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Preface

Recent advancements in eXplainable Artificial Intelligence (XAI) are generating new
understanding and opportunities. The increasingly complex intelligent agents/robots
rely on often opaque machine learning-based algorithms. Explaining such mechanisms
is a chief priority to enhance their acceptability, avoid failures, foster trust, and comply
with relevant (inter)national regulations.

The 2021 edition of the EXplainable and TRAnsparent AI and Multi-Agent
Systems (EXTRAAMAS) workshop continues the successful track initiated in
2019 at Montreal and followed by the 2020 edition in New Zealand (which was vir-
tual due to the COVID-19 pandemic circumstances). In particular, EXTRAAMAS 2021
set the following aims: (i) to strengthen the common ground for the study and develop-
ment of explainable and understandable autonomous agents, robots, and Multi-Agent
Systems (MAS), (ii) to investigate the potential of agent-based systems in the devel-
opment of personalized user-aware explainable AI, (iii) to assess the impact of trans-
parent and explained solutions on the user/agent behaviors, (iv) to discuss motivating
examples and concrete applications in which the lack of explainability leads to prob-
lems, which would be resolved by explainability, and (v) to assess and discuss the first
demonstrators and proof of concepts paving the way for the next generation of systems.
EXTRAAMAS 2021 received 32 submissions. Each submission underwent a rigorous
single-blind peer review process (three to five reviews per paper). Eventually, 20 papers
were accepted (19 full papers and 1 short paper), which are contained in this volume.
Due to COVID-19 restrictions, the workshop and AAMAS (the hosting conference)
were held online rather than in London, UK. For each paper, the authors performed
live video presentations that, with their consent, are available on the EXTRAAMAS
website1. Moreover, EXTRAAMAS 2021 included two keynotes: “Social and Ethi-
cal Responsibilities of Computing and the Role of Explainability and Transparency”
given by Prof. Julie Shah and “Explainable Reasoning in the Face of Contradictions:
From Humans to Machines” given by Prof. Emeritus Dov Gabbay, and two panels: the
industrial panel “Explainable Agents - Escape from the Ivory Tower” and the panel ded-
icated to the European Project EXPECTATION which considers XAI in distributed and
heterogeneous agent-based recommender systems.

Wewould like to thank the industrial chair, publicity chairs, and ProgramCommittee
for their valuablework.We also thank the authors, presenters, and participants. Particular
emphasis goes to Julie Shah and DovGabbay for their fantastic keynotes, and to Johanna
Björklund, Tathagata Chakraborti, Kristijonas Cyras, Elizabeth Sklar, Andrea Omicini,

1 https://extraamas.ehealth.hevs.ch/archive.html.

https://extraamas.ehealth.hevs.ch/archive.html
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Reyhan Aydogan, and Leon Van der Torre for their participation in very enthusiastic
discussion panels.

May 2021 Davide Calvaresi
Amro Najjar

Michael Winikoff
Kary Främling
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To Pay or Not to Pay Attention:
Classifying and Interpreting Visual

Selective Attention Frequency Features

Lora Fanda1(B) , Yashin Dicente Cid2 , Pawel J. Matusz1 ,
and Davide Calvaresi1

1 University of Applied Sciences Western Switzerland (HES-SO), Sierre, Switzerland
{lora.fanda,pawel.matusz,davide.calvaresi}@hevs.ch

2 University of Warwick, Coventry, UK
yashin.dicente@warwick.ac.uk

Abstract. Selective attention is the ability to promote the processing of
objects important for the accomplishment of our behavioral goals (tar-
get objects) over the objects not important to those goals (distractor
objects). Previous investigations have shown that the mechanisms of selec-
tive attention contribute to enhancing perception in both simple daily
tasks and more complex activities requiring learning new information.

Recently, it has been verified that selective attention to target objects
and distractor objects is separable in the frequency domain, using Logis-
tic Regression (LR) and Support Vector Machines (SVMs) classification.
However, discerning dynamics of target and distractor objects in the con-
text of selective attention has not been accomplished yet.

This paper extends the investigations on the possible classification and
interpretation of distraction and intention solely relying on neural activ-
ity (frequency features). In particular, this paper (i) classifies distractor
objects vs. target object replicating the LR classification of prior studies,
extending the analysis by (ii) interpreting the coefficient weights relating
to all features with a focus on N2PC features, and (iii) retrains an LR clas-
sifier with the features deemed important by the interpretation analysis.

As a result of the interpretation methods, we have successfully
decreased the feature size to 7.3% of total features – i.e., from 19,072 to
1,386 features – while recording only a 0.04 loss in performance accuracy
score—i.e., from 0.65 to 0.61. Additionally, the interpretation of the classi-
fiers’ coefficient weights unveiled new evidence regarding frequency which
has been discussed along with the paper.

Keywords: EEG · Selective attention · Machine learning

P. J. Matusz and D. Calvaresi—Equal contribution.

c© Springer Nature Switzerland AG 2021
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1 Introduction

The comprehension of spatiotemporal brain dynamics can help identify selective
attention in both healthy and attention-impaired individuals.

Humans’ mental capacity to attend to and process in-depth the incoming
information is limited [1]. According to Posner and Peterson [2], attention com-
prises three subsystems: (i) alerting, (ii) orienting, and (iii) selective atten-
tion. The latter is a naturally multisensory set of processes that flexibly engage
the limited computational resources according to the task demands. Process-
ing resources are scarce, and the stimuli received by the senses compete for
them. Some theories (i.e., biased-competition [3]) detailed how the competition
for resources is resolved and integrated across different brain processing stages,
producing a coherent behavior.

Understanding such concepts requires both Neuroscience and Artificial Intel-
ligence (AI) domain knowledge, with particular emphasis on Machine Learning
(ML). The cognitive orchestration of selective attention, its role in enhancing
perception and learning skills, and neurocognitive processes engaged by distrac-
tor or target objects have been widely investigated [4–6]. However, brain mech-
anisms and classification methods to distinguish selective attention to target vs.
distractor objects have not been understood yet.

Achieving such an understanding can provide essential insights into func-
tional differences in cortical cognitive mechanisms governing attention to object
task-relevant and task-irrelevant. Therefore, understanding when and how well
individuals pay attention to objects and events can lead to practical tools to
better measure attention in the classroom or the workplace (if the ethical issues
related to performance tracking vs. privacy are sufficiently addressed).

Current approaches adopt a cortical correlate of the attentional selection,
known as the N2PC, of both targets and distractors possessing target features.
N2PC is defined as a negative polarity at 200 ms latency appearing over pos-
terior electrodes contralateral to the direction of attention. In other words, the
N2PC is reflected by enhanced negativity emerging approximately (200 ms) after
stimulus onset over posterior electrodes contralateral to the stimulus location.
This measure uses neural signals derived from the acquired electroencephalogram
(EEG) to identify selective attention to visual objects. The N2PC is obtained
from EEG data via the event-related potential (ERP) technique involving aver-
aging brain responses elicited by one type of stimulus over multiple repetitions
of it over time. The averaging amplifies the faint neural signal reflecting neu-
rocognitive processing of that stimulus. The N2PC is known to be particularly
modulated by goal-based (“top-down”) and visual selective attention processes.
Therefore, selective attention is measured in the window between approximately
150 ms and 300 ms after stimulus onset and lasts until the difference between
the negative potential between hemispheres is no longer measured.

As of today, the analysis of selective attention via the traditional N2PC
analytical approach is a human-intensive task, and as such, it is time-consuming,
requires in-depth experience, and is currently not semi-automated [7]. Moreover,
due to the high temporal resolution of the EEG signal, human-related errors (i.e.,
variability in the identification of the start and end of the N2PC time window)
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can jeopardize the results’ precision and accuracy. Prior work has shown that
attention to targets and distractors is separable in EEG via a classification
methodology using linear and non-linear classifiers [8]. However, the classification
mentioned above has not been interpreted, leaving incomprehensible which EEG
frequency features provide the most separable information.

This paper analyzes and interprets the frequency features using the same
dataset employed in [8]. In particular, the classifiers’ coefficient weights are inter-
preted to understand which features convey the most relevant information for
classification. Finally, we discuss the relevance of our findings within the Neuro-
science domain.

The rest of the paper is organized as follows. Section 2 presents the current
state of the art about the many mechanisms and abstractions supporting our
notion of attention, which is then introduced, defined, and discussed in section
Sect. 3. Section 4 elicits the opportunities and presents the challenges related to
our definition of attention. Finally, Sect. 5 concludes the paper.

2 State of the Art

The contribution of this paper relies on concepts intersecting neuroscience and
machine learning. Therefore, this section provides the necessary background con-
cepts and the related state of the art to facilitate the reader’s comprehension of
the topic.

EEG: Selective attention has been studied using various modes of data collection,
ranging from invasive techniques like electrocorticography (ECoG) [9], to non-
invasive techniques like EEG [1,10]. Processes related to attention have distinct
markers in the frequency domain [11,12]. Therefore, EEG and ECoG are the pre-
ferred data acquisition techniques due to their high temporal resolutions and abil-
ity to detect these forms of attention-relevant oscillatory activity. Overall, EEG
is preferred to ECoG as it is noninvasive and more convenient for collecting large
amounts of electrophysiological data. Thus, EEG neural recordings can be used
to classify selective attention to distractor objects, target objects, or non-object
stimuli.

N2PC: In traditional methods, selective attention to potentially task-relevant
objects is measured through N2PC. N2PC, an event-related potential (ERP) cor-
relate, is a cortical measure of attention to candidate target objects in selective
attention task contexts. On the one hand, for target objects, Nobre et al. [13]
confirm the presence of changes in the ERP strength over the N2PC period
triggered by visual target objects where attention has been captured by visual
targets. On the other hand, the target object’s properties can be the driving
force that determines selective attention to distractors. This has been initially
shown in behavioral responses in a study by Folk et al. and then confirmed in
an EEG study by Eimer et al. [14] and further supported by multiple studies
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since [14,15]. Therefore, like for the target objects, N2PC is a well-used mea-
sure of selective attention for distractor objects. Hence, the N2PC is well suited
as a marker of attending towards visual stimuli of distracting and task-relevant
(target) type.

Frequency Components of Attention: Attention has a distinct imprint in
the frequency domain. Thus, each frequency domain is associated with a class of
attentional processing. Changes in the δ band power, 0.5–4 Hz, allow for separa-
tion of low and high cognitive load while the θ band power reflects the encoding
of new information. The α band power, 8–12 Hz, is higher for target object per-
ception during the attention task. The β band power, 13–30 Hz, increases pre-
ceding the correct response. The γ band power, 30–70 Hz, increases by a visual
search task when the subject attends to a stimulus [12,16]. Labeling each fre-
quency band with one functionality can be misleading. Thus the range of these
frequency bands will be considered as attention-relevant frequency bands.

Discrete Cosine Transform (DCT): A method for frequency feature extrac-
tion is the Discrete Cosine Transform (DCT). DCT extraction has previously
been used for EEG and MEG datasets [17,18] to extract frequency components
of a signal to use in classification. Table 1 summarized ranges of EEG frequency
bands and related DCT ranges for convenience.

Table 1. Table of Frequency bands in EEG datasets and their translation to DCT for
our EEG dataset.

Frequency bands

δ θ α β γ High γ

Frequency range (Hz) (0.5–4) (4–8) (8–13) (13–30) (30–50) (50–80)

DCT range [1:2] [2:3] [3:5] [5:10] [10:17] [15:25]

Classifying Neural Data: In the fields of Brain-Computer Interfaces (BCIs)
and Epileptic seizure detection, the interest in the classification of neural data is
growing. The most common features used in the classification of BCI and Epilepsy
data are raw EEG, frequency component extraction, and AutoRegressive fea-
tures [19,20]. In comparison, the most common features to classify selective atten-
tion are raw EEG, frequency component, and N2PC electrode features [21].

Logistic regression (LR) recorded promising performance accuracy for clas-
sification of biological brain signals [8,19,22–24]. LR is generally used as a cat-
egorical problem-solving method, thus can be applied to multivariate classifica-
tion [25]. It is deemed a simpler classification technique but can provide unique
results if feature vectors are adequately selected and if the data is linearly sep-
arable. It is important to note that, unlike BCI/Epilepsy classification applica-
tions, selective attention classification had only recently been applied, and it is
a steadily growing field.
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Classification of Attention Data: Fanda verified that selective attention
is separable in the frequency domain using LR and SVM classification and,
from manual feature selection, showed that N2PC region electrodes hold the
most discriminative information compared to non-N2PC regions [8]. However,
in such a study, comparisons across low to high-frequency features are lacking,
and the coefficient weights relating to the features have not been interpreted,
thus undermining the understanding of the classifier decision-making.

Contribution: In light of the findings mentioned above and due to the lack
of interpretability in DCT feature classification of selective attention data, this
paper (i) replicates the LR classification performed in [8], (ii) interprets the
coefficient weights relating to all features with a focus on N2PC features, and
(iii) retrains an LR classifier with the features deemed important by the inter-
pretation analysis.

3 Approach or Method

Overall, to interpret the selective attention frequency features, we will repli-
cate the classification using LR, interpret the model’s weights, and retrain the
classifier with sub-selected features as extracted from the interpretation data.
To facilitate the reader’s comprehension, Fig. 1 summarizes the overall pipeline
spanning from the EEG data acquisition to the performance analysis. In partic-
ular, Fig. 1(a) explicates the step undertaken in prior work, such as EEG dataset
and N2PC analysis division [15], and DCT feature extraction and initial LR clas-
sification parameters [8]. Figure 1(b) organizes the tasks and results obtained in

Pre-processing

EEG data acquisition

N2PC Analysis

DCT Feature Extraction

All Features

PH2: Interpretation of 

Select Features

PH4: Performance Assessment

R1

R2

(a)  Prior-data Our  pipeline  (b)

PH1: replication of 

Fig. 1. Overall pipeline from data acquisition to performance analysis: (a) prior work’s
tasks, (b) methodology pipeline of this contribution.



8 L. Fanda et al.

the specific phases (PHx) of this study, such as (PH1) replication of the ini-
tial LR classification, (PH2) interpretation of the features contributing the most
information to the replicated LR classifiers’ coefficient weights for all features,
(PH3) re-learning LR classification with sub-selected featured as extracted by
R1, and (PH4) performance assessment and comparison of all LR classifiers.

EEG Data Acquisition: The EEG dataset has been collected using a 129-
channel HydroCel Geodesic Sensor Net connected to a NetStation amplifier (Net
Amps 400; Electrical Geodesics Inc., Eugene, OR, USA) where 128 electrodes
have been used at a 1 kHz sampling rate. During data acquisition, electrode
impedances have been kept below 50 kΩ, and electrodes have been referenced
online to Cz, a common reference for EEG cap data collection. Participants have
been recorded for three hours in a task described in Turoman et al. [15]. This
dataset has been collected by Dr. Turoman during her Ph.D. work [26]. To com-
plete the task, the participants have been instructed to search for a predefined
color target (target object) in a search array and report the target’s orientation
(i.e., if the target is horizontal, press right, otherwise, press left). The partic-
ipants have been instructed about other objects that could appear (distractor
objects) and focus solely on reporting the target’s orientation. Figure 2 shows
examples of the task.

Fig. 2. This figure shows all four stimuli of the paradigm (A–D) and the time impor-
tance of the three interested time-ranges. (A) is “Baseline” Class 0, (B) is “Cue” Class
1, and (D) is “Target” Class 2 stimuli. The cross (C) is not used in this study. Repro-
duced from Fanda [8].

Preprocessing: This paper extends the work done in [26]. Therefore, it is worth
recalling that data have been band-pass filtered between 0.1 Hz and 40 Hz, notch
filtered at 50 Hz, and Butter-Worth filtered of phase shift elimination at −12
dB/octave roll-off. Automatic artifact rejection of ±100µV has been used to
increase the signal-to-noise ratio. Next, trails have been segmented to separate
base, distractor, and target array neural responses for feature extraction.

N2PC Analysis: In [15], the authors have applied N2PC to the dataset in
analysis and successfully computed selective attention activity to distractors.
Figure 3(A) shows N2PC activity from 180 to 300 ms time range for a visual
(TCCV) and audiovisual (TCCAV) property of the stimuli. Figure 3(B) shows
the region of N2PC electrode coverage (in red), which is a collection of 14 elec-
trodes around the two main N2PC electrodes (e65 and e90). In this paper, N2PC
electrodes refer to the 14 electrodes in the N2PC region from the TCCV condi-
tion only, as shown in Fig. 3(B).
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Fig. 3. N2PC analysis: (A) N2PC analysis, indicating presence of N2PC from ∼200
to ∼300 ms (taken from Turoman et al. [15]). (B) EEG Cap images referencing N2PC
region electrodes, taken from Fanda [8].

DCT of N2PC Time-Frame: DCT decomposes and compresses a signal to
(signal-length - 1 ) frequency bins. The benefit of using DCT features relies on
containing the full frequency identity of the signal while removing biases that can
come from time-series and amplitude measures. Equation 1 is one-dimensional
DCT, and it is used for feature extraction.

yk = 2
N−1∑

n=0

xn cos
(

πk(2n + 1)
2N

)
(1)

For example, if a signal xn is sampled at 1024 Hz for a length of N = 150,
the frequency components extend up-to 512 Hz. When applying DCT, the 512 Hz
frequency components of the signal are cosine-transformed into (N − 1) = 149
frequency bins, keeping only the real values of the signal. This results in the
yk vector where the first value k = 0 contains prevalence via summation of
frequencies ranging from 0 to 3.33 Hz, the second bin from 3.34 to 6.66 Hz, and
so on.

Prior knowledge of attentional frequency oscillation dictates that selective
attention primarily ranges from 8 Hz to 30 Hz (attention relevant frequency
band) [10]. For the DCT extraction of the dataset, this range is contained in
DCT bins one to 27 (see Fig. 4). Thus, the lower DCT bins likely contain more
relevant information to selective attention than the higher bins. Such a hypothe-
sis is tested by looking at the coefficients of the features in our learned classifier’s
decision function.

Classification: In this paper, we aim to classify and interpret selective atten-
tion EEG data. Specifically, we used LR to classify distractor objects vs. target
object, and interpret the classifier feature coefficient weights. With LR, we used
a one-vs-all multi-class structure. The features used for the LR classifier are
normalized DCT features, split by participant into train, validation, and test
sets. To evaluate the model, performance accuracy scores have been used as a
performance evaluation technique.
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Fig. 4. DCT features visualized for one electrode of one training sample. The shaded
regions correspond to frequencies, as translated from Table 1.

Interpretability of LR: In this contribution, interpretability approaches are
applied to classifiers to examine the contribution of individual predictors. One
method consists of the examination of the regression coefficients of each of the
three LR classifiers resulting from our multi-class problem using a one-vs-all
setup. LR coefficients are slightly more difficult to interpret as the line of best
fit is a logit function, the inverse of the sigmoid curve. Thus, the resulting
coefficients of LR are odds ratios and require exponentiation to convert to regular
odds. The odds ratio then corresponds to the βk coefficients where k ∈ [1, n] with
n = total predictors in the LR odds Eq. 2, where x’s are values of predictors.

odds(x1 + 1)
odds(x1)

=
eβ0+β1(x1+1)+β2x2+···+βnxn

eβ0+β1x1+β2x2+···+βnxn
=

eβ1(x1+1)

eβ1x1
= eβ1 (2)

Post conversion, the values of the coefficients are positive, and they are inter-
preted following the rule below:

Odds =
{

eβk × as likely, if eβk >= 1
1

eβk
× as unlikely, if eβk < 1 (3)

As an example, taking k = 1 coefficient β1 from class A, this rule roughly
translates to:

– for eβ1 >= 1: “Each unit increase in x1, the odds that the observation is in
class A are eβ1 times as likely as the odds that the observation is not in A.”

– for eβ1 < 1: “Each unit increase in x1, the odds that the observation is NOT
in class A are −1

eβ1
times as unlikely as the odds that the observation is in A.”

4 Results and Discussions

This section describes the two main results: (R1) the interpreted LR classifiers’
coefficient weights as odds ratios for all features and N2PC features and (R2) the
LR classification accuracy score comparison, using all, N2PC only, and N2PC &
selected DCT features. Additionally, the discussions are included in the end.
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R1 - Coefficient Weights as Odds Ratios: All Features and N2PC: It is
worth recalling that due to the one vs. rest multi-class choice of LR classification,
each class has a set of odds ratios extracted from the model’s coefficients weights.
Thus, the analyses are shown for each classifier (Baseline, Distractor, or Target)
individually. To inspect if N2PC electrodes have information more valuable than
other electrodes to the decision function of the classifier, we have plotted in Fig. 6
the odds ratios of classifiers for Baseline (brown), Distractor (blue), and Target
(purple), where the N2PC region electrodes are plotted using a darker color for
contrast.

From Fig. 5, N2PC electrodes overall have higher odds ratios compared to
other electrodes. To better see the pattern of the distinct shape of the N2PC
electrodes, we stacked the coefficient weights vector with respect to DCT fre-
quency bin features, resulting in a 128 by 149 coefficient matrix as plotted in
Fig. 6 for each classifier. In addition to identifying the distinct N2PC electrode
patterns, we can understand in which DCT bins the odds ratios across the three
classifiers diverse/stay similar. Then, the odds ratios are analyzed using Eq. 2.

