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Ume̊a University, Ume̊a, Sweden
{amber.zelvelder,marcus.westberg,kary.framling}@umu.se

Abstract. Reinforcement Learning performs well in many different
application domains and is starting to receive greater authority and trust
from its users. But most people are unfamiliar with how AIs make their
decisions and many of them feel anxious about AI decision-making. A
result of this is that AI methods suffer from trust issues and this hinders
the full-scale adoption of them. In this paper we determine what the
main application domains of Reinforcement Learning are, and to what
extent research in those domains has explored explainability. This paper
reviews examples of the most active application domains for Reinforce-
ment Learning and suggest some guidelines to assess the importance
of explainability for these applications. We present some key factors
that should be included in evaluating these applications and show how
these work with the examples found. By using these assessment crite-
ria to evaluate the explainability needs for Reinforcement Learning, the
research field can be guided to increasing transparency and trust through
explanations.

Keywords: Reinforcement Learning · Explainable AI · XAI ·
Interpretable Machine Learning

1 Introduction

One key obstacle hindering the full scale adoption of Machine Learning, includ-
ing Reinforcement Learning (RL), is its inherent opaqueness. This prevents these
‘black box’ approaches (i.e.; systems that hide their inner logic from users) from
becoming more widespread and receiving greater authority and trust in deci-
sions. Being opaque and having no explanations for why the autonomous agent
takes an action or makes a decision can cause both practical and ethical issues
[18,19]. With the recent increased calls for transparency in computer-based
autonomous decision-making, there has been a surge in research into making
Machine Learning algorithms more transparent. RL is often thought to not need
further transparency if the reward condition is known, but in RL there is a vari-
ety of applications, each with their own set of interactions, recommendations etc.
These different applications of RL will also have different needs when it comes
to explainability.
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This paper will seek to review how different application domains might affect
explainability, and assess applications within these domains to determine the
amount and type of explainability. We will start by setting out the background
of RL, Explainable AI (XAI) and the state of XAI in RL. In this background
section, we will go into detail on the main application areas in which RL is
being used, or can potentially be used, followed by an overview of the types
of explainability and then which types of XAI have been applied to RL. Then
we show our methodology to find examples of RL applications. We will then
present possible evaluation criteria and key factors for assessing explanations
in RL. After that we will make an assessment of the most notable examples of
applications we have identified in RL. Finally, we will conclude with a summary
of our findings and present what we believe are the remaining challenges that
future work could be based on.

2 Background

In RL, an algorithm learns dynamically from its environment and is driven by
either a reward or penalty being given when reaching or being in a specific state
or states [24,46]. Because of the way RL algorithms learn, through maximising
the final reward, it is particularly suited for problems that require a solution that
weighs the short term outcome against the long term outcome [46]. Robotics
is the application domain that RL is the most prominent in by far [25], but
it has gradually started to see more extensive use in control systems [29] and
networking [33]. RL has also been showcased publicly as highly proficient in
playing and winning a variety of games, such as GO , checkers and video games
[4,12].

With the rise of deep learning, it has been made possible to scale RL to
attempt tackling decision-making problems on a larger scale [3]. But with this
increase in applications being developed using AI such as RL, there has also
been an increase in demand for more transparency [50]. In addition to there
being legal calls for transparency, there is also the argument that if autonomous
agents can be clear about the reasons for their actions, this would help build
rapport, confidence and understanding between the AI agents and human oper-
ators, thereby increasing the acceptability of the systems and enhancing end-user
satisfaction [2,18].

Just like RL, XAI started gaining increased popularity in the 90s with sym-
bolic reasoning systems, such as MYCIN. The interest in XAI remained mostly
academic until the rise of Machine Learning (ML) and its involvement in making
increasingly important decisions. The interest in explanations really took off after
some concerns regarding bias within Machine Learning. Among the more well
known and publicised cases of bias are the Amazon recruitment algorithm that
advised against hiring women [38], and Flickr’s image tagging algorithm that
tagged people of some ethnicities as animals or objects [52]. A more common
bias within RL is the possibility of model bias, where the learning environment
is too different from the intended target environment [10]. Now the interest level
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in XAI is high due to contemporary trust issues and ethics debate in the field
of autonomous AI decision-making and the legal debate and requirements that
are being imposed as a result. Despite the increased interest in XAI and the
widespread implementation of RL in both research and industry, ways to imple-
ment explanations into RL have not been thoroughly researched.

