of great value to the CubeSat team that did not
have previous experience with dependability analysis. It also enables keeping the
information connected and ensures traceability for future design decisions.

The results agree with the suggestions of Gregory et al. (2020); MBSE has been
used as a tool to improve Communication and Consistency of the RAM (project)
information, and it can be reused in future spacecraft building on the same spacecraft
subsystem structure with little rework necessary. The framework could be a part of
the university MBSE template or used to extend the CRM.

Incorporating the CubeSat Reference Model with FMECA analysis from an
operational or functional top-down view or component-based bottom-up view has
required less effort than starting from scratch. Furthermore, the analysis could be
performed at different phases of the development, as the failure modes are relevant
on higher operational levels as well as lower functional or logical levels. Reuse and
continuous development of the systems are facilitated using MBSE as suggested by
Madni and Sievers (2018).

For this preliminary work, the risk assessment was done in a separate tool from
the MBSE tool because the research team uses a project management suite. As
future work, this could be automated and linked to improve workflow. Additionally,
future work should explore how the lessons learned and failure analysis from
multiple teams could be aggregated into the reference model, highlighting typical
failure modes that are associated with certain interfaces or types of subsystems.

Acknowledgments This work is supported by the Norwegian Research Council (Grant No.
270959), the Norwegian Space Agency, and the Centre of Autonomous Marine Operations and
Systems (NTNU AMOS).

References

Baklouti, A., N. Nguyen, F. Mhenni, J. Choley, and A. Mlika. 2019. Improved Safety Analysis
Integration in a Systems Engineering Approach. Applied Sciences 9.

Barnard, R. W. A. (2008). What Is Wrong with Reliability Engineering? Paper presented at the
Proceedings of the 18th Annual INCOSE International Symposium, Utrecht, the Netherlands.

Berthoud, L, Schenk, M., 2016. How to Set Up a CubeSat Project – Preliminary Survey Results.
In 30th Annual AIAA/USU Conference on Small Satellites. Logan, UT.

Bouwmeester, J., G.T. Aalbers, and W.J. Ubbels. 2008. Preliminary Mission Results and Project
Evaluation of the Delfi-C3 Nano-Satellite. In 4S Symposium Small Satellites Systems and
Services. Rhodes: Greece.

Brower, E.W., C. Delp, R. Karban, M. Piette, I. Gomes, and E. Wyk. 2019. OpenCAE Case Study:
Europa Lander Concept. Torrance: In INCOSE International Workshop.

Bürger, E.E., 2019. A conceptual MBSE framework for satellite AIT planning. Doctoral thesis.
Instituto Nacional de Pesquisas Espaciais.

California Polytechnic’s PolySat Program. 2017. CubeSat 101. California Polytechnic State
University at San Luis Obispo.

Model-Based Systems Engineering for CubeSat FMECA 539

Capogna, F., Gupta, V., 2018. How to increase CubeSat reliability! ESA (TEC-QCD).
Cho, M., Mazui, H., 2016. Best practices for successful lean satellite projects. In 4th UNISEC

Global Meeting.
Defense, Department of. 1980. MIL-STD-1629A Procedures for performing a Failure Mode,

Effects and Criticality Analysis. Washington, DC.
Department of The Air Force. 1988. MIL-STD-1543B Reliability program requirements for Space

and Launch Vehicles. Washington, DC.
Evans, J., F.J. Groen, L. Wang, S. Okon, R. Austin, A. Witulski, N. Mahadevan, S. Cornford,

M. Feather, and N. Lindsey. 2018. Towards a framework for reliability and safety analysis of
complex space missions. International Journal of Human Factors Modelling and Simulation 6:
203.

Faure, P., A. Tanaka, and M. Cho. 2017. Toward lean satellites reliability improvement using
HORYU-IV project as case study. Acta Astronautica 133: 33–49.

Friedenthal, S., Oster. C., 2016. Applying SysML and a Model-Based Systems Engineering
Approach to a Small Satellite Design. In Richard Curran John Hsu (ed.), Advances in Systems
Engineering (American Institute of Aeronautics and Astronautics: Reston, Virginia, USA).

Grande, J., Birkeland, R., Gjersvik, A., Mathisen, S., Stausland, C., 2017. Norwegian student
satellite program – lessons learned. In 68th IAC.

Gregory, J., Berthoud, L., Tryfonas, T., Rossignol, A., Faure, L. 2020. The long and winding road:
MBSE adoption for functional avionics of spacecraft. Journal of Systems and Software, 160,
art. no. 110453

Haberfellner, R., O. de Weck, E. Fricke, and S. Vössner. 2019. The Systems Engineering Basics in
Our Systems Engineering Concept. In Systems Engineering: Fundamentals and Applications.
Springer: Cham.

Holtstiege, J., Bridges, C., 2018. Lean satellite design for amateur communications payload in the
ESA ESEO mission.

Honoré-Livermore, E. 2019. CubeSats in University: Using Systems Engineering Tools to Improve
Reviews and Knowledge Management. Procedia Computer Science 153: 63–70.

Issad, M., Kloul, L., & Rauzy, A. (2017). A scenario-based FMEA method and its evaluation in a
railway context. Paper presented at the Reliability and Maintainability Symposium (RAMS).

Kaslow, D., Ayres, B., Cahill, P., Hart, L., Levi, A., Croney, C., 2018. Developing an MBSE
CubeSat Reference Model – Interim Status #4. In 2018 AIAA SPACE and Astronautics Forum
and Exposition. Orlando, FL.

Kaslow, D., Madni, A., 2017. Validation and Verification of MBSE-compliant CubeSat Reference
Model. In Conference on Systems Engineering Research, edited by Barry Boehm Azad M.
Madni. Redondo Beach, CA, USA.

Kratzke, R., 2018. Failure Modes Effects Analysis in MBSE. In INCOSE Texas Gulf Coast
Chapter. Houston, TX.

Kulu, E., 2019. NanoSats database. Accessed June 2019. https://www.nanosats.eu/.
Langer, M., Bouwmeester, J.. 2016. Reliability of CubeSats – Statistical Data, Developers’ Beliefs

and the Way Forward. In AIAA/USU Conference on Small Satellites.
Langer, M., C. Olthoff, J. Harder, C. Fuchs, M. Dziura, A. Hoehn, and U. Walter. 2015. Results and

lessons learned from the CubeSat mission First-MOVE. In Small Satellite Missions for Earth
Observation, 10th International Symposium. Berlin: IAA.

Larsen, J., and J.D. Nielsen. 2011. Development of cubesats in an educational context. In
International Conference on Recent Advances in Space Technologies, 777–782. Istanbal: IEEE.

Luther, S. T., 2016. SysML Based CubeSat Model Design and Integration with the Horizon
Simulation Framework. Master of Science, California Polytechnic State University.

Madni, A., Sievers, M., 2018. Model-Based Systems Engineering: Motivation, Current Status, and
Needed Advances. In Disciplinary Convergence in Systems Engineering Research. Springer
International Publishing.

Menchinelli, A., F. Ingiosi, L. Pamphili, P. Marzioli, R. Patriarca, F. Costantino, and F. Piergentili.
2018. A Reliability Engineering Approach for Managing Risks in CubeSats. Aerospace 5: 121.

https://www.nanosats.eu/

540 E. Honoré-Livermore and C. Haskins

Moen, A. K. A, Sjøvold, E., Jordheim, O.. 2019. Implementation of FMECA in Small Satellite
Development. Norwegian University of Science and Technology. Bachelor thesis.

O’Connor, P., and A. Kleyner. 2012. Practical Reliability Engineering. 5th ed. Hoboken: Wiley.
Piggott, S., P. Melanson, and L. Hartman. 2007. A Vision for Super-Model Driven Systems

Engineering. INCOSE International Symposium 17: 52–65. https://doi.org/10.1002/j.2334-
5837.2007.tb02857.x.

Requirements and Standards Division, ESA-ESTEC. 2009. Space product assurance: Dependabil-
ity, FME(C)A. Noordwijk, NL.

Sango, M., 2018. Model Based Safety Analysis Thanks to the Bridge Between Capella and
Safety Architect. Accessed August 2019, https://www.youtube.com/watch?v=-NtUKdaUGdc.
YouTube.

Schindel, W.D. 2010. Failure Risk Analysis: Insights from MBSE. INCOSE International Sympo-
sium 20: 1227–1239.

SEMATECH. 1992. FMEA: A Guide for Continuous Improvement for the Semiconductor Equip-
ment Industry.

Swartout, M., 2019a. CubeSat Mission Success: Are We Getting Better? In 2019 CubeSat
Developers’ Workshop. San Luis Opisbo, CA.

———. 2019b. Mission Success for Universities and Professional Programs. Accessed September
2019. https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database/repeat-success.

TEB. 2016. Product and Quality Assurance Requirements for IOD CubeSat Projects. TEC-
SY/129/2013/SPD/RW. Noordwijk, NL.

Verma, A.K., S. Ajit, and D.R. Karanki. 2015. Reliability and Safety Engineering. United
Kingdom: Springer London Ltd.

Zhang, J., Y. Liu, M.A. Lundteigen, and C. Haskins. 2018. The Application of Systems Engi-
neering for Framing Reliability. Availability and Maintainability in Subsea Design. Systems
Engineering. https://doi.org/10.1002/sys.21462.

http://dx.doi.org/10.1002/j.2334-5837.2007.tb02857.x
https://www.youtube.com/watch?v=-NtUKdaUGdc
https://sites.google.com/a/slu.edu/swartwout/home/cubesat-database/repeat-success
http://dx.doi.org/10.1002/sys.21462

Model-Based Systems Engineering for
Design of Unmanned Aircraft Traffic
Management Systems

Lindsey Martin, Samantha Rawlins, and Leonard Petnga

Abstract As technological advances in material science, computing, electronic,
and artificial intelligence are fueling increasingly autonomous unmanned aircraft
system (UAS) capabilities, the legal operational framework is progressively catch-
ing up. However, for commercial applications involving beyond-visual-line-of-sight
(BVLOS) group flights to become ubiquitous, the successful development of
safe, integrated UAS traffic management (UTM) systems (UTMSs) is imperative.
We propose a generic model-based systems engineering (MBSE) approach for
supporting conceptual design and analysis of UTMS. A system-of-systems (SoS)
perspective of the UTMS is adopted to drive the design effort. This iterative
process is rigorous and technology independent and is powered by the flow-
down of requirements driving the specification of each layer of abstraction of the
UTMS as a SoS. At each layer (SoS, systems, subsystems, components), functional,
structure, and behavior are developed and synthesized and then verified against the
requirements. Various analyses, including trade studies, are performed to support
system evaluation and guide decision-making throughout the design. The essential
features of the framework are highlighted in a simplified UTMS as a directed SoS
for a package delivery application developed using the Systems Modeling Language
(SysML).

Keywords UTM · Model-based systems engineering · System of systems ·
SysML

L. Martin · L. Petnga (�)
ISEEM Department, The University of Alabama, Huntsville, USA
e-mail: lp0053@uah.edu

S. Rawlins
Department of Mechanical and Aerospace Engineering, The University of Alabama, Huntsville,
USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_46

541

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_46&domain=pdf
mailto:lp0053@uah.edu
https://doi.org/10.1007/978-3-030-82083-1_46

542 L. Martin et al.

1 Introduction

1.1 Problem Statement

By 2022, the Federal Aviation Administration (FAA) predicts that the total
unmanned aircraft system (UAS) use will grow by 235%. Within the same time
frame, commercial UAS fleets are projected to balloon from 110,604 vehicles
to more than 450,000, making them the fastest growing part of the market
(Commercial drones are the fastest-growing part of the market - Taking flight
2017; Federal Aviation Administration 2018). While the majority of the small
model hobbyist units are both physically and legally restricted in their access to
the national or international airspace, unified, comprehensive legislation on how to
best incorporate commercial, unmanned aircraft into the preexisting regulation
and management system is in the final rule-making stages (Federal Aviation
Administration 2018). Failure to implement rules enabling future Unmanned
Service Suppliers (USSs) with conflicting priorities to collaboratively and safely
manage designated low-altitude airspace for UAS traffic – as a system of systems
(SoS) – will lead to intractable operational and legal issues. This will ultimately
impede the development of UAS, which, as shown in Fig. 1, is becoming ubiquitous
given the increasing number of applications areas.

1.2 Scope and Objectives

Instead of presenting another solution for a UTM architecture, this paper aims to
emphasize the benefits of a SoS-enabled model-based systems engineering (MBSE)
approach to the design of UTM systems (UTMSs). An SoS perspective is required to
be driven by the need to incorporate the priorities of multiple stakeholders, coupled
with the one to account for complexity of interactions between components and

Fig. 1 UTMS Concept of Operations flow chart. (Modified from (National Aeronautics and Space
Administration (NASA) 2015))

Model-Based Systems Engineering for Design of Unmanned Aircraft Traffic. . . 543

systems distributed in space and time. We first discuss the current state of the art
of design approaches to the UTM and how UTM architecture falls within the SoS
framework. Next, the proposed layered MBSE approach is introduced, and we show
how it best addresses the challenge of designing an integrated UTMS. Finally, a case
study applies the approach to assess how a UAS Package Delivery Service (UPDS)
would influence UTM design.

2 Background and Literature Review

2.1 Overview of State of the Art of Unmanned Aircraft Traffic
Management Systems

Current UTMS regulations are evolving in a completely different way than the
manned civil aviation world. From the experiences gained over the course of
decades of trial and error, air navigation services have developed a robust, albeit
slow and complex, safety management system that is generally accepted and
maintained throughout the world. The major influencers of UTM regulation have
begun to split off and create their own UTM architectures. As such, unique
frameworks have been proposed and in some cases already implemented, from
global, national, state, commercial, and even city perspectives (UTM Current State-
of-the-Art 2017; AirCrew 2018; G. Nichols, “Davos develops drone regulation
how-to for governments (and the FAA should pay attention),” ZDNet & Nichols,
n.d.; P. Butterworth-Hayes, “Unmanned Airspace: The Market for UAS Traffic
Management Services – 2018-2021,” Unmanned airspace & Butterworth-Hayes,
n.d.; Global UTM Association. Global UTM Association, n.d.; F. Schubert. The
development of the UAS traffic management (UTM), an air navigation services
perspective. p. 9 & Schubert, n.d.).

2.2 System of Systems: Definition, Typology, and Design
Challenges

According to the DoD, a system of systems (SoS) is defined as “a set or arrangement
of systems that results when independent and useful systems are integrated into
a larger system that delivers unique capabilities.” Based upon the way that these
systems interact with each other, a SoS can be categorized into four different types:
(1) virtual SoS, which lacks a central management authority and a centrally agreed-
upon purpose; (2) collaborative SoS, where each entity knows its predefined role and
interacts with the other to fulfill agreed-upon central purposes; (3) acknowledged
SoS, where each constituent system maintains its independent status but a designated
manager, and resources, is in charge of ensuring achievement of recognized

544 L. Martin et al.

objectives; and (4) directed SoS, where component systems maintain an ability to
operate independently, but a central manager is in charge of decision-making to
fulfill specific purposes. Thus, the issues of command and control are central to the
realization of successful and efficient SoS designs (Department of Defense (DoD)
2008).

2.3 Unmanned Aircraft Traffic Management System as
a System of Systems

Successful design and operation of UTMSs whether at local, state, regional,
national, or global scales requires the development and integration of multiple
evolving technologies and systems beyond the capabilities of single industry suppli-
ers, much like for current ATM systems. No matter the chosen architecture or usage,
each successful UTM will have to integrate independently operated components
including vehicles (i.e., UASs), pilots (e.g., recreational, commercial), operation
centers (e.g., UTM Manager, FAA), and air infrastructure (i.e., radars, launch and
landing points, weather). Thus, each individual UTM is an SoS. Plus, the actual USS
infrastructure will need to include and integrate shared or proprietary geospatial
system (for terrain and weather information), as well as communication, detection,
and tracking systems resulting into acknowledged or directed SoS architectures
involving UASs, depending on the needs of the applications and design choices.
Moreover, USSs operating UTMSs will need to integrate their systems with one
another but also with regulator (e.g., FAA), public safety, and air traffic control
systems to enable safe and efficient beyond-visual-line-of-sight (BVLOS) flights of
each UAS it serves. This organization highlights the need for USSs to participate
into a collaborative SoS for effective large-scale operation. Moreover, in either
case, a wide range of technologies including airspace design, dynamic geofencing,
congestion management, and terrain avoidance will be needed (Jiang et al. 2016).

3 Proposed Model-Based Development of UTM Systems

3.1 Development Approaches and Strategies

The central tenant of the MBSE approach is the use of models (as opposed to
documents) as the main artifacts of system development. State-of-the-art research
and practice do not identify a unique “one-size-fit-all” winning strategy for MBSE
(Estefan 2008). The intrinsic complexity of SoS such as the UTMS makes the
challenge of designing this type of system even harder. Previous efforts include
(1) an iterative SoS development strategy in which processes captured in “wave
models” enable the definition and description of SoS evolution (Bonanne 2014) and

Model-Based Systems Engineering for Design of Unmanned Aircraft Traffic. . . 545

(2) the adoption of an agent-based modeling (ABM) approach that highlights the
inherent independence of the systems that comprise the SoS (Achesona et al. 2013).
However, experience indicates that good solutions result from a combination of
semiformal and formal models. The former capture ideas (i.e., goals and scenarios)
and preliminary designs represented in graphical languages such as the Unified
Modeling Language (UML) and the SysML (Fridenthal et al. 2012). Given that SoS
are mission-oriented, abstraction mechanisms are needed to enable system engineers
to efficiently decompose the mission at enough level of detail and identify the
appropriate hierarchy of systems, subsystems, and components (decomposition) or,
alternatively, systematically assemble systems to be part of the SoS from predefined
components (composition). Integrating both the top-down (decomposition) and
bottom-up (composition) provides means for the system engineers to adapt to the
inherent evolving nature of the SoS while keeping in check the traceability of
selected components to the mission. Current approaches lack such capabilities.
Thus, we adopt a multilayered development strategy that provides flexibility and
modularity to the design and leverages existing, properly vetted, capabilities to
support the mission and call for the design of new systems only on the need basis.

3.2 Elements of MBSE for UTM System Design

Our approach addresses the UTMS (as a SoS) design challenge through the lens
of two integrated dimensions, (1) multiple layers of abstractions organized in a
hierarchy, e.g., mission ➔ systems ➔subsystems ➔ to components, and (2) design
tasks that can be assigned to either the problem or the solution domain or their
interface at each layer of abstraction. For instance, a perspective of the USS UTMS
at the mission level would reveal the high-level interactions between the various core
systems, e.g., weather system, global positioning system (GPS), communication
systems (telemetry), detection and tracking systems (e.g., space-based sensors and
radars), traffic control systems, and with UASs as required by the applications to be
deployed on the UTMS. The system layer below would focus on individual systems
(e.g., the GPS) identified at the layer above. Designing the UTMS will require the
translation of various needs into requirements to be captured in the problem domain
of the SoS design challenge at various layers of abstractions and then tied to the
ones above and below.

Figure 2 shows the design pathway from inputs and outputs and at a representa-
tive layer of abstraction. The problem design is formulated in the problem domain
through the capture and representation of the USS UTM system requirements and
their traceability to the architectural solution and analysis. As a part of this effort,
key stakeholders and their interactions with the USS UTMS are mapped out in the
concept of operations (CONOPS) along with goals and scenarios. Requirements can
be refined with SysML use cases, sequence, and activity diagrams. Key performance
indicators are defined to drive formulation of the solution domain but also enable the

546 L. Martin et al.

Fig. 2 Proposed MBSE approach for UTM development: pathway from the inputs and outputs for
a representative design layer

assessment of how well the USS UTMS under design performs its mission. Func-
tional analysis provides a high-level definition and decomposition of system core
function and leads to defining functions, actions, and operations to be performed by
individual systems or their core subsystems/components. The specifications of these
structural elements are identified and documented during the structure modeling step
using SysML block definition diagrams (BDDs). Design synthesis is performed by
mapping (allocating) behaviors to structure. For instance, the function of tracking
UAS movement in the airspace can be assigned to radars (structures). Throughout
the design, analyses are performed to better inform decisions within the system
architecture and beyond but also to ensure proper elicitation of requirements as well
as functional and physical architectures. Analysis of the dynamic of the system
yields physical models at various levels of abstraction that can be captured in
SysML parametric diagrams. The latter can be integrated with analysis tools (e.g.,
MATLAB) for simulation and assessment of the USS UTMS under design. Formal
verification of the design is performed to ensure the satisfaction of the requirements.
The gap between inputs and outputs (effectively design artifacts) is addressed –
with the stakeholders in the loop – until a satisfactory design is formulated for
the level of abstraction under consideration. Then, the design can move to the next
layer of abstraction below, following the pathway defined by the decomposition of
requirements. The specifications are constantly checked against existing solutions
for “buy vs. make” decisions and to determine the level of abstraction at which the
decomposition is to be stopped.

Model-Based Systems Engineering for Design of Unmanned Aircraft Traffic. . . 547

4 Case Study: MBSE of an UTM System for a Package
Delivery Service

4.1 Overview

Multiple USSs have been testing the use of UASs for package delivery. To be
successful, UTMs must incorporate all differing stakeholder needs and facilitate
coordination across areas of operation controlled by different companies with
differing needs and requirements. At this high level of abstraction, the UTMS
serves as an acknowledged SoS, where UAS flight is not limited to the airspace
of a single USS. In such a model, UASs would cohesively cross from one USS-
controlled airspace to another. Considering only one USS in this case study, at
a lower level of abstraction, the UTMS is a directive SoS in which the UTMS’s
operation management relays information between subsystems to direct the flight
of UASs. Madison County, Alabama, was used as the intended area of operation for
the application of the UTMS in package delivery for this case study. We implement
the approach depicted in Fig. 2 and cover two layers of our UTM SoS system as
briefly described in the next two sections.

4.2 System-of-Systems Level Design

In addition to input received from a commercial stakeholder, requirements were
derived from passive observations of similarities between precedent systems that
currently guide package delivery, ground traffic management, and ATM, with the
UTMS. To align UTM with current aviation standards, FAA regulations were also
referenced during design. From requirements and concept of operation (CONOPS)
development, the uses of the UTM were elaborated into a use case diagram using
SysML, depicted in Fig. 3. Core use cases identified for the UTM include managing,
monitoring, and determining routes for UASs. To perform these services, the UTM
relies on multiple subsystems. The UAS GPS system data and the data from the
ground radar system provide inputs via telemetry to the central UTMS hub, which
centrally controls the UTMS in a directed SoS architecture.

4.3 System-Level Design

After designing and verifying the system level of the UTMS, the systems that
comprise the UTMS underwent requirement engineering, as shown in Fig. 2. The
UTMS leverages inputs from GPS, radar systems, emergency management systems,
weather authorities, FAA and local regulations, as well as UASs. GPS and radar
systems monitor the locations of all UASs and communicate with the UTMS’s

548 L. Martin et al.

Radar

UAS

UTMS System

Manage Airspace
‹include›

‹include› ‹extend›

‹extend›

‹extend›

‹extend›

Primary Actor

Use Case Legend

Secondary
Actor

Monitor UASs

Respond to
Environment

Respond to Fault Determine Routes

Determine Airspace
Availability Obey Flight

Restrictions

Direct
Operations

Control Access

USS

FAA

Configuration
Analysist

Local
Authorities

National
Weather
Services

Fig. 3 SysML use case representation of the UTM functionality

operations management system which directs information to UASs. Flying BVLOS,
UASs utilize this information to autonomously avoid collision on their flight paths
to delivery.

4.4 Physics-Based Modeling and Engineering Analysis

Requirements gathered from the stakeholder placed emphasis on ensuring safety by
consistently tracking positions of UASs. Radars were found to be the most effective
systems for the task. Each UAS had to be within range of at least one radar to
accurately account for location during flight. The position data from radars would
be relayed to the UTMS hub, which would determine routes and telemeter, and that
data would be sent to flight control onboard the UASs. The parametric diagram
in Fig. 4 captures the various constraints for effective radar coverage within the
UTMS. Equation 1 shows a simplified formulation of the radar transmission range
with parameters shown in Table 1.

R = 4

√
Pt ∗ G2 ∗ λ2 ∗ σ

Pmin ∗ (4π)3 (1)

The radar transmission range is later used to determine the minimum number of
radars necessary to fully cover any operational area, defined by the area’s average
length and width in meters. In this case study, we consider Madison County,
Alabama, which has an area of approximately 2,071 square kilometers as shown
in Fig 5a. Through integration of the SysML parametric diagram with a MATLAB
script, the range of a single radar was compared to the operational area, and the
number of radar systems was incremented until the cumulative coverage of the

Model-Based Systems Engineering for Design of Unmanned Aircraft Traffic. . . 549

Fig. 4 Parametric diagram capturing system constraints for UTM radar coverage of Madison
County, AL

Table 1 Radar equation values

Peak power
transmitted

Minimum
signal
detected Frequency/wavelength Antenna gain

Target cross-
sectional
area

Variables Pt Pmin f /λ G σ

Values 250,000W 0.00001 W 1.3GHz/0.230609m 38dB/6309
linear

2.5 square
meters

radar systems exceeded the operational area. For the given radar parameters, Fig. 5b.
depicts a graph of how many radar systems would be necessary to cover operational
areas ranging in size from 0 to 2,500 square kilometers. The plot shows that we’ll
need 81 such radars for our UTMS for Madison County, AL.

5 Conclusion and Future Work

In this work, we look at UTMSs through the lens of SoS. Two important insights
are gained from this: (1) the complexity of the UTMS architectures and operations
can effectively be captured and managed through the various SoS types, i.e.,
acknowledged, collaborative, or directed – vantage points – and (2) a multilayered
scalable and reusable MBSE approach is effective in assisting USSs in designing
and modeling operations of next-generation UTMS. The case study demonstrated
the effectiveness of the use of system thinking supported by MBSE techniques
in the design of a USS-managed UTMS as a directed SoS. The architecture is
developed with the Systems Modeling Language (SysML) as implemented by
Cameo Enterprise Architecture toolkit integrated with MATLAB for parametric
calculations. This effort has shed light on the benefits and contribution of MBSE

550 L. Martin et al.

Fig. 5 (a) Coverage map of Madison County, AL (b) Determination of number of radars for
UTMS coverage

approaches to the ongoing effort toward successful design and large-scale safe
operation of UTMSs. Going forward, a deeper analysis needs to be conducted on
the interactions between systems within the SoS. The potential electromagnetic
interference (EMI) between ground radar and onboard telemetry systems needs to be
evaluated at with specific operating bandwidths. Benefits of future extensions would
lead to considerable savings in design cost and time. This will include detailed
selection of technologies as well as trade-off analysis and formal verification of
design for various CONOPS.

Model-Based Systems Engineering for Design of Unmanned Aircraft Traffic. . . 551

Acknowledgments This paper is an extension of a student systems engineering class project.
Thanks to Christine Aldijali, Laure Campbell, Vanessa Cardwell, Hannah Hallmark, Heidi Miller,
Giula Palma, Trent Rich, Hannah Smith, and The Boeing Company Inc.

References

P. Achesona, C. Daglia, N. Kilicay-Erginb 2013. Model-Based Systems Engineering for System of
Systems Using Agent-Based Modeling. Conference on Systems Engineering Research (CSER),
In Procedia Computer Science 16, pp. 11–19.

AirCrew 2018. AirMap Selected as UAS Service Supplier in Six UAS IPP Awards. AirMap, 09-
May-2018.

K. H. Bonanne 2014. A Model-Based Approach to System-of-Systems Engineering via the Systems
Modeling Language. Master Thesis, Purdue University, 117 pages

Commercial drones are the fastest-growing part of the market - Taking flight 2017. The Economist,
10-Jun-2017.

Department of Defense (DoD) 2008. Systems Engineering Guide for Systems of Systems. Office of
the Deputy Under Secretary of Defense for Acquisition and Technology.

J. A. Estefan 2008. A survey of Model-Based System Engineering (MBSE), version 8, INCOSE
MBSE initiative. INCOSE, 70 pp.

F. Schubert. The development of the UAS traffic management (UTM), an air navigation services
perspective. p. 9.

Federal Aviation Administration 2018. FAA Releases Aerospace Forecast. 16-Mar-2018
Fridenthal, S., A. Moore, and R. Steiner. 2012. A Practical Guide to SysML: The Systems Modeling

Language, 599. The MK/OMG Press.
G. Nichols, “Davos develops drone regulation how-to for governments (and the FAA should pay

attention),” ZDNet.
Global UTM Association. Global UTM Association.
Jiang, T., J. Geller, D. Ni, and J. Collura. 2016. Unmanned Aircraft System traffic management:

Concept of operation and system architecture. International Journal of Transportation Science
and Technology 5: 123–135.

National Aeronautics and Space Administration (NASA) 2015, November 15. UTM: Air Traffic
Management for Low-Altitude Drones. NASA Facts, 2 pages.

P. Butterworth-Hayes, “Unmanned Airspace: The Market for UAS Traffic Management Services –
2018-2021,” Unmanned airspace.

UTM Current State-of-the-Art 2017. Eurocontrol, 06-Jul-2017.

Exploration of MBSE Methods for
Inheritance and Design Reuse in Space
Missions

Alejandro E. Trujillo and Azad M. Madni

Abstract Design reuse, a common and valuable practice in complex engineering
projects, is particularly important within the space industry. However, design reuse
in this discipline is often conducted in an ad hoc fashion that limits the upside while
introducing potential pitfalls. Model-based systems engineering (MBSE), while in
the early stages of adoption in the industry, may form the foundation of a new
strategic and systematic methodology for investigating and implementing design
reuse for space missions and campaigns. To that end, this paper explores one aspect
of that envisioned methodology, namely, the technical inheritance process which
assesses the technical feasibility of adapting design elements from their native
missions to new missions of interest. First, we investigate the impact of the level
of architectural decomposition of the element to be reused. Then, we synthesize a
generalized version of the process from a historical survey of design reuse examples
and suggest MBSE methods, specifically using SysML, to implement them. Lastly,
we discuss where this inheritance process fits in the larger picture of the systematic
reuse strategy.

Keywords Design reuse · Design inheritance · Space systems architecting ·
Model-based systems engineering (MBSE)

1 Introduction and Motivation

The concept of reuse, and especially design reuse, is common in many engineering
disciplines. It is particularly important in space systems engineering as high
development and operations costs, long development timelines, and inaccessibility

A. E. Trujillo (�)
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: alextruj@mit.edu

A. M. Madni
Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_47

553

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_47&domain=pdf
mailto:alextruj@mit.edu
https://doi.org/10.1007/978-3-030-82083-1_47

554 A. E. Trujillo and A. M. Madni

of assets once emplaced make space missions highly risk averse. Thus, any action
that may reduce risk – in the case of reuse, by leveraging and redeploying
proven concepts – is highly valued. Additional benefits of reuse typically cited
include reduced design, development, and testing (DD&T) costs and increased
responsiveness (reduced time-to-flight from initial need identification).

One commonly cited issue for reuse in the space industry is the often ad
hoc nature with which it is implemented. This leads to efforts which may not
realize all the potential benefits of reuse. Indeed, in its Systems Engineering
Vision for 2025, INCOSE identifies a key challenge currently facing the systems
engineering (SE) discipline, namely, that “Knowledge and investments are lost
between projects . . . increasing cost and risk” (INCOSE 2014). A lack of systematic
understanding of reuse also leads to mistaken attempts to implement reuse in
scenarios where it may in fact be detrimental (i.e., where rework and integration
costs exceed costs of designing new elements).

Thus, to fully leverage its potential, a systematic approach that looks at reuse
from a strategic perspective is required for implementing reuse (Lange et al. 2018).
Developing such an approach within the paradigm of MBSE would help realize an
aspect of INCOSE’s envisioned solution to the SE challenge mentioned above: that
“composable design methods in a virtual environment [will] support rapid, agile and
evolvable designs of families of products” (INCOSE 2014).

1.1 Problem Statement

This paper is part of a larger research effort concerned with developing a systematic,
MBSE-centric methodology for exploring reuse scenarios for space missions and
campaigns. Figure 1 depicts the decision-making process and key factors we have
previously identified for a generalized reuse scenario (Trujillo and de Weck 2019).
It is a balance of both technical and business factors which combine to yield both
costs and benefits to reuse. These must then be compared to the status quo (i.e., the
non-reuse approach) to yield important insights for decision makers.

In this paper, we specifically look at the inheritance process in the technical
factors shown in Fig. 1. Inheritance is the process which explores the technical
feasibility of adapting design elements from past missions as solutions for new mis-
sions being architected. We define a generalized set of procedures in the inheritance
process and discuss how these may be implemented in an MBSE environment (Sect.
3). Then, we investigate how that approach can act as a foundational step in larger
reuse efforts including composition of new designs from MBSE libraries/catalogs
and reconfiguration of designs and product families to meet new mission needs
(Sect. 4). First, we begin with a brief survey of the current state of MBSE in the
space industry in Sect. 2.

Exploration of MBSE Methods for Inheritance and Design Reuse in Space Missions 555

Fig. 1 Key factors and high-level process with which firm may make reuse decisions

2 MBSE, Reuse, and the Space Industry

2.1 MBSE and the Space Industry

Since the mid-2000 timeframe, INCOSE’s Space Systems Working Group (SSWG)
has been an advocate for demonstrating the potential of MBSE for engineering
space systems. The SSWG has collaborated with the space industry, notably with
NASA’s Jet Propulsion Laboratory (JPL) (Delp 2012), to develop exemplar MBSE
capabilities including SysML modeling of hypothetical satellite missions (Kaslow
et al. 2015), development of CubeSat reference models (Kaslow and Madni 2017),
and application of reference models to real-world CubeSat missions (Spangelo
et al. 2012). Partly from these early efforts, the aerospace industry has begun to
recognize the value of model-based approaches and increased digitization of system
information for complex missions requiring multidisciplinary expertise.

For example, in 2016, NASA conducted a pathfinder effort to develop and
advance MBSE capabilities throughout the agency upon discovering that MBSE
adoption was still in the nascent stages (Phojanamongkolkij et al. 2017). This led
to the application of MBSE methods on various missions with a specific focus on
information systems of Orion’s Exploration Flight Test 1 (EFT-1) (McVittie et al.
2012), the Asteroid Redirect Mission (ARM) prior to project cancellation, and to
a limited extent for the development of the Space Launch System (SLS) (Parrot et
al. 2016). Moreover, there is a desire at NASA to demonstrate the capabilities of
MBSE at larger scales, including for architecting Moon/Mars campaigns as well as
for the development of databases of system models to facilitate future reuse efforts.
Beyond NASA, the use of MBSE in space systems development and research has
been demonstrated at other national agencies, such as at Germany’s DLR for its
small satellite multi-mission platform known as S2TEP (Fischer et al., 2017) and for
educational efforts such as Pakistan’s use of Object-Oriented Systems Engineering

556 A. E. Trujillo and A. M. Madni

Method (OOSEM) for scalable/repeatable student satellite projects (Waseem and
Sadiq 2018).

Upon synthesizing insights from the above examples, we discover that space
systems engineering imposes several unique requirements on MBSE methodologies.
Among these are:

• System models must integrate a variety of discipline-specific technical analysis
tools used by mission designers as a result of the multidisciplinary nature of space
systems.

• Interactions within and across all spacecraft systems and mission environments
must be modeled to understand performance and capture emergent behaviors –
both beneficial and detrimental.

• MBSE methodologies must assess and promote critical value attributes desired
of the new generation of space architectures, namely, flexibility, evolvability,
reusability, and safety.

• MBSE methodologies must accommodate technological and managerial uncer-
tainties inherent in the long timelines that are typical of space missions and
campaigns.

These requirements add to the complexity that MBSE methodologies must
address to become value-adding tools for space systems architects. Further, new
methodologies must satisfy these requirements in a way that is not mission-specific
but rather applicable (i.e., reusable) across diverse missions.

2.2 MBSE and Reuse

We have previously shown in Trujillo and de Weck (2019) that reuse can generally
be classified into three broad categories: reuse of physical artifacts, reuse of codified
design knowledge, and reuse of design effort. To explore the value of MBSE in
enabling reuse, it is important to first define and distinguish the latter two types
of reuse. Codified design knowledge can be defined as the set of architectural
concepts and physical principles (and the relationships between them) that address
a particular objective or requirement in a mission of interest. Design effort is the
set of value-adding work products of the systems architecting process that capture
and record design knowledge. Design efforts are increasingly being digitized as
MBSE system models, metamodels, and patterns. If prudently designed, these are
especially amenable to standardization and reuse on missions beyond their original
mission.

Metamodels can be defined as the specification (i.e., syntax, structure, rela-
tionships) for constructing a system model (Madni and Sievers 2018) .While
metamodels can exist at multiple levels of abstraction and for different modeling
contexts, a reuse metamodel may be viewed as laying out how the integration of
heritage designs may be modeled for a new mission of interest. Conforming to
a reuse metamodel is essential for developing the requisite model consistency for

Exploration of MBSE Methods for Inheritance and Design Reuse in Space Missions 557

building and using model libraries and catalogs. A stretch goal for the usage of such
model catalogs is the rapid composition of existing design features or architectural
elements into new mission systems. Progress has been made in this direction with
the MBSE-based composable design methodology developed at Lockheed Martin
and demonstrated on its A2100 line of communications satellites (Kaiser and Oster
2015).

2.3 What Is Missing?

Substantial progress has been made toward broader adoption of MBSE in the
space industry. However, usage of MBSE even within companies continues to be
a mission-to-mission decision. By building on current work in the area of reference
models, metamodels, and pattern-based approaches, it may be possible to further
develop MBSE capabilities and foster greater adoption within the space enterprise
(Madni and Purohit, 2019). Specifically, in the area of design and model reuse,
a productive first step could be the definition and codification of the technical
inheritance process.

3 Design Reuse via Inheritance

Most examples in current practice of design reuse in the space industry have not
been carried out within an MBSE context. Nevertheless, these examples exhibit
commonalities in how they identify reuse candidates, assess their compatibility, and
make technical recommendation to decision makers. Thus, it may be possible to
synthesize a generalized approach or pattern from these observations which in turn
can be used in a systematic MBSE reuse methodology. In what follows, we first
develop the steps of the inheritance process and then explore how MBSE techniques
can be employed to implement the process, with emphasis on the compatibility
assessment step.

3.1 Technical Inheritance Process

Reuse decisions encompass both technical and business considerations. On the
technical side, a key analysis supporting that decision-making progress is the
determination of the feasibility and technical value of adapting a proven design to
satisfy the needs of a new mission. Figure 2 is a SysML activity diagram depicting
this generalized technical inheritance process. This diagram was developed from
the explored examples of design reuse. In this diagram, solid path lines indicate the
flow of information from action to action, while the dashed lines indicate the action-

558 A. E. Trujillo and A. M. Madni

Fig. 2 SysML activity diagram of the technical inheritance process for systematic reuse analyses

token flow which controls whether actions are carried out, depending on conditional
rules marked by the diamond-shaped decision nodes.

As shown on the frame of the diagram, the overall inputs to the process are a
description of the mission of interest (MOI) and the set of reusable assets available to
the developing organization. The MOI description may be sourced from an existing
system model or may require digitization of document-sourced information. The
MOI contains objectives, system-level requirements, and design decisions made to
date. The reusable asset survey may be a compilation of system models for the
firm’s past and current designs (at an arbitrary level of decomposition). Further
development of these inputs to the process is beyond the scope of this paper –
it is assumed that these inputs contain sufficient design detail, using a consistent
modeling scheme, to enable inheritance analysis. The output of the process is a
technical assessment for inheritance of candidate reusable elements with details on
required rework and integration (the next technical factor of the reuse process, per
Fig. 1). The steps of the process are described below:

Step 1: Identify Reuse Candidate Elements – From the asset survey that acts as
input to the process, we first extract those missions whose designs may be
applicable to the MOI. This requires mission designers to make a preliminary,
subjective judgment on the degree of similarity shared by missions. This
judgment includes qualitative comparisons of the major technical and functional
overlaps across missions. This acts as a first-pass screening of all of a company’s
missions recorded in the RAS down to a set of reuse candidate missions (RCMs).
Mission designers now step within the identified RCMs to extract specific
architectural elements or designs that may be suitable to the MOI. These will
likely emerge from the major technical and functional overlaps identified in the
previous step and are designated reuse candidate elements (RCEs). Here it is
critical to specify the level of decomposition of the element needed to enable
inheritance by a new mission. This decompositional level determines the types
of interactions that must be considered during adaptation to the new mission and

Exploration of MBSE Methods for Inheritance and Design Reuse in Space Missions 559

Fig. 3 (a) Formal decomposition hierarchy; (b) interactions among elements to be investigated/re-
solved when applying reuse

also defines the potential impacts (in terms of cost and schedule reductions) of
reuse decisions.

Figure 3 illustrates (a) a standard architectural breakdown for specifying the
RCE’s decompositional level within its RCM and (b) a description of interactions
that occur between the RCE and the new mission architecture. In (a) we see that
while lower-level reuse is generally a simpler practice to implement, greater value-
added of reuse is typically expected for higher levels. In (b) we see that these
interactions occur at higher, similar, and lower levels of decomposition. Further,
the modularity of the reused element determines the balance of internal vs. external
interactions. Thus, in order to limit interactions to be considered (a zeroth-order
proxy for rework effort), a more modular element would be preferred as a reuse
candidate; some interactions cannot be encapsulated in the element of interest,
including those dealing with structural, energetic, and informational integration
of the RCE into the larger architecture. Additionally, beyond physical modularity,
this process must also consider the functional, organizational, and implementation-
related aspects of the mission. These also impact the type and degree of interactions
that may arise with the reused element.

The output of this step is a listing of RCEs, with decomposition specified, from
within the previously identified RCMs along with information about the likely
technical overlaps.

Step 2: Assess Candidate Element Compatibility – The preliminary and qualitative
judgments made in the previous step are now refined with supporting analyses.
A detailed procedure for this compatibility assessment is depicted in the activity
diagram shown in Fig. 4. Compatibility, that is, the suitability of an RCE to
be redeployed with or without modifications on the MOI, is determined by
considering two key indicators: requirements and interfaces. Requirements deal
primarily with the functionality and performance of the element considering
objectives and design constraints; interfaces capture how the element interacts
with other elements in the larger architecture of the RCM or MOI. In both cases,
compatibility is assessed by pairing like with like across the native mission and
the mission of interest at the appropriate decompositional level.

560 A. E. Trujillo and A. M. Madni

Fig. 4 SysML activity diagram of Step 3: assessment of the RCE’s technical compatibility to the
new mission context

A pair-wise comparison of relevant requirements recorded for the RCM and MOI
yields some combination of (a) similar requirement text with similar metrics, (b)
similar requirement texts with dissimilar metrics (i.e., metric gaps), or (c) dissimilar
requirement texts. This comparison reveals (a) MOI requirements already satisfied
by the RCE, (b) the gap in the RCE’s functionality, performance, or design that
must be bridged by rework or adaptation efforts, and (c) requirements in the MOI for
which no RCE requirement is comparable. In the last case, this indicates where new,
from scratch development will be needed to address the unique MOI requirement.
RCEs which demonstrate an inability to satisfy the requirements of the MOI (within
some rework and adaptation tolerance) are rejected. A similar comparative analysis
is conducted for all relevant interfaces – including structural/mounting, data, mate-
rial, and energy interfaces. Where interfaces are missing or incompatible, additional
gaps in compatibility are noted. Gap magnitudes (shown as the inset in Fig. 4)
are determined for each requirement and interface pair, and a determination of
compatibility is made for each, with qualifiers for estimated rework or modification
required for the RCE. The output of this step is an enumeration of “compatible
RCEs.”

Step 3: Assess Rework Effort – The compatible RCEs that make it to this step are
now further evaluated to estimate the amount of rework needed to adapt the RCE
to the new MOI context. This analysis begins with the technical gaps (as captured
in requirements and interface specifications) identified in the previous step. The
reuse engineer then solicits inputs from subject matter experts and discipline
engineers about corrective actions necessary to bridge these gaps. For each
requirement or interface pair, a set of rework actions is generated. Supporting
domain analyses (e.g., thermal, structural, communications, etc.) are integral to
this step in order to verify if each rework action is necessary and appropriate.
Such analyses ideally would be integrated into the underlying MBSE model
which acts as the authoritative data source for necessary parameters and design
elements. After determining the feasibility of the rework regime on the RCE

Exploration of MBSE Methods for Inheritance and Design Reuse in Space Missions 561

and its impact on programmatic aspects such as testing campaigns, a high-level
rework work breakdown structure is generated. RCEs for which the rework effort
is deemed too extensive or infeasible are rejected. The rest are passed on to the
final step of the process.

Step 4: Generate Technical Inheritance Recommendation – The full set of data on
an RCE, from preliminary compatibility judgment to an enumeration of neces-
sary adaptation, is now available to the user to develop a technical inheritance
summary. These assessments are compiled for the RCEs considered and form
on half of the reuse report on an item; the report details those RCEs that are
most likely to be adaptable to the needs of the current mission, the rationale for
such findings including supporting technical analyses, and estimates (including a
preliminary work breakdown structure) for rework efforts required. The other
half of the methodology is a valuation and programmatic impact assessment
which is ultimately delivered to decision makers. The reuse valuation analysis
(which is out of the scope of this paper) relies on the outputs of the technical
inheritance process detailed here in order to determine cost and schedule impacts
of the reuse scenario.

3.2 MBSE Methods for Compatibility Assessments

While above we depicted the technical inheritance process using SysML for-
malisms, we now explore how the steps in that process might actually be imple-
mented. Specifically, we explore methods for carrying out Step 3, the RCE
compatibility assessment in a SysML environment. Here, it is assumed that a
system model of the MOI is being developed and maintained by the hypothetical
firm. Additionally, the firm has also developed system models for the RCMs it is
exploring (or at the very least, has gathered required information in a traditional,
document-centric format). Table 1 describes possible options for each of the sub-
steps in the compatibility assessment step as laid out in Fig. 4. It is left to future
work to attempt, evaluate, and select a set of MBSE implementation options for
each of the sub-steps.

4 Inheritance and MBSE in Larger Systematic Reuse
Strategy

The approach developed in Sect. 3 is a building block for a more comprehensive,
systematic reuse methodology. The technical inheritance process provides decision
makers with sound technical judgments to support prudent reuse efforts. This will
be augmented with additional analysis modules for consideration of nontechnical
business and programmatic aspects which place an engineering project in a real-

562 A. E. Trujillo and A. M. Madni

Table 1 Enumeration of MBSE implementation options for sub-steps within the compatibility
assessment step

Comparison Description MBSE (SysML-specific) implementation
options

Functional
requirements

Form neutral comparison
of delivered vs. desired
functionality

• RD: compare RCM requirement satisfied
by RCE vs. similar requirements in MOI
• BDD: logical/functional decomposition of
architectures + comparison
• UCD: scenarios for usage of RCE vs.
desired element in MOI

Performance and
environmental
requirements

Does the RCE meet the
technical performance
required by the MOI
objectives? And will it
perform in the
environmental conditions
of the MOI?

• RD: compare RCM requirement satisfied
by RCE vs. similar requirements in MOI
• PD: technical analyses of performance
metrics and operability of RCE compared
with MOI requirements and environmental
factors

Physical/design
constraints

Is this RCE compatible
with the physical and
design constraints imposed
by the MOI (e.g., SWaP,
nonengineering
constraints, etc.)?

• RD: compare RCM constraint satisfied by
RCE vs. similar constraint in MOI
• BDD + Constraints: impose and check
satisfaction of constraints on structure of
system

Interfaces Comparison of
material/structural,
material, data, or energy
interfaces across the RCE
and MOI. Are interfaces
missing?

• IBD: generate/compare interface diagrams
from physical decomposition of RCE and
MOI models
• PD: similar to IBD, can “size” interfaces
with relevant FOMs

Key: BDD block definition diagram, UCD use case diagram, AD activity diagram, RD requirements
diagram, PD parametric diagram, IBD internal block diagram, SD sequence diagram

world environment. The inheritance process may be carried out multiple times,
in parallel, for various architectural decisions in complex space missions. Thus,
future research efforts will take the process laid out here and “zoom out” from the
individual element level to the various reuse decisions made throughout the life of a
project.

The horizon goal for the framework is to address two major use cases: First,
the predecessor-successor use case is a standard heritage reuse scenario where
multiple design elements in a current MOI have been adapted from past missions
after technical judgments and additional analyses have deemed them compatible
and value-adding. Second, the composable design use case is a more agile scenario
in which a model library enables rapid configuration of new mission systems from
a catalogue of existing and proven capabilities, payloads, infrastructure systems,
etc. In either case, the inheritance process is instrumental in rendering the technical
judgments about the underlying adaptability of a proven design to a new mission.

Exploration of MBSE Methods for Inheritance and Design Reuse in Space Missions 563

5 Limitations, Future Work, and Conclusions

There are several limitations of the generalized inheritance process as developed
here. These limitations arise from certain simplifying assumptions that were
made. The most important assumption for applying the procedure in an MBSE
environment is that consistently represented system models exist for both the MOI
and the RCM. These capture sufficient detail to make the necessary comparisons
across architectures as well as the supporting technical analyses. The limited level
of adoption of MBSE in the industry currently means that this is an unrealistic
assumption. It also makes it difficult to test and validate the proposed procedures
on real-world examples. Practically, we must accommodate for cases where system
information is captured in a variety of locations and inconsistent formats. Secondly,
as demonstrated in Table 1, the SysML specification currently allows for multiple
ways of accomplishing similar modeling tasks; these alternatives must be explored
and down-selected. More immediate future work will seek to further elaborate the
other steps in the inheritance process, as was done for the compatibility assessment
step.

Codification of the technical inheritance process is an initial step in a larger
research effort. Our goal is to enable space mission and campaign architects to
fully leverage the potential of reuse of proven designs and concepts. MBSE is a
powerful paradigm and SysML is a powerful tool for developing and implementing
systematic approaches for realizing reuse benefits while avoiding its pitfalls.

References

Delp, C. 2012. INCOSE Space Systems Challenge Team and JPL MBSE. Pasadena.
Fischer, P.M., et al. 2017. Implementing model-based system engineering for the whole lifecycle of

a spacecraft. CEAS Space Journal 9 (3): 351–365. https://doi.org/10.1007/s12567-017-0166-4.
INCOSE. 2014. Systems Engineering Vision 2025 – A World in Motion.
Kaiser, M.J., and C. Oster. 2015. Managing a satellite product line utilizing composable architec-

ture modeling. In AIAA SPACE 2015 Conference and Exposition, 1–10. https://doi.org/10.2514/
6.2015-4436.

Kaslow, D., and A.M. Madni. 2017. Validation and verification of MBSE compliant CubeSat
reference model. Disciplinary Convergence in Systems Engineering Research: 381–393. https:/
/doi.org/10.1007/978-3-319-62217-0_27.

Kaslow, D., et al. 2015. Developing and distributing a Cubesat Model-Based Systems Engineering
(MBSE) reference model. In 31st Space Symposium, Technical Track. Colorado Springs.

Lange, C., et al. 2018. Systematic reuse and platforming: Application examples for enhanc-
ing reuse with model-based systems engineering methods in space systems development.
Concurrent Engineering Research and Applications 26 (1): 77–92. https://doi.org/10.1177/
1063293X17736358.

Madni, A., and S. Purohit. 2019. Economic analysis of model-based systems engineering. Systems
7 (1): 12. https://doi.org/10.3390/systems7010012.

http://dx.doi.org/10.1007/s12567-017-0166-4
http://dx.doi.org/10.2514/6.2015-4436
http://dx.doi.org/10.1007/978-3-319-62217-0_27
http://dx.doi.org/10.1177/1063293X17736358
http://dx.doi.org/10.3390/systems7010012

564 A. E. Trujillo and A. M. Madni

Madni, A.M., and M. Sievers. 2018. Model-based systems engineering: Motivation, current status,
and research opportunities. Systems Engineering 21 (3): 172–190. https://doi.org/10.1002/
sys.21438.

McVittie, T.I., O.V. Sindiy, and K.A. Simpson. 2012. Model-based system engineering of the Orion
flight test 1 end-to-end information system. In 2012 IEEE Aerospace Conference, 1–11. IEEE.
https://doi.org/10.1109/AERO.2012.6187440.

Parrot, E., et al. 2016. NASA GRC MBSE Implementation Status.
Phojanamongkolkij, N., et al. 2017. Modeling to Mars: a NASA model based systems engineering

pathfinder effort. In AIAA SPACE and Astronautics Forum and Exposition, 1–15. Orlando, FL.
https://doi.org/10.2514/6.2017-5235.

Spangelo, S.C., et al. (2012) Applying model based systems engineering (MBSE) to a standard
CubeSat. In IEEE Aerospace Conference Proceedings, 1–20. Big Sky: IEEE. https://doi.org/
10.1109/AERO.2012.6187339.

Trujillo, A.E., and O. L. de Weck. 2019. Towards a comprehensive reuse strategy for space cam-
paigns Alejandro Trujillo. In 70th International Astronautical Congress, 21–25. Washington,
DC.

Waseem, M., and M.U. Sadiq. 2018. Application of model-based systems engineering in small
satellite conceptual design-A SysML approach. IEEE Aerospace and Electronic Systems
Magazine 33 (4): 24–34. https://doi.org/10.1109/MAES.2017.180230.

http://dx.doi.org/10.1002/sys.21438
http://dx.doi.org/10.1109/AERO.2012.6187440
http://dx.doi.org/10.2514/6.2017-5235
http://dx.doi.org/10.1109/AERO.2012.6187339
http://dx.doi.org/10.1109/MAES.2017.180230

Part VII
Future of MBSE

Models in Systems Engineering: From
Engineering Artifacts to Source
of Competitive Advantage

Azad M. Madni

Abstract Models in systems engineering have existed in various forms dating back
to the 1950s. They have been used by engineers to understand various types of
phenomena, envision future systems, and generate engineering artifacts. Today the
increasing complexity of operational missions and technological advances enabled
in part by disciplinary convergence and wide access to data are having a dramatic
impact on system modeling. Operational missions are becoming increasingly more
complex with multiple sources of uncertainty and subject to a variety of disruptions.
Technological advances paced by advances in semantic technologies, machine
learning, AI, and applied analytics are transforming model development into a
closed-loop process. The advent of Industry 4.0 and digital engineering (including
digital twin and digital thread) is causing models to be viewed in an entirely new
light. And the convergence of engineering with other disciplines is opening up
a whole new way of developing system models. This paper presents a historical
perspective on models over several decades and offers a vision of how recent
developments are likely to shape the trajectory of system models in the future.