In particular, each unit increase in DCT 1 to 3, the odds that the observation
is in-class Target is β1−3 ∈ (∼ 1.004,∼ 1.006) times as likely as the odds that
the observation is not in class Target. Conversely, each unit increase in DCT,

Fig. 5. Coefficients as odds ratios of the features in the decision function of LR classi-
fication. In all three classifiers above, for each class, the N2PC electrodes visibly have
higher peaks. Figure 6 stacks the feature vector by electrode to better visualize the
patterns with respect to DCT frequency bins.
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Fig. 6. Coefficients as odds ratios of the features in the decision function
of LR, organized by electrode: This figure reorganizes the coefficient weights seen
in Fig. 5 by stacking them electrodes (to highlight the patterns w.r.t. DCT frequency
bins). The coefficient weights, as odds ratios, are plotted for (A) Baseline, (B) Cue,
and (C) Target classifiers. The N2PC electrodes are highlighted in a darker color to
show the difference in patterns over DCT frequency bins. E65 and E90 are further
highlighted because they are the selective electrodes studied by Turoman et al. [15],
from whom the dataset was taken.

the odds that the observation is not in class Target is 1
β = 1

0.995 = 1.005 times
as likely as the odds that the observation is in class Target. Following this rule,
we set a threshold of 1.000 ± 0.004 for selecting the DCT components for future
analysis. A visualization of this threshold is seen in Fig. 7. All DCT features with
odds ratio values falling below 0.996 and above 1.004 have been selected for the
next iteration of LR classification. This resulted in the selection of the following
DCT regions:
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Baseline: DCTs [49:71 and 125:149]
Distractor: DCTs [0:5 and 32:51]

Target: DCTs [0:72 and 140–149]

Fig. 7. DCT threshold visualization for DCT feature selection for interpreting which
DCT features among N2PC region electrodes are more important. Here, the common
denominator of DCT ranges across all three classifiers is DCT 0 to 73 and 124 to 149.

As a result, in the next iteration of LR classification, only the N2PC region
features, and DCT features 0 to 73 and 124 to 149 will be used. The rest of the
features will be discarded.

Coefficient Weight Analysis for N2PC Electrode Features: To analyze
the weight of the coefficients for N2PC electrode features, we used the conversion
in Table 1. Frequency bands relating to selective attention activity will not be
defined in purpose. Nevertheless, it is known that these frequency ranges’ power
can correlate with selective attention activity. As such, we expect the odds ratios
to have a visibly higher or lower value than 1 for DCT frequency bins from 1
to 27. Taking threshold 1.004 and 0.996, we retrained the LR and compared the
performance accuracy scores between all features, only N2PC but all DCTs, and
only N2PC and selected DCT.

Confusion Matrices: To compare the performance of the three iterations of
learning an LR classifier, accuracy scores and confusion matrices are reported in
Fig. 8. Confusion matrices have been calculated to understand better the intra-
class classification accuracy and errors for (A) All features, (B) N2PC region
features with all DCT components, and (C) N2PC region features with selected
DCT components.

Discussions: In this work, we have analyzed the most valuable features of
the LR classifier’s decision function. In line with what identified in [8], from
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Fig. 8. Confusion Matrices of LR classification accuracy scores using (A) all features,
(B) N2PC region features, and (C) N2PC region and select DCT features. The accuracy
scores are shown for each class true labels (y axis) and predicted labels (x axis), for
Baseline (Class 0), Cue (Class 1), and Target (Class 2). The overall classifier accuracy
is written in the bottom.

manual feature selection, N2PC region electrodes hold the most discriminative
information compared to non-N2PC regions. Lead by the lack of interpretability
in DCT feature classification in EEG datasets, this paper (i) replicates the LR
classification performed in [8], (ii) interprets the coefficient weights relating to
all features with a focus on N2PC features, and (iii) retrains an LR classifier
with the features deemed discriminant by the interpretation analysis.

We verified that N2PC region electrode features hold more discriminative
information than non-N2PC region electrodes, as seen by Fig. 6. Additionally,
we have identified that DCT frequencies of zero to 73 and 123 to 149 held the
most discriminative information than other DCT frequency bins, as seen by
Fig. 7. We retrained an LR classifier using only the sub-selection of features (i.e.,
14∗99
19072 = 1386

19072 = 7.3% of the original features vector size), with only a 0.04
loss in performance accuracy score. Some of the expected outcomes from the
interpretations are:

E1. N2PC region electrodes overall have higher odds ratios compared to other
electrodes (Fig. 5(A–C)). This verifies that N2PC region electrodes have
higher activity associated with selective attention.

E2. In the Baseline classifier, each unit increase in the DCT frequency bins 0 to
7 suggested that the odds that the features are not in the Baseline class are
larger than the odds that the feature is in the Baseline Class (Fig. 5(A)). As
DCT frequency bins zero to 7 correspond to selective attention frequencies,
this confirms previous work. In other words, given values of <1 in these
regions, the odds ratio suggests that these selective attention frequency
values are discriminating that they do not belong in the Baseline classifier.

E3. In the Target classifier, each unit increase in the DCT frequency bins 0 to 7
suggested that the odds that the features are NOT in the Target class are
larger than the odds that the feature is in the Target Class (Fig. 5(A)). As
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DCT frequency bins zero to 7 correspond to selective attention frequencies,
this confirms previous work.

Additionally, some novel evidence can be extracted from the interpretation of
the odds ratios in PH1 and PH2 (see Fig. 1):

E4. The Distractor classifier odds ratios suggest that DCT features from 120
to 149 have high discriminability information. However, such high DCT
frequency bins correspond to frequencies 500 Hz. Thus, this requires more
investigation as they could be related to artifacts (Fig. 5(B)).

E5. DCT frequency bins 20 to 80 have unexpectedly high odds ratios, which
correspond to frequencies of 60 to 360 Hz. To the best of our knowledge,
it suggests the presence of discriminating information in those frequency
bands that have not been explained yet.

5 Conclusions

Prior work in classifying selective attention identifies the relevance on N2PC
electrodes. However, they neglect feature interpretation. This study tackled the
interpretation of LR classifiers to better discern the dynamics of target and
distractor objects in the context of selective attention.

In particular, this paper has (i) classified distractor objects vs. target object
replicating the LR classification of prior studies, (ii) interpreted the coefficient
weights relating to all features with focus on N2PC features, and (iii) retrained
an LR classifier with the features deemed important by the interpretation analysis.

The two main results of the interpretation methods are (i) successful feature
size reduction (decreasing feature size to 7.3% of total features – i.e., from 19072
to 1,386 features – while recording only a 0.04 loss in performance accuracy
score), (ii) the interpretation of the classifiers’ coefficient weights unveiled new
evidence.

In particular, such evidence are [E1.] N2PC region electrodes overall have
higher odds ratios compared to non-N2PC electrodes; [E2.] In the Baseline clas-
sifier, each unit increase in the DCT frequency bins 0 to 7 suggested that the
odds that the features are not in the Baseline class are larger than the odds that
the feature is odds ratios of the Baseline classifier suggests that DCTs relating
to Selective Attention frequency ranges are more unlikely to belong to Baseline
class; [E3.] each unit increase in the DCT frequency bins 0 to 7 suggested that
the odds that the features are the Target class are larger than the odds that
they are not in the Target class.

Future works include the investigation of [E4] high DCT frequency bins hav-
ing the most discriminant information for Distractor classifiers and [E5] DCT
bins from 20 to 80 (approximately 60–360 Hz) having high odds ratios for all
classifiers. It is important to understand the nature of the DCT components in
relation to selective attention frequencies.
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Abstract. Knowledge-extraction methods are applied to ML-based pre-
dictors to attain explainable representations of their operation when the
lack of interpretable results constitutes a problem. Several algorithms
have been proposed for knowledge extraction, mostly focusing on the
extraction of either lists or trees of rules. Yet, most of them only support
supervised learning – and, in particular, classification – tasks. Iter is
among the few rule-extraction methods capable of extracting symbolic
rules out of sub-symbolic regressors. However, its performance – here
intended as the interpretability of the rules it extracts – easily degrades
as the complexity of the regression task at hand increases.

In this paper we propose GridEx, an extension of the Iter algorithm,
aimed at extracting symbolic knowledge – in the form of lists of if-then-
else rules – from any sort of sub-symbolic regressor—there including neu-
ral networks of arbitrary depth. With respect to Iter, GridEx produces
shorter rule lists retaining higher fidelity w.r.t. the original regressor. We
report several experiments assessing GridEx performance against Iter

and Cart (i.e., decision-tree regressors) used as benchmarks.

Keywords: Explainable AI · Knowledge extraction · Interpretable
prediction · Regression · Iter · GridEx

1 Introduction

Nowadays, black-box data-driven predictors such as neural networks or support-
vector machines are among the most used tools to solve a wide range of different
tasks [35]. Such predictors are opaque systems that operate in a sub-symbolic
fashion, making it very hard for humans to understand how they manipulate data
to compute their outputs. Nevertheless, they are being increasingly adopted in
many application fields – including, but not limited to, healthcare, finance, and
law – to support forecasting and decision making.

Thus, to enable the exploitation of black-box predictors within critical appli-
cations where interpretability is not an option, several methods have been devel-
oped to extract intelligible knowledge out of black-box predictors [4], aimed at
explaining the operation and the outcomes of black boxes to humans.
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Virtually all knowledge-extraction methods proposed so far focus on the
extraction of either lists or trees of rules, and are exploited in many applica-
tion areas. For instance, knowledge extraction is applied to credit-risk evaluation
[6,7,41]. In healthcare, they are used to make early breast cancer prognosis pre-
dictions [21], to help the diagnosis of hepatobiliary disorders [25], coronary artery
disease or thyroid dysfunctions [10], to determine the type of dermatological dis-
eases, and to discriminate among liver diseases or diabetes [9]. Rule-extraction
algorithms are also applied to, e.g., predictive models for credit card screening
[39], intrusion detection in computer networks [26], and keyword extraction [5].

However, while most of the algorithms from the literature focus on clas-
sification tasks – e.g. Trepan [19], Rule-extraction-as-learning [18], and others
[8,31] –, a few are explicitly designed for regression tasks—such as Iter [27] and
RefAnn [40]. To the best of our knowledge, no algorithm has been proposed so
far to tackle other branches of machine learning, such as unsupervised learning.
RefAnn is a decompositional extraction procedure which can be only applied
to neural networks with just one hidden layer, and also requires a reduction of
the network aimed at minimising the number of hidden neurons, to simplify the
extraction process. It is then poorly suited for modern deep neural networks.
Conversely, Iter is a pedagogical approach [3] which can be applied to regres-
sors of any sort, as it does not make any assumption on the type, structure, and
operation of the regressors it is applied to. However, its predictive performance
degrades when applied to high-dimensional data sets.

Accordingly, in this work we propose GridEx, a new knowledge-extraction
procedure extending the Iter algorithm to overcome its limitations and to
reduce its computational-time complexity. As an extension of Iter, GridEx
inherits a number of relevant features. For instance, they both extract rule lists
out of regressors of any sort. However, GridEx outperforms Iter in terms of
fidelity of the extracted rules w.r.t. the underlying regressor, especially when
applied to high-dimensional data sets. In other words, GridEx extracts rule lists
whose predictive capabilities are generally closer to the original black box.

To demonstrate the effectiveness of GridEx, we present a number of exper-
imental evaluations aimed at comparing GridEx and Iter. The predictions of
both extraction algorithms are compared among each other and w.r.t. a decision
tree regressor (Cart) trained on the same data. This evaluation is repeated on
six data sets – having incremental amounts of dimensions and instances –, in
order to analyse GridEx scalability, other than predictive performance and its
ability to mimic – and therefore explain – the underlying black-box predictor.

2 State of the Art

As the adoption of machine-learning (ML) predictors pervades human activities,
critical aspects become more evident and challenging, and require more care. In
particular, as widely recognised within the explainable AI (XAI) community, the
exploitation of ML comes at the price of relying on sub-symbolic algorithms that
leverage on poorly-intelligible mechanisms for their operation, since they do not
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represent knowledge explicitly. Lacking interpretability, those algorithms – such
as artificial neural networks (ANNs) and support vector machines (SVMs) – are
often described as “black boxes” [30]. While it may be negligible or harmless in
some application scenarios, interpretability is a critical issue in a growing number
of areas. Several solutions have been proposed in the XAI field: the exploitation
of (more) interpretable predictors – such as linear models and decision trees –
rather than (more) opaque ones – e.g., ANNs and SVMs – in the particular case
of supervised learning [36]; or, the exploitation of inspection techniques focusing
on either input/output or the black-box internal structure [24].

As discussed in [16], computational systems can be considered as interpretable
if their operation and outcomes can be easily understood by a human being:
unfortunately, most predictors exploited in modern AI tend to sacrifice inter-
pretability, by becoming increasingly complex while seeking for predictive per-
formance. Instead, this paper focuses on those techniques aimed at explaining
a sub-symbolic predictor ex-post. We restrict our scope to knowledge-extraction
algorithms which attempt to explain black-box predictors by reverse-engineering
their machinery, with the purpose of making their knowledge explicit.

2.1 Knowledge Extraction

Within the scope of supervised learning, knowledge extraction refers to the task
of extracting some explicit intelligible representation for the sub-symbolic knowl-
edge acquired by some predictor (either classifier or regressor) via learning from
data. Assuming that a procedure for knowledge extraction exists for a particu-
lar predictor, any extracted knowledge can then be used as a basis to construct
explanations – and sometimes as a replacement – for that predictor, provided
that such knowledge retains a high fidelity w.r.t. the original predictor and the
data it has been trained upon [15]. Extracted knowledge, in turn, may then
enable further manipulations for the user’s benefit—such as merging the knowl-
edge of two or more black-boxes [14]. Unfortunately, no one-size-fit-all solution
exists for this task, and several algorithms have been proposed for this purpose
[24].

According to [13], virtually all knowledge-extraction methods proposed so far
into the literature can be categorised along three orthogonal dimensions, namely:
(i) the supported sort of learning tasks, (ii) the form of the knowledge extracted,
and (iii) the translucency requirements of the black box.

Item (i) refers to which supervised learning tasks must be supported by
a black box to enable extraction. While most methods support classification
tasks – e.g. Trepan [19], Rule-extraction-as-learning [18] and others [8,31] –,
only a few are explicitly designed to tackle regression tasks—such as Iter [27],
RefAnn [40], Ann-DT [38] and RN2 [37]. Methods extracting knowledge from
black boxes independently of their task are, e.g., G-Rex [29] and Cart [11].

Conversely, item (ii) refers to the form of the extracted knowledge. As deci-
sion rules [22,28,32] and decision trees [33,34] are the most widespread human-
understandable predictors, most methods produce either decision rules or trees.
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Finally, the translucency notion [3] from item (iii) refers to the relation-
ship between the extracted rules and the internal structure of the underlying
black box—and how much of it the extraction procedure can take into account.
In particular, there exist two sorts of knowledge extractors w.r.t. translucency.
Decompositional extractors take into account the black-box internal structure
during the extraction process, whereas pedagogical ones do not. Therefore, ped-
agogical approaches are usually more general, despite potentially less precise.

To evaluate the quality of knowledge-extraction methods, different indicators
can be exploited, including fidelity and predictive performance measurements
[42]. In particular, the former is a meta-measure of how good the extracted
knowledge mimics the underlying black-box predictions. The latter measures
the predictive power of the explanator with respect to the data. In both cases
measurements are taken via the same scoring function used for assessing the
performance of the black box—which in turn depends on the black-box per-
formed task. For instance, in the particular case of black-box regressors, the
mean absolute error (MAE) and the R2 scores could be exploited.

2.2 The ITER Algorithm

Iter [27] is a pedagogical knowledge-extraction algorithm explicitly designed
for black-box regressors. It extracts knowledge in the form of rule lists, while
imposing no constraint on the nature, structure, or training of the regressors.

To extract rules, the Iter algorithm steps through the creation and iter-
ative expansion of several disjoint hypercubes, covering the whole input space
the regressor has been trained upon. In other words, Iter accepts as input
a regressor and the data set used for its training, then iteratively partitions
the surrounding hypercube containing the whole data set following a bottom-up
strategy.

At the end of the process, each partition is converted into a rule of the form

if Var1 ∈ [Value1
Low

,Value1
High

]

and Var2 ∈ [Value2
Low

,Value2
High

]

and ... and Vark ∈ [Valuek
Low

,Valuek
High

]

then predict some Constant

where k is the dimension of the input space, i.e. the number of input variables.
The predicted output value – Constant – is attained by averaging the output val-
ues of all samples belonging to the originating hypercube. To compute Constant
for each hypercube, samples can be both picked from the data set or randomly
generated. In the latter case, the underlying regressor is used as an oracle.

Pros and Cons. As a pedagogical approach, Iter supports any sort of black-
box regressor. For instance, it can be applied to ANNs with any number of
hidden layers and neurons, unlike decompositional algorithms as RefAnn.

The if-then-else rules produced by Iter are human-readable and globally
approximate the underlying black box with high fidelity. Therefore, when the



22 F. Sabbatini et al.

total amount of hypercubes – and rules – found by Iter is relatively small, the
resulting rule list is a valuable form of explanation for the underlying black box.

As for the predictive performance, the authors of Iter report very good
results with respect to both the data set samples and the underlying black-box
outputs. However, the performance of Iter easily degrades when the algorithm
is applied to complex data sets—where the complexity is represented by the
number of input dimensions. Furthermore, several major Iter drawbacks are
also reported, such as (i) non-exhaustivity – i.e. the extracted rules do not cover
the entire input space –, described with more details in Sect. 2.2 and shown in
Fig. 1, (ii) the impossibility to handle categorical features, and (iii) the impossi-
bility to associate anything than a constant value to each rule—which introduces
an undesired discretisation in the predicted values.

In our experience, another limitation of Iter concerns the hypercube expan-
sion mechanism. In fact, as further discussed in Sect. 4, the algorithm may waste
a lot of computational efforts processing irrelevant regions of the input space –
i.e. regions containing no samples from the data set –, and therefore ending up
producing several useless rules—which, ultimately, hinder interpretability.

Non-exhaustivity Issue. Iter’s hypercube expansion is an iterative proce-
dure strongly affected by the initial conditions, such as the number, position and
dimension of the starting cubes. Even by tuning the algorithm parameters, there
is always a chance that hypercupe expansion converges to a situation where some
portions of the input space are left uncovered. This is undesirable, since the rule
list resulting by Iter would then be poorly predictive for data laying in those
portions of the input space.

To better clarify the issue, we report in Fig. 1 a trivial example with only
two input features taken from [27]. There, the authors show how, after several
iterations, the further expansion of the cubes is impossible and a little region of
the input space – namely, the central one – is not covered by any of them.

To circumvent this issue, the same authors suggest the creation of additional,
smaller cubes to fill the uncovered area. However, despite this solution provides
good results for simple data sets, the opposite is true in more complex contexts.
In these cases, the uncovered regions require an high number of small hypercubes
to be generated. They are smaller and smaller, resulting in an explosion of the
amount of rules—which would in turn hinder the interpretability of the final rule
list.

The authors suggest another fix for the non-exhaustivity issue: adopting a
smaller hypercube update parameter. However, this solution implies more iter-
ations and longer execution time. Thus, this may increase the chance of the
algorithm terminating without converging to a valuable partitioning within the
maximum iterations limit.

3 GridEx

The design of GridEx aims at overcoming the non-exhaustivity of Iter, other
than its inability to discriminate among interesting and negligible regions of
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Fig. 1. Example of the Iter non-exhaustivity taken from [27].

the input space. We consider as interesting the regions that contain at least
one training-set sample, with the others considered as negligible. Furthermore,
GridEx is designed to tackle complex data sets—i.e. high-dimensional data sets
whose data distribution is non-trivial. In particular, the goal of GridEx is to
find bigger and more interesting regions than Iter, while retaining the idea that
samples belonging to the same region should have a similar output value. In doing
so, GridEx tries to keep the computational and human efforts minimal—where by
“human effort” we mean manual parameter tuning, whereas by “computational
effort” we mean time and memory requirements for the algorithm execution.

3.1 The Algorithm

GridEx is a pedagogical knowledge-extraction algorithm that – similarly to Iter

– produces rule lists out of sub-symbolic predictors, by using them as oracles.
In other words, GridEx only takes into account the inputs and outputs of the
underlying predictor. For this reason its performance is not tied to the kind
or the structure of the model and it can thus be applied to neural networks
regardless of their depth, as well as to other sorts of regressors.

Similarly to Iter, GridEx assumes that a black-box regressor R is available,
as well as the input data D it has been trained upon. Under that hypothesis,
both algorithms strictly operate inside the surrounding hypercube containing
all data in D, by trying to find a partitioning of the surrounding hypercube
such that, for each partition, the output value of R is similar for all samples
contained into that partition. In that case, both can produce a list of if-then-else
rules approximating the behaviour of R, one for each partition selected by the
algorithm.