One of the reasons lack of active development in RL explanations is because
there is an underlying assumption that knowing the reward for RL is explicable
enough. Another reason is that RL is often used in more mechanical situations,
rather then conversational, in which case there might not be a user to directly
interact with or the user is an expert to whom the actions are explicable when
combined with observations of the environment.

In the following sections we will present the most prominent Application
Domains where RL is used, the types of XAI that are relevant to RL and the
current existing XAI techniques implemented for RL.

2.1 RL Main Application Domains

RL can be considered to be in its early stages of development when it comes to
applications. The majority of works in the literature use simple test scenarios
that are not always representative of real-life needs, but as some of these could
be considered simplified versions of general applications, we will use some sim-
plified examples to illustrate the potential use of RL in each application domain
cluster outlined. We will rely on several examples from the recent edition of Sut-
ton and Barto’s book [46] on RL in order to identify the main clusters of RL
applications. We will also include references to more recent works in literature
where appropriate. These will be primarily used to illustrate the potential of RL
within specific domain clusters.

Physics. Numerous examples of applied RL involve simplified Physics tasks.
This is because we have easy access to mathematical models of the laws of
physics, which allow us to build simulated environments in which the algorithm
is tested. The simplified and well-known examples of this category (e.g.; cart-
pole [46]) can also be moved to a more applied domain. Another example is
the mountain-car task, where an under-powered vehicle surrounded by two hills
needs to get up a hill but doesn’t have the power to ascend it without gathering
momentum by backing up the other way first [13,46]. This example could serve in
the optimization of fuel use in actual cars in that situation if further developed.

Robotics. Due to it’s similarity to the natural learning process, RL is well-
suited to train the movement of robots, particularly the optimization of reaching
movement goals. Because of this, robotics is an application area where RL has
been thoroughly trialled and successfully applied for a variety of purposes [27].
Robotics usually uses a delayed or continuous reward, as it is the set of actions
they seek to reward, rather than individual actions. One common application is
to use it for path optimization, where the reward is given if the destination is
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reached (and sometimes a bigger reward if it didn’t take long). Many examples
of successful applications of RL in Robotics can be found in the survey done by
Kober et al. [25].

Games. Playing games is one of the ways RL is most well-known to people
outside of the Computer Science expertise. RL has been shown to have great
potential at learning games, because most games have a clear reward structure
of winning the game. There have been cases of RL-trained algorithms being
able to beat the (human) masters of the games Go and Chess [4]. There has
been further research in making algorithms that can tackle multiple games [45].
Research into RL algorithms that perform video games on a human level (e.g.;
With the same tools and at the same or higher skill level as a person) is also being
performed, and has had some success [4,12]. Deep RL is also being used in newer
research into using machine learning to play games and videogames, including
videogames with or against other human players, with promising preliminary
results [3].

Autonomous Vehicles and Transport. Although most autonomous vehicles
use supervised learning to make sure they learn the correct rules, there has been
research into using Reinforcement Learning instead [43]. Also, in the transport
sector there are related systems that are using machine learning. For instance,
transport systems use route optimization in a way similar to robotics, and there
are also urban development applications that use machine learning to manage
traffic control [30,35].

Healthcare. The healthcare sector is increasingly utilising ML in their systems,
and this includes RL [20]. A lot of the current work on bringing machine learning
to the healthcare sector is still in the early stages, but ML algorithms that
enhance Computer Vision are already used commercially in diagnostics, medical
imaging and surgery, to supplement the medical personnel [17,28]. With ML
starting to influence the sector, and the motivation to improve this sector being
high, new research is performed continuously to increase the successful use of
ML. While ML within healthcare currently mostly supports the experts and
professionals, research is also taking more interest in developing algorithms that
interact directly with the (potential) patients, to either help them know what
doctor they need, whether they are at risk of special ailments, or how to manage
their health, either generally or with a specific condition [39].