Keywords Engineering models · Deterministic models · Probabilistic models ·
Learning models · Digital engineering · Industry 4.0

1 Introduction

Models, which have been a mainstay of engineering, are becoming central to
systems engineering (SE) with the advent of model-based systems engineering
(Madni and Sievers 2018). The questions today are determining where system
modeling is headed and what impact it is likely to have on systems and enterprises.

A. M. Madni (�)
University of Southern California, Los Angeles, CA, USA
e-mail: azad.madni@usc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_48

567

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_48&domain=pdf
mailto:azad.madni@usc.edu
https://doi.org/10.1007/978-3-030-82083-1_48

568 A. M. Madni

These are some of the questions that the SE community is interested in as SE is
being transformed to address the needs and challenges of the twenty-first century.

At the outset, it is worth reminding ourselves of George Box’s (1976; Box and
Draper 1987) famous refrain, “All models are wrong, but some are useful.” The
entire quote is: “All models are approximations. Essentially, all models are wrong,
but some are useful. However, the approximate nature of the model must always be
borne in mind.” Box followed up on this cautionary comment with a more insightful
and actionable refrain: “Remember that all models are wrong; the practical question
is how wrong do they have to be to not be useful.” This quote essentially introduces
the concept of “model fidelity.” In SE, model fidelity is largely driven by the phase
in SE life cycle and the intended purpose of the model (i.e., questions the model is
expected to help answer).

Against the foregoing backdrop, this paper reviews the chronology of models
over the past 60 years – first in engineering, then in SE, and most recently in model-
based systems engineering (MBSE). It examines recent business and technology
trends that are likely to shape the trajectory of system modeling in the next decade
and what they foreshadow for system modeling in the twenty-first century.

This paper is organized as follows. Section 2 discusses the history of models in
engineering. Section 3 presents models and modeling advances in SE. Section 4
presents the expanding role of models in MBSE. Section 5 discusses the growing
importance of ontologies, knowledge graphs, metamodels, and reference models in
MBSE. Section 6 reviews how models have evolved over the last several decades.
Section 7 takes a look over the horizon to portend future advances in models. Section
8 summarizes the key points made in this paper.

2 Models in Engineering

Models have been used to envision architectures and engineering artifacts from time
immemorial. In the early days, models took the form of sketches, which were a
prelude to building physical artifacts. Over the ensuing years, models started to
become increasingly more structured. Over the past 50 years, the importance of
standardized representation, syntactic correctness, consistent semantic conventions,
and the need to enforce semantic consistency in models was gradually recognized.
This recognition enabled models to progress beyond drawings and concept maps
to computer-based representations with a standard lexicon (vocabulary), syntax
(grammar), and semantics (meaning). As important, the use of computer-based
models expanded to the understanding of real-world phenomena as models grew
in sophistication. Today models are being used to study and build complex
sociotechnical systems with the ability to dynamically adapt, learn, and improve
(Madni et al. 2018a).

Models are fundamentally abstractions (i.e., a simplified representation of
reality) in which the simplifications are achieved through purposeful suppression of
irrelevant real-world details (i.e., details that do not contribute to answering ques-

Models in Systems Engineering: From Engineering Artifacts to Source. . . 569

tions at hand). Abstractions can take a variety of forms, including generalizations
from specific instances, uniform suppression of details not relevant to the purpose
of the model, and selective suppression of details (e.g., elimination/simplification
of certain perspectives or functions) to reduce complexity of envisioned systems or
phenomenon under study (Madni et al. 2018b).

Models can be descriptive, prescriptive, or predictive. Descriptive models rep-
resent or explain a phenomenon, problem situation, or system to enhance shared
human understanding and facilitate collaboration. Prescriptive models specify
required/desired behaviors or courses of action. Predictive models facilitate explo-
ration and help illuminate future outcomes in response to what-if assumptions and
decisions/actions. Model purpose (i.e., the questions we want the model to answer
at a desired level of detail) determines the scope and fidelity of models needed.

Today models are used in engineering analysis and design to visualize envisioned
systems or modifications to existing systems; specify structure and behavior of
systems; and understand how parts of a system inter-relate and behave in relation
to each other and the external world. Models are also used to guide system
development, assemble parts, and identify/generate and evaluate alternatives during
design. And, finally, models are used to maintain an audit trail of assumptions and
design decisions during system development (Madni et al. 2019).

3 Models in Systems Engineering (SE)

Models in SE have generally followed the evolution of models in traditional
engineering disciplines but with a time lag. Over the years, models have appeared
in a variety of forms: a “back of the envelope” calculation to ballpark a solution;
a sketch on a napkin to communicate a germinating idea or an evolving concept; a
computational algorithm to describe a physical law that lends itself to mathematical
description; a deterministic representation to describe systems with known cause
and effect; a probabilistic representation to capture environmental uncertainties and
uncertainties in the knowledge of the system state space, as well as to account for
random events; a statistical model to parsimoniously summarize the data collected
over space and time; an architectural model to depict system structure and behavior
and conduct trade-off analyses among performance and quality attributes associated
with a system in its operational context; a logical model to describe how entities
relate to each other in implementation-independent form; a data model to represent
data in abstract form and organize and standardize how the data elements relate
to each other; and a “learning” model that employs supervised, unsupervised, and
reinforcement learning to increase model accuracy at system “build-time” and
during system “run-time” (i.e., operational use).

Table 1 presents an approximate timeline of modeling methods that have been
employed over time to deal with increasing problem and system complexity.
Modeling in SE began with the ubiquitous block diagram or black box model,

570 A. M. Madni

Table 1 Rough chronology of models in systems engineering

Modeling Construct Name
Year
Originated/Discipline

Application within SE
(approx.)

Black Box (block diagrams) 1945/electronic circuit
theory

1950

Functional Flow Block Diagram 1955/systems
engineering

1955

Petri Nets 1962/concurrent
hardware
communication

1977

Hidden Markov Model/POMDP 1965/operations
research, robotics

2015

Reinforcement Learning 1965/psychology,
robotics

2014

Structure Analysis and Design Technique 1969/software and
systems engineering

1969

Linear Temporal Logic 1977/computer science 1980
Data Flow Diagram 1979/software

engineering
1980

N2 Diagram/Design Structure Matrix 1980/software and
hardware design

1990

IDEF0 1981/manufacturing 1982
Contract-Based Design 1986/design automation 2000
State M 1987/computation

theory
1990

Axiomatic Design 1990/system design 2002
Unified Modeling Language (UML) 1996/software

engineering
1997

Digital Twins 2002/manufacturing 2019
Flexible Contract Approach 2010/design automation 2014

in which blocks represented system components and the arcs between the blocks
represented the exchange of information, energy, and physical artifacts. Similarly,
the N2 diagram and later the design structure matrix (DSM) gained popularity
as a parsimonious way to represent a system along with its interactions and
dependencies. In systems engineering, the N2 diagram was interpreted from a
functional perspective, with the components in the N2 diagram being replaced
with major system functions. Thereafter, the functional flow block diagram (FFBD)
was developed to capture the dynamics of system behavior in a multitier, time-
sequenced flow diagram depicting a system’s functional flow. In the meantime, the
software engineering community was engaged in developing data flow diagrams
(DFDs) to model the data flow aspects of software systems. In the 1969–1973
timeframe, Structured Analysis and Design Technique (SADT) came into being
within systems engineering and software engineering methodologies to describe
systems as a hierarchy of functions (Ross 1977). It was subsequently formalized
and published as Integrated Computer-Aided Manufacturing (ICAM) Definition, or

Models in Systems Engineering: From Engineering Artifacts to Source. . . 571

IDEF0, in 1981 (Marca and McGowan 1987; Davis 1992; Mylopoulos 2004). The
IDEF0 representation was primarily championed by the USAF as a viable way to
model systems. Not long after, several structured approaches emerged including
structured programming, structured design, and structured analysis. It is worth
noting that DFDs, N2 charts, and IDEF0 diagrams all capture the same time-lapsed
flow of information, energy, and physical artifacts among functions. Then came the
recognition of the importance of system states and the advent of state machines (or
state transition diagrams), which were adapted by several engineering disciplines to
capture dynamic behavior. These methods were rapidly adopted and applied by the
SE community to model system modes and states. It soon became evident that state
machines suffered from a combinatorial explosion in their state space compromising
their scalability. To ameliorate this problem, the SE community turned to heuristics,
meta-rules, Petri nets, and Petri net variants (Zisman 1978). This strategy delayed
the combinatorial explosion but did not eliminate it.

The past six decades have seen several contributions to systems modeling
from a variety of disciplines such as electrical engineering, operations research,
design automation, manufacturing, and software engineering. For example, formal
modeling approaches for representing, analyzing, and designing systems originated
in software engineering and design automation. The early modeling work relevant
to SE, which drew on mathematical system representations, includes modeling
formalisms (Tarski 1955), homomorphic relational structures (Klir 1991; Lin 1999),
axiomatic design (Suh 1998), and structured analysis and design (Yourdon 1989).

It is interesting to note that many of the models being used in systems engineering
had their origins in other disciplines such as electronic circuit theory, operations
research, software engineering, design automation, robotics, and manufacturing.
Also, some modeling approaches from other disciplines were adopted quickly
by systems engineers, while others took more than a decade. This time lag was
essentially a function of the need expressed by the SE community. For example,
increasing system complexity and emphasis on system safety led systems engineers
to employ formal and probabilistic methods to address verification and validation
needs and uncertainties in knowledge of system states and the environment.
Similarly, the advent of machine learning was only recently adopted by the SE
community when it became apparent that many complex systems operate in
uncertain, partially observable environments in which incoming information from
sensor onboard vehicles and the environment help reduce the uncertainty in system
models.

4 Models in Model-Based Systems Engineering (MBSE)

The historic use of models in SE is best characterized as “engineering with
models.” The basic idea is that models from different disciplines can be inte-
grated to provide a solution to a problem that cuts across multiple disciplines
(e.g., electrical, mechanical, thermal, optical). However, these models, based on

572 A. M. Madni

different assumptions, were not designed with integration in mind. Model-based
systems engineering (MBSE) is different from engineering with models. In MBSE,
models represent an enduring and authoritative source of truth. MBSE replaces
the traditional document-centric approach to SE while ensuring that documents
can be produced on demand from the unified model and from the perspective
of different stakeholders. This is similar to the automatic generation of code on
demand in Model-Based Software Engineering. In MBSE, the models have shared
assumptions and shared (or compatible) underlying ontologies and representations.
Models in MBSE are centralized digital repositories that interconnect information
from multiple sources and disciplines such that a change in one part of the model can
be traced back to the original/derived requirement or use case. SysML, an extension
of a subset of UML developed by the International Council on Systems Engineering
(INCOSE) and subsequently advanced by Object Management Group (OMG) and
INCOSE, became the popular system modeling language.

Over the past decade and a half, several MBSE methodologies have emerged
(Estefan 2008). They include as follows: IBM Rational Unified Process (RUP)
supported by IBM Rational Suite; INCOSE Object-Oriented Systems Engineer-
ing Method (OOSEM) developed with extensive aerospace involvement, which
is supported by commercial SysML tools; Vitech’s CORE product suite; JPL
State Analysis Methodology; Dori’s Object-Process Methodology (OPM); INCOSE
MBSE Initiative, OMG’s Model-Driven Architecture; and ISO/IEC 42010.

Today MBSE remains an important augmentation of SE as it continues to address
additional phases of the system life cycle such as verification, validation, and testing.
In this regard, the advent of digital twins (from digital engineering) can be expected
to facilitate and accelerate system life cycle coverage (Madni et al. 2019).

5 Growing Importance of Ontologies, Knowledge Graphs,
Metamodels, and Reference Models

Two key problems being addressed by the SE community today are to eliminate the
miscommunications that frequently occur within SE teams and to assure interoper-
ability among models and between information systems of collaborators. This focus
led to the growing importance of ontologies, knowledge graphs, metamodels, and
reference models.

Ontologies are thesauri of words representing concepts, the relationships among
them, and the rules that help with model correctness checking (Sowa 1996,
2011). The model checking rules help with identification of gaps and semantic
inconsistencies in system models. Ontologies have been a subject of study in
the systems engineering community as a means to reduce modeling complexity,
facilitate model verification, and enhance interoperability. From a data perspective,
ontologies are semantic data models that define the types of entities in a particular
domain, the relationship among the entities, and the properties that can be used to

Models in Systems Engineering: From Engineering Artifacts to Source. . . 573

describe the entities. Ontologies are generic data models in that they only model
generic types of entities that share certain properties but do not include information
about specific entities in the domain. For example, an ontology might focus on
generic vehicles, attempting to capture characteristics that most vehicles might have.
By capturing information in this way, the ontology can be used to describe other
vehicles in the future. An ontology comprises three main elements: classes, which
are distinct types of entities that exist in the domain; relationships, which link any
two classes; and attributes, which are properties that describe an individual class.
When classes are linked through relationships, the ontology can be visualized as a
graph.

A knowledge graph acquires and integrates information into an ontology and
applies a reasoner to derive new knowledge (Ehrlinger and Wöß 2016). In other
words, knowledge graphs are instantiations of ontologies. Using an ontology as an
organizing framework, real data about specific entities in the domain can be added
to create a knowledge graph. When data about specific entities are added for all
entities in the ontology, a knowledge graph emerges. In other words, a knowledge
graph is created when an ontology is used as an organizing construct for real-world
data. Thus,

Ontology + Data = Knowledge Graph

Metamodels define the abstract syntax (i.e., grammar) of model description
languages (Sprinkle et al. 2014). For example, the Unified Modeling Language
(UML) metamodel defines the abstract syntax of various UML diagrams. More
generally, metamodels express the logical syntactical structures that domain-specific
models need to conform to for scalability, reuse, and extensibility. Metamodels
are concerned with defining the symbols and structure for a predefined class of
problems, along with rules that operate on the symbols. These properties allow
the instantiation of a model from a metamodel. Thus, a metamodel defines the
general structure, constraints, and symbols that can be used to model a system.
Since metamodels do not specify the semantics of models, they do not have stand-
alone use. However, ontologies and metamodels are complementing and synergistic.
Specifically, an ontology can represent concepts and relationships formally using the
structure provided by the metamodel. While ontologies may not use a metamodel,
those that do will have certain desirable properties (e.g., interoperability, reuse,
syntactic correctness, semantic consistency).

Reference models are abstract frameworks or domain-specific ontologies con-
sisting of an interlinked set of clearly defined concepts produced by authoritative
sources within defined stakeholder communities. A reference model can represent
business functions and system components as long as they constitute a complete
set. The terms in the reference model can be used to communicate ideas clearly
among members of the SE community from vastly different backgrounds. The
reference model is distinct from, but can include, related taxonomies, entities,
and relationships to reveal hierarchies (e.g., system hierarchy, system architecture)
relevant to stakeholders.

574 A. M. Madni

6 How Have Models Changed over the Last Several Decades?

After more than 50 years, system modeling has evolved in several important ways
shown below:

• The starting point for modeling has changed from choosing a modeling construct
to starting with a detailed analysis of needs to derive system modeling require-
ments which are then used to determine the right combination of models needed
to model the system of interest.

• The scope of modeling has expanded – from a single system to networked
systems, system of systems, and enterprises.

• Models have grown in sophistication – from deterministic to stochastic, proba-
bilistic, and learning models.

• Engineering models used to be rooted in the engineering discipline. Today
they are drawing on other disciplines such as biology, cognitive science, social
science, economics, and entertainment arts.

• Earlier models used to be “data hungry.” They needed complete information
before they could provide value. Today models can cope with partial information
and still provide value.

• Modeling used to be an open-loop process. Today modeling is being transformed
to a closed-loop process that improves model completeness and accuracy based
on data from collection assets, machine learning, and data analytics techniques.
For example, virtual system models can now incorporate data from the corre-
sponding physical system and become a digital twin (Madni et al. 2019).

• System representations have expanded from fixed structures to flexible represen-
tations which are needed to respond to systemic problems and adapt to external
disruptions.

• System models are becoming increasingly more formal and rigorous to enable
verification and validation, support simulation-based testing, and facilitate rea-
soning, interoperability, and reuse.

• Models are beginning to incorporate the capability to explain system behavior,
an important characteristic that is key to model acceptance and trust in the
engineering community. Explanation capability is needed for black box models,
while interpretability is needed for glass box models.

• The SE community is much more cost conscious, with an emphasis on economic
value derived from transitioning to MBSE (Madni and Purohit 2019).

• Industry view of models has changed from viewing them solely as engineering
artifacts to viewing them as knowledge assets and a source of competitive
advantage.

Today models are expanding into the behavioral domain. The human is no longer
modeled as a transfer function, optimal controller, or utility maximizer. Rather, the
human is modeled with an awareness of strengths (e.g., ability to generate creative
options, rapid context awareness) and limitations (e.g., cognitive limitations, biases,
tendency to lose focus). The advent of cyber-physical-human systems is a driver in

Models in Systems Engineering: From Engineering Artifacts to Source. . . 575

Table 2 System models: pre-2005 and today

System models Pre-2005 Today
Comparison factors

Starting Point a modeling construct (e.g.,
IDEF0, SADT)

requirements derived from
needs and mapped to
appropriate combination of
models

Focus single system networked systems, SoS,
enterprise

Methods deterministic (mostly) deterministic, stochastic,
probabilistic

Multidisciplinary Emphasis minimal significant
Model Requirements need complete information can work with partial

information (e.g., POMDP)
Process open loop closed loop
Representation fixed flexible
Correctness Proof not available available
Rigor structured representation;

static correctness checking
formal representation; use of
ontology and metamodel;
support for formal reasoning

Learning a priori supervised learning in situ unsupervised and
reinforcement learning

Explanatory Capability none some; distinguishes between
interpretability (glass box
models) and explainability
(black box models)

Emphasis on ROI modest significant
Industry View engineering artifact knowledge asset; source of

competitive advantage

this regard. As important, the age-old thinking of “humans versus machines” has
been replaced by “humans and machines” with a growing emphasis on augmented
intelligence (Madni 2020a).

Table 2 provides a comparison of pre-2005 system models and system models
today.

7 Looking over the Horizon

With systems continuing to grow in complexity and missions continuing to become
increasingly more challenging, the versatility and value of a model depend on
its ability to provide useful information despite incomplete information; ability
to acquire and reflect valid information pertaining to key system characteristics
and behaviors of interest; ability to support simplifications (e.g., assumptions,
approximates) while retaining requisite fidelity to provide correct answers; and

576 A. M. Madni

ability to validate its outputs. Importantly, models require real-world measurements
to test the validity of their predictions and explanations and for validation of outputs.
It may not be feasible to meet these requirements in circumstances where input
conditions cannot be adequately controlled or input and control conditions cannot
be replicated.

With the recent surge in interest to transform and underpin SE with for-
mal methods (e.g., linear temporal logic, contract-based design), three necessary
characteristics of models surfaced: provably correct representation essential in
applications where safety is paramount; flexible representation to support agility and
resilience; and evidence-based learning to complete and refine models. Learning
ability is crucial when operating in partially observable environments in which
information about the system and the environment becomes incrementally available
during mission execution. In response to these requirements, probabilistic learning
models emerged including the flexible contract approach with the capacity to
learn (Sievers and Madni 2016; Madni 2018a). This construct combines traditional
contracts, partially observable Markov decision process (POMDP), reinforcement
learning, and heuristics to strike an effective balance between model verifiability
and flexibility (Sievers and Madni 2017; Madni et al. 2018a, b).

In the light of methodological advances and ongoing integration of MBSE with
digital engineering, systems modeling can be expected to evolve in new and exciting
directions. We already see evidence of formal methods being introduced within the
MBSE rubric. Specifically, the concept of ontologies from computer science is being
introduced into MBSE to enhance semantic consistency, enhance interoperability,
and formalize scope with respect to the system modeling activity. In particular,
ontologies can be expected to play important roles in answering stakeholder/user
questions by capturing key concepts and relationships from use cases of interest
and supplemented by expert knowledge. The scope of system modeling can be
expected to expand to cover probabilistic modeling, formal modeling, modeling
with incomplete or partial information, and learning models (i.e., supervised,
unsupervised, and reinforcement learning). Models can be expected to have richer
semantic foundations to reflect new perspectives made possible by disciplinary
convergence. These advances and enhancements will enable more detailed questions
to be answered earlier in the system’s life cycle. With growing convergence of
engineering with entertainment arts, it will be possible to transform system models
into stories that can be executed in simulation or in virtual worlds (Madni et al.
2014; Madni 2015). Importantly, enterprises are beginning to increasingly rely
on their suppliers, application providers, and tool vendors to create sustainable
competitive advantage in their respective markets. This reliance calls for seamless
interoperability. The latter can be achieved through models based on domain
ontologies with interoperability being enabled by creating a semantic layer between
enterprises and their technology/tool providers (Madni 2020b). As a result, system
models are no longer being viewed as engineering artifacts but rather as knowledge
assets and a source of competitive advantage for organizations.

Models in Systems Engineering: From Engineering Artifacts to Source. . . 577

8 Summary

Models have been a mainstay of systems engineering for several decades. However,
the types of models and the value they provide have changed dramatically. The types
of models used for system modeling have evolved considerably driven in large part
by the increasing complexity of the system and the environment and advances made
in formal and probabilistic methods, machine learning, and applied analytics. These
advances have transformed modeling from being a one-shot open-loop activity
to an iterative closed-loop activity informed by evidence and results of machine
learning. Importantly, the historical view of models as engineering artifacts has
changed dramatically. Today they are viewed as sources of competitive advantage.
The competitive advantage results from the ability to reuse models, completely
or in part, to rapidly achieve interoperability in risk-mitigated fashion with third-
party applications and tools and enable the use of ontologies and metamodels.
The growing importance and adoption of MBSE in major organizations coupled
with the advent of digital engineering make digital twin-enabled MBSE especially
effective for model-based V&V. This paper has addressed both modeling problems
and how far along systems modeling has advanced as a result of problem pull
and enabled by advances in system modeling and ongoing convergence of systems
modeling with machine learning, data analytics, and entertainment arts (Madni
2018b). This trend can be expected to continue and grow in the future. As a result
of these advances, systems models are becoming knowledge assets and a source of
competitive advantage in various industries.

References

Box, G.E.P. 1976. Science and Statistics. Journal of American Statistical Association 71 (356):
791–799.

Box, G.E.P., and N.R. Draper. 1987. Empirical Model Building and Response Surfaces. New York:
Wiley.

Davis, W.S. 1992. Tools and Techniques for Structured Systems Analysis and Design. Addison-
Wesley. ISBN 0-201-10274-9.

Ehrlinger, L., and W. Wöß. 2016. Towards a Definition of Knowledge Graphs. In SEMANTICS,
September 13–14, Leipzig, Germany.

Estefan, J. 2008. INCOSE Survey of MBSE Methodologies, USA, WA, Seattle: INCOSE TD 2007-
003-02.

Klir, G. 1991. Facets of Systems Science. New York: Plenum.
Lin, Y. 1999. General Systems Theory: A Mathematical Approach. New York: Kluwer Academic/-

Plenum.
Madni, A.M. 2015. Expanding Stakeholder Participation in Upfront System Engineering Through

Storytelling in Virtual Worlds. Systems Engineering 18 (1): 16–27.
———. 2018a. Formal Methods for Intelligent Systems Design and Control. In AIAA SciTech

Forum, 2018 AIAA Information Systems, AIAA InfoTech@Aerospace, Kissimmee, Florida,
January 8–12.

———. 2018b. Transdisciplinary Systems Engineering: Exploiting Convergence in a Hypercon-
nected World (forward by Norm Augustine). Springer, September.

https://en.wikipedia.org/wiki/Special:BookSources/0-201-10274-9

578 A. M. Madni

———. 2020a. Exploiting Augmented Intelligence in Systems Engineering and Engineered
Systems. INSIGHT Special Issue, Systems Engineering and AI, March.

———. 2020b. Minimum Viable Model to Demonstrate the Value Proposition of Ontologies for
Model Based Systems Engineering. In 2020 Conference on Systems Engineering Research
(CSER), October 8–10.

Madni, A.M., and S. Purohit. 2019. Economic Analysis of Model Based Systems Engineering. In
MDPI Systems, special issue on Model-Based Systems Engineering, February.

Madni, A.M., and M. Sievers. 2018. Model-Based Systems Engineering: Motivation, Current
Status, and Research Opportunities, Systems Engineering. In Special 20th Anniversary Issue,
Vol. 21, Issue 3.

Madni, A.M., M. Sievers, and D. Erwin. 2019. Formal and Probabilistic Modeling in the Design of
Resilient Systems and System-of-Systems. In AIAA Science and Technology Forum, San Diego,
California, January 7–11.

Madni, A.M., M. Spraragen, and C.C. Madni. 2014. Exploring and Assessing Complex System
Behavior Through Model-Driven Storytelling. In IEEE Systems, Man and Cybernetics Interna-
tional Conference, invited special session Frontiers of Model Based Systems Engineering, San
Diego, CA, October 5–8.

Madni, A.M., M. Sievers, A. Madni, E. Ordoukhanian, and P. Pouya. 2018a. Extending Formal
Modeling for Resilient System Design. Insight 21 (3): 34–41.

Madni, A.M., M. Sievers, and C.C. Madni. 2018b. Adaptive Cyber-Physical-Human Systems:
Exploiting Cognitive Modeling and Machine Learning in the Control Loop. Insight 21 (3):
87–93.

Madni, A.M., C.C. Madni, and D.S. Lucero. 2019. Leveraging Digital Twin Technology in
Model-Based Systems Engineering. In MDPI Systems, special issue on Model-Based Systems
Engineering, February.

Marca, D., and C. McGowan. 1987. Structured Analysis and Design Technique. McGraw-Hill.
ISBN 0-07-040235-3.

Mylopoulos, J. 2004. Conceptual Modelling III. Structured Analysis and Design Technique
(SADT).

Ross, D.T. 1977. Structured Analysis (SA): A Language for Communicating Ideas. IEEE
Transactions on Software Engineering SE-3 (1): 16–34.

Sievers, M., and A.M. Madni. 2016. Agent-Based Flexible Design Contracts for Resilient
Spacecraft Swarms. In AIAA Science and Technology 2016 Forum and Exposition, San Diego,
CA.

———. 2017. Contract-Based Byzantine Resilience for Spacecraft Swarm. In 2016 AIAA Science
and Technology Forum and Expo, Grapevine, Texas, January 9–13.

Sowa, J.F. 1996. Top-Level Ontological Categories. International Journal of Human-Computer
Studies 43 (5/6): 669–686.

———. 2011. Ontology Metadata and Semiotics. In Conceptual Structures: Logical, Linguistic,
and Computational Issues, LNAI 1867, ed. B. Ganter and Mineau, 55–81. Berlin: Springer.

Sprinkle, J., B. Rumpe, H. Vangheluwe, and G. Karsai. 2014. Metamodeling: State of the Art and
Research Challenges. arXiv, September.

Suh, N.P. 1998. Axiomatic Design Theory for Systems in Research in Engineering Design. Vol. 10,
189–209. Berlin: Springer.

Tarski, A. 1955. Contributions to the Theory of Models I II II. Nederlandse Akademie Wetenschap-
pen Proceedings Series A 57: 572–581.

Yourdon, E. 1989. Modern Structured Analysis. Upper Saddle River: Yourdon Press.
Zisman, M. 1978. Use of Production Systems for Modeling Asynchronous Concurrent Processes,

Pattern-Directed Inference Systems, 53–68. Academic.

https://en.wikipedia.org/wiki/Special:BookSources/0-07-040235-3
http://www.cs.toronto.edu/~jm/2507S/Notes04/SADT.pdf

Transdisciplinary Systems Engineering
Approaches

Bryan Mesmer, Doroth Mckinney, Michael Watson, and Azad M. Madni

Abstract Transdisciplinary systems engineering provides new ways of thinking
when developing engineering solutions to complex systems problems. The solution
space afforded through the use of transdisciplinary approach tends to be broader
than that achievable with traditional approaches. This expanded solution space is a
result of new ways of thinking enabled by exploiting disciplinary convergence. A
shift to transdisciplinary systems engineering requires a shift in the approaches and
tools needed to engineer complex systems. These changes in systems approaches
include models that can capture transdisciplinary concepts, inclusion of expansive
meta-data in transdisciplinary models, and application of nontraditional engineering
methods to explore concepts and outcomes. As engineering takes on the challenges
of increasingly more complex systems with different levels of autonomy, we believe
that transdisciplinary approaches will enable the realization of more complete
solutions for such systems and enable the complexity necessary for these systems.
This paper presents specific approaches within the rubric of transdisciplinary
systems engineering.

Keywords Elegance · Meta-data · Storytelling · Transdisciplinary

B. Mesmer
University of Alabama in Huntsville, Huntsville, AL, USA

D. Mckinney
Lockheed Martin (retired), Henderson, NV, USA

M. Watson (�)
NASA Marshall Space Flight Center, Huntsville, AL, USA
e-mail: michael.d.watson@nasa.gov

A. M. Madni
University of Southern California, Los Angeles, CA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_49

579

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_49&domain=pdf
mailto:michael.d.watson@nasa.gov
https://doi.org/10.1007/978-3-030-82083-1_49

580 B. Mesmer et al.

1 Introduction

A transdisciplinary systems engineering approach enables the exploration of sys-
tems needs and generation of solutions through a transdisciplinary lens, where envi-
sioned systems are explored from a holistic perspective. This holistic approach is
integral to the transdisciplinary approach. The transdisciplinary space is inherently
broader than a disciplinary space because it contains information from multiple
engineering, science, and business disciplines. Exploration of this space facilitates
the investigation and understanding of the value proposition of convergence.

The concept of transdisciplinarity has been in the social sciences for several
decades. The expansion of systems engineering as transdisciplinary (Madni 2007,
2010, 2012, 2019) has cast the discipline into a broader context bringing in
new perspectives to think about solutions and broadening the solution space. In
addition, transdisciplinary systems engineering has brought a focus on convergence
of engineering, science, social, and liberal arts disciplines to enable new system
solutions.

The importance of the human in the operation and application of the system
is integral to transdisciplinary systems engineering approaches. Transdisciplinary
approaches enable solutions which may turn out to be more resilient because
they address the problem encountered from multiple perspectives. Specifically,
autonomy in many systems demands transdisciplinary thinking. For example, use
cases for these systems are also transdisciplinary in nature in that they are highly
interconnected in subtle ways leading to unexpected emergent properties. This
recognition points to the importance of transdisciplinary model meta-data to capture
rich and nuanced information related to these models motivated by the convergence
among disciplines (Madni 2018).

A recent research activity has produced results germane to this transforma-
tional thinking. The NASA Systems Engineering Research Consortium investigated
various aspects of systems engineering. These investigations have led to a set of
systems engineering postulates, principles, and hypotheses (Watson et al. 2016).
Based on this work, INCOSE adopted a modified set as the systems engineering
principles (Watson et al. 2019b). The NASA research focused on the idea of system
elegance as defined in a speech given by Robert Frosch (1993), a more recent paper
defining four characteristics of system elegance by Michael Griffin (2010), and
by an INCOSE journal publication on the subject (Madni 2012). The consortium
defined elegance as follows: “A system that is robust in application, fully meeting
specified and adumbrated intent, is well structured, and is graceful in operation.”
To truly explore robustness of a system, a transdisciplinary approach is needed that
measures and improves robustness with a holistic perspective. This paper examines
multiple aspects of transdisciplinary systems engineering to highlight the unique
approaches and findings that it enables (NASA 2019).

System autonomy and systems of systems (SoS) are also important aspects that
must be accounted for in systems engineering. The power of liberal arts methods
can also be exploited within transdisciplinary perspectives arising from the use of

Transdisciplinary Systems Engineering Approaches 581

nontraditional engineering disciplines. Meta-data is needed to capture the much
broader and nuanced information. This paper examines these transdisciplinary
concepts and characteristics.

2 Realizing Elegance Through Transdisciplinary Thinking

Transdisciplinary system elegance involves considering all aspects of the convergent
disciplines contributing to the solution space. Considering the NASA definition
of system elegance stated above, several transdisciplinary aspects become evident.
How well a system meets the intentions of the users of the system, i.e., maintainers
and operators, is a key aspect in defining the elegance of the system. When a system
is robust in application, the system is meeting the intents of the user community
for different purposes. Knowing this in advance has not always been achievable.
However, transdisciplinary systems engineering provides a new way of thinking
that incorporates more of the social intentions as well as the engineering intentions.

Traditional systems engineering focuses on the specified intentions of the
stakeholders as stated in requirements. Requirements often fail to capture all the
intentions of users in how they are applying the system and their expectations
on how to interact with the systems. In this regard, exploring this space through
storytelling is an approach to more thoroughly define these intentions (Madni
2015). Adumbrated intentions, those which are present but not clearly evident, are
discovered more thoroughly when the transdisciplinary solution space is explored.
This holistic view sheds light on aspects of the system that have not been easy to
discern in more traditional systems engineering methods. Being able to identify and
understand both the specified and adumbrated intentions of the user community is a
key contributor to realizing an elegant system solution.

Elegant systems reflect a structural balance arising from taking into account the
disparate intentions for the system. The result is a solution which is well structured
in all aspects: social, engineering, political, business, etc. Transdisciplinary thinking
enables realization of such a structure. This holistic structure results from a
convergent solution space as different engineering, science, and project disciplines
contribute knowledge and understanding to the intentions for the system.

A system that is graceful in operation often is simple. “Simplicity” here is in the
sense implied by the remark, often attributed to Albert Einstein, that “everything
should be made as simple as possible, but not simpler.” For example, it may properly
be said that while no airplane is actually “simple,” some aircraft designs seem to
accomplish their intended purposes with considerably less fuss and bother than
others and are thus regarded as clearly more elegant. One needs only to compare
the Ford Tri-Motor and the Douglas DC-3, which originated at approximately the
same time, to appreciate the point.

Simplicity in this sense is not merely the absence of complexity but rather
demands a deep understanding of the system’s inherent nature. Jony Ive, Chief
Designer at Apple, Inc., has said of simplicity, “It’s not just minimalism or the

582 B. Mesmer et al.

absence of clutter. It involves digging through the depth of complexity. To be truly
simple, you have to go really deep” (Isaacson 2011).

Context is needed to frame the definition of simplicity for a given design as it
relates to the Vitruvian principle of beauty, which must be understood within the
transdisciplinary concept of system operation and use. Simplicity is evident in the
manner of and the degree to which the integration and unification of design functions
are achieved. The quality and style of this integration comprises an essential part of
elegant system engineering.

Simplicity is also revealed by the choices which are made as to what the system
will not do. An elegant system cannot be all things to all users. An elegant system
does what it is intended to do without superfluous functions, where “intention”
and “superfluity” are defined by the user mainstream. Apple’s Steve Jobs was
noted as being a master at maintaining simplicity by keeping “features” out of
his designs (Manjoo 2010). This simplicity is achieved by taking into account the
transdisciplinary nature of the system, informing the system design and operations
by a holistic view.

A system that is graceful in operation invariably exhibits ease of use. Ease of
use implies the ability to use the system in its operational environment without
superfluous steps or procedures. Ease of use is enabled by the holistic thinking
inherent in transdisciplinary systems engineering. Holistic transdisciplinary engi-
neering requires thinking about the system differently, addressing different system
viewpoints, and achieving convergence among them leading to seemingly simple,
easy to use systems.

3 Transdisciplinary Nature of Autonomy and Systems
of Systems

System autonomy and system of systems provide approaches to expand the capa-
bilities of systems in two very different ways. System autonomy adds complexity to
the system to provide more responsive interaction with the environment. System of
systems provide more of a building block approach to generate new capabilities.

System autonomy implies the need for intelligent decision-making within a
system. This can elevate complicated systems to complex adaptive systems (Watson
et al. 2019a). These systems responsively interact with their environments: natural,
induced (environments caused by system motion), and social. Thus, autonomous
systems stand to benefit from transdisciplinary approaches in both system represen-
tation and complex behavior realization to properly define the system.

System of systems are a specialized form of transdisciplinary systems. Construct-
ing new capabilities by defining the interaction of independent systems provides
a new level of system structure. SoS expand the efficacy of independent systems
through interactions among the individual systems themselves. The individual
systems can be based on very different engineering characteristics and have

Transdisciplinary Systems Engineering Approaches 583

very different social interactions. Inherently transdisciplinary, these SoS realize
convergence through integration of the independent systems (which themselves can
be transdisciplinary). Thus, SoS provide a building block approach to construct new
system capabilities.

Smart cities are example of SoS using autonomy to bring about the integration
of the separate services of the city. These services are transdisciplinary by nature
and involve communication, data, electrical, groceries and retail services, natural
gas, transportation, and water. The dependencies of these separate systems are
coordinated through autonomous functions to provide a smoother operation of the
city. This is viewed from the social, economic, and political aspects forming a
tapestry of engineered services and social systems.

Finding the convergence of the different disciplinary contributions to the system
solution, whether for autonomous systems, system of systems, or both, is aided by
identifying the system integrating perspective. This perspective provides a view of
the system which integrates all of the contributing disciplinary views into a holistic
perspective. There is still much research to be conducted in finding transdisciplinary
integrating perspectives. It appears that these are not found through a single model
but perhaps through a set of system models each providing a holistic view of certain
system characteristics.

For example, system integrating physics perspectives have been identified which
integrate multiple engineering discipline views into a simple relationship (Watson
2018). This provides a physics-based view, but not a social system view. The
social system interactions with the system are captured by system dynamics
models. System value models also provide an integrated view of stakeholder
preferences. System state variable models provide the connection of the systems
physical functions to the system preferences in the value model. Statistical models
also provide understanding of the uncertainties of the system. Statistics provide
a convenient integration approach for convergent disciplinary solutions (NASA
2019). Relationships of processes and information about the system are provided by
system relational models (typically referred to as model-based systems engineering
models) (NASA 2019). This set of models enables the exploration of the whole
transdisciplinary solution space, accounting for all of the convergent discipline
solutions. These modeling approaches used as a set aid in the exploration of the
transdisciplinary solution space.

4 Storytelling to Understand the Transdisciplinary Nature
of System Solutions

Storytelling is another transdisciplinary method to explore the outcome or solution
space (Madni et al. 2014, 2016; Madni 2015). Significant work has been performed
to integrate engineering and mathematical disciplinary knowledge to improve the
exploration of systems. Examples of this work include integrating economics’ game

584 B. Mesmer et al.

theory and design engineering’s optimization (Collopy et al. 2012), simulation’s
agent-based models and systems engineering’s approach assessment (Bott and
Mesmer 2019), and design engineering’s coupling and sensitivity analyses with
economics’ objective function formation (Kannan et al. 2017). Integration of these
disciplines into a trans-discipline has resulted in improvements in design efficiency
and effectiveness and better informed approach assessment.

The design and exploration of systems require more than just engineering
and mathematical disciplines. A truly trans-discipline to explore systems needs
should integrate concepts from a broad swath of disciplines. By doing so, system
principles that involve complex behaviors can be fully understood. For example,
without the integration of political science and law into the trans-discipline, the
social and governmental constraints on a system cannot be fully captured. Without
environmental science, the system’s impact on society would be incomplete. A
broad integration of disciplines is critical to a trans-discipline intended to explore
systems.

A critical element in systems that is often overlooked by engineers is the human
interaction. If trans-discipline only integrates engineering and mathematics disci-
plines, then the stakeholders and their behaviors will only be partially represented.
The stakeholders are defined here as any person that affects or is affected by the
system. Examples of stakeholders are engineers, marketers, company shareholders,
the public, etc. System stakeholders are complex, interacting entities, who interact
either directly or indirectly through the system. Engineering and mathematics use
representations of the stakeholders to improve the system but are not complete
representations of stakeholders. Forming stakeholder representations needs to also
draw on the social sciences.

The preferences (expressed needs) of the stakeholders are critical to forming a
more complete representation of stakeholders that can then be used by engineering
and mathematical methods. Traditional elicitation methods are based on interviews
and surveys. In recent years, elicitation methods have been explored from the
disciplines of communication arts and theatre to integrate into a trans-discipline
for exploring systems. Content analysis from communication arts has been used
on documents produced by NASA stakeholders to elicit preferences concerning the
NextStep-2 Habitat (Palma and Mesmer 2018). This integration of communication
arts is important for eliciting preferences from documents that may obscure the true
needs; however those needs must be stated in some form in the document to be
identified. This leads to a challenge in preference elicitation – what if needs are not
stated in interviews, surveys, or documentation?

Hidden truths (i.e., tacit knowledge) are present in many fields. Hidden truths
are known by stakeholders but are not explicated without prompting. For example,
a hidden truth in the model-based systems engineering (MBSE) community may
be the difficulty in programming current MBSE software to interact with third-
party software. While this truth may be discussed within the community, outsiders
may not know this, and this is not a primary topic of discussion between MBSE
practitioners and outsiders, making it a hidden, or difficult to obtain, truth. Recent

Transdisciplinary Systems Engineering Approaches 585

research has examined disciplines to integrate into a trans-discipline for exploring
systems to enable the identification of hidden truths.

Theatre offers methods to elicit hidden truths from communities of stakeholders.
Theatre of the oppressed theory poses that theatre can be used to discover oneself.
As stated by Augusto Boal in this theory, “We must all do theatre – to find out
who we are, and to discover who we could become” (Boal 2006). Specifically, the
method of improvisational comedy offers an elicitation technique to integrate into a
trans-discipline of exploring systems.

A recent study by the NASA Systems Engineering Research Consortium inves-
tigated the use of improvisational comedy to elicit hidden truths in the cost and
scheduling community. Improvisational comedy was chosen as “The truth is funny.
Honest discovery, observation, and reaction is better than contrived invention”
(Halpern et al. 1994). The study’s hypothesis is that actors will find that making fun
of hidden truths will garner reactions from the audience, leading to them identifying
the truths in their comedy. At the 2019 NASA Cost and Schedule Symposium, actors
from the community were trained in improvisational techniques and performed a
show moderated by an improvisation professional. Cards were distributed prior to
the show and asked attendees about issue areas in the community. These cards were
used to give the actors starting points.

Hidden truths were identified in the show by the community actors. Such truths
identified included stereotypes of positions in the community and different levels
of optimism held by those positions concerning projects. Feedback cards gathered
from the audience suggest an enjoyment in attending and a benefit from learning
about aspects of the community they were not as informed about prior to watching
the show. Further work is being conducted to more formally elicit stakeholder
preferences for the use of designing systems.

This study on the use of improvisational comedy to elicit hidden truths,
along with previous work on the relationships between systems engineering and
theatre (Palma et al. 2017, 2019), highlights that the exploration of systems is
transdisciplinary in nature. There are questions to be answered in exploring systems
that cannot be answered without a transdisciplinary perspective. Nonengineering
disciplines should be integrated into the trans-discipline to enable a complete
exploration of systems.

5 Importance of Meta-data in Transdisciplinary Systems
Engineering

The transdisciplinary systems engineering solution space generates a variety of
information from many disparate sources that must be understood holistically.
System meta-data contains the holistic data set describing the transdisciplinary
system. There are many aspects of this transdisciplinary meta-data and several
benefits from capturing this meta-data.

586 B. Mesmer et al.

A central responsibility of transdisciplinary systems engineering is to orchestrate
interactions between stakeholders. As system architecture and design progress,
additional information is developed and needs to be shared. Alternatives considered
and choices made, plus the rationale for each choice, are important to capture
and share in a transdisciplinary context. Also, consequences and implications of
decisions, such as limitations in the functionality of the system which will result
from a specific design decision, should be shared. These limitations cross the
discipline boundaries, and the capturing of the transdisciplinary constraints is
informative to members of the design team who come from varying disciplines.
Capturing the rationale and description of this information better informs future
systems modifications to update any limitations found in application.

In transdisciplinary systems engineering, as in traditional systems engineering,
systematic capture of information in such a way that it is accessible to (and readily
understandable by) all stakeholders is critical. Building and maintaining trust among
stakeholders with divergent goals and agendas require transparency – and reliable
capture and retention of shared information is foundational for transparency.

Creating a consistent and unified body of knowledge is essential in transdisci-
plinary systems engineering. It is important that the various stakeholder perceptions,
languages of expression and capture, modeling techniques, and model purposes
all be continuously unified to represent a single shared reality. This means that
in addition to the capture of information from the various sources, techniques,
tools, models, and practices, the transdisciplinary semantic unification of that
information needs to be continuously undertaken to avoid storing contradictory
information or constraints about the shared reality. This requires an understanding
of transformation techniques from all the various transdisciplinary sources and
representations into a common reality. A useful and expressive baseline is the result
of a “many-to-one” mapping set of transformations; this “translation” between the
different vocabularies of different stakeholders has always been one of the added
values of systems engineering. Gathering the information and capturing it are
not enough. Unifying that information to ensure domain consistency and uniform
understanding about the target of the modeling is as important as the information
capture itself. This set of transformation techniques is an essential part of the
enhanced model which incorporates meta-data.

Without a systematically organized body of knowledge within a transdisciplinary
system context, individual stakeholders do not have any way to discover what they
do not know – and so may not even know what questions to ask or what knowledge
they may have that others lack. Just looking at the equivalent of the “table of
contents” for the project’s body of knowledge can help a stakeholders readily see
(a) areas of knowledge about which they know nothing (so they can decide whether
they need to learn about a topic) and (b) topics they consider important which are
not yet addressed in the body of knowledge – so they can see areas where their input
is needed by the project community.

Information changes over time during the development of a transdisciplinary
system (which may be complex or a large complicated system), as circumstances
change, mission needs evolve, existing knowledge is shared, and new knowledge is

Transdisciplinary Systems Engineering Approaches 587

co-created. Since not all stakeholders will participate in each piece of knowledge
discovery or co-creation, each stakeholder needs a way to learn of knowledge newly
added to the common understanding.

It is quite common to have changing personnel in many of the stakeholders
groups, such as rotations in assignments of military personnel. Systematic capture
and retention of information makes it possible for people new to the endeavor to
discover past decisions and history so they can understand how the current situation
came about. This need to make history available to stakeholders also means that it
is very important to “curate” the information so that links between related items of
information are maintained. This is actually a very powerful motivation to enhance
our models so all relevant meta-data can actually be included in the models; then
modeling tool sets can prompt for the inclusion of the data and links between items
of data and other model elements and automatically prompt the model user for
updates of all linked data when a data item or linked model element is changed.

Modeling is one method of capturing information so it can be used and
shared in the transdisciplinary context. The most effective models in use today
can show stakeholders critical aspects of the environment and the system under
development – and experience has proven that showing combined with telling is
much more effective in human communication than describing alone. One of the
challenges of transdisciplinary systems engineering is first identifying all of the
information/knowledge needed to successfully instantiate a new (or revised) system,
then discovering what subset of this information/knowledge is not available, and
finally orchestrating interactions to co-create the missing but needed new knowl-
edge/information. Some of this needed knowledge/information can be embodied
in the kinds of models available today. The needed information which cannot be
embodied in any of the kinds of models available today is referred to in this
paper as “meta-data.” Several types of information are needed for understanding
of transdisciplinary systems as shown in Table 1.

In the past, a few key individuals (e.g., chief engineers of projects) kept much
of the critical “meta-data” in their heads. In fact, the ability of a chief engineer to
keep all of the critical information in mind was often a major determinant of project
success. However, with the increasingly complex transdisciplinary systems being
developed, and the increasing complexity in the human and SoS environments in
which these new transdisciplinary systems are expected to operate, the involvement
of so many stakeholders is needed for success that no one person, however brilliant,
can keep all of the critical information in their mind. So, as we transition into the use
of transdisciplinary systems engineering, we will need to find more effective ways
to capture and share knowledge. Enhancing models so that they include all of the
relevant information offers a promising way forward.

There are several benefits of enhancing models to include all of the knowledge
and information needed to successfully develop a complex system. Increasing the
thoroughness and systematicity of the identification, collection, and co-creation of
needed knowledge is essential in transdisciplinary systems engineering. Embedding
the transdisciplinary constraints in the model Improves the quality of the system
architecture and design. This allows the constraints which currently have to be

588 B. Mesmer et al.

Table 1 Meta-data information types

Model meta-data
information (e.g.,
environment, system, and
its parts/elements)

Process-related meta-data
information

Product-related meta-data
information

Stand-alone models Communications between
stakeholders

Operational constraints (such
as those necessitated by
limitations in system power or
by limitations in the
capabilities of human
operators)

Interconnected models Information capture Options considered and the
rationale for selection and
elimination of various options

Architecting the system System architecture
description

Designing the system(s) and
elements of the system

Designs of system
parts/elements

Manufacturing, programming,
and configuring the system

Interfaces and interactions
between parts/elements of the
system and between the
system and its environment

Testing the system and its
parts/elements

Data used to test the system

Training users Results of system tests,
including calibration data

Making changes to the system
after it is deployed

identified, remembered, and enforced by a chief architect or chief engineer to be
electronically linked with all of the architecture and design elements affected by
the constraints, so everyone using the model can see them. These constraints can
be enforced during design – and even during system operation and later during
system revisions – to ensure that the system is and remains viable. Transdisciplinary
systems engineering meta-data also provides a vehicle that stakeholders can use to
understand more about the system and the requirements and constraints driving
its design. Collecting needed information in a way which highlights links and
interdependencies between different items of information, makes it much more
likely that the information will remain current as the system evolves from an idea
to an architecture to a design to an operational system, and beyond through system
maintenance and revision. Today, the methods we use often end up with a disconnect
between documentation and the as-built system, which often has to be remedied
by reverse engineering the as-built system to get the final design description (one
part of which often ends up being analyzing software code to deduce the final
system requirements, in systems controlled by software). Transdisciplinary systems
engineering cannot be implemented when the information about the system is siloed

Transdisciplinary Systems Engineering Approaches 589

and disconnected. Transdisciplinary systems engineering requires new thinking and
the capture of the meta-data to support this thinking.

6 Summary and Conclusion

Transdisciplinary systems engineering provides a holistic approach that exploits
convergence among disciplines including engineering, cognitive, and social sci-
ences. Elegance is key system characteristic that results from the use of transdisci-
plinary methods. Elegant systems reflect the holistic solutions based on addressing
the perspectives provided by the contributing disciplines and that account for them
in system use.

Transdisciplinary systems engineering provides a much broader view of the
solution space, greatly expanding this domain. The transdisciplinary view of this
space enables system autonomy to be effectively developed and applied. This
view also aids in the construction of system of systems. Autonomy elevates the
system complexity and expands capabilities through intelligent responsiveness to
the system environment. System of systems are constructed on a building block
basis, combining functionality of independent systems to create new capabilities.
These expansions of system complexity and capability require a transdisciplinary
approach.

Exploration of the transdisciplinary solution space requires the use of the inte-
grating perspective, accommodating the viewpoints of many different disciplines. A
set of system models can support the exploration of these solutions. Storytelling is
a method which is transdisciplinary by its very nature that facilitates the effective
exploration of the solution space.

The information produced and needed to be understood about these different
exploration methods and their results are captured as meta-data. Transdisciplinary
meta-data incorporates many different information types and yields many benefits
to retaining system understanding.

Acknowledgments The discussion on the simplicity found in elegance makes use of comments
from Michael Griffin which advance systems engineering.

References

Boal, Augusto. 2006. The Aesthetics of the Oppressed. Routledge.
Bott, M., and B. Mesmer. 2019. Agent-Based Simulation of Hardware-Intensive Design Teams

Using the Function-Behavior-Structure Framework. Systems 7 (3): 37.
Collopy, P., C.L. Bloebaum, and B. Mesmer. 2012. The Distinct and Interrelated Roles of

Value-Driven Design, Multidisciplinary Design Optimization, and Decision Analysis. In 14th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (MA&O), Indianapolis,
September, 2012

590 B. Mesmer et al.

Frosch, R.A. 1993. A Classic Look at Systems Engineering. In Readings in Systems Engineering,
ed. F.T. Hoban, and W.M. Lawbaugh.

Griffin, M.D. 2010. How Do We Fix Systems Engineering? In 61st International Astronautical
Congress, Prague, Czech Republic.

Halpern, C., D. Close, and K. Johnson. 1994. Truth in Comedy: Manual for Improvisation.
Meriwether Publishers.

Isaacson, Walter. 2011. Steve Jobs, Simon and Schuster, 343.
Kannan, H., B. Mesmer, and C.L. Bloebaum. 2017. Increased, System Consistency through

Incorporation of Coupling in Value-Based Systems Engineering. Systems Engineering 20 (1):
21–44.

Madni, A.M. 2007. Transdisciplinarity: Reaching Beyond Disciplines to Find Connections.
Journal of Integrated Design and Process Science 11 (1): 1–11.

———. 2010. Transdisciplinary System Science: Implications for Healthcare and Other Problems
of Global Significance. Transdisciplinary Journal of Engineering & Science 1 (1): 38–54.

———. 2012. Elegant Systems Design: Creative Fusion of Simplicity and Power. Systems
Engineering 15 (3): 347–354.

———. 2015. Expanding Stakeholder Participation in Upfront System Engineering Through
Storytelling in Virtual Worlds. Systems Engineering 18 (1): 16–27.

———. 2018. Transdisciplinary Systems Engineering. Springer.
———. 2019. Transdisciplinary Systems Engineering: Exploiting Disciplinary Convergence to

Address Grand Challenges. IEEE SMC Magazine 5 (2): 6–11.
Madni, A.M., M. Spraragen, and C.C. Madni. 2014. Exploring and Assessing Complex System

Behavior through Model-Driven Storytelling. In IEEE Systems, Man and Cybernetics Interna-
tional Conference, invited special session “Frontiers of Model Based Systems Engineering”,
San Diego, CA, October 5–8, 2014.

Madni, A.M., M. Richey, E. Ordoukhanian, J. Venkatesh, F. Zender, K. Chang, and M. Nance.
2016. Exploiting Storytelling in Collaborative Systems Engineering: Towards a Smart Experi-
ential Dashboard. In Conference on Systems Engineering Research 2016, Huntsville, AL.

Manjoo, Rarhad. 2010, July/August. Apple Nation, 74–75. Fast Company.
NASA Technical Publication, NASA/TP-TBD-2019. 2019. Engineering Elegant Systems: Theory

of Systems Engineering. NASA.
Palma, G., and B. Mesmer. 2018. A Preliminary Content Analysis of NASA’s Nextstep-2 Habitat

Documentation for Preference Representation. In AIAA SciTech 2018, Orlando, FL, January,
2018.

Palma, G., B. Mesmer, and A. Guerin. 2017. Similarities of Milestones in Theatre Productions
and Systems Engineering. In ASEM 2017 International Annual Conference, Huntsville, AL,
October, 2017.