Of course, finding fewer relevant partitions implies producing more concise
rule lists, which are more easily grasped by humans. Accordingly, GridEx dif-
fers from Iter in the way partitions are computed, and relevant hypercubes
are selected. In fact, while Iter relies on a bottom-up strategy – starting from
infinitely small hypercubes containing just one input space point and expand-
ing them as much as possible –, GridEx adopts a top-down strategy—starting
from a single partition containing the whole input space and recursively splitting
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it for a user-defined amount of times, into partitions of equal size. Thanks to
this strategy, GridEx actually succeeds in finding fewer partitions w.r.t. Iter,
while producing rules retaining a good fidelity w.r.t. R. After every split, GridEx
attempts to merge couples of adjacent partitions—provided that all the samples
therein contained yield similar values for R. Split and merge phases are alter-
nated until a stopping criterion is met.

User can choose between two stopping criteria – not necessarily mutually-
exclusive –, one based on the similarity (w.r.t. R) among the samples in the
current hypercube, the other considering whether a maximum number of itera-
tions has been reached or not. More precisely, if the standard deviation of the R
output values of some hypercube exceeds a given threshold, then that hypercube
is further partitioned: when all hypercubes are under threshold the algorithm
terminates. The threshold value is a trade-off between sensitivity – intended as
how similar should be samples grouped together – and number of rules extracted
so far—i.e., the more increases the sensitivity, the more the output rules will be.

This procedure may eventually bring to the creation of adjacent hypercubes
with similar averaged values of R. Thus, after each split and before proceeding to
the successive iteration, the algorithm tries to pair-wise merge similar hypercubes
so as to reduce the total amount of hypercubes—and thus to preserve the model
interpretability. More precisely, two adjacent hypercubes are merged only if the
standard deviation of R for the samples belonging to the merged hypercube
does not exceed a given threshold. In this way, GridEx attains larger hypercubes
without affecting the predictive performance of the resulting rules.

Overall, GridEx relies upon n + 3 user-defined parameters, being n ∈ N>0

the maximum amount of iterations it performs. Such parameters are: n, θ,m and
p1, . . . , pn, where θ ∈ R≥0 is the similarity threshold, m is the minimum amount
of samples to be considered in non-empty hypercubes, and pi is the number of
slices the algorithm performs along each dimension of the current hypercube
during the i-th iteration. In the remainder of this section, we use P to denote
〈p1, . . . , pn〉, k = dim(D) to denote the dimension of the input space D.

Under such hypotheses, a formal definition of GridEx is provided in Algo-
rithm 1. Intuitively, the operation of the algorithm can be described as follows. It
firstly computes the surrounding hypercube containing all data in D by finding
the minimum and maximum value of each input variable. Then it recursively
splits such hypercube into pi parts along each direction, n times, therefore pro-
ducing pki adjacent and non-overlapping partitions of equal size, at each step.
Only non-empty partitions (w.r.t. the data in D) are taken into account by
the algorithm. Similarly, partitions containing samples whose standard devia-
tion (w.r.t. R) is greater than θ are further partitioned in successive steps of the
algorithm. It may happen, however, that some partition contains too few sam-
ples to provide precise predictions. To prevent this, before computing standard
deviation, GridEx generates m new random samples, using R as an oracle.
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Algorithm 1. GridEx pseudocode
Require: parameters n, θ, m, p1, . . . , pn to be provided

1: function GridEx(R, D)
2: H0 ← SurroundingHyperCube(D)
3: return Slpit(1, H0, R, D)

4: function SurroundingHyperCube(D)
5: return the minimal hyper-cube that includes all the samples of D

6: function Split(i, H, R, D)
7: if i > n then return {H}
8: Π ← ∅, Π ′ ← ∅

9: for all H ′ ∈ Partitions(H, pi) s.t. H ′ ∩ D �= ∅ do
10: D ← D ∪ GenerateSamplesIn(H ′)
11: if StdDev(H ′, R, D) ≤ θ then
12: Π ← Π ∪ {H ′}
13: else
14: Π ′ ← Π ′ ∪ {H ′}
15: Π ′′ ← Merge(Π, R, D)
16: for all H ′ ∈ Π ′ do
17: Π ′′ ← Π ′′ ∪ Split(i + 1, H ′, R, D) � Recursion!

18: return Π ′′

19: function GenerateSamplesIn(H)
20: return {m random points in H}
21: function Partitions(H, p)
22: return {all pk partitions of H after splitting each edge into p parts}
23: function Merge(Π, R, D)
24: C ← AdjacentCouples(Π)
25: while (|C| > 0) do
26: (H∗

1 , H∗
2 ) ← arg min

(H1,H2)∈C

{StdDev(H1 ∪ H2, D, R)}
27: H ← H∗

1 ∪ H∗
2

28: if StdDev(H, R, D) ≤ θ then
29: Π ← Π \ {H∗

1 , H∗
2} ∪ {H}

30: C ← AdjacentCouples(Π)
31: else
32: return Π
33: return Π

34: function StdDev(H, R, D)
35: return the standard deviation of all {R(x) | x ∈ H ∩ D}
36: function AdjacentCouples(Π)
37: return {(H1, H2) | H1, H2 ∈ Π ∧ (H1 and H2 are adjacent)}
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(a) Surrounding
cube

(b) Iteration 1
(p1 = 2)

(c) Iteration 2
(p2 = 2).

(d) Iteration 3
(p3 = 2).

Fig. 2. Example of GridEx hyper-cube partitioning (merging step not reported). (Color
figure online)

3.2 An Example

An example of hypercube partitioning executed by GridEx is reported in Fig. 2.
The merging phase is not represented. The data set has two input variables (i.e.
k = 2); user-defined parameters are n = 3, P = 〈2, 3, 2〉 and θ = 2.0. In particu-
lar, Fig. 2a depicts the surrounding cube and the data set samples, represented
by red dots. After first iteration (Fig. 2b), the surrounding cube is split into 4
(pk1) hypercubes (continuous lines), as p1 = 2. The bottom-left and top-right
ones are discarded as they are empty (white background). The top-left hyper-
cube standard deviation (1.5) does not exceed θ (2.0), so it is not partitioned
any further. Conversely, the fourth hypercube (standard deviation 2.1) must be
further partitioned: thus, in the second iteration, it is split into 9 (pk2) partitions
(dashed lines, Fig. 2c), as p2 = 3. The same logic is then recursively applied to
the 9 new hypercubes, leading to the final stage in Fig. 2d: 5 hypercubes out
of 9 are discarded as empty (white background), 3 remain unaffected as their
standard deviation is lower than θ (orange background), whereas the remaining
one is partitioned into 22 smaller partitions (dotted lines), as p3 = 2. Finally, of
these 4 partitions, only 1 is non-empty then kept (green background).

3.3 GridEx Adaptive Splitting

Operationally, GridEx partitions a hypercube by relying on the parameters P =
〈p1, . . . , pn〉, which essentially state how many splits must be performed per
dimension, at each step of the algorithm. In practice, the actual values of the
many pi greatly impact on the outcome of GridEx—both in terms of efficiency of
the whole procedure, and in terms of predictive performance (and complexity) of
the resulting partitioning. However, they still implicitly rely on the assumption
that all the input variables present a comparable relevance w.r.t. the output
value definition—i.e. the expected output can be more dependent or almost not
dependent at all on some variables rather than others.

Accordingly, we argue that a wiser strategy in hypercubes partitioning could
rely on the following insight: more relevant dimensions of a hypercube should be
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split into more parts, whereas less relevant ones can be split in fewer parts. Thus,
to further optimise the amount of selected hypercubes – without sacrificing pre-
dictive performance –, users of GridEx may adopt an adaptive splitting. When in
adaptive splitting mode, GridEx takes into account the relevance of each dimen-
sion of D w.r.t. the expected output value. In particular, it uses an importance
measure to choose the number of splits for each dimension of a hypercube.

Importance values can be estimated in several ways. Among the many meth-
ods available – e.g. [2,44,45] – here we leverage on a simple feature selection
method, SciKit-Learn’s feature selection.f regression1. It consists of a
sequential algorithm aimed at iteratively and greedly selecting the most rel-
evant features of a dataset. It starts by training a temporary regressor on a
single feature – namely, the most correlated w.r.t. the output values – and it
keeps repeating this operation by adding one feature at a time, always peaking
the one that mostly increases the temporary regressor predictive performance.
At the end of this process, features are ranked w.r.t. their relevance, and such
ranking is used for the adaptive splitting.

Accordingly, users willing to exploit adaptive splitting should specify the
number of partitions assigned to each dimension on the basis of the importance
calculated w.r.t. D. Importance values are normalised into range [0, 1] so that the
value of the most important value is 1. The algorithm should then be provided
with an increasingly-monotone function of the form f : [0, 1] → N to set the
splits to perform. For instance, a reasonable enhancement for standard two-split
iterations could be: a single split along dimensions whose importance is <0.1,
two splits if the importance is between 0.1 and 0.65, and three splits otherwise.

We remark that there exists no fixed optimal choices for f : yet, a trial-and-
error approach can possibly lead to quickly find the most suitable combination.

3.4 Parameter Tuning

As described in Sect. 3.1, GridEx relies on a number of parameters.
The similarity threshold θ depends on the problem under study, i.e. on the

problem output value distribution, and on the trade-off between the interpretable
prediction performance and the total number of extracted rules. Small values of
θ lead to more rules with higher predictive performance. Conversely, large values
produce less rules at the expense of the predictive performance.

As for the m parameter – representing the minimum amount of considered
samples in each cube –, our experiments showed that it does not notably influence
the final results. Values ranging from 10 to 100 are a good choice. We adopted
m = 15 for the experiments reported in this paper.

For both the standard and adaptive versions of GridEx, one or two iterative
partitions are enough to obtain very good results with a limited amount of output
rules. Our experiments showed that larger values lead to an explosion of the rule
number without any significant enhancement of the predictive performance.

1 cf. https://scikit-learn.org/stable/modules/generated/sklearn.feature selection.f reg
ression.html.

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.f_regression.html
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Similarly, we found that values of 2 or 3 are suitable for the various pi parame-
ters identifying the number of partitions to create on each cube dimension. Larger
values should be avoided, adopting instead an additional partitioning step. For
instance, P = 〈4〉 gives the same predictive performance than P = 〈2, 2〉, but
producing a great excess of hypercubes. This fact occurs because the single-
step partitioning is equivalent to a 2-step partitioning where all the hypercubes
created during the former iteration are further split during the latter.

When the output is not satisfying, it is possible to take advantage of the
adaptive splitting for reducing the number of output rules with negligible dete-
rioration of the predictive performance following the aforementioned suggestions.

4 Assessment of GridEx

In this section we provide a numerical analysis of GridEx under an explainability
perspective. More precisely, our analysis is aimed at understanding if and to
what extent GridEx: (i) is capable to approximate a black-box regressor, (ii)
performs better than Iter in doing so, and (iii) is capable to provide concise
and intelligible explanations for regression tasks.

Accordingly, we construct our experiments as follows. We implement both
GridEx and Iter in Python and run them on a pool of black-box regressors –
trained on many publicly-available data sets of growing size and dimensionality
– to compare their rule-extraction capabilities. We also compare the complexity
of the partitioning produced by GridEx and Iter with the ones produced by
the Cart decision tree regressor trained on the same data2. Similarly, the data
sets for our experiments are summarised in Table 1, providing, for each data set,
(i) a bibliographic reference, (ii) the number of input features, (iii) the total
number of instances, (iv) the percentage of samples taken apart as test set while
training a black-box regressor on that data set, and (v) the performance of the
black-box regressor. In particular, our black-box regressors are ANNs with one
or two hidden layers, depending on the data set. The predicting performance of
the ANN is reported in terms of MAE and R2 value averaged on 100 tests.

Generally speaking, our experiments show how GridEx performs better than
both Iter – as it produces partitionings containing fewer hypercubes, while
attaining rule lists with better predictive performances – and Cart—as it pro-
duces simpler rule lists having choice points.

4.1 ITER Experimental Analysis

As a first step, we run Iter on all the aforementioned black-box regressors and
data sets. Experiments concerning each data set are repeated 10 times. The
averaged results of such experiments are summarised in Table 2.

In all the experiments, Iter parameters are the same: the number of initial
hypercubes is set to 1 for all data sets, while the update parameter is chosen
2 For the sake of reproducibility, the source code of our experiments is publicly available

at https://github.com/sabbatinif/GridEx.

https://github.com/sabbatinif/GridEx
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Table 1. Overview of the adopted data sets and the performances of the black-box
regressors trained upon them.

Data set name Acron. Ref. Features Instances Test set (%) MAE R2

ARTI1 (α = 0) ARTI1 [27] 2 1 000 50 0.01 0.99

Combined Cycle Power Plant CCPP [17] 4 9 568 20 4.16 0.89

Airfoil Self-Noise ASN [1] 5 1 503 20 2.04 0.85

Energy Efficiency EE [20] 8 768 20 2.70 0.87

Gas Turbine CO and NOx Emission GAS [23] 10 36 733 20 3.16 0.84

Wine Quality WQ [43] 11 6 497 20 0.60 0.31

Table 2. Results of Iter applied to the data sets described in Table 1.

Data set ARTI1 CCPP ASN EE GAS WQ

# features 2 4 5 8 10 11

Threshold 0.2 7.0 4.0 4.0 15.0 2.0

# iterations 26 600 582 600 600 600

# hyper-cubes 4 329 113 55 44 23

# useful hyper-cubes 4 16 64 25 14 11

Coverage (%) 100.0 91.8 97.9 83.5 76.6 62.3

Left training samples (%) 0.0 8.4 0.0 2.9 6.6 6.1

Missed test samples (%) 0.0 9.1 1.7 3.3 6.7 7.8

MAE (data) 0.04 5.37 4.24 3.52 8.77 0.73

MAE (ANN) 0.04 3.77 3.40 2.37 7.88 0.55

R2 (data) 0.92 0.83 0.40 0.76 0.10 −0.05

R2 (ANN) 0.92 0.91 0.55 0.92 0.17 −0.12

as double w.r.t. the predefined one described by the authors of Iter—i.e. 0.1
instead of 0.05. This aims at reducing the amount of iterations required by
Iter to converge, especially with the more complex data sets, provided that
the algorithm terminates when either 600 iterations are performed, or all the
training samples have been covered by the created hypercubes.

Accordingly, for each data set we collect (i) the overall number of actually
useful hypercubes – i.e. those containing at least one training sample – found by
Iter, (ii) the total number of iterations performed by the algorithm, (iii) the
selected threshold parameter value, (iv) the amount of input space covered by
the hypercubes expressed in percentage, (v) the percentage of training samples
that are not included in any hypercube and, analogously, (vi) the percentage of
test samples that the output model is not able to predict. To improve readability,
the feature number of each data set is reported in Table 2 as well. Finally, the
MAE and R2 scores of all Iter predictions are reported w.r.t. both the original
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data set and the black-box predictions. These latter measurements are performed
using the test-set samples—which in turn are never used for training.

Table 2 highlights that in 4 cases out of 6 the algorithm reaches the maximum
allowed iterations without covering the whole training set. When this is the
case, the resulting rule list produced by Iter is affected by a reduced predictive
capability, w.r.t. the black-box regressor it mimics. This effect can be detected by
comparing their test-set performance. Such non-exhaustivity issue is particularly
evident for the ASN data set as well.

Generally speaking, the overall Iter performance is very good with simple
data sets (e.g., the ARTI1 data set). However, we observe a degradation as the
complexity of the data set grows. In any case, both performance and computa-
tional cost heavily depend on the parameter values and initial conditions, such
as the starting cube number and position. Parameter tuning can be performed
through a trial-and-error approach [27], but this often implies a trade-off between
execution time, number of extracted rules and result accuracy.

To better analyse how Iter attempts to address the non-exhaustivity issue,
the left side of Fig. 3 depicts several plots describing executions of the algorithm
on different data sets and black boxes. Each plot has two panels. In both panels
the horizontal axis refers to the computational time (from left to right), whereas
the vertical bars refer to hypercubes. So left-most bars refer to hypercubes which
are found earlier. Top panels represent the number of samples belonging to each
hypercube, expressed as the percentage of the overall training examples. Con-
versely, bottom panels represent the relative volume of each hypercube, expressed
as the percentage of the whole input feature space.

Notably, we observe that later iterations of Iter tend to create smaller hyper-
cubes that include less samples than the ones computed in previous iterations
(cf. the GAS and WQ data sets). Exceptions may occur when samples are not
uniformly distributed within the input space. This happens for instance in the
EE data set, where it is possible to find big hypercubes with few samples and,
conversely, very small cubes including up to a fourth of the training set. Finally,
the CCPP data set is a perfect example of Iter uncontrolled hypercube expan-
sion towards irrelevant input space regions: more than 95% of the hypercubes
have no predictive relevance. The algorithm wastes time and resources exploring
these regions, reaching the maximum iteration number with almost a 10% of the
samples uncovered by the interpretable model rules.

As discussed below, GridEx overcomes those drawbacks by achieving better
predictive performance in less time and with a lower computational effort.

4.2 GridEx Experimental Analysis

To fairly compare Iter and GridEx, we evaluate the latter as well against all
the aforementioned black-box regressors and data sets. Results are reported in
Table 3, where rows and columns retain the same meaning as in Table 2, except
for the “Left training samples” row, missing. Indeed, it is not useful to report the
number of training samples left out by the algorithm, as GridEx always covers
the entire training set, by construction. Furthermore, the user-defined partitions
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(a) Iter on CCPP. (b) GridEx on CCPP.

(c) Iter on EE. (d) GridEx on EE.

(e) Iter on GAS. (f) GridEx on GAS.

(g) Iter on WQ. (h) GridEx on WQ.

Fig. 3. Number of training examples (top panels) and volume (bottom panels) of each
hyper-cube created by Iter (left plots) and GridEx (right plots). Values are expressed
as percentage of the total number of training samples and the surrounding cube volume,
respectively. Each row represents a different data set.
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Table 3. Results of GridEx applied to the data sets described in Table 1.

Data set ARTI1 CCPP ASN EE GAS WQ

# features 2 4 5 8 10 11

Threshold 0.01 4.10 4.00 2.00 7.00 1.00

Partitions 〈2〉 〈a, a〉 〈a, a〉 〈a〉 〈a, a〉 〈a〉
Feature importance, adaptive partitions – ≤0.04, 1 ≤0.2, 1 ≤0.001, 1 ≤0.1, 1 ≤0.03, 1

≤0.5, 2 ≤0.5, 2 ≤0.5, 2 ≤0.7, 3 ≤0.6, 2

≤1, 4 ≤0.7, 3 ≤1, 3 ≤1, 4 ≤1, 3

≤1, 4

# hyper-cubes 4 18 38 13 41 12

Coverage (%) 100.0 93.8 43.2 9.7 84.0 13.0

Missed test samples (%) 0.0 0.0 1.3 0.0 0.0 0.1

MAE (data) 0.01 4.37 3.27 2.65 6.79 0.69

MAE (ANN) 0.01 2.61 2.57 1.23 5.51 0.38

R2 (data) 1.00 0.89 0.66 0.88 0.48 0.17

R2 (ANN) 0.99 0.96 0.76 0.98 0.61 0.46

are reported as either integer numbers for the standard GridEx or as ‘a’ for the
adaptive variant. When the adaptive option is chosen, the user-defined feature
importance ranges and the corresponding partition numbers are also reported.

Unlike Iter, GridEx can predict almost every sample of the test set. Further-
more, the extracted rules only describe relevant regions of the input space. This
design choice may lead to a partial coverage of the input space—e.g. for the EE
and WQ data sets. Little coverage commonly occurs when the training samples
are not uniformly distributed in the input space, but they are, conversely, con-
centrated only in some sub-regions that GridEx is able to discern and mark as
relevant. However, in some corner cases, GridEx may require a larger number of
hypercubes to achieve a significantly better predictive performance than Iter:
then, it produces more rules at the expense of readability of the final rule set.

The right side of Fig. 3 depicts plots describing executions of GridEx on
different data sets and black boxes, as previously described for Iter. The plots
show how, in general, GridEx produces fewer hypercubes than Iter, proving
itself more concise on most data sets. There are, however, notable exceptions—
such as the GAS data set, where Iter produces slightly fewer hypercubes than
GridEx (considering only the relevant ones). So, also GridEx may sometimes
find hypercubes with little predictive relevance, for the shortage of examples
contained: in that case, a pruning algorithm could be exploited to reduce the
number of extracted rules with no relevant impact on the overall performance.

Also, some peculiar features of GridEx are effective in overcoming Iter, in
the general case. For instance, the iterative multi-level partitioning performed by
GridEx is a very flexible feature, enabling users to tune the refinement of those
inaccurate rules that include samples with larger standard deviations. However,
to be effective, it must be carefully tuned, as the number of hypercubes may grow
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Table 4. Results of Cart applied to the data sets in Table 1.

Data set ARTI1 CCPP ASN EE GAS WQ

# leaves 4 15 50 40 50 15

MAE (data) 0.01 4.49 3.06 2.78 4.88 0.65

MAE (ANN) 0.01 2.44 2.08 0.59 3.53 0.24

R2 (data) 1.00 0.88 0.70 0.86 0.67 0.25

R2 (ANN) 0.99 0.96 0.80 0.99 0.78 0.71

exponentially when samples are uniformly distributed among the entire input
space. Similarly, GridEx merging phase supports the creation of compact rule
lists with less, coarser-grained rules and no predictive performance degradation.