Finance Predictions. Some areas of finance are doing research into how RL
and other machine learning methods could be used to predict developments in
aspects of the market [40]. As the finance sector already extensively uses rule-
and trend-based models to try to stay ahead of the curve, machine learning is
a natural next step for finance. Most applications within finance follow current
trends and make estimations based on historical data [6].
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Other. There are a few other domains in which RL development is prominent,
which will not be as obviously relevant to this paper, but still are worth men-
tioning as possible domains to look into at a later point. Reinforcement learning
is used in industry to try to alert when machines need preventative mainte-
nance [9,15]. It is also used to assist with elevator scheduling [7,53] using a
continuous-time Markov chain [16]. Other ways RL is used is in various types
of optimization, examples including network communication optimization and
general network management [16], optimising/minimising resource consumption
[29] and optimising memory control [4]. RL is also being used to automatically
optimise the web data shown to users by advertisers [4].

2.2 XAI Types

Sheh [44] proposes a way of categorising the types of explanations that are most
commonly required for AI in different contexts. Further research into this has
been done by Anjomshoae et al. [2], leading to a distinction of several types of
explanations that are currently used in AI.

Teaching explanations aim to teach humans (General users, domain
experts, AI experts) about the concepts that the AI has learned. These expla-
nations don’t always need to be accompanied by a decision, as the teaching is
what is at the core of the explanation. These explanations can take the form of
hypotheticals, for example as answers to follow-up questions regarding a previ-
ous explanation (i.e. “if parameter X was different, how would this have affected
the decision?”).

A possible subtype of teaching explanations are contrastive explanations,
where the hypotheticals involve showing the user why the decision is better by
contrasting it with the poorer choice(s). There has already been research into
how contrastive explanations can be used in RL [2,49]. In this research, the
possible consequences of other actions were generated to show them in contrast
to what decision was made [36].

There are introspective explanations in the form of tracing explana-
tions and informative explanations. The former is a trace of internal events
and actions taken by the AI, the purpose of which is to provide a complete
account (of desired granularity) of the decision process to track down faults
or causes behind incorrect decisions. The latter type involves explaining dis-
crepancies between agent decisions and user expectation by looking at the pro-
cess behind the given decision, the purpose here being to improve human-robot
and human-system interaction by either pointing out where an error may have
occurred or convince the user that the agent is correct. What both have in com-
mon is that they draw directly from the underlying models and decision-making
processes of the agent. Due to the nature of ML, these kinds of introspective
explanations are often not compatible with such techniques, and in the few cases
that they might be, they will not be complete [44].

By contrast, post-hoc explanations provide rationalisations of the
decision-making process without true introspection. These explanations are help-
ful in models where tracing underlying processes is not an option, such as with
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black-box models. These explanations can be derived from a simulation of what
the underlying processes might be like, sometimes working from a parallel model
that attempts to sufficiently approximate the hidden model.

Execution explanations are the simplest form of explanations, presenting
the action or set of actions that the AI agent undertook. Similar to tracing
explanations, this type of explanation provides a history of events, but does so
by listing the explicit operations undertaken.

Post-hoc and execution explanations, together with teaching explanations,
form the three types of explanations most compatible with RL, though their
usefulness varies. Post-hoc and execution explanations provide methods of trac-
ing and forming narratives regarding decision-making without having to “look
inside the box”. In turn, teaching explanations can help users understand the
model of the application better.

2.3 Explainable Reinforcement Learning

In RL there is not necessarily a reason for the algorithm to take an action or
make a suggestion. The actions or decisions made by the algorithm are often
based on the experience that algorithm builds. Because of this there has been a
particular interest in contrastive, post-hoc and tracing explanations for RL. Since
gaming applications have been a very popular domain for RL, and games are
generally a low-risk activity, it is a very popular domain to test new techniques
in. Videogames have been used to test the understanding and clarity of saliency
maps as explanations [1,21]. A numerical explanation has also been studied using
videogames, and these studies also include user feedback to assess the quality
of the explanations [11,21,42]. Another method of creating explanations for RL
has been to amend the RL algorithm, to maintain an amount of “memory” [8],
which provides a form of tracing explanation. This has also been implemented
in a way to provide a visual representation of the internal memory of an agent
by Jaunet et al.[23], which can be used a combination between a teaching and
a tracing explanation. There is also some research looking into transparent or
interpretable models, such as PIRL, hierarchical policies and LMUT [41].