———. 2019. Relating Theatre and Systems Engineering: Experiences of a Systems Engineer in
Theatre Courses. In ASEE Annual Conference & Exposition 2019, Tampa, June, 2019.

Watson, M.D. 2018. System Exergy: System Integrating Physics of Launch Vehicles and Space-
craft. AIAA Journal of Spacecraft and Rockets 55 (2): 451–461.

Watson, M.D., B. Mesmer, and P. Farrington. 2016. Engineering Elegant Systems: Postulates,
Principles, and Hypotheses of Systems Engineering. Charlottesville: CSER.

Watson, M.D., D. McKinney, R. Anway, L. Rosser, and J. MacCarthy. 2019a. Appreciative Meth-
ods Applied to the Assessment of Complex Systems. In INCOSE International Symposium
2019, Orlando, FL.

Watson, M.D., B. Mesmer, G. Roedler, D. Rousseau, C. Keating, R. Gold, J. Calvo-Amodio, C.
Jones, W.D. Miller, D. Long, S. Lucero, R.W. Russell, A. Sedmak, and D. Verma. 2019b.
Systems Engineering Principles and Hypotheses. INCOSE Insight Magazine 22 (1).

A Systems Science Basis for
Compositionality Reasoning

Swaminathan Natarajan, Subhrojyoti Roy Chaudhuri, and Anand Kumar

Abstract Compositionality reasoning is fundamental to engineering. The problem
of compositionality is typically framed as: given a configuration of parts with
characteristics and interrelationships, how can we derive the characteristics of the
configuration as a whole? This paper uses systems science concepts to address a
related scope question: how should parts be characterized, and what are the kinds of
compositionality reasoning needed, in order to assert that a given configuration will
exhibit desired behaviour and characteristics?

Our model structures compositionality reasoning into categories that take a
successively wider view of the system: pattern of organization, variety, dynamics,
planes of operation, levels of organization and context impacts. The ultimate
objective is to explicate the systems science basis for systems engineering and
contribute to tooling and engineering practice by identifying the compositionality
assertions to be satisfied and the scope of concerns to be covered in systems
modelling. To test the coverage and utility of the proposed model, we examine its
relationship to systems engineering practices in a large radio telescope project and
the extent to which it covers a collection of systems science concepts identified in
the literature.

Keywords Compositionality · Systems engineering · Systems modelling ·
Systems science basis for systems engineering

1 Introduction

Compositionality – how parts come together to form wholes – is central to
engineering. Every engineering design involves tacit or explicit) compositionality
reasoning: if parts with particular characteristics are put together in a particular

S. Natarajan (�) · S. R. Chaudhuri · A. Kumar
Tata Consultancy Services Research, Pune, India
e-mail: swami.n@tcs.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_50

591

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_50&domain=pdf
mailto:swami.n@tcs.com
https://doi.org/10.1007/978-3-030-82083-1_50

592 S. Natarajan et al.

configuration, what would be the behaviour and characteristics of the resulting
whole?

Naturally, there has been extensive research work on compositionality reason-
ing, including mathematical formulations, in both systems engineering and other
engineering disciplines. Typically, it is assumed that each part is characterized
mathematically, and the problem is to compose these to characterize the whole. But
what should be included in the characterization of each part? For instance, should
we assume that the structure of the system (and hence the characterizations) stay
fixed over time? Should we model the context, and if so, how?

The goal of this paper is to re-look at compositionality in such a way as to
provide conceptual foundations for systems engineering practice: what must we take
into account, and what is the range of analysis assertions that must hold, in order
to assert that a particular solution configuration will have desired characteristics?
Engineering, particularly architecture, is concerned with the life cycle of delivered
solutions, so analysis must include the trajectory of characteristics over time,
including changes triggered by its various environments.

This work is guided by a key principle: In order to achieve completeness,
compositionality reasoning should cover the various kinds of phenomena that occur
in systems. For this, we rely on systems science (Mobus and Kalton 2015). Systems
science studies patterns of organization and has established key determinants of
system behaviour and evolution trajectory, including variety, dynamics and mutual
interactions and influences between the system and its environments. It has also
identified various phenomena, such as faults, pathologies, threats, operating modes,
phase changes, tipping points, emergence, fractal patterns, chaos phenomena, self-
organization, autopoiesis, combogenesis (Volk 2017), etc. This paper organizes
the phenomena and resulting characterization into layered categories: pattern of
organization, variety, dynamics, planes of operation, levels of organization and
context impacts. This categorization aims to align with the way we organize domain
and systems knowledge and with typical engineering analysis practice.

We do not provide a formal theoretical basis to assert the completeness of
the proposed categories; instead, we try to obtain confidence in their validity and
completeness by (a) intuitive reasoning, (b) comparison with actual practice and (c)
comparing them with 45 systems concepts identified in Katina 2016, and Adams
et al. 2014. This gives us preliminary confidence in the validity and utility of the
model, but completeness is not assured.

Analysis assertions are based on formal, informal or tacit knowledge, so the
validity of compositionality reasoning is limited by the accuracy and completeness
of knowledge. This work is limited to mechanistic systems with predesigned
patterns of organization and behaviour, avoiding considerations such as worldviews
(Rousseau 2018) and motivation that applies to analysis of the behaviour of
purposeful systems.

The ultimate goal of this work is to help establish the systems science basis for
systems engineering practice. In Natarajan et al. 2019, we proposed a Four Worlds
model of knowledge formation and discussed how the systems engineering process
can be understood in terms of the activities required to synthesize solutions in

A Systems Science Basis for Compositionality Reasoning 593

the real world using model and knowledge worlds. This work is complementary,
proposing a systems science basis for the product side of systems engineering, in
terms of a model for compositionality reasoning.

Section 2 briefly discusses a fraction of the extensive literature in this area,
limiting the discussion to some key ideas that our work draws upon. Section
3 presents our understanding of relevant systems science concepts. Section 4
describes our proposed categories model. Section 5 explores its relationship to
typical current practice. Section 6 examines its relationship to the 45 concepts
referred to above. Section 7 concludes the paper with some remarks about the
contributions, limitations and value of the work.

2 Background

Wymore 1967, in his work on compositionality reasoning, characterized parts in
terms of transfer functions: relationships between inputs and outputs. Willems 2007,
pointed out the limitations of this approach, particularly for physical dynamical
systems where interconnections constrain the behaviour of devices, and proposed a
more comprehensive approach to modelling the behaviour of open, interconnected
systems called tearing-linking-zooming. The conceptual model that we present
in this paper is compatible with Willems’ formulation and, from a mathematical
perspective, can be viewed as elaborating on it.

Our approach to modelling the constraints arising from interconnections is based
on the assume-guarantee concept discussed in Benveniste 2012. Interrelationships
with external entities are modelled in terms of context roles (e.g. physical envi-
ronment, partner systems, infrastructure, controller, life cycle manager), each with
associated role profiles that capture our assumptions about that entity, including
patterns of interaction and anticipated trajectory of state and structural change over
time. As a corollary, the validity of reasoning is limited by the extent to which actual
deployment contexts conform to these assumptions.

3 Systems Concepts

3.1 Systems as Networks of Processes Enabled by Structural
Networks

The Systems Phenomenon (Schindel 2016) indicates that systems behaviour arises
from a mutual influence cycle between states and interactions: interactions are
influenced by the states of participating entities and in turn may modify the
state and/or structure of the participants. This captures the fundamental generative
dynamics of systems and leads to the understanding that the organizational pattern

594 S. Natarajan et al.

of systems is as networks of interacting entities and that cycles of interaction
produce dynamical behaviour, while variations in entity state and characteristics in
turn produce variations in interactions and outcomes. System behaviour arises from
the dynamics and variety of interactions over a pattern of organization.

Simon 1962, pointed out the limitation of near decomposability that applies
when we try to understand such a network hierarchically, i.e. when we try to
collapse a region of the network (a configuration of entities that interact with each
other and with their environment) into a single node, i.e. we try to characterize
the configuration of parts as a unitary whole. Such composition is possible only
when there is denser coupling within regions than between regions and the resulting
characterization is an approximation of the actual behaviour. This limitation of near
decomposability applies to our compositionality reasoning approach.

3.2 Levels of Organization

The behaviour of a system can be observed, understood, modelled and explained
at different scales of perception, e.g. a toaster can be understood at the functional,
electromechanical, material and atomic levels. This arises from the phenomenon of
combogenesis (Volk 2017): entities at one level of granularity combine to produce
entities at a higher level of granularity with new degrees of behavioural freedom
(Sillitto 2018). We reason about the new behaviours in terms of a new vocabulary
of concepts and body of knowledge that describes the entities, interactions and
resulting behaviour at the larger granularity. This leads to the formation of multiple
knowledge domains with different vocabularies and knowledge items, each of which
capture knowledge about phenomena that occur at that level of description. Of
course, the toaster is a single whole, involving all of these phenomena, i.e. all this
knowledge must be brought to bear to understand its behaviours.

This has two implications for compositionality reasoning:

• Consistency relationships must hold across the levels of description, i.e. the lower
levels of description must produce the entities and interactions present in the
higher levels of description.

• Higher levels of description are abstractions that assume integrity of configu-
ration and behaviour at lower levels. A complete approach to compositionality
reasoning must take into account behaviours and fault situations that may arise
from lower-level phenomena.

In engineering, we typically model the system at the functional, technical and
technological levels.

A Systems Science Basis for Compositionality Reasoning 595

3.3 Planes of Operation

A comprehensive approach to compositionality reasoning, which aims to take into
account changes to the state and structure of the system over its lifetime, must
take into account not only the behaviour of the system configuration but also all
the processes in its ecosystem that act upon the system to change it, including
control and life cycle processes. The categorization below of the network of system
processes into planes builds on concepts from Mobus 2020, and the viable system
model (Beer 1979):

• Operational plane: Structures and processes involved in delivering basic func-
tional behaviour

• Resources and structural facilitation plane: Processes and structures involved in
acquisition and distribution of materials, energy and/or information inputs and
resources and waste disposal

• Operational control plane: Structures and processes involved in orchestration,
monitoring, feedback control and situation handling of system functioning
towards desired goals

• Life cycle management plane: Structures and processes involved in facilitating
the life cycle of the system-of-interest, including adaptation to its context (e.g.
upgrades)

• Identity management and governance plane: Structures and processes involved
in forming and evolving the role of the system with respect to its environment
and asserting this identity

Figure 1a identifies some of the typical processes involved in each plane. For
mechanistic systems, many of these processes involve entities (including people)
in its ecosystem. These ecosystem entities, as shown in Fig. 1b (e.g. controller/life
cycle manager, resource provider, system owner), are modelled as context roles,
with associated role profiles. These role profiles characterize context entities in the
same way parts are characterized: in terms of functions and characteristics, states,
interactions and their effects on state and structure and trajectory of change over
time (these concepts and Fig. 1b are discussed further in Sect. 4). By including
context roles (including their trajectory of change) in compositionality reasoning,
we recursively enable characterization of the (anticipated) trajectory of change of
the system over its lifetime.

4 Categories of Phenomena to Be Included in Systems
Modelling and Compositionality Reasoning

The above concepts, and other systems science phenomena such as listed earlier,
all need to be taken into account when determining the behaviour and trajectory
of evolution of system consisting of a configuration of parts. The model below

596 S. Natarajan et al.

Fig. 1 (a) Partial list of processes in each plane of operation. (b) Systems modelling concept for
compositionality reasoning

is proposed as a categorization of the space of considerations involved, which
aligns with the way we organize knowledge and with current typical engineering
practice:

• Pattern of organization: The nature of patterns knowledge and analysis methods
in any domain is that they express mappings between configurations of parts
and the resulting functional and quality outcomes. This patterns-based base case
reasoning is the foundation for compositionality.

• Variety, undesired variety and pathologies: In addition to the base case, the
space of possibilities associated with the states, flows, interactions and structural
relationships in a system over its lifetime includes boundary conditions, transient
situations, spontaneous (non-designed) processes (e.g. rusting, wear-and-tear),
undesired/unexpected/non-nominal inputs (e.g. environmental and resource per-
turbations, security threats, etc.) and pathological situations in which the state
and/or structure of the system varies from the defined “healthy” state and
structure, resulting in adverse behavioural impacts. Compositionality reasoning
must include working through this entire variety space in determining system
behaviour.

• Dynamics: Variety thinking examines the effect of structure and state variations
in the structural network on behaviour. Dynamics analysis complements this by
working through the behaviour of the cyclical network of processes. Dynamics
analysis can be viewed as including three levels:

– Short-term dynamics: This examines operational behaviour: how state
changes resulting from the network of processes produce a trajectory of
behaviour over time. Often, the methods are discipline-specific, e.g. fluid flow
equations, Nyquist plots, path planning, etc. Functional, fault and security
scenarios also involve short-term dynamics.

A Systems Science Basis for Compositionality Reasoning 597

– Medium-term dynamics: This focuses on structural changes arising during
system operations. It includes phenomena such as operating modes, tip-
ping points, emergence, self-organization, homeostasis, autopoiesis, learning,
adaptation, combogenesis, etc.

– Long-term dynamics: This focuses on co-evolutionary changes between the
system and its environment. For mechanistic systems, this includes the
trajectory of changes to stakeholder needs and sources of value, as well as
technology and other environments.

The field of complexity science focuses on identifying phenomena resulting
from the network dynamics of systems, building knowledge and developing
analysis techniques in this area. Mobus 2020, discusses an approach to modelling
and analysing dynamical behaviour.

• Planes of operation: Variety and dynamics analysis need to be applied not
only to the operational system but to all the planes of operation associated
with the system-of-interest. These may involve entities outside the system-of-
interest, including people in its ecosystem. This is facilitated by modelling
external entities as context roles, as shown in Fig. 1b. The central point there
is that compositionality reasoning requires explicating our assumptions about
the context as part of the model, including assumptions about its (anticipated
possible) trajectories of change over time. These characteristics and trajectories
may be specified in terms of possibility spaces, e.g. range or collection of possible
values, scenarios, etc. If deployment contexts deviate from these assumptions,
compositionality reasoning needs to be updated accordingly.

• Levels of organization: As discussed earlier, systems are understood relative to
multiple levels of organization (e.g. functional, technical, technological), with
associated bodies of knowledge at each level. In order to bring all of that
knowledge to bear, we need a family of models corresponding to the different
levels, with consistency relationships among them. Consistency relationships
enable the propagation of the results of reasoning across levels, so that the
complete characterization includes, for example, faults and pathologies identified
at each level.

• Context impacts – influences, value and consequences: All the above reasoning
has focused on establishing/verifying the behaviour and characteristics of the
system-of-interest. However, the systems operation may have impacts on its
environment, and in turn the environment impacts the system. In particular, the
environment may include purposeful entities (“stakeholders”), partner systems
and environmental entities who are impacted by the system, and compositionality
reasoning should include determining the outcomes for these in terms of
value delivered (including experiential and perceived value) and consequences:
negative impacts resulting from changes to their state and structure over time.
This may require extending the scope of system modelling and reasoning beyond
the immediate context roles that interact directly with the system, to include
the indirect interactions involving these other affected entities, ensuring that we

598 S. Natarajan et al.

capture the essential dynamics that determines the impact. For the same reasons,
it is also necessary to include within the scope of modelling and reasoning those
context elements that significantly influence the behaviour of the system and its
trajectory of change over time.

The focus of the above model is on identifying the kinds and scope of reasoning
needed to understand the behaviour of systems and their trajectory of evolution
or to assert that a system will conform to desired behaviours. It does not address
how to perform such reasoning or indeed whether techniques for such reasoning
exist today, e.g. dynamics analysis today may not predict emergent outcomes
and self-organization. What it does do is establish based on systems science the
responsibilities of systems engineering modelling and reasoning. It should be
noted that the concerns identified by the categories need to be considered together
during analysis, not independently, e.g. dynamics reasoning needs to include variety
considerations.

Figure 1b shows the kind of systems modelling framework required to support
such reasoning. It is a family of models at different levels of organization, with
context roles covering the various planes of operation. Characterization of both
entities and interactions includes variety, dynamics and context impacts.

Performing all the above reasoning on such a model determines/verifies the
characteristics of a single “block”: one entity at one level of the system hierarchy.
All this reasoning must be recursively applied to each entity at each level of
the hierarchy, so that the characterization of parts at any level of the hierarchy
matches its behaviour determined at the next lower level. It should also be noted
that pattern of organization reasoning is based on domain knowledge and typically
involves/requires multiple views of the system, aligned with applicable functional
and quality concern knowledge domains, based on stakeholder concerns.

5 SKA Radio Telescope Example

The model identifies a wide range of reasoning necessary to assert that a system
configuration will deliver desired behaviour. How does this relate to typical current
systems engineering practice? We examine a large systems engineering project
in which we participated recently the design of the Square Kilometre Array, an
international project to create a pair of radio telescopes in Australia and South
Africa, involving about 500 engineers and scientists over 3–4 years. The table below
maps engineering activities to the reasoning model.

Unsurprisingly, current practice includes design strategies, models and formal/in-
formal reasoning across all the layers – if there were major gaps, such projects would
not succeed. Rather, it gives us confidence that our model is in the right ballpark
and that there is a match between the systems science theory and the systems
engineering practice. Of course, it can also be seen that there are areas where
the theory can bring in more systematic thinking, practice and tooling support,

A Systems Science Basis for Compositionality Reasoning 599

Reasoning type
Engineering modelling and analysis activities in SKA
project

Pattern of organization Functional analysis, activity diagrams, MATLAB and other
domain-specific models and analysis, safety/security
patterns, quality attributes analysis, interfaces and ICDs

Variety, undesired inputs,
pathologies

Observing modes, scenarios analysis, fault scenarios, RFI
excision, safety and security threats, equivalence classes,
load curtailment, degraded operations

Short-term dynamics
Medium-term dynamics
Long-term dynamics

Startup/shutdown/end of observations, failover,
commissioning, pulsar timing
Adaptation dynamics: recalibration, effect of calibration
change on data products, observation QA (adapting
observations to conditions), add custom devices
Provisioning for phase 2, anticipated changes, ability to
exploit new capabilities

Planes of operation Operations and maintenance planning, observation
scheduling and management

Levels of organization Models, prototypes, analysis at functional, technical and
technological levels

Context impacts Radio quiet zone, RFI and aircraft transit, stakeholder value
analysis, site impacts

particularly in terms of variety and dynamics analysis, systematic coverage of planes
of operations and value and consequences analysis.

6 Coverage of Systems Science Concepts

The previous section gives us some confidence that the proposed compositionality
reasoning approach maps well to current systems engineering practice. But since our
goal is to link systems science with systems engineering, does the simple proposed
categorization achieve coverage of key systems science concepts? To obtain some
confidence in this area, the table below examines the mapping between 45 systems
concepts identified in Katina 2016, and the proposed categories. It should be noted
that the propositions are concerned with systems design guidance, while our focus is
on developing a reasoning model that is independent of design prescriptions, ideally
applicable even to understanding natural systems. This complicates the mapping.

The “not applicable” entries indicate that the concept relates to design guidance;
the text in parenthesis indicates the category of concern addressed. The italicized
“not covered” entry notes an important point not explicitly mentioned so far, that
reasoning often involves the construction of abstractions (including viewpoints),
which deliberately removes detail deemed to be of less relevance to specific
reasoning goals, to facilitate application of knowledge and reasoning. This is related
to the meta-guidance concerns of system boundary, requisite saliency and (avoiding
excessive attention to) events of low probability, which suggest the need to exercise

600 S. Natarajan et al.

Principle Category Principle Category Principle Category
Communication Variety Control Planes of Oper Emergence Dynamics
Hierarchy Pattern of org

(recursion)
Complementarity Pattern of Org

(Viewpoints)
Darkness Pattern of orgn

(Interactions)
Holism Pattern of org

(context)
Minimum crit
specification

Scope of
modelling

Pareto Not covered
(abstraction)

Requisite
parsimony

Not applicable
(modelling)

Requisite
saliency

Meta-guidance
(modelling)

Equifinality Pattern of Org

Multifinality Variety,
dynamics

Purposive
behaviour

Planes of Oper
(Identity)

Satisficing Not applicable
(desired goals)

Viability Planes of
Oper

Redundancy of
potential cmd

Planes of oper
(control plane)

Information
redundancy

Not applicable
(Variety)

Dynamic
Equilibrium

Dynamics Homeorhesis Dynamics,
trajectories

Homeostasis Dynamics,
planes of oper

Redundancy of
resources

Not applicable
(Variety)

Relaxation time Short-term
dynamics

Self-
organization

Dynamics

Sub-
optimization

Recursion Circular
causality

Dynamics Feedback Planes of oper
(control)

Recursion Pattern of org Requisite
hierarchy

Planes of oper
(control)

Requisite
variety

Variety

Balance of
tensions

Pattern of org,
planes of oper

Basins of
stability

Medium-term
dynamics

Buffering Variety, planes
of oper (rsrcs)

Resilience Variety,
dynamics

Eudemony Planes of oper
(identity, gov)

Events of low
probability

Meta-guidance
(variety)

Least effort Dynamics Omnivory Planes of oper
(rcrcs), variety

Transcen-
dence

Identity. limits
of knowledge

Incompleteness Limits of
knowledge

Morphogenesis Life cycle,
dynamics

Punctuated
equilibrium

Long-term
dynamics

Sociotechnical
systems

Planes of oper
context impact

System boundary Meta-guidance
(modelling)

System
environment

Context impact

judgment on what to include in modelling and analysis, to keep them effective and
tractable. Transcendence and incompleteness point out some fundamental limits of
reasoning.

It would be incorrect to conclude from this analysis that the proposed categories
achieve full coverage of systems science concepts. Nevertheless, the results improve
our confidence in the validity of the proposed model, both in terms of coverage, and
that the categories are indeed based on known systems concepts.

7 Conclusion

We have proposed a simple categories model of considerations that must be taken
into account in compositionality reasoning: pattern of organization, variety and
pathologies, dynamics, the various planes involved in systems operation, the need
to combine knowledge relating to different levels of organization and the need
to include context impacts in the characterization and reasoning. The proposed
model is firmly grounded in systems science concepts and maps well to systems
engineering practice. We believe this model can provide a bridge between the

A Systems Science Basis for Compositionality Reasoning 601

disciplines, showing engineers the scientific basis for the product engineering
practices that are known to be essential to ensuring that systems will function as
desired.

Our work also indicates the information that needs to be included in systems
modelling to support such reasoning, as shown in Fig. 1b. This can facilitate more
systematic practice, but also help in improving tool support for modelling and
reasoning. The work also provides value by pointing out the limitations of reasoning
and the need for additional research on reasoning areas not well supported by
methods and tools.

Acknowledgements Discussions with colleagues at TCS Research and with members of INCOSE
SSWG, SysML v2 submission team and others in the systems engineering and systems science
communities have contributed significantly to the ideas.

References

Adams, K.M., P.T. Hester, J.M. Bradley, T.J. Meyers, and C.B. Keating. 2014. Systems Theory as
the Foundation for Understanding Systems. Systems Engineering 17 (1): 112–123.

Beer, S. 1979. The Heart of Enterprise, Vol. 2. Wiley.
Benveniste, Albert, et al. 2012. Contracts for System Design. Dissertation Inria.
Katina, P.F. 2016. Systems Theory as a Foundation for Discovery of Pathologies for Complex

System Problem Formulation. In Applications of Systems Thinking and Soft Operations
Research in Managing Complexity, 227–267. Cham: Springer.

Mobus, G.E. 2020. Understanding Complex Systems: Analysis, Modelling and Design, forthcom-
ing.

Mobus, G.E., and M.C. Kalton. 2015. Principles of Systems Science, Vol. 7, No. 5. New York:
Springer.

Natarajan, Swaminathan, et al. 2019. How Do Knowledge Domains Come Together in Systems?
In Systems Engineering in Context, 137–150. Cham: Springer.

Rousseau, David, et al. 2018. General Systemology: Transdisciplinarity for Discovery, Insight and
Innovation, Vol. 13. Springer.

Schindel, B. 2016. Got Phenomena? Science-Based Disciplines for Emerging Systems Challenges.
In INCOSE International Symposium, Vol. 26, no. 1, pp. 2256–2271.

Sillitto, H. 2018. personal communication.
Simon, H. 1962. The Architecture of Complexity. Proceedings of the American Philosophical

Society 106 (6): 467–482.
Volk, T. 2017. Quarks to Culture: How We Came to Be. Columbia University Press.
Willems, J.C. 2007. The Behavioral Approach to Open and Interconnected Systems. IEEE Control

Systems 27 (6): 46–99.
Wymore, A.W. 1967. A Mathematical Theory of Systems Engineering.

Toward the Design of Artificial Swarms
Using Network Motifs

Khoinguyen Trinh and Zhenghui Sha

Abstract Many complex systems evolve as a result of interactions among individ-
ual entities whose behaviors cannot be directly controlled. This makes the design of
such systems inherently challenging. The objective of this research is to develop a
new approach in engineering complex swarm systems with desired characteristics
based on the theory of network motifs – subgraphs that repeat themselves among
various networks. In recent studies, the discovery of network motifs has presented
the ability to determine reoccurring similarities between similar functioning net-
works that were originally believed to have not shared any characteristics. It is
therefore hypothesized that manipulating the types of network motifs within a
network can help engineer artificial swarms with improved functionality. In this
study, artificial swarm systems have been modeled as a dynamic complex network
where each node represents an individual foraging entity and links represent as
the communication between entities. Additionally, motif-detecting algorithms have
been used to extract subgraphs that reoccur in these complex networks. Our research
has shown promising results that reveal a statistically significant correlation between
network motifs and the performance of simulated swarm networks. This study
contributes as a new approach that can potentially be used in the design and
engineering of complex swarm systems.

Keywords Network motifs · Complex networks · Artificial swarm · Network
analysis · Complex system design

K. Trinh
Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, USA

Z. Sha (�)
The Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin,
TX, USA
e-mail: zsha@austin.utexas.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_51

603

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_51&domain=pdf
mailto:zsha@austin.utexas.edu
https://doi.org/10.1007/978-3-030-82083-1_51

604 K. Trinh and Z. Sha

1 Introduction

1.1 Background

The engineering of complex systems has traditionally followed a top-down method-
ology which creates a framework for the system and adds additional features to meet
specific design requirements. This general process is embodied in various existing
systematic design methods (e.g., Pahl and Beitz’s theory 1996), systems engineering
models (e.g., Systems Engineering V (Buede 2000) and Waterfall model (Scacchi
2001)), and system engineering processes adopted by organizations such as NASA
(2007). For example, the design of a vehicle system requires the decomposition
of high-level requirements (e.g., safety, reliability) into individual units such as an
acceleration unit or a braking mechanism which can be further broken down into
mechanical components that can be designed and manufactured with pre-existing
knowledge and tools.

Over the past decade, there has been a growing interest in developing solutions
involving complex systems, where the system-level structure emerges from the
behaviors of individual entities and their interactions with each other. Some
examples of this approach are the development of swarm robotics to fight forest
fires and the use of automated drone system to transport industrial goods. In
contrast, the design of these complex multi-agent systems differs from traditional
engineering design. Instead, it often draws inspiration from natural swarm, such
as ant colonies and bee swarms, where individuals make decisions based on local
information. In such systems, there are a large number of individual entities,
which are heterogeneous in nature and have private objectives that must be met
without compromising system goals. Therefore, engineering such systems towards
a desired system-level performance is inherently challenging, and maintaining a
direct control of the system is nearly impossible. A bottom-up approach that aims
at engineering local interactions must be developed, and a better understanding
about the relationships between the local network structures and the system-level
performance must be obtained.

1.2 Design Methodology Using Network Motifs

In this paper, we present a new approach based on the theory of network motifs
to efficiently gain information of how individuals interact with each other and how
those interactions would influence the performance of system. Network motifs are
defined as reoccurring subgraphs (or patterns) that repeat themselves among various
networks (Milo et al. 2002). Current research on network motifs has been primarily
focused on the development of motif-detecting algorithms to identify reoccurring
subgraphs within a network to support the analysis of network topologies (Zuba
2009). As a result, many non-commercial algorithms, such as mfinder and MAVisto,

Toward the Design of Artificial Swarms Using Network Motifs 605

Voltage Signal Input

Transistor
Transistor ON

Transistor OFF

Mechanical
Component

(Motor)

Voltage Signal Input

Transistor
Transistor ON

Transistor OFF

Transistor OFF Transistor OFF

Transistor ON Transistor ON
Transistor Transistor

Voltage Signal Input Voltage Signal Input

Fig. 1 H-bridge circuit modelled as a network

have been developed to detect these reoccurring subgraphs (Zuba 2009). Other motif
research has involved the analysis of biological systems to determine similarities
across different organisms (Zabet 2011). Existing research has indicated that
network motifs have certain functions to allow for the system to achieve its overall
goal. Studies of biological systems, for example, have shown E. coli and yeast to
share common motif families that make up both of their entire DNA transcription
network. Particularly, one motif families, called auto-regulation motifs, allows E.
coli to repress or accelerate the rate of DNA transcription (Zabet 2011).

One of the main problems currently faced with systems engineering is a lack
of holistic methodology (Rousseau 2018). Generally, systems engineering focuses
on the design of the system’s parts rather than the system as a whole. This results
in unexpected behaviors of the system which stem from interactions of different
subsystems and their parts. We look to bridge this problem through a methodology
that correlates complex system characteristics with network motifs. Inspired by
existing studies, we hypothesize that the theory of network motifs can be used in
designing complex systems. To give an overview on this approach, we use a simple
example – the redesign of a traditional H-bridge circuit – as shown in Fig. 1. The
components of this H-bridge circuit can be modeled as various nodes that have
connections to other nodes that send various electrical signals. Various subgraphs,
such as the one involving the transistor node, can be found repeating themselves
within the network (Itzkovitz et al. 2005). The transistor node is directly responsible
for receiving signals from one node and sending out new signals to other nodes,
making this node crucial in the H-bridge system. The transistor node will receive a
signal from voltage signal node that causes the transistor to turn itself “on” or “off”

606 K. Trinh and Z. Sha

Model complex
system as complex

network

Motif-mining
algorithms

Obtain system’s
performance values

and metrics

Engineering new complex system by modifying
motif structure

System’s speed,
energy efficiency,

accuracy, etc.

Obtain motif
structure and

determine their
functions

Verification
of

Correlation
Analysis

Correlation Analysis

Local Network
Structures

(Motif
Structure)

Vs.
System

Performance

Global Network
Structures

Vs.
System

Performance

Standard
deviation &

occurrence of
motif types, etc.

Degree
distribution,
clustering

coefficient, etc.

Determine key motif
structure and their

significance to system
performance

New complex system
with desired

characteristics

Fig. 2 The proposed approach for engineering complex swarming systems

to allow for electrical current to flow through it. From the signals that the motor
node receives, the motor node will either be in its off state, clockwise-rotation state,
or counterclockwise-rotation state. This transistor subgraph is not exclusive to the
H-bridge only and can be applied to a plethora of other electronic applications. If
we have an in-depth understanding about the correlations between this transistor
subgraph and its function within the circuit, then a new system could be engineered
by promoting the formation of such subgraphs.

In general, the proposed approach can be summarized in Fig. 2. First, a complex
system is modeled as a complex network in which nodes and links are defined.
With an established network structure, key reoccurring subgraphs can be identified
by using motif-detecting algorithms. Their functions must be analyzed and will
eventually be used to modify pre-existing systems. To study the relationship
between local network structures and system-level performance, correlation analysis
has to be performed between the extracted network motif data and the metric values
that quantify the system performance. Based on the correlation analysis, the most
important network motifs, i.e., the ones with the highest correlations, will become
potential solutions in engineering the system’s performance level. In order to verify
such correlations, we propose to perform additional correlation analyses between
the network motifs and network-level properties such as the average degree and
the degree distribution. This step is necessary in order to verify if a correlation
exists between network motifs and local network structure rather than the global
network characteristics. After such verifications, those subgraphs can be confirmed
in having a significant influence on system performance. It is, therefore, desired to
promote the formation of such subgraphs (local structures) to achieve a higher level
of performance. Additionally, these subgraphs can be applied to different complex
systems to achieve a similar function as the original system.

In the following sections, this approach is demonstrated through a simulation
study of a swarm system foraging for food. This swarm system has been selected
for this case study because it represents general functions of many swarm systems

Toward the Design of Artificial Swarms Using Network Motifs 607

in which individual entities communicate locally with nearby entities to collectively
accomplish predefined tasks. The rest of this paper is structured as follows: the
description of the complex system of interest and the approach used to analyze the
system is presented in Sect. 2. The results of the analysis and its discussion are
presented in Sect. 3. Finally, we conclude this paper and present our closing insights
in Sect. 4.

2 Case Study

2.1 The Swarm Foraging System and Simulation

A case study has been performed on multiple simulations, modeling a swarm of ants
foraging for food. In the swarm, there are 100 entities (or ants) which would search
in a confined 12-unit by 12-unit arena for food particles over 10,000 timesteps. Each
entity has five different states (see Fig. 3): resting, exploring, avoidance, depositing,
and homing.

1. The resting state is when entities are in their nest and are inactive.

Fig. 3 The model of swarm foraging system

608 K. Trinh and Z. Sha

2. The exploring state is when entities are searching for food particles.
3. The avoidance state results during the exploration state and is caused by an entity

nearing collision with another entity or an obstacle (arena wall). The entity will
then change its vector to avoid collision.

4. The depositing state is when an entity has successfully located a food particle
and begins returning to the nest with the food particle.

5. The homing state results when the entity has failed to locate any food particles
after its resting probability has reached a certain value. This state causes the
entity to return to the nest.

At the beginning of the simulation, all entities will begin in the nest area, or the
gray area, of the arena. Each simulation begins with an energy level of 0 points.
Once the simulation begins, all entities switch to the exploring state and search
for food particles in the white area of the arena. For each timestep that an entity is
moving, one energy point will be expended from the nest; this rule is implemented to
account the energy lost (or food consumed) from active entities searching for food.
For example, if 100 entities are active (exploring, avoidance, depositing, or homing)
during a timestep, 100 energy points will be taken from the nest resulting in a -100-
energy point loss for the nest. For each food particle that is brought back to the nest,
1000 energy points are added to the overall energy level of the nest. As the entities
are collecting food, they can communicate with each other by using an RAB (range-
and-bearing) sensor. These RAB sensors allow multiple entities to communicate
with one another as long as they are within a range of one-unit radius of each other.
The information pertaining the position and state of the entity is relayed to other
entities. Based on this information, each entity will modify its probability values
which determine how the entities behave by changing their state once each value
has become high enough.

2.2 Modeling the Complex System as a Complex Network

Thirty simulations have been produced. Each simulation generates a file that con-
tains 10,000 100 × 100 adjacency matrices that show how the entities communicate
with each other during each timestep. In each network, a node represents an
ant, and a link denotes the communication between a pair of ants. Fig. 4 shows
the communication networks at the timestep of 10,000 of three swarms in three
representative simulations: simulations 8, 18, and 13. These simulations correspond
to the best-performing, the intermediate-performing, and the worst-performing
swarms, respectively. Once the network has been established, various network
metrics such as the degree, geodesic distance, eccentricity, betweenness centrality,
and clustering coefficient can be immediately obtained. The average values of these
metrics of simulation 8 are shown in Table 1. For example, the degree metric
indicates the average number of links an entity has at a particular timestep. This

Toward the Design of Artificial Swarms Using Network Motifs 609

Fig. 4 Three simulations at timestep 10,000 represented by three networks: (a) simulation 8, the
best performing swarm; (b) simulation 18, the intermediate performing swarm; and (c) simulation
13, the worst performing swarm

metric gives insight on how many entities are active and how tightly grouped the
entities are for communication. The degree metric can help compare whether the
overall number of links plays a stronger role in system performance or if various
network subgraphs take precedence in system performance.

2.3 Obtaining the Network Motif Data of the Simulations

Among the 10,000 networks in each simulation, 200 networks (1 every 50 timesteps)
have been selected for further analysis. This sampling decision has been made due
to the computational consideration, and the same approach has been applied to
all simulations. The edge list of each network has been used as a data input for
a motif-detecting program called mfinder (Kashtan et al. 2004). Figure 5 shows
the occurrence of an example motif type found in a representative simulation,
simulation 8, during the 10,000 timesteps in 10 timeframes.

In this study, 15 representative simulations have been selected for the correlation
analysis. To select these simulations, the performance level has to be evaluated. The
performance level of each simulation is measured by two aspects: the amount of
food collected and the amount of energy expended during the entire foraging period.
The performance of these simulations is calculated based on Eq. (1)

Ps =
∣∣∣∣
f ∗ 1000

ef

∣∣∣∣ , (1)

where f is the total number of food particles collected, ef is the final energy
level at timestep 10,000, and Ps is the performance value of the entire simulation.
Based on this equation, the following simulations have been selected: the five best-
performing simulations (8, 9, 11, 16, 28), the five worst-performing simulations (13,
20, 25, 27, 30), and the five most intermediate-performing simulations (1, 18, 19,
26, 29).

610 K. Trinh and Z. Sha

Ta
bl

e
1

N
et

w
or

k
pr

op
er

tie
s

of
si

m
ul

at
io

n
8

T
im

es
te

p
Fo

ra
gi

ng
pe

rf
or

m
an

ce
D

eg
re

e
G

eo
de

si
c

di
st

an
ce

E
cc

en
tr

ic
ity

B
et

w
ee

nn
es

s
ce

nt
ra

lit
y

C
lo

se
ne

ss
ce

nt
ra

lit
y

E
dg

e
be

tw
ee

nn
es

s
ce

nt
ra

lit
y

L
oc

al
cl

us
te

ri
ng

co
ef

fic
ie

nt

G
lo

ba
l

cl
us

te
ri

ng
co

ef
fic

ie
nt

1–
10

00
0

0.
38

9
3.

29
3

5.
26

1
7.

47
3

0.
01

5
0.

01
7

52
.9

57
0.

43
5

0.
53

4

Toward the Design of Artificial Swarms Using Network Motifs 611

Fig. 5 The occurrence of
motif 3B in simulation 8

2.4 Determining Important Network Motif Structures

The average and the standard deviation of network motif occurrence have been
calculated across ten different timeframes, i.e., 1–1000, 1001–2000, . . . 9001–
10,000, for every simulation. The average foraging performance of each simulation
has also been calculated across ten different timeframes. This is because there needs
to be at least one food particle collected within a selected timeframe in order to
evaluate the system performance. Since the swarms in these simulations take over
50 timesteps to collect 1 food particle on average, all simulations have been divided
into 10 separate timeframes to ensure that at least 1 food particle is collected within
each time interval. The average foraging performance per time interval is calculated
by Eq. (2)

Pi =
∣∣∣∣
f ∗ 1000

ef − ei

∣∣∣∣ , (2)

where ei is the initial timestep’s energy level, ef is the final timestep’s energy
level, f is the number of food particles collected within the timestep frame, and Pi is
the performance value of the simulation during the interval of interest. In determin-
ing which motif structures are significant, correlation analysis has been performed
between the average occurrence of each motif structure and the average performance
of each swarm (i.e., each simulation). In addition, the standard deviation of each
motif structure has also been correlated to the average performance. This is done
because observations showed that some simulations yield a better performance with
highly fluctuating occurrence values of network motifs in certain timeframes. Both
data types have been correlated by using Pearson’s correlation coefficient. In this
study, a motif is determined to be significant if (a) the correlation coefficients are
0.5 or higher or (b) it appears as one of the simulation’s top 10 correlated motif
types. These results are discussed in Sect. 3.

612 K. Trinh and Z. Sha

3 Results/Data

3.1 Motif Structure Study

The search of important network motifs has been limited to size-3, size-4, and
size-5 motif structures (i.e., the motifs that consist of three, four, and five nodes,
respectively). The motifs above the size of six nodes have been ignored in this study
due to the large computational resources required – the mfinder algorithm has to
run for about 2 h to analyze a single timestep using a computer configuration of a
64-bit Windows 10 Dell laptop with an Intel Quad Core i7-7700HQ @ 2.80 GHz
processor and 8 GB of RAM.

There are 29 different motif types that have been analyzed: 2 of which are size-3
motif structures, 6 of which are size-4 motif structures, and 21 of which are size-
5 motif structures. Each motif structure is named by the following format: motif
#L, where # represents the motif structure size and L represents a specific motif
structure. For example, the two size-3 motif structures have been named as motif 3A
and motif 3B, and the motif structures for size-4 motifs have been named motifs 4A,
4B, 4C, 4D, 4E, and 4F. Figure 6a shows the differences between the two types of
size-3 motifs. Motif 3A has a centralized node that can freely communicate with two
other nodes, while the other two nodes cannot relay any information. This differs
from motif 3B where all nodes are able to communicate with each other.

Due to the length of paper, we are unable to present the results of the correlation
analysis for all the 15 simulation. Instead, we present the top five swarms (i.e.,
simulations 8, 9, 11, 16, and 28) as a demonstration of the data. Table 2 shows
an abbreviated table of the sorted correlation coefficients between the average motif
occurrence and the performance values of the five best-performing simulations. The
top of the table shows motifs that have lower correlation coefficients, and the bottom
of the table shows higher correlation coefficients. In simulation 8, motif 5K is the
least correlated motif type at 0.38, and motif 5N is the highest correlated motif type
at 0.76. It has also been observed that certain motifs appear to be highly correlated
more often than others. For example, motif 5B (highlighted green) has a correlation
coefficient higher than 0.50 for at least three of the five simulations. Motifs 5D and
5H (highlighted blue) appear three times in the top 10 correlated motif types out of
the five simulations. This correlation analysis has been applied to all 15 simulations.
Based on the criteria of significance aforementioned, the following observations
have been acquired:

(a) At least 10 of the 15 simulations studied show 3 motif types that have been
valued as significant when correlating the foraging performance to average
motif occurrence. In 11 of the simulations (8, 9, 11, 16, 18, 19, 20, 26, 27,
29, and 30), motif 5B has been found to have a correlation coefficient of at least
0.50. The average correlation coefficient of this motif type is 0.525. In 11 of the
simulations (9, 11, 13, 16, 18, 20, 26, 27, 28, 29, and 30), motif 5D has been
found to be in the top 10 of 29 motif types studied. The average correlation

Toward the Design of Artificial Swarms Using Network Motifs 613

Fig. 6 Different types of network motifs

614 K. Trinh and Z. Sha

Table 2 Correlation between motif type occurrence and system performance of the best-
performing simulations

Simulation 8 Simulation 9 Simulation 11 Simulation 16 Simulation 28

Motif5I 0.626 Motif5H 0.484 Motif5T 0.377 Motif5G 0.860 Motif5G 0.280

Motif5L 0.626 Motif5E 0.489 Motif3B 0.396 Motif5B 0.864 Motif5F 0.282

Motif4A 0.627 Motif4B 0.492 Motif5N 0.407 Motif5F 0.869 Motif5B 0.285

Motif5B 0.629 Motif4A 0.497 Motif5M 0.425 Motif3A 0.871 Motif5H 0.288

Motif5F 0.629 Motif5C 0.536 Motif4C 0.434 Motif4C 0.881 Motif4B 0.289

Motif5C 0.636 Motif5D 0.544 Motif4A 0.446 Motif5O 0.882 Motif5J 0.289

Motif5E 0.642 Motif5B 0.549 Motif5H 0.447 Motif5I 0.883 Motif5T -0.298

Motif5P 0.643 Motif5K 0.554 Motif5E 0.475 Motif5J 0.889 Motif5I 0.300

Motif5J 0.664 Motif5S -0.524 Motif5A 0.492 Motif4B 0.890 Motif5E 0.306

Motif5O 0.666 Motif5R -0.583 Motif5D 0.495 Motif5H 0.897 Motif5P 0.307

Motif5G 0.670 Motif5T -0.583 Motif5B 0.501 Motif5D 0.900 Motif5L 0.310

Motif5M 0.682 Motif5U -0.602 Motif4B 0.526 Motif5E 0.902 Motif5D 0.323

Motif5N 0.756 Motif5A 0.631 Motif3A 0.549 Motif5M 0.904 Motif5U -0.345

coefficient of this motif type is 0.542. Similarly, motif 5H is in the top 10 of 29
motif types in 10 simulations (11, 13, 16, 18, 20, 26, 27, 28, 29, and 30). The
average correlation coefficient of this motif type is 0.522.

(b) When correlating the foraging performance to the standard deviation of each
motif type, at least 10 of the 15 simulations studied shows 2 motif types that
have been valued as significant. In 10 of the simulations (1, 8, 9, 11, 16, 18,
20, 26, 27, and 29), motif 5B has been found to have a correlation coefficient
of 0.50 or greater. The average correlation coefficient of this motif using the
standard deviation metric is 0.544. In 10 of the simulations (1, 9, 11, 13, 16,
19, 20, 26, 28, and 30), motif 5H has been found to be in the top 10 of 29
motif types studied. The average correlation coefficient of this motif using the
standard deviation metric is 0.498.

Our initial results indicated a possibility that the global network structure of a
swarm system was likely to play a role in its performance rather than the local
network structures of the system. Particularly, it was observed that the degree of
a node showed potential relations with how well a system performed. To verify
the conclusion that the system’s performance level is highly correlated with the
local subgraph structures rather than the number of links present within a network,
we studied the correlation between the system performance and system’s degree
distribution.

The complementary cumulative distribution (CCD) of each simulation’s degree
metric has been analyzed. Similarly, each simulation has been divided up into ten
different timeframes. Within each timeframe, the CCD curves have been plotted
via a logmarithmic scale for every 200 timesteps (see Fig. 8). In characterizing a
CCD, the standard deviation has been calculated to determine the variability of the
degree metric throughout each timeframe, and the slope has been calculated for the
sake of completeness (National Research Council 1996). Therefore, the average and
the standard deviation of the slopes of all curves’ fitting lines have been calculated
within each timeframe and correlated to the system performance values. Based on

Toward the Design of Artificial Swarms Using Network Motifs 615

Fig. 7 Motif structures that contain two-dangling nodes

Average Slope: -0.1218
0.01

0.1

1

0 4 8 12

Pr
ob

ab
ili

ty

Degree

CCDD Curves for Timestep 200-1000

Timestep 200

Timestep 400

Timestep 600

Timestep 800

Timestep 1000

Slope

-0.1595

-0.1088

-0.1368

-0.1023

-0.1016

Fig. 8 Sample of a complementary cumulative degree distribution curve set for simulation 8 from
timestep 200 to timestep 1000

the results shown in Table 3, little correlation has been observed between the average
slopes, the standard deviation of the slopes, and the system performance values.
These results therefore conclude that the degree distribution of a network is unlikely
to have any effect on simulation performance. This strengthens the conclusion that
local network structures are indeed significant to the system performance and thus
provides a potential solution to engineering complex systems.

616 K. Trinh and Z. Sha

Ta
bl

e
3

Si
m

ul
at

io
n

8
pr

op
er

tie
s

(m
ot

if
an

d
de

gr
ee

di
st

ri
bu

tio
n

da
ta

)

T
im

es
te

p

Fo
ra

gi
ng

pe
rf

or
-

m
an

ce

Si
ze

-3
m

ot
if

oc
cu

r.
av

g.
Si

ze
-3

m
ot

if
S.

D
.

Si
ze

-4
m

ot
if

oc
cu

r.
av

g.
Si

ze
-4

m
ot

if
S.

D
.

Si
ze

-5
m

ot
if

oc
cu

r.
av

g.
Si

ze
-5

m
ot

if
S.

D
.

D
eg

re
e

di
st

.(
av

g.
)

D
eg

re
e

di
st

.(
S.

D
.)

1–
10

00
0.

54
8

58
7.

05
0

22
2.

78
3

19
77

.1
00

11
65

.0
50

69
94

.9
00

53
03

.5
62

−0
.0

79
0.

01
1

10
01

–2
00

0
0.

36
8

43
6.

50
0

19
7.

85
2

13
15

.0
50

94
3.

44
8

42
82

.7
50

40
28

.1
40

−0
.0

85
0.

01
4

20
01

–3
00

0
0.

45
0

50
0.

95
0

13
7.

58
4

16
20

.6
00

69
9.

57
8

55
77

.3
00

32
90

.1
48

−0
.0

77
0.

00
3

30
01

–4
00

0
0.

32
1

36
4.

80
0

11
0.

63
6

97
7.

75
0

47
8.

13
1

28
03

.8
00

19
96

.9
68

−0
.0

94
0.

00
9

40
01

–5
00

0
0.

46
7

35
2.

85
0

84
.1

66
93

2.
60

0
35

2.
61

4
26

36
.1

50
13

49
.5

70
−0

.0
89

0.
00

7
50

01
–6

00
0

0.
31

2
40

2.
60

0
76

.7
47

11
28

.4
00

31
8.

64
4

32
41

.0
50

11
33

.0
58

−0
.0

85
0.

00
7

60
01

–7
00

0
0.

25
3

34
7.

20
0

42
.7

80
84

7.
05

0
17

2.
14

0
21

62
.8

00
62

5.
66

9
−0

.0
90

0.
00

7
70

01
–8

00
0

0.
30

9
33

5.
55

0
99

.2
38

82
7.

75
0

40
4.

75
5

21
18

.3
50

14
09

.9
52

−0
.0

93
0.

01
3

80
01

–9
00

0
0.

39
8

29
0.

15
0

72
.8

06
70

4.
15

0
31

9.
13

4
18

97
.1

00
11

45
.9

61
−0

.0
95

0.
01

4
90

01
–1

00
00

0.
49

0
38

7.
25

0
70

.6
59

10
46

.3
00

31
9.

93
0

29
33

.8
50

12
57

.6
56

−0
.0

88
0.

01
1

Toward the Design of Artificial Swarms Using Network Motifs 617

It is shown from the results that motifs 5B, 5D, and 5H are significantly
influential to the foraging performance of this specific swarm system (see Fig.
7). Therefore, to engineer swarm systems with a higher level of performance,
mechanisms can be designed to promote the formation of those motif types. Further
validation studies will be required to reevaluate the newly engineered foraging
performance and compare it to original simulations. Additionally, the following
observation should be noted: the three motifs that have been valued to be significant
had two-dangling nodes – two nodes that do not contain outgoing links except with
each other. The only other motif structures that contain two-dangling nodes are
motif 3A and motif 4B, and they are valued as important in 9 of the 15 simulations.

4 Conclusions

This paper introduces a new approach in engineering complex system based on
the theory of network motifs. This theory provides a method to determine the
function that is associated with a group of nodes or network motifs that are essential
to the system structure and performance. By determining these motifs, complex
systems with desired features can be designed. Our approach is network-based, thus
is general enough to be applied in other complex system as long as they can be
modeled as complex networks.

The complex system used in this study is a swarm simulation modeling a group
of ants foraging for food. These simulations have been created in ARGoS – an
experimental swarm simulation software. There are 30 simulations that have been
created, and 15 of these simulations have been chosen to be used in this study. The
results found from this study show a correlation between specific network motifs
and swarm foraging performance. The motifs that have been found to have a strong
correlation to the foraging performance are motifs 5B, 5D, and 5H; these three
motifs all share a two-dangling nodes structure. These motifs have been valued as
important in at least 10 of the 15 simulations studied.

Based on these results, new simulations can be generated to study the effect of
these motif structures. For example, by controlling how often these motif structures
appear, we hypothesize that we can manipulate how well we would want for these
systems to perform. These motif structures could then be analyzed on a more
microscopic scale to determine why these motifs tend to determine why these motifs
tend to determine system performance. This has yet to be achieved due to the
complexities required to develop the algorithms to engineer motif structures. We
will further investigate it in our future studies. This is also the reason that even if
a high correlation has been observed, we are conservative to draw any causations
and only provide possible explanations for such phenomenon. Additionally, future
studies will be used to determine if the results of this correlation analysis are
sensitive to changes in context and architectural parameters such as area dimensions
and energy unit assignments.

618 K. Trinh and Z. Sha

Acknowledgments We would like to thank Dr. Mengqi Hu and Zishun Yu from the University
of Chicago at Illinois for providing the data, images, and simulation code that was necessary to
completing this study. We would also like to thank Laxmi Poudel for helping with revisions of the
manuscript.

References

Buede, D.M. 2000. The Engineering Design of Systems: Models and Methods. New York: Wiley.
Itzkovitz, S., R. Levitt, N. Kashtan, R. Milo, M. Itzkovitz, and U. Alon. 2005. Coarse-Graining and

Self-Dissimilarity of Complex Networks. Physical Review 71 (1): 016127.
Kashtan, N., S. Itzkovitz, R. Milo, and U. Alon. 2004. Efficient Sampling Algorithm for Estimating

Subgraph Concentrations and Detecting Network Motifs. Bioinformatics 20 (11): 1746–1758.
Milo, R., S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. 2002. Network Motifs:

Simple Building Blocks of Complex Networks. Science 298 (5594): 824–827.
NASA. 2007. NASA Systems Engineering Handbook (NASA/SP-2007-6105 Rev1). Washington,

DC: National Aeronautics and Space Administration.
National Research Council. 1996. The Waste Isolation Pilot Plant: A Potential Solution for the

Disposal of Transuranic Waste. The National Academies Press.
Pahl, G., and W. Beitz. 1996. Engineering Design: A Systematic Approach. 2nd ed. London:

Springer.
Rousseau, D. 2018. Three General Systems Principles and Their Derivation: Insights from the

Philosophy of Science Applied to Systems Concepts. In Disciplinary Convergence in Systems
Engineering Research, ed. A. Madni, B. Boehm, R. Ghanem, D. Erwin, and M. Wheaton, 665–
681. Cham: Springer.

Scacchi, W. 2001. Process Models in Software Engineering. In Encyclopedia of Software Engi-
neering, ed. J.J. Marciniak, 2nd ed. New York: Wiley.

Zabet, N.R. 2011. Negative Feedback and Physical Limits of Genes. Journal of Theoretical Biology
284 (1): 82–91.

Zuba, M. 2009. A Comparative Study of Network Motif Detection Tools. UConn Bio-Grid, REU
Summer.

Enterprise Architecting Applied to Small
Unmanned Aircraft System Integration
into Low-Altitude Urban Airspace

Raymond T. Vetter and Donna H. Rhodes

Abstract Integrating small unmanned aerial systems (sUAS) into the National
Airspace System (NAS) represents a challenging problem set that requires consid-
eration through multiple lenses. Rather than focusing solely on the technological
limitations of sUAS operation, this work employs the Architecting Innovative
Enterprise Strategy (ARIES) Framework to understand the current and future
landscapes for the NAS. The authors use the ARIES elements to holistically describe
the current architecture that allows for limited sUAS operations in low-altitude
urban airspace. The goal of this work is to develop a level 1 CONOPS as a first step
toward a complete enterprise architecture. By identifying current limitations and
incorporating emerging concepts and technologies, the authors develop a realistic
envisioned future. This future seeks to address externalities that emerge from the
increased use of sUAS near the general public. Specific externalities include safety,
security, privacy, and transparency concerns. The envisioned future relies on air-
borne systems to detect and avoid manned aircraft and utilizes an unmanned traffic
management system for information sharing and flight coordination. It requires
significant investment in developing a shared database to manage unmanned vehicle
operations while providing the structure and functions required to make sUAS
operations feasible, considering constraints, externalities, and public acceptance.