4.3 Comparison of ITER and GridEx

Finally, to perform an unbiased comparison between GridEx and Iter, a decision
tree regressor [11] is taken as a reference—similarly to [12]. More precisely, we
adopt the Cart algorithm for each data set in Table 1, with a maximum depth
parameter equal to twice the amount of input features. The resulting decision
trees are summarised in Table 4, in terms of MAE and R2 value w.r.t. both the
data and the underlying neural network. The number of leaves is reported as
well since it determines the number of decision rules exploited by the regressor.

The choice of the maximum depth parameter comes from the following con-
siderations. Iter and GridEx rules are expressed as hypercubes. Every cube has
2 constraints on each input variable, i.e. the lower and upper values. Since each
node of the decision tree represents a constraint on a variable, our choice of the
maximum depth parameter ensures that the resulting decision rules cannot be
subject to more constraints than the rules produced by either Iter or GridEx.

Figure 4 summarises results of the comparison among the three extraction
procedures. GridEx (Fig. 4a) produces an equal or smaller number of rules w.r.t.
both Iter and Cart in almost all the cases—even if we cut off the irrelevant
hypercubes produced by Iter. Since interpretability of a rule list decreases with
its length, we argue that GridEx produces more interpretable results.

As for the predictive performance, GridEx is always better than Iter in
terms of MAE (Figs. 4b and 4c) and R2 value (Figs. 4d and 4e), with respect
to both the data and the underlying black-box predictions. However, Cart has
generally smaller MAE and larger R2 than GridEx. This can be explained by
the undesired discretisation introduced by the constant output value of GridEx
and Iter rules, as well as by the higher amount of rules extracted by Cart.
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(a) Number of extracted rules.

(b) MAE with respect to the data. (c) MAE fidelity with respect to the un-
derlying black box.

(d) R2 value with respect to the data. (e) R2 value with respect to the under-
lying black box.

Fig. 4. Comparison between Iter, GridEx, and Cart using both MAE (the lower the
better) and R2 scores (the higher the better).

5 Conclusions

In this paper we present GridEx, a new pedagogical knowledge-extraction proce-
dure aimed at globally explaining black-box regressors. GridEx extends Iter by
overcoming some of its major limitations—namely, its non-exhaustivity and its
tendency to focus on non-interesting regions of the input space. GridEx is able to
create an interpretable approximation of any black-box regressor in the form of
decision rules. W.r.t. Iter, GridEx produces fewer decision rules, while attaining
better predictive performance, even when the data set is high-dimensional.
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In our next research efforts we plan to extend GridEx so as to address other
limitations of Iter, such as the inability to handle categorical input features
– with no pre-processing – and the constant output value of its decision rules.
Furthermore, we intend to design an automatic procedure regarding the best
adaptive splitting parameter selection. We also plan to extend our comparative
numerical analysis to the other rule-extraction algorithms for regression men-
tioned in Sect. 2.1.
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Abstract. Different explainable AI (XAI) methods are based on dif-
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systems, the ground truth has to provide fidelity towards the actual
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1 Introduction

The need for explainability in Artificial Intelligence (AI) has been understood
since the very beginnings of AI, as seen for instance in MYCIN [23]. Even though
the term Explainable AI (XAI) is quite recent, AI explainability was a very active
domain during the 1990’s when a list of five general desiderata for any explana-
tion was identified in [24], which were Fidelity, Understandability, Sufficiency,
Low Construction Overhead, and Efficiency. XAI research in the 1990’s can be
considered to have focused on so-called intrinsic interpretability or interpretable
model extraction [7], i.e. extract rules or other interpretable forms of knowledge
from a complex black box model and then use that representation as an expla-
nation. One exception to that trend was the Contextual Importance and Utility
(CIU) method for outcome explanation, first presented in [12] and explained in
detail in [9]. However, CIU seems to have passed unnoticed by the XAI com-
munity because the first paper on CIU since 1996 wasn’t published until 2019.
Using modern terms of XAI, CIU can be classified as a model-agnostic outcome
explanation method. The first objective of this paper is to provide a compari-
son of CIU with two of the most popular model-agnostic outcome explanation
methods available, i.e. Shapley values [16,22] and LIME [21]. The category of
use cases and data sets considered in this paper is tabular data only.

CIU’s mathematical foundation and underlying philosophy are different from
those of Shapley values and LIME. Notably, CIU is not an additive feature
attribution method. Furthermore, CIU estimates Contextual Importance (CI)
and Contextual Utility (CU) instead of estimating feature ‘influence’ like most
(or all) comparable methods. However, ‘influence’ can be calculated directly
from CI and CU values, which simplifies the comparison with influence-based
methods, such as LIME and Shapley values. The second objective of the paper is
to study to what extent the explanations produced by the studied XAI methods
provide fidelity towards the true behaviour of the model.

The next section provides a background and definitions used in the paper,
as well as an overview of Shapley values and LIME methods. Section 3 describes
CIU and its use in this paper. Section 4 shows experimental results and compar-
isons between the three methods, followed by Conclusion.

2 Background and Definitions

The outcome explanation concept may be divided into two separate settings
based on the aim of the explanation task. The first setting seeks explanations
of how (each of) the input features influences the outcome solely through the
given prediction model. This setting is most relevant when trying to understand
the behaviour of the prediction model in itself. The second setting also accounts
for the dependence between the input features, and may therefore assign high
importance to an input feature that has a minor direct impact on the output
through the prediction formula, if the feature is highly correlated with one or
more features that do have such a high direct impact. This is most relevant when
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the actual real behaviour of the modelled output is of interest. Leaning on the
fidelity criterion described below, we concentrate on the former setting here.

Going forward, it is important that we look at our definitions of the terms
‘fidelity’ and ‘ground truth’: When we refer to ‘fidelity’, what we mean is how
accurately the explanation remains faithful/truthful to the underlying black-
box model in its representation thereof. This follows similar definitions in
[5,19]. Following on that, the ‘ground truth’ of a model is the actual observed
behaviour of that model. Concentrating solely on the model itself, it is generally
admitted in the XAI domain that the actual input versus output behaviour of
the underlying model is the so called ground truth against which the fidelity of
an explanation should be assessed [4,26]. The LIME (Local Interpretable Model-
Agnostic Explanations) method [21], for instance, calculates to what extent the
generated interpretable linear model gives similar results to the original black
box model. That is called the Explanation Fit and is the R2 error between the
linear model and the actual model. Shapley values do not have a proper interme-
diate model where an Explanation Fit makes sense. However, one may interpret
the additive Shapley value explanation as a model which is linear in the set of
indicator variables defined as whether each of the input features are observed or
not.

In human-to-human communication, an explanation lacking fidelity towards
the real underlying model is usually considered to be a lie although it can appear
convincing to the explainee. When developing and comparing XAI methods, the
fidelity of the provided explanation in regard to the underlying model should
be the first and foremost assessment criterion. An explanation lacking in fidelity
might be considered easier to understand and accept than a true explanation, as
depicted in some human surveys for assessing the goodness of different methods.
However, a false explanation or lie that looks or sounds convincing should not
lead to consideration that the underlying XAI method is better.

2.1 Core Definitions

The two fundamental concepts of CIU are ‘importance’ and ‘utility’ as explained
in this section. Their origin is in Multi-Attribute Utility Theory [25], as explained
also in [10]. An ‘influence’ concept can be calculated from ‘importance’ and ‘util-
ity’ but it is not a core CIU concept and is here used mainly to simplify com-
parisons with other methods. In our usage of the terms ’influence’, ’importance’
and ’utility’, the ‘importance’ of ‘something’ (such as an input feature of an
AI model) denotes the significance of that ‘something’ but does NOT express
adjoining positive or negative judgements. Something like ‘good importance’,
‘bad importance’, ‘typical importance’, etc., are not accurately represented by
importance alone. Instead, adjectives such as ‘good’, ‘bad’, ‘typical’, ‘favorable’,
etc., express judgments of the utility of feature values for the situation or context
at hand, as provided by a utility function that expresses the value utility of both
output and input values. LIME and Shapley values do not have a utility concept
and typically use the term ‘importance’ for what we here call ‘influence’. Even
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(a) Weighted sum. (b) Rule-based. (c) Non-linear.

Fig. 1. Examples of linear, rule-based and non-linear models.

though [16] also uses the term ‘importance’, more recent Shapley values litera-
ture tends to also use the term feature influence [1]. [17] uses the term ‘effect’
in the same sense as we use ‘influence’ here.

The influence of a feature will depend on the feature’s importance as well as
on the utility of the current feature value. A feature with high importance and a
good value utility will have great positive influence on the result. A feature with
high importance and a bad value utility will have great negative influence on the
result. A feature with zero importance for the output will have zero influence on
the result, no matter what value utility it has. As such, our definitions for the
core concepts of CIU look like this:

– Importance: The feature importance in a particular context of a factor
impacting a particular decision.

– Utility: How well the values of the features in the same context match out-
come expectations. This follows from the definition of utility function in deci-
sion theory, where it is a numerical representation of preference/desirability
orderings [25].

– Influence: A combination value of utility and importance, representing the
positive or negative impact of a factor on a particular decision, typically
relative to some ‘baseline’ [6].

In the function y = b(x) = 0.3x1+0.7x2, represented by Fig. 1a, the influence
of the x1 term is 0.3x1 and the influence of the x2 term is 0.7x2 if we use a
zero baseline. The function could also be expressed in the more generic form
y = w1 ×x1 +w2 ×x2. The weights (importances) w1 and w2 are in this case 0.3
and 0.7. The utility function in this case is unity because the utility or ‘goodness’
of an input value is directly the input value itself. For instance, if x1 and x2 have
different value ranges, then it becomes necessary to apply a utility function to
them. If the input value range would be [0, 5] rather than [0, 1], then a utility
function ui(xi) = xi/5 would be appropriate. For generic black box models, the
utility function can be an arbitrarily complex, non-linear function.

Interpretability becomes more challenging when dealing with step-wise func-
tions such as the one illustrated in Fig. 1b, which corresponds to the kind of
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functions produced by rules and decision trees. Model-agnostic methods like the
ones studied in this paper can also deal with such models. However, the signif-
icance of the concepts influence, importance and utility becomes more compli-
cated than for the linear case. When dealing with non-linear models such as that
in Fig. 1c (y = sin(

√
x2
1 + x2

2)/
√

x2
1 + x2

2), the ‘influence’ concept alone becomes
increasingly challenging to use. Thus, we argue for the contextual ‘importance’
and ‘utility’ concepts used in CIU.

2.2 LIME

Ribeiro et al. [21] in their research work proposed a method called Local Inter-
pretable Model agnostic Explanations (LIME) for explanation of an individual
prediction b(x) made by a black box machine learning model. The approach
used to explain the individual predictions can be detailed as: In sampling step
(1), a set of normally distributed instances Xsx is drawn having same mean and
standard deviation as the original feature space of X, which is done indepen-
dently of the instance x to be explained. For the labels Ysx = b(Xsx), LIME
works with the prediction returned by the model b. In surrogate fitting step (2),
the LIME surrogate is trained to locally approximate the decision boundary of
the black-box model. The standard version (Linear LIME) uses linear regression
with regularization to do this. The local surrogate model centered on x is fit-
ted by having each instance of Xsx associated with a weight calculated using an
RBF kernel by default, i.e. higher importance will be assigned to instances closer
to x during the training [15]. In the last explanation step (3), the explanations
for the prediction b(x) are generated by using the trained surrogate sx’s linear
regression coefficients. Choosing an adequate and representative sampling strat-
egy for generating the instances to fit the surrogate model has a major impact
on the quality of the local approximation of the black-box model and thus on
the accuracy of the generated explanation [14]. In particular, the effect of locally
important features can be hidden by globally important ones.

LIME’s ground truth could be summarized as follows: Find a linear regres-
sion function that locally approximates the tangent plane of the underlying
model as well as possible for the current instance.

LIME’s fidelity towards the LIME ground truth is assessed based on how
well the linear regression corresponds to the actual behaviour of the model,
which LIME calls the ‘explanation fit’ and is an R2 value calculated on the
difference between the actual model output and the output given by LIME’s
linear regression function.

The LIME experiments of this paper have been executed using the R-package
lime, version 0.5.1 [20].

2.3 Shapley Values

Shapley value is a concept originating from cooperative game theory [22]. The
concept was picked up by the XAI community and became popular for produc-
ing outcome explanations following [16], and the introduction of SHAP (SHapley
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Additive exPlanations). The method distributes the difference between the pre-
diction output and the global mean prediction, additively on the input features
according to a formula which is consistent with a set of four theoretical prop-
erties. A key ingredient in the Shapley values methodology is the contribution
function v(S), measuring expected output b(x) when only a subset S of the input
features were available (xS). Motivated by the fidelity criterion, we have used the
so-called interventional conditional expectation, as in [16]. Other choices may be
more appropriate in other explanations settings, as explained e.g. in [6]. In the
case of interventional conditional expectation, the Shapley value for feature i is a
weighted mean over v(S + i)−v(S) for all subsets S, and therefore measures the
influence that the act of observing feature i has on the predicted output, with
or without each of the other features observed. This allows the Shapley value
for a feature to be compared with other features within the individual/instance
and also with the same feature for other individuals/instances. A significant
drawback with Shapley values is that it is computationally costly when there
are many input features. Explanation through Shapley values also requires the
availability of the training set, which may not always be easily accessible.

Shapley values’ ground truth could be summarized as follows: Distribute
the difference between the current and expected (e.g. the global mean prediction)
output value to the input features according to a ‘fairness estimation’ about how
much each feature attributed to the output in a positive or negative way.

The fidelity of Shapley values towards the Shapley value ground truth can be
guaranteed by a sufficiently great sampling of all value combinations. The main
challenge is that the number of such combinations grows exponentially with the
number of input features.

The experiments of this paper have been executed using the iml (Inter-
pretable Machine Learning) R-package, version 0.10.1 [18].

3 Contextual Importance and Utility (CIU)

A formal presentation of CIU can be found in [11]. In this paper, we will explain
the principles of CIU using the so-called ‘sombrero’ function in Fig. 1c as an
example. The studied instance or Context

#»

C is indicated by the red dot in Fig. 1c
and corresponds to the input values (x1, x2) = (−7.5,−1.5). Figure 2 shows how
the output value y changes as a function of x1 and x2 when keeping the other
input at the

#»

C value. The range of possible input values is here [−10, 10] for
both x1 and x2. In Fig. 2, five values are indicated:

– absmin, absmax: The minimal and maximal values that the output y can get.
In classification tasks these values are typically zero and one for all outputs.

– Cmin, Cmax: The minimal and maximal values that the output y can take
by changing the value of the studied input.

– out: The value of output y for the studied instance, i.e. with input values
#»

C .

In Fig. 2, absmin = −0.217, absmax = 1 and out = 0.128. For the x1 input
Cmin = −0.217 and Cmax = 0.664. The contextual importance CI expresses
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Fig. 2. CIU for sombrero function.

to what extent an input can modify the output value, which leads us to the
following definition

CIj(
#»

C, {i}) =
Cmaxj(

#»

C, {i}) − Cminj(
#»

C, {i})
absmaxj − absminj

, (1)

where the different variables have the same meaning as before but with appro-
priate indices as follows:

– {i} defines the indices of inputs #»x for which CIU is calculated.
– j is the index of the studied output.

For input x1 in Fig. 2, this gives CIx1 = 0.664−(−0.217)
1−(−0.217) = 0.724 and CIx2 =

0.128−(−0.0912)
1−(−0.217) = 0.18 for input x2. Therefore, x1 is about four times as important

as x2 in the studied context
#»

C .
CU expresses to what extent the current feature value(s) contribute to a

high-utility output value, i.e. what is the utility of the input value for achieving
an output value that has a high utility. CU is expressed as

CUj(
#»

C, {i}) =
yj(

#»

C) − Cminj(
#»

C, {i})
Cmaxj(

#»

C, {i}) − Cminj(
#»

C, {i})
, (2)

where yj = b(
#»

C) corresponds to the out value in the example. For input x1 in
Fig. 2, this gives CUx1 = 0.128−(−0.217)

0.664−(−0.217) = 0.392 and CUx2 = 0.128−(−0.0912)
0.128−(−0.0912) = 1

for input x2. Therefore, x1 has a less than average favorable value, whereas x2

has the most favorable value possible in the context
#»

C .
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CI and CU are limited to the interval [0, 1] by definition. In classification
tasks, the transformation of output values into utility values is trivial because
the output value can be considered to already be a probability/utility value in
the range [0, 1]. For regression tasks, the output values need to be mapped into
utility values through a utility function u(yj), where yj is the value of output
j. For instance, in the well-known Boston Housing data set, the output value
is the median value of owner-occupied homes in $1000’s and is in the range
[5, 50]. A straightforward way of transforming that value into a utility value is
an affine transformation [5, 50] �→ [0, 1], assuming that the preference is to have
a higher value. However, from a buyer’s point of view, the preference might be
for lower prices and then the transformation would rather be [50, 5] �→ [0, 1]. It is
important to point out that the definitions of CI and CU in Eqs. 1 and 2 assume
that u(yj) is an affine transformation of the form u(yj) = Ayj + b where A is
positive. In principle, u(yj) could have any shape as long as it produces values
in the range [0, 1] but that case goes beyond the scope of the current paper.

In the original work by Främling [9], textual explanations were generated by
quantifying CI and CU values according to intervals such as very important =
[0.9, 1] for CI and very good = [0.9, 1] for CU. In this paper, CIU explanations
are provided by bar plot explanations for simplifying comparisons with LIME
and Shapley values. The only subjective parameter in that case is the choice
of what CU value is considered ‘neutral’. We call that parameter neutral.CU
here and it provides a ‘baseline’ for influence-based explanations using CIU. In
Sect. 4, CU = 0 corresponds to red, CU = 0.5 is ‘neutral’ and corresponds to
yellow, and CU = 1 corresponds to dark green, as illustrated by the colours of
Cmin, Cmax and neutral.CU in Fig. 2.

In order to make the difference between the concepts ‘influence’, ‘importance’
and ‘utility’ more explicit, we here provide a definition of contextual influence.
Such a ‘contextual influence’ concept makes it possible to compare directly with
the influence value φ of LIME and Shapley values, which is the reason why we
use the symbol φ in Eq. 4. However, using ‘influence’ makes explanations less
expressive and less understandable than when using CI and CU, as illustrated
in Sect. 4. We begin by defining contextual influence according to:

Cinfluencej(
#»

C, {i}) = CIj(
#»

C, {i}) × CUj(
#»

C, {i}) (3)

Since Cinfluence is relative, it can be freely scaled into any desired range
[rmin, rmax]. Such a ‘scaled contextual influence’ can be defined as follows:

φ = (rmax − rmin) × CI × (CU − neutral.CU) (4)

where ‘j(
#»

C, {i})’ has been omitted from all three terms φ, CI, and CU for
easier readability. For comparison with Shapley values and LIME, we use
[rmin, rmax] = [−1, 1] in Sect. 4. Setting neutral.CU = 0.5 also makes it possi-
ble to restrict φ values to only negative, zero or positive, as for Shapley values
and LIME.

A formal study of the relationship between CU, CI and φ is out of the scope
for the current paper. Other aspects of CIU that are not in the scope of this
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paper is how Cmin and Cmax are estimated. The sampling method used in
this paper is described in [13]. Främling also introduced so-called intermediate
concepts in [8,9], which use the fact that CI and CU can be estimated for any
joint combination of input features, i.e. the set {i} in Eqs. 1 and 2 can contain any
number of inputs, from one to all inputs. However, LIME and Shapley values do
not have any intermediate concepts so it is not possible to perform a comparison
with them, which is the main reason for not including intermediate concepts in
this paper.

CIU’s ground truth could be summarized as follows: Estimate how much
the output can change when modifying the values of one or more input fea-
tures, on a scale of 0–100% (Contextual Importance). Provide an estimate of
how favorable the current value(s) are towards a high-utility output value, as
compared to all possible values for the studied input features on a scale 0-100%
(Contextual Utility). The fidelity of CIU towards its ground truth depends only
on how accurately Cmin and Cmax values can be estimated.

The CIU experiments in this paper have been executed using the ciu R-
package, version 0.1.0 [13] and using the latest version at https://github.com/
KaryFramling/ciu for ‘influence’ plots.

4 Experiments

The data sets to be used for assessing the different methods have been selected so
that discrete and continuous values are used as inputs and that both classification
and regression tasks are taken into consideration. The results of the methods are
evaluated mainly using two assessment criteria (AC ):

AC1 Is the explanation rational and in line with the output value? For a high-
utility output value, the total influence of features is expected to be highly
positive, and vice versa for a low-utility output value.

AC2 Does the explanation correspond to the actual observed behaviour of the
model?

4.1 Classification with Continuous Inputs

The Iris data set has been chosen for this category mainly because the limits
between the different classes require highly non-linear models for correctly esti-
mating the probability of the three classes for each studied instance. Figure 3
shows CIU, Shapley values and LIME explanations generated for instance num-
ber 100 with a random forest model for the Iris data set. Any instance from the
data set could be used but for Iris flowers the classes ‘versicolor’ and ‘virginica’
are usually the most interesting ones because they are more similar to each other
than to ‘setosa’. Instance number 100 is a ‘versicolor’.