3 Methodology

In order to make sure that our proposed evaluation criteria are thorough and
applicable in existing application domains, we performed a literature survey
of RL survey papers and books to extract as many examples as possible of RL
being used in practice, or having a potential use in practice. We have assessed 19
pieces of literature, of which 14 contained viable examples. In total we noted 91
examples of possible applications. The levels of detail of each of these applications
varied and some refer to the same application. In Fig. 1 we show a breakdown
of the number of examples found in the more prominent sources.
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For each survey paper we assessed whether the methods and applications
found were applied to any scenario that could be used in practice. For each of
these we made note of the survey papers they were mentioned in, their general
application domain, a description of the application and, if mentioned, the RL
method and the reward setup. After we had listed these, we assessed similari-
ties between different listings and merged them in our data where appropriate,
preserving the multiple sources. We were then left with 50 examples that could
be evaluated. After these examples were collected, we found that they were in
8 different categories (Fig. 2). In this we found 16 were in the robotics domain,
8 each in the games, control systems and networking domains, 3 in autonomous
vehicles and 2 in both finance and healthcare.
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Fig. 2. Application domains of Practical examples

3.1 Analysis of Application Domains

Many of the examples in robotics show that RL can be used for a robotic agent
to master its understanding of physics by achieving balance of itself or another
object, or making some other type of adjustments based on gravity and other
laws of physics [4,13,24,26,27]. Another type of robotics that frequently uses RL
is robots that move around and perform a task, such as moving objects [4,24,26]
or finding an exit [4,31]. There are also robots that use RL to play ball games
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[5,26,31] and one example uses RL to do a peg-hole insertion [26]. Another
important point to make about robotics is that a lot of RL applications in other
domains can also be connected to robotics. For instance, in healthcare one of the
applications is gesture reading and replication [32], which would be a combina-
tion of computer vision and robotics. Games have often been used to showcase
how well a machine learning algorithm can perform, as with TD-Gammon and
Samuel’s Checker player beating human masters of the games of backgammon
and checkers [4,24]. Most applications in this domain are one versus one board
games. There are also applications that use RL for playing videogames [4,22].
The examples within the control systems domain found were primarily in opti-
mization [4,24], resource allocation [4,24,29] and task scheduling [4,24,29]. A lot
of these applications are located in factory settings, but there are also examples
in smart homes and Internet-of-Things settings. Most of the networking appli-
cations are related to access control, caching and connection preservation [4,33].
There was one example relating to personalising web services [4] and network
security [33]. In Autonomous vehicles and Transport, the applications are
primarily about avoiding collision and interpreting other traffic [5,26,33,43].
Navigation is very similar to the Autonomous vehicles, with the main differ-
ence being that traffic is not necessarily a problem [4,14,24]. In finance we
found two examples, one involved creating economic models [4] and the other
was an automated trading application [5]. In healthcare, we found the appli-
cation mentioned before that reads and replicates surgical gestures [32] and an
application that detects and maps a person’s bloodvessels [54].

4 Key Criteria

There are several factors that contribute to the need for explainability, a large
amount of which relate to Human-Computer Interaction (HCI), but there are
several other types of factors that contribute. In this section we explain the dif-
ferent criteria that drive the evaluation and assessment of explanations, the need
for explanations and the types of explanations required. We start by describing
four key factors (Fig. 3) which we will use for assessments, we then have a few
sections to highlight notable contributing factors that assist in the evaluation of
the key factors and in what way they contribute to the key factors.

Out of the key factors, two are closely related to HCI, User Expectancy and
User Expertise, and two of them more related to the consequences of the appli-
cation, Urgency of the output and Legality. The first key factor, and perhaps
the best starting point for assessing the explanations, is the User Expectancy.
The amount of explanation a user expects is a direct influence on the amount of
explanation required, but it is also influenced by the users expectations of the
applications actions or outputs [37]. If a user expects little or no explanation,
and the application gives the expected output, there is no need for an explana-
tion. But if the user expects an explanation, or if the application is behaving
in a way that is outside of the user expectations, a more expansive explanation
would be required. Because of the nuances of this factor, it also has a strong



Assessing Explainability in Reinforcement Learning 231

Fig. 3. Four key factors that influence the need for explainability

influence on the type of explanation that would be the most suitable for the
application. The other user-connected key factor is, the User Expertise. The
level of expertise the intended user has varies between every application. This
factor mostly dictates the type of explanation to be made available [47]. If the
user can be anyone, the explanations will need to be more informative, using
general language. If the target users are experts in the application domain, but
not on this specific application, an informative explanation that is specific to
the domain can be presented. Finally, if the user is an expert on the application
and/or any devices the application controls, an explanation that helps the user
trace down faults within the system, and explanations of executed actions would
be preferred.