Keywords System architecture · Small UAS · Systems integration · National
airspace · ARIES Framework

R. T. Vetter (�)
United States Military Academy, West Point, NY, USA
e-mail: raymond.vetter@westpoint.edu

D. H. Rhodes
Massachusetts Institute of Technology, Cambridge, MA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_52

619

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_52&domain=pdf
mailto:raymond.vetter@westpoint.edu
https://doi.org/10.1007/978-3-030-82083-1_52

620 R. T. Vetter and D. H. Rhodes

1 Introduction and Motivation

This work explores the current environment that has limited the proliferation of
sUAS in low-altitude urban airspace and develops an envisioned future that resolves
barriers to sUAS operations. For the airspace surrounding major airports (Class
B) throughout the United States, current Federal Aviation Administration (FAA)
regulations severely limit sUAS operations. Specifically, there are requirements to
maintain line of sight with a sUAS and to have adequate detect and avoid capability.
These requirements exist for the safety of other aircraft and passengers, as well
as ground personnel and property that could be impacted by a sUAS (FAA 2016).
However, increasing demand for the use of sUAS, both commercial and public,
around major urban areas requires changes to existing regulations. Additional
constraints limit the widespread UAS use, from technological limitations to public
distrust. The goal of this research is to develop a level 1 CONOPS as a first step
toward a complete enterprise architecture.

The addition of sUAS to the National Airspace System (NAS) introduces many
positive and negative externalities. Externalities include (among others) safety,
privacy, security, and economic benefits and costs. By identifying these emergent
characteristics and attempting to understand their implications and interactions, the
overall impacts of sUAS operations can be better understood.

This work broadly considers the NAS as an enterprise and uses multiple lenses
to understand the current environment and to describe an envisioned future that
accounts for the externalities that emerge. Many organizations are working to
develop realistic concepts of operations for sUAS within the NAS; however, some
of these entities focus on only one aspect (e.g., technical feasibility, regulatory
compliance, safety impacts). Considering the NAS as an enterprise and applying the
Architecting Innovative Enterprise Strategy (ARIES) Framework allows for holistic
sUAS integration solutions in low-altitude urban airspace. With this mindset, the
authors develop and propose a future architecture for sUAS operation in low-altitude
urban airspace that serves as a possible step to reaching a long-term state of fully
integrated sUAS operation within the NAS.

2 ARIES Framework

The ARIES Framework focuses on transforming an enterprise from its current
state to a desired future state. Developed by Drs. Deborah Nightingale and Donna
Rhodes, the ARIES Framework seeks to develop a thorough understanding of the
current enterprise environment based on its defined elements. After conducting this
analysis, the architect(s) can establish an envisioned future and select an architecture
and implementation plan that moves the enterprise toward that goal. An enterprise
“consists of people who generate value for others . . . is a whole system that has a
purpose . . . [and] benefits from being part of a larger ecosystem” (Nightingale and

Enterprise Architecting Applied to Small Unmanned Aircraft System. . . 621

Fig. 1 (a) ARIES elements. (b) ARIES process (Nightingale and Rhodes 2015, pp. 15–16)

Rhodes 2015, p. 1). Under this definition, it is appropriate to consider the NAS, and
specifically low-altitude urban airspace, to be an enterprise.

Using multiple lenses is important when considering an enterprise transforma-
tion. Many modern enterprises have failed during transformation initiatives because
they focused solely on a new technology and its implementation (Nightingale and
Rhodes 2015, p. 5). Figure 1a shows the ARIES elements. The first two elements
include entities that may be either internal or external to the enterprise, while
the remaining eight elements focus internally on the enterprise. The ecosystem is
represented as the outermost element, since it includes the external factors that
impact the enterprise, specifically, the regulatory, political, economic, and societal
factors. Stakeholders are the next ARIES element and include the people and
organizations that contribute to or are affected by the enterprise (Nightingale and
Rhodes 2015, p. 16).

The internal ARIES elements provide different views from which to consider
the enterprise. Strategy is the element that includes the enterprise core values
and overall objectives and sets the direction for the organization. The information
element entails what information is shared throughout the enterprise and how that
material is transmitted. Infrastructure is the element relating to the supporting
structures (physical facilities, information technology, and communication systems)
that allow for continued operations. The product element is a physical device or
tool related to an enterprise that affects a stakeholder. Similarly, services deliver
value to stakeholders from enterprise knowledge, skills, and attributes. Processes
are the established actions and procedures that support the enterprise goals. The
organization element includes the hierarchical structure and organizational culture
for the enterprise and its key stakeholders. The knowledge element contains the
expertise and intellectual property residing within the enterprise (Nightingale and
Rhodes 2015, pp. 16–17).

While the ten ARIES elements are distinct, an enterprise is a complex system
where interactions occur. Viewing an enterprise through ARIES elements cannot

622 R. T. Vetter and D. H. Rhodes

be done in isolation, as emergent properties from the “entanglement” of elements
may develop (Nightingale and Rhodes 2015, p. 20). Thus, after using the elements
to decompose and analyze an enterprise, we consider the emergence of unforeseen
conditions and externalities.

The ARIES process (see Fig. 1b) consists of seven activities, beginning with
understanding the enterprise landscape and progressing through to developing an
implementation plan. To understand the enterprise landscape, one must consider the
effects of external factors (regulatory, political, economic, and societal) that impact
the enterprise. Performing stakeholder analysis examines the value exchanges and
impacts different entities have on the enterprise. During the capture the current
architecture activity, the current enterprise architecture is described using the
ARIES elements. Considering the ecosystem and stakeholder values, a holistic
future vision establishes the goal of the enterprise transformation. Generating
alternative architectures involves ideation and creativity to construct feasible
architectures, and deciding on the future architecture requires scoring and selecting
one architecture. Finally, an implementation plan establishes the necessary next
steps for the enterprise to successfully transform (Nightingale and Rhodes 2015,
pp. 22–26). This work focuses on understanding the enterprise landscape, capturing
the current architecture, and creating a holistic vision of the future. Stakeholder
analysis is ongoing, and the succeeding activities depend upon outcomes from their
predecessors.

3 sUAS Enterprise Landscape

Commercial sUAS use has rapidly increased within the United States in recent
years, especially with the establishment of 14 CFR Part 107 in June 2016.
The FAA’s latest forecast indicates sustained commercial sUAS growth for the
foreseeable future, with a forecasted average annual increase of at least 33%
through 2022 for the United States (Federal Aviation Administration 2018, p.
43). Considering the NAS Landscape using the ARIES ecosystem factors provides
context for recommendations.

The regulatory environment for the NAS is multifaceted, but ultimate authority
for creating regulations resides with the FAA. Per the FAA’s Office of Chief
Counsel, “Congress has vested the FAA with authority to regulate the areas of
airspace use, management and efficiency, air traffic control, safety, navigational
facilities, and aircraft noise . . . ” (Federal Aviation Administration, Office of the
Chief Counsel 2015, p. 1). Having one regulatory agency establishes a consistent
regulatory system to ensure “the highest level of safety for all aviation operations”
(Federal Aviation Administration, Office of the Chief Counsel 2015, p. 2). If state
or local governments were to regulate aircraft flight or operation, the result would
be a “patchwork quilt” of differing restrictions, and ultimately this fractionalizing
of airspace could decrease safety and efficiency (National Conference of State

Enterprise Architecting Applied to Small Unmanned Aircraft System. . . 623

Legislatures 2018). For this analysis, the authors assume compliance with all
approved regulations, policies, and procedures.

The political environment related to the NAS and sUAS reflects differing view-
points from governing bodies and organizations. The White House has emphasized
the need to integrate UAS into the NAS to realize economic benefits. One tangible
product has been the FAA’s Integration Pilot Program, which President Trump
signed on October 25, 2017. The pilot program seeks to promote innovation and
develop the technologies to have UAS execute potential mission sets (Federal
Aviation Administration 2017). However, making UAS use a reality has met
several political challenges, mainly from organizations attempting to influence the
regulatory process and from conflicts between federal and state/local authorities.
The Association for Unmanned Vehicle Systems International (AUVSI) and the
Small UAV Coalition and similar entities have been vocal opponents of amendments
and legislation that would put the ability to regulate UAS operations at the
state and local government level. Pro-UAS groups feel that some state and local
governments may impose more restrictive laws and UAS operations may be severely
curtailed (Beasley 2018). The Air Line Pilots Association (ALPA) and Aircraft
Owners and Pilots Association (AOPA) represent the general aviation and airline
industry pilots. ALPA wrote a letter to Congress on February 12, 2018, requesting
advancements in UAS anti-collision technology, identification requirements, and
tracking requirements before allowing any UAS operations in controlled airspace
(Air Line Pilots Association, International 2018).

The potential economic benefits of UAS are significant and represent a driving
factor for integration into the NAS. AUVSI estimates that from 2015 to 2025, there
will be more than $82.1 billion of economic impact from UAS integration. In the
first 3 years of NAS integration, there may be over 70,000 new jobs created and
over 103,000 by 2025. There will be more than $482 million of tax revenues from
2015 to 2025. More significantly, every year that UAS are not integrated into the
NAS, the United States loses more than $10 billion in potential economic impact
(Jenkins and Vasigh 2013). The UAS industry comprises both large firms seeking to
incorporate UAS into their operations and small start-ups attempting to develop new
technologies. Since 2000, over 300 new firms have entered the UAS space, mainly
focusing on hardware, support services, and operations. Operations encompass
software and navigational services, unmanned traffic management systems, threat
mitigation, and infrastructure construction (Cohn et al. 2017). Industry is making
compelling economic arguments advocating for the integration of UAS into the
NAS.

Like the economic environment, the societal impacts of UAS integration will be
substantial. However, there exists a dichotomy of potential impacts concerning UAS
use. The potential economic benefits and convenience that UAS offer are appealing.
The proven uses have also been well-documented and include successful search
and rescue efforts, drug interdictions, and fugitive investigations. The opportunity
for package delivery and safer working conditions also add to the appeal of UAS
(U.S. Department of Justice 2015). However, with the impending proliferation of
UAS, safety, security, and privacy cause trepidation for the general public. Risks to

624 R. T. Vetter and D. H. Rhodes

the public resulting from UAS flights are a legitimate concern. Mid-air collisions
with aircraft are an obvious safety issue for passengers aboard aircraft. However,
sUAS weighing up to 55 lb can also create a safety hazard to ground personnel if
one were to crash into a person, vehicle, or structure. Another concern relates to
privacy, with the possibility of sUAS being used to deliver packages or take long-
range imagery. Recent events from technology companies (e.g., Facebook) have
highlighted the need to properly secure data to maintain some level of privacy. There
are also concerns about law enforcement’s use of sUAS to collect data or someone
flying a sUAS to collect imagery of a person’s home (U.S. Department of Justice
2015). The areas of security, safety, and privacy require attention and solutions to
increase societal support for sUAS integration.

4 Current Architecture

When using the ARIES elements to consider the current NAS architecture as it
relates to sUAS, it becomes clear that, to date, the main emphasis has been placed on
policy and products/services. Current operational policy limitations are set forth by
Part 107. They are straightforward but restrictive for sUAS operations in the NAS.
The Part 107 rule permits daytime operation of sUAS in Class G (uncontrolled)
airspace below 400 feet above ground level while remaining within visual line
of sight (VLOS) and not flying over people (National Academy of Sciences,
Engineering, and Medicine 2018, p. 44). The authorization process has significantly
improved with the implementation of the Low Altitude Authorization and Notifi-
cation Capability (LAANC) system, but UAS Facility Maps (UASFM) represent
a significant constraint on sUAS operations in controlled airspace. UASFM limit
flight altitudes in urban airspaces near major airports. Processes do allow for Part
107 exceptions, but receiving waivers can take up to 90 days. The FAA’s strategy
focuses on safety, which is reasonable; however, it fails to consider that sUAS
integration may provide economic and societal benefits that may exceed increased
level of risk (Center for the Study of the Drone 2018). The FAA’s organizational
mindset is very safety-centric, and that mentality may prevent some sUAS benefits
from being attained. The NAS information, infrastructure, and knowledge relating
to sUAS are minimal compared to manned aircraft. While an air traffic controller
lacks the capacity to visualize and process every sUAS within controlled airspace
while simultaneously monitoring and managing manned air traffic approaches
and departures, the limited information and infrastructure prevents almost any
situational awareness of sUAS. The knowledge for sUAS is limited partly because
sUAS is still a relatively new system. Individuals in government, industry, and
academia are working to close the knowledge gap. Even with the current constraints
and limitations, sUAS use and implementation continues to evolve.

Enterprise Architecting Applied to Small Unmanned Aircraft System. . . 625

5 A Holistic Vision of the Future

With an understanding of the current NAS architecture, the next step in the ARIES
process is to establish the envisioned future as it relates to sUAS. Describing the
envisioned future provides direction for how the enterprise will transform. A clearly
defined future needs to consider the appropriate time horizon. This is a critical aspect
for sUAS integration in low-altitude urban airspace. Long-term horizons may allow
for a future that lacks realism, constraints, or technological limitations. Conversely,
if the planned horizon is too short, expectations may fail to be met because of
capacity or time limitations (FAA 2016, pp. 71–81). Using the ARIES elements
as architectural decisions, considering a 5-year time horizon, and strategically
combining concepts elements, we define an attainable envisioned future (see Fig. 2).

The envisioned future is named Coordinated Flight to capture the main architec-
tural design theme that we employed in its creation (see Fig. 3). Coordinated Flight
supports beyond visual line of sight (BVLOS) sUAS operations in urban airspace.
Individual sUAS users maintain the responsibility for separation from all obstacles;
however, for the Coordinated Flight Architecture, there is coordination between
other unmanned aircraft. Detect and avoid (DAA) is achieved via an airborne-based
DAA system on the unmanned vehicle to enable remote PIC to remain well clear
of manned aircraft. UAS Traffic Management (UTM) coordinates sUAS flights, so
there is a coordination and scheduling aspect incorporated to sUAS operations. This
architecture provides improved coordination and situational awareness and requires
additional infrastructure.

Key services for this envisioned future are airborne-based detect and avoid, UTM
to coordinate sUAS flights and exchange data, and limited geofencing to prevent
unauthorized operations. The envisioned future architecture relies upon an airborne-
based DAA system to enable BVLOS. The current FAA requirement for compliance
with 14 CFR 91.113 is to detect and avoid manned aircraft, and new airborne sensor
systems exist to meet this standard (TechStartups Team 2018).

Fig. 2 Coordinated Flight architectural decisions

626 R. T. Vetter and D. H. Rhodes

Fig. 3 Coordinated Flight Architecture (adapted) (Intelligent Transportation Society of California
2018, p. 6)

To achieve Coordinated Flight, there is an unmanned aerial system traffic
management system that provides approval, coordination, and scheduling services.
UTM relies on a UAS Service Supplier (USS) to establish a data exchange network
that enables automated approval of flight requests and shares NAS information
(e.g., temporary flight restrictions, alerts, notifications) to individual sUAS users.
After submitting a flight plan, sUAS users receive an approved flight plan from
UTM that considers other sUAS operations in the vicinity. The approved flight
plan may adjust the proposed flight path or flight times to deconflict with other
sUAS operations. This additional level of deconfliction decreases the likelihood of a
mid-air collision between sUAS. UTM approval also considers the type of property
(residential, commercial, etc.) that the sUAS intends to fly over. To mitigate privacy
issues and noise pollution, UTM may approve alternate flight paths that avoid more
sensitive properties. With UTM in place, remote identification is possible without a
ground sensor network. Upon receiving flight approval via UTM, the ground control
station remains connected to UTM. The vehicle transmits the remote identification
information back to the GCS, which feeds the information to UTM. UTM stores this
data and allow the general public and law enforcement to view relevant information
about sUAS operations for transparency and attribution.

Deconfliction between sUAS and other aircraft is a critical process in the
Coordinated Flight Architecture. While achieving DAA with manned aircraft is a
requirement, UTM also provides the additional benefit of deconfliction with other
unmanned aerial vehicles. While unable to have transponders that communicate

Enterprise Architecting Applied to Small Unmanned Aircraft System. . . 627

directly between UAVs because of current spectrum limitations, the UTM approval
process provides a level of deconfliction between sUAS. When approving flight
plans, UTM ensures not only that sUAS operate within established NAS constraints
but also that multiple sUAS operations do not conflict with each other. This
additional process adds another layer of safety into the enterprise.

Information sharing is primarily accomplished via the UTM network. UTM
receives individual flight requests and coordinates those flights. UTM also provides
the sUAS users with situational awareness about other sUAS operations in the
same airspace, as well as any notifications or alerts. The general public and law
enforcement have access to UTM to monitor remote identification information, with
law enforcement being able to identify specific users. This remote identification
information eliminates anonymity and makes sUAS users more accountable for their
actions.

The two infrastructure requirements for the Coordinated Flight Architecture are
reliable cellular networks and a robust UTM network. Transmitting data is primarily
accomplished through cellular networks, so coverage and reliability must be high.
For the urban airspace this architecture considers, the cellular coverage is likely
acceptable to enable data transfers between the UAS, ground control station, and
UTM network. The UTM network is critical, as it allows for flight coordination,
remote identification, and information sharing.

6 Conclusions and Further Research

The ARIES Framework emphasizes that any recommendation for sUAS integration
requires changes in multiple domains and that this problem set should be considered
through several distinct lenses. While a solution may exist for a specific issue,
the ramifications of that decision must be considered for the various stakeholders
and across different elements. The goal of this research was to develop a level
1 CONOPS as a first step toward a complete enterprise architecture. The FAA’s
strategy of incrementally integrating sUAS into the NAS allows for an immediate
increase in sUAS operations when compared with awaiting future technologies,
processes, and policies to be fully in place. This strategy provides incentive
to industry to develop innovative solutions while maintaining safe operations.
Organizationally, the FAA should consider elevating the importance and level of
the UAS Integration Office. With UAS positioned to increase in both number
and capability moving forward, the UAS Integration Office should consolidate the
FAA’s knowledge, expertise, and decision-making for all UAS-related issues to
increase the pace of decision-making and improve communication. Finally, expert
knowledge to develop clear standards is essential to providing structure to the
rapidly expanding sUAS community and supports both ongoing testing and future
operations.

The externalities that emerge from increased sUAS operation and expansion
must be fully incorporated in the future architecture design; they cannot merely

628 R. T. Vetter and D. H. Rhodes

be acknowledged post hoc. Gaining social acceptance for sUAS operations at low
altitudes is challenging because of concerns regarding safety, security, privacy,
transparency, and noise pollution; however, gaining public support is essential for
long-term success. A recommended architecture needs to adequately address these
concerns prior to implementation, as the initial way forward will have a substantial
effect on how the NAS integrates sUAS in the future. Future research includes fully
developing all key stakeholder perspectives and constructing future architectures
that may serve as intermediate steps en route to the proposed holistic vision of
the future. Specifically, the authors plan to construct a DoDAF architecture to help
capture all relevant viewpoints for sUAS operations in low-altitude urban airspace.
After developing future architectures, stakeholders must decide on an architecture
and implement it, most likely using a phased approach. Additional safeguards need
to be developed to address malicious users in the NAS, as they were considered out
of scope for this work. Finally, within the NAS community (government, industry,
and academics), continuing to develop performance standards for sUAS is critical
for integration.

Acknowledgments This work relied heavily on the support and contributions of many individuals
and organizations, including Dr. Wes Olson, MIT Lincoln Laboratory, and the MIT System Design
and Management (SDM) program.

References

Air Line Pilots Association, International. 2018, February 12. Letter for Congress, February 12,
2018. [Online]. Available: https://www.alpa.org/~/media/ALPA/Files/pdfs/news-events/press-
release-content/2018/2018-02-12-alpa-natca-a4a-letter.pdf. Accessed 16 Sept 2019.

Beasley, S. 2018, August 1. Senate FAA Bill Hits More Bumps on the Runway. Politico.
[Online]. Available: https://www.politico.com/newsletters/morning-transportation/2018/08/01/
senate-faa-bill-hits-more-bumps-on-the-runway-302256. Accessed 16 Sept 2019.

Center for the Study of the Drone. 2018, September 25. Interview: Michael Huerta. Center for
the Study of the Drone at Bard College. [Online]. Available: https://dronecenter.bard.edu/
interview-michael-huerta/. Accessed 6 Oct 2019.

Cohn, P., A. Green, M. Langstaff, and M. Roller. 2017, December. Commercial Drones Are Here:
The Future of Unmanned Aerial Systems. McKinsey & Company. [Online]. Available: https:/
/www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/commercial-
drones-are-here-the-future-of-unmanned-aerial-systems. Accessed 8 June 2019.

FAA. 2016. Summary of Small Unmanned Aircraft Rule (Part 107). Washington, DC: Federal
Aviation Administration.

Federal Aviation Administration. 2017, November 3. UAS Integration Pilot Program Approval.
U.S. Department of Transportation. [Online]. Available: https://www.faa.gov/news/updates/
?newsId=89007&omniRss=news_updatesAoc&cid=101_N_U. Accessed 16 Sept 2019.

———. 2018. FAA Aerospace Forecast: Fiscal Years 2018–2038. Washington, DC: Federal
Aviation Administration.

Federal Aviation Administration, Office of the Chief Counsel. 2015. State and Local Regulation
of Unmanned Aircraft System (UAS) Fact Sheet. Washington, DC: U.S. Department of
Transportation.

https://www.alpa.org/~/media/ALPA/Files/pdfs/news-events/press-release-content/2018/2018-02-12-alpa-natca-a4a-letter.pdf
https://www.politico.com/newsletters/morning-transportation/2018/08/01/senate-faa-bill-hits-more-bumps-on-the-runway-302256
https://dronecenter.bard.edu/interview-michael-huerta/
https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-insights/commercial-drones-are-here-the-future-of-unmanned-aerial-systems
https://www.faa.gov/news/updates/?newsId=89007&omniRss=news_updatesAoc&cid=101_N_U

Enterprise Architecting Applied to Small Unmanned Aircraft System. . . 629

Intelligent Transportation Society of California. 2018. Urban Air Mobility. [Online]. Avail-
able: https://itscalifornia.org/Content/AnnualMeetings/2018/Presentations/S1P1.pdf. Accessed
4 Sept 2019.

Jenkins, D., and B. Vasigh. 2013. The Economic Impact of Unmanned Aircraft Systems Integration
in the United States. Arlington: Association for Unmanned Vehicle Systems International.

National Academy of Sciences, Engineering, and Medicine. 2018. Assessing the Risks of Inte-
grating Unmanned Aircraft Systems into the National Airspace System. Washington, DC: The
National Academies Press.

National Conference of State Legislatures. 2018, September 10. Current Unmanned Aircraft
State Law Landscape. NCSL. [Online]. Available: http://www.ncsl.org/research/transportation/
current-unmanned-aircraft-state-law-landscape.aspx. Accessed 7 Oct 2019.

Nightingale, D.J., and D.H. Rhodes. 2015. Architecting the Future Enterprise. Cambridge, MA:
The MIT Press.

TechStartups Team. 2018, November 28. NUAIR Alliance Announces Successful Joint Flight
Operations Demonstration of First-of-Its-Kind Detect and Avoid System. TechStartups.
[Online]. Available: https://techstartups.com/2018/11/28/nuair-alliance-announces-successful-
joint-flight-operations-demonstration-first-kind-detect-avoid-system/. Accessed 4 Sept 2019.

U.S. Department of Justice. 2015, May 22. Department of Justice Policy Guidance: Domestic Use
of Unmanned Aircraft Systems (UAS).

https://itscalifornia.org/Content/AnnualMeetings/2018/Presentations/S1P1.pdf
http://www.ncsl.org/research/transportation/current-unmanned-aircraft-state-law-landscape.aspx
https://techstartups.com/2018/11/28/nuair-alliance-announces-successful-joint-flight-operations-demonstration-first-kind-detect-avoid-system/

Identification of Elements and Element
Relationships for Organizational
Architectures for Systems Engineers

Garima Bhatia and Bryan Mesmer

Abstract The lack of and need for theoretical foundations to systems engineering
have been recognized by multiple researchers in recent years. The lack of a
foundation extends to the positions of systems engineers in organizations. Presently,
organizational architectures for systems engineers are based on heuristics. Since
systems engineering is required to alleviate certain challenges associated with the
development of complex systems, a strong theoretical foundation to the establish-
ment of organizational architectures for systems engineers is imperative. Such a
theoretical foundation will ensure that the contribution made by systems engineers
to organizational value can be improved. The goal of this paper is to provide a basis
for creating a mathematical framework for organizational architectures for systems
engineers. A literature review spanning multiple disciplines is conducted to identify
elements pertaining to the organizational architectures. These elements are then used
in a directed graph to visually represent the relationships between the elements and
the mapping between systems engineers and organizational value.

Keywords Organizational architectures · Systems engineers · OASE · Set
theory · Functions

1 Introduction

A systems engineering (SE) objective is to facilitate the smooth development of
large-scale complex engineered systems (LSCES). A vast number of approaches
can be associated with SE. The use of these approaches has changed over time,
with certain approaches fading away, new approaches gaining recognition, and
other approaches remaining consistently applicable (Bhatia and Mesmer 2019b;
Boehm 2006). The instability in the performance of SE approaches over time, and

G. Bhatia (�) · B. Mesmer
The University of Alabama in Huntsville, Huntsville, AL, USA
e-mail: gb0027@uah.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_53

631

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_53&domain=pdf
mailto:gb0027@uah.edu
https://doi.org/10.1007/978-3-030-82083-1_53

632 G. Bhatia and B. Mesmer

the lack of a standard SE methodology may be attributed to a lack of a formal
theory for SE. The need for underlying scientific foundations for SE has been
recognized at a number of SE and design engineering workshops conducted in
the past (DARPA/NSF 2009; Bloebaum et al. 2012; Simpson and Martins 2011;
Collopy 2015a) and by researchers (Davendralingam et al. 2016; Collopy 2015b).
While researchers are attempting to establish a formalized mathematical theory for
SE (Wymore 1993, 1967; Buede 2009), the community still has a long way to go.

The lack of a formal theory for SE also includes the lack of a theoretical
foundation to organizational architectures for systems engineers (OASE). Systems
engineers interact with and act as the interface between different teams. Although
past research has focused on the roles and positions of systems engineers, a
mathematical foundation to the establishment of OASE is lacking. Presently, OASE
are based on heuristics. The goal of this research is to contribute to the theoretical
foundations of SE organizational architectures. A framework for establishing OASE
with mathematical underpinnings could be used to guide organizations toward
making decisions pertaining to OASE. It is important to focus on OASE because
of the following:

• It is impossible for a single person to retain all information pertaining to com-
plex systems; thus, dissemination of information is required, thereby requiring
multiple systems engineers (Levchuk et al. 2002a, b).

• Delegation of tasks and decision-making authority is needed in complex organi-
zations in order for them to be effective (Levchuk et al. 2002a).

• As the complexity of projects increases, management of couplings becomes
difficult; thus, more specialized personnel are needed (Bloebaum and McGowan
2012).

• Since different activities command different proficiencies, it might be difficult,
even impossible at times, for a single person to perform all SE activities. This is
true especially in the case of LSCES. However, this statement largely depends on
the size and nature of the product (Pyster et al. 2018).

• Overloading personnel with tasks may result in reduced efficiency, which in turn
may cause a reduction in the personnel’s output (Levchuk et al. 2002a).

• Similarly, redundancy in the organization in terms of SE personnel may lead
to wastage of organizational resources, thereby decreasing organizational value
(Svejnar and Terrell 1991; Bendor 1985).

• Assignment of roles to the wrong systems engineers may lead to a poor output
due to the reduced efficiencies of the systems engineers in completing the tasks.

• An incorrectly assigned systems engineer might require the assistance of other
systems engineers to accomplish their tasks, which might cause a reduction in
the output of the other systems engineers (Rizzo et al. 1970).

Considering the importance of effective SE, the establishment of effective OASE
is key. Thus, a framework, with its foundations grounded in mathematical principles,
will provide rigor in establishing OASE. The goal of this paper is to identify key
elements pertaining to OASE and the relationships between these elements. A
cross-disciplinary literature review is conducted for accomplishing this. A visual

Identification of Elements and Element Relationships for Organizational. . . 633

mapping between systems engineers and organizational value is then created using
the OASE elements. The OASE elements and their relationships will be leveraged
in the future to create formal mathematical definitions and theorems, which will
together comprise the mathematical framework. Elements of set theory, functions,
relations, and graph theory will be leveraged to create the mathematical framework.

2 Cross-Disciplinary Literature Review

For this research, a cross-disciplinary literature review was conducted on OASE
elements. An OASE element is any factor that can enable the establishment of
an OASE. In addition to studies pertaining to the roles and positions of systems
engineers, disciplines including organizational theory, management, operations
research, labor economics, and psychology were also reviewed to identify OASE
elements.

2.1 Sheard and Helix Study

Twelve roles of systems engineers are examined in an early study conducted by
Sheard (1996b). Sheard provides a description of each role and the responsibilities
expected to be fulfilled by each role. Heuristics for organizations to determine
the appropriate SE role are suggested, and a brief discussion is provided on the
interactions between the roles. Following Sheard, a multi-year study called Helix
was conducted by the SERC to investigate the effectiveness of systems engineers
(Pyster et al. 2013; Hutchinson et al. 2018b). The Helix study interviewed thousands
of practicing systems engineers to determine the current state of SE. The Helix study
modified the roles defined by Sheard based on the interview data, thereby making
them more inclusive. The Helix study also added five new roles. A comparison
between the Sheard and Helix role titles can be found in (Bhatia and Mesmer
2019a).

The end products of the Helix study were a self-assessment tool for systems
engineers called Atlas (Hutchinson et al. 2018a) and a book summarizing the study
(Pyster et al. 2018). In addition to the roles of systems engineers, the book also
discussed the proficiencies of systems engineers. The roles defined in these studies
will be used in this research to support the mathematical framework for OASE.

2.2 Role Allocation, Role Conflict, and Ambiguity

The assignment of roles and tasks to individuals in organizations has been discussed
by multiple researchers. Brandon et al. suggest the use of transactive memory
systems for associating tasks, expertise, and people (Brandon and Hollingshead

634 G. Bhatia and B. Mesmer

2004). Acuna and Juristo develop a capability-oriented process model for the
assignment of roles in software projects (Acuña and Juristo 2004). The capabilities
include intrapersonal, interpersonal, organizational, and management skills, which
are behavioral competencies. Hoogendoorn and Treur propose the use of dynamic
role allocation to obtain robustness in a multi-agent organization by means of
predicate-logic-based temporal logic (Hoogendoorn and Treur 2009). Rizzo et al.
discuss how role conflicts and role organizations lead to stress among employees,
thereby affecting organizational performance (Rizzo et al. 1970).

2.3 Optimal Allocation Problem

The allocation or assignment problem in optimization and its variations are often
used for the allocation of roles (Ross and Soland 1975; Campbell and Wu 2011;
Nair et al. 2003). Gerkey et al. modified the classic optimal allocation problem
(AOP) from operations research to obtain the optimal allocation of roles in RoboCup
(Gerkey and Matarić 2003). Farinelli et al. utilize a modified distributed constraint
optimization algorithm to account for the dynamic nature of task allocation in
extreme teams (Scerri et al. 2005). Dastani et al. use the formalisms of the agent
programming language (APL) to determine the allocation of roles in open systems
(Dastani et al. 2003).

2.4 Span of Control (SoC)

The simple definition of SoC is number of subordinates allotted to a supervisor;
however, improvised versions of this definition exist (Ouchi and Dowling 1974).
Urwick discusses the relationship between SoC and efficiency from a military
perspective (Urwick 1922). Keren and Levhari develop a model to establish the
optimum SoC in a pure hierarchical organization with the overall goal of minimizing
planning time (Keren and Levhari 1979). Meier and Bohte study the relationships
between SoC and organizational performance by conducting a study on 2712
schools (Meier and Bohte 2000). Other studies have focused on control and optimal
firm sizes (Williamson 1967).

2.5 Organizational Context

Another study of interest to this research is conducted by Ein-Dor and Segev
that identified variables related to organizational context that affect the success
of management information systems (Ein-Dor and Segev 1978). Examples of the
variables include organizational size, structure, and organizational resources.

Identification of Elements and Element Relationships for Organizational. . . 635

3 OASE Elements

Based on the cross-disciplinary literature review, a list of elements important to the
establishment of OASE displayed in Table 1 is formed. The table provides the names
of the elements, the element descriptions, the rationale for including the elements
for establishing OASE, and the literature that the element was identified in.

4 Mapping Systems Engineers to Organizational Value

Based on the OASE elements identified in Table 1, a visual representation of
the relationships between elements is created using a directed graph. The nodes
in the graph are the OASE elements, whereas the relationships between the
elements are the edges. The visual representation will aid in understanding how
systems engineers impact organizational value by mapping systems engineers to
organizational value. The mapping is shown in Fig. 1.

Figure 1 is color-coded in a manner that groups similar elements using colors.
For example, elements pertaining to organizations such as capabilities, organization
size, etc. are all colored gray. Similarly, elements pertaining to systems engineer
roles and elements pertaining to value are grouped together and colored light green
and dark green, respectively. Elements that did not fit any groupings were given
separate colors. Systems engineers are colored orange, proficiencies are colored
beige, and position levels are given the color yellow.

In Fig. 1, it is seen that organizations hire systems engineers based on the
requirements of the project and/or organization. The number of systems engineers
recruited depends upon the scale of the projects undertaken by the organization
and/or the size of the organization. Each system engineer has certain proficiencies.
The proficiencies are attributes of a systems engineer, such as education, experience,
leadership skills, lifecycle phases worked on, etc. These proficiencies also decide
the position of the systems engineer in the organization. The position determines
the rank of the systems engineer in the organizational hierarchy. The levels of
the organizational hierarchy are influenced by the size of the organization and/or
the scope of the project undertaken by the organization. Additionally, the SoC
determines the hierarchical levels within organizations. Roles are assigned to
systems engineers based on their proficiencies and position levels. Each role is
expected to fulfill certain tasks. By completing these tasks, systems engineers create
value for the organization. In this case, the value contributed is the impact made on
the organizational value (OrgVal).

The performance metrics in Fig. 1 are a quantitative means of measuring
OrgVal. A detailed description of the preliminary ideas for measuring the sub-
values and OrgVal are provided in a previous study (Bhatia and Mesmer 2019a).
However, the big question that arises is “How are the appropriate roles determined
for a project by an organization?”. The answer to this question lies in the capabilities

636 G. Bhatia and B. Mesmer
Ta

bl
e

1
L

is
to

f
O

A
SE

el
em

en
ts

w
ith

ra
tio

na
le

E
le

m
en

t
D

es
cr

ip
tio

n
R

at
io

na
le

L
ite

ra
tu

re

Sy
st

em
s

en
gi

ne
er

A
n

in
di

vi
du

al
th

at
pe

rf
or

m
s

SE
ac

tiv
iti

es
T

he
ce

nt
ra

le
le

m
en

ts
of

O
A

SE
ar

e
th

e
sy

st
em

s
en

gi
ne

er
s

H
el

ix
(P

ys
te

r
et

al
.2

01
3;

H
ut

ch
in

so
n

et
al

.2
01

8b
),

Sh
ea

rd
(1

99
6b

),
SE

H
an

db
oo

k
(K

ap
ur

ch
20

10
;H

as
ki

ns
et

al
.2

00
6)

O
rg

an
iz

at
io

ns
A

ny
go

ve
rn

m
en

to
r

co
m

m
er

ci
al

in
st

itu
tio

n
de

ve
lo

pi
ng

a
pr

od
uc

to
r

sy
st

em
or

pr
ov

id
in

g
a

se
rv

ic
e

T
he

sy
st

em
s

en
gi

ne
er

s
ar

e
em

pl
oy

ed
by

or
ga

ni
za

tio
ns

O
rg

.t
he

or
y

(J
on

es
20

13
;B

ur
to

n
et

al
.

(2
01

5)
,K

in
ic

ki
an

d
K

re
itn

er
(2

00
6)

Sy
st

em
s

en
gi

ne
er

ro
le

s
A

ro
le

is
a

co
lle

ct
io

n
of

re
la

te
d

SE
ac

tiv
iti

es
(H

ut
ch

in
so

n
et

al
.2

01
8b

)
T

he
ro

le
s

ar
e

on
e

of
th

e
th

re
e

fa
ct

or
s

fo
r

es
ta

bl
is

hi
ng

th
e

m
at

he
m

at
ic

al
fr

am
ew

or
k

fo
r

O
A

SE
.C

or
re

ct
as

si
gn

m
en

to
f

ro
le

s
to

sy
st

em
s

en
gi

ne
er

s
w

ill
le

ad
to

a
be

tte
r

O
A

SE
,l

ea
di

ng
to

an
in

cr
ea

se
in

th
e

co
nt

ri
bu

tio
n

to
or

ga
ni

za
tio

na
lv

al
ue

Sh
ea

rd
(1

99
6b

),
H

el
ix

(P
ys

te
r

et
al

.
20

13
;H

ut
ch

in
so

n
et

al
.2

01
8b

)

N
um

be
r

of
sy

st
em

s
en

gi
ne

er
s

T
he

to
ta

ln
um

be
r

of
sy

st
em

s
en

gi
ne

er
s

em
pl

oy
ed

by
an

or
ga

ni
za

tio
n

T
hi

s
w

as
co

ns
id

er
ed

to
be

an
el

em
en

to
f

O
A

SE
,s

in
ce

th
e

m
at

he
m

at
ic

al
fr

am
ew

or
k

w
ill

al
so

de
ci

de
th

e
nu

m
be

r
of

sy
st

em
s

en
gi

ne
er

s
re

qu
ir

ed
fo

r
th

e
ar

ch
ite

ct
ur

e

E
in

-D
or

an
d

Se
ge

v
(1

97
8)

,S
oC

(O
uc

hi
an

d
D

ow
lin

g
19

74
;K

er
en

an
d

L
ev

ha
ri

19
79

;M
ei

er
an

d
B

oh
te

20
00

)

Po
si

tio
ns

of
sy

st
em

s
en

gi
ne

er
s

A
un

it
of

m
ea

su
re

fo
r

th
e

ex
pe

ri
en

ce
of

a
sy

st
em

s
en

gi
ne

er
(H

ut
ch

in
so

n
et

al
.

20
18

b)

T
he

po
si

tio
ns

de
ci

de
th

e
si

ze
of

th
e

hi
er

ar
ch

y
an

d
th

e
as

si
gn

m
en

to
f

re
sp

on
si

bi
lit

y
to

in
di

vi
du

al
s

H
el

ix
(P

ys
te

r
et

al
.2

01
8)

,E
in

-D
or

an
d

Se
ge

v
(1

97
8)

,S
oC

(O
uc

hi
an

d
D

ow
lin

g
19

74
;K

er
en

an
d

L
ev

ha
ri

19
79

;M
ei

er
an

d
B

oh
te

20
00

)

O
rg

Va
l

T
he

ch
an

ge
in

an
or

ga
ni

za
tio

n’
s

va
lu

e
by

vi
rt

ue
of

SE
ac

tiv
iti

es
pe

rf
or

m
ed

by
th

e
or

ga
ni

za
tio

n

T
hi

s
O

A
SE

el
em

en
tw

ill
be

th
e

ob
je

ct
iv

e
fu

nc
tio

n
in

th
is

re
se

ar
ch

,w
ith

a
go

al
to

m
ax

im
iz

e

O
rg

Va
l

H
el

ix
(P

ys
te

r
et

al
.2

01
3;

H
ut

ch
in

so
n

et
al

.2
01

8b
),

Sh
ea

rd
(1

99
6a

),
R

O
I

on
SE

(H
on

ou
r

20
13

)
R

ol
e

ta
sk

s
T

he
ro

le
ta

sk
s

ar
e

th
e

ac
tiv

iti
es

as
so

ci
at

ed
w

ith
ea

ch
ro

le
B

y
m

ea
ns

of
co

m
pl

et
in

g
th

es
e

ac
tiv

iti
es

,
th

e
sy

st
em

s
en

gi
ne

er
s

ge
ne

ra
te

va
lu

e
fo

r
th

e
or

ga
ni

za
tio

n

H
el

ix
(P

ys
te

r
et

al
.2

01
8)

,S
he

ar
d

(1
99

6b
)

Su
b-

va
lu

es
T

he
ou

tp
ut

ge
ne

ra
te

d
by

ea
ch

ro
le

fo
r

pe
rf

or
m

in
g

ro
le

ta
sk

s
T

he
ag

gr
eg

at
io

n
of

th
e

su
b-

va
lu

es
is

O

rg
Va

l
H

el
ix

(H
ut

ch
in

so
n

et
al

.2
01

8b
;P

ys
te

r
et

al
.2

01
8)

,S
he

ar
d

(1
99

6a
)

Identification of Elements and Element Relationships for Organizational. . . 637

L
if

ec
yc

le
ph

as
es

T
he

di
ff

er
en

ts
eg

m
en

ts
of

a
lif

ec
yc

le
It

is
as

su
m

ed
in

th
is

re
se

ar
ch

th
at

th
e

ca
pa

bi
lit

ie
s

of
an

or
ga

ni
za

tio
n

ar
e

de
fin

ed
by

th
e

w
or

k
pe

rf
or

m
ed

by
th

e
or

ga
ni

za
tio

n
pe

rt
ai

ni
ng

to
di

ff
er

en
t

lif
ec

yc
le

ph
as

es

W
as

so
n

(2
01

5)
,I

N
C

O
SE

SE
H

an
db

oo
k

(R
ob

er
ts

on
19

98
),

N
A

SA
SE

H
an

db
oo

k
(K

ap
ur

ch
20

10
)

Pr
ofi

ci
en

ci
es

T
he

at
tr

ib
ut

es
of

a
sy

st
em

s
en

gi
ne

er
,

in
cl

ud
in

g
ed

uc
at

io
n,

sk
ill

s,
an

d
ex

pe
ri

en
ce

T
he

pr
ofi

ci
en

ci
es

of
a

sy
st

em
s

en
gi

ne
er

ar
e

es
se

nt
ia

li
n

de
ci

di
ng

th
e

ap
pr

op
ri

at
e

ro
le

s
fo

r
th

e
sy

st
em

s
en

gi
ne

er

H
el

ix
(P

ys
te

r
et

al
.2

01
8)

,B
ra

nd
on

et
al

.
(B

ra
nd

on
an

d
H

ol
lin

gs
he

ad
20

04
),

A
cu

na
an

d
Ju

ri
st

o
(2

00
4)

,H
oo

ge
nd

oo
rn

an
d

T
re

ur
(2

00
9)

O
rg

an
iz

at
io

na
l

co
nt

ex
t(

or
g.

si
ze

,
pr

oj
ec

ts
ca

le
)

O
rg

an
iz

at
io

na
ls

iz
e

re
fe

rs
to

th
e

nu
m

be
r

of
em

pl
oy

ee
s

in
th

e
or

ga
ni

za
tio

n.
Pr

oj
ec

ts
ca

le
re

fe
rs

to
th

e
co

m
pl

ex
ity

of
th

e
sy

st
em

be
in

g
de

ve
lo

pe
d.

A
m

ea
su

re
of

co
m

pl
ex

ity
fo

r
th

is
re

se
ar

ch
is

ye
tt

o
be

de
te

rm
in

ed

T
he

nu
m

be
r

of
sy

st
em

s
en

gi
ne

er
s

an
d

th
e

po
si

tio
ns

w
ill

de
pe

nd
on

th
e

si
ze

of
th

e
or

ga
ni

za
tio

n
an

d/
or

th
e

sc
op

e
of

th
e

pr
oj

ec
tu

nd
er

ta
ke

n
by

th
e

or
ga

ni
za

tio
n

So
C

lit
er

at
ur

e
(O

uc
hi

an
d

D
ow

lin
g

19
74

;K
er

en
an

d
L

ev
ha

ri
19

79
;M

ei
er

an
d

B
oh

te
20

00
),

E
in

-D
or

an
d

Se
ge

v
(1

97
8)

So
C

T
he

nu
m

be
r

of
su

bo
rd

in
at

es
al

lo
tte

d
to

a
su

pe
rv

is
or

T
hi

s
el

em
en

ti
s

im
po

rt
an

tt
o

de
te

rm
in

e
th

e
op

tim
al

nu
m

be
r

of
su

bo
rd

in
at

es
th

at
ca

n
be

as
si

gn
ed

to
a

sy
st

em
s

en
gi

ne
er

So
C

lit
er

at
ur

e
(K

er
en

an
d

L
ev

ha
ri

19
79

;
O

uc
hi

an
d

D
ow

lin
g

19
74

;U
rw

ic
k

19
22

;
M

ei
er

an
d

B
oh

te
20

00
)

Pe
rf

or
m

an
ce

m
et

ri
cs

A
m

ea
su

re
of

ef
fe

ct
iv

en
es

s
of

sy
st

em
s

en
gi

ne
er

s.
M

et
ri

cs
co

ul
d

in
cl

ud
e

ef
fic

ie
nc

y,
tim

e
to

co
m

pl
et

e
ta

sk
s,

co
st

of
ac

tiv
iti

es
,r

ev
en

ue
,p

ro
fit

,e
tc

.

T
he

se
m

et
ri

cs
w

ill
be

us
ed

to
ev

al
ua

te
th

e
co

nt
ri

bu
tio

n
m

ad
e

by
sy

st
em

s
en

gi
ne

er
s.

T
hi

s
el

em
en

tc
an

be
us

ed
to

de
te

rm
in

e
if

a
sy

st
em

s
en

gi
ne

er
is

ca
pa

bl
e

en
ou

gh
fo

r
a

ro
le

an
d/

or
if

th
e

sy
st

em
s

en
gi

ne
er

is
be

in
g

ov
er

bu
rd

en
ed

w
ith

re
sp

on
si

bi
lit

y

Sh
an

te
au

et
al

.(
20

02
),

R
iz

zo
et

al
.

(1
97

0)
,U

rw
ic

k
(1

92
2)

M
ar

gi
na

lp
ro

du
ct

of
la

bo
r

T
he

m
ar

gi
na

lp
ro

du
ct

of
la

bo
r

is
de

fin
ed

as
th

e
ch

an
ge

in
ou

tp
ut

re
su

lti
ng

fr
om

hi
ri

ng
an

ad
di

tio
na

l
w

or
ke

r,
ho

ld
in

g
co

ns
ta

nt
th

e
qu

an
tit

ie
s

of
al

lo
th

er
in

pu
ts

T
hi

s
el

em
en

tw
ill

be
us

ef
ul

in
as

se
ss

in
g

an
or

ga
ni

za
tio

n’
s

de
ci

si
on

to
hi

re
an

ad
di

tio
na

ls
ys

te
m

s
en

gi
ne

er

B
or

ja
s

an
d

V
an

O
ur

s
(2

01
0)

,C
ah

uc
et

al
.(

20
14

)

V
al

ue
of

m
ar

gi
na

l
pr

od
uc

to
f

la
bo

r
T

he
va

lu
e

of
m

ar
gi

na
lp

ro
du

ct
of

la
bo

r
is

th
e

do
lla

r
in

cr
ea

se
in

re
ve

nu
e

ge
ne

ra
te

d
by

an
ad

di
tio

na
lw

or
ke

r,
ho

ld
in

g
ca

pi
ta

lc
on

st
an

t

T
hi

s
el

em
en

tw
ill

be
us

ef
ul

in
as

se
ss

in
g

an
or

ga
ni

za
tio

n’
s

de
ci

si
on

to
hi

re
an

ad
di

tio
na

ls
ys

te
m

s
en

gi
ne

er

B
or

ja
s

an
d

V
an

O
ur

s
(2

01
0)

,C
ah

uc
et

al
.(

20
14

)

638 G. Bhatia and B. Mesmer

Fig. 1 Mapping between systems engineers and organizational value

offered by the organization. Since the main focus of SE is the development of a
system through the different lifecycle phases, lifecycle phase services play a major
role in determining the roles for systems engineers required by the organization.
For example, if an organization offers conceptual design services only, some of
the likely roles required for that organization’s capabilities are system architect,
requirements owner, and system analyst, among others. The capabilities of the
organization might depend on other factors; however, for this research, the lifecycle
phase services are considered to be the primary capability determinant of an
organization.

The elements and relationships described above will be represented mathemati-
cally using set theory, functions, relations, and graph theory. Theorems will then be
created to guide organizations toward establishing their OASE. Examples of such
definitions are provided below.

1. Systems engineer: A systems engineer, denoted by se, is any person that
performs systems engineering activities. The set of all systems engineers is
denoted by SYSENGRS.

Identification of Elements and Element Relationships for Organizational. . . 639

2. Systems engineer objective: An objective obj is a task expected to be completed
by a systems engineer. The set of all objectives is denoted by OBJECTIVE.

3. Satisfaction function: The satisfaction function sat : SYSENGRS × OBJEC-
TIVE → {FALSE, TRUE} determines the satisfaction of a systems engineer
objective by a systems engineer. In this case, we assume that the satisfaction
function is binary.

5 Summary and Future Work

There is a lack of foundational theory to SE, which extends to OASE. This paper
provides a base for creating a mathematical framework to guide the establishment
of OASE. A cross-disciplinary literature review is performed which leads to a list of
OASE elements. A directed graph is created which provides a visual representation
of the mapping between systems engineers and organizational value by leveraging
OASE elements and their relationships. The mapping can be used as a means for
understanding the relationships between the elements and to create mathematical
definitions and theorems.

Future work will employ set theory and functions to provide formal definitions
of OASE elements and their relationships. The definitions will be used to create
theorems and corollaries using formal methods of doing proofs. The theorems will
be proven using the properties of sets and functions. Together, the mathematical
framework comprising the definitions and theorems will provide a means for
guiding organizations in establishing their OASE.

References

Acuña, Silvia T., and Natalia Juristo. 2004. Assigning People to Roles in Software Projects.
Software: Practice and Experience 34 (7): 675–696.

Bendor, Jonathan B. 1985. Parallel Systems: Redundancy in Government. University of California
Press.

Bhatia, Garima, and Bryan Mesmer. 2019a. Preliminary Analysis of Value Contributed by Systems
Engineers to Organizations. In AIAA Scitech 2019 Forum, 0766.

———. 2019b. Trends in Occurrences of Systems Engineering Topics in Literature. Systems 7 (2):
28.

Bloebaum, Christina L., and A. R. McGowan. 2012. The Design of Large-Scale Complex
Engineered Systems: Present Challenges and Future Promise. In Proceedings of the 14th
AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Indianapolis, IN, Paper
No. AIAA-2012-5571. https://doi.org/10.2514/6.2012-5571.

Bloebaum, Christina L., Paul D. Collopy, and George A. Hazelrigg. 2012. NSF/NASA Workshop
on the Design of Large-Scale Complex Engineered Systems—From Research to Product Real-
ization. In Proceedings of the 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization
Conference, Indianapolis, IN, Paper No. AIAA-2012-5572.

Boehm, Barry. 2006. Some Future Trends and Implications for Systems and Software Engineering
Processes. Systems Engineering 9 (1): 1–19.

http://dx.doi.org/10.2514/6.2012-5571

640 G. Bhatia and B. Mesmer

Borjas, George J., and Jan C. Van Ours. 2010. Labor Economics. Irwin Boston: McGraw-Hill.
Brandon, David P., and Andrea B. Hollingshead. 2004. Transactive Memory Systems in Organiza-

tions: Matching Tasks, Expertise, and People. Organization Science 15 (6): 633–644.
Buede, Dennis M. 2009. The Engineering Design of Systems: Models and Methods. Wiley Online

Library.
Burton, Richard M., Børge Obel, and Dorthe Døjbak Häkonsson. 2015. Organizational Design: A

Step-by-Step Approach. Cambridge University Press.
Cahuc, Pierre, Stéphane Carcillo, and André Zylberberg. 2014. Labor Economics. MIT press.
Campbell, Adam, and Annie S. Wu. 2011. Multi-Agent Role Allocation: Issues, Approaches, and

Multiple Perspectives. Autonomous Agents and Multi-Agent Systems 22 (2): 317–355.
Collopy, Paul D. 2015a. Report on the Science of Systems Engineering Workshop. In 53rd AIAA

Aerospace Sciences Meeting, 1865.
Paul Collopy. 2015b. Systems Engineering Theory: What Needs to Be Done. In 2015 Annual IEEE

Systems Conference (SysCon) Proceedings, 536–541. IEEE.
DARPA/NSF. 2009. Systems Engineering and Design of Complex Aerospace Systems. Presented

at the DARPA/NSF Systems Engineering and Design of Complex Aerospace Systems Work-
shop, Arlington, VA.

Dastani, Mehdi, Virginia Dignum, and Frank Dignum. 2003. Role-Assignment in Open Agent
Societies. In Proceedings of the Second International Joint Conference on Autonomous Agents
and Multiagent Systems, 489–496. ACM.

Davendralingam, Navindran, Zhenghui Sha, Kushal Moolchandani, Apoorv Maheshwari, Jitesh
H. Panchal, and Daniel A. DeLaurentis. 2016. Scientific Foundations for Systems Engineer-
ing: Challenges and Strategies. In ASME 2015 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference. American Society of
Mechanical Engineers Digital Collection.

Ein-Dor, Phillip, and Eli Segev. 1978. Organizational Context and the Success of Management
Information Systems. Management Science 24 (10): 1064–1077.

Gerkey, Brian P., and Maja J. Matarić. 2003. On Role Allocation in RoboCup. In Robot Soccer
World Cup, 43–53. Springer.

Haskins, Cecilia, Kevin Forsberg, Michael Krueger, D. Walden, and D. Hamelin. 2006. Systems
Engineering Handbook. In INCOSE. Seattle: International Council on Systems Engineering.

Honour, Eric C. 2013. Systems Engineering Return on Investment. University of South Australia
Australia.

Hoogendoorn, Mark, and Jan Treur. 2009. An Adaptive Multi-Agent Organization Model Based
on Dynamic Role Allocation. International Journal of Knowledge-Based and Intelligent
Engineering Systems 13 (3–4): 119–139.