CIU with influence and Shapley values give almost identical results here. The
output value is ‘one’ for the versicolor output and ‘zero’ for the two other classes,
which is well represented also in the explanations so AC1 is fulfilled for CIU and

https://github.com/KaryFramling/ciu
https://github.com/KaryFramling/ciu
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(a) CIU. Bar length shows CI, bar color shows CU according to palette on the right.

Output: versicolor (1) Output: setosa (0) Output: virginica (0)

−0.8 −0.4 0 0.4 0.8−0.8 −0.4 0 0.4 0.8−0.8 −0.4 0 0.4 0.8
Petal.Length (4.1)
Petal.Width (1.3)

Sepal.Length (5.7)
Sepal.Width (2.8)

φ

(b) CIU with influence. Positive influence is shown in blue, negative in red.
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(c) Shapley values. Positive influence is shown in blue, negative in red.
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Sepal.Width <= 2.8

φ

(d) LIME. Positive influence is shown in blue, negative in red.

Fig. 3. Explanations with four methods for instance #100 of Iris data set. Bar length
shows CI/φ value. CU value determines bar color in CIU plot. In influence plots,
negative influence is shown in red and positive influence is shown in blue. (Color figure
online)

Shapley values. LIME results differ significantly from CIU and Shapley values
for the setosa class, where Petal Width has a significant positive influence that
is not in line with the output value ‘zero’. LIME results also tend to change from
one run to the other. Therefore, LIME fails against AC1 for setosa explanation.
It is also interesting to note that the ‘Explanation fit’ indicated by LIME is
very low, i.e. < 0.1 for all three classes. Regarding AC2, Fig. 4 shows the ‘CIU
ground truth’ for the Petal Length feature. CIU values can be deduced directly
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Fig. 4. Output values as a function of ‘Petal Length’ for the three Iris classes.

from the figure and therefore fulfill AC2. Both Shapley values and LIME can
also be considered to fulfill AC2 for Petal Length.

4.2 Regression with Continuous Inputs

The Boston Housing data has one continuous-valued output and only continuous-
valued inputs. It is a regression task for which a Gradient Boosting Machine
model is used here. Figure 5 shows CIU, Shapley values and LIME results for
instance #370 of the data set. CIU and Shapley values again obtain quite similar
results. Instance #370 has almost the highest possible value (49), which signifies
that most input features should have a positive influence (but it could be any
other instance too). The influence is here positive for most features with all
methods, even though a little bit less so for LIME than for the others. Therefore,
all methods satisfy AC1.

Regarding AC2, Fig. 6 shows the ‘CIU ground truth’ for three input features.
Again, CIU values can be deduced directly from these figures and therefore fulfill
AC2, which is true also for Shapley values. For LIME, however, the dummy
variable ‘Charles River’ (chas) is indicated as the most important one, which is
a clear error. For the lstat feature, LIME only puts it third. For the rm feature,
LIME gives a high positive influence (after chas), even though it is clear that 6.7
is only an average value for instance #370. Finally, LIME shows strong negative
influence for the criminality rate (crim), even though the value 5.7 is actually
good. Hence, LIME fails to satisfy AC2.

4.3 Classification with Mixed Discrete and Continuous Inputs

The Titanic data set is a frequently used benchmark for machine learning meth-
ods. It has two output classes, i.e. survives or not. There are both discrete and
continuous-valued input features, which makes it interesting also for this paper.
A random forest model was used. The studied instance is an 8-year old boy. The
corresponding feature values are shown by the red dots in Fig. 8. With output
probabilities of 0.61 for survives and 0.39 for doesn’t survive, it could be expected
that there’s dominantly positive influence for survives and dominantly negative
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(a) CIU.
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(b) CIU with influence.
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(c) Shapley values.

3.677 < crim
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(d) LIME.

Fig. 5. Explanations for instance #370 of Boston Housing data set. Bar length shows
CI/φ value. CU value determines bar color in CIU plot. In influence plots, negative
influence is shown in red and positive influence is shown in blue. (Color figure online)
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Fig. 6. Boston Housing output value as a function of input value for features ‘lstat’,
‘rm’ and ‘crim’.
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(d) LIME.

Fig. 7. Bar chart explanations for example person on Titanic. Only explanations for
‘survives’ have been included. Bar length shows CI/φ value. CU value determines bar
color in CIU plot. In influence plots, negative influence is shown in red and positive
influence is shown in blue. (Color figure online)

influence for doesn’t survive. This is indeed the case for CIU, whereas Shapley
values has almost only positive influence for survives and therefore almost only
negative influence for doesn’t survive. It can therefore be questioned whether
Shapley values satisfies AC1 here. When studying the effect of input feature
values on the probability for survives, it seems like the influence of age is by
far over-estimated by Shapley values in this case, which signifies that the Shap-
ley values explanation does not correspond to the true behaviour of the model.
Therefore Shapley values does not satisfy AC2 in this case (Fig. 7).

The LIME explanation again differs from the two others, where ‘male’ is indi-
cated as the input feature that clearly has the greatest influence. LIME results
change slightly at every run and sometimes ‘parch’ gets a negative influence,
which is in line with the results of the other methods.
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Fig. 8. Probability of survival for selected person in Titanic as a function of selected
inputs.

5 Conclusion

As seen from the results in this paper, CIU provides a new alternative to LIME
and Shapley values. The results confirm results of earlier research that LIME
explanations tend to be less rational and provide a poor fidelity with the under-
lying model [2,3]. CIU and Shapley values provide quite similar results for two
of the studied use cases, which can be considered to be a comforting result for
both methods. However, the ‘ground truth’ of Shapley values and CIU differ
significantly and further empirical and theoretical studies regarding these differ-
ences and their effects would be important for the XAI community as a whole.
The core conclusions of the paper are the following:

1. By considering ‘importance’ and ‘utility’ as different parts of an explanation,
CIU can provide more versatile explanations than LIME and Shapley values.

2. Both ‘importance’ and ‘utility’ are absolute values in the range [0, 1], whereas
‘influence’ is a relative value that only expresses how influent different input
features are compared to each other.

3. CIU is not a black box itself because CI and CU values can be ‘read out’ by
humans from input-output graphs at least for one input feature.

4. CIU does not need access to the training data. CIU can be applied to any
model f , no matter if f has been produced by machine learning or not.

CIU is intuitively a more light-weight method than Shapley values because
it only modifies the values of one input feature at a time, therefore requiring a
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smaller number of samples. However, the number of samples remains a compro-
mise with the estimation accuracy, which makes it difficult to properly compare
calculation overhead between the methods. Furthermore, calculation speed also
depends on how the method has been implemented, not only on the method
itself. Therefore, such a study is left as a topic of future work.
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Abstract. Many techniques have been proposed in recent years that
attempt to explain results of image classifiers, notably for the case when
the classifier is a deep neural network. This paper presents an implemen-
tation of the Contextual Importance and Utility method for explain-
ing image classifications. It is an R package that can be used with the
most usual image classification models. The paper shows results for typ-
ical benchmark images, as well as for a medical data set of gastro-
enterological images. For comparison, results produced by the LIME
method are included. Results show that CIU produces similar or better
results than LIME with significantly shorter calculation times. However,
the main purpose of this paper is to bring the existence of this pack-
age to general knowledge and use, rather than comparing with other
explanation methods.

Keywords: Explainable artificial intelligence · Contextual importance
and utility · Image classification · Deep neural network

1 Introduction

Contextual Importance and Utility (CIU) is a method originally developed by
Kary Främling in his PhD thesis [3]. CIU was developed in a context of multiple
criteria decision making (MCDM), which is a domain where different mathe-
matical models are used as decision support systems for human decision makers.
Possible mathematical models include any kind of AI system, including systems
created using machine learning. CIU was designed to provide a mechanism for
explaining or justifying the outcome of any such AI system in a uniform way, no
matter if it is considered to be a so-called black-box model or not.
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As in many MCDM methods, CIU makes a difference between feature impor-
tance and value utility. The feature importance expresses to what extent an input
feature (or combination of input features) can change the output value. Value
utility expresses to what extent the input value contributes towards a high-utility
output value. In classification tasks there is usually one output per class and the
output value is a class probability value, that can be directly used as the output
utility value. Both feature importance and value utility can change depending
on the studied instance or context, which is why feature importance is called
Contextual Importance (CI) and value utility is called Contextual Utility (CU).
CI and CU are scalars in the range [0, 1] and are absolute (non-relative) values.

The purpose of this paper is to present an R implementation of CIU for
explaining image classification. This ‘ciu.image’ package is available at https://
github.com/KaryFramling/ciu.image. It is a follow-up package to the ‘ciu’ R
package for tabular data available at https://github.com/KaryFramling/ciu [4].
After this Introduction, Sect. 2 provides implementation details of CIU for
image explanation. Section 3 gives software installation and usage instructions.
Section 4 shows example results on ImageNet and medical image explanations,
followed by Conclusions.

2 Contextual Importance and Utility for Images

The most recent description available about CIU is found in [4]. Only the most
relevant parts for explaining image classification with CIU are included here,
i.e. the basic definitions of CI and CU. CI expresses how much the output value
utility can change when modifying the value(s) of one or several input features
{i} relative to the total output range:

CIj(
#»

C, {i}) =
Cmaxj(

#»

C, {i}) − Cminj(
#»

C, {i})
absmaxj − absminj

(1)

CU expresses to what extent the current input feature values
#»

C are favorable
for a high output value utility:

CUj(
#»

C, {i}) =
yj(

#»

C) − Cminj(
#»

C, {i})
Cmaxj(

#»

C, {i}) − Cminj(
#»

C, {i}) (2)

Here, yj(
#»

C) is the value of output j for the current instance. Cmin and
Cmax are the minimal and maximal output values achievable by modifying the
value of the given input feature(s) with indices {i}. absmin and absmax give the
minimal and maximal possible values for the output. In the case of explaining
image classification (and for classification tasks in general) it is reasonable to
use absmin = 0 and absmax = 1.

‘ciu.image’ segments images into so-called super-pixels using Simple Linear
Iterative Clustering (SLIC) [1] in the same way as the LIME package [6]. There-
fore, the input features of CIU actually consist of super-pixel values. The super-
pixel values could in principle be ‘anything’ but what is used in practice is to have

https://github.com/KaryFramling/ciu.image
https://github.com/KaryFramling/ciu.image
https://github.com/KaryFramling/ciu
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only the values present/not-present, where ‘not-present’ corresponds to setting
the super-pixel to transparent. In practice, this leads to a rather trivial imple-
mentation of CIU for explaining image classification because calculating CI and
CU values of a super-pixel requires exactly two forward-passes of the classifica-
tion model, i.e. one with the original image and one with the super-pixel(s) of
interest set to transparent. For an image with 50 super-pixels, for instance, only
51 forward passes are needed for calculating the CIU values of all super-pixels.

When interpreting the results, the super-pixels with the highest CI values
are the ones that contribute the most to the classification result. CU can only
take values zero or one in this case, where CU = 1 signifies that the contribution
is positive and CU = 0 signifies that the contribution is negative. As shown in
Sect. 4.1, this approach works relatively well for ImageNet classification. For the
gastro-enterological images in Sect. 4.2, this approach is not sufficient because
bleeding in any super-pixel will lead to classifying the image as ‘bleeding’. How-
ever, since CIU can be calculated for any number of input features, an ‘inverse’
option was introduced, where all other super-pixels except the studied one are
set to transparent, which efficiently identifies all the super-pixels with bleeding
present.

3 Installation and Use

The package is available at https://github.com/KaryFramling/ciu.image. Instal-
lation instructions are also found there. The simplest way to install the package
is to first install the ‘devtools’ package and then install ‘ciu.image’ with the com-
mand devtools::install github(’KaryFramling/ciu.image’). The package
is loaded with the command library(ciu.image). A ciu.image object is cre-
ated by calling ciu.image.new(model) that uses the given predictor model. The
optional parameters of ciu.image.new and the methods of ciu.image objects
are explained in the package documentation and reflect the latest updates to the
package. Since ciu.image is still a research tool, it is expected to evolve over
time. Currently, the core ciu.image methods are the following:

1. ciu.superpixels(imgpath, ind.outputs=1, n_superpixels=50,
weight=20, n_iter=10, background = "grey", strategy =
"straight"): Return a list with fields out.names, outval, CI, CU, cmin,
cmax for the requested number of outputs in ind.outputs, where outputs
are ordered according to decreasing output value. Only imgpath is a compul-
sory parameter, for the others the default values are often appropriate.

2. plot.image.explanation(imgpath, ind.outputs=1, threshold=0.02,
show_negative=FALSE, n_superpixels=50, weight=20, n_iter=10,
background="grey", strategy="straight", ciu.sp.results=NULL,
title=NULL): Return a list of ggplot objects for the requested number of
outputs in ind.outputs, where outputs are ordered according to decreasing
output value. Most parameters are the same as for ciu.superpixels.

https://github.com/KaryFramling/ciu.image
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The use of ‘ciu.image’ typically happens as follows:

c iu <− c iu . image .new(model , predict function , output .names)
p l i s t <− c iu$plot . image . exp lanat ion ( imgpath )
print ( p l i s t [ [ 1 ] ] )

A complete code example is shown in Appendix 1.

4 Results

The experiments were run using Rstudio Version 1.3.1093 on a MacBook Pro,
with 2,3 GHz 8-Core Intel Core i9 processor, 16 GB 2667 MHz DDR4 memory,
and AMD Radeon Pro 5500M 4 GB graphics card. The LIME R package was
used for producing LIME results [6]. For image classification, CIU is entirely
deterministic so it always produces the same results, whereas LIME results tend
to vary from one run to the other.

4.1 ImageNet Classification

Results are shown here for VGG16 and VGG19 models included in the ‘keras’
package, pre-trained on ImageNet images. The two images used are shown in
Fig. 1. Appendix 1 shows the complete source code for producing the cat clas-
sification results shown in Fig. 2, both for CIU and LIME. For CIU, this source
code is also included in the online documentation and is accessible by writing
?ciu.image.new on the R command line. Cat calculation times are 30 s for CIU
and 5 min 44 s for LIME. Dog playing guitar times are 18 s for CIU and 4 min
44 s for LIME.

(a) Cat.
(b) Dog playing guitar.

Fig. 1. Original images, with super-pixel borders shown by yellow lines. (Color figure
online)

For the cat explanations shown in Fig. 2, CIU and LIME explanations are
quite similar. However, CIU extracts what makes the difference between Egyp-
tian, Tabby and Tiger cat according to the VGG16 model, whereas LIME
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Egyptian cat, probability: 0.489
CI threshold=0.02, #superpixels=50

(a) Egyptian, CIU.

tabby, tabby cat, probability: 0.152
CI threshold=0.02, #superpixels=50

(b) Tabby, CIU.

tiger cat, probability: 0.103
CI threshold=0.02, #superpixels=50

(c) Tiger Cat, CIU.

(d) Egyptian, LIME. (e) Tabby, LIME. (f) Tiger Cat, LIME.

Fig. 2. Cat image explanation results using LIME and CIU trained with VGG16.

includes the same super-pixels for all three kinds of cat, with a smaller sub-
set included for the two lower-probability cat types Tabby and Tiger Cat. For
the guitar-playing dog image used in [7], the results are shown in Fig. 3. In this
case, the interpretation of image explanations tends to be subjective and also
depends on how the underlying trained model makes the classification, so it does
not make much sense to declare a ‘winner’. Furthermore, LIME results tend to
change somewhat from one run to the other, whereas CIU results are guaranteed
to be identical for every run.

acoustic guitar, probability: 0.506
CI threshold=0.1, #superpixels=50

(a) CIU.

golden retriever, probability: 0.031
CI threshold=0.02, #superpixels=50

(b) CIU. (c) LIME. (d) LIME.

Fig. 3. Dog playing guitar image explanation results using LIME and CIU trained with
VGG19 for ‘Acoustic guitar’ and ‘Golden retriever’.
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4.2 Gastro-Enterological Image Explanation

The image data set considered in this case is taken from a Video Capsule
Endoscopy (VCE), which is a non-invasive procedure to visualize the entire
gastro-enterological tract of a patient. The data set of 3,295 images, retrieved
from Coelho1 [2] was split into 2,941 training and 354 validation images (ran-
domly assigned), and it is a binary classification (bleeding or not). The medical
data set was trained using the Convolutional Neural Network (CNN) model from
[5], with 50 epochs with batch size of 16 and achieving a validation accuracy of
98.58%.

CIU explanations were generated using the parameter value strategy=
"inverse" to the plot.image.explanation method. The threshold value was
0.01 and 50 super-pixels were used. Some CIU results are shown in Fig. 4. For
non-bleeding images, LIME failed to produce a result with the default settings,
as well as for many of the bleeding images. For the bleeding images where LIME
gave a result, CIU and LIME results were often quite similar, even though CIU
was clearly more precise. LIME’s ‘explanation fit’ tended to be below 0.001,
which indicates that the fitted LIME model has low or no explanatory value.

For ‘bleeding’ images, the parts (super-pixels) identified by CIU were con-
sidered relevant and correct by a user panel and also corresponded to the masks
of ‘correct’ answers available for the image set. For ‘non-bleeding’ images, all
super-pixels that belong to the actual image should be included because they
are all ‘non-bleeding’. However, the black corners of the images are present in all
images and therefore do not have any discriminatory effect between ‘bleeding’
and ‘non-bleeding’ images, so they have no significance for the classification. CIU
indeed filters out those black areas from the explanation, as seen in Fig. 4. CIU
took less than 7 s per image, whereas LIME took about 1 min 40 s per image.

Fig. 4. CIU explanations generated for ‘bleeding’ (left and right columns) and ‘non-
bleeding’ (middle column) images.

1 https://rdm.inesctec.pt/dataset/nis-2018-003.

https://rdm.inesctec.pt/dataset/nis-2018-003
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5 Conclusions

This CIU implementation for explaining image classification shows that CIU
can produce explanations that are at least at comparable level to LIME. For
explaining gastro-enterological image classification, CIU manages to produce
‘makes-sense’ explanations for all images, whereas LIME fails to produce expla-
nations for several images. Moreover, CIU is orders of magnitude faster than
LIME, which might in the future be used for exploiting CIU’s capability to deal
with super-pixel combinations in different ways, rather than only setting one
super-pixel transparent, or the opposite. Therefore, CIU’s performance can be
expected to improve further with future research.

Appendix 1: Source Code for ImageNet Cat Results

l ibrary ( keras )
l ibrary ( l ime )
l ibrary (magick )
l ibrary ( c iu . image )
imgpath <− system . f i l e ( ' extdata ' , ' k i t t en . jpg ' ,

package = ' c iu . image ' )
# load VGG16 image c l a s s i f i e r t ra ined on imagenet database
model <− app l i c a t i o n vgg16 (weights = ” imagenet ” , i n c lude top = TRUE)
# We have to t e l l how images are prepared and eva lua t ed .
vgg predict function <− function (model , imgpath ) {

predict (model , image prep ( imgpath ) )
}
# Standard prepara t ion fo r imagenet , VGG16 & VGG19
image prep <− function ( x ) {

ar rays <− lapply (x , function (path ) {
img <− image load (path , t a r g e t s i z e = c (224 ,224) )
x <− image to array ( img )
x <− array reshape (x , c (1 , dim( x ) ) )
x <− imagenet p r ep roce s s input (x )

})
do . ca l l ( abind : : abind , c ( arrays , l i s t ( a long = 1 ) ) )

}
model labels <− readRDS(system . f i l e ( ' extdata ' ,
' imagenet l a b e l s . rds ' , package = ' c iu . image ' ) )
c iu <− c iu . image .new(model , vgg predict function ,
output .names = model labels )
# Get exp lana t ion fo r three topmost c l a s s e s .
# Use ` t h re sho ld ` parameter f o r ad j u s t i n g CI l e v e l to show .
p l i s t <− c iu$plot . image . exp lanat ion ( imgpath , c ( 1 , 2 , 3 ) )
for ( i in 1 :3 ) print ( p l i s t [ [ i ] ] )

# These l i n e s generate corresponding LIME exp lana t i ons .
exp l a i n e r <− l ime ( imgpath , as c l a s s i f i e r (model , model labels ) ,
image prep )
exp lanat ion <− exp la in ( imgpath , exp la ine r , n labels = 3 ,
n f e a t u r e s = 50 , n s up e rp i x e l s =50)
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exp lanat ion <− as . data . frame ( exp lanat ion )
p <− plot image exp lanat ion ( explanat ion , d i sp l ay = ' block ' ,
t h r e sho ld = 0 .01 )
print (p)
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4. Främling, K.: Contextual importance and utility in R: the ‘ciu’ package. In: Pro-
ceedings of 1st Workshop on Explainable Agency in Artificial Intelligence, at 35th
AAAI Conference on Artificial Intelligence, pp. 110–114 (2021)

5. Malhi, A.K., Kampik, T., Pannu, H.S., Madhikermi, M., Främling, K.: Explaining
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Abstract. Recently, the Deep Learning (DL) research community has
focused on developing efficient and highly performing Neural Networks
(NN). Meanwhile, the eXplainable AI (XAI) research community has
focused on making Machine Learning (ML) and Deep Learning methods
interpretable and transparent, seeking explainability. This work is a pre-
liminary study on the applicability of Neural Architecture Search (NAS)
(a sub-field of DL looking for automatic design of NN structures) in XAI.
We propose Shallow2Deep, an evolutionary NAS algorithm that exploits
local variability to restrain opacity of DL-systems through NN architec-
tures simplification. Shallow2Deep effectively reduces NN complexity –
therefore their opacity – while reaching state-of-the-art performances.
Unlike its competitors, Shallow2Deep promotes variability of localised
structures in NN, helping to reduce NN opacity. The proposed work anal-
yses the role of local variability in NN architectures design, presenting
experimental results that show how this feature is actually desirable.