A key factor that gives a limitation on the detail and type of explanation
given is the Urgency of the Output. Longer and detailed explanations also
take longer to produce and also take longer for the user to interact with. This is
a time-bound scale, which means that it determines if there is time to produce
any form of explanation before a decision is taken. If an action needs to be taken
immediately, like in an autonomous vehicle, there might not be enough time to
explain it to the user, so in this case an explanation can not be expected until
later. If there is no urgency, the application can produce a full report and even
request the user to approve the decision or action based on the explanation.

Finally, a factor that has gotten more important recently, is the Legality.
This factor is driven by the laws affecting the application domain, AI in general
or the specific case of the application. In this case it matters if it affects or
evaluates an individual or group of individuals. If it can do neither there is no
legal need for explanations. If it evaluates, then there should be the possibility
to produce an explanation of the evaluation, but this can be retrospective. If
it affects, it is preferred that an immediate explanation is given, as well as a
retrospective explanation being made available.

These key factors were chosen on the grounds that they cover and represent
the core areas of XAI concern. Differences in user expertise has shown to affect
expectations of output and explanatory content [47], and the context of the
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audience has great impact on how explanations are to be tailored [37]. In this
way, expertise and expectancy have a fair amount of overlap, but in this paper we
treat expectancy separately to acknowledge other factors that can also impact
expectations, and if explanations are to be expected at all. Urgency of output
is chosen because it has a defining impact on the nature of explanation to be
provided and the context in which it is delivered. Finally, legality is of great
concern for XAI researchers both on the basis of ethical and economic concerns,
thus placing it as a very important key factor.

In the following sections we explain how some important criteria feed into
these key factors.

4.1 The Intended User

The starting point for any application should be the intended user. This is very
important for explanations, as there has to be an individual or group of individu-
als that the explanation would be intended for. The user affects both HCI-based
aspects of the key factors and it also influences both the amount of explanation
that should be given, as well as the type of explanations (see Sect. 2.2). The
development of an application and explanations for the applications should be
started from the user expectations, requirements and expertise.

4.2 Means of Interaction

Any application that includes direct interaction with some kind of user will need
some explanation, but this can be limited by the means that the application or
the user have to interact. With many RL implementations, there is some limita-
tion to what kind of interaction there can be, and this can limit the possibilities
of their communication. For instance, in robotics the application can usually
interact by movement or other non-verbal communication, which humans can
sometimes intuitively interpret [51]. In applications located in factories or other
industrial devices, the means might just be a digital display or a blinking light.
In other RL applications the interaction can be done via a monitor, or using
audio. This contributing factor has no great influence on the key factors, but is
used as a limitation to the type of explanations that can be implemented for an
application.

4.3 Industry Sector

The type of industry sector that an application is developed in and for is key
in determining the need and nature of the explainability of machine learning
and AI systems. The industry often dictates who the intended user is, and what
aspects of the system needs automation. For instance, an AI in healthcare can
either interact with the medical professionals, or with the patients themselves.
But in the manufacturing industry, the user is far more likely to be a person
who has expert knowledge on the topic of the algorithm. Although explanations
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are preferred in most industry sectors, the need for explanations is greater in
some than in others. For instance, in the healthcare sector it is very important
for AI to explain themselves, because the decision or advice of the RL algorithm
could affect the health of an individual. This is the case for all users of AI within
healthcare, and it has been shown that people are more likely to trust the health
advice of an AI if an explanation and/or motivation is given by the AI that
pertains to the patient personally [39]. This is different from the finance sector,
where financial predictions are often assumed to be estimates, so a motivation
or detailed explanation is not needed as much, but a chart or list of rules as a
form of introspective informative explanation to support the prediction would
be preferred. This contributing factor strongly influences the HCI aspects of the
key factors, as well as the other key factors to a lesser extend, depending on the
specific application.