Hutchinson, Nicole A., Dinesh Verma, Pamela Burke, Megan Clifford, Ralph Giffin, Sergio
Luna, and Matthew Partacz. 2018a. Atlas 1.1: An Update to the Theory of Effective Systems
Engineers. Stevens Institute of Technology Hoboken United States.

Hutchinson, Nicole, Dinesh Verma, Pamela Burke, Megan Clifford, Ralph Giffin, Sergio Luna,
and Matthew Partacz. 2018b. RT-173: Helix, 2017 Helix Technical Report. Stevens Institute of
Technology Hoboken United States.

Jones, Gareth R. 2013. Organizational Theory, Design, and Change. Upper Saddle River, NJ:
Pearson.

Kapurch, Stephen J. 2010. NASA Systems Engineering Handbook. Diane Publishing.
Keren, Michael, and David Levhari. 1979. The Optimum Span of Control in a Pure Hierarchy.

Management Science 25 (11): 1162–1172.
Kinicki, Angelo, and Robert Kreitner. 2006. Organizational Behavior: Key Concepts, Skills & Best

Practices. Irwin New York: McGraw-Hill.
Levchuk, Georgiy M., Yuri N. Levchuk, Jie Luo, Krishna R. Pattipati, and David L. Kleinman.

2002a. Normative Design of Organizations. I. Mission Planning. IEEE Transactions on
Systems, Man, and Cybernetics-Part A: Systems and Humans 32 (3): 346–359.

Identification of Elements and Element Relationships for Organizational. . . 641

Levchuk, Georgiy, Yuri Levchuk, Jie Luo, Krishna Pattipati, and David Kleinman. 2002b. Nor-
mative Design of Organizations. II. Organizational Structure. IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans 32 (3): 360–375.

Meier, Kenneth J., and John Bohte. 2000. Ode to Luther Gulick: Span of Control and Organiza-
tional Performance. Administration & Society 32 (2): 115–137.

Nair, Ranjit, Milind Tambe, and Stacy Marsella. 2003. Role Allocation and Reallocation in
Multiagent Teams: Towards a Practical Analysis. In Proceedings of the Second International
Joint Conference on Autonomous Agents and Multiagent Systems, 552–559. ACM.

Ouchi, William G., and John B. Dowling. 1974. Defining the Span of Control. Administrative
Science Quarterly 19 (3).

Pyster, Arthur, Deva Henry, Nicole Hutchsion, Kahina Lasfer, and Stan Rifkin. 2013. The Helix
Project. Hoboken NJ: Systems Engineering Research Center.

Pyster, Arthur, Nicole Hutchison, and Devanandham Henry. 2018. The Paradoxical Mindset of
Systems Engineers: Uncommon Minds, Skills, and Careers. Wiley.

Rizzo, John R., Robert J. House, and Sidney I. Lirtzman. 1970. Role Conflict and Ambiguity in
Complex Organizations. Administrative Science Quarterly: 150–163.

Robertson, Tim. 1998. INCOSE Systems Engineering Handbook. INSIGHT 1 (2): 20–20.
Ross, G. Terry, and Richard M. Soland. 1975. A Branch and Bound Algorithm for the Generalized

Assignment Problem. Mathematical Programming 8 (1): 91–103.
Scerri, Paul, Alessandro Farinelli, Steven Okamoto, and Milind Tambe. 2005. Allocating Tasks in

Extreme Teams. In Proceedings of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, 727–734. ACM.

Shanteau, James, David J. Weiss, Rickey P. Thomas, and Julia C. Pounds. 2002. Performance-
Based Assessment of Expertise: How to Decide If Someone Is an Expert or Not. European
Journal of Operational Research 136 (2): 253–263.

Sheard, Sarah A. 1996a. The Value of Twelve Systems Engineering Roles. In INCOSE Interna-
tional Symposium, 6:894–902. Wiley Online Library.

Sarah Sheard. 1996b. Twelve Systems Engineering Roles. In INCOSE International Symposium,
6:478–485. Wiley Online Library.

Simpson, Timothy W., and Joaquim R.R.A. Martins. 2011. Multidisciplinary Design Optimization
for Complex Engineered Systems: Report from a National Science Foundation Workshop.
Journal of Mechanical Design 133 (10): 101002.

Svejnar, Jan, and Katherine D. Terrell. 1991. Reducing Labor Redundancy in State-Owned
Enterprises. Vol. 792. World Bank Publications.

Urwick, Lyndall F. 1922. The Manager’s Span of Control. Harvard Business Review 34 (3).
Wasson, Charles S. 2015. System Engineering Analysis, Design, and Development: Concepts,

Principles, and Practices. Wiley.
Williamson, Oliver E. 1967. Hierarchical Control and Optimum Firm Size. Journal of Political

Economy 75 (2): 123–138.
Wymore, Wayne. 1967. A Mathematical Theory of Systems Engineering: The Elements. New York:

Wiley.
Wymore, A. Wayne. 1993. Model-Based Systems Engineering. CRC Press.

Application and Modelling of Systems
Engineering Methods to Deployed
Enterprise Content Management Systems

Stephan Bren

Abstract This paper presents a proposal for the application and modelling of
systems engineering to an already deployed system as a means of resolving
challenges frequently associated with deployed enterprise content management
systems. It generalizes traditional systems engineering methods as a model that may
be applied to already deployed ECM systems. In this paper, the author reviews the
traditional systems engineering process followed by a more detailed review of the
modified, post-deployment systems engineering process. The author then concludes
by discussing the benefits of performing post-deployment systems engineering.

Keyword Systems Engineering

1 Introduction

Enterprise content management systems are frequently deployed as point solutions
that are then developed organically into enterprise platforms in response to changing
business needs and objectives, without scoping exercises or business planning, on
the basis of “let’s see what it can do.” (Fig. 1)

Such systems may have been originally deployed without a clearly articulated
justification as to why it should have been implemented; it may have been deployed
in an unplanned manner, without formal business case development prior to deploy-
ment or even minimal financial justification. Lack of a clear vision and inadequate
planning may contribute to poor user adoption, eventual failure of the system to
meaningfully contribute to business needs, and removal of the system at a loss.
The lack of adequate business case development and planning hinders management
ability to effectively understand and integrate this new tool into organizational IT
business processes, such as those defined in ITIL, Internal Standards Organization

S. Bren (�)
Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA
e-mail: sbren2@jhu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_54

643

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_54&domain=pdf
mailto:sbren2@jhu.edu
https://doi.org/10.1007/978-3-030-82083-1_54

644 S. Bren

Fig. 1 Enterprise content management system adoption ladder

(ISO), Microsoft Operations Framework (MOF), and others, and this in turn hinders
effective organizational adoption. These challenges can be remedied through the
application and modelling of post-deployment systems engineering.

2 Traditional Systems Engineering Process

Traditional systems engineering involves an organized and systematic approach
to the development of complex systems. Its focus is on the design, development,
integration, and testing of a system of interrelated components working together
to meet a problem. This approach tends to be a technical one, organized in
such a fashion that focuses first on defining the problem in terms of the needs,
requirements, and operational concepts as presented by the future users of the
solutions and products, before engaging in designing and developing the system
to meet the problem. It also engages external factors affecting the development of
the system, such as the intended operational environment of the system, its logistical
support, and the capabilities of the users of the system. It is iterative in nature, as the
lessons learned and emergent discoveries of various tasks in the systems engineering
approach are applied to previous tasks and those previous tasks re-engaged so as to
improve their output and contribution to the development of the system. This process
is engaged with the intent of designing a better product than might otherwise be
accomplished.

There are a variety of approaches that may be used for performing systems
engineering. The approach that will be engaged here in this effort is best represented
using the systems engineering “V” diagram (Kossiakoff et al. 2011). In this
approach, the common project tasks of requirements analysis, design, development,
testing, and deployment are presented in an orderly fashion that intuitively depicts
their sequence and interrelationships.

Application and Modelling of Systems Engineering Methods to Deployed. . . 645

In traditional systems engineering, the systems engineering process begins with
examination of the regional architecture and how that architecture is related to the
proposed system; and it involves discovering and collating all artifacts relevant to
the project. This effort serves to initially define the system boundary. The feasibility
and concept exploration phase examine whether it will be realistically possible to
develop a solution to the problem or need, what potential solutions there might
be, and what might be the best possible solution. The concept of operations phase
presents the understanding of the problem and the proposed solution to that problem
in the context of the problem environment. This effort serves to initially define how
the system will interact with its environment. During the system requirements phase,
the boundaries of the proposed solution with its environment are materialized.
In high-level design, also referred to as preliminary design or conceptual design
(NASA 2009), effort focuses on developing the overall system architecture in a way
that correctly implements system requirements. During the detailed design phase,
the system requirements are translated into the specific physical requirements for
how the proposed system is to be built.

Actual development of the system proceeds during the software/hardware devel-
opment and field installation phase. Once the system is developed, it undergoes
progressively higher-level testing, from unit to system testing. This first phase of
testing serves to verify that the system was built according to its specifications (i.e.,
“the systems was built right”). The second phase of testing serves to validate that
the system meets the intended design needs identified in the concept of operations
(i.e., “the right system was built”). On successful completion of verification
and validation testing, the system enters into its operational and maintenance
phase, where it remains until retirement or replacement. This approach to systems
engineering activities is diagrammed on the systems engineering “V” diagram, as
presented in Fig. 2. This approach to systems engineering is the context in which
this proposal for the application and modelling of systems engineering methods to a
deployed enterprise content management system is engaged and understood. In this
approach, and, indeed for any systems engineering project, the systems engineering
solution development process proceeds from an initial undefined state and advances
toward a desired, proposed state, referred to as the “to-be” solution. Each advance
in this process incrementally resolves the proposed solution against the continuum
of possible solutions, increasingly narrowing the scope of possible solutions until
only a few or just one remains as the best possible solution to the original problem.

3 Differences Between Traditional and Post-deployment
Systems Engineering

In post-deployment systems engineering, the solution process does not so much
advance to a theoretical solution that is increasingly resolved against a continuum
of solutions, but to an actual “as-built” solution that is known but more or less

646 S. Bren

Fig. 2 Traditional systems engineering “V” diagram. (FHWA 2007)

undefined – i.e., the system physically exists and has been deployed, but details
of the system may only be partially documented and exist primarily in the minds
of its administrators. In effect, the systems engineering approach is generalized as a
model that can be applied to any enterprise content management system and indeed
to any deployed system.

Post-deployment systems engineering applies the methods of traditional systems
engineering to a system that has already been deployed so as to develop the
critical system artifacts needed to effectively integrate the system into organizational
business processes. The advantage of using systems engineering methods is the
structured and systematic approach that it brings to the development of these
artifacts and the minimization of stovepipe methods. Just as the application of
systems engineering methods to the development of a proposed system helps ensure
the highest likelihood of success, so too does the application of systems engineering
methods to an already deployed but undefined system helps ensure the highest
likelihood of success in accurately defining that system.

In traditional systems engineering, system development proceeds from a large
and mostly undefined system solution space to a specific, well-defined “to-be”
system solution. This solution is generally not the only possible solution, but is
usually the optimal one of a set of possible solutions meeting system requirements.
A notional sense of this development is provided in Fig. 3.

In post-deployment systems engineering, the systems engineering process gen-
erally follows the same series of steps executed in traditional systems engineering.
However, in post-deployment systems engineering, the solution process does not so
much advance to a theoretical “to-be” solution that is increasingly resolved against
a continuum of solutions, but to an actual “as-built” solution that is known but more
or less undefined. These other solutions are not possible solutions in the traditional

Application and Modelling of Systems Engineering Methods to Deployed. . . 647

Fig. 3 Traditional systems engineering process timeline

Fig. 4 Post-deployment systems engineering process timeline

systems engineering sense but are solutions in the sense of post-deployment change
management. A notional sense of this development is provided in Fig. 4.

Post-deployment systems engineering applies the methods of traditional systems
engineering to a system that has already been deployed so as to develop the

648 S. Bren

critical system artifacts needed to effectively integrate the system into organizational
business processes. The advantage of using systems engineering methods is the
structured and systematic approach that it brings to the development of these
artifacts and the minimization of stovepipe methods.

This fundamental change in the solution definition introduces various modifi-
cations to the traditional systems engineering processes. Some tasks that would
normally be performed in traditional systems engineering may be found to not return
significant value in post-deployment systems engineering and therefore may not
need to be performed. Some other tasks within a typical systems engineering phase
become optional, introducing useful but not necessary value to the process. The
core tasks among the various phases remain useful and productively contribute to
the systems engineering process as they do for traditional systems engineering.

4 Modified Process

4.1 Overview

Post-deployment systems engineering process follows the traditional “V process”
with some modifications. Some phases of the traditional systems engineering
process can be skipped, and other phases can be attenuated. Determining the
applicability and usefulness of a traditional systems engineering phase to post-
deployment engineering is analyzed here on an individual basis.

4.2 Regional Architecture

In this initial systems engineering phase, the modified post-deployment focus is on
discovering and gathering relevant artifacts associated with the as-built system and
its environment. The general systems engineering plan developed during this phase
will not be static but will continually be updated as facts emerge and efforts evolve.
The regional architecture phase of the traditional systems engineering approach adds
significant value to the post-deployment systems engineering process. This phase
defines the boundaries between the more or less undefined “as-built” system and
its operational environment, such as network and power interfaces, administrative
interfaces, user interfaces, and physical virtual server interfaces. These may be
known and understood but insufficiently documented.

4.3 Feasibility Study and Concept Exploration

The feasibility study and concept exploration tasks performed in traditional systems
engineering are generally of little value in post-deployment systems engineering. On

Application and Modelling of Systems Engineering Methods to Deployed. . . 649

the other hand, while a concept trade study would not yield value from a technical
perspective, it might still return substantive value from a management perspective,
such as enabling line managers to engage system policy and budget matters with
senior management from a more informed perspective.

4.4 Concept of Operations

The concept of operations is the first significant deliverable that the post-deployment
systems engineer will deliver to the system owner/customer. The CONOPS repre-
sents a tangible product providing a clear understanding of the system within the
organization from the perspective of the system’s users. From a post-deployment
systems engineering perspective, the CONOPS provides a useful milestone and
metric to management in demonstrating that the post-deployment systems engineer-
ing task is proceeding productively. It effectively provides management with a key
milestone, a Go/No Go decision point.

4.5 System Requirements

The system requirements document (SRD) and the system performance speci-
fication will be the two major deliverables resulting from performing the post-
deployment systems requirements phase. Specific attention must be given to the
clear separation of requirements that apply to the current “as-built” state of the
system from its desired, “to-be,” state. Capturing both types of requirements adds
significant value to the already deployed system.

“As-built” requirements can then be analyzed against known system costs, yield-
ing more accurate and factual cost estimates for system changes and improvements.
“To-be” system requirements add value to the post-deployment systems engineering
requirements development process as they capture capability gaps that can be
addressed through change management.

4.6 System Design

This is the third most significant phase in post-deployment systems engineering of
a deployed system. The system specification drafted during this phase effectively
defines the baseline of the deployed system and is a necessary component in the
development of an Authority to Operate (ATO); building accurate inventory and cost
projections; implementing ITIL, ISO, MOF, and other common business processes;
and developing reliable continuity of operations procedures.

650 S. Bren

4.7 Software/Hardware Development and Field Installation

The development stage in traditional systems engineering is of little value in
post-deployment systems engineering since the system is already developed and
deployed. On the other hand, some of the secondary products of this stage, such as
training materials, user manuals, installation, and other documents, may be of value
if they have not yet been created.

4.8 Unit Testing

There is no immediate value returned in performing the primary activity of this
stage, finding defects. However, some substantive value can still be obtained in
performing supporting activities of this stage, such as drafting test cases and drafting
a unit verification plan. Test cases and a unit verification plan can be used in
developing regression testing procedure for the system, useful for patching and
upgrade testing, custom solution deployment testing, and interface modification
testing.

4.9 Subsystem Verification

In post-deployment systems engineering, the system has already been integrated
from its components and is deployed and operational. Thus, the components are
presumed to have met their design objectives and requirements, and subsystem
verification against system requirements is not immediately unnecessary. In other
words, the subsystems are presumed to have been “built right.” Thus, the focus of
this phase is less on subsystems meeting requirements and more on whether the
requirements accurately reflect them.

4.10 System Verification and Deployment

In post-deployment systems engineering, the system is already deployed and
operational. Thus, the system is presumed to have met its operational requirements,
and traditional system verification is not immediately necessary. The system is
presumed to have been “built right.” System verification in post-deployment
systems engineering can be used to refine the previously developed as-built and
“to-be” requirements against the actual deployed system. Deltas identified from the
as-built can be used to optimize the requirements developed in an earlier stage.

Application and Modelling of Systems Engineering Methods to Deployed. . . 651

Deltas identified from the “to-be” requirements will involve enhancements to the
integrated system that can be engaged through change management.

4.11 System Validation

In post-deployment systems engineering, the system has effectively already been
validated, since it is fully deployed and operational. The already deployed system
is thus deemed to be fully validated and is therefore the right system. Were it
otherwise, the post-deployment engineering process would effectively be engaging
in traditional systems engineering and working toward a complete solution. Thus,
the system validation phase does not yield immediately necessary results. On the
other hand, this phase can be used to corroborate the completeness and accuracy of
the CONOPS developed previously and identify new capabilities and services for
the system to deliver to its users.

4.12 Operations and Maintenance

In post-deployment systems engineering, the system is already accepted, deployed,
and deemed to be meeting its objectives. Thus, the traditional activities of this phase
yield little immediate value. On the other hand, this phase can be usefully employed
in reviewing and optimizing existing performance monitoring and maintenance pro-
cesses and procedures if they exist or creating new ones if they don’t. Optimization
of these is facilitated through the application of the rigorously defined and now
verified requirements – requirements that may not have existed, or at least been
documented, previously. If performance metrics were not previously developed,
these can now be created against these requirements.

5 Conclusion

The author has presented a proposal for the application of systems engineering
methods to an already deployed system. This proposal employs the known and
existing tools commonly and widely used in performing systems engineering in
the development of new systems to a system that is already deployed but undefined.
The application of systems engineering methods to an already deployed system can
help:

• Identify and document the system against its operational environment
• Develop a better understanding of the deployed system in comparison with other

systems having similar capabilities

652 S. Bren

• Identify new capabilities and services for the system to deliver to its users
• Identify and document those requirements that originally motivated deployment

of the system and identify obsolete or new requirements
• Establish more accurate and factual cost benchmarks for future changes and

enhancements
• Develop accurate system knowledge needed for integrating the system into

standardized business processes, such as ITIL, ISO, business continuity planning,
and other processes

• Develop the system knowledge needed for improved hiring and training

The value of post-deployment systems engineering are the efficiencies and pro-
cess improvements made possible through the systematic and integrated application
of methods to accomplish common tasks for deployed systems that are otherwise
engaged using effective but stovepipe methods.

References

FHWA. 2007, January. Systems Engineering for Intelligent Transportation Systems Guide.
Retrieved from United States Department of Transportation - Federal Highway Administration:
https://ops.fhwa.dot.gov/publications/seitsguide/.

Kossiakoff, A., W.N. Sweet, S.J. Seymour, and S.M. Biemer. 2011. Systems Engineering Principles
and Practice. Hoboken: Wiley & Sons.

NASA. 2009, October 19. Preliminary Design Phase. Retrieved Febuary 14, 2017, from
Assurance Process for Complex Electronics: http://www.hq.nasa.gov/office/codeq/software/
ComplexElectronics/l_prelim_design.htm.

https://ops.fhwa.dot.gov/publications/seitsguide/
http://www.hq.nasa.gov/office/codeq/software/ComplexElectronics/l_prelim_design.htm

Toward an Enterprise Architecture for
a Digital Systems Engineering Ecosystem

Yaniv Mordecai, Olivier L. de Weck, and Edward F. Crawley

Abstract The digital transformation era is upon us. Digital transformation gradu-
ally crawls up the value chain from services and manufacturing to product design
and systems engineering. In this paper, we envision a cloud-based ecosystem of
systems engineering, which is model-based by definition. The ecosystem model
we propose is called 2MIDSTARs, which stands for Model, Infrastructure, Data
Services, Simulation, Testing, Analysis, and Repositories + Management, Interop-
erability, Digital Representation, System, Technology, Audit, and Reporting. The
first MIDSTAR covers the intrinsic, core MBSE capabilities, while the second
MIDSTAR facilitates the integration with the digital enterprise that surrounds the
digital systems engineering ecosystem. In this paper, we explain the importance
of jointly considering all these elements together and outline the key roles and
functionalities of each component.

Keywords Digital transformation · Digital systems engineering · Model-based
systems engineering

Nomenclature

DSEE Digital systems engineering ecosystem/enterprise
IoT Internet of Things
MBSE Model-based systems engineering
MIDSTAR(1) Modeling Services, Infrastructure Services, Data Services, Simulation Services,

Testing Services, Analysis Services, Repositories
MIDSTAR(2) Management Tools, Interoperability Services, Digital Representations, Systems,

Things, Auditing, and Reporting Services
OPD Object-Process Diagram
OPM Object-Process Methodology

Y. Mordecai (�) · O. L. de Weck · E. F. Crawley
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge,
MA, USA
e-mail: yanivm@mit.edu; deweck@mit.edu; crawley@mit.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_55

653

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_55&domain=pdf
mailto:yanivm@mit.edu
mailto:deweck@mit.edu
mailto:crawley@mit.edu
https://doi.org/10.1007/978-3-030-82083-1_55

654 Y. Mordecai et al.

1 Introduction

The digital revolution has been making an impact on everyday lives across
various service-oriented ecosystems over the past decade. Coupled with the Fourth
Industrial Revolution – Industry 4.0 – and the growing presence of the Internet
of Things (IoT), the digital transformation is making its way up the value chain,
from advanced manufacturing through product design to systems engineering and
business management (Ustundag and Cevikcan 2018).

Model-based systems engineering (MBSE) adoption and utilization have been
constantly growing over the past decade as well (Madni and Sievers 2018). Model-
based system specifications and design decisions are recorded in conceptual models
defined in formal or semi-formal modeling languages with a common database.
Until recently, it has been consistently regarded as a possibly better way of
conducting systems engineering, as opposed to the document-based approach, but
more difficult to implement. The debate has been going on for two decades, with
the MBSE supporters growing in numbers but still far behind the masses who still
use word processors and electronic worksheets or the slightly more scalable but still
text-intensive requirement management database tools (Cameron and Adsit 2018).
A recent cross-industry survey of MBSE maturity and adoption shows that MBSE
is still perceived as immature, on the one hand, but as a critical enabler of digital
transformation in research and development into a “Digital Engineering” paradigm,
on the other hand (McDermott et al. 2020).

It appears that the scene is set for a major transformation in the way systems
engineering is done, communicated, and integrated with other business activities,
in many ways a rebirth of the engineering systems paradigm (Crawley et al. 2004).
However, while systems engineers are poised to be the leading change agents in
socio-technical organizations, there is also a risk to the continuity and viability
of systems engineering itself (Peterson 2019). It will no longer be a privilege
to use MBSE tools to build and deliver models of complex systems, generate
documentation and code, or sync with requirements databases. We believe that
systems engineering will need to reinvent itself as a fully digital and integrated
business activity. Otherwise, systems engineers will not be able to comply with the
digital enterprise strategy (Matt et al. 2015) or the digital enterprise architecture
(Goerzig and Bauernhansl 2018). They will fail to catch up with the velocity of the
enterprise and gradually become irrelevant or unnecessary.

This paper proposes a systems thinking approach to tackle our concern for
the relevance of systems engineering in the digital era. We should begin with
understanding what the digital era involves and what it means for organizations
to undergo a digital transformation. Market research has shown that 87% of
industries are adopting at least one transformative technology, such as IoT, artificial
intelligence (AI), blockchain, or 5G (the next generation of cellular communication)
(Builta et al. 2019). An extended yet non-exhaustive list of digital transformation
technologies is illustrated in Fig. 1.

Toward an Enterprise Architecture for a Digital Systems Engineering Ecosystem 655

Fig. 1 Digital enterprise
technology enabling and
driving the digital
transformation in
socio-technical organizations

Many organizations seeking to undergo a digital transformation – including
defense and government agencies, industrial and commercial enterprises, energy
facilities, software and hardware manufacturers, and service providers – may be
tempted to purchase a few commercial off-the-shelf (COTS) solutions, possibly with
the assistance of a consultant to accompany the process. These organizations may
not be aware of the need to define the concept of operations for the enterprise that
will utilize the capabilities of the digital ecosystem and the operational concept that
will characterize the activity of the constituent services.

For instance, imagine a factory that shifts to automated manufacturing based on
quickly generated product and part design files that are automatically retrieved and
provided to stations along the assembly line or supply chain. If the product and part
designers have not been trained with design-to-manufacture techniques and tools,
and the factory did not integrate the computer-aided design (CAD), product lifecycle
management (PLM), and enterprise resource management (ERM) systems – this
digital transformation is bound to fail.

Several approaches to reimagine systems engineering as a digital practice have
been suggested, for instance, through a Zachman Framework with various model

656 Y. Mordecai et al.

Fig. 2 Stakeholder requirements for the digital systems engineering ecosystem as an enabler of
digital transformation

layers, agile management, and novel software development and delivery practices
(e.g., microservices) (Bondar et al. 2017).

NASA undertook a digital model-based systems engineering (DMBSE) study
to gain better understanding of expectations and challenges associated with such a
digital transformation (Hale et al. 2017). NASA’s report defined digital model-based
engineering (DMbE) as the use of digital artifacts, digital environments, and digital
tools in the engineering process – as opposed to the traditional documentation-based
engineering methods. The NASA team identified several key stakeholder expecta-
tions. A set of stakeholder requirements for the digital ecosystem is illustrated in
Fig. 2.

Toward an Enterprise Architecture for a Digital Systems Engineering Ecosystem 657

NASA’s workgroup also identified several challenges: assessing added value,
overcoming organizations’ culture barriers, regulating the contractual deliverables
to meet the standard, building a supporting information technology infrastructure,
and ensuring cyber-security.

Additional concerns, mentioned by an anonymous reviewer of this paper, are the
setup cost, the challenge of dealing with legacy processes and artifacts, and assuring
stakeholders that emerging frameworks will be comprehensive and that they will be
viable and deliver return on investment (RoI).

Another ongoing study (Bone et al. 2018; Hagedorn et al. 2020) looked into
semantic and ontological integration of models as an enabler for information sharing
and collaboration across R&D ecosystems, involving multiple types of models,
multiple analysis tools, and multiple data and information consumers.

2 The Digital Systems Engineering Ecosystem

We propose an enterprise architecture for a digital systems engineering ecosystem
(DSEE). The architecture has been conceived in order to capture the most relevant
aspects of the DSEE: the stakeholders, the core function and purpose of this
ecosystem, and the primary constituent systems in this architecture – aligning to
the systems architecting process we would have conducted for any system (Crawley
et al. 2015).

The proposed enterprise architecture that supports and enables the DSEE is called
2MIDSTARs, a shorthand version of two MIDSTAR acronyms, each consisting
of different items. The constituent systems in this architecture are, in the order
of appearance in the acronym, Modeling Services, Infrastructure Services, Data
Services, Simulation Services, Testing Services, Analysis Services, Repositories
(MIDSTAR1) as well as Management Tools, Interoperability Services, Digital
Representations, Systems, Things, Auditing, and Reporting Services (MIDSTAR2).

The two MIDSTARs are not grouped together by happenstance, but according
to a clear separation of the internal environment (MIDSTAR1) and the external
environment (MIDSTAR2). Thus, MIDSTAR1 includes functionalities that are
integral and central to a model-based systems engineering discipline. MIDSTAR2
concerns the functionalities that are critical for integrating the digital systems
engineering services with the digital enterprise as a whole and includes upstream,
downstream, and lateral integration and interaction.

3 Object-Process Methodology

OPM is a conceptual modeling language and model-based systems engineering
paradigm for complex and dynamic systems and processes. OPM was standardized
as ISO 19450 (Dori 2016; ISO 19450 Automation systems and integration —

658 Y. Mordecai et al.

Object-Process Methodology 2015). OPM relies on the minimal universal ontology
principle, whereby stateful objects (things that exist), processes (things that occur),
and relations among them constitute a necessary and sufficient ontology for
describing any conceivable system in the universe (Dori 2016). OPM’s lightweight
vocabulary includes ~20 terms.

OPM is visual and textual at the same time. The visual representation is a set of
Object-Process Diagrams (OPDs), which are organized hierarchically. OPDs at all
levels of the hierarchy retain and allow the same symbol notation, which makes it
highly consistent at all decomposition levels. Thus, OPM has only one kind of dia-
gram. Structural, procedural, and functional aspects can reside jointly or exclusively
within any OPD. Processes are represented by ellipses, objects by rectangles, and
object states by rountangles inside the object rectangle. Objects and processes can
be either informatical or physical and either systemic or environmental (external to
the boundaries of the system). Links express static and dynamic relations.

OPM’s textual representation consists of sentences in Object-Process Language,
OPL – a subset of English. Each sentence corresponds to an OPD construct – a set
of linked things or states – and vice versa. Each OPD is accompanied by an OPD
Specification (OPS) – a set of machine-readable OPL sentences.

There are two software tools for creating OPM models: OPCAT and OPCloud.
OPCAT (Dori et al. 2010) is a freely available desktop tool with built-in simulation
capabilities, which has been used by thousands of academic and professional users
around the world and utilized in hundreds of scientific papers over the last two
decades; however, it is based on obsolete desktop software technology, and its
development has ended. It can still be downloaded at http://esml.iem.technion.ac.il.
OPCloud (Dori et al. 2018) is a relatively new cloud-based modeling studio (acces-
sible online at https://opcloud-trial.firebaseapp.com/), which is under continuous
development and evaluation. OPCloud has already been shown to be useful for
various domains including medicine (Levi-Soskin et al. 2019), industry (Dori et al.
2020), and enterprise/aerospace architectures (Mordecai et al. 2020). In this paper,
we use OPCloud as a modeling tool and framework – which makes perfect sense,
since cloud-based capabilities are of utmost importance for such a digital MBSE
environment.

4 An Enterprise Architecture of Two MIDSTARs

As explained, the architecture consists of two layers – internal and external. The
internal layer consists of all services that make a holistic MBSE environment for the
organization. While MBSE focuses on modeling the systems of interest, we extend
this scope to cover additional services that we believe are critical for a true MBSE
environment, which delivers value to systems engineers and systems engineering
stakeholders.

The external layer transforms the MBSE architecture into a digital one and
aligns with the digital enterprise as a whole. This layer facilitates interactions

http://esml.iem.technion.ac.il/
https://opcloud-trial.firebaseapp.com/

Toward an Enterprise Architecture for a Digital Systems Engineering Ecosystem 659

with the operational domain that the MBSE focuses on. In a digital world, a
model-based design of a critical process can interact with the actual operational
enablers or facilitators of that process. The interaction may be possible in both
ways: the system of interest and its components are able to consult the model
to build machine perception of the process, but also to update configurations and
deployments according to revised model structures.

In addition to interacting with the operational domain, the external layer also
allows the DSEE to interact with the rest of the digital enterprise for sharing
information, dictating solutions, or requesting resources. The architecture should
be cloud-based, but this is not mandatory. Utilizing lightweight and easy-to-adjust
web services and interfaces that run in or through the cloud will result in significant
productivity, streamlining, and synergy. It will also allow for integration with and
preservation of legacy assets and reduce transition costs.

Even if the organization is classified or disconnected from the Internet for other
reasons, it will be essential for the organization to build a digital laboratory that
will allow the enterprise to take advantage of cloud services and adjust them to the
needs and challenges of the deployment in question. With commercially available
cloud stack packages, this is doable and has been practiced by several classified
organizations or sub-organizations in the defense, homeland security, healthcare,
finance, and energy domains.

Figure 3 shows the DSEE, the main groups of stakeholders: systems engineers,
the systems engineering research community, and the systems engineering software
vendors. They all have in common the purpose of generating value in the form
of digital systems engineering deliverables: models, tradespace analyses, functional
requirements, validation and verification reports, performance assessments, etc. The
stakeholder requirements and digital enterprise technologies are both represented
as packages that unfold in separate diagrams. The 2MIDSTARs architecture as
a collection of services enables the DSEE. The components of MIDSTAR1 and
MIDSTAR2 are listed in Table 1 and Table 2, respectively.

Several architectural principles are implemented in this architecture:

• Distributed Data Flow: all the data is expected to be shared via a central data
distribution service, which is part of the infrastructure. This allows for multiple
entities of the same type to connect and exchange data with each other; it allows
easier virtualization and eliminated interdependency as found in direct interfaces.

• Expertise: as opposed to various MBSE platforms which may include a subset of
the required capabilities, this architecture advocates isolation and separation of
services. These services may still share common user interfaces and other com-
mon resources, but the ability to mix and match various software technologies to
form an optimal DSEE is essential and more important than a single interface.

• Focus on Core Competence: the core MBSE competence includes modeling,
simulation, and analysis services, along with supporting data management,
access, and storage services. Tools that are available in the software market
with expertise in their domain, such as project and task management tools,
configuration control and auditing, or dashboards and visualization software –

660 Y. Mordecai et al.

Fig. 3 The 2MIDSTARs enterprise architecture of the digital systems engineering enterprise
clearly shows the two layers of services that make up the digital systems engineering ecosystem:
the upper, internal layer (MIDSTAR1) and lower, external layer (MIDSTAR2)

Table 1 MIDSTAR1: Internal MBSE layer

Services Purpose

Modeling services Build, store, and visualize models in a variety of modeling
languages

Infrastructure services Facilitate interaction among MIDSTAR1 components and, with
MIDSTAR2’s gateway, provide security and IT governance

Data services Distribute and retrieve data: Enterprise datasets to inform models,
model-generated data, application data, and model metadata

Simulation Validate and verify system model
Testing services Connect with test platforms, generate tests in compliance with the

models
Analysis services Analyze, summarize, and validate data, deliver additional

value-added capabilities based on the models and simulation
results

Repositories Store and access information of various sorts, including models,
analysis results, test plans and results, simulation threads and
results, and raw data sources

all do a better job in their area and will better serve the ecosystem than localized
developments of similar capabilities.

• Scalability and Extendibility: the architecture is built to allow further extension
and enhancement for upscaling and broader digital scopes. While this concern
is currently beyond the scope of this study, it remains important to ensure this
degree of freedom for future enhancements.

Toward an Enterprise Architecture for a Digital Systems Engineering Ecosystem 661

Table 2 MIDSTAR2: External DSEE enabler

Services Purpose

Management tool Integrate with standard organization management tools to control
DSEE activity

Interoperability services Interact with MIDSTAR1 through its gateway and among
MIDSTAR2 members

Digital representation Build or use digital representations, including engineering designs,
software code, digital twins, and virtual environments

System Deployed realization of a model; interacts with the model that
represents it

Thing Connected entity that models can interact with sensors, actuators,
controllers, energy/signal emitters, etc.

Audit Organizational services that audit activity and ensure viability,
quality, transparency, legality, regulation compliance, governance

Reporting Generate textual, tabular, graphical, visual, and multimedia
representations of model information; communicate MBSE
outputs and deliverables across the ecosystem

5 Discussion

This paper presents a high-level enterprise architecture for a digital systems
engineering ecosystem. By using OPM as a modeling language and the new OPM
modeling tool OPCloud as a modeling vehicle, we were able to make the first step of
modeling the DSEE using cloud-based tools. Although this is a preliminary model,
it serves as a good starting point, capturing core aspects, drawing a clear separation
of MBSE core activities from digital interfaces, and clarifying the expertise of each
service. We set out with seven stakeholder requirements that the DSEE should
tackle. In Table 3, we reflect on the framework’s fulfilling (or advances toward
fulfilling) of the requirements. This reflection must be fully validated through
stakeholder assessment, but it provides a good initial validation for stakeholder
focus.

Future research will focus on three directions. First, we plan to extend the
architecture to get a better understanding of the microservices required for each
service, e.g., what kinds of analysis methods should be included in a model analyzer.
This direction will address essential questions that may have naturally arisen on the
implementation of proposed constructs, but were beyond the scope of the present
paper. In addition, we currently define the data transformation protocols that will
allow this transformation to take place. This includes the adoption of mathematical
concepts from category theory, which has been mentioned as a potential candidate
for a foundational theory of systems engineering, and for a holistic systems
engineering platform, of the kind or essence proposed in this paper (Breiner et al.
2017). Finally, we have begun planting the seeds for such a platform for early-
adopter government, industry, and research enterprises. The way such organizations
can work in a holistic, cloud-based ecosystem must also be explored.

662 Y. Mordecai et al.

Table 3 Fulfilling of stakeholder requirements using the DSEE – 2MIDSTARs architecture

Stakeholder requirement Fulfilled by . . .

1. Increase transparency and insight
of digital enterprise architectures.

Formulation of this reference framework, which
informs stakeholders, decision-makers, professionals,
and researchers and serves as common ground

2. Drive informed decision-making
regarding digital enterprise
architectures.

Formulation of this reference framework as the basis
for framing decisions in all levels (strategic, tactical,
operational) in the context of the critical enablers

3. Enhance communication across
the organization and ecosystem.

Facilitation of mechanisms for enterprise
interoperability

4. Increase flexibility/adaptability in
digital enterprise solution design.

Definition of robust entities and services that can be
adapted and shaped gradually, according to evolving
needs

5. Increase confidence in digital
technology.

Referencing of digital enterprise technology agents as
enablers of digital transformation at both the
enterprise level and the systems engineering level

6. Increase confidence in digital
system reliability and performance.

Inclusion of internal mechanisms for simulation,
testing, and analysis, as well as external mechanisms
for auditing and reporting

7. Increase systems engineering
efficiency.

Formulation of this reference framework which saves
time and effort figuring out the issues and allows for
prioritization and road-mapping

Acknowledgments We thank the MIT–Technion Post-Doctoral Fellowship Program for funding
this research. We also thank the anonymous reviewers for their useful comments and suggestions.

References

Bondar, S., J.C. Hsu, A. Pfouga, and J. Stjepandić. 2017. Agile digital transformation of System-
of-Systems architecture models using Zachman framework. Journal of Industrial Information
Integration 7: 33–43. https://doi.org/10.1016/j.jii.2017.03.001.

Bone, M., M. Blackburn, B. Kruse, J. Dzielski, T. Hagedorn, and I. Grosse. 2018. Toward an
Interoperability and Integration Framework to Enable Digital Thread. Systems 6: 46. https://
doi.org/10.3390/systems6040046.

Breiner, S., Subrahmanian, E., Jones, A., 2017. Categorical foundations for system engineering.
In: 15th Annual Conference on Systems Engineering Research. https://doi.org/10.1007/978-3-
319-62217-0

Builta, J., Howell, J., Ambroggi, L. De, Short, M., Grossner, C., Morelli, B., Tait, D., Hall, T., 2019.
Digital Orbit - Tracking the development, impact, and disruption caused by transformative
technologies across key industries.

Cameron, B., and D.M. Adsit. 2018. Model-Based Systems Engineering Uptake in Engineer-
ing Practice. IEEE Transactions on Engineering Management 67: 152–162. https://doi.org/
10.1109/TEM.2018.2863041.

Crawley, E., B. Cameron, and D. Selva. 2015. Systems Architecture: Strategy and Product
Development for Complex Systems. Prentice Hall.

Crawley, E., De-Weck, O., Eppinger, S., Magee, C., Moses, J., Seering, W., Schindall, J., Wallace,
D., Whitney, D., 2004. Engineering Systems Monograph – The Influence of Architecture in
Engineering Systems.

http://dx.doi.org/10.1016/j.jii.2017.03.001
http://dx.doi.org/10.3390/systems6040046
http://dx.doi.org/10.1007/978-3-319-62217-0
http://dx.doi.org/10.1109/TEM.2018.2863041

Toward an Enterprise Architecture for a Digital Systems Engineering Ecosystem 663

Dori, D. 2016. Model-Based Systems Engineering with OPM and SysML. Springer. https://doi.org/
10.1007/978-1-4939-3295-5.

Dori, D., A. Jbara, N. Levi, and N. Wengrowicz. 2018. Object-Process Methodology, OPM ISO
19450 – OPCloud and the Evolution of OPM Modeling Tools. System Engineering Newsl (PPI
SyEN) 61: 6–17.

Dori, D., H. Kohen, A. Jbara, N. Wengrowicz, R. Lavi, Natali Levi Soskin, K. Bernstein, and U.
Shani. 2020. OPCloud: An OPM Integrated Conceptual-Executable Modeling Environment
for Industry 4.0. In Systems Engineering in the Fourth Industrial Revolution: Big Data,
Novel Technologies, and Modern Systems Engineering, ed. R.S. Kenett, R.S. Swarz, and A.
Zonnenshain. Wiley.

Dori, D., C. Linchevski, and R. Manor. 2010. OPCAT – An Object-Process CASE Tool for OPM-
Based Conceptual Modelling. In 1st International Conference on Modelling and Management
of Engineering Processes, ed. P. Heisig, J. Clarkson, and S. Vajna, 1–30. Cambridge, UK:
University of Cambridge.

Goerzig, D., and T. Bauernhansl. 2018. Enterprise Architectures for the Digital Transformation
in Small and Medium-sized Enterprises. Procedia CIRP 67: 540–545. https://doi.org/10.1016/
j.procir.2017.12.257.

Hagedorn, T., M. Bone, B. Kruse, I. Grosse, and M. Blackburn. 2020. Knowledge Representation
with Ontologies and Semantic Web Technologies to Promote Augmented and Artificial
Intelligence in Systems Engineering. Insight 23: 15–20. https://doi.org/10.1002/inst.12279.

Hale, J.P., Zimmerman, P., Kukkala, G., Guerrero, J., Kobryn, P., Puchek, B., Bisconti, M.,
Baldwin, C., Mulpuri, M., 2017. Digital Model-based Engineering: Expectations, Prerequisites
, and Challenges of Infusion.

ISO 19450 Automation systems and integration — Object-Process Methodology. 2015. Interna-
tional Organization for Standardization (ISO), Geneva, Switzerland.

Levi-Soskin, N., R. Shaoul, H. Kohen, A. Jbara, and D. Dori. 2019. Model-Based Diagnosis with
FTTell: Assessing the Potential for Pediatric Failure to Thrive (FTT) During the Perinatal Stage.
In SIGSAND/PLAIS, LNBIP 359, ed. S. Wrycza and J. Maślankowski, 37–47. Cham: Springer.
https://doi.org/10.1007/978-3-030-29608-7_4.

Madni, A.M., and M. Sievers. 2018. Model-based systems engineering: Motivation, current
status, and research opportunities. Systems Engineering 21: 172–190. https://doi.org/10.1002/
sys.21438.

Matt, C., T. Hess, and A. Benlian. 2015. Digital Transformation Strategies. Business and
Information Systems Engineering 57: 339–343. https://doi.org/10.1007/s12599-015-0401-5.

McDermott, T.A., Hutchinson, N., Clifford, M., Van Aken, E., Slado, A., Henderson, K., 2020.
Benchmarking the Benefits and Current Maturity of Model-Based Systems Engineering across
the Enterprise.

Mordecai, Y., James, N.K., Crawley, E.F., 2020. An Object-Process Model-Based Operational
Viewpoint Specification Framework for Aerospace Architectures. In: IEEE Aerospace Con-
ference.

Peterson, T.A. 2019. Systems Engineering: Transforming Digital Transformation. INCOSE Inter-
national Symposium 29: 434–447. https://doi.org/10.1002/j.2334-5837.2019.00613.x.

Ustundag, A., and E. Cevikcan. 2018. Industry 4.0: Managing The Digital Transformation,
Springer Series in Advanced Manufacturing. https://doi.org/10.1007/978-3-319-57870-5.

http://dx.doi.org/10.1007/978-1-4939-3295-5
http://dx.doi.org/10.1016/j.procir.2017.12.257
http://dx.doi.org/10.1002/inst.12279
http://dx.doi.org/10.1007/978-3-030-29608-7_4
http://dx.doi.org/10.1002/sys.21438
http://dx.doi.org/10.1007/s12599-015-0401-5
http://dx.doi.org/10.1002/j.2334-5837.2019.00613.x
http://dx.doi.org/10.1007/978-3-319-57870-5

Collaborative Management of Research
Projects in SysML

Benjamin Kruse, Thomas Hagedorn, Mary A. Bone, and Mark Blackburn

Abstract Engineering projects that implement model-based systems engineering
encounter the issue of connecting the managing functions of a project with the
system engineering model. This research uses a pilot case study to demonstrate
how the management of systems engineering can be done in SysML models within
the Open Model-Based Engineering Environment (OpenMBEE). The management
ability for this pilot includes continuous updates, web-based collaboration, model-
based report generation, and enabled semantic reasoning. The semantic reasoning
is seen as a key enabler and accomplished using a SysML profile that is aligned to
an underlying project ontology. This not only results in utilizing the advantages
of a model-based engineering environment for managing the project but also
demonstrates the benefit of semantic enabled reasoning that is a focus of research
of the research project.

Keywords Model-based systems engineering · SysML · Project management ·
Semantic web technology · Semantic reasoning

1 Introduction

Within the context of the Department of Defense’s (2018) digital engineering
strategy and the accelerating evolution and adoption of Model-Centric Engineering
(MCE), the Systems Engineering Research Center (SERC) addresses research needs
regarding the enabling of practices of model-based systems engineering (MBSE).
Following Blackburn et al. (2019), an overall research objective is to understand
MBSE practices and measures to enable a progressive transformation toward digital

B. Kruse (�) · M. A. Bone · M. Blackburn
Stevens Institute of Technology, Hoboken, NJ, USA
e-mail: bkruse@stevens.edu

T. Hagedorn
University of Massachusetts Amherst, Amherst, MA, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_56

665

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_56&domain=pdf
mailto:bkruse@stevens.edu
https://doi.org/10.1007/978-3-030-82083-1_56

666 B. Kruse et al.

and model-based research and development, including leveraging ontology-based
knowledge representation to enable semantic technologies for systems engineering.

As part of this research, web technologies are investigated to provide a solution
for easy and consistent capture of information for systems engineering plans, tech-
nical data, and reviews through models that formalize traditional document-based
artifacts and provide dynamic document generation. OpenMBEE is the open-source
Open Model-Based Engineering Environment developed by NASA/JPL (2019). It
is used together with the Systems Modeling Language SysML by OMG (2015).
OpenMBEE consists of three components: The Model Management System (MMS)
for storing the model data in an open way, the Model Development Kit (MDK)
plugin for the generation of documents based on views and viewpoints and the
synchronization of models between the SysML modeling tool and MMS, and the
View Editor, which offers lightweight, web-based, and live access to view-based
model data in MMS. Its utilization for project management is explained in Sect. 2,
starting with a brief introduction to OpenMBEE in Sect. 2.1.

Using developed SysML profiles with formalized stereotypes aims to enable
semantic technologies for systems engineering as part of the Interoperability and
Integration Framework (IoIF) by Bone et al. (2018). The SysML-profiled models
enable mapping to a suite of underlying ontologies that are based on the Basic
Formal Ontology (BFO). Data from the SysML models can be accessed via MMS to
be converted into Resource Description Framework (RDF) triples, with the profiles
serving as a guide to allow mapping of model constructs to a tool and domain
agnostic representation in compliance with the ontologies. Other data sources may
then be linked to the SysML model representation using the same taxonomy.
The graph data in the triple store can then be analyzed using the ontologies
with automated reasoning and semantically enhanced queries, opening the door to
applications in model verification, metric assessment, and inferences of complex
relations in data arising from multiple sources. Sections 2.2 and 2.3 show further
details about the project ontology and the derived SysML profile. They are applied
for research projects in Sect. 3. Section 4 finally looks at the enabled semantic
representation and reasoning.

Why should an engineering approach be utilized to manage research projects in
SysML? The first part of the answer is to demonstrate the engineering approach
under investigation by applying it for an additional system, the research project
itself. Based on the promising results of prior work by Kruse and Blackburn
(2019) or Kruse and Blackburn (2020), the second part of the answer is to use
the environment based on SysML and OpenMBEE for utilizing its advantages to
manage the systems that are distributed research projects.

Results include the formal capturing of project management details and their
interrelations, e.g., assignments, roles, individual responsibilities, and achieved
accomplishments. Utilizing the View Editor provides web-based, live, and consis-
tent data in model-derived, yet document-like, views. This can improve commu-
nication within the research team, including updates by researchers not familiar
with SysML, as well as toward the research sponsor in the form of model-derived
project status reports. Finally, and yet to be fully utilized, there is the unambiguous

Collaborative Management of Research Projects in SysML 667

information representation and retrieval that enables sematic reasoning and infer-
encing about project data. A more detailed discussion of results, lessons learned,
and derived conclusions follows in Sect. 5. Despite such advantages, the authors
are aware that the presented work is not intended to replace specialized commercial
project management tools. For example, it is not possible to include the Gantt chart
capabilities of MagicDraw, due to incompatibilities of the required model elements
with the data structure in MMS. Certain commercial software products are identified
in this material. These products were used only for demonstration purposes. The use
does not imply approval or endorsement by Stevens, UMass Amherst, or SERC.

2 Project Modeling Approach

The approach used for project management is presented in three parts: First, a brief
overview of the OpenMBEE environment; second, the developed project ontology
within its ontology ecosystem; and third, the derived SysML profile.

2.1 OpenMBEE Environment

The tools used for OpenMBEE are MagicDraw and Teamwork Cloud 19.0 SP2,
MMS 3.4.2, View Editor 3.5.1, and MDK 4.1.3. The MMS server provides
the authoritative source of truth, as explained by Blackburn et al. (2019). The
MMS captures all model data in an open and accessible way. It uses JavaScript
Object Notation (JSON) format with a Representational State Transfer (REST)
interface, to provide versioning, workflow management, and access control for
multi-tool integration across engineering and management disciplines, according
to NASA/JPL (2019). MMS stores all relevant SysML model elements with their
change history, e.g., of blocks, relations, properties, values, and instances, including
the view instances for the View Editor. Providing such data also makes OpenMBEE
a valuable integration for the IoIF, to, e.g., semantically track relations between
heterogeneous data sources.

The MDK plugin is used to synchronize the SysML model data in MMS with
the originating modeling tool. It also includes the DocGen language (Delp et al.
2013) for model-based document creation according to the view and viewpoint
paradigm which is defined in ISO-42010 (ISO/IEC/IEEE 2011). The view and
viewpoint paradigm allows to automatically expose live and stakeholder-specific
model content to progress from static documents toward model-based approaches,
as shown in Kruse and Blackburn (2019). Views represent exposed system elements
from the perspective of a viewpoint, which specifies how to construct the views.
Using different viewpoints while exposing the same model elements allows gen-
erating different views for different stakeholders. To support the quick creation of
consistent documents in which each view represents a chapter, a library of generic

668 B. Kruse et al.

and reusable viewpoints was created, including viewpoints for the project model
that utilize stereotypes from the profile in Sect. 2.3. By using the viewpoints, project
reports are automatically derived from the SysML model that can exist not only as
static Portable Document Format (PDF) files but also as editable views in View
Editor, i.e., outside their original modeling tool.

The View Editor displays instances of the views in the web browser, showing
the formatted live model data in MMS for agile virtual reviews and real-time
collaboration. All elements in documents shown in the View Editor are exposed
model elements, i.e., objects with unique object IDs, created in the original
modeling tool but mostly editable in View Editor. Providing model-based data
in a more traditional format, the View Editor supports the communication with
stakeholders not familiar with SysML. The editing capabilities of the View Editor
do not include the creation of new SysML model elements, but the addition of
presentation elements, e.g., new text fields. It is possible to edit the name, value, and
documentation of existing model elements that are exposed in View Editor. Changes
in the View Editor are directly saved in MMS where they can be synchronized back
into the original SysML model.

2.2 Project Ontology

Developed in Protégé 5.5 by Rubin et al. (2007), the project ontology is an OWL
2 ontology, as explained by Hitzler et al. (2009). Following Arp et al. (2015),
BFO is selected as a top-level ontology to support integration of multiple disparate
domain ontologies into a single, interoperable ecosystem. Per BFO style guidelines,
terms are refactored from existing ontologies to support development of the project
ontology and promote reusability across this research and other projects. These
include the Common Core Ontologies, a suite of ontologies providing BFO con-
formant formalizations of high-level entity types such as information, events, and
agents, as well as prior related ontologies of mathematical information, technical
models, and decisions. The ontology itself is scoped based on the requirements
of the project itself. It focuses mainly on the unambiguous representation of
ongoing assignments, the agents responsible (via a role), and the deliverables or
accomplishments produced by said assignments. A second focus of the ontology
is in representing types of information relating to the project. These rely upon the
Common Core’s basic treatment of “Information Content Entities,” which express
information about other entities via a suite of “aboutness” relations, following
Ceusters and Smith (2015). These “aboutness” relations allow the project ontology
to describe things like roles of responsibility and specifications of system attributes.

The decision ontology includes terminology to support representation of require-
ments, objectives, needs, and preferences among others. Notably, the terminology
may be related to domain-specific information represented using other BFO con-
formant ontologies. This capability permits, for example, deliverables to be tied to
specific model types or requirements to be linked to specifications for how they

Collaborative Management of Research Projects in SysML 669

Fig. 1 (a) Project ontology ecosystem under BFO. (b) Excerpt of project ontology elements with
a corresponding SysML profile element and its application (bottom)

might be assessed via measurements of specific phenomena related to a system of
interest. The project ontology is thus limited in its scope, but powerful in the types
of information it can express once included in a larger ontological ecosystem, as
illustrated in Fig. 1a.

Central to this information treatment and integration into a larger ecosystem
are logical axioms to assess the relatedness and relevance of information. Using
semantic rules and other term-based restrictions, the project ontology introduces
several rules to infer consequences of assertions that data are related to one another,
allowing it to be paired with reasoning software to make inferences. When this is
done, the axioms within the ontology can, for example, assess whether observations
violate specifications, infer that two pieces of data have certain types of relatedness
to one another, and make explicit aspects of system representation based on a graph-
based project description. When combined with the larger ecosystem, these basic
reasoning inferences and the ontology’s ability to unambiguously represent data
may facilitate things like verification of a system across disparate modeling data
and promote interoperability with otherwise un-linked tools, as discussed in Sect. 4
and implemented by the IoIF.