Keywords: Neural Architecture Search · Evolutionary algorithm ·
Opacity · Interpretability

1 Introduction

Data-driven intelligent systems pervade modern society. The recent advance-
ments of Machine Learning (ML) and Deep Learning (DL) are boosting the
adoption of neural networks (NN) in several contexts, including, but not lim-
ited to, healthcare, finance, law, and domestic appliances. For this reason, the
exploitation of DL-enabled systems in industrial applications and every-day life
requires precision and efficiency. However, both features come at a price. In
fact, state-of-the-art neural architectures are characterised by an ever-increasing
structural complexity – in terms of layers, neurons, and their connections –,
which is expected to make neural networks even more precise and accurate.

The structural complexity of NN, however, brings about a number of draw-
backs. For instance, it makes training more eager for computational resources
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and data. Furthermore, it represents a bottleneck in the engineering process of
DL systems—which is commonly performed by data scientists, manually. Finally,
and more importantly, it contributes to the well-known opacity issues making
NN inner operation hard to understand for human beings—there including both
expert practitioners and users. For all these reasons, research efforts devoted
to the identification of small – i.e. structurally simpler – yet highly-performing
neural architectures are gaining momentum within the DL community [17,39].

Opacity of DL systems, in particular, is a critical aspect which should be
reduced and possibly avoided. As suggested by the eXplainable Artificial Intel-
ligence (XAI) initiative [1,11], there is an urgent need for making the operation
and outcomes of modern intelligent systems more human-interpretable. So far,
several means have been proposed into the XAI literature to serve these pur-
poses, following as many strategies. When it comes to DL, however, most exist-
ing techniques focus on either (i) easing the inspection of NN – via visualisation
facilities –, or (ii) enabling their replacement with transparent models of similar
performance—such as rules lists or decision trees. In other words, not enough
care seems to be given to the problem of making DL models more transparent.

Arguably, a possible way to decrease NN opacity is to reduce their structural
complexity, while preserving their predictive performance. Many works focusing
on NN explainability can produce rules lists or decision trees equivalent models
for small NN [8,40]: e.g., RefAnn [36] is a rule extraction procedure tailored on
neural networks having a single hidden layer. While such approaches can hardly
be applied to complex NN, we argue that an automated procedure capable of
reducing the internal structure of a NN may pave the way towards a wider
adoption of algorithms that would otherwise be inapplicable.

Generally speaking, complexity reduction may bring benefits at several levels,
including transparency and training time, other than the capability to extract
human-readable rules or trees out of NN. However, a limiting factor along this
line is that, currently, NN structures are handcrafted by human experts via
a trial-and-error procedure, targeting predictive performance rather than lower
structural complexity. Furthermore, experts’ experience and intuition play a piv-
otal role in the process, making it hard to automate and reproduce. This is where
Neural Architecture Search (NAS) [12,42] comes into play. The general goal of
NAS is to automate the identification of the best NN structure for a given task.
Several approaches are being explored, modelling the NAS as a search problem
in the space of all possible NN architectures. To the best of our knowledge,
however, no work so far focuses on controlling network structural complexity.

Accordingly, in this paper we propose Shallow2Deep, a novel NAS algorithm
aimed at keeping NN structural complexity under control. Our algorithm allows
data scientists to automatically and efficiently detect highly-predictive architec-
tures for convolutional NN targeting pattern matching tasks—such as image or
speech recognition. It enforces structural constraints over the searched NN archi-
tecture, limiting the NN structural complexity and therefore its opacity. In other
words, Shallow2Deep fits NN design by providing a means to control the depth
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of a NN, possibly enabling, e.g., the applicability of rule-extraction algorithms
in complex tasks.

Our solution differs from other NAS approaches in a number of ways. First,
it promotes local variability in NN architectures— meaning that it supports and
encourages variability in the different layers composing a NN. Then, it favours
local specialisation of NN sub-structures—thus letting each layer of the NN
specialise on different tasks, depending on their depth. Finally, it promotes pro-
gressive complexity, avoiding overthinking—a well-acknowledged [19] tendency
of deep NN to learn too many concepts, becoming more complex than needed.
We present a full operational formalisation of the Shallow2Deep algorithm along
with a number of experiments showing its practical feasibility and versatility.

2 Background

2.1 Neural Architecture Search

Neural networks are biologically-inspired computational models, made of several
elementary units (neurons) interconnected into a directed-acyclic graph (DAG)
via weighted synapses. NN can be trained on data via backpropagation [16] and
exploited into both supervised and unsupervised learning tasks such as clas-
sification, regression, and anomaly detection. The training phase makes a NN
learn from data. Yet, only network synapses weights are modified in this phase,
whereas its overall graph structure (topology henceforth) is not allowed to vary.
It is rather assumed to be manually engineered by data scientists.

Convolutional Neural Networks (CNN) are particular sorts of NN whose
topology consists of a cascade of convolutional layers. In other words, CNN
can learn how to apply a number of convolution operations [30] to the data.
Convolutions let the network spot relevant features into the input data, at pos-
sibly different scales. Thus, CNN are primarily used to solve complex pattern-
recognition tasks, such as in computer vision or speech recognition. Yet, how
many convolutions a network may learn as well as their interconnections depend
on NN topology. Again, this implementation detail requires human intervention.

Traditionally, NN development workflows are deeply influenced by the choices
by human experts. Network architectures represent the most relevant aspect
requiring human contribution. However, as neither theorems nor methods ensure
optimal results, human choices may lead to sub-optimal or inefficient solutions.

To avoid inefficiencies introduced by human errors in NN design, neural archi-
tecture search (NAS) has been proposed [26]. NAS automates network archi-
tecture engineering: it aims at learning a network topology that can achieve
reasonably-good performances on specific tasks, by letting a search algorithm
look for the best network topology among the admissible ones.

To keep the computational complexity of NAS acceptable, several approaches
have been proposed in the literature. Virtually all of them try to (i) reduce the
search space size and (ii) control the whole search duration by leveraging on a
greedy or evolutionary search strategy.
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A common means to restrict the search space is to assume the network topol-
ogy to be composed by a sequence of units called cells. Each cell contains a num-
ber of blocks, connected over a DAG structure. Blocks, in turn, are groups of
neurons having a predefined internal organisation—commonly corresponding to
a particular mathematical operator. In CNN, for instance, blocks are commonly
constrained to represent convolutional layers, each one representing different
sorts of convolutional filters—e.g. 3 × 3, 5 × 5, etc. Directed connections among
any two cells A and B are modelled as directed connections among the output
block of A and the input block of B.

Within the scope of this paper, we denote by O the operation set, i.e. the
set of all possible sorts of blocks for any given NAS problem. We assume O is
always a finite-cardinality set. For instance, in the particular case of CNN, O
may contain different sorts of convolutional layers (e.g. O = {3×3, 5×5, 7×7}).

State-of-the-art NAS approaches mostly differ in which and how many blocks
and cells are exploited, how these can be connected with each others, or which
(meta-)heuristic the search of the optimal topology leverages upon. For instance,
a method is proposed in [22] where NN is built as a sequence of identical cells—
so that only the internal structure of one cell is optimised. In [32] a regularised
evolutionary meta-heuristic is presented introducing an age property to favour
younger genotypes. The approach aims at optimising two sorts of cells – “normal”
or “reduction” cells – which are concatenated in a predefined way to obtain
the final NN. Similarly, a continuous evolutionary approach is proposed in [45]
sampling the population of different generations from a super network N of
shared parameters to search for normal and reduction cells. In [7], a probabilistic
approach is applied to reduce the search memory requirements to obtain the best
structures for the normal and reduction cell.

Another common approach is to fix cells operations and look for the best cell
combination that can compose the NN. In [9] a multi-objective oriented algo-
rithm is presented exploiting both evolution and reinforcement learning to search
for the best composition of various predefined cells. In [38] a method is presented
that explicitly incorporates model complexity into the objective function while
searching for the best cell sequence. However, cells are selected from a predefined
pool, and they are not optimised any further. Conversely, a differentiable NAS
framework is proposed in [43], searching for the best cell placement in the NN
structure. Finally, in [5] a method is presented that can search NN architectures
avoiding proxies and limitations typical of other approaches—e.g., training on a
smaller dataset, learning with only few blocks, training for few epochs.

Reduction in NN complexity can also be achieved via network pruning tech-
niques [24]. However, here we focus on NAS techniques only, since network prun-
ing is a post-hoc technique not taking into account NN structure, as it is applied
after training—when the structure has already been fixed. For this reason, struc-
tural inefficiencies of NN can not be tackled using network pruning techniques.

To the best of our knowledge, our work represents the first attempt to pro-
duce a NAS strategy capable of identifying both a good cell structure and a
global architecture, avoiding constraints on architecture design. In other words,
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our approach improves the NN performance over complexity ratio, allowing Shal-
low2Deep to produce smaller – yet reasonably performing – NN architectures.

2.2 eXplainable AI vs. Neural Networks

Neural networks and computer vision are commonly exploited behind the scenes
of intelligent systems involved in several critical applications (e.g., intelligent
medicine, automotive, etc.). There, NN provide intelligent systems with high-
precision pattern recognition capabilities. However, as for most ML methods,
NN engineering only focuses on attaining high predictive performance, whereas
poor care is given when it comes to determine why NN provide a particular
outcome. To complicate this issue, advanced applications – such as computer
vision – may easily involve deep NN, having an intricate internal structure which
makes them hard to analyse and understand—even for experts. Such intricacy
is described into the literature as “opacity” [21]—a feature characterising most
ML algorithms up to some extent, which are also known as “black boxes” for
that very same reason [14].

Recently, the opacity issue characterising ML and, in particular, NN reached
the general public attention—also because of the GDPR regulations1. Accord-
ingly, safety- or privacy-critical intelligent applications leveraging on ML should
be designed accounting for properties such as interpretability, reliability, and
transparency [41]. In other words, human users must be able to understand the
criteria behind machine-aided or -driven decisions.

The XAI community [3] is currently intercepting those needs by proposing
methods aimed at tackling the opacity issues that characterise ML- and DL-
powered systems. Most methods proposed so far essentially focus on (i) inspec-
tion or visualisation [4,48] techniques, aimed at “debugging” the inner func-
tioning of NN; (ii) heatmaps [2,35], or feature relevance analyses [18,28], aimed
at analysing a network behaviour w.r.t. its inputs; or (iii) symbolic knowledge
(e.g., rules, or trees) extraction algorithms [6,49], aimed at distilling human-
intelligible information out of the intricate structure of sub-symbolic predictors.
In other words, following a nomenclature introduced in [10], current methods
either attempt to make NN more easily interpretable or a-posteriori explain-
able.

NN opacity is deeply entangled with their structural complexity. The more
NN architectures are intricate the less NN are interpretable. By keeping NN
structural complexity under control, data scientists may limit their opacity. In
turn, limiting NN opacity, plays a fundamental role in XAI as it may make NN
both a-priori interpretable and a-posteriori explainable. Accordingly, to the best
of our knowledge, our work represents the first attempt to control NN opacity
– i.e. structural complexity – while automating the search for a well-performing
architecture.

1 https://eur-lex.europa.eu/eli/reg/2016/679/oj.

https://eur-lex.europa.eu/eli/reg/2016/679/oj
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Fig. 1. Shallow2Deep avoids architecture design limitations, common in other NAS
algorihtms. Here C = 5.

3 Shallow2Deep

In this section we present Shallow2Deep, a novel exhaustive NAS algorithm:
we first present its architecture design along with the corresponding search
space (Sect. 3.1), then we discuss its overall working principle, its fundamen-
tal hypotheses, and the details of its composing modules.

3.1 Architecture Design

Most popular NAS approaches blindly build a NN architecture by repeating
the same elementary structure (cell) several times—assuming that the internal
structure of a cell has been manually optimised. This sounds like a reasonable
approach, considering the history of NN development and validation. Hand-
crafted successful networks (e.g., VGG [37], ResNet [15], Mobilenet [17], etc.) are
composed by repetitions of a certain peculiar element (e.g., convolutions, skip
connections, inverted mobile bottleneck, etc.). Furthermore, repetitions lead to
a reduction of the search space size, when an effective combination of the ele-
mentary cells must be automatically computed.

However, although understandable from a computational perspective, such
an approach is not reasonable in terms of predictive capability. Relying on the
same elementary structure at different depth levels of the network architecture
may hinder the predictive performance of the resulting NN as a whole. In fact,
assuming a particular elementary structure is good enough to let a network’s
shallow2 layers perform valuable feature extraction, it is unlikely that the same
structure is equally good to provide that network’s deep layers with more sophis-
ticated pattern matching capabilities. The different layers of a well-trained NN
are expected to perform totally-different feature-mining tasks. This is why we
argue that the best elementary structure for shallow and deep layers of NN are
not architecturally equal. Shallow2Deep builds on this, providing a means to
look for a good cell structure specification for both shallow and deep layers.
2 By “shallow” (resp. “deep”) layers of a NN we mean the inner layers close to the

input (resp. output) neurons.
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before that (blue) or any other block in the cell (yellow). Cell output is obtained
concatenating outputs of all blocks belonging to the cell (black). Here C = 3 and
B = 4.

More precisely, Shallow2Deep constructs NN classifiers with a fixed number
C of different cells. Cells can differ in terms of the topology they assume and
the operations they apply. We define the difference between cells w.r.t. topology
and operations as structure variability. Shallow2Deep promotes local structure
variability in NN architectures, avoiding design limitations.

Figure 1 highlights the main difference among state-of-the-art NAS mecha-
nisms and our approach: Shallow2Deep lets each cell vary independently from
each other. However, similarly to other authors, we assume cells to be ordered
from shallow side to the deep side. Accordingly, the 1st cell is the closest one to
the inputs, while the last one is the closest to the outputs.

In particular, Shallow2Deep lets each cell contain B blocks—being B a pos-
itive and finite integer. Each block represents a particular sort of NN layer.
Following a convention introduced in [46], we denote by O the finite set of all
possible sorts of blocks—which in turn depend on the particular task the target
NN aims to solve. For instance, if the considered NN targets image recognition
tasks, we let O contain simple convolutions, other than the identity block—
e.g. some n×n convolutional layers (for n = 1, 3, 5, . . .), plus the identity layer
f(x) = x.

Each block of the ith cell can accept as input the output of i−1th and i−2th

cells and of any other block in the same ith cell. However, loops and cycles among
blocks connections are not allowed. In other words, the blocks topology must be
a DAG. This is necessary to preserve the feed-forward architecture of the NN.
Furthermore, each block can provide output to any amount of other blocks.

The whole output of a cell is attained by concatenating the outputs of all
blocks belonging to that cell, as in [22]. Figure 2 provides an example of an
admissible topology that can be created by blocks and cells following the afore-
mentioned rules.

3.2 Search Algorithm

Virtually all NAS algorithms proposed into the literature so far deal with reduced
search spaces attained via strict architectural constraints. Conversely, our app-
roach avoids the excessive simplification of the architectural design by allowing
the internal structure of each cell to vary. A greedy search algorithm is then
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Fig. 3. Shallow2Deep iteratively searches for the best structure of cells going from shal-
low to deep ones. Shallow bests are searched using simple superstructures to increase
the feature expressiveness and reduce training time. Local bests are kept fixed while
deeper best are searched, reducing the complexity.

employed to automate the selection of the actual cells structures, in an iterative
way. It relies on the successive search of locally-optimal cell structures proceeding
from the shallower cells to the deeper ones.

As exemplified in Fig. 3, Shallow2Deep consists of the iterative repetition of a
local search algorithm aimed at selecting the (locally) best internal structure of
the ith cell. The search algorithm is repeated for all i = 1, . . . , C, in such a way
that the internal structure of the ith cell is only optimised after that (i−1)th one
has already been optimised. In particular, here rely on an evolutionary algorithm
to tackle local search. During local search, a population of NN is considered
based on the structures that need to be analysed. The NN under examination
are trained on a subset of the training set in order to find well behaving local
structures—i.e. cell. To keep the whole process time-efficient, while optimising
the ith cell, all the jth cells (j ∈ {1, . . . , i−1}) are left unaffected by the training
process. Moreover, to maximize the knowledge extracted at the ith cell during its
discovery process, all kth cells (k ∈ {i + 1, . . . , C}) are built as bare as possible.
Following literature, we consider bare cells to be composed of a single block
applying a 3 × 3 convolution operation [13,37]. In other words, Shallow2Deep
greedly proceeds from the shallowest cell to the deepest one.

While further details concerning our design choices are provided in Sect. 4,
some insights can be provided by the way a well-trained NN operates. The shal-
low layers of a NN aim to mine low level features. Complex features are extracted
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by deeper layers, reliably building on top of low level information. Therefore,
Shallow2Deep searches for structures of deeper cells iteratively, building on the
knowledge acquired at previous search steps.

Cell Search. The Shallow2Deep algorithm relies on a local search of the best
performing structure for each cell of the NN. The task can be accomplished
through a variety of different search algorithms, from reinforcement learning to
evolutionary algorithms [45,50]. In Shallow2Deep we exploit evolutionary (a.k.a.
genetic) heuristic algorithms.

Evolutionary algorithms are a family of population-based metaheuristic opti-
mization algorithms inspired by biological evolution. They commonly rely on a
set of predefined stochastic mechanisms – namely, generation, mutation, selec-
tion, mating, fitness, etc. – which let the algorithm randomly explore a vast
search space in a smart way. Technically, these algorithms attempt to solve an
optimisation problem by generating population of random solutions for the prob-
lem at hand, and by simulating evolution for a predefined amount of iterations—
a.k.a. generations. Solutions are more or less likely, to survive among generations
depending on their fitness—i.e. a measure of the quality of a particular solution
w.r.t. the problem at hand. To prevent the search to step into local optima,
evolutionary algorithms may exploit a number of strategies to introduce more
randomness in the precess, such as mutations—meaning that solutions may ran-
domly mutate while stepping through generations.

We choose to rely on evolutionary algorithms because of their (i) flexibil-
ity, (ii) support to space pruning [25] – a feature that we plan to support in
the future –, other than (iii) the many successful works on NAS leveraging on
evolutionary approaches as well (cf. [22,23,46]). In particular, our evolutionary
algorithm is inspired to regularised evolution proposed in [32]. However, we avoid
regularisation through aging and introduce a randomised approach to explore
untouched areas of the search space.

As any other evolutionary approach, our algorithm mimics biological evolu-
tion by letting a population of N randomly-generated NN step through a number
ν of generations. More in details, the number of generations (i.e., ν) represents
the maximum amount of iterations that the evolutionary algorithm should per-
form before returning the final solution. While transitioning between generations,
NN may probabilistically mutate, other than being allowed to survive depending
on their fitness. Accordingly, while the mutation mechanism lets the algorithm
randomly explore different internal structures for the ith cell, the fitness measure
lets the algorithm assess how good a particular internal structure of the ith cell
actually is. The Shallow2Deep algorithm can then go on with its iteration and
focus on the (i + 1)th cell. Once reached the νth generation, the best fitting NN
is used to determine the final interal structure to be chosen for the ith cell.

Accordingly, in the remainder of this section, we delve into the details of how
mutation and fitness actually work in the particular case of Shallow2Deep.

Algorithm Stub. We denote by Pn the nth generation of the population. Sim-
ilarly, we denote by P0 the initial population, which is randomly generated.
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The population size is kept fixed to throughout the local search procedure, as it is
commonly done for evolutionary algorithms. In other words, for all i ∈ {1, . . . , ν},
the population Pn is such that |Pn| = N and all the architectures of all networks
in Pn conform to the constraints described in Sect. 3.1.

Then, our evolutionary algorithm refines the population through 3 steps
which are repeated at every generation. These steps are:

train—where all the NN in Pn are trained on (a subset of) the data set;
selection—where the NN which are not among the top-m fittest ones are

removed from Pn;
incubation—where Pn is enriched with new NN – attained via mutation –

aimed at replacing the ones cutted off by the selection step.

Shallow2Deep assumes the available data to be partitioned into 3 parts, namely
the training, validation, and test sets. While the train step only leverages on
the training set, the selection step evaluates the fitness measure of each network
against the validation set. The test can then be used to assess the performance
of the final network architecture output by Shallow2Deep.

Concerning the incubation step, it is aimed at helping Shallow2Deep both
from a performance-maximisation and search-space-exploration-speed perspec-
tive. More precisely, it aims at generating new NN following two criteria:

• c networks are attained by mutating as many individuals in Pn through the
application of mutation transformation;

• r = N − m − c networks are randomly generated from the search space.