4.4 Urgency/Time-Restraint

The urgency by which an algorithm needs to make a decision has some influence
on how much explanation can be expected and/or is needed. If it is, for instance,
an AI that drives a car, making the decision to do an emergency brake for a
suddenly crossing pedestrian is more important than explaining it. The same
goes for a machine stopping production if there is a misalignment in the system.
Both of these could be followed up by a longer explanation, after the urgency is
reduced. In other examples, such as an algorithm that makes mortgage agreement
decisions, time is of less importance than an explanation regarding how a decision
was made.

4.5 Legal

This factor is emphasized by recent legislation across the world. As the EU
has recently passed a law known as the GDPR [48], which dictates that if an
algorithm is fully or partially responsible for any decisions made regarding a
person, that person has the right to know the reasons behind the algorithm’s
conclusion.

4.6 Responsibility

Whether the user, the creator of the application, the manufacturer of a device
using the application, or some other individual or organisation has the responsi-
bility for action or decisions chosen by the application is also a driver for wanting
or needing explanations of differing types. This contributing factor is tied to the
legality key factor.

5 Assessment

Although some of the key factors can be subjective, in Fig. 4 we show an overview
of how the unique examples found in Sect. 3 could be classified on a scale of 1–5
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on the key factors presented in Sect. 4. This gives an overview of the need for
explanations in different sectors and shows how much variability exists in the
domains. For a specific application, the details of how the specific key factors are
relevant are more important then just their value. Therefore, in this section we
will evaluate four of the scenarios we extracted from the examples reviewed in
Sect. 3. We are using the key factors from Sect. 4 to perform this evaluation. The
examples in this section were chosen because they are from varied application
domains and have very different users. They are therefore expected to have very
different needs when it comes to explanations.

Fig. 4. Figure for classification of known examples on a scale of 1–5

5.1 A Box-Moving Robot

This example was chosen for evaluation because the functionality of the robot
is simple and can be kept within the robotics domain, but has the potential of
being used in many other domains with minor changes. We will be assuming
the robot is an industry-ready adaptation and has therefore the capability to
find a (specific) box, move the box, and recover from a position in which the
robot itself is stuck in a corner [4,24,26,34]. This application does not have
a specific intended user, which presents two options as to who to regard as a
user; the person who has given the robot a task to do, or anybody who might
be in the area where the robot operates. This implies that the user expertise
and expectation of explanations will be low, assuming the robot performs as
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intended. The urgency in the case of this robot is mostly not time-critical as the
robot can wait to make a decision if there is no threat of any kind present. This
means that the robot has time to display an indicator or play a sound to facilitate
human understanding. Specific design decisions may limit these capacities. For
example, the OBELIX robot [34] currently has no means to play sounds or
show any kind of display, which means its means of communications are left to
physical movements. The robot does not make decisions about people, but has
a chance to encounter people within its work space. This means that the only
legal requirement for the robot to give an explanation is when it interferes with
an individuals actions in any way, such as by bumping into them or obstructing
their path with the boxes.

5.2 Cloud Computing Resource Allocation

This example was picked because cloud computing is increasingly popular, and
the optimisation of all its procedures is critical to its success. In the cloud
computing resource allocation problem, there is a server cluster with a certain
amount of physical servers and each of these physical servers can provide a lim-
ited number of resources [29]. A job will be processed when enough resources
are available, the algorithm is employed to optimise how and when the jobs are
allocated and to which machines, to optimise the processing time and minimise
the power consumption. In this scenario, a user will be the person who submits
a job to the cloud computing. The user will generally have some expertise in
cloud computing, but the amount of expertise will vary. A user will typically
have little to no expectation of explanations, unless the system has issues with
the performance. As one of the goals of the algorithm is to optimise the time,
there is no time to explain actions before they are taken. As individuals are
not evaluated, there is no legal requirement for explanations. The recommended
type of explanation would be a tracing explanation or execution explanation to
track down the cause of a fault within the system.