2.3 Derived SysML Profile

To use the semantically unambiguous context provided by the ontology, matching
SysML stereotypes as part of a project profile are defined. They allow to properly
map the SysML model elements to the terms of the ontology and enable semantic
reasoning. Directly implementing the ontology with its defined interrelations, as is,
was not possible due to the necessity to use existing SysML and UML stereotypes
and metatypes. The research used a process of creating ontology and SysML profile
iteratively, seeking a compromise between parsimonious and correct ontology and

670 B. Kruse et al.

profile as well as modeling convenience. Analog to the ecosystem of ontologies,
there can also be multiple interrelated profiles, e.g., for mission models, as a related
domain with another ontology.

Excerpts of the ontology as well as the profile are shown in Fig. 1b. The figure
shows the ontology terms “Agent,” as the bearer of a “Role of Responsibility,”
which gets prescribed by an “Assignment” that is to accomplish further things.
On the SysML profile side, there is the “perform” dependency with its tagged
value, called “role of responsibility.” This relation is used below to specify that
an “Agent” called Researcher performs the role of responsibility of the task lead
for the “Assignment” Research Task 1. This example shows that there is not a one-
to-one mapping between the terms of the project ontology and the matching project
profile. For example, the term “Role of Responsibility” gets realized in the form of a
subsidiary property, and the relations “bearer of” and “prescribes” are only realized
implicitly through the “perform” dependency.

3 Research Project Model in SysML

The presented project profile is used within the modeling environment for two
projects, one of which is the continuation of the Surrogate Pilot project by Blackburn
et al. (2019), investigating the implementation of the Naval Air Systems Command’s
(NAVAIR) Systems Engineering Transformation (SET) framework. It utilizes the
View Editor not only for continuous updates and comments regarding the various
domain models but also for managing itself with the project model. Within the
project model, there are two separate documents defined by using viewpoints from
the viewpoint library: one auto-generated document for shorter bi-monthly reports
and a second, more extensive document that is generated with additional exposed
information specifically for editing in the View Editor. This additional information
includes placeholder elements, e.g., for accomplishments as seen on Fig. 3, that
exist to be adapted by the researchers in the View Editor, to overcome its inability
to create new elements from scratch. The latest state of the model and its generated
documents under development are captured in a development branch of the baseline
master branch in MMS. Read-only tags are used to store earlier versions, i.e., of
submitted reports.

The content of the project SysML model includes a hierarchy of assignment ele-
ments. Each assignment has a property for its status and can use its documentation
for a textual description that also becomes part of the documents. Linked to the
assignments are researchers and other stakeholders as “agents” that perform certain
roles of responsibility, as shown in Fig. 1b. The interrelations between the different
assignments as well as their required inputs and outputs, i.e., the deliverables,
are modeled using internal block diagrams, as shown Fig. 2. Figure 2 shows an
assignment to align and refactor the “Skyzer Mission Model (IM20)” and “Skyzer
System Model (IM30)” according to the “NAVSEM Starter” process model and
the “ASRM Framework” while investigating their use and applicability as well as

Collaborative Management of Research Projects in SysML 671

Fig. 2 Simplified internal block diagram of assignments with their interrelations and deliverables

documenting any lessons learned, e.g., about identified unnecessary process steps,
as shown as a subsidiary assignment. NAVSEM stands hereby for the NAVAIR
Systems Engineering Method, i.e., the used MBSE process that guides creating
the designated content of the Acquisition System Reference Model (ASRM). By
specifying the assignments as specialized class elements in the profile, they can be
modeled as shown in Fig. 2 with their interrelations and deliverables, in contrast to,
e.g., extended requirements or activity elements.

The accomplishments of the project are modeled as shown on top of Fig. 3,
by using a stereotyped dependency with comment, date, and status properties. The
dependency relates the accomplished entity with the achieving assignment. Having
a project usage relation in the modeling tool gives direct access to all other used
SysML models of the project. This allows to directly refer to the used models,
their content, or their documents when capturing accomplishments. Examples are
given on the bottom of Fig. 3 with an excerpt from the View Editor showing
an accomplished addition to the mission model in the form of an added diagram
for the ongoing alignment to ASRM and the completed change of the mission
model document’s view hierarchy. The shown representation in the View Editor
allows researchers to edit the date, status, comment, as well as the names of the
accomplished entity and the assignment in the table in a web browser, without a
SysML modeling tool. It is also possible to adapt generic placeholder elements,
as seen in Fig. 3, into new accomplishments. Similar placeholder elements also
exist for assignment elements in the project backlog. Yet, to properly integrate
the renamed placeholder elements, additional work in the SysML modeling tool
is required.

Finally, the project model contains additional resources about the project goals;
the investigated case study in the form of an unmanned aircraft system (UAS), called
Skyzer; and a glossary with a list of used acronyms. Based on the model data, several
metrics are calculated and exposed within the documents, for example, the number
and status of accomplishments.

672 B. Kruse et al.

Fig. 3 Example accomplishment in SysML (top) and derived View Editor table (bottom) with
placeholder for adaption

4 Semantic Representation and Reasoning

Enabled by the ontology-aligned profile and the supported information retrieval
from MMS, it is possible to create a tool-agnostic data representation in RDF
graph pattern triples. This is done by parsing and mapping in the IoIF, as explained
by Bone et al. (2018). The terms in the SysML profile serve hereby as a guide
for the mapping of model constructs to tool and domain agnostic representations
that are aligned to the ontologies. This alignment allows semantic queries of the
project data while relating it to data from other sources like relating analysis data to
project tasks. Semantically conducted weight breakdown calculations followed by
analyzing impacts on the formal model-based signoff, as explained by Kruse and
Blackburn (2020), have been successfully demonstrated. Ongoing investigations
are about relating computational fluid dynamics (CFD) results and other high-
fidelity analysis models with SysML models. Such or similar automated and
semi-automated inferencing is also planned for project data to (1) assess its
completeness and, e.g., determine if there is a task lead for each assignment; (2)
identify new relations between assignments, e.g., by searching for implicitly related
assignments with related accomplishments; or (3) generally verify and validate the
project model data.

5 Discussion and Conclusion

Looking back at the motivation to manage these research projects in the presented
way using SysML, it is noticed that the formal documentation of assignments with
explicit interrelations, interfaces, and deliverables as well as individual responsibil-

Collaborative Management of Research Projects in SysML 673

ities within SysML provided benefits for the research project team in the form of a
better understanding of what is needed to be achieved. The project model helps to
centrally collect information about the case study under investigation in the form of
its various models with their interrelations and purposes in respect to the surrogate
development process as well as the encompassing research project. This benefit
goes in hand with documenting accomplishments, by directly referencing newly
added elements from other used SysML models, and tracking the development of
the accomplishments or other parts of the project through suitable metrics.

Other advantages for the research project team come with the View Editor
that allows real-time collaboration on virtual model-based documents, to enhance
communication within the research team. Providing this model information outside
of the SysML modeling tool allows direct input through the View Editor’s more
basic text editing capabilities like adapting provided placeholder elements. The
View Editor also allows commenting and captures the full element history across the
baseline and branches, e.g., to capture past documents as read-only tags. Reusing
standardized viewpoints from a library helps to reduce the required modeling
effort when creating suitable view hierarchies and results in more consistent
layout of documents. Utilizing the up-to-date model data in document form for
communication, reporting, and documentation toward the research sponsors resulted
in perceived improvements regarding the reports’ level of detail and a more evenly
distributed workload, by having the whole team contributing to a consistent and
authoritative source of data instead of one person writing the whole report.

Looking at identified issues and disadvantages, it must be said that the whole
approach is not meant to or ready to replace specialized commercial tools. While
there are some ways to include information about the project schedule, e.g., date
properties of assignments or SysML sequence diagrams, it is not possible to include
Gantt Charts, even though they are available in the used SysML tool. The structure
of the Gantt Charts-specific model elements from the required commercial plugin
is not compatible with the general data structure used in MMS, preventing a
synchronization through MDK. Additionally, users still require some knowledge
about SysML to read the diagrams like Fig. 2. To improve the View Editor, it should
be clearer that added presentation elements un-intuitively do not synchronize with
the model, while exposed elements, e.g., showing their documentation text, do. This
goes in hand with the View Editor’s general inability to create new model elements
from scratch, resulting in the workaround using placeholders described in Sect. 3.
For a distributed collaboration, it is identified to be crucial to make inputs and keep
the model up-to-date without necessarily requiring the SysML modeling tool.

Finally, looking at the presented work as an application and test of ongoing
research from their own projects, there is the enabled but not yet utilized potential
to use the project data for semantic data retrieval and reasoning based on the
developed profile and ontology. This future work, as described in Sect. 4, is expected
to have the potential to improve model quality and modeling augmentation, for
example, by integrating an external project management tool as non-SysML data
thought the IoIF or by including accomplishments made outside of SysML. For the
presented creation of the project ontology with the derived SysML profile, the best

674 B. Kruse et al.

practice found in this research is to find compromises between the ontology and the
profile for a lean, parsimonious, and correct setup that still encompasses modeling
convenience.

To conclude, applying the here presented approach that utilizes OpenMBEE
with an ontology-aligned SysML profile for managing research projects as SysML
models shows the general applicability of such an approach that is developed as part
of the very research projects managed. It also supports the research goal to develop
every document as a model. The project model provides quick and consistent
model-based document generation based on views and viewpoints, to be utilized
in the View Editor. The View Editor offers live, web-based access for an improved
communication within the whole team, without requiring everyone on the team to
have knowledge of SysML. Instead, it provides a basis for a more familiar document
editing platform, used to generate project reports based on required collaboration
and inputs from the team members.

References

Arp, R., B. Smith, and A.D. Spear. 2015. Building Ontologies with Basic Formal Ontology. MIT
Press. ISBN: 978-0-262-52781-1.

Blackburn, M., R.S. Peak, S. Cimtalay, A. Baker, M. Ballard, D.H. Rhodes, M. Bone, J. Dzielski,
R. Giffin, B. Kruse, B. Smith, M. Austin, and M. Coelho. 2019. Transforming Systems
Engineering through Model-Centric Engineering, SERC-2019-TR-005. Hoboken: SERC.

Bone, M., M. Blackburn, B. Kruse, J. Dzielski, T. Hagedorn, and I. Grosse. 2018. Toward an
Interoperability and Integration Framework to Enable Digital Thread. Systems 6 (4). https://
doi.org/10.3390/systems6040046.

Ceusters, W., and B. Smith. 2015. Aboutness: Towards Foundations for the Information Artifact
Ontology.

Delp, C., D. Lam, E. Fosse, and C.-Y. Lee. 2013. Model Based Document and Report Generation
for Systems Engineering. Aerospace Conference, Big Sky, MT, USA

Department of Defense. 2018. Digital Engineering Strategy. Washington, DC, USA.
Hitzler, P., M. Krötzsch, B. Parsia, P.F. Patel-Schneider, and S. Rudolph. 2009. OWL 2 Web

Ontology Language Primer. W3C Recommendation 27(1).
ISO/IEC/IEEE. 2011. Systems and Software Engineering – Architecture Description.

ISO/IEC/IEEE 42010:2011(E).
Kruse, B., and M. Blackburn. 2019. Collaborating with OpenMBEE as an Authoritative Source

of Truth Environment. Procedia Computer Science 153 (C): 277–284. https://doi.org/10.1016/
j.procs.2019.05.080.

Kruse, B., and M. Blackburn. 2020. View and Viewpoint based Digital Signoff using OpenMBEE
as an Authoritative Source of Truth. Journal of Cyber Security and Information Systems
(CSIAC) 7(3): 23–30.

NASA/JPL. Open Model Based Engineering Environment. Accessed 10 25 2019. http://
www.openmbee.org/.

OMG. 2015. Systems Modeling Language (OMG SysML) v1.4. formal/2015-06-03.
Rubin, D.L., N.F. Noy, and M.A. Musen. 2007. Protégé: A Tool for Managing and Using

Terminology in Radiology Applications. Journal of Digital Imaging 20 (1): 34–46.

http://dx.doi.org/10.3390/systems6040046
http://dx.doi.org/10.1016/j.procs.2019.05.080
http://www.openmbee.org/

Supporting the Application of Dynamic
Risk Analysis to Real-World Situations
Using Systems Engineering: A Focus
on the Norwegian Power Grid
Management

Michael Pacevicius, Cecilia Haskins, and Nicola Paltrinieri

Abstract Dynamic Risk Analysis (DRA) approaches are virtuous processes
enabling the improvement of state-of-the-art techniques for risk calculation in
industrial infrastructures. However, they require the existence of an appropriate
architecture enabling end-to-end processing of information, which has not yet
been defined in practice. This paper aims at discussing the possibilities and the
advantages of combining DRA with Systems Engineering (SE) approaches to reach
this objective. For that, we define a framework based on SE principles, apply it
for the assessment of the role of vegetation on the global risk for power grids, and
discuss the benefits it provides.

Keywords Dynamic Risk Analysis · Systems Engineering · Internet of Things ·
Power grids · Vegetation · Critical infrastructures

1 Introduction

System managers aim, among other objectives, to reduce uncertainties related to
process monitoring and to maximize the control efficiency. Those dimensions are,
for the most part, defined by the capacity of the stakeholders involved to properly
analyze, evaluate, and reduce the risk levels characterizing the system under review.
Numerous guidelines and standards have been developed to support these activities.

M. Pacevicius (�)
eSmart Systems, Halden, Norway

Department of Mechanical and Industrial Engineering, Norwegian University of Science and
Technology NTNU, Trondheim, Norway
e-mail: michael.pacevicius@esmartsystems.com

C. Haskins · N. Paltrinieri
Department of Mechanical and Industrial Engineering, Norwegian University of Science and
Technology NTNU, Trondheim, Norway

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_57

675

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_57&domain=pdf
mailto:michael.pacevicius@esmartsystems.com
https://doi.org/10.1007/978-3-030-82083-1_57

676 M. Pacevicius et al.

However, the way such guidelines are used and the way they affect the quality of
monitoring activities show a considerable heterogeneity across fields of application.
In addition, the nature and the specificities of the supporting tools also influence the
performance level of risk analyses.

Although most risk assessment methods advocate for feedback loops and cyclic
processes, the quality of the outputs of these procedures tends to deteriorate over
time. This is especially due to the inability for currently implemented tools to
integrate in a continuous, reliable, and thus dynamic way information related to
the system under review. Researchers aiming to tackle this dilemma have suggested
frameworks and approaches leading to more cyclically effective, and thus dynamic,
risk analyses and evaluations (Villa et al. 2016). The application of such approaches
is still in an embryonic phase in real-world scenarios. This is mainly due to the
relative recency of the proposed tools, which still require recommendations for
applicability. On the other hand, although such techniques advocate for a better
and more intense use of information, they do not describe technical solutions able
to properly integrate all the data that is theoretically available and that is suggested
to be analyzed in the recommended approaches. In fact, the applicability of such
approaches is highly dependent on the existence of an architecture to support
this integration in a timely manner. This is especially challenging, considering the
general complexity of the systems under review and thus the plurality of influencing
factors and data sources to consider.

Systems Engineering (SE) in general offers interesting perspectives for address-
ing this challenge. By fully considering local specificities while keeping a global
understanding of the needs for which a system is developed and the constraints it
is and will be subject to, SE offers development perspectives enabling designers
to properly attack the resolution of the problem. The present paper discusses the
advantages systems engineering can provide to support the application of Dynamic
Risk Analysis (DRA). These advantages are demonstrated by an application in risk
analysis done for power grids.

2 Risk Analysis: Original Concepts and Requirements for
Dynamic Evolutions

Risk is a variable concept across domains due to the different ways people and
industries value situations and the consequences of events. The way risk is defined
and integrated into models/tools depends on the type of business (Aven 2012),
which has led multiple standards to be developed within the diverse fields of
application where risk understanding and control is required (ISO – International
standardization organization 2007, 2016, 2018; NORSOK 2010).

Generally, the first step for risk analyses consists in properly defining the context
for the entire life cycle of the system under review. This includes qualitatively and
quantitatively defining the measures of effectiveness relative to risk acceptance, as
well as the way performance measures will be verified/validated all along and at the

Supporting the Application of Dynamic Risk Analysis to Real-World Situations. . . 677

end of the process. This step aims to eventually obtain a risk picture that accurately
depicts the true exposure level of the system to specified threats. The risk picture is
characterized by the contribution of all scenarios leading to an unwanted event or
situation, the likelihood for these scenarios to occur, and the severity of the negative
consequences resulting from these scenarios (Kaplan and Garrick 1981).

The tools used for risk analysis in industrial facilities have been observed to have
the following limitations:

• Recurrent use of outdated data for frequency evaluation, despite the acquisition
of new knowledge based on experiences (Creedy 2011)

• No capture of interactions and dynamic aspect of risk variations (Yang and
Haugen 2015)

• Inappropriate consideration of uncertainties related to risk (Aven 2012; Villa et
al. 2016)

Furthermore, despite the theoretical inclusion of a cyclic feature in most risk
assessment approaches, experience shows that the proper reassessment of estab-
lishing the context suffers from some latency as the number of cycles increases.
This initial step is often done once and for all at the beginning of the study, which
means that further steps of the analyses are not able to react correctly as internal or
environmental conditions of the system evolve over time. In addition, accurately
characterizing the evolution of the hazards that can impact the system becomes
challenging. Thus, although the awareness of requirements for flexibility and adapt-
ability is generally present in the conception phase, the implementations usually
suffer from an inability to update and integrate new information. Consequently, the
estimated level of risk may, over time, diverge from the true level of risk, which in
turns may lead to new potential accidents or catastrophes.

The appropriate processing of correct information – and more especially the
capability to consider new variables or be resilient to disturbances (e.g., loss of data
source) – represents an area that needs more research. Acknowledging this situation,
more dynamic methods have been developed (Villa et al. 2016). In general, these
methods require:

• Real-time acknowledgment of information updates for initially considered vari-
ables

• The capacity to integrate (or discard) variables and thus restructure the method
when new (or old) information is considered relevant (or irrelevant) for the
estimation of the current risk image

Thus, dynamic methods require the consideration and integration of data-driven
updates rather than only considering long-term calendar-based protocols, which is a
common practice across industries today. This means that optimal data management
is at the heart of Dynamic Risk Analysis. However, in order to make existing
tools structurally updatable and adaptable, there is a need to offer a standardized
approach that technically enables automatic integration or suppression of relevant
data, thereby enabling evolution from isolated data sources toward informed risk
depiction.

678 M. Pacevicius et al.

3 Key Dimensions of System Engineering and Contributing
Potential to DRA

Properly controlling and monitoring a system over time requires an appropriate
understanding of the composition of the system and the existence of an appropriate
user interface. Furthermore, the behavior of the system needs to be understandable
from both a local and a global perspective, in order to identify and assess interactions
between subsystems and their respective characterizing variables, thus allowing
systems engineers to understand not only the sum but also the product of the
subsystems’ respective behaviors. Pooling a team of specialists from a diversity of
areas supports such actions, as it provides the analysis of multiple dimensions of the
system and breaks barriers between fields presenting synergies.

SE advocates for cyclically reviewing and adapting, if necessary, the different
phases of the process in order to show evidences that the system fulfills its functions
as expected by the customers and stakeholders. Periodically carrying out context
evaluation ensures a good understanding, over time, of the system’s properties
and interactions between its subsystems and helps to avoid the probability of
misunderstood or wrongly quantified hazard effects.

The understanding of interrelations between variables and the cyclic requirement
in the development of a system represent key dimensions for both efficient SE
approaches and DRA tools. Table 1 details further the numerous correspondences
which exist between DRA requirements and SE specificities.

4 Approach Description

The approach suggested in the present paper is based on the steps of regular data
mining flow processes (Chapman et al. 2000) and is structured using a Systems
Engineering mindset in order to provide an efficient analysis of risk over time. It is
developed as follows:

(1) Identification of information requirements (business understanding)

Within the context, the different needs of the system stakeholders are gathered.
This enables understanding which type of information needs to be available to
provide an appropriate solution, as well as to direct the first steps of the research.

(2) Identification of potentially accessible data sources (data understanding)

Based on the requirements formulated by the stakeholders, establish a benchmark
of the existing data sources (or of data sources that can be created to reach the
defined objectives). The type of data sources corresponds to data sources that,
somehow, by their nature, enable a better understanding of the analyzed items. Only
those datasets that are accessible for the project are retained.

(3) Filtering of data sources (data understanding, data preparation)

Supporting the Application of Dynamic Risk Analysis to Real-World Situations. . . 679

Table 1 Correspondences between DRA requirements and SE specificities

Requirements for efficient DRA tools Specificities of Systems Engineering

(1) The structure and the architecture
of the tools enabling optimal data
management in complex environments
need to be defined

(1) SE approaches support the construction of
complex systems in an efficient and durable way

(2) DRA tools need to be updatable in
terms of architecture

(2) Proper system design enables flexibility in the
architecture of the system and ability to consider
new variables as required

(3) DRA tools need to be resilient to
degradation or loss of data sources
(quality and quantity of data)

(3) Proper system design enables to make efficient
use of correlations between variables and thus
provides “as good as knowable” analyses

(4) Cyclic assessments and
reconsiderations of context are
required to maintain process
understanding and thus to keep a
realistic risk picture over time

(4) Integration of a cyclic dimension is a pillar of
SE which reduces the non-detections of emerging
hazards or the apparition of black boxes within the
process

(5) Interactions between factors need
to be captured to show accurate risk
pictures

(5) Implementation of interdisciplinary approaches
is a pillar of SE

(6) Frequently updated data need to be
considered to show accurate risk
pictures

(6) The cyclic dimension of SE supports the
frequent updating of information

(7) Use of case-/plant-specific data (7) Correctly designed systems integrating
appropriate data sources enable “as good as
knowable” analyses

The informative potential of the retained information sources is initially assessed
and used to create a maximum number of scenarios to consider in terms of
risk. Discussions between the heterogeneous panels of experts involved enable
understanding the importance of the physics for each observed variable, but also –
and maybe more importantly – the interrelations and dependencies that can exist
between considered variables/phenomena. Data sources providing quantitatively
usable information (e.g., databases with numerical values) or convertible (e.g., by
some weighting conversion process) are then selected. The informative potential of
each of the related retained variables is then assessed in terms of contribution to the
calculation of the targeted risk dimension. More especially, each of the variables
is evaluated to assess if they provide information relative to the frequency or the
consequences of the identified scenarios. Based on the importance of the identified
scenarios, requirements for the data acquisition of the related variables are estimated
and reported for future performance evaluation of the defined system.

(4) Clustering of data sources (data preparation)

The data sources that are considered are then clustered, based on their reso-
lution and on the reported physical interrelations existing between the observed
variables.

680 M. Pacevicius et al.

(5) Choice of potential environments, frameworks, and algorithms (modelling)

The choice of the environment to work in, as well as the frameworks and
algorithms, is based on both the objectives to achieve and the characteristics of the
retained data sources.

(6) Structuring of the pipeline (modelling)

The clusters suggested in phase (4) are integrated into layers in which analyses
will be done. Layers with lowest resolution are placed in an initial position of the
pipeline for optimization of the workload management. The selected frameworks
and algorithms are adapted for each layer, depending on the fixed objectives.

(7) Progressive use of outputs and assessment of pipeline final results (evaluation,
deployment)

Once the pipeline is prepared, each layer is successively run through in order to
eventually reach the final risk picture. Estimations originating from the output of the
successive layers are also sent via feedback loops in order to improve the algorithms
exploited via approval or rejection of the first results.

A critical requirement of the approach suggested is a good understanding of the
techniques used. This will be the only way to properly convert the information they
provide into usable inputs for the improved calculation of risk levels.

5 Application: Pipeline Construction for Improved Risk
Analyses in Power Grid Management – Focus
on Vegetation

5.1 Situation Overview

The power grids used daily are exposed to a plurality of hazards (e.g., hurricanes,
earthquakes, ice storms, floods), which occurrences can have heavy consequences
(DeCorla-Souza 2013; Kenward and Raja 2014). In addition, dimensions such as the
size of the grid, the accidental terrain it can be installed in, and the slow, local, and
complicated processes used to gather information for inspections and maintenance
mean that exercises related to risk analyses often are executed in a suboptimal way.
By suggesting a Systems Engineering-based approach, we aim to show how the
general level of risk in power grids can be reduced in a continuous way, giving thus
evidence that more dynamic approaches can be implemented. For this purpose, we
focus here on the impact of vegetation on the power grid. Vegetation was the number
one cause of outage in Norway in 2018 (Eggum 2019) and is a main contributing
factor for outages in power grids in general (Hansen 2016, 2017, 2018). The most
common way for vegetation to affect the power grid is generally by a branch or
an entire tree falling directly on a power line. Alternatively, vegetation can also
generate outages by simply growing under a line until it makes contact and creates

Supporting the Application of Dynamic Risk Analysis to Real-World Situations. . . 681

an outage. In the best-case scenario, consequences of such events can be relatively
low, with only a few power customers affected. However, such events can also lead
to wildfires (Kumagai et al. 2004) or contribute to large blackouts (Alhelou et al.
2019).

Multiple parameters are involved in the occurrence of an outage generated by a
tree falling on a power line. The first, obvious ones, are the size of the trees and their
physical proximity to the power line. Additional factors are wind or precipitations,
variations in temperature, the topography, and the species, health, and shape of the
trees – to name just a few.

Grid operators require the following information for decision-making concerning
vegetation management:

• Locations of areas that are more likely to face outages involving vegetation to
send teams clear-cutting the region before there is a problem

• Level of consequences of such an outage when it happens (particularly in terms
of impacted customers)

• Location of areas that are more likely to face outages involving vegetation to
know where to look first when those occur and thereby shorten reaction time and
eventual power restoration

5.2 Proposed Architecture

The architecture proposed to tackle the problem of vegetation is divided into two
main phases, as described in Fig. 1.

In a first phase, the first layer, essentially a top-down approach, is initially a
“remote-based” information capture. It integrates diverse sources of information,
such as optical satellite images, wind exposure, global vegetation characteristics
[i.e., dominant species presence, canopy height], human population density, grid
topology, temperatures, precipitations, and topography. Information relative to each
data source is first collected and stored in a database in such a way that it can be

Fig. 1 Architecture for vegetation-focused Dynamic Risk Analyses in Norwegian power grids

682 M. Pacevicius et al.

used for calculations. Machine learning-based methods enable the combination of
the different variables to assess and report the contributing factor of each variable
into the first layer risk calculation. This first layer risk calculation aims to provide,
by combining both the probability and the consequences of a potential disturbance,
estimations of regions where the levels of vegetation-based risk estimation is the
highest (Regions of Interest – RoI).

Although calculations are case-specific, results of risk estimation remain char-
acterized by a medium degree of uncertainty because of the resolution of the
information used. In order to accept or reject the first-level estimation and thus
reduce the level of uncertainty around the risk estimations, a second layer (which
represents a bottom-up approach) is introduced in a second phase. This “in-field-
based” information capture is here again the fruit of several fields of expertise and
enables specific assessment of assets and detection of faulty components using
computer vision; centimeter-level distance estimation from trees to power grid
components using lidar-based or photogrammetry-based point clouds; and tree-
specific characteristics estimation [i.e., species, height, health conditions] using
computer vision. Computer vision-based asset information suggests if the proba-
bility of outage might be increased by the types and condition of the asset present
in the specified RoI. Point clouds enable case-specific high-resolution distance
measurements from vegetation to the power line. And computer vision-based tree
characterization enables assessment of how the originally estimated level of risk
may be affected by the properties of the trees present in the area. These three
additional data sources contribute by providing case-specific local information,
offering an improvement of both the consequence estimations and the probability
estimations of an outage in the RoI, thus enabling a refinement of the final risk
image.

The output of the second layer is feedback to the first layer as the re-assessment
cycles unfold and helps improve the quality of some first estimations of the local
area (e.g., trees height and species), which enables the inclusion of high-resolution
time series into the calculations and improved estimations provided by the retrained
algorithms.

5.3 Results

The described architecture enables the operator to:

• Discover previously unconsidered risky areas and thus better quantify the
consequences of disturbances caused by potential outages.

• Multiply the number of scenarios leading to an unwanted event by highlighting
relevant interactions between relevant variables.

• Refine existing scenarios and risk contribution levels of specific variables by
enabling a higher-resolution situation understanding.

• Refine estimation of the contribution level of each factor to the global risk picture.

Supporting the Application of Dynamic Risk Analysis to Real-World Situations. . . 683

• Increase resilience to loss of information by increasing the number of data
sources. This increases the probability of correlation detections among used data
sources, which can thus be used as proxies when one/some of them fail or would
be removed.

• Make case-specific risk estimations/improvements by gathering local data, avoid-
ing use of averaged values, and reducing thus uncertainty around risk estimation.

• Increase the frequency of risk estimations by benefiting from regular updates
(e.g., weather) of the data sources used for the risk estimation.

Based on this dynamic risk estimation, power grid companies can improve the
assignments of woodcutting teams by efficiently prioritizing missions based on
potential risk, thereby reducing the occurrence of vegetation-influenced outages.
Furthermore, they can reduce the time to repair if an outage happens since a product
of this architecture increases the probability of spotting the correct areas causing the
outage.

The key dimension of the described architecture is to make “as-good-as-
knowable” estimations, optimizing the contributing potential of the accessible data
sources, increasing the probability of detection of early signals, and reducing
the probability of occurrence of events that can be avoided with timely use of
information.

6 Discussion and Conclusion

Although the demand and justifications for the development of DRA tools is obvious
across industries, it remains a challenging task and a relatively new research area.
A theoretical broad access to a large number of data sources and an easy access
to powerful IT infrastructures suggest that the main entities that could support
the development of DRA tools are already available in practices that support the
emerging Internet of Things. Structuring the combination of those different entities
and transforming this combination into a useful risk image for an infrastructure
under review remains a challenging task requiring competences in a multitude
of disciplines, a local understanding of the interrelations, as well as a holistic
overview of the constructed system, considered within a specific environment. SE is
a particularly supportive field with this regard, as it provides the right framework to
develop white box-based systems for which understanding and control can be kept
over time.

We illustrated the benefits that can be provided by SE for the development of
DRA tools by focusing on the assessment of the impact of vegetation on the true risk
level existing in power grids. For that, we showed how relevant data sources should
be combined in such a way that decision-makers can optimize their judgments and
the management of their resources, as well as implement a pre-event resilience plan
and effective post-event restorations. How the risk reduction actions are executed
and the way the resulting information is integrated into the new cycle of risk

684 M. Pacevicius et al.

assessment is an additional dimension that needs to be carefully considered to ensure
optimal risk management of the infrastructure.

The expected convergence between requirements for efficient DRA tools and
solutions provided by the intrinsic properties of Systems Engineering is confirmed
in the proposed approach and described in the case study. By enabling the creation
of systems that favor cyclic approaches, SE enables a flexible process and offers
possibilities for both optimized information management and more resilience. This
makes the process more reliable, sustainable, and thus suitable in the long run for
the application of Dynamic Risk Analysis.

This work is part of an ongoing project “Dynamic risk management for Smart
Grids in large-scale interconnected power systems” funded by eSmart Systems
and the Norwegian Research Council. Future steps include the final choice of the
best algorithms for the machine learning processes capturing those variation rates
of the related data sources. Those elements will be the basis for complementary
performance metrics (cf. phase (3) of the suggested approach) and will enable
quantification of the level of uncertainty of the calculated risk level.

The generic dimension of the proposed approach offers already a flexibility
that enables it to be used for other industries, under the condition that informative
data sources are properly identified and accessible. The approach also requires the
validation and verification to be continuously ensured by close collaboration with
the customer, a condition that has been respected in the present study. Continuously
exchanges with the main stakeholders enable appropriate feedback with regard to
the performance, the process design, and the context evolution. In this way, the best
tradeoff options can be continuously chosen, and divergence between the suggested
risk representation and the real risk level over time can be reduced.

References

Alhelou, H.H., M.E. Hamedani-golshan, T.C. Njenda, and P. Siano. 2019. A Survey on Power
System Blackout and Cascading Events Research: Motivations and Challenges. Energies 12:
1–28.

Aven, T. 2012. The Risk Concept – Historical and Recent Development Trends. Reliability
Engineering and System Safety 99: 33–44.

Chapman, P., J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer, and R. Wirth. 2000.
CRISP-DM 1.0 – Step-by-step data mining guide. p. 76.

Creedy, G.D. 2011. Quantitative Risk Assessment: How Realistic Are Those Frequency Assump-
tions? Journal of Loss Prevention in the Process Industries 24 (3): 203–207.

DeCorla-Souza, K., 2013. Comparing the Impacts of Northeast Hurricanes on Energy Infrastruc-
ture, p. 50.

Eggum, E. 2019. Rapport Nr. 29-2019 – Avbrotsstatistikk 2018. Oslo, p. 101.
Hansen, H. 2016. Rapport Nr. 78-2016 – Avbrotsstatistikk 2015. Oslo, p. 99.
Hansen, H. 2017. Rapport Nr. 43-2017 – Avbrotsstatistikk 2016. Oslo, p. 108.
Hansen, H. 2018. Rapport Nr. 64-2018 – Avbrotsstatistikk 2017. Oslo, p. 103.
ISO – International standardization organization. ISO 14971:2007 – Medical Devices – Applica-

tion of Risk Management to Medical Devices, 2007. Geneva, Switzerland.

Supporting the Application of Dynamic Risk Analysis to Real-World Situations. . . 685

ISO – International standardization organization. ISO 17666:2016 – Space Systems – Risk
Management, 2016. Geneva, Switzerland.

ISO – International standardization organization. ISO 31000:2018 – Risk Management: Principles
and Guidelines, 2018. Geneva, Switzerland.

Kaplan, S., and B.J. Garrick. 1981. On The Quantitative Definition of Risk. Risk Analysis 1 (1):
11–27.

Kenward, A., and U. Raja. 2014. Blackout: Extreme Weather, Climate Change and Power Outages,
23. Climate Central.

Kumagai, Y., J.C. Bliss, S.E. Daniels, and M.S. Carroll. 2004. Research on causal attribution of
wildfire: An exploratory multiple-methods approach. Society and Natural Resources 17 (2):
113–127.

NORSOK. Standard Z-013 – Risk and emergency preparedness assessment, 2010. Lysaker,
Norway.

Villa, V., N. Paltrinieri, F. Khan, and V. Cozzani. 2016. Towards Dynamic Risk Analysis: A Review
of the Risk Assessment Approach and Its Limitations in the Chemical Process Industry. Safety
Science 89: 77–93.

Yang, X., and S. Haugen. 2015. Classification of Risk to Support Decision-Making in Hazardous
Processes. Safety Science 80: 115–126.

Toward a Reliability Approach Decision
Support Tool for Early System Design:
Physics of Failure vs. Historical Failure
Data

John Kosempel, Bryan M. O’Halloran, and Douglas L. Van Bossuyt

Abstract The historical failure data reliability prediction method commonly used
by systems engineering practitioners has several limitations. Recent literature
promotes the physics of failure reliability prediction approach and has seen limited
adoption. However, there is limited guidance available to practitioners to determine
when the historical failure data reliability approach is appropriate to use and when
the physics of failure approach is best applied. This paper presents a decision
support framework for practitioners to choose between historical failure data and
physics of failure reliability approaches and is specifically meant to be used in early
system design. The Reliability Decision Framework RDF) identifies key factors in
system design that aid practitioners in the selection of an appropriate reliability
prediction approach for systems of interest. The major factors in the decision are
(1) relevant historical data, (2) level of complexity, (3) operational life requirement,
and (4) criticality of the system.

Keywords Reliability · System design · Physics of failure · Reliability
prediction · System architecture

1 Introduction

System reliability estimations are often performed during the system architecture
phase of systems engineering to aid in the evaluation of a candidate design
with respect to system requirements and to provide a basis for further reliability
improvements (Blanchard and Fabrycky 2011). Accurately predicting a system’s
reliability during early system design is a challenging task due to a lack of significant
operational experience of a proposed system. Further, systems engineering practi-
tioners have limited resources to pull data from to formulate how reliable a system of

J. Kosempel · B. M. O’Halloran · D. L. Van Bossuyt (�)
Naval Postgraduate School, Monterey, CA, USA
e-mail: douglas.vanbossuyt@nps.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_58

687

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_58&domain=pdf
mailto:douglas.vanbossuyt@nps.edu
https://doi.org/10.1007/978-3-030-82083-1_58

688 J. Kosempel et al.

interest is expected to be once the system is fielded. Reliability predictions typically
rely on the use of (1) failure data, (2) a statistical model applied to the failure data,
and (3) a model of the system’s reliability logic. The limiting factor in reliability
predictions in many cases is the availability of failure data. Often during the system
architecture phase of the systems design process, a constant failure rate is assumed
in order to use an exponential statistical model to represent how system failures
occur over time. However, a goodness of fit test shows with remarkable consistency
that the exponential model is not valid on many existing systems (Leemis 2009).
Using an exponential statistical model with historical reliability data may lead to
incorrect modeling of the system of interest and misleading reliability predictions
(Jones and Hayes 1999). The physics of failure (POF) reliability prediction approach
was developed partially in order to not rely on potentially flawed or non-existent
historical failure data by developing an understanding of the underlying physical
failure mechanisms to evaluate useful life (Schueller 2013).

The systems reliability community currently uses either approach to reliability
prediction during the system architecture phase of system design. However, little
guidance in the literature is provided on how to determine which approach to use.
A significant amount of research exists on the benefits and limitations of each
reliability approach; however, the does not address when it is appropriate for a
practitioner to use the historical data or the POF approach or if a combination of
the two approaches should be performed.

1.1 Specific Contributions

This paper presents the Reliability Decision Framework (RDF) that aids practition-
ers in determining when it is appropriate to use the historical failure data approach,
the POF reliability approach, or a mix of the two approaches during the system
architecture phase of system design.

2 Background and Related Work

Several comparisons have been made of both the historical failure data and the
POF reliability approaches. (Jones and Hayes 1999; Matic and Sruk 2008; McLeish
2010; Pecht 1996; Aughenbaugh and Herrmann 2009) present the theory behind a
POF approach in reliability predictions in relationship to the historical failure data
approach and focus in particular on how a POF-based approach can improve current
historical failure data approaches (e.g., MIL-HDBK-217F methods). Other research
has been done on reliability predictions (Schueller 2013; Varde 2010; Pecht and
Gu 2009; Natarajan 2015; Barlow et al. 1993). However, relatively little has been
written on decision support methods to aid practitioners in selecting an appropriate
reliability approach during early system design. Reliability predictions rely on three

Toward a Reliability Approach Decision Support Tool for Early System Design:. . . 689

critical areas: (1) failure data, (2) statistical modeling of the failure data, and (3) the
system’s reliability logic model. Failure data can be categorized into three types: (1)
field reliability data (system-specific), (2) test reliability data (system-specific), and
(3) external data sources (not system-specific).

2.1 Historical Failure Data Approach to Reliability

Due to the limited information provided to the practitioner in the early design
stage, the historical failure data reliability approach is often constrained to using
external data sources such as MIL-STD-217F although often there is at least some
limited historical component data available. The historical failure data reliability
approach is commonly used where MIL-STD-217F is the most widely used source
for predicting reliability of components (Varde 2010). The historical failure data
reliability approach can be broken down into two methods: (1) parts count and (2)
parts stress analysis. Both methods are defined in MIL-STD-217F (U.S. Air Force,
MIL-HDBK-217F 1995). Multiple publications list the limitations of the historical
failure data reliability approach. A brief summary of these limitations is presented
in (McLeish 2010; Pecht 1996).

2.2 Physics of Failure Approach

POF is a science-based approach to determining the life of a product through an
analysis of the failures. POF emphasizes the root cause of a failure, the identification
of failure mechanisms, and a focused analysis of the failures. The POF approach
provides the practitioner with a thorough understanding of the cause and effect of
failures as well as the strength tolerance of materials and components that lead to
a system failure. The strength of a component is measured by the amount of stress
it can endure before failing (Pecht 1996; Thaduri 2013). The primary limitation of
the POF approach is that it often requires the use of accelerated life testing to get
sufficient data.

In the context of PoF, failure mechanisms describe the failure that has occurred
and the cause of the failure (O’Halloran et al. 2012). Failure mechanisms are
dependent on the system design and the types of components used. Collins provides
a mostly complete failure mechanism taxonomy (Collins 1993). Uder, Stone, and
Tumer provide an extension of Collin’s taxonomy for electrical failure mechanisms
(Uder et al. 2004). Failure mechanisms can be categorized into three different
types: manufacturing variation, overstress, and wear-out. Each category reflects a
stage in the system’s lifecycle. Manufacturing variations are the minor changes
in production that yield early failures and represent infant mortality. Overstress
failure mechanisms are the result of the stress exceeding the strength of the device
(Natarajan 2015). Wear-out failure mechanisms are due to the accumulation of stress

690 J. Kosempel et al.

over time such as fatigue. The majority of mechanical failure mechanisms can
be classified as wear-out. A variety of other failure mechanisms and models have
been cataloged in the POF literature (Leemis 2009; Varde 2010; ZVEI Robustness
Validation Working Group 2013; Dhillon 2015; Safety and Reliability Society 2012;
Anderson et al. 2004; Lall 1996; HBM Prenscia 2018; Nelson 1990).

3 Methodology

This section develops the basis for the Reliability Decision Framework (RDF)
which is intended to be used during the system architecture phase of the system
engineering process and specifically during the functional analysis step (Blanchard
and Fabrycky 2011). The RDF aids the system engineering practitioner in choosing
the appropriate reliability approach for their system to maximize useful information
to support decision-making and tradeoff studies.

The RDF identifies factors that a practitioner should consider before choosing a
reliability prediction approach appropriate to the system of interest which include
complexity, usable life or operational life, criticality to achieving mission goals, and
reliability requirements. It is important to note that the POF approach is more time-
and resource-intensive when compared to the historical failure data approach. The
RDF is shown in Fig. 1.

3.1 Starting Point: Functional Analysis

The input to the RDF is the system-level functional analysis generated during
the system architecture phase of the system design process. In particular, the
functional block diagram (FBD) baseline system architecture and the top-level
reliability requirements are needed. With this information, the practitioner can
generate subsystem designs and allocate performance factors based on a flow down
of the reliability requirements.

3.2 Decision Factor: Relevant Historical Data

A major factor in generating a subsystem design is the relevance of a previous
similar design. If the system of interest is based on a similar system design or an
older configuration, the practitioner will have historical failure rate data available.
The relevant historical data can be either operational field data or previously
obtained relevant accelerated life test data. The relevancy of the data is dependent
on the similarity of the historical system and the system of interest in terms of (1)

Toward a Reliability Approach Decision Support Tool for Early System Design:. . . 691

Fig. 1 A decision flowchart
of reliability predictions for
the Reliability Decision
Framework

functionality, (2) architecture, and (3) operational environment. If all three criteria
are deemed satisfied, then the historical failure data approach is likely appropriate.

3.3 Decision Factor: Level of Complexity

A high level of complexity of the system strongly suggests the rigor of a POF-
based reliability assessment may be worthwhile. A system’s complexity is difficult
to quantify and is based on multiple factors including the number of components,
subsystems, emergent behaviors and properties, and nonlinear relationships between
components (Body of Knowledge and Curriculum to Advance Systems Engineering
(BKCASE) 2017). While the topic of complexity would benefit from a detailed

692 J. Kosempel et al.

quantification, the limitations of information available while developing FBDs
limits the ability to do so. Therefore, the authors propose to rate the level of
complexity on a qualitative scale of 1–10, with 10 representing tens of thousands of
system components, 5 representing a few thousand components, and 1 representing
tens of components. The authors suggest that a qualitative score of 5 be the break
point between a low-complexity and a high-complexity system. Low-complexity
systems can use the historical failure data approach, while high-complexity systems
have additional considerations that must be taken into account before a reliability
method can be selected.

3.4 Decision Factor: Operational Life Requirement

The expected operational life of the system is driven by the requirements analysis.
This factor dictates how reliable the system needs to be to last through its intended
lifecycle. If, for example, the system is expected to last roughly 50 years (a
common requirement for military systems), the use of a POF approach becomes
more effective. This is because the POF approach analyzes multiple time-based
failure mechanisms which can improve understanding of the reliability of the system
design. In contrast, a system prone to rapid technology refreshes (2–5-year cycles)
requiring regular system redesign lends itself the historical failure data reliability
approach which is the most effective reliability prediction method because there is
not a strong need to understand all failure mechanisms associated with the system.

For the purposes of RDF, the operational life requirement is divided into three
lengths of time. A low operational life is represented as a system expecting to last
10 years or less. Within 10 years, such a system has a high probability of requiring
a redesign of circuit card assemblies due to component obsolescence (Torresen
and Lovland 2007). An operational life of 10–20 years will generally require a
partial redesign of the system and a complete redesign of the subsystems due to
the obsolescence of technology (Singh and Sandborn 2006). Systems expected to
operate 20 years or greater will require a complete redesign due to diminishing
manufacturing sources and material shortages, technology updates, performance
increases, and component obsolescence (Singh and Sandborn 2006).

If the practitioner does not have relevant historical data, the level of complexity
of the system is high, and the operational life requirement is greater than 10 years,
then the reliability prediction becomes increasingly more important. At this point of
the RDF, a POF-based approach becomes more effective than the historical failure
data reliability approach.

A POF approach can also be modified using principles from both the historical
failure data and POF methods. The modified POF approach is a customized
approach to suit the practitioner’s needs based on the information available. Some
publications exist on describing various modified reliability approaches (Aughen-
baugh and Herrmann 2009; Thaduri 2013; Thaduri et al. 2015; Yadav et al. 2003).
These modified approaches take aspects of the historical failure data and POF

Toward a Reliability Approach Decision Support Tool for Early System Design:. . . 693

approach and specify the reliability assessment based on two primary factors: (1) the
type of failure data available to the practitioner in terms of both quantity and quality
and (2) the physical architecture of the system. The modified approach becomes
relevant to RDF users when the system has a medium operational life.

3.5 Decision Factor: Criticality

For a critical system application, the POF approach becomes crucial to increasing
the system’s survivability under varying operational stresses. This is particularly
important in the aerospace, nuclear power, oil and gas, and healthcare industries
where system failures may lead to catastrophic outcomes. The evaluation criteria
used in the RDF for criticality bins systems into three categories: non-critical (NC),
critical application item (CAI), and critical safety item (CSI), respectively (Office
of the Under Secretary of Defense for Acquisition, Technology, and Logistics 2016;
Bozzano and Villafiorita 2010).

A CSI system in the RDF results in the use of a POF reliability approach. This is
because the impact of a failure is significant and will require a thorough analysis of
failure mechanisms to design a very robust system to mitigate catastrophic failures.
A CAI system results in the use of a modified POF approach. A modified POF
approach does not contain as thorough of an analysis on various failure mechanisms
as the strict POF approach and uses principles of the historical failure data approach
to utilize resources effectively. A NC system may use a historical failure data
approach.

A practitioner using the RDF framework is advised to weigh the information
gathered at each decision factor above and decide if a historical failure data
approach, a POF approach, or a modified POF approach is most appropriate for
the system. As the system design evolves, RDF can be re-run to continue to verify
that the system meets requirements and to update the reliability models. Through
understanding which reliability method is most appropriate to use, a practitioner
may achieve a more accurate picture of system reliability.

4 Case Study

This section presents a brief case study to demonstrate how to apply the RDF and to
articulate an example of the expected results. While this case study is presented for a
real system, the results are only valid for better understanding the RDF framework.
Therefore, the results should not be used outside of this paper.

The system being analyzed in this case study is a gas turbine auxiliary power unit
(APU) on a military aircraft. As previously mentioned, an input to the method is a
system functional analysis which is not shown here due to space limitations. Next
the practitioner extends the functional analysis to the subsystems. The reliability

694 J. Kosempel et al.

requirement then flows down to the design of the subsystems. During this stage, the
practitioner has flexibility in allocating reliability requirements to elements of the
subsystems and designing the subsystems to optimally meet or exceed the allocated
reliability requirements.

A review of previously developed APU designs for commercial applications
show similarities in system functionality and architecture. The relevant historical
failure data collected by the commercial system is dependent on the environment,
and, as the environment for the military application introduces different stressors,
the historical data for the commercial system becomes less relevant to the military
application. In the RDF, the historical data does not contain all three criteria of
relevancy, and therefore the practitioner does not have sufficient relevant historical
data.

The level of complexity of the system is analyzed based on the number
of subsystems, interfaces, and an estimation of components required for each
subsystem. Applying an estimation factor of a hundred components per subsystem
gives the system an estimated 100 components. This is equivalent to a complexity
level of 5 in the RDF, constituting the system as having a medium complexity level.

The expected operational life requirement for the APU is 35 years. At this point
in the RDF, the historical failure data reliability approach is no longer a feasible
option for the APU.

The criticality of the system is determined based on the functional requirement,
interactions with external systems, safety requirements, and the end application
of the APU. The APU provides electrical and hydraulic power to support aircraft
systems. The safety requirements are fire prevention, protection for over-speed, rotor
containment, and mid-flight engine start. Based on these factors, the APU system is
determined to be a mission critical system.

As a result of analyzing the decision factors, the RDF recommends the prac-
titioner to perform a reliability assessment of the APU using a POF reliability
approach.

5 Discussion

The RDF presented above provides the practitioner a decision support tool to aid in
choosing between a historical failure data approach, a POF approach, and a modified
POF approach for analyzing system reliability during conceptual system design.
Previously, practitioners may have decided to use one of the three approaches
without a formal and repeatable process. As was identified in the case study, if a
historical failure data approach for the APU was used, it would produce a system
that may not meet reliability requirements in operation due to the lack of reliability
enhancements in system design because of inadequate reliability analysis.

The RDF is applicable at the earliest stages of the system design process. This
provides significant value to designers by allowing them to make well-informed
and impactful decisions. For example, the identification that a system will not
meet a reliability requirement can become a catalyst for a substantial design

Toward a Reliability Approach Decision Support Tool for Early System Design:. . . 695

change. If instead a designer were to use an alternative method to RDF, and
specifically one employed later in the design process, the flexibility and allowance to
make substantial design changes decreases significantly. Further, significant design
changes become altogether unrealistic at a certain point in the design process, and
therefore an early design approach to choosing and assessing reliability is necessary
for fostering a reliable design.

The results of the system-level functional analysis generated in the conceptual
design phase provide the practitioner with the necessary information to make a
thoughtful decision on an appropriate reliability approach for the system. The
RDF highlights the key factors in system design that contribute to an appropriate
reliability approach. The reliability approach resulting from the RDF can be used
in the refinement of the system and subsystem design. This further enhances the
system’s reliability throughout the rest of the system design process.

6 Conclusion

In the system architecture phase of system design, relevant system failure data
is the limiting factor in reliability predictions. Often practitioners are limited in
collected historical failure data and data derived from accelerated life tests. The
failure data generally provided by external data sources are very limiting and
outdated. Historical failure data reliability prediction methods often rely on the
use of external data sources in accurately predicting the reliability of a system.
Many reliability predictions do not match experienced operational failures. The
POF approach reduces the inaccuracy of reliability predictions by exploring the root
causes of failures and defining failure rates for different failure mechanisms. The
POF approach results in a more extensive reliability prediction, but often requires
failure data derived from accelerated life tests to determine the life-stress profile and
properly model the failure mechanism over time. It is important for a practitioner to
accurately assess and predict a system’s reliability.

The RDF presented in this paper identifies the key factors a practitioner should
consider when selecting a reliability approach. Although reliability is an iterative
process throughout system design, the RDF is best applied in the system architecture
phase of system design when a system-level functional analysis has been performed.
In addition to assisting the selection of a reliability prediction method, the results
of the RDF may further enhance the system design and the allocation of system
requirements in the preliminary design phase.

Acknowledgments This work was supported in part by Naval Research Program NRP-19-085
and the Naval Postgraduate School. All opinions contained herein are those of the authors and do
not necessarily reflect the sponsors. No warranty of accuracy or completeness of work is given or
implied.

696 J. Kosempel et al.

References

Anderson, P., H.J. Jensen, L. Oliveira, and P. Sibani. 2004. Evolution in Complex Systems.
Complexity at Large 10 (1): 49–56.

Aughenbaugh, J., and J. Herrmann. 2009. Reliability-Based Decision Making: A Comparison of
Statistical Approaches. Journal of Statistical Theory and Practice 3 (1): 289–303.

Barlow, R.E., C. Claroti, and F. Spizzichino. 1993. Reliability and Decision Making 1st Ed.
London: Chapman and Hall/CRC.

Blanchard, B.S., and W.J. Fabrycky. 2011. Systems Engineering and Analysis. 5th ed. Saddle River:
Pearson Education Inc.

Body of Knowledge and Curriculum to Advance Systems Engineering (BKCASE). Complexity.
Guide to the Systems Engineering Body of Knowledge (SEBoK), 17 November 2017. [Online].
Available: http://www.sebokwiki.org/wiki/Complexity. Accessed Aug 2018.

Bozzano, M., and A. Villafiorita. 2010. Design and Safety Assessment of Critical Systems. Boca
Raton, FL: CRC Press.

Collins, J.A. 1993. Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention.
2nd ed. Wiley-Interscience.

Dhillon, B. 2015. Reliability in the Mechanical Design Process. In Mechanical Engineers’
Handbook, 1–27. Ottawa, Ontario, Canada: Wiley.

HBM Prenscia. 2018. ReliaWiki. ReliaSoft Corporation. [Online]. Available: http://reliawiki.org/
index.php/Introduction_to_Accelerated_Life_Testing#Select_a_Life-Stress_Relationship.
Accessed July 2018.

Jones, J.A., and J.A. Hayes. 1999. A Comparison of Electronic Reliability Prediction Methodolo-
gies. IEEE Transactions on Reliability 48 (2): 127–134.

Lall, P. 1996. Tutorial: Temperature As An Input to Microelectronics-Reliability Models. IEEE
Transactions on Reliability 45 (1): 3–9.

Leemis, L.M. 2009. Reliability: Probabilistic Models and Statistical Methods. 2nd ed. Lawrencw
M. Leemis.

Matic, Z., and V. Sruk. 2008. The Physics-of-Failure Approach in Reliability Engineering. In
International Conference on Information Technology Interfaces (ITI 2008), Cavtat, Croatia.

McLeish, J.G. 2010. Transitioning to Physics of Failure Reliability Assessments for Electronics.
In DFR Solutions.

Natarajan, D. 2015. Reliable Design of Electronic Equipment: An Engineering Guide. Bangalore:
Springer.

Nelson, W. 1990. Accelerated Testing: Statistical Models, Test Plans, and Data Analyses. New
York: Wiley.

Office of the Under Secretary of Defense for Acquisition, Technology, and Logistics. 2016. DOD
INSTRUCTION 4140.69. Executive Services Directorate.

O’Halloran, B.M., R.B. Stone, and I.Y. Tumer. 2012. A Failure Modes and Mechanisms Naming
Taxonomy. In Proceedings Annual Reliability and Maintainability Symposium. Reno.