Best behaving structures mutation helps performance maximisation, enhancing
the focus on those evolutionary paths that have proven to be strong in recent
history of the population. Partially randomising incubation helps search space
exploration as it allows the evolution to look for points in the space farther apart
from previously beaten evolutionary paths.

Once all the three steps have been completed for generation n, and a new
population has been attained, Pn+1 and the evolutionary search can proceed
with generation n + 1. The process is repeated ν times, after which the best
performing local structure is considered as found.

Fitness Measure. Fitness is measured on the validation set using the most ade-
quate performance measure for the task at hand. Accordingly, in case the to-be-
defined network targets classification tasks, accuracy or F1-score measures may
be used. Conversely, in the case of regression tasks, MSE, MAE, or R2 measures
may be exploited instead.

In the particular case of image recognition tasks, classification accuracy
is an adequate choice. More complex performance metrics may consider also
FLOPS [39] and latency [38]. However, these are left for future works.

Mutation. The mutation transformation is applied to some NN – referred as the
parent – in order to attain new architectures—called children. It only focuses
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Fig. 4. Mutation operations available in randomized evolution. When input operation
is applied, previous input block is linked with cell output if it has remained pendent,
avoiding block removal.

on the internal structure of the ith cell of the parent network, possibly affecting
some of its blocks. In particular, we rely on two possible mutations that can be
applied to the blocks of a cell (graphically depicted in Fig. 4):

input mutation—a block B of the ith cell is selected at random, it is detached
from its previous input, and the output of either another block B′ in the same
cell or of the jth cell as whole, with j ∈ {i−1, i−2}, is used as the new input
of B—provided that the new connection does not introduce a loop or a cycle;

operation mutation—a block B of type o ∈ O is randomly selected from the
ith, and its type is changed to some other o′ ∈ O such that o �= o′.

Greedy Assemble. Shallow2Deep requires several NN to be actually trained
behind the scenes of its operation. This is true, in particular, for the evolutionary
algorithm described above. In fact, while mostly focusing on one cell at a time,
the algorithm must still train at least N · ν networks – only differing for the
content of the ith cell –, C times.

To keep the computational effort feasible, a number of strategies are in place.
For istance, while performing the ith evolutionary search, Shallow2Deep leaves
all cells of index j s.t. 1 ≤ j < i unaffected, and does not re-train them anymore,
as they have already been explored and trained in previous iterations. Dually,
the algorithm always assumes all cells of index j s.t. i < j ≤ C to only contain a
single block. In this way, the whole NN shallowness is preserved. In the particular
case of image recognition tasks, that block may for instance consist of a 3×3
convolutional layer. Accordingly, during the ith evolutionary search, only cells
whose index is at least equal to i are actually trained over data, and all cells
whose index is greather than i have a very minimal structure.

In other words, once the ith local search is completed, the m best performing
structures for the ith cell are fixed, and never retrained anymore. As part of the
subsequent iterations of Shallow2Deep, the network architecture is deepened to
produce deeper and more complex NN.
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4 Discussion

Global NN architectures are ideally composed by different local structures whose
role depends on their position in the NN. Following this idea, unlike most com-
mon NAS frameworks, Shallow2Deep framework does not rely on the replication
of the same cell. Rather, Shallow2Deep exploits a progressive search of the best
cells at each possible depth level, from the shallowest to the deepest ones. We
here discuss the rationale behind Shallow2Deep progressive search.

It is well understood how the complexity of the features extracted by some
NN is proportional to the depth of the layer which recognises them [29,47]. In
fact, while layers that are closer to the input are appointed to extract basic fea-
tures – such as edges, corners, borders, etc., in image-recognition tasks –, deeper
layers aim at recognising more complex features—such as combination of shapes,
combination of textures, etc. Accordingly, shallow networks are better suited to
tackle simple tasks [13] where only simple features are involved. Conversely, the
more complex a to-be-recognised feature is, the deeper a layer capable to recog-
nise it must be. This happens because the recognition of a complex feature in
a NN relies on the composition of more basic features extracted by shallow lay-
ers. Consequently, the lower is a feature complexity, the shallower can be the
NN able to learn it. We call this phenomenon depth-complexity proportionality
assumption.

There exists a tight link between features complexity and network depth
that allows us to propose reasonable shortcuts for exhaustive architecture search
methods. Shallow2Deep is designed on the assumption that simple features learnt
by shallow networks perform reliably for deeper networks as well. Indeed, deeper
NN achieve more flexible recognition capabilities than shallower ones [27,31].
Moreover, deeper NN may attain higher generalisation capabilities [34], being
capable of adapting to the features that shallow NN have learnt to recognise.

Accordingly, we argue that NN built from the sequential repetition of the
same local structure cannot achieve the astounding results that characterise
state-of-the-art NN. Conversely, we believe it is possible to search for reliable
shallow architectures and expand them in successive iterations, as done by Shal-
low2Deep. The more simple concepts are reliably learnt by shallow networks, the
easier it will be to learn complex notions from their combinations. We call this
phenomenon knowledge greediness assumption.

The progressive global assemble of Shallow2Deep exploits both knowledge
greediness and depth-complexity proportionality assumptions to boost the over-
all time complexity and performance.

In particular, depth-complexity proportionality justifies the deepening of
the NN architecture in successive iterations, which in turns supports the trick
exploited by Shallow2Deep to speed up the local search phase. Indeed, popu-
lation training in the evolutionary local search is the most expensive and time
consuming process. Training shallower networks requires less time to complete,
as the parameters to optimize are much less.

Conversely, knowledge greediness justifies Shallow2Deep’s strategy of itera-
tively expanding the depth of the NN architecture under consideration. While
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this certainly raises NN training time, it also lets deeper architectures rely on
previously trained cells. In particular, to boost the overall search, Shallow2Deep
fixes the parameters of shallower cells, avoiding their re-training. This idea traces
back to the well-established idea of re-using pre-trained feature extractors in
object detection mechanisms [20,33]. Indeed, once a network is deepened and
its deeper cell structure is determined, the predictive performance of the overall
network does not degrade, even if shallow layers are kept fixed.

5 Experiments

In this section we first present Shallow2Deep implementation and the best
NN architecture obtained with it (see Sect. 5.1). In Sect. 5.2 we then compare
obtained architecture with state-of-the-art models that leverage on the same
operation set O. We also analyse if Shallow2Deep local structures could be reused
through repetition in a NN model to obtain better performance/complexity ratio.
We make publicly available our implementation of Shallow2Deep.3

5.1 Shallow2Deep Architecture

In order to demonstrate the validity of our approach we run Shallow2Deep on
MNIST fashion [44]. We define O to be the set of available operations that can
be selected for each block of a cell. Similar to [46], in Shallow2Deep O contains
simple convolutions and identity (1×1 conv, 3×3 conv, 5×5 conv, identity).
Consider now Shallow2Deep search space S—i.e. the space that contains obtain-
able cells through local search. The search space cardinality – i.e. the number of
obtainable cells – is |S| = (B + 1)! · |O|B . Let now N be the search space for the
overall NN—i.e. the set of obtainable NN architectures. Remembering that Shal-
low2Deep does not rely on cell repetition, the amount of NN architectures avail-
able during the overall architecture search is |N| = |S|C =

(
(B + 1)! · |O|B)C .

For our experiments we set B = 3 and C = 4, obtaining |S| = 1.54 · 103 and
|N| = 5.57 · 1012. The amount of possible NN architectures is huge, but it does
not reflect the computational complexity. Indeed, thanks to its increasing depth
approach, Shallow2Deep is capable of searching a space of size |S|C , while having
complexity that is only proportional to C · |S|

For each cell we search for the best structure using the randomised evolu-
tion algorithm proposed in Sect. 3.2. We fix the number of generations of the
evolutionary algorithm to be ν = 5 for each cell and the population size to be
|P | = 50. During incubation we fixed the number of surviving best models to be
m = 10, the number of models obtained through mutations to be c = 20 and the
number of random models added to each generation to be r = 20. Each model
is trained for 10 epochs using learning rate learning rate = 0.01.

To show the effectiveness of Shallow2Deep search, we study the behaviour of
the NN population against the number of generations of the overall algorithm.

3 https://github.com/AndAgio/Shallow2Deep.

https://github.com/AndAgio/Shallow2Deep
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Fig. 5. Performance – i.e. classification accuracy – of NN architectures considered by
Shallow2Deep for each generation. We consider both the average performance and the
accuracy of the best model in each generation.

In Shallow2Deep, the user can select the number of cells C that compose the
NN and ν, the number of generations that the local search takes. Shallow2Deep
iteratively searches each of the C cells for ν generations. Therefore, the overall
search of the NN architecture takes C · ν generations to complete. We study the
average performance – i.e. classification accuracy – of the population of NN for
each of the C · ν generations. We also study the accuracy of the best NN in the
population for each of Shallow2Deep C · ν generations.

Figure 5 shows the behaviour of average and best NN performance against
Shallow2Deep generations. The classification accuracy increases with the number
of generations considered, showing the success of Shallow2Deep search. Accuracy
increments are limited since even 1st generation NN reach reasonable perfor-
mances. This is due to the mild complexity of the classification task over the
MNIST fashion dataset. Biggest increments in the NN accuracy are found in
generations where the cell index i is increased—i.e. local search shifts to the
next cell. This behaviour is expected as the increasing complexity – i.e. depth –
of the NN extends its reasoning capabilities. It is also interesting to notice that
this behaviour is more evident for smaller cell index i, while it becomes more
attenuated for values of i close to C. In our experiments, performance reaches
stability for i = C—i.e. there exists a negligible difference between accuracy of
NN with i = C − 1 and i = C. Stabilisation of accuracy can be considered a
signal that the NN is reaching a complexity limit. Surpassing this limit would
increase concepts complexity while not bringing any gain in performance, intro-
ducing possible overthinking issues [19]. Therefore, Shallow2Deep represents a
tool to automatically identify the NN complexity sweetspot over a certain task.

Figure 6 shows the architecture of the NN obtained running Shallow2Deep
on the MNIST fashion dataset.
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Fig. 6. NN architecture discovered by Shallow2Deep algorithm.

From its architecture, we point out that Shallow2Deep NN identifies sequen-
tial operations – i.e. blocks connected in a sequential manner inside a cell – at
shallower stages of the NN—i.e. cells 1 and 2. Going deeper in the NN archi-
tecture – i.e. cells 3 and 4 –, Shallow2Deep building procedure identifies cells
composed of parallel branches of convolutional operations. If confirmed in future
investigations, this concept might give some insights on the learning process of
NN. It is possible that sequential operations at shallow sections of NN help the
model to learn simple concepts at the basis of their reasoning—i.e. edges, cor-
ners, simple shapes, etc. Parallel operations approach may, instead, be useful for
the NN learning process when complex concepts need to be extracted—i.e. com-
bination of shapes, combination of textures, etc. Therefore, deeper investigation
of this result may be interesting.

5.2 Shallow2Deep vs. State-of-the-Art

We now compare the performances obtained by Shallow2Deep NN against state-
of-the-art models that apply the same basic operations – i.e. convolutions and
identity – like VGG [37] and ResNet [15]. In order to make the comparison
fair, we retrain the Shallow2Deep NN, VGG, and ResNet on the MNIST fash-
ion dataset from scratch. Training parameters are the same for every model
considered—i.e. 60 epochs and learning rate = 0.01. Moreover, to study the
effects of cell structure variability in NN architectures, we consider NN models
built from the repetition of single cells found by Shallow2Deep local search. In
other words, we select Shallow2Deep cell i – i.e. the cell discovered during ith

local search step – and we build the NN model composed of 4 cells having the
same structure of cell i. We name these NN architectures Shallow2Deepi.

Table 1 shows the performance over the test set T– i.e., the average accuracy
and its standard deviation over 20 training runs –, the footprint – i.e. number of
weights of the NN (expressed in millions, denoted by M) – of Shallow2Deep and
state-of-the-art NN. Shallow2Deep NN with its variants reach state-of-the-art
performances over the MNIST fashion classification dataset. NN obtained using
Shallow2Deep are the most efficient if we consider the accuracy/footprint trade-
off—i.e. division between reached accuracy and number of parameters. More in
details, Shallow2Deep NN reaches accuracy comparable with VGG (only 0.4%
less), while requiring a third of the parameters. Performances obtained by the
ResNet NN over the dataset under examination are possibly due to overthinking
issues. ResNet model complexity – i.e. model footprint – is higher than necessary
for the selected task, which brings it to learn too many or too complex concepts,
decreasing overall performances.
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Table 1. Comparison between Shallow2Deep and state-of-the-art models. We consider
also models built through repetition of single Shallow2Deep cells—e.g. Shallow2Deep1
is the NN built from repetition of Shallow2Deep cell 1 in a sequential manner.

Model name Accuracy ± std (%) Parameters (M)

Shallow2Deep 93.26 ± 0.18 0.251

Shallow2Deep1 92.87 ± 0.17 0.165

Shallow2Deep2 93.31 ± 0.14 0.491

Shallow2Deep3 92.73 ± 0.14 0.377

Shallow2Deep4 92.28 ± 0.10 0.118

VGG 93.66 ± 0.18 0.746

ResNet 92.77 ± 0.09 1.626

We also analyse the effects of cell structure variability in NN architectures.
Base Shallow2Deep NN version intrinsically express high level of cell structure
variability, while its variants – e.g. Shallow2Deepi – do not. It is possible to notice
that Shallow2Deep NN outperforms 3 of its Shallow2Deepi variants out of 4 in
terms of absolute performances. Moreover, Shallow2Deep NN outperforms all of
its Shallow2Deepi variants when the accuracy/footprint trade-off is considered.
Therefore, we can safely state that cell structure variability allows NN models
to reach higher performances while being complexity-constrained.

6 Conclusion

In this work we propose Shallow2Deep, a novel NAS approach that limits NN
complexity and promotes local variability in their architectures. Shallow2Deep
relies on successive searches of local optima and NN expansions – i.e. depth
increment – to produce well performing NN models.

We show that Shallow2Deep can effectively achieve NN complexity reduc-
tion, while reaching performances comparable to the state-of-the-art. Complexity
reduction is tightly linked with NN opacity. Along this line, we also discuss why
Shallow2Deep enables the application of explainability techniques to unprece-
dented scenarios, by providing a means to control NN structural design.

To the best of our knowledge, the proposed work represents the first approach
to design an automatic tool to produce efficient NN architectures, while identify-
ing complexity limits of NN models and helping designers to avoid overthinking
issues or unnecessary opacity increments. In particular, this work represents a
first approach to the analysis of structure variability influence on NN model
performances, as Shallow2Deep promotes local variability. Along this path, our
experimental analysis demonstrates how variability over local structures that
compose NN is a desirable feature to obtain small and well performing models.
This idea is in contrast with previously-proposed NN design approaches that
neglect local structure variability, opening new possibilities for future research.
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Abstract. Autonomous agents and robots with vision capabilities pow-
ered by machine learning algorithms such as Deep Neural Networks
(DNNs) are taking place in many industrial environments. While DNNs
have improved the accuracy in many prediction tasks, it is shown that
even modest disturbances in their input produce erroneous results. Such
errors have to be detected and dealt with for making the deployment
of DNNs secure in real-world applications. Several explanation methods
have been proposed to understand the inner workings of these models.
In this paper, we present how Contextual Importance (CI) can make
DNN results more explainable in an image classification task without
peeking inside the network. We produce explanations for individual clas-
sifications by perturbing an input image through over-segmentation and
evaluating the effect on a prediction score. Then the output highlights
the most contributing segments for a prediction. Results are compared
with two explanation methods, namely mask perturbation and LIME.
The results for the MNIST hand-written digit dataset produced by the
three methods show that CI provides better visual explainability.

Keywords: Deep learning · Explainable artificial intelligence ·
Image classification · Contextual importance

1 Introduction

Deep Neural Networks (DNNs) have improved the accuracy of prediction tasks in
many applications including object recognition and natural language processing.
However, DNNs inability to show their reasoning is hindering the use of these
models in safety-critical systems such as in autonomous driving and medical
domains. Moreover, their susceptibility to adversarial inputs (i.e., image and
audio data is modified in a subtle way that is undetectable to humans) easily
leads to incorrect predictions. The existing work on adversarial attacks on DNNs
shows graffiti and art stickers cause to misclassify a turn right sign as a stop
sign, and a stop sign as a 45-speed limit sign [10]. Explanations for such cases
can help to evaluate the model and identify the patterns which the model has
learned during training. This is a reason for the recent increase in research about
explainable black-box algorithms as one means of working toward more robust
and interpretable DNNs [2,6,24].
c© Springer Nature Switzerland AG 2021
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In this work, we present the concept of contextual importance to provide
visual justifications for image classification on a standard DNN. The DNN’s
convolutional layer applies sliding filters to capture shift-invariant patterns and
learn robust features to make predictions. Given the predicted class index and
the probability, we investigate the most important features contributing to the
prediction using a perturbation method. In this way, we present the visual rep-
resentation of contextual importance value to justify the image classification
results. Our main contributions are summarized as follows:

– We introduce contextual importance explanations for image classification
tasks that can be applied to any CNN-based network without requiring alter-
ation to the model.

– We present contrastive explanations that highlight class-discriminating fea-
tures for multiple class predictions.

– We show examples of visual explanations on visibly distorted and noisy images.
– We present explanations in high confidence cases for incorrect predictions to

help diagnose features contributing to misclassication.

2 Related Work

Researchers have been focusing on integrating explanation facilities into com-
puter vision algorithms [20,21,23]. Generally, these explanation methods can
be categorized as interpretable models and post-hoc explanations. Interpretable
models focus on the internal functioning of the models; they analyze the inter-
action between neurons and what each neuron has learned. Post-hoc methods
explain instance-specific predictions on the basis of how each feature influences
the final outcome. In general, both approaches can have some limitations and
strengths. The results of interpretable models are directly explainable without
requiring another model to generate explanations. However, they restraint the
model to increase comprehensibility, as a result, these may oversimplify the prob-
lem at hand. In contrast, the post-hoc explanations are not restricting the model
but they may be limited in their approximate nature [8].

Several interpretable models have been proposed to make the complex black-
box models more understandable. Some of the techniques for understanding and
diagnosing DNNs include gradients, visual analytics, and decomposition meth-
ods. Gradient methods highlight the unit changes and emphasize the important
features or regions in an image. In this way, it is possible to find the prototypes
that have the highest probability to be predicted as a certain class of a trained
DNN. Considering this, Li et al., proposed an interpretable neural network archi-
tecture whose predictions are based on the similarity of an input to a small set
of prototypes learned during training [14]. This approach is able to produce
artificial images that maximize a neuron activation or class confidence value.
Nguyen et al., presented the activation maximization method which synthesizes
an image based on high activation on a neuron, then reveals the features learned
by each neuron in an interpretable way [17]. Some works proposed visual anal-
ysis by clustering important neurons based on the features and the interactions
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between them [12,15]. Furthermore, decomposition methods such as layer-wise
relevance methods are presented to analyze which pixels are contributing to what
extent in a classification result [5]. Yoo et al., proposed a regularization technique
using forward and backward interacted-activation by defining a sum of layer-wise
differences between neuron activations. This computation between forward and
backward directions provide some kind of interpretability for DNNs [22].

On the other hand, post-hoc explanations are mostly proposed based on
saliency maps and gradient visualizations methods in computer vision tasks.
Saliency maps are being created in various ways. One way is to visualize by
going backward through the inverted network from an output of interest. It
highlights the discriminative features of the image with respect to the given
class [21]. Another method uses class activation mapping with the gradients of
a target input in the final convolutional layer to produce a rough localization
map highlighting the important regions [19]. This method is further developed
for explaining occurrences of multiple object instances in a single image [7].
In another work, class activation mapping is combined with the global average
pooling layer to visualize class-specific image regions for revealing the attention
map of DNNs on an image [25].

Moreover, some methods suggested generating explanations by approximat-
ing a black-box model by a simple model locally with the perturbations of the
original instance. Then, they present the super-pixels with the highest positive
weights as an explanation [18]. In our approach, contextual importance measures
the influence of an individual feature on a prediction result by perturbing inputs
without transforming the model into an interpretable one. The effects are then
visualized to explain the outcome based on the main contributing group of pixels
(i.e., interpretable regions). The visualization shows the relative importance of
each region considering the whole image for the current prediction. Contextual
importance explains the prediction results by analysing the effect on the output
of the model, therefore remains faithful to the original model.