5.3 Frogger Videogame

We are evaluating the frogger videogame as an example from the gaming domain.
This example was selected because there already exist an experimental study into
explanations [11,42] for this game and because of its iconic reputation. In the
game of Frogger you need to guide a frog from one side of a map to the other. In
the first part, the frog needs to avoid being hit by a car, and at the second part
the frog needs to jump between moving logs to reach the other side of a river.
Since this is a game being played by the RL algorithm, there is no user, only
observers. We can assume the user knows the rules of the videogame, but has no
further expertise. As the objects other than the frog move in real-time, that is
the time sensitivity required for the reactions. The game doesn’t make decisions
on individuals, so there is no legal requirement for explanations. Because of
academic interest, the explanations currently being developed for Frogger are to
indicate, either numerically or by description, what observations of the AI are
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being most relevant in its decision at any point during the run. This application
is therefore often used to perform benchmarking of explanation techniques and
user studies.

5.4 Surgical Robot

The example of a surgical robot has been chosen because it has a strong contrast
with the other examples so far. The specific example we use is of a robot perform-
ing a suturing task [32]. In the referenced paper this is being done in a simulated
environment, but since the goal is to let it perform in a medical environment, we
shall evaluate it as such. The robot is performing a medical operation (suture)
on a person (the patient), and is being monitored by another person (the doc-
tor). The intended user is the doctor, who will have a high amount of medical
expertise to assess that the robot does the correct procedures, and will also be
capable of spotting any mistakes made. In the application, a display of certain
parameters was included, so this display could be considered a starting point for
an explanation. The display in the example indicated how accurate the expected
kinaesthetic response was compared to the actual, which can indicate a possi-
ble problem if the accuracy is too far off. Since the performance of this robot
directly affects the health of an individual, this means that legally there is a
strict requirement for explanations to be available prior to use on a patient.

6 Discussion

There are still issues that prevent RL from more widespread application in gen-
eral, with the core issues being centered around the inability to adapt, lack of cor-
relation, application complexity, increasingly larger and more complex data and
the narrow focus of current XAI techniques [27,51]. In RL there is a reward state
that can always help clarify the goal that the algorithms are working towards,
so one of the important steps towards explainability is to make sure the reward
states can be viewed by the user in a way the typical user can understand.
As RL algorithms can sometimes use very complicated reasoning, which might
be beyond what a human understands, it can be hard for an algorithm to be
accompanied by an explanation that a human can easily follow. This is further
complicated if the system has to make several actions in succession that each
require a longer explanation than a human would be able to keep up with. In
deep RL this becomes even more of a problem as the input and the parameters
are very expansive, making it harder to tie specific outcomes to specific param-
eters. Another challenge is that an explanation must be good enough that a
human can help keep it accountable. Related to this is the problem of who can
be held responsible for any wrong decision that is made as a consequence of an
explanation being insufficient. Because XAI is still in early stages of implemen-
tation within machine learning and even more so when it comes to RL, due to
RL having a more limited application area, there is very little existing research
in XAI for RL. In RL most current research into explainability is focusing on
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‘recommender’ systems. However, as presented earlier in this paper, RL is used
or will soon be used in many other critical areas where explanations might be
required in various degrees.

7 Conclusion

This paper has shown which application domains RL is most used in, and why
explainability is important in RL. It has also presented guidelines that can be
used to evaluate the explainability needs for specific applications. The guidelines
are centered around the HCI aspects of user expectations and expertise as well as
the urgency of the output and the legal requirements where applicable. We have
assessed various notable applications that use RL algorithms using the guidelines
provided. As we continue to work towards Explainable RL, the guidelines set out
in this paper will help identify the need for explainability in new RL applications.
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C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp.
755–763. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3 86

https://doi.org/10.1007/978-3-319-57959-7
https://doi.org/10.1007/978-3-030-30391-4_12
https://doi.org/10.1007/978-3-030-00937-3_86

	Assessing Explainability in Reinforcement Learning
	1 Introduction
	2 Background
	2.1 RL Main Application Domains
	2.2 XAI Types
	2.3 Explainable Reinforcement Learning

	3 Methodology
	3.1 Analysis of Application Domains

	4 Key Criteria
	4.1 The Intended User
	4.2 Means of Interaction
	4.3 Industry Sector
	4.4 Urgency/Time-Restraint
	4.5 Legal
	4.6 Responsibility

	5 Assessment
	5.1 A Box-Moving Robot
	5.2 Cloud Computing Resource Allocation
	5.3 Frogger Videogame
	5.4 Surgical Robot

	6 Discussion
	7 Conclusion
	References