Pecht, M. 1996. Why the Historical Failure Data Reliability Prediction Models Do Not Work – Is
There an Alternative? Electronics Cooling 2: 10–12.

Pecht, M., and J. Gu. 2009. Physics-of-failure-based prognostics for electronic products. Transac-
tions of the Institute of Measurement and Control 31 (3-4): 309–322.

Safety and Reliability Society. 2012. Applied R&M Manual, for Defence Systems (GR-77 Issue
2012). In Part C – R&M Related Techniques: Derating, 1–22. Oldham: Safety and Reliability
Society.

Schenkelberg, F. Norris-Landzberg Solder Joint Fatigue, Accendo Reliability, [Online]. Available:
https://accendoreliability.com/norris-landzberg-solder-joint-fatigue. Accessed July 2018.

Schueller, R. Introduction to Physics of Failure Reliability Methods. DfR Solutions, 27 March
2013. [Online]. Available: https://www.dfrsolutions.com/resources/introduction-to-physics-of-
failure-reliability-methods-video. Accessed May 2018.

http://www.sebokwiki.org/wiki/Complexity
http://reliawiki.org/index.php/Introduction_to_Accelerated_Life_Testing#Select_a_Life-Stress_Relationship
https://accendoreliability.com/norris-landzberg-solder-joint-fatigue%20
https://www.dfrsolutions.com/resources/introduction-to-physics-of-failure-reliability-methods-video

Toward a Reliability Approach Decision Support Tool for Early System Design:. . . 697

Singh, P., and P. Sandborn. 2006. Obsolescence Driven Design Refresh Planning for Sustainment-
Dominated Systems. The Engineering Economist 51 (2): 115–139.

Thaduri, A. 2013. Doctorical Thesis: Physics-of-Failure Based Performance Modeling of Critical
Electronic Components. Luleå, Luleå, Sweden: Universitetstryckeriet.

Thaduri, A., A.K. Verma, and U. Kumar. 2015. Comparison of failure characteristics of different
electronic technologies by using modified physics-of-failure approach. International Journal
of System Assurance Engineering and Management 6 (2): 198–205.

Torresen, J., and T.A. Lovland. 2007. Parts Obsolescence Challenges for the Electronics Industry.
In IEEE Design and Diagnostics of Electronic Circuits and Systems. Poland: Krakow.

S. J. Uder, R. B. Stone and I. Y. Tumer. 2004. Failure Analysis in Subsystem Design for
Space Missions. In ASME Design Engineering Technical Conferences and Computers and
Information in Engineering Conference. Salt Lake City, Utah.

U.S. Air Force, MIL-HDBK-217F. 1995. Reliability Prediction of Electronic Equipment. Griffiss
AFB, NY: Department of Defense.

Varde, P.V. 2010. Physics-of-Failure Based Approach for Predicting Life and Reliability of
Electronics Components. BARC Newsletter, Vols. Mar.–Apr., no. 313, pp. 38–46.

Yadav, O.P., N. Singh, R.B. Chinnam, and P.S. Goel. 2003. A fuzzy logic based approach to
reliability improvement estimation during product development. Reliability Engineering &
System Safety 80 (1): 63–74.

ZVEI Robustness Validation Working Group. 2013. Handbook for Robustness Validation of
Automotive Electrical/Electronic Modules. Frankfurt am Main: ZVEI – Zentralverband
Elektrotechnik- und Elektronikindustrie e. V.

An Approach to Improve Hurricane
Disaster Logistics Using System
Dynamics and Information Systems

Jeanne-Marie Lawrence, Niamat Ullah Ibne Hossain, Christina H. Rinaudo,
Randy K. Buchanan, and Raed Jaradat

Abstract The annual threat of increasingly severe Atlantic hurricanes has raised
concerns about the management of logistics in the immediate aftermath and rebuild-
ing phases of catastrophic storms. Logistics challenges include timely delivery of
inbound relief supplies, synchronization of supply and demand in the reconstruction
phase, and management of the reverse flows of empty containers. Due to the low
probability of occurrence, the high level of impact, and the scale and complexity
involved, it is often difficult to devise a comprehensive logistics plan in advance
of a catastrophe. To ensure satisfactory performance at all stages of recovery, the
problem must be conceptualized in systemic terms using information from past
experiences to identify causal relationships and opportunities for optimization. This
paper highlights the challenges faced at Caribbean ports in the immediate aftermath
of a hurricane disaster and in the reconstruction materials supply chain during
the rebuilding period and offers a conceptual approach to improve planning by
combining holistic thinking with simulation and information technologies.

Keywords Disaster logistics · Hurricanes · Supply chain · System dynamics ·
Caribbean

1 Introduction

Hurricanes originating in the Atlantic pose an annual recurring threat to the
United States and the Caribbean and have serious implications for disaster logistics
management in the aftermath. One of the most disastrous seasons on record is the

J.-M. Lawrence · N. U. I. Hossain · R. Jaradat (�)
Department of Industrial and Systems Engineering, Mississippi State University, Starkville, MS,
USA
e-mail: jaradat@ise.msstate.edu

C. H. Rinaudo · R. K. Buchanan
Institiute of Systems Engineering Research, U.S. Army Engineer Research and Development
Centre, Vicksburg, MS, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1_59

699

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82083-1_59&domain=pdf
mailto:jaradat@ise.msstate.edu
https://doi.org/10.1007/978-3-030-82083-1_59

700 J.-M. Lawrence et al.

2017 hurricane season (Palin et al. 2018), during which 18 named storms were
recorded, 10 of which developed into hurricanes, and 6 recorded as major hurricanes
in the Category 3, 4, and 5 designations on the Saffir-Simpson scale (National
Hurricane Center 2017). Hurricane Harvey made landfall in Texas as a Category
4 hurricane, while Hurricanes Irma and Maria hit Florida, Puerto Rico, Antigua
and Barbuda, the British Virgin Islands, the Commonwealth of Dominica, and St.
Maarten as Category 4 or 5 storms. Hurricane Maria intensified from a Category 2
to a Category 5 storm in less than 12 hours and tore through the small Caribbean
island nation of the Commonwealth of Dominica as a Category 5 storm with little
warning (AON 2018) before continuing northward to hit Puerto Rico as a Category
4 storm. Of the five most costly hurricanes on record, Harvey, Maria, and Irma
ranked second, third, and fifth, respectively (National Hurricane Center 2017), and
occurred within a period of less than 4 weeks. In 2018, the scenario was again
repeated with Hurricanes Florence and Michael, which developed into Category 4
storms during the 2018 season (National Hurricane Center 2017), causing severe
damage in the Carolinas, Florida, Georgia, and Alabama. Collectively, hundreds of
thousands of homes, businesses, and other infrastructure were severely damaged
in the affected regions, leaving residents without housing, power, water, food,
and medical supplies (Palin et al. 2018). Given these examples and the ongoing
predictions of climate change, understanding how post-disaster logistics can be
improved is timely, particularly for regions that are isolated due to geography and
depend on an existing supply lifeline of food and consumer items routinely imported
from overseas.

This paper addresses some of the challenges faced in post-hurricane disaster
supply chains in the immediate aftermath and longer-term rebuilding phases. Using
the case of Hurricane Maria, the combined experiences of the Commonwealth of
Dominica and Puerto Rico are discussed. A systemic approach is taken to identify
points of weakness in port operations and the reconstruction materials supply chain.
The application of information and simulation tools to plan for improved efficiency
and agility in logistics operations are proposed. The paper contributes to the disaster
logistics literature by expanding the discourse on the management of hurricane
disaster logistics.

2 Background

A disaster is an irregular negative event with serious consequences that results in
loss of capacity to operate at pre-disaster levels. Disasters can be locally contained,
meaning that the system is able to provide the required supplies to those in need with
little external assistance, or it can be catastrophic, resulting in widespread damage
and destruction at a scale that requires external intervention (Kunz et al. 2014;
Holguín-Veras et al. 2012). In the case of a locally contained disaster, there is some
capacity, albeit limited, to continue to meet demand from internal inventory sources
(Holguín-Veras et al. 2012). However, in catastrophic situations, commercial supply

An Approach to Improve Hurricane Disaster Logistics Using System Dynamics. . . 701

chains are usually out of commission, and supplies of local inventory are virtually
non-existent, requiring external assistance to meet the needs of survivors. In both
cases, effective logistics management is critical to ensure rapid recovery.

The Council of Supply Chain Management Professionals defines logistics man-
agement as “that part of supply chain management that plans, implements, and
controls the efficient, effective, forward, and reverse flow and storage of goods,
services, and related information between the point of origin and the point of
consumption in order to meet customer requirements.” Supply chain flows are
subject to both motion or transit time and storage or waiting time in forward
and reverse directions (Council of Supply Chain Management 2018). Logistics
activities encompass demand forecasting, procurement, production scheduling,
material handling, inventory control, transportation, warehousing, packaging, order
fulfillment, facility location, reverse logistics, service, and support (Coyle et al.
2017). Another view of logistics is in terms of the creation of utility. Of the five types
of utility that add value to a product, place utility (where), time utility (when), and
quantity utility (how much) have been identified as the predominant value-creating
processes of the logistics function (Coyle et al. 2017). Place utility is created when
inventory is moved from points of production or distribution to points of demand.
Time utility is produced when supplies are available at the exact time required by
customers. Quantity utility is achieved when the amount delivered neither exceeds
nor falls short of immediate customer requirements. The management of place,
time, and quantity utility are critical logistics functions in post-disaster logistics
situations because of the sudden surge in demand, the urgency to deliver products
to save lives, and the limitations of infrastructure, particularly transportation and
storage infrastructure. Another type of utility, form utility, typically associated
with manufacturing processes, may also become important in post-disaster logistics
situations. Form utility involves conversion of raw materials into value-added
products but can also include breakdown and assembly functions at distribution
points (Coyle et al. 2017).

Supply chain management has evolved over time from merely managing the flow
of materials between entities to developing tightly integrated and seamless inter-
and intra-organizational processes and relationships that emphasize the concept
of holism (Fayezi and Zomorrodi 2016). In today’s supply chains, integration is
necessary to achieve the efficiency, visibility, and agility expected of the logistics
function. To create the right supply chain value, logistics professionals must be
cognizant of the type of goods supplied and the ultimate purpose of the supply
chain. For example, the same type of inventory may require substantially different
supply chain configurations and strategies under different circumstances. Efficiency,
agility, and combinations of the two have been proposed by various scholars to
align with product characteristics and customer demands (Fisher 1997; Simchi-Levi
et al. 2008). Efficiency focuses on minimizing the use of input resources without
compromising output requirements, while agility addresses resilience – the rapid
reconfiguration and execution of the supply chain network in response to customer
demands (Christopher 2016).

702 J.-M. Lawrence et al.

3 Review of Literature

Supply chain risk and resilience is an emerging body of knowledge in the academic
literature (Hohenstein et al. 2015) with much of the focus oriented toward business
continuity and firm competitiveness (Chopra and Sodhi 2014) rather than disaster
management. Resilience is defined as the ability of the supply chain to adapt,
respond, rebound, and grow following unforeseen risk (Ponomarov and Holcomb
2009; Hohenstein et al. 2015). Two proactive approaches to manage supply chain
risk and resilience are identified. The traditional view attempts to identify and quan-
tify anticipated or known risks and develop mitigation strategies to enable supply
chain continuity. A Failure Mode and Effects Analysis (FMEA) methodology is
typically used to quantify the probability of occurrence, severity of impact, and
likelihood of detection. The alternative view recognizes that risks related to supply
chains are often unknown and unforeseen and, therefore, require a qualitative and
systemic approach to develop the adaptive capabilities needed to respond to, and
recover from, disruptive events.

There is a paucity of research in the area of post-disaster logistics management
despite the fact that rapid recovery is heavily dependent on the effectiveness of
systems (Van Wassenhove 2006). This situation is attributed to the small number
of practitioners worldwide engaged in humanitarian logistics on a full-time basis
(Holguín-Veras et al. 2012). Another reason is the evolution of disaster management
practices independent of supply chain coordination and risk management strategies
applied to commercial supply chains (Scholten et al. 2013). Studies on disaster
management attempt to understand approaches used from a practitioner rather
than a theoretical perspective, with little integration of supply chain resilience
theory (Scholten et al. 2013). This lack of integration of supply chain principles
with disaster management approaches has limited the development of post-disaster
humanitarian supply chain logistics management. There is a need to understand the
nature of, and environments within which, supply chains operate following a major
hurricane disaster to develop strategies to improve performance of post-disaster
supply chains.

Various approaches have been recommended for pre-planning to ensure supply
chain effectiveness in post-disaster situations. These include inventory management,
talent development, and use of information systems. Pre-positioning of inventory
in the supply chain is one of the most commonly used strategies. This approach,
however, is costly because of the uncertainty regarding where and when a disaster
will strike, the quantity of inventory that will be required, and the subsequent
deterioration of inventory that could result due to low turnover in periods when there
is no disaster (Kunz et al. 2014; Balcik et al. 2010). Another inventory management
approach is holding safety stock to minimizing disruptions in critical supply
chains (Holguín-Veras et al. 2012; Ozguven and Ozbay 2013). The development
of disaster management capabilities has also been suggested as an alternative to
the pre-positioning of inventory. The development of human resource capabilities
to conduct pre-negotiation of supply contracts, harmonize import procedures, and

An Approach to Improve Hurricane Disaster Logistics Using System Dynamics. . . 703

negotiate customs agreements can be executed in advance of a disaster to increase
supply chain agility. In a study using system dynamics modeling to simulate
inventory levels in a system with improved disaster response capabilities but no pre-
positioning of inventory, Kunz et al. (Kunz et al. 2014) showed that development
of disaster response capabilities can significantly reduce lead times and increase
supply chain responsiveness. In another study, rapid development of trust, public-
private sector partnerships, and quality information sharing were found to be critical
enablers of resilience in supply chain networks (Papadopoulos et al. 2016). With the
increasing use of technology, other methods have been recommended for increasing
visibility and planning. Ozguven and Ozbay (Ozguven and Ozbay 2013) proposed
an approach for managing inventory in disaster situations by combining an online
system for managing emergency supplies with an offline planning system. The lack
of coordination among humanitarian actors is recognized as a major weakness in
disaster supply chains as there is no one organization responsible for coordinating
the supply chain (Rey 2001).

In the aftermath of severe hurricanes, effective management of logistics is critical
for survival and rapid recovery. Two distinct post-disaster phases can be defined:
(i) the immediate aftermath of the storm, during which critical relief supplies are
required within hours of the disaster and for a period ranging from 30 to 180
days thereafter, and (ii) the re-building phase, which can extend for several months
and even years. Consequently, two generic types of post-disaster supply chains
can be identified: (i) supply chains in the immediate aftermath that deliver food,
water, medical supplies, tarpaulins, fuel, power generators, telecommunications
supplies, and equipment for debris removal to save lives (Ozguven and Ozbay
2013) and (ii) supply chains that deliver infrastructural materials to support longer-
term rebuilding and reconstruction (Holguín-Veras et al. 2012; Neuman 2017). Each
phase is associated with specific performance expectations. While both agility and
efficiency are important, early post-disaster phases are expected to prioritize agility
over efficiency, while efficiency is expected in longer-term logistics management
(Holguín-Veras et al. 2012).

The scope of post-disaster supply chain logistics is broad, and failures can
occur at numerous points along the end-to-end supply chain: inbound, operations,
distribution, reverse logistics, and disposal stages of supply networks. The extent of
these failures is dependent on several factors, including the scale and scope of the
disaster, the location of the affected country or region, the degree of development
of the affected country or region, the nature and extent of prior preparations,
the availability and type of physical and information systems infrastructure, and
the capability of the human resource pool to rapidly reconfigure supply chains.
Understanding the vulnerable points in post-disaster supply chains is key to
determining how to route flows around points of failure (Ozguven and Ozbay 2013),
elevate bottlenecks, improve processes, and train people.

To identify risk factors that sub-optimize post-hurricane supply chain perfor-
mance, the starting point is to develop a systemic view of the logistics operation. A
systemic view recognizes that all systems are composed of interrelated subsystems
that cannot be reduced to individual components but must be perceived in totality.

704 J.-M. Lawrence et al.

Such a view resists thinking in linear terms that attempt to define structured cause
and effect relationships. Instead, the entire system of subsystems is conceptualized
as a single system and managed holistically to achieve the desired end results
(Koskinen 2013). By utilizing past experience and data to understand and model
the interrelationships, those involved in planning for post-disasters logistics can be
better prepared to address and mitigate the risks involved.

4 Methodology

This paper develops a conceptual approach for pre-planning disaster logistics in the
event of a catastrophic disaster. Using the experiences of two Caribbean islands,
the Commonwealth of Dominica and Puerto Rico, the challenges faced in the
aftermath of Hurricane Maria were investigated. Information was gathered from
reports, newspapers, social media, and personal accounts to understand points of
weakness. Vensim System Dynamics simulation software was subsequently used
to convert these mental models into a system dynamics model to show causal
factors and interrelationships. Bottlenecks and inefficiencies are identified, and
recommendations are proposed on the use of information technologies to improve
agility and efficiency.

4.1 Factors Impacting Post-hurricane Disaster Logistics
and Supply Chain Management

Challenges faced in managing supply chains following a large-scale hurricane
disaster include (i) adapting to the sudden onset of complexity and (ii) developing
the capabilities to respond to survivors rapidly, seamlessly, and completely. These
expectations have become more important in a world that is connected by tech-
nology and which affords real-time communication globally. Prior to a disaster,
there is a baseline understanding of the volume, velocity, and size of material
flows through the supply chain. Processes such as order preparation for shipment,
vessel loading/unloading, and customer clearance are designed to accommodate
specific operational configurations. Following a disaster, these characteristics are
altered drastically, requiring rapid adaptation to manage the increase in complexity.
Challenges include damaged air and seaport infrastructure that restrict points of
entry, reduced storage capacity due to destruction of warehouse facilities, pro-
cess inefficiency resulting from non-functioning information and communications
systems caused by damaged landline and cell phone towers (Kunz et al. 2014),
and inadequate capacity at all levels. These factors create bottlenecks that impede
the flow of information and inventory. Other challenges result from the origin
and volume of inbound flows, demand requirements, and supporting systems and

An Approach to Improve Hurricane Disaster Logistics Using System Dynamics. . . 705

Fig. 1 A generic representation of points of failure in inbound supply chains in the immediate
aftermath of Hurricane Maria

networks (Hohenstein et al. 2015). Based on data gathered, major challenges faced
in ports in disaster zones were identified as follows:

• Limited vessel space for accepting commercial inventory at points of origin in
the United States. In the case of Puerto Rico, vessel shipping space from the
United States mainland to Puerto Rico was prioritized for the Federal Emergency
Management Agency’s (FEMA) relief supplies, limiting the available capacity
for shipment of commercial goods (Palin et al. 2018; Goentzel 2017).

• Vessel turnaround delays. Due to inadequate berthing capacity and lack of
systems and procedures to manage receipt of relief items, vessel turnaround time
increased. One example is the case of a barge carrying relief items to Dominica
that had to wait over 2 weeks to be offloaded in the destination port (Cnc3.news
2018) (Fig. 1).

• Insufficient material handling equipment capacity for use in unloading large
project-size cargo. An example in the case of Dominica is the arrival of large
multipurpose vehicles for use in power restoration. Due to inadequate crane
capacity at the main port, the vehicles had to be disassembled to be offloaded
from the ship (Gomez 2017) and then reassembled, consuming valuable time,
space, and manpower.

• Capacity constraints at entry ports due to unusually high volumes of freight
from individual donors and humanitarian organizations. In Dominica, freight
volumes increased by 60% in the 3 months following Hurricane Maria compared
to previous years (Bardouille 2017). This created a backlog, resulting in delays
in un-stuffing containers and delivering goods to consignees (Bardouille 2017;
(Unstructured Data from Social Media – Facebook posts 2017).

• Shift in the mix of inbound cargo. The post-disaster cargo mix shifted from
large amounts of containerized merchandise consigned to a few large buyers
in pre-disaster situations to a preponderance of small packages from numerous
donors and humanitarian organizations consigned to individuals.

706 J.-M. Lawrence et al.

• Storage constraints arising from damaged and destroyed warehousing infras-
tructure resulting in insufficient space to accommodate the inbound cargo. In the
case of Dominica, this was further compounded by the tardiness of consignees in
clearing goods (especially vehicles) which had arrived before the hurricane.

• Security challenges due to open, uncovered storage, which pose threats of theft,
became a major problem in Dominica (Unstructured Data from Social Media –
Facebook posts 2017).

• Inadequate or incomplete labeling of supplies in containers, making it diffi-
cult to identify the contents of containers. An example is the case of Puerto Rico
where several containers were labeled “Disaster Relief” making it impossible to
identify the contents of the containers until actually opened (Palin et al. 2018).

• Challenges in moving supplies from the port due to transportation and fuel
shortages. In Puerto Rico, manpower was inadequate as port workers and truckers
failed to show up for work.

• Limited retail inventory due to government and taxation regulations. Retailers
in Puerto Rico held approximately 1 month’s supply of inventory under normal
situations, reducing the country’s ability to respond to survivors’ needs following
the disaster (Palin et al. 2018).

• Reverse logistics of empty containers delivering supplies to affected areas. Due
to vessel delays in scheduling the pickup of empty containers, the limited storage
capacity was further constrained, requiring alternative storage locations to be
found as empty containers accumulated on the port. For example, in Dominica,
several months after Hurricane Maria, hundreds of containers awaited pickup
from shipping lines. Dominica (Dominica News Online 2017; Dominica Vibes
News 2017).

• Lack of synchronization between supply and demand for critical items such
as food, water, medical supplies, and fuel. In Puerto Rico, food and water
aid continued to be requested from FEMA even after grocery stores resumed
operations and were able to process transactions using electronic government
cards (Ozguven and Ozbay 2013).

• Lack of synchronization between supply and demand during the rebuilding
and reconstruction phase. In Dominica, ongoing inventory stockouts in the re-
construction supply chain continued to be a problem, hampering the recovery
efforts.

• Parallel imports of reconstruction supplies by individual residents. Parallel
imports by citizens increased the challenge of forecasting and scheduling mate-
rial requirements as evidenced by the numerous stockouts of building materials.

After Hurricane Maria hit Dominica, the first container ship was not able to
berth at the main port until 5 days after the storm due to rough seas. Following the
initial receipt of cargo, freight volumes in the ensuing 3 months increased by 60%
(Bardouille 2017) compared to the same time in previous years, posing capacity
constraints for berthing, unloading, and storage of the cargo. Within the first 6
weeks, 1163 20-foot equivalent units (TEUs) were received at the port, but only
110 empty containers were shipped out as reverse flows in the same time period

An Approach to Improve Hurricane Disaster Logistics Using System Dynamics. . . 707

(Dominica News Online 2017). As port storage space became constrained, empty
containers had to be moved to alternative public open spaces. Eight months after
the storm, only 627 empty containers had been shipped out, the vast majority still
awaiting pick up by shipping lines (Dominica Vibes News 2017; The Chronicle
2018). Another problem that emerged was the security of cargo due to a lack of
secure warehousing due to damage to storage sheds. Most of the freight originating
in North America arrived in sealed containers, making it easier to handle and secure
the cargo in open yard storage, whereas some of the freight originating at other
points of origin as break bulk could not be stored as securely and in some cases
was offloaded and stored at ports in other islands until practical to be received
in Dominica. In Puerto Rico, the challenge to logistics stemmed primarily from
clearing freight from the ports due to shortage of truckers. Based on this information,
system dynamics models were developed for the inbound relief supply chain in the
immediate aftermath (see Fig. 2) and for the re-construction materials supply chain
in the longer-term rebuilding phase (see Fig. 3).

5 Discussion and Recommendation

Post-disaster supply chains are open systems with numerous interactions and
relationships between players within and external to the supply chain. Opportunities
to improve post-disaster logistics operations can be focused along three dimensions:
reduction of complexity, increase in agility, and improvement in efficiency. To
address points of weakness, effective information systems are required. Data
analytics, centralized systems, and tracking and tracing technologies can be useful
in this respect.

Data Analytics At the heart of better planning is access to more accurate data
that can be used to model logistics operations and identify points of failure. To
improve performance, data must be collected, stored, and used to optimize post-
disaster logistics. Devising means to accumulate this data, both during normal
operations and in disaster periods, is critical so that over time, an understanding of
the dynamics of the system can be gained and fed into system dynamics models.
To model the logistics operations using a system dynamics approach, the data
required include the following: (i) mix of cargo by type of tertiary packaging (full
container, less than full container, break bulk – palletized or not palletized), (ii)
mix of cargo based on supplier and consignee (business, individual, humanitarian
organization), (iii) cargo volumes for each type of cargo, (iv) points of origin, (v)
arrival dates and times, (vi) off-loading dates and times, and (vii) time for each stage
of the logistics operation including moving to storage, completing paperwork, and
delivery. Big data analytics can be applied to summarize data about past events,
make predictions about probable future trends, and evaluate different scenarios to
prescribe possible future outcomes. While data may not exist or even be recoverable
from a single data source, it is important that it is recoverable as soon as possible

708 J.-M. Lawrence et al.

De
live

ry o
f P

ack
age

s to
Co

nsig
nee

s

Co
nta

ine
r S

hip
s

Ge
ner

al
Ca

rgo
 Sh

ip
Po

rt o
f en

try
to

dis
ast

er z
one

Sto
rag

e o
f em

pty
con

tain
ers

 in
pub

lic
spa

ces
cle

are
d o

f de
bris

Tem
por

ary
sto

rag
e d

ue
to

spa
ce

con
stra

ints
 at

des
tina

tion
por

tRa
te o

f tr
ans

fer
to

alte
rna

tive
 po

rt

Ra
te o

f ar
riva

l of
con

tain
eriz

ed
car

go

Ab
ility

 to
rec

eiv
e

mo
bile

 ph
one

 ca
lls

Tra
nsp

ort
atio

n c
apa

city
 for

pic
k u

p/d
eliv

ery
 of

goo
ds%

of r
oad

s c
lea

red

+
Ab

ility
 to

con
tac

t
con

sign
ee

Arr
iva

l ra
te o

f pa
llet

ized
and

 no
n-p

alle
tize

d c
arg

o

%
of c

ons
ign

ees
 wi

th
abi

lity
 to

cha
rge

 mo
bile

pho
nes

%
of c

ons
ign

ees
 wi

th a
cce

ss t
o

fun
ctio

nin
g e

lec
tric

 gri
d/s

our
ces

of e
ner

gy
+

Ca
rgo

 se
cur

ity
issu

es We
ath

er -
 pr

edi
cte

d
rain

fall
 (in

che
s)

Pilf
era

ge
and

 the
ft

-

Op
en

Sto
rag

e
/ S

tag
ing

Are
as

(Un
cov

ere
d)

Un
loa

din
g ra

te
De

live
ry R

ate

+
Ra

te o
f T

ran
sfe

r

De
lay

s in
 loc

atin
g u

nlo
ade

d
goo

ds
due

 to
poo

r
ide

ntif
ica

tion

-

Av
aila

bili
ty o

f tr
uck

driv
ers

Ra
te o

f ar
riva

l of
pal

leti
zed

 an
d

non
-pa

llet
ized

-

De
live

red

Av
aila

bili
ty o

f po
rt

em
plo

yee
s+

%
of c

ons
ign

ees
 wi

th
acc

ess
 to

rad
io

Av
aila

bili
ty o

f
sch

edu
led

 / li
ner

s

Av
aila

bili
ty o

f ch
arte

red
 /

uns
che

dul
ed

ves
sels

+

Co
unt

ry l
aw

s re
stri

ctin
g

reta
il in

ven
tor

y le
vel

s

Av
aila

bili
ty o

f ap
pro

pria
te

ma
teri

al h
and

ling
 eq

uip
me

nt

+

Fre
igh

t
for

wa
rde

rs
Shi

ppi
ng

rate
Ca

rgo
 rat

e fr
om

ind
ivid

ual
 do

nor
s

Ca
rgo

 rat
e fr

om
hum

ani
tari

an
org

ani
zat

ion
s

Ca
rgo

 rat
e o

f
com

me
rcia

l en
titie

s

Do
nat

ion
s b

y c
har

itab
le

org
ani

zat
ion

s
Av

aila
bili

ty o
f

truc
ks

+

%
of c

ons
ign

ees
 wi

th
acc

ess
 to

fun
ctio

nin
g c

ell
tow

er +

%
fun

ctio
nin

g
traf

fic
ligh

ts

+

%
of d

am
age

d o
r

des
tro

yed
 inv

ent
ory

Ext
ent

 of
fac

ilty
dam

age

Lac
k o

f co
ld

sto
rag

e

+

+

Av
aila

bili
ty o

f
equ

ipm
ent

 to
cle

ar
roa

ds

+

+

+

+

Do
nat

ion
s fr

om
 fam

ily
and

 frie
nds

 ov
ers

eas
+

%
wh

o s
uffe

red
 mi

nim
al

or
no

dam
age

 to
hou

sing
%

wit
h a

cce
ss t

o
tran

spo
rtat

ion

%
wit

h li
mit

ed
or

no
fam

ily
com

mit
me

nts

+

%
wh

o h
ave

 ac
ces

s to
foo

d a
nd

vita
l re

sou
rce

s

Or
der

s p
lac

ed
by

com
me

rcia
l en

terp
rise

s
+

+

+

Shi
ppi

ng
rate

 of
bre

ak
bul

k c
arg

o
+

+

+

Ac
ces

s to
 fue

l
+

Av
aila

bili
ty o

f
spa

re t
ires

+

+

+
+

-
Ab

ility
 to

use
 ele

ctro
nic

pay
me

nt m
eth

ods+

Re
turn

 of
em

pty
con

tain
ers

 to
ove

rse
as

loc
atio

n

Ra
te o

f pi
cku

p o
f

em
pty

 co
nta

ine
rs

Re
turn

 flo
w o

f em
pty

con
tain

ers

+

+
+

Fig. 2 A generic model of factors impacting port logistics operations and main points of failure
in the inbound supply chain in the immediate aftermath of Hurricane Maria based on challenges
faced in Dominica

An Approach to Improve Hurricane Disaster Logistics Using System Dynamics. . . 709

Overseas
suppliers /
distributors

Homeowners rebuilding
damaged or destroyed

housing

Freight
forwarders /

Consolidators
Shipping linesShipping rate

Port of entry
into disaster

zoneArrival rate

Retailers of
building
supplies

Rate of unloading and clearing
customs - wholesale/retail

orders -1

Purchase order
rate

Builder / contractor project management
skills (ability to estimate quantities,

delivery times, quality of materials) to
customers

Lean inventory
management practices

New building standards for
climate resilience requiring

increased quantities of materials

+
Estimate of parallel imports by
individuals customers rebuilding
damaged or destroyed homes+

Rate of unloading and
clearing customs of parallel

imports - 2

Order fulfillment
rate

Humanitarian
organizations

Rate of unloading and clearing
customs of humanitarian

materials - 3

Storage
Rate of unloading

and storing

Usage rate for
rebuilding by donors - 2

Supply rate from
retailers-1

Rate of customer
orders

+
+

Purchase /
requisition rate Local estimates of damage and

destruction of housing of
vulnerable populations

Fig. 3 A generic model identifying main points of failure in the reconstruction materials supply
chain following Hurricane Maria based on challenges experienced in Dominica

after the disaster from various sources, such as ship manifests, shipping agents’
paperwork, port and customs offices data, surveys of individuals, and social media
information. Both structured and unstructured data can be very useful in pre-
planning of disaster logistics for better performance. Understanding how the freight
data following a disaster compares to pre-disaster situations is fundamental to
planning the operational needs to facilitate an agile logistics system.

Tracking and Tracing Tracking and tracing of relief items in post-hurricane
disaster supply chains is essential to accelerate delivery to consignees and reduce
congestion at entry points. Quick Response (QR) codes have the advantage of
being used offline in disaster situations to expedite logistics operations. A pre-
designed form provided on the Internet that is accessible to donors following a
would keep the data in a consistent format. By scanning documents in pdf format,
information can be rapidly retrieved and a copy of the code saved to circumvent
formal processes (e.g., customs clearance) without losing pertinent information. QR
codes are easy to use with a smartphone and can provide a standard format for
providing information such as the complete name, address, and contact telephone
numbers of the sender and the consignees. QR codes have also been suggested for
use in tracking information on high-value assets commissioned for use in disaster
zones.

Centralized Information Systems for Use in Synchronizing Supply and Demand
One of the problems in the reconstruction phase is ensuring an uninterrupted
supply of building materials to repair destroyed buildings and infrastructure. These
problems appear to stem from the inability of businesses to forecast and schedule
material quantities to match customer demand. In Dominica, one of the authors

710 J.-M. Lawrence et al.

witnessed a shortage of 8-inch expanding bolts at every retail store 8 months after
Hurricane Maria as reconstruction material requirements surged. To mitigate the
stockouts, builders tried to help homeowners to obtain supplies from customers
who had unused materials after completing the renovation process. In Dominica,
difficulty in forecasting was likely exacerbated by (i) parallel imports of private
citizens who travelled overseas to secure materials themselves and (ii) new building
guidelines to improve building resilience. One way that this situation could be
alleviated is by maintaining a real-time centralized database that provides visibility
of inventory stocks of the basic building supplies used in high volumes, e.g., lumber,
steel, cement, roofing materials, bolts, hardware, windows, doors, and locks across
all retail stores. A recommendation is to develop a database that is updated in real
time based on insurance payouts, rebuilding material estimates, and incoming port
supplies. Allowances for government aid could also be factored in at a predefined
rate. Another recommendation is to create a crowdsourcing platform to allow private
citizens to post unused purchased supplies for sale to the public so that customers
requiring the inventory have an alternative opportunity to access the materials in
timely and less frustrating ways.

6 Conclusion

This paper addressed some of the logistics-related challenges of supply chains
following a large-scale hurricane disaster in the Caribbean, with specific focus
on port logistics and the re-construction supply chain. The paper took a systemic
view of post-disaster logistics in the aftermath of Hurricane Maria and proposed
opportunities for utilizing information and simulation technologies to better manage
the flow of inventory. There are, however, several other areas in which future
research can be conducted. This paper presents the beginning of further study on
the development of systemic models to improve efficiency, reduce risk, improve
synchronization, and apply systems thinking to manage logistics operations in
disaster situations. Future research opportunities include the application of new
technologies to integrate the supply chain to improve visibility and agility.

References

AON. 2018. Hurricane Maria Recap Report, AON Benfield. Retrieved from: http://
thoughtleadership.aonbenfield.com/Documents/20180328-ab-if-hurricane-maria-recap.pdf.

Balcik, B., B.M. Beamon, C.C. Krejci, K.M. Muramatsu, and M. Ramirez. 2010. Coordination
in humanitarian relief chains: Practices, challenges and opportunities. International Journal of
Production Economics 126: 22–34.

Bardouille, B. 2017. DASPA Calls for Telephone Numbers on Relief Barrels. Retrieved from:
https://dominicanewsonline.com/news/homepage/news/general/daspa-calls-for-telephone-
numbers-on-relief-barrels/.

http://thoughtleadership.aonbenfield.com/Documents/20180328-ab-if-hurricane-maria-recap.pdf
https://dominicanewsonline.com/news/homepage/news/general/daspa-calls-for-telephone-numbers-on-relief-barrels/

An Approach to Improve Hurricane Disaster Logistics Using System Dynamics. . . 711

Chopra, S., and M. Sodhi. 2014. Reducing the risks of supply chain disruptions. MIT Sloan
Management Review 55 (3): 73–80.

Christopher, M. 2016. Logistics and Supply Chain Management. 5th ed. Prentice Hall.
Cnc3.news. 2018. Confusion in Dominica Over Relief Supplies. Retrieved from:https://

www.cnc3.co.tt/news/confusion-dominica-over-relief-supplies.
Council of Supply Chain Management. 2018. Retrieved from: https://cscmp.org.
Coyle, J. J., C.J. Langley Jr., R.A. Novack, and B.J. Gibson. 2017. Supply Chain Management.

Cengage Learning.
Dominica News Online. 2017. Normalcy Returning to Woodbridge Bay Port Says Bar-

douille. DNO. Retrieved from: https://dominicanewsonline.com/news/homepage/news/general/
normalcy-returning-to-woodbridge-bay-port-says-bardouille/.

Dominica Vibes News. 2017. DASPA CEO needs empty containers removed from the port. DV.
Fayezi, S., and M. Zomorrodi. 2016. Supply Chain Management: Developments, Theories and

Models. In Handbook of Research on Global Supply Chain Management, 313–340. IGI Global.
Fisher, M.L. 1997. What is the Right Supply Chain for Your Product. Harvard Business Review.
Goentzel, J. (Moderator). 2017. Supply Chain Resilience: Restoring Business Operations After a

Hurricane. Summary Report, MIT Center for Transportation & Logistics.
Gomez, S.A. 2017. Dominica Working to Restore Power After Maria Granma. Retrieved from

http://en.granma.cu/mundo/2017-11-07/dominica-working-to-restore-power-after-maria.
Hohenstein, N.-O., E. Feisel, E. Hartmann, and L. Giunipero. 2015. Research on the Phenomenon

of Supply Chain Resilience: A Systematic Review and Paths for Further Investigation.
International Journal of Physical Distribution and Logistics Management 45 (12): 90–117.

Holguín-Veras, J., M. Jaller, L.N. Van Wassenhove, N. Perez, and T. Wachtendorf. 2012. On the
Unique Features of Post-Disaster Humanitarian Logistics. Journal of Operations Management
30: 494–506.

Koskinen, K.U. 2013. Systemic View and Systems Thinking, Knowledge Production in Organiza-
tions, 13–30. Springer.

Kunz, N., G. Reiner, and S. Gold. 2014. Investing in Disaster Management Capabilities Versus
Pre-Positioning Inventory: A New Approach to Disaster Preparedness. International Journal
of Production Economics 157: 261–272.

National Hurricane Center. 2017. www.nhc.noaa.gov/data/tcr/index.php?season=2017&basin=atl.
Neuman, S. 2017. In Devastated Dominica, “Hams” Become Vital Communications Link. NPR.

Retrieve from https://www.npr.org/sections/thetwo-way/2017/09/21/552649149/in-devastated-
dominica-hams-become-vital-communications-link.

Ozguven, E.E., and K. Ozbay. 2013. A Secure and Efficient Inventory Management System for
Disasters. Transportation Research Part C 29: 171–196.

Palin, P.J., L.S. Hanson, D. Barton, and A. Frohwein. 2018. Supply Chain Resilience and the 2017
Hurricane Season. CNA Analysis & Solutions in collaboration with the National Academy of
Sciences, Engineering, and Medicine.

Papadopoulos, T., A. Gunasekaran, R. Dubey, N. Altay, S. Childe, and S. Fosso-Wamba. 2016. The
role of Big Data in explaining disaster resilience in supply chains for sustainability. Journal of
Cleaner Production 142: 1108–1118.

Ponomarov, Y.S., and M.C. Holcomb. 2009. Understanding the concept of supply chain resilience.
The International Journal of Logistics Management 20 (1): 124–143.

Rey, F. 2001. The complex nature of actors in humanitarian action and the challenge of
coordination. In Reflections on Humanitarian Action: Principles, Ethics and Contradictions,
ed. Humanitarian Studies Unit. London: TNI/Pluto Press with humanitarian Studies Unit and
ECHO (European Commission Humanitarian Office).

Scholten, K., P.S. Scott, and B. Fynes. 2013. Mitigation Processes –Antecedents for Building
Supply Chain Resilience, Supply Chain Management. An International Journal 19 (2): 211–
228.

https://www.cnc3.co.tt/news/confusion-dominica-over-relief-supplies
https://cscmp.org
https://dominicanewsonline.com/news/homepage/news/general/normalcy-returning-to-woodbridge-bay-port-says-bardouille/
http://en.granma.cu/mundo/2017-11-07/dominica-working-to-restore-power-after-maria
http://www.nhc.noaa.gov/data/tcr/index.php?season=2017&basin=atl
https://www.npr.org/sections/thetwo-way/2017/09/21/552649149/in-devastated-dominica-hams-become-vital-communications-link

712 J.-M. Lawrence et al.

Simchi-Levi, D., P. Kaminsky, and E. Simchi-Levi. 2008. Designing and Managing the Supply
Chain, Concepts, Strategies, and Case Studies. 3rd ed. Irwin: McGraw Hill.

The Chronicle. 2018. “Containers Decreased”.
Unstructured Data from Social Media – Facebook posts (2017)
Van Wassenhove, L.N. 2006. Humanitarian Aid Logistics: Supply Chain Management in High

Gear. Journal of Operational Research Society 57 (5): 475–489.

Index

A
A2100 line of communications satellites, 557
Abstract reliability block, 318–319
Acknowledged SoS, 166, 543
Action Language Helper (ALH), 315
Adapter pattern, 87
Adaptive cruise control (ACC)

functional blocks, 430
QoS (quality of service)

ODA, 431
raw physical process, 431
torque values, 431

Adaptive multi-UAV systems, 178
Adaptive network-based fuzzy inference

system (ANFIS), 94
Adopted assurance case metamodel, 355
ADSLSat. Random creation, 481
Advanced Driver Assistance Systems (ADAS)

initial requirements development
CIB, 422, 423
Mission Plan (MP) document, 421

ISO 26262, 409
MBE process, 420, 421, 423, 424
MBE support for V&V, 425
simulation-based validation, 426–427
SOTIF scenarios

edge-case conditions, 420
and triggering conditions, 423–424

Advanced Driving Systems, 408
Advanced Reactor Modeling Interface (ARMI)

framework, 23
Advanced Surface Ship and Submarine

Evaluation Tool (ASSET), 210
Aerial Systems, 267
Aerobic fitness test (AFT), 444

Aerospace systems, 337
Affordable Care Act (ACA), 25
Agent-based modeling (ABM) approach, 532
Agent-based models, 200
Agile software development, 273
Air Line Pilots Association (ALPA), 623
Aircraft Owners and Pilots Association

(AOPA), 623
Alabama Experiment for Galactic-ray In-situ

Shielding (AEGIS), 276, 277
Alabama Space Grant Consortium, 275
Alerts and notifications, 522
All Payer Maryland model, 522
Allen’s Temporal Interval Calculus (ATIC),

169, 170
Analysis of alternatives (AoA), 266, 494, 495,

498
Application programming interface (API), 4, 5,

89
Architecting Innovative Enterprise Strategy

(ARIES) Framework, 620–622
enterprise landscape, 622
implementation plan, 622
infrastructure, 621
knowledge element, 621
product element, 621
stakeholders, 621

Architecture for Multi-criticality Agile
Dependable Evolutionary
Open System-72 of-Systems
(AMADEOS), 167

Architecture parsing, 86
Architecture patterns, MBSE models, 81–82

challenges, 88
demonstration, 89

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. M. Madni et al. (eds.), Recent Trends and Advances in Model Based Systems
Engineering, https://doi.org/10.1007/978-3-030-82083-1

713

https://doi.org/10.1007/978-3-030-82083-1

714 Index

Architecture patterns, MBSE models (cont.)
pattern matching software, 87
technical approach, 83–87

architecture parsing, 84
definitions, 85
detection, 85
visualization, 86–87

Artificial intelligence/machine learning
(AI/ML) models, 500

Ascendancy (ASC) measures, 505
Aspects of design (AD), 486
Aspects of manufacturing (AM), 486
Assurance case metamodel, 353
Assurance case templates, 416
Asteroid Redirect Mission (ARM), 555
Attribute language (AL), 168
Automated decision aid system (ADAS), 130
Automobile cruise control systems

ACC (see Adaptive cruise control (ACC))
autonomic manager, 421, 422, 430, 434
control-theoretic optimization approach,

431
in-vehicle CC system (see Autonomic

control of in-vehicle CC)
MVC (see Multi-vehicle cruise control

system (MVC))
system-level QoS, 431
usefulness measure, 432

Autonomic control of in-vehicle CC
declarative specs, 434
optimal setting, 432–434

Autonomic manager (AM), 421, 422, 430, 434
Availability configurations, 322
Avatar-based benchmarking, MVC, 438–439
Average Mutual Information (AMI), 505

B
Bad leverage points, 134
Basic Formal Ontology (BFO), 19, 20
Bayes’ theorem, 142
Behavioral and language semantics, 161
Bill of materials (BOM), 495
Block definition diagrams (BDDs), 546
Bottom-up approach, 604
Break-Out Board (BOB), 534–536
Building information management (BIM), 21

C
Cameo Enterprise Architecture toolkit, 549
Cameo Simulation Toolkit (CST), 315, 320,

471
Cameo Systems Modeler (CSM), 315

Care Coordination, 522
Care Management Services, 522
Centers for Disease Control and Prevention

(CDC), 521
Central Referral System (CRS), 518, 522, 523
Codification, 563
Codified design knowledge, 556
Collaborative SoS, 166, 543
Combination/ensemble models, 500
Comma-separated values (CSV), 22
Commercial off-the-shelf (COTS) solutions,

529, 655
Common function modules (CFM), 193, 194
Complementary cumulative distribution

(CCD), 612
Complex swarming systems, 606
Compositionality reasoning

analysis assertions, 592
context impacts, 597
coverage of systems science concepts,

599–600
dynamics analysis, 596, 598
levels of organization, 594, 597
pattern of organization, 596
planes of operation, 595
SKA radio telescope, 598
system behaviour, 594
tearing-linking-zooming, 593
variety, undesired variety and pathologies,

596
Concept of operations (CONOPS), 545, 547
Conceptual Lean Product and Process

Development (cLPPD) model, 202
Configuration Optimization of Next Generation

Aircraft (CONGA) project initiative,
209

Consent2Share consent management tool, 518
Constituent systems (CSs), 166
Constraint blocks, 319, 322
Constructive model-based simulation, 520
Consultative Committee for Space Data

Systems, 469
Containerization configuration, 11–12
Continental United States (CONUS), 507–510
Controller errors, 131
Control-theoretic optimization approach, 431
Coordinated flight architecture, 625–626
Cost methodology, 499
COSYSMO 3.0

Bayesian computation, 345–349
comparison of features, 346
elements of, 342–343
impact of process capability, 343
impact of shifting emphasis, 344–345

Index 715

least-squares vs. absolute deviation model
fitting, 349

symmetrical cost driver ratings, 349–350
Coverage of systems science concepts,

599–600
Crash Imminent Braking (CIB), 422, 423
Criteria selection, 376
Cross-disciplinary literature review, OASE

ambiguity, 633–634
optimal allocation problem, 634
organizational context, 634
role allocation, 633–634
role conflict, 633–634
Sheard and Helix study, 633
span of control (SoC), 634

CubeSat FMECA
challenges, 531
HYPSO CubeSat physical hierarchial

structure, 534
implementation

failure mode assessment, 535–536
FMECA workshops, 534–535
multiple subsystems, 534

MBSE, 531–532
reliability of, 530
risk matrix for BOB failure modes, 536

CubeSat Reference Model (CRM), 530, 537
CubeSats

imagery system architecture, 91–93
applications, 96–97
multi-image super-resolution, 94–95
research, 97–98
single-image super-resolution, 93–94

missions, 555
in SysML

ConOps, 478
COTS analysis/simulation tools,

480–481
CSM and MATLAB interaction, 482
data exchange between integrated

simulation tool and, 483
EIS SysML models, 476
ESEM, 477
MDA, 476
MDE, 476
model organization, 478
modeling system architecture

(physical)/internal
structure/subsystem communication,
479–480

operational requirements for, 479
OpReq-03, 481
purpose of, 483
RTS SysML model, 477

Space Situational Awareness, 477
SSA domain, 479, 480
STK, 478, 480–483
synchronization of SysML state

machine diagram with STK, 482
Customer relations management, 460

D
Data Curation Centre (DCC), 468
Data handling, 92
Data Integration Aggregated Model and

Ontology for Nuclear Deployment
(DIAMOND), 20

Data processing module (DPM), 193, 195
Davis Global Simulation Center, 520, 525–526
Deep likelihood network (DL-Net), 93
Defense Acquisition Guidebook, 454
Degree of system order, 504, 507, 509–510
Department of Defense (DoD), 55, 494,

543
Department of Energy, 22
Dependency structure matrix (DSM), 330
Description logic (DL), 168, 230, 239
Descriptive knowledge, 219
Design, development, and testing (DD&T),

554
Design efforts, 556
Design methodology, 246
Design of Experiments methodology, 244
Design space mapping, 210
Design structure matrix models, 200
Deterministic models, 114
Developing data flow diagrams (DFDs), 570
Development Capacity (DC), 505
Device under test (DUT), 536
Digital and model-based engineering (DMbE),

3
application

containerization configuration, 11–12
data encoding, 10–11
system components, 8
system interface, 8–10
Tradespace Analysis Tool for

Constellations, 7–8
large-scale software systems, 4
reference architecture, 4

data encoding, 7
system components, 5–6
system interface, 6

software development practice, 4
Digital doppelgängers, for healthcare policy

analysis, 25–26
model checking, 32

716 Index

Digital doppelgängers, for healthcare policy
analysis (cont.)

modeling strategy, 28–32
policy selection, 27–28

Digital engineering (DE), 200
Digital engineering ecosystem, for future

nuclear power plants, 16–17
development, design, 19
digital tools, 20–22
digital tools, integration of, 22–23
nuclear design ontology, 19–20
three laws of systems engineering, 17–19

Digital Engineering Strategy, 16, 57
Digital model-based systems engineering

(DMBSE), 656
Digital modernization, for systems engineering,

55–57
digital engineering goals, 57–58
interconnections, 65
proposal, 60–63
research challenges, 63

cultural inertia, 64
fear of the unknown, 64
lack of incentives to change, 64

virtual system, 57, 58
Digital Modernization Strategy, 63
Digital system model (DSM), 59, 61
Digital systems engineering ecosystem (DSEE)

distributed data flow, 659
expertise, 659
focus on core competence, 659–660
MBSE architecture, 658
MIDSTAR, 657, 661, 662
object-process methodology, 658
OPM modeling tool, 661–662
scalability and extendibility, 660
socio-technical organizations, 654
stakeholder requirements, 656, 659

Digital thread, 60
Digital twin technology, 37, 61
Directed SoS, 166, 544
Discrete Event System Specification (DEVS)

simulators, 477
Discrete-event simulation models, 200
Docker, 12
DoD Digital Engineering Strategy, 17
Domain engineering, 293
Dynamic causal hidden Markov model risk

assessment
Bayes’ theorem, 142
modeling construct and assessment

algorithm, 149
nomenclature, 142–144
observation clusters, 147–148

Pearl’s concept, 144
probabilities, evaluation of, 143
risk, 144

assessing of, 146–147
dynamic assessment of, 144
hidden Markov causality risk model,

144–146
risk analyses methods, 142
state-based models, 149

Dynamic network models, 200
Dynamic risk management for Smart Grids,

684

E
Earned value management system (EVMS), 22
Ecological fitness function, 507, 512
Ecological network analysis (ENA)

AMI, 505, 506
ASC, 505
DC, 505
definition, 505
ecological fitness function, 507, 512
human SoS, 506
modeling procedure, 506
Total System Throughput, 505

Electromagnetic interference (EMI), 550
Electronic health record (EHR), 28
Electro-optical (EO) imagery applications, 92
Employing digital twins within MBSE, 35–36

implementation, 41
methodology, 37–39
preliminary experiments, 39–41

Engineered Resilient Systems (ERS)
Tradespace Toolkit, 210

Engineering adaptive systems
ontology-enabled hardware-software

testbed for, 178
FlyZone, 180
gaps, in current approaches, 181–182
hardware-software testbed, 185
multi-UAV, 180
ontology-enabled approach, 182–185
robustness and reliability, 180
simulation techniques, 178, 179
TATUS, 180

Engineering artifacts, 568, 569, 571, 574–576
Engineering design rework, 199
Engineering models

descriptive models, 569
history, 568
predictive models, 569
prescriptive models, 569

Enterprise content management systems

Index 717

adoption ladder, 643, 644
concept exploration, 648–649
concept of operations, 649
feasibility study, 648–49
field installation, 650
operations and maintenance, 651
post-deployment systems engineering,

645–648
regional architecture, 648
software/hardware development, 650
subsystem verification, 650
system design, 649
system requirements document, 649
system validation, 651
system verification and deployment,

650–651
traditional systems engineering, 644–645
traditional “V process”, 648
unit testing, 650

Enterprise Information System (EIS) SysML
models, 476

Entry-descent-landing (EDL) subsystem, 147
Epistemic semantics, 161
European Aeronautic Defense and Space

(EADS) Airbus 380 program, 16
European Space Agency (ESA), 529
Executable System Engineering Method

(ESEM), 295, 477
Executable Systems Modeling Language

(ESysML), 304
attributes, 306
behavioral modeling, 309–310
characterization, 306
constraints, 306
dependency property, 307
elements and properties, 306
hierarchy of model elements, 307
hierarchy of property classes, 307
parameterization property, 307
simulation execution and data logging, 310
structural modeling, 308–309
textual syntax, 308
UML notation, 306

Exemplar POMDP model, 122–125
Expert system (rule-based) models, 500
Extensibility, 305

F
Failure detection, isolation, and recovery

(FDIR) analysis, 530
Failure Modes, Effects, and Criticality analysis,

314

Fault tree analysis (FTA), 536
Feature-oriented domain analysis, 293
Feature-Oriented Reuse Method (FORM), 293
Federal Aviation Administration (FAA), 542,

620
Feedback delays, 200
Financial burden, 244
Finite element analysis (FEA), 23
FlyZone, 180
Foundational Subset for Executable UML

(fUML), 478
Functional decomposition

evaluation dimensions
cognition evaluation dimension,

390–391
enabled reasoning evaluation

dimension, 391
representation evaluation dimension,

390
Hatley-Pirbhai template approach, 392–394
by inputs and outputs, 392, 395, 396
by matching physical architecture,

399–400, 402
navigate function, 403
object decomposition, 389
observations by engineering role

perspectives, 401
by operating modes, 392
by organizational structure, 395–399
by processing rates, 394–395
product lifecycle perspectives

designer architect, 391
integration and test, 391
product development, 391
sustainment, 391

strengths and weaknesses, 401
Functional flow block diagram (FFBD), 570
Functional Mock-up Interface (FMI), 477
Functional Mock-up Unit (FMU), 477
Future nuclear power plants, digital

engineering ecosystem for, 16–17
development, design, 19

digital tools, 20–22
digital tools, integration of, 22–23
nuclear design ontology, 19–20

three laws of systems engineering, 17–19

G
Gamification, 64
Gaussian mixture model (GMM), 148
GM’s Super Cruise, 419

718 Index

Goal structuring notation (GSN)
ASIL example, 409
benefits, 409–410
challenges, 410

Government Accountability Office (GAO)
reports, 200

Grade point average (GPA), 443
Graph-based architecture visualization, 86
Graphical evaluation, 200
Graphical syntax, 304
Graphical user interface (GUI), 172
Graphics processing module (GPM), 193, 195
Ground systems, 267

H
Hardware-software testbed, 182
Hatley-Pirbhai template approach, 392–394
Hazardous Event (HE), 411
Health information exchange (HIE), 518, 522
Health Insurance Portability and

Accountability Act (HIPAA),
26

Healthcare policy analysis, digital
doppelgängers for, 25–26

methodology, 27
modeling strategy, 28–32
policy selection, 27–28

model checking, 32
Healthcare system, 26

comprehensive healthcare simulation,
520–521

CRS, 518, 522, 523
current research and development

pathways community HUB model,
523–524

population health management,
521–522

prerequisites for healthcare learning
system, 523

risk registry, 524–525
Davis Global Simulation Center, 525
HIE, 518, 522
modeling and simulation, 516–517
risk factor registry, 519–520
UML sketch of transactions guarded by

consent management, 520
UML system design, 518, 519
value-based healthcare, 516

Heuristics for model curation, 75
Hidden Markov causality risk model, 144–146
Hidden Markov models (HMMs), 114–116,

145
Historical failure data, 687–688

Honeypot system
Markov decision process model, 101–103

algorithms for, 103–104
finite planning horizon, data analytics,

106
infinite planning horizon, data analytics,

106–107
state transition matrix and reward

matrix, 105
structure, 104
transition probability parameters, data

analytics, 107–108
transition reward parameters, data

analytics, 109, 110
HR management, 460
Hubble Space Telescope (HST), 18
Human-system interface, 41
Hurricane disaster logistics

capacity constraints at entry points, 705
catastrophic situations, 700–701
centralized information systems, 709–710
conceptual approach, 704
data analytics, 707–708
inbound supply chains, 705
lack of synchronization, 706
literature review, 702–704
parallel imports, 706
post-disaster logistics operations, 707, 709
retail inventory, 706
reverse logistics of empty containers, 706
security challenges, 706
storage constraints, 706
supply chain management, 701, 704–707
tracking and tracing, 709

HyperSpectral Imager (HSI), 534
HYPer-spectral Smallsat for ocean Observation

(HYPSO) satellite, 530
HyperText Transfer Protocol (HTTP) service,

5, 6
Hypothetical hostiles’ surveillance SoS

degree of system order of SoS architectures,
509–510

disruptions, 508–509
on-site surveillance systems, 507
operational costs, 508
performance level, 508, 509
recoverability to cost ratio, 510, 511
SoS architecture, 509
window of vitality, 504–507, 511
worst-credible SoS performance levels,

510
HYPSO CubeSat physical hierarchial structure,

534
HYPSO satellite, 531

Index 719

I
IBM Jazz Engineering Lifecycle Management

software, 21
IBM Rational Unified Process (RUP), 572
Inclusion and exclusion criteria, 245–246
INCOSE journal publication, 580
INCOSE Object-Oriented Systems

Engineering Method (OOSEM), 334
Inertial Navigation System (INS), 388, 392,

394, 399, 402
Information ambiguity, 200
Information and Graph Theory, 504
Information uncertainty, 200
INFRABEL, 130, 132, 133, 135
Inheritance, 554, 557–561
Instant set-based design (ISBD), 210
Integrated Computer-Aided Manufacturing

(ICAM), 570
Integrated Model-Based Engineering (iMBE)

project, 464–466
Integrated modular avionics (IMA), 193–196
Intelligent Transport Systems, 439
Inter-model constraints, 359
International Council on Systems Engineering

(INCOSE), 314, 367, 530, 572
Interoperability and Integration Framework

(IoIF), 464, 466–467
Intrusion detection and prevention system

(IDPS), 102
Intrusion detection system (IDS), 101, 102
ISO 26262 Standard, 353, 420

J
JavaScript Object Notation (JSON), 6
Joint Surveillance and Target Attack Radar

(JSTAR) aircrafts, 507
Journal sources, 245
JPL State Analysis (SA), 334

K
Knowledge graph, 568
Knowledge representation and reasoning

and description logic (DL) semantics,
230–233

descriptive and procedural knowledge, 219
engineering systems, 230–231
epistemic modal logic

semantics for, 220–223
syntax for, 220

evaluation of inconsistencies, 225–226
feasibility analysis, 219
formal knowledge representation, 218
mathematical foundations, 233–234

model-centric approaches, 218
semantic platform, 234–235
state of knowledge of multiple agents,

224–225
state of knowledge of single agent, 223–224
system configurations, 234, 235
web ontology language (OWL), 232

L
Lane management system, 355
Large-scale software systems, 4
Lean Product and Process Development

(LPPD), 202
Lean Six Sigma Green Belt project, 471
Lifecycle Modeling Language (LML), 19, 20
Linear programming (LP), 103
Live simulation, 520
Live, virtual, and constructive (LVC)

simulation, 520
LN-39. See also Functional decomposition

inputs and outputs, 392, 395
navigate function, 403
object decomposition, 389
operating modes, 392, 393
physical architecture, 399–400
processing rates, 394–395
system description, 388

Longest path problem (LPP), 210
Low-altitude urban airspace, sUAS

ARIES framework, 620–622
beyond visual line of sight (BVLOS), 625
coordinated flight architecture, 625–627
current architecture, 624
enterprise landscape, 622–624
LAANC system, 624
UAS Facility Maps (UASFM), 624
UTM network, 627

M
Machine learning, 161
MagicDraw, 82, 87, 88, 477, 667
Manufacturability Assessment Knowledge-

based Evaluation (MAKE)
BOM, 495
challenges in early life cycle assessments,

497–498
existing methodology and tool features,

495–496
MAKE 2.0

subjective to objective analysis,
499–500

tradespace exploration, 498–499
Milestone C, 494–495, 501

720 Index

Manufacturability Assessment Knowledge-
based Evaluation (MAKE)
(cont.)

prescriptive measures for decision-making,
496–497

strategy of, 495
subject matter experts, 497–501

Manufacturability interaction matrix (MIM),
486, 495

Markov decision process (MDP) model,
114–117, 210

Honeypot system, 101–102
algorithms for, 103–104
finite planning horizon, data analytics,

106
infinite planning horizon, data analytics,

106–107
state transition matrix and reward

matrix, 105
structure, 104–105
transition probability parameters, data

analytics, 107–109
transition reward parameters, data

analytics, 109–110
Markovian models, 114
Mass memory module (MMM), 193
MATLAB, 28, 31, 32
Medication Management, 522
Meta-data information types, 585–589
Metamodels, 153–157, 556, 573
mfinder, 612
MIDSTAR, 657–662
Milestone C assessment, 494–495, 501
Military academy Doolie cadet system

AFT, 444
categories of assessment, 443
military training, 442, 443
“Minutes” training, 444
PFT, 444
ROEs, 443
USAFA, 442–443, 446, 449, 450
Vee model

advantages, 445
allocating system functions to

subsystems, 446–447
detailed design of components, 447–448
impact, 450–451
system operation and verification,

449–450
system requirements, 446
systems engineering, 445–446
verification of subsystems, 449
verifying the components, 448–449

Military performance average (MPA), 443

Military-directed SoS
prototype application, 173
simplified time-based reasoning

scenario,173–175
Minimum viable model (MVM), 154–155

modeling heuristics, 158–160
ontology and metamodel, 155–157
real-world interoperability problem,

160–162
Mission of interest (MOI), 558
Mission Plan (MP) document, 421
MITRE Corporation, 28
MMINT-A

automotive domain, 352
screenshot of, 354

Model confidence, 70
Model credibility, 67–69

model confidence and trust, research on,
73–74

overall credibility, research on, 74
and research, 76
and simulations, 68–73
website credibility, 71–73

Model curation, 68–69
at Armaments Center

benefit, 471
future research, 472–473
metadata, 471, 472
procedure map, 470, 471
purpose for, 470
review and piloting procedure, 471

comparison of model governance and,
469–470

definition, 467–468
heuristics for, 75–76
pioneers, 468–469
and research, 76
scientific and research purposes, 467
toward design guidelines for, 74–75

Model fidelity, 36, 37, 196, 200, 212, 426, 465,
568

Model governance, 305
Model-based engineering (MBE) process, 420,

424, 425, 427
Model-Based Product Line Engineering

(MBPLE), 294–295
Model-based systems engineering (MBSE),

26, 46, 83, 154, 190, 191, 218, 244,
292–294, 314, 654, 658

architecture patterns in, 81–83
challenges, 88
demonstration, 89
pattern matching software, 87

benefits of, 325

Index 721

change management methods
change control board (CCB), 274
configuration management

responsibilities, 273
document-based approach, 272
limitations, 271
NASA’s configuration change process,

270, 271
OMG MOF versioning specification,

274
potential change control process for,

275
Systems Modeling Language (SysML),

272
CubeSat FMECA, 532
detailed approach, 326–328
economic analysis of, 328–329
employing digital twins within, 35–36

implementation, 41
methodology, 37–39
preliminary experiments, 39–41

identification of feasible architecture,
262–263

importance and adoption, 577
pareto-optimal portfolios, 263, 264
primary methodology, 326
representations of output data, 263–265
rerunning analysis and simulations, 270
technical approach, 83–85

architecture parsing, 86
definitions, 85
detection, 86
visualization, 86–87

Model-based testing, 244
Model-centric engineering, 200
Model-Driven Architecture (MDA), 476
Model-Driven Engineering (MDE) tooled

approach, 477
Model-driven safety of autonomous vehicles

GSN (see Goal structuring notation (GSN))
safety assurance, 407
WF+ (see Workflow+ (WF+))

Modeling and simulation (M&S), 56
Model-related costs, 334
Modular Open Systems Approach (MOSA)

barriers, 258–259
decision support framework

enterprise architecture model, 262
integrated decision-making, 261–262
mission engineering and early-stage

acquisition contexts, 259–260
quantitative and qualitative analysis,

260–261
implementation, 258

MongoDB, 12
Multi-attribute decision-making (MADM), 374
Multicriteria decision-making (MCDM), 371
Multi-image super-resolution (MISR), 94–95,

97
Multi-vehicle cruise control system (MVC)

avatar-based benchmarking, 438–439
configuration search algorithms, 437–438
functional modules, 435
modeling aspects, 435–436
optimal configuration, 436–437

Myoelectric prostheses, 383
closeness coefficients, 381–382
EMG signals, 372
fuzzy evaluation matrix, 378–380
fuzzy logic, 372
fuzzy TOPSIS algorithm/analysis, 374–375
mechanical, electrical, and

communications, 372
Pareto-optimal solutions, 372
requirement analysis and criteria selection,

376–377
system architecture, 377
system requirements, 376
systems engineering tools, 373

N
NASA Systems Engineering Research

Consortium, 580, 585
National Aeronautics and Space

Administration (NASA), 529,
530, 532, 537

National Defense Strategy (NDS), 56
Negative ideal solution (NIS), 374
Net present worth (NPW), 333
Network motifs

average and the standard deviation, 611
CCD curves, 614, 615
complex network, 608
correlation analysis, 612
design methodology, 604–607
H-bridge circuit model, 604, 605
mfinder, 612
motif 3B in simulation 8, 611
network properties of simulation 8, 610
proposed approach, 606
simulation 8 properties, 616
standard deviation, 611
swarm foraging system, 607–608
two-dangling nodes, 615
types of, 613

Network support module (NSM), 193
Neural network (NN), 102

722 Index

Non-exhaustive parameter sampling
techniques, 425

Normalization, 375
Norwegian University of Science and

Technology (NTNU), 530, 531, 534
N-Step Look-Ahead online value estimation

algorithm, 121–122, 125
NTNU HYPSO mission, 534
Nuclear design ontology, 19–20

O
Object constraint language (OCL)

assurance cases, 356–358
expressions on models, 354

Object Management Group (OMG), 83, 572
Object-Oriented Systems Engineering Method

(OOSEM), 572
Object-Oriented Systems Engineering Object-

Oriented Systems Engineering,
555–556

Object-Process Methodology (OPM), 334, 572
Observe-decide-act (ODA), 431
Office of the Deputy Assistant Secretary of

Defense (ODASD), 463
Officer Training School, 442
Offline algorithms, 118
OMG SysML-Modelica working group, 477
Onboard Processing Unit (OPU), 534
Online policy estimation algorithm, 121–122
Ontology, 153, 155, 572, 576

assisted approach, 296
enabled approach, 182–185
enabled hardware-software testbed

for engineering adaptive systems, 178
FlyZone, 180
gaps, in current approaches, 181–182
hardware-software testbed, 184, 185
multi-UAV, 181
ontology-enabled approach, 182–185
robustness and reliability, 180
simulation techniques, 179
TATUS, 180

for system reconfiguration, 189–190
domains, 190
integrated modular avionics, 193–196
model-based approach, 191
object-oriented model, 191
OSysRec, 192–193, 196
structural aspect, 191

Open archival information system (OAIS), 469
OpenMBEE environment, 666–668
Open-source software (OSS), 476
Operation Requirement-03 (OpReq-03), 481

Operational scenarios vs system states
operational conditions, 286–287
problem statement, 282–2883
system model flagged, 283–285

Organizational architectures for systems
engineers (OASE)

cross-disciplinary literature review
ambiguity, 633–634
optimal allocation problem, 634
organizational context, 634
role allocation, 633–634
role conflict, 633–634
Sheard and Helix study, 633
span of control (SoC), 634

elements list, 635–637
mapping systems engineers, 635
mathematical underpinnings, 632
organizational value, 635
satisfaction function, 639
systems engineer, 334

Organizational misalignment, 200
Orion’s Exploration Flight Test 1 (EFT-1), 555
Orthogonal outliers, 134
OSysRec ontology, 190–193
Overall performance average (OPA), 443

P
Pareto frontier plot, 263
Pareto-optimal, 47
Partially observable markov decision processes

(POMDP), 102, 110, 115, 117–119,
575

Pathways Community HUB model, 523–524
Pattern matching software, 87
Payload (PLD) subsystem, 534
Peak signal-to-noise ratio (PSNR), 95
Physical artifacts, 556
Physical education average (PEA), 443
Physical fitness test (PFT), 444
Physical quantity theory, 171
Physics of failure (POF) reliability. See

Reliability Decision Framework
(RDF)

Physics-based models, 500
Planes of operation

identity management and governance
plane, 595

life cycle management plane, 595
operational control plane, 595
operational plane, 595
resources and structural facilitation plane,

595
systems modelling concept, 596

Index 723

Planning horizon, 103
Point-based design (PBD), 200
Policy iteration (PI), 103
Population health management, 521–522
Porter’s Healthcare Value, 523
Power conversion module (PCM), 193, 195
Prevention Link, 521
Prevention Programs, 522
Prince George’s County Health Department,

521
Principal component hyperplanes (PCs), 132
Probabilistic risk assessment (PRA), 143
Probabilistic system modeling, 114–115

exemplar POMDP model, 122–125
initializing new hidden states, 120
Markov decision processes, 116–117
Markov models and hidden Markov

models, 115–116
N-step look-ahead, 121–122
optimal policy, 120
partially observable markov decision

processes, 117–119
reward function, 120
state space, 119

Procedural models, 202
Procurement management, 459
Product development, 245–247
Product lifecycle management, 460
Product Line Engineering (PLE) methods,

292
Program Management, 522
Project

cost, 460
risk management, 458–459
schedules, 459
scope, 459–460

Project managers and systems engineers
confirmability, 456
content analysis process, 456–457
joint project management, 457
management processes by, 458
overlapping management processes

HR management, 460
procurement management, 459
project cost, 460
project schedules, 459
project scope, 459–460
risk management, 458–459
systems engineering processes, 459

recommendations, 460–461
systems engineering management, 454, 455
trustworthiness of qualitative study

findings, 456
validity criteria failure

customer relations management, 460
product lifecycle management, 460

Python, 304, 308, 309, 315, 476, 478

Q
Q-learning, 103
Quality Function Deployment (QFD), 376
Quantitative and qualitative analyses, 314
Quasi-random Technique (QRT), 425

R
Radars, 549
Railway Transportation System (RTS) SysML

model, 477
Rapid Ship Design Environment (RSDE), 210
Raw physical process (RPP), 431
Rayleigh criterion diffraction-limited

resolution, 95
Recoverability, 410, 411
Recoverability to cost ratio (RCR), 511
Reference architecture, 4
Reference models, 573
Referral Management, 522
Relevance_percentage value, 481
Reliability, 322
Reliability, availability, and maintainability

(RAM)
analysis, 532–534
attributes, 313
systems engineering (RAM-SE)

framework, 530, 532, 533, 536
Reliability constraint blocks, 317
Reliability Decision Framework (RDF)

auxiliary power unit (APU), 693, 694
critical system application, 693
decision flowchart, 691
level of complexity, 691–692
operational life requirements, 692–693
relevant historical data, 690, 691
reliability prediction approach, 690, 691
system design process, 6994
system-level functional analysis, 690, 695

Reliability/availability modeling, 319
Representational state transfer (REST), 4, 22
Reserve Officer Training Corps (ROTC)

program, 442
Resilience, 504
Return on investment (ROI), 333
Reuse candidate elements (RCEs), 559–560
Reuse candidate missions (RCMs), 559–560
Review technique network models, 200
RGB camera (RGB), 534

724 Index

Rhapsody, 88
Risk factor registry, 519, 520
Risk Priority Number (RPN), 535
RoboFlag game, 180
Robust principal component analysis

(ROBPCA), 133–135
Rolls-Royce internal organization, 211
Rolls-Royce Set-Based Design (RR-SBD)

model, 209
RPO input data, 266–267
RR-LeanPD model, 209

S
Safety of the Intended Functionality (SOTIF),

420, 421, 423–5, 427
Satellite robotic arms

ontology models for, 236–237
robotic arm architectural configurations,

236
system configuration and reasoning,

237–238
Satellite Surveillance Systems, 267
Scaling factors, 487
Scenario creation tool, 184
Scheduling appointments, 522
Science Applications International Corporation

(SAIC), 469
SCOPUS electronic database, 245
The SE Handbook, 454
Search processing stages, 246
Semantic mappings, 161
Semantic Web, 161
Set-based concurrent engineering (SBCE),

201
Set-based design (SBD), 46–47, 200, 203

author-provided keywords, 49–50
benefits, 47–48
critical component of, 47
knowledge gaps and research opportunities,

52–53
literature review methodology, 48–49
literature review research areas analysis,

50–51
methodologies, 46
point-based design and, 48

Shannon Index, 505
Ship-to-Shore Connector (SSC) project, 210
Signal of failure (SYSFAIL), 195
Signal processing module (SPM), 193
Simulation models, 297–298
Simulation-based validation of ADAS, 426
Simulations model credibility, 69–71
Simulink, 296, 298, 299

SIMULINK module, 430, 433, 436
Simulink utilizing modern techniques, 476
Single-image super-resolution (SISR), 93–94
SKA radio telescope, 598–599
Small Surface Combatant Task Force (SSCTF),

210
SME-based manufacturability assessment

scoring
AIAG rule of thumb scale with scoring

scale, 488
case study data, 489–491
future work, 491–492
manufacturability definition, 485
MIM, 486, 495
normalized weighting strategy, 487–488
scaling factors, 487
scoring guidelines, 487
swing weight matrix, 486–489
value model, 487
weighting background, 487

Sociotechnical systems (STSs), 130
controller behavior, 137
data-intensive methods, 137
extreme operational conditions

descriptive statistics of, 135–136
identification of, 136

methodology
data, 132–133
robust principal component analysis,

133–135
operational conditions, 131
performance of, 131

Software cybernetics, 439
Space industry

MBSE
compatibility assessments, 561
enumeration of implementation, 562
future work, 563
limitations, 563
and reuse, 556–557
SSWG, 555

technical inheritance
candidate element compatibility,

559–560
formal decomposition hierarchy, 559
generate technical inheritance

recommendation, 561
mission of interest, 558
RCEs, 558–559
RCMs, 558–559
rework effort, 559
SysML activity diagram, 557–558, 560

Space Launch System (SLS), 555
Space Situational Awareness, 477

Index 725

Space Systems Working Group (SSWG), 530,
555

Span of control (SoC), 634
Specialization relationship, 319
Stanford University Persuasive Technology

Lab, 71
State Model Object (SMO), 167
Structured Analysis and Design Technique

(SADT), 570
Subject matter experts (SMEs), 144, 486–489,

497–501
Sub-pixel motion, 95
Sum of normalized distances (SND), 95
Super-resolution (SR), 93
Supply chain management, 701, 702, 704–707
Swarm foraging system, 607–608
Swing weight matrix, 486–489
Synthea, 28, 29, 32
Synthesis, analysis, and evaluation (SAE) loop,

448
“SysML4Modelica” profile, 296, 477
SysPhS, 296
System autonomy, 580, 582–583
System composition, 318
System dynamic models, 200
System of systems (SoS), 53, 541, 542

capabilities, 503
definition, 503
surveillance SoS (see Hypothetical hostiles’

surveillance SoS)
System reconfiguration (SR), 190–191

domains, 191
integrated modular avionics, 193–196
model-based approach, 191
object-oriented model, 191
OSysRec, 191–193, 196
structural aspect, 190–191

System reliability/availability parametric
diagram, 321

Systems Development Life Cycle, 465
Systems engineering (SE), 153, 190, 305

characteristics of, 576
chronology of models, 569, 570
description approach, 678–680
design structure matrix, 570
DFDs, 570
DRA requirements, 678, 679
evolution, 572–573
FFBD, 570
key dimensions of, 678
knowledge graph, 572–573
management, 454, 455
MBSE, 571–572
metamodels, 572–573

methodologies, 45
ontologies, 572–573, 576
power grid management

dynamic risk estimation, 683
operator, 682–683
overview, 680–681
proposed architecture, 681–682

pre-2005 model and today model
comparison, 575

processes, 458–460
proposed approach, 684
reference models, 573
risk analysis, 676–677
SADT, 570
scope of, 576
SE community, 571, 572
specificities, 678
three laws of, 17–18

Systems Engineering Advancement Research
Institute (SEARI), 467, 468, 470,
472

Systems engineering, digital modernization
for, 55–57

digital engineering goals, 57–58
interconnections, 65
proposal, 60–63
research challenges, 63

cultural inertia, 64
fear of the unknown, 64
lack of incentives to change, 64

virtual system, 58
Systems Engineering Directorate, 464
Systems Modeling Language (SysML), 28,

210, 272, 293–294, 303, 545–549,
572

behavioral and structural models, 280
block definition diagram (BDD), 317,

478
elements, 315
internal block diagram, 478
interpretation discrepancies in

empirical studies, 364–369
potential semantic misinterpretations,

363–364
semantic vulnerabilities, 362

modeling tool
ASRM Framework, 670, 671
derived profile, 669–670
engineering approach, 666
formal documentation assignments,

672
issues and disadvantages, 673
Model Management System (MMS),

666

726 Index

Systems Modeling Language (SysML) (cont.)
OpenMBEE environment, 666–668
project ontology ecosystem under BFO,

668–669
research project model, 670–672
semantic representation and reasoning,

672
View Editor, 670, 671

requirement element and requirements
diagram, 270

sequence diagram in, 29
strategies for, 32

Systems of systems (SoS), 157, 165, 580,
582–583

description logics semantics, 168
military-directed SoS, prototype

implementation in
prototype application, 173
simplified time-based reasoning

scenario, 173–175
time modeling in, 166–167
time-based modeling and reasoning

framework for
concepts and calculus for, 169–170
system architecture, 170–172

Systems Tool Kit (STK), 478, 481–483

T
Tasks/Activity Management, 522
TAT-C Knowledge Base (KB) module, 7
Tearing-linking-zooming, 593
Technical inheritance process, 557–561
Technique for Order of Preference by

Similarity to Ideal Solution
(TOPSIS), 374

Technology readiness level (TRL), 531
Template Model Framework, 532
Temporal knowledge, 171
Tesla, 62–63
Tesla’s AutoPilot, 419
Test

design, 250–251
objectives, 249–250
process perspective, 247, 248
strategy, 248–249

Time modeling in systems of systems, 166–167
Total System Throughput (TSTp), 505
Traceability, 414
Tradespace Analysis Tool for Constellations

(TAT-C), 7–8
Tradespace Analysis Tool for Constellations

Knowledge Base (TAT-C KB), 4
Tradespace exploration, 498–499

Traditional systems engineering, 269, 644–645
Traditional vs. post-deployment systems

engineering, 645–648
Traffic Control Centers (TCCs), 130
Transdisciplinary systems engineering

approach
concept of, 580
elegant systems, 581–582
embedding, 587
hidden truths, 584, 585
INCOSE journal publication, 580
meta-data information types, 585–589
stakeholders, 586, 587
storytelling, 583–585
system autonomy, 582, 589
systems of systems (SoS), 580, 582–583

Transmission Control Protocol (TCP), 22
True model-based requirements (TMBR), 285

U
UAS Package Delivery Service (UPDS),

543
UAS traffic management (UTM) system

development approaches and strategies,
544–545

MBSE elements, 545–546
for package delivery, MBSE

coverage map of Madison County, 549
parametric diagram, 548
physics-based modeling, 548
proposed MBSE approach, 546
radar transmission range, 548, 549
system-level design, 547, 548
system-of-systems level design, 547

scope and objectives, 542, 543
state of art, 543
system of systems, 543, 544

Uncertainty resolution methods, 47
Unified Modeling Language (UML), 83, 272,

303, 545, 573
system design, 518, 519
transactions guarded by consent

management, 520
Uniform of the day (UOD), 444
Uniform Resource Locator (URL), 6
United States Air Force Academy (USAFA),

442, 443, 446, 449, 451
Unmanned aerial vehicles (UAVs), 39–41, 149,

177, 178
Unmanned aircraft system (UAS)

future work, 549, 550
SoS, 543, 544
USSs, 542, 544, 547, 549

Index 727

UTMSs (see UAS traffic management
(UTM) system)

Unmanned ground vehicles (UGVs), 177
Unmanned Service Suppliers (USSs), 542,

544, 547, 549
US Air Force (USAF), 59
US Army Armaments Center

digital engineering
iMBE at AC, 465–466
IoIF, 466–467
MBSE at AC, 464–465

model curation (see Model curation)
US Army Combat Capabilities Development

Command (CCDC) Armaments
Center (AC), 463

USAF standard navigator (ENAC 77–1), 388

V
Value iteration (VI), 103
Value model development, 487
Value-based healthcare, 516
Variation points, 294
Vehicle identification number (VIN), 61, 63
Venn diagrams, SBD, 52
Verification and Validation (V&V) of

automotive systems, 425
Versatile Test Reactor (VTR) program, 19, 23
Virtual design and construction (VDC), 17
Virtual private network (VPN), 22
Virtual prototype, 246
Virtual simulation, 41, 520

Virtual SoS, 166, 543
Virtualization, 56

W
Web ontology language (OWL), 166, 230
Web-based application, 87
Website credibility, 71–73
Window of vitality, 504, 505, 507, 512
Workflow+ (WF+)

advantages
automation, 415–416
change impact analysis, 414–415
improved traceability, 414
integrating assurance with development,

415
making assurance less ad hoc, 413–414
templates, 416

building arguments, 412413
Hazardous Event (HE), 411
metamodels, 410, 411
refined version, 412
risk assessment process, 411
semantic constraints, 412
syntactic constraints, 412

World Wide Web Consortium (W3C), 171

X
XML Metadata Interchange (XMI), 84
XReality, 526

	Preface
	Contents
	About the Editors
	Part I MBSE and Digital Engineering
	Toward a Reference Architecture for Digital and Model-Based Engineering Information Systems
	1 Introduction
	2 Background
	3 Proposed Reference Architecture
	3.1 System Components
	3.2 System Interface
	3.3 Data Encoding

	4 Example Application Case
	4.1 Tradespace Analysis Tool for Constellations (TAT-C)
	4.2 System Components
	4.3 System Interface
	4.4 Data Encoding
	4.5 Containerization Configuration

	5 Conclusion
	References

	Digital Engineering Ecosystem for Future Nuclear Power Plants: Innovation of Ontologies, Tools, and Data Exchange
	1 Introduction
	2 Three Laws of Systems Engineering
	3 Development of Digital Engineering Ecosystem for Nuclear Power Design
	3.1 Nuclear Design Ontology
	3.2 Deployment of Digital Tools
	3.3 Integration of Digital Tools

	4 Summary and Path Forward
	References

	Introducing Digital Doppelgängers for Healthcare Policy Analysis
	1 Introduction
	2 Methodology
	2.1 Policy Selection
	2.2 Modeling Strategy

	3 Model Checking
	4 Conclusion
	References

	Employing Digital Twins Within MBSE: Preliminary Results and Findings
	1 Introduction
	2 Methodology
	3 Preliminary Experiments
	4 Implementation
	5 Summary
	References

	A Review of Set-Based Design Research Opportunities
	1 Introduction
	2 Set-Based Design
	2.1 Description
	2.2 Benefits

	3 A Review of the Current State of Set-Based Design
	3.1 Literature Review Methodology
	3.2 Description of Author-Provided Keywords
	3.3 Analysis of Literature Review Research Areas

	4 Discussion on SBD Knowledge Gaps and Future Research Opportunities
	5 Conclusion
	References

	Digital Modernization for Systems Engineering
	1 Introduction
	2 Background
	3 Proposal
	4 Discussion and Open Research Challenges
	4.1 Cultural Inertia
	4.2 Fear of the Unknown
	4.3 Lack of Incentives to Change

	5 Conclusion
	References

	Investigating Model Credibility Within a Model Curation Context
	1 Introduction
	2 Model Curation
	3 Model Credibility
	3.1 Credibility of Models and Simulations
	Assessment of Credibility of Models and Simulations

	3.2 Website Credibility
	3.3 Recent Research on Model Confidence and Trust
	3.4 Recent Research on Overall Credibility

	4 Toward Design Guidelines for Model Curation
	4.1 Heuristics for Model Curation

	5 Conclusion and Further Research
	References

	Part II Modeling in MBSE
	Automated Detection of Architecture Patterns in MBSE Models
	1 Introduction
	2 Technical Approach
	2.1 Architectural Pattern Definitions
	2.2 Architecture Parsing
	2.3 Architecture Pattern Detection
	2.4 Architecture Visualization

	3 Results and Discussion
	4 Conclusion
	References

	A Survey of Super-Resolution Techniques for a Potential CubeSat Imagery System Architecture
	1 Introduction
	2 Single-Image Super-Resolution
	3 Multi-image Super-Resolution
	4 Applications to CubeSats
	5 Conclusion and Future Research
	References

	Data Analytics of a Honeypot System Based on a Markov Decision Process Model
	1 Introduction
	2 Methods
	2.1 Markov Decision Process
	2.2 Algorithms for Solving the Markov Decision Process

	3 A Markov Decision Process Model of a Honeypot System
	3.1 The MDP Model Structure
	3.2 The State Transition Matrix and the Reward Matrix

	4 Data Analytics of the Honeypot System and Results
	4.1 Data Analytics of the Honeypot System over a Finite Planning Horizon
	4.2 Data Analytics of the Honeypot System over an Infinite Planning Horizon
	4.3 Data Analytics of the Honeypot System with Various Transition Probability Parameters
	4.4 Data Analytics of the Honeypot System with Various Transition Reward Parameters

	5 Conclusion and Future Work
	References

	Probabilistic System Modeling for Complex Systems Operating in Uncertain Environments
	1 Introduction
	2 Review of Markov Models and Decision Processes
	2.1 Markov Models and Hidden Markov Models (HMMs)
	2.2 Markov Decision Processes (MDPs)
	2.3 Partially Observable Markov Decision Processes (POMDPs)

	3 Proposed POMDP and Solution
	3.1 Initializing New Hidden States
	3.2 N-Step Look-Ahead (Online Policy Estimation Algorithm)

	4 An Exemplar POMDP Model
	5 Summary and Future Work
	References

	Identification of Adverse Operational Conditions in Sociotechnical Systems: A Data Analytics Approach
	1 Introduction
	2 A Concise Literature Review
	3 Methodology
	3.1 The Data
	3.2 The Robust Principal Component Analysis

	4 Results and Discussion
	5 Conclusion and Future Work
	References

	Dynamic Causal Hidden Markov Model Risk Assessment
	1 Introduction
	2 Risk
	2.1 Hidden Markov Causality Risk Model
	2.2 Assessing Risk

	3 Observation Clusters
	4 Conclusions and Future Prospects
	References

	Part III Use of Ontologies in MBSE
	Minimum Viable Model to Demonstrate Value Proposition of Ontologies for Model-Based Systems Engineering
	1 Introduction
	2 Minimum Viable Model (MVM)
	3 Ontologies and Metamodels in MVM
	4 MVM Modeling Heuristics
	5 A Real-World Interoperability Problem
	6 Concluding Remarks
	References

	Ontological Modeling of Time and Time-Based Reasoning for Systems of Systems
	1 Introduction
	2 Models, Frameworks, and Semantics for Knowledge Representation of Time in Systems of Systems
	2.1 Time Modeling in SoS: Need for Semantics and Existing Frameworks
	2.2 Description Logics (DL) Semantics

	3 A Time-Based Modeling and Reasoning Framework for SOS
	3.1 Concepts and Calculus for SoS Time Ontological Modeling and Reasoning
	3.2 System Architecture and Description

	4 Prototype Implementation in Military-Directed SoS: Eye in the Sky
	4.1 Overview
	4.2 Illustration of a Simplified Time-Based Reasoning Scenario

	5 Conclusion and Future Work
	References

	Ontology-Enabled Hardware-Software Testbed for Engineering Adaptive Systems
	1 Introduction
	2 Review of Current Approaches to Engineering Multi-UAV Systems
	3 Gaps in Current Approaches
	4 Ontology-Enabled Approach
	5 Summary and Future Work
	References

	An Ontology for System Reconfiguration: Integrated Modular Avionics IMA Case Study
	1 Introduction
	2 Literature Review
	3 Overview of the OSysRec Ontology for System Reconfiguration
	4 Case Study: Integrated Modular Avionics (IMA)
	5 Discussion and Conclusions
	References

	Reducing Design Rework Using Set-Based Design in a Model-Centric Environment
	1 Introduction
	2 Background
	3 Literature Review
	3.1 Procedural Models

	4 Conclusion and Future Work
	References

	Knowledge Representation and Reasoning in the Context of Systems Engineering
	1 Motivation and Introduction
	2 Knowledge Representation in Systems Engineering
	2.1 Epistemic Modal Logic
	Syntax for Epistemic Modal Logic
	Semantics for Epistemic Modal Logic

	3 Descriptive Examples
	3.1 State of Knowledge of Single Agent
	3.2 State of Knowledge of Multiple Agents
	3.3 Evaluation of Inconsistencies

	4 Conclusion and Future Work
	References

	Ontology-Driven Knowledge Modeling and Reasoning for Multi-domain System Architecting and Configuration
	1 Introduction
	2 System Ontology and Description Logic Semantics Support for Knowledge Representation and Reasoning
	2.1 Engineering Systems: Overview and Conceptual Representation
	2.2 Knowledge Representation Formalisms and Description Logic (DL) Semantics
	2.3 DL Extensions for the Web Ontology Language (OWL)

	3 An Ontological Framework for Multi-domain System Architecting and Configuration
	3.1 Module 1: Mathematical Foundations
	3.2 Module 2: Semantic Platform
	3.3 Module 3: System Configurations

	4 Prototype Implementation: Knowledge-Driven Design Space Generation for Satellite Robotic Arms
	4.1 Overview
	4.2 Multi-configuration and Multi-domain Generation of Satellite Robotic Arm Design Alternatives: Prototype

	5 Conclusion and Future Work
	References

	Part IV MBSE Processes and Languages
	A Literature Review of the Integration of Test Activities into the Product Development Process
	1 Introduction
	2 Methodology
	2.1 Search Strategy
	2.2 Inclusion and Exclusion Criteria

	3 Results
	3.1 Stage of Product Development
	3.2 Test Process Perspective

	4 Discussion
	4.1 Test Strategy
	4.2 Test Objectives
	4.3 Test Design

	5 Conclusion
	Appendix A. Literature Review Study Sources, Evidence Categories and Aims
	References

	Implementing a MOSA Decision Support Tool in a Model-Based Environment
	1 Introduction
	1.1 The Modular Open Systems Approach (MOSA)
	1.2 Barriers to Achieve MOSA Benefits

	2 A Decision Support Framework to Guide MOSA Implementation
	2.1 DSF Inputs – Mission Engineering and Early-Stage Acquisition Contexts
	2.2 DSF Analysis – Quantitative and Qualitative Analysis Threads
	2.3 DSF Outputs – Integrated Decision-Making Views in a Model-Based Environment

	3 Implementation Results Using an Example Mission Engineering Problem
	3.1 MBSE Views Establishing Mission Context for the DSF
	3.2 Identification of Feasible Architectures with RPO
	3.3 MBSE Representations of Output Data

	4 Summary
	4.1 Key Takeaways
	4.2 Future Work

	A.1 Appendix A: RPO Input Data for Example Mission Engineering Problem
	References

	Change Management Processes in MBSE
	1 Introduction
	2 Origin of Changes
	3 Current Change Management Methods
	4 Using MBSE for Change Management
	5 Methodology
	6 Case Study
	7 Conclusion
	References

	The Need for Semantic Extension of SysML to Modelthe Problem Space
	1 Introduction and Background
	2 Theoretical Justification for Semantic Extension
	3 Application Example: Operational Scenarios vs System States
	3.1 Problem Statement
	3.2 System Model Flagged as a Requirement
	3.3 Potential Extension of SysML to Model Different Required Operational Conditions in the Problem Space

	4 Conclusion
	References

	Variant Modeling for Multi-perspective, Multi-fidelity Systems Simulation
	1 Introduction
	2 Literature Review
	2.1 MBSE, SysML, and Early PLE
	2.2 MBPLE
	2.3 SysML and Simulation Modeling

	3 Additional Challenges to Variant Management of Simulation Models
	4 Overview of Proposed Approach
	5 Summary
	References

	An Executable Systems Modeling Language (ESysML): Motivations and Overview of Language Structure
	1 Introduction
	2 Motivation and Language Design Goals
	3 ESysML: Taxonomy of Primary Concepts
	3.1 Overview of Textual Syntax
	3.2 Structural Modeling
	3.3 Behavioral Modeling
	3.4 Simulation Execution and Data Logging

	4 Conclusion and Future Directions
	References

	Quantitative System Reliability and Availability Analysis UsingSysML
	1 Introduction
	2 Methodology
	3 Example
	3.1 Using the Abstract Reliability Block
	3.2 Reliability/Availability Modeling
	3.3 Calculation of Results

	4 Conclusions
	References

	Part V Advances in MBSE
	Towards Making the Business Case for MBSE
	1 Introduction
	2 Approach
	2.1 Primary Methodology
	2.2 Detailed Approach
	2.3 Economic Analysis of Traditional SE Approach
	2.4 Economic Analysis of MBSE Approach
	2.5 System Life Cycle Processes
	2.6 Sequencing System Life Cycle Processes
	2.7 Cost Curves for SE Programs with MBSE Approach
	2.8 Economic Analysis of MBSE Implementation
	2.9 Factors Related to MBSE Investment
	2.10 Factors Associated with MBSE Gains
	2.11 Assessing MBSE Implementation Benefit

	3 Conclusion
	References

	COSYSMO 3.0's Improvements in Estimating and Methodology
	1 Introduction
	1.1 COSYSMO 3.0's Improvements
	1.2 Review of the Key Elements of COSYSMO 3.0

	2 Impact of New Features of COSYSMO 3.0
	2.1 Impact of Process Capability as a Scale Factor
	2.2 Ensuring the Impact of a Step Is Not Too Large
	2.3 Impact of Shifting Emphasis from Cost Drivers Toward Scale Factors
	2.4 Comparative Impact of the Four Size Drivers
	2.5 Overall Comparison of COSYSMO 3.0 Features Versus Previous Models

	3 New Techniques Used in Developing the Model
	3.1 Use of Covariance and Ad Hoc Prior Information in Bayesian Computation
	3.2 Comparison of Least-Squares Versus Absolute Deviation Model Fitting
	3.3 Use of Symmetrical Cost Driver Ratings

	References

	Assurance Case Property Checking with MMINT-A and OCL
	1 Introduction
	2 Background
	2.1 GSN: Goal Structuring Notation
	2.2 ISO 26262 Standard
	2.3 MMINT: Model Management INTeractive
	2.4 Assurance Case Metamodel
	2.5 OCL: Object Constraint Language
	2.6 LMS: Lane Management System

	3 OCL Constraints for Assurance Cases
	4 Conclusions and Future Work
	References

	Interpretation Discrepancies of SysML State Machine: An Initial Investigation
	1 Introduction
	2 Interpretation Discrepancies in SysML: Theoretical Insights
	2.1 Semantic Vulnerabilities
	2.2 Example of Potential Semantic Misinterpretations

	3 Interpretation Discrepancies in SysML: Empirical Evidence of State Machines
	3.1 Design
	3.2 Participants
	3.3 Results

	4 Conclusion
	References

	Fuzzy Multicriteria Optimization for System Engineer's Design of Myoelectric Prostheses
	1 Introduction and Background
	2 Multicriteria Optimization
	2.1 Fuzzy TOPSIS Algorithm

	3 Application to Prostheses Design
	3.1 System Requirements
	3.2 Requirement Analysis and Criteria Selection
	3.3 Fuzzy TOPSIS Analysis
	3.4 System Architecture

	References

	Functional Decomposition: Evaluating Systems EngineeringTechniques
	1 Introduction/Background
	2 System Description
	2.1 Object Decomposition

	3 Functional Decomposition
	3.1 Evaluation Method
	Evaluation Dimensions
	Product Lifecycle Perspectives

	3.2 Functional Decomposition by Operating Modes
	3.3 Functional Decomposition by Inputs and Outputs
	3.4 Functional Decomposition by Hatley-Pirbhai Template
	3.5 Functional Decomposition by Processing Rates
	3.6 Functional Decomposition by Organizational Structure
	3.7 Functional Decomposition by Matching Physical Architecture

	4 Recommendations and Conclusions
	4.1 Observations by Engineering Role Perspectives
	4.2 Recommendation
	4.3 Functional Composition
	4.4 Conclusions

	References

	Part VI MBSE Applications
	Model-Driven Safety of Autonomous Vehicles
	1 Introduction
	2 Goal Structuring Notation (GSN)
	2.1 A GSN Example
	2.2 GSN Benefits
	2.3 GSN Challenges

	3 Workflow+
	3.1 A WF+ Example
	3.2 Building Arguments Over a WF+ Example

	4 Advantages of WF+ for Model-Based Assurance
	4.1 Making Assurance Less Ad Hoc
	4.2 Improved Traceability
	4.3 Change Impact Analysis
	4.4 Integrating Assurance with Development
	4.5 Automation
	4.6 Templates

	5 Conclusion
	References

	A Model-Based Engineering Approach for Development of ADAS Features
	1 Introduction
	2 Model-Based Development Approach
	2.1 Initial Requirements Development
	2.2 SOTIF Scenarios and Triggering Conditions
	2.3 Identifying SOTIF Scenario Edge Cases
	2.4 MBE Support for Verification and Validation

	3 Simulation Framework and Model Capabilities
	4 Summary and Discussion
	References

	Optimal Management and Configuration Methods for Automobile Cruise Control Systems
	1 Introduction
	2 QoS-Oriented View of ACC System
	3 Autonomic Control of In-Vehicle CC
	3.1 Optimal Setting of In-Vehicle CC Parameters
	3.2 Declarative Specs for Autonomic Control

	4 Multi-vehicle Cruise Control (MVC)
	4.1 Modeling Aspects of MVC
	4.2 Optimal Configuration of MVC System
	4.3 Configuration Search Algorithms
	4.4 Avatar-Based Benchmarking of MVC System

	5 Conclusions
	References

	A Systems Modeling Illustration of the Military Academy Doolie Cadet System
	1 Introduction
	2 Background
	3 Methodology
	4 Results
	4.1 Define System Requirements
	4.2 Allocate System Functions to Subsystems
	4.3 Detail Design of Components
	4.4 Verify Components
	4.5 Verification of Subsystems
	4.6 Full System Operation and Verification

	5 Impact
	6 Conclusion
	References

	Project Managers and Systems Engineers, “Can two walk together, unless they agree?”: Recent Research Findings on Development Projects
	1 Research Goals
	2 Literature Review
	3 Methodologies
	4 Research Results
	5 Discussion
	5.1 Overlapping Management Processes Found in the Current Study
	5.2 Joint Processes that Failed to Meet the Validity Criteria

	6 Conclusions and Recommendations
	References

	A Plan for Model Curation at the US Army Armaments Center
	1 Introduction
	2 Digital Engineering at Armaments Center
	2.1 MBSE at AC
	2.2 iMBE at AC
	2.3 InterOperability and Integration Framework (IOIF)

	3 Background: Model Curation Literature Review
	3.1 Curation
	3.2 Definition of Model Curation
	3.3 Model Curation Pioneers
	3.4 Comparison of Model Governance to Model Curation

	4 Model Curation at Armaments Center
	4.1 Model Curation Procedure

	5 Conclusion and Future Work
	References

	Executable Modeling of a CubeSat-Based Space Situational Awareness System
	1 Introduction
	2 Literature Review
	2.1 Recent Research on SysML Executable Modeling
	2.2 Space Situational Awareness

	3 SysML Executable Modeling Methodology
	4 Discussion
	5 Conclusion
	References

	Comparing Weighting Strategies for SME-Based Manufacturability Assessment Scoring
	1 Introduction
	1.1 Value Modeling and Weighting Background

	2 Weighting Strategy Background
	2.1 SME-Based Normalized Weighting Strategy
	2.2 SME-Based Swing Weight Matrix: SME Weighting Methodology

	3 Case Study Results
	4 Conclusions and Future Work
	References

	A Framework for Using the MAKE Methodology and Tool for Objective Manufacturability Decision Analysis
	1 Manufacturability Assessment Knowledge-Based Evaluation (MAKE) Background
	2 MAKE Current Capabilities to Support Tradespace Analysis
	2.1 Existing Methodology and Tool Features
	2.2 Output Includes List of Prescriptive Measures for Decision-Making
	2.3 Reliance upon Subject Matter Experts
	2.4 Challenges of Applying MAKE to Early Life Cycle Assessments

	3 MAKE 2.0
	3.1 The Connection with Tradespace Exploration
	3.2 Transitioning from Subjective to Objective Analysis

	4 Conclusions
	References

	A Bioinspired Framework for Analyzing and Predicting the Trade-off Between System of Systems Attributes
	1 Introduction
	2 ENA, the Degree of System Order, and the Ecological Fitness Function
	3 Investigating the Fitness Trends in a Hypothetical Hostiles' Surveillance SoS
	3.1 SoS Performance, Cost, and Response to Disruptions
	3.2 Degree of System Order of SoS Architectures

	4 Results and Discussion
	5 Concluding Remarks
	References

	Model-Based Systems-of-Systems Healthcare: Coordinating the Coordinators
	1 Introduction
	2 Population Health Context
	3 Risk Factor Registry
	4 Comprehensive Healthcare Simulation
	5 Current Research and Development
	5.1 Population Health Management
	5.2 Prerequisites for Healthcare Learning System
	5.3 Pathways Community HUB
	5.4 Risk Registry

	6 Davis Global Simulation Center, Omaha, Nebraska
	7 Conclusion
	References

	Model-Based Systems Engineering for CubeSat FMECA
	1 Introduction
	2 Background
	3 MBSE for CubeSat
	4 RAM and SE Framework
	5 Modeling and FMECA Implementation
	6 Discussion
	7 Conclusion
	References

	Model-Based Systems Engineering for Design of Unmanned Aircraft Traffic Management Systems
	1 Introduction
	1.1 Problem Statement
	1.2 Scope and Objectives

	2 Background and Literature Review
	2.1 Overview of State of the Art of Unmanned Aircraft Traffic Management Systems
	2.2 System of Systems: Definition, Typology, and Design Challenges
	2.3 Unmanned Aircraft Traffic Management System as a System of Systems

	3 Proposed Model-Based Development of UTM Systems
	3.1 Development Approaches and Strategies
	3.2 Elements of MBSE for UTM System Design

	4 Case Study: MBSE of an UTM System for a Package Delivery Service
	4.1 Overview
	4.2 System-of-Systems Level Design
	4.3 System-Level Design
	4.4 Physics-Based Modeling and Engineering Analysis

	5 Conclusion and Future Work
	References

	Exploration of MBSE Methods for Inheritance and Design Reuse in Space Missions
	1 Introduction and Motivation
	1.1 Problem Statement

	2 MBSE, Reuse, and the Space Industry
	2.1 MBSE and the Space Industry
	2.2 MBSE and Reuse
	2.3 What Is Missing?

	3 Design Reuse via Inheritance
	3.1 Technical Inheritance Process
	3.2 MBSE Methods for Compatibility Assessments

	4 Inheritance and MBSE in Larger Systematic Reuse Strategy
	5 Limitations, Future Work, and Conclusions
	References

	Part VII Future of MBSE
	Models in Systems Engineering: From Engineering Artifacts to Source of Competitive Advantage
	1 Introduction
	2 Models in Engineering
	3 Models in Systems Engineering (SE)
	4 Models in Model-Based Systems Engineering (MBSE)
	5 Growing Importance of Ontologies, Knowledge Graphs, Metamodels, and Reference Models
	6 How Have Models Changed over the Last Several Decades?
	7 Looking over the Horizon
	8 Summary
	References

	Transdisciplinary Systems Engineering Approaches
	1 Introduction
	2 Realizing Elegance Through Transdisciplinary Thinking
	3 Transdisciplinary Nature of Autonomy and Systems of Systems
	4 Storytelling to Understand the Transdisciplinary Nature of System Solutions
	5 Importance of Meta-data in Transdisciplinary Systems Engineering
	6 Summary and Conclusion
	References

	A Systems Science Basis for Compositionality Reasoning
	1 Introduction
	2 Background
	3 Systems Concepts
	3.1 Systems as Networks of Processes Enabled by Structural Networks
	3.2 Levels of Organization
	3.3 Planes of Operation

	4 Categories of Phenomena to Be Included in Systems Modelling and Compositionality Reasoning
	5 SKA Radio Telescope Example
	6 Coverage of Systems Science Concepts
	7 Conclusion
	References

	Toward the Design of Artificial Swarms Using Network Motifs
	1 Introduction
	1.1 Background
	1.2 Design Methodology Using Network Motifs

	2 Case Study
	2.1 The Swarm Foraging System and Simulation
	2.2 Modeling the Complex System as a Complex Network
	2.3 Obtaining the Network Motif Data of the Simulations
	2.4 Determining Important Network Motif Structures

	3 Results/Data
	3.1 Motif Structure Study

	4 Conclusions
	References

	Enterprise Architecting Applied to Small Unmanned Aircraft System Integration into Low-Altitude Urban Airspace
	1 Introduction and Motivation
	2 ARIES Framework
	3 sUAS Enterprise Landscape
	4 Current Architecture
	5 A Holistic Vision of the Future
	6 Conclusions and Further Research
	References

	Identification of Elements and Element Relationships for Organizational Architectures for Systems Engineers
	1 Introduction
	2 Cross-Disciplinary Literature Review
	2.1 Sheard and Helix Study
	2.2 Role Allocation, Role Conflict, and Ambiguity
	2.3 Optimal Allocation Problem
	2.4 Span of Control (SoC)
	2.5 Organizational Context

	3 OASE Elements
	4 Mapping Systems Engineers to Organizational Value
	5 Summary and Future Work
	References

	Application and Modelling of Systems Engineering Methods to Deployed Enterprise Content Management Systems
	1 Introduction
	2 Traditional Systems Engineering Process
	3 Differences Between Traditional and Post-deployment Systems Engineering
	4 Modified Process
	4.1 Overview
	4.2 Regional Architecture
	4.3 Feasibility Study and Concept Exploration
	4.4 Concept of Operations
	4.5 System Requirements
	4.6 System Design
	4.7 Software/Hardware Development and Field Installation
	4.8 Unit Testing
	4.9 Subsystem Verification
	4.10 System Verification and Deployment
	4.11 System Validation
	4.12 Operations and Maintenance

	5 Conclusion
	References

	Toward an Enterprise Architecture for a Digital Systems Engineering Ecosystem
	Nomenclature
	1 Introduction
	2 The Digital Systems Engineering Ecosystem
	3 Object-Process Methodology
	4 An Enterprise Architecture of Two MIDSTARs
	5 Discussion
	References

	Collaborative Management of Research Projects in SysML
	1 Introduction
	2 Project Modeling Approach
	2.1 OpenMBEE Environment
	2.2 Project Ontology
	2.3 Derived SysML Profile

	3 Research Project Model in SysML
	4 Semantic Representation and Reasoning
	5 Discussion and Conclusion
	References

	Supporting the Application of Dynamic Risk Analysis to Real-World Situations Using Systems Engineering: A Focus on the Norwegian Power Grid Management
	1 Introduction
	2 Risk Analysis: Original Concepts and Requirements for Dynamic Evolutions
	3 Key Dimensions of System Engineering and Contributing Potential to DRA
	4 Approach Description
	5 Application: Pipeline Construction for Improved Risk Analyses in Power Grid Management – Focus on Vegetation
	5.1 Situation Overview
	5.2 Proposed Architecture
	5.3 Results

	6 Discussion and Conclusion
	References

	Toward a Reliability Approach Decision Support Tool for Early System Design: Physics of Failure vs. Historical Failure Data
	1 Introduction
	1.1 Specific Contributions

	2 Background and Related Work
	2.1 Historical Failure Data Approach to Reliability
	2.2 Physics of Failure Approach

	3 Methodology
	3.1 Starting Point: Functional Analysis
	3.2 Decision Factor: Relevant Historical Data
	3.3 Decision Factor: Level of Complexity
	3.4 Decision Factor: Operational Life Requirement
	3.5 Decision Factor: Criticality

	4 Case Study
	5 Discussion
	6 Conclusion
	References

	An Approach to Improve Hurricane Disaster Logistics Using System Dynamics and Information Systems
	1 Introduction
	2 Background
	3 Review of Literature
	4 Methodology
	4.1 Factors Impacting Post-hurricane Disaster Logistics and Supply Chain Management

	5 Discussion and Recommendation
	6 Conclusion
	References

	Index