3 Method

The DNN (Deep Neural Network) architecture studied here is composed of three
convolutional layers each followed by batch normalization, ReLu, max pooling,
and finally fully connected layer as seen in Fig. 1. A convolution layer applies
a sliding convolutional filter to an input image. The weighted sum of the input
pixels within the window produces an output pixel at each point allowing the
convolutional layer to learn visual patterns and features. Batch normalization
reduces the sensitivity to network initialization and speeds up the training of the
convolutional layer. ReLU activation function performs a threshold operation for
each element by setting negative values to zero. Following this, the max-pooling
layer performs down-sampling by dividing the input into sets of non-overlapping
rectangles, and outputs the maximum for each region. Finally, a high-level rea-
soning is made through the fully connected layer in the network. This hierarchical
architecture allows DNNs to extract increasingly abstract features from the first
layer to the final layer.
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Fig. 1. DNN architecture for the recognition of the hand-written digit dataset

3.1 Contextual Importance

Contextual importance (CI ) method is one of the earlier studies to address the
post-hoc explainability for predictions made by black-box algorithms, specifically
for a tabular data type [11]. However, the CI ’s potential for image explanations
has yet to be investigated. In this study, we propose generating visual expla-
nations for DNNs through the contextual importance. This concept originates
from the idea that the set of input features forms the context, and given this, the
importance of feature is dependent on other feature values. Therefore, contex-
tual importance indicates the degree of significance of a feature value (or set of
feature values) when changes are made to that particular value(s) while the rest
of the inputs remain constant. This is a model-agnostic approach which makes
it possible to explain the outcomes of both linear and non-linear learning models
as presented in [3,4].

Feature importance usually signifies a measure for how much one feature
affects the outcome when taking into account the whole dataset. Building an
explanation method is simple in the case of a purely linear model, where every
feature’s importance is constant and irrelevant to the other feature values. For
linear models such as the weighted sum, the weight directly expresses the impor-
tance of each feature and the combined importance of several features corre-
sponds to the sum of the weights. Neural networks are mainly useful for tasks
where linear models are not sufficiently expressive. When speaking about post-
hoc explanations of non-linear methods, the feature importance might be specific
for the current set of input values.

When dealing with non-linear models, it becomes non-trivial how to define
feature importance. It seems like most current model-agnostic methods use the
local gradient as an indicator of the contextual importance [9]. The definition of
contextual importance is based on a different principle. Rather than observing
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how much an output value changes with fixed amount of small perturbations to
the current input value of the studied feature(s), we study how much perturba-
tions over the whole range of possible feature values affects the output range. CI
is then the ratio of the observed output range and the greatest possible output
range. If the observed output range is greater for one feature than another, then
the former is more important. Contextual importance is formally defined as:

CIj(
#»

C, {i}) =
Cmaxj(

#»

C, {i}) − Cminj(
#»

C, {i})
absmaxj − absminj

(1)

where
#»

C is the vector of input values that defines the context, Cmaxj(
#»

C, {i})
is the maximal value of output j observed when modifying the values of inputs
{i} and keeping the values of the other inputs at those specified by

#»

C . Corre-
spondingly, Cminj(

#»

C, {i}) is the minimal value of output j observed. absminj

and absmaxj are typically the minimal and maximal values of output j in the
training set, which signifies 0 and 1 for classification tasks. The estimation of
Cmaxj(

#»

C, {i}) and Cminj(
#»

C, {i}) can be performed with Monte-Carlo simu-
lation or more efficient sampling methods regardless of the black-box model or
the learned function. For image case, we create samples through perturbing the
image. This results in getting only one probability value for each perturbed sam-
ple, then the range for minimal and maximal values corresponds to probability
value of when a region is on the scene and when it is absent. Therefore CI is
defined as;

CIj(C, {i}) =
outj(C) − outj(C, {i})
absmaxj − absminj

(2)

where outj(C) is the value of the output j for the context C. outj(C, {i}) is
the prediction score for the perturbed sample. In this way, CIj(C, {i}) expresses
where the value of outj(C) − outj(C, {i}) is located in the [absmaxj , absminj ]
range.

3.2 Contextual Importance Explanations for DNNs

DNNs learn to detect the most defining features such as color and edges in their
first convolutional layer since this layer receives weighted connections from the
input layer. The activation of each node is a weighted sum of pixel intensity
values that are passed over to an activation function. So, the set of incoming
weights to a node is measuring what that node is about. This can be easily
observed in the first layer (see Fig. 1). Then the prediction is made following
the last convolutional feature-map where the parts with the highest gradient
are the most important for the prediction. Generally, the saliency maps cre-
ated based on the final layer or another intermediate layer feature-map loses
details significantly. We propose identifying interpretable regions through an
over-segmentation method which is the process of segmenting the object(s)
from the background and fracturing an image into subcomponents [1]. As a
result, this increases the chances that boundaries of importance are extracted.
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Then, we measure the contextual importance by masking each subcomponent at
a time and present the results as visual evidence for a prediction. We note that
“interpretable regions” are referred to as “features” throughout the paper.

Fig. 2. Contextual importance explanations a)Input image b)Perturbed samples
obtained through over-segmentation c)Visualization of the contextual importance

This process is consisting of four steps as outlined in Algorithm 1. Given
an input C, we get the prediction class outj(C) (line 1). We then find samples
(C, {i}) ∈ C by filtering each region one after another from C where (C, {i}) is
representative of the input, which is shown in Fig. 2(b). Model runs for each per-
turbed sample for prediction on output index j (line 2). We find the most impor-
tant features by simply observing how the prediction score drops for the each
interpretable samples (C, {i}) when they are not on the scene. Then, we concate-
nate prediction values from the interpretable samples for outj(C) − outj(C, {i}).
We compute CIj(C, {i}) and visualize the results (line 3 and line 4) as seen in
Fig. 2(c). The CI values higher than the threshold (0.01) are represented in
color. In this way, we identify which features were activated the most from the
perturbed inputs. Our MATLAB implementation of this algorithm is available in
the GitHub repository.1

Algorithm 1. Explanations for DNN with CI
Given: Context C that specifies input image, output index j, absminj , absmaxj ,
model f .
Require: Sample set (C, {i}) contains perturbed samples.

1: Run f with C to get outj(C)
2: Run f on set (C, {i}) and get outj(C, {i})
3: Calculate CIj(C, {i}) using (2)
4: Return CIj(C, {i})

1 https://github.com/shulemsi/MNIST CNN CI Explanations.

https://github.com/shulemsi/MNIST_CNN_CI_Explanations
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4 Experimental Results

We apply the proposed method to the MNIST hand-written digit dataset, which
has 60,000 training and 10,000 test samples [13]. We provide region-wise expla-
nations derived from the image context as supporting evidence for the class
predictions.

The results of contextual importance are illustrated in Fig. 3. The proposed
explanation method shows the contributing features to the predicted class based
on the degree of contextual importance (i.e., those regions with higher CI value
than the threshold). The second row in Fig. 3 shows the over-segmentation clus-
ters, which are used as interpretable regions to perturb the image. The pixel
location of high-significance features is rendered in color in the last row. We
also report the prediction scores for the input image and the highlighted region,
which shows the difference when the low-importance regions are left out. We
observe that omitting the features with low importance slightly increased the
confidence for the predicted class, which also justifies why the model predicts a
certain class.

Fig. 3. Contextual importance explanations. The first line is the input images with
the probability score for the predicted class. The second line is the over-segmentation
clusters for generating perturbed samples. The last line shows features with the highest
contextual importance and the prediction score for the explanations.
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4.1 Visual Comparisons

To evaluate the proposed explanation method, we provide a visual compari-
son with two methods namely mask perturbation [23] and Local Interpretable
Model-agnostic Explanations (LIME) [18]. Both methods produce explanations
based on how the prediction score varies when the features are altered. With
this exercise, we look for the immediate intelligibility and explicitness in visual
explanations. Figure 4 shows the comparison results. The masking method anal-
yses how sensitive the model’s prediction on a class by occluding different parts
of an image with a gray square, then provides a pixel-level explanation where
the results are presented as heatmaps. Parts with high impacts on the output
are highlighted with bright colors; conversely, low impacts are shown in dark
colors.

Fig. 4. Visual comparison of explanation methods. The masking method provides a
saliency map based on the prediction scores. LIME highlights the relevant super-pixels
for the prediction. Contextual importance provides a visual representation of the impor-
tance value as the most contributing features to the outcome.

LIME provides a region-based explanation by discovering the relevant seg-
ments. Segments with the highest positive weights are presented as an explana-
tion (in red). Yet, the parts of the background are shown with positive relevance
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along with non-zero values. The masking method is implemented on CNN results
and LIME uses the random forest algorithm for the hand-written digit classifi-
cation task. While both methods give important intuitions, neither is precise in
demonstrating the features leading to a prediction. Masking method gives signif-
icant insight into identifying the minimal region which has the most impact on
the output, however their results are not immediately intelligible. Morever, the
masking method could be computationally expensive when handling an instance
with high dimensions since they need to sequentially perturb the image. LIME
results in losing significant parts of the object. Given that humans intuitively
pinpoint the most typical features of an class on an image, the contextual impor-
tance could be considered better for humans to understand and evaluate the
predictions.

4.2 Explanations on Contrastive Cases

Humans generally explain the cause of an event relative to some other event
that did not occur. Thus explanations are usually in the form of “Why this?-
and not that”, with a contrasting case that did not occur, even it is implicit in
the question [16]. It is common for humans to state and request contrastive facts
to distinguish between similar examples instead of giving complete explanations
(i.e., listing all the causes of an event). Contrastive explanations could be more
intuitive and valuable particularly for multivariate datasets since the cognitive
load of complete explanations could be high in those cases.

As the contextual importance can be computed for every function that out-
puts a prediction value for all classes, this makes it possible to explain why
a certain class outj(C) is more likely than another (i.e., here outc(C) indicates
the contrastive case). For this, feature importance over the perturbation variable
(C, {i}) is computed to explain the model’s prediction results for the contrasting
case outc(C) and compare it with the initial case. Thus, we are not only inter-
ested in visualizing the present features but also looking for missing features.
Given an input C with prediction class outc(C), we find predictions for inter-
pretable perturbations for the index of the contrastive case. We find the impor-
tance of the features that are contributing to prediction class outc(C) using the
same equation (Eq. 2). The visualization demonstrates the most critical features
contributing to different classes (see Fig. 5).

Thereby contrastive explanations are generated in the form of either;

– The C is predicted as class outj(C), because features (C, {i}) have high impor-
tance, which are not typical of class outc(C).

– The C is not predicted as class outj(C), because features (C, {i}) has no
importance, which are typical of class outc(C).

Here, an example is presented for number 7 and a set of features that distin-
guish it from number 2, which has the second high probability. Figure 5 illustrates
the visualizations of contextual importance values as well as the absent features
in number 2, which distinguishes it from 7. Our comparisons with LIME show
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Fig. 5. CI and LIME comparisons for contrastive cases.

varying explanation results for both the actual class and the contrastive case.
The important features are highlighted in order to identify and distinguish the
two classes. LIME shows background as the positive relevance besides the non-
zero pixels. The reason for this could be the result of the clustering algorithm.
Moreover, it is very often that LIME produces the same explanations for differ-
ent class predictions. Figure 6 demonstrates this for two different forms of the
same digit. LIME resulted in identical explanations for number 5 and actual
class number 6, which is not very explanatory to know why this image is labeled
as either of the two classes.

Fig. 6. Contrastive explanations (a) Input image number 6 (b) LIME explanations
for 5 (c) LIME explanations for 6 (d) Contextual importance explanations for 5
(e) Contextual importance explanations for 6.
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4.3 Explanations on Distorted Images

Even minor alterations in an image can produce completely different classifica-
tion results. Handwritten text is likely to have varying noises such as underlines,
neighboring characters, or stray marks. Here, we tested the model with different
images of the numbers that were not in the training set to observe whether the
model can extract enough common features from distorted pictures to identify
a number. Finally, the explanations are generated to check whether they are
having invariance to these visual differences.

We also tested the contextual importance for the consistency of the explana-
tions by adding noise to the input image and evaluating how it affects the expla-
nations. The degree of noise resistance and distortion invariance is experimented
through contextual importance. The distorted images are tested to verify if the
model predicts the correct label. The importance over the perturbation variable
(C, {i}) is computed for the output index j, then the contextual importance val-
ues are visualized for each class. We are interested in visualizing whether such
noises would be shown as relevant features and if the explanations are robust to
such variations.

Fig. 7. Contextual importance explanations for partially distorted and noisy images
(a) Explanations for 2 (98.80%) (b) Explanations for 3 (99.95%) (c) Explanations for
1 (98.21%).

The explanations for the distorted numbers are shown in Fig. 7. Despite the
noise and distortion, these samples were correctly recognized by the model with
high confidence. For the given examples, DNN is able to extract the salient
features from the cluttered image and contextual importance provided robust
explanations under the noisy conditions. Although the completely invariant clas-
sification of complex shapes in the physical world is still a challenging task,
contextual importance could provide a solution to the problem of robustness
concerning partial distortions. We also note that such explanations depend on
the outcome of over-segmentation clusters.

4.4 Explanations on Misclassification

In this section, we show explanations for a misclassification case to identify the
features causing a wrong prediction. The contextual importance for the pertur-
bation variable (C, {i}) is computed for the predicted class and for the true class.
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Then, both classes are visualized to demonstrate the relevant features for the
incorrect class outj(C) and analyse why the model predicts as outj(C) instead
outc(C). We present LIME and contextual importance explanations for example
of true class number 9 and predicted class number 4 in Fig. 8. This input exam-
ple classified as number 4 by 51% and the actual class is 9 by 19% probability.
LIME gives explanations for class number 4 (12%) while it failed to find any
relevant features for the actual class (6%). The contextual importance features
represented for number 4 (by 99%) are resembles to explanations produced by
LIME as shown in Fig. 8. Contextual importance for ground truth (9) (by 26%)
highlights all the pixels as important. Although the prediction score is low for
the ground truth, it still provides discriminative features for each class.

Fig. 8. CI and LIME comparisons on misclassification

This kind of result gives no direct explanation about why a model makes a
wrong prediction, however, they could potentially enhance trust as it helps to
identify the contributing features and evaluate whether the model is performing
in an arbitrary way. Hence, understanding the features learned by a model will
give an opportunity to improve the dataset and correct the model.

5 Conclusion

In this paper, we proposed contextual importance to provide visual explana-
tions for DNN predictions. The method presents region-wise explanations for
image classification results by visualizing the contribution of each region based
on the degree of importance. The visual comparison results show that the con-
textual importance provides explicit visual justification for the DNN predictions.
The results also demonstrate that the region with the high importance gives a
class score close to the initial prediction score. This suggests that the proposed
method is able to extract the most relevant features for the prediction to jus-
tify an outcome. The idea is further supported by providing explanations for
wrong predictions to investigate the regions contributing to misclassification.
The results indicate that contrastive explanations offer a way to analyze the
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misclassified examples and identify class discriminative features. Being limited
to only a hand-written digit dataset, this study lacks the implementation of con-
textual importance for the multi-object classification explanations, which is an
important consideration for our future work. Another interesting research direc-
tion could be exploring contextual importance for text-based explanations in a
multi-object classification task.
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Abstract. Multi-agent systems can be considered a natural paradigm
when modeling various transportation systems, whose management
involves solving hard, dynamic, and distributed allocation problems.
Such problems have been studied for decades, and various solutions have
been proposed. However, even the most straightforward resource alloca-
tion mechanisms lead to debates on efficiency vs. fairness, business qual-
ity vs. passenger’s user experience, or performance vs. robustness. We
aim to design an analytical tool that functions as a recommendation sys-
tem for on-demand transport (ODT) authorities. This tool recommends
specific allocation mechanisms that match the authority’s objectives and
preferences to solve allocation problems for particular contextual scenar-
ios. The paper emphasizes the need for transparency and explainability
of resource allocation decisions in ODT systems to be understandable
by humans and move toward a more controllable resource allocation. We
propose in this preliminary work a multi-agent architecture and general
implementation guidelines towards meeting these requirements.

Keywords: Multi-agent systems · Explainable Artificial Intelligence ·
Intelligent transport systems · Resource allocation

1 Introduction

Today’s transport systems are constructed of complex, large-scale interactions in
a dynamic environment. In on-demand transport (ODT) systems, a fleet of vehi-
cles is distributed in an urban area to meet potential requests to transfer people
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or goods between origin and destination locations. Agent-based and multi-agent
systems provide a suitable scheme to model such complexity. In multi-agent
models of ODT systems, vehicles are represented by agents that are mobile in
their spatial environment and may have communication abilities. The system’s
spatial environment consists of a network of roads, facilities, and urban infras-
tructure artifacts. The agents may have the possibility to communicate with
each other and with other system entities to share information and coordinate
their actions [34].

The allocation problems are major issues in the management of ODT sys-
tems. They have been studied for decades, and various solutions have been pro-
posed. However, even the most straightforward cases of resource allocation lead
to debates on efficiency versus fairness [25], business quality versus passengers’
experience [36], and performance versus robustness [22].

We are interested in building an analytical tool that functions as a recom-
mendation system for resource allocation methods for ODT scenarios. There are
several stakeholders involved in ODT systems including passengers, drivers, ser-
vice providers, etc.). What we mean by the term User in this document is a
human user representing the transport authority and looking for the best solu-
tion method to solve the problem regarding the authority’s preferences and the
actual context parameters.

This potential tool takes as input the set of parameters for the scenario
(vehicle fleet properties and request distribution model), user’s objective func-
tion, and preferences, in addition to the environment model (road network and
traffic model).

This system simulates the problem scenario and its solutions with different
classes of AI methods, then produces to the user the recommended solution
model (the solution method and its tuned parameters) that produce results
matching the user objective and preferences for the input scenario.

In future Artificial Intelligence (AI) systems, it is vital to guarantee a smooth
human-agent interaction, as it is not straightforward for humans to understand
the agent’s state of mind, and explainability is an indispensable ingredient for
such interaction [28]. Recent works in the literature highlighted explainability
as one of the cornerstones for building trustworthily responsible and acceptable
AI systems [24,32,35]. Consequently, the emerging research field of eXplainable
Artificial Intelligence (XAI) gained momentum both in academia and industry
[3,6,19]. XAI is allowing, through explanations, users to understand, trust, and
effectively manage the next generation of AI solutions [20].

Providing users with some form of control over the recommendation pro-
cess can be realized by allowing them to tell the system what they like or by
engaging them in adjusting the recommendation profile to synthesize recom-
mendations from different sources [40]. High-quality explanations allow a better
understanding of the results and help the user to make the right decisions. Reli-
able answers increase confidence in the system, while explanations that reflect
system inaccuracies allow the user to modify the system’s reasoning or control
the weighting parameter that reorganizes or regenerates recommendations.
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2 About the Need for Explainability

The human perspective is what differentiates ODT from most routing and trans-
port problems; in addition to the technical factors, the quality of the service
is influenced by human satisfaction factors, including the stability of service
quality, service availability, wait-time, information privacy, passengers’ special
constraints, and preferences [9].

The following examples show that global system decisions may not fit all
stakeholders’ preferences: a decision may make some people dissatisfied.

Fig. 1. Passenger request distribution at rush hours.

Scenario 1: Dial-a-ride in Rush Hours. At rush hours, taxi-ride demand is usu-
ally concentrated at specific parts of the city, e.g., city center and train stations,
as seen in Fig. 1. The objective of the transport authority is to maximize the
number of satisfied requests while reducing operational costs. An efficient allo-
cation mechanism will dispatch as many vehicles as possible to the crowded
areas to serve passengers, prioritizing the requests whose destinations are near
other crowded areas. As a consequence, in this example, most of the vehicles
move back and forth between the two areas, which reduces the chance of far
passengers and makes them wait for a long time for being served, regardless of
the urgency level of their requests that may be higher than those who do their
ordinary work-home trips from the city center.

Scenario 2: Emergency Management ODT. The example of Fig. 2, introduced
by [1] represents a disaster management situation. However, this kind of emer-
gency transport can be modeled as an ODT system [4,37,41]. In this example,
a failure in facility X leads to a leak of toxic substances. The leakage grows over
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Fig. 2. An example of an emergency scenario.

time and threatens both communities A and B. The inhabitants of these com-
munities need to be relocated to refuge R as soon as possible. A fleet of shuttles
is available to relocate people. However, suppose that the fleet’s size is not large
enough to evacuate either community in one hour. Because of the wind direc-
tion, the time it takes for the substance to reach community A is double that of
community B; however, community A’s toxic density will be higher than in com-
munity B (assuming the density degrades with distance). Also, community B’s
population is three times the population of community A. The round-trip time
from community A to the refuge is twice the round-trip time from community B
to the refuge. In other words, a shuttle assigned to community B can carry twice
the number of evacuees compared to the same shuttle assigned to community A.
If the goal is to maximize the number of evacuees moved to the refuge within one
hour, the answer would be to assign the entire fleet to community B since the
round trip time is shorter for this community. However, if the goal is to evacuate
high-risk individuals as quickly as possible, the answer would be to assign the
entire fleet to community A. While both of these responses seem correct for the
corresponding objective, neither seems fair.

Providing explanations for the system decision may increase people’s satis-
faction [5], and maintain the AI system’s acceptability. When a recommendation
mechanism is too complicated for lay users, the system may need to justify why
the recommendation has been made [12,39]. The EU General Data Protection
Regulation introduces a right of explanation for citizens to obtain “meaningful
information about the logic involved” for automated decisions [17]. Generating
explanations of autonomous decisions in multi-agent environments is even more
difficult than providing explanations in other contexts [23]. In addition to identi-
fying the technical reasons that led to the decision, it is necessary to convey the
agents’ preferences. It is necessary to decide what to reveal about other agents’
preferences to increase user satisfaction while considering other agents’ privacy,
and how those features led to the final decision.
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To provide useful explanations, it is necessary to identify the features of the
context and decisions relevant to a specific user. Given these features, other
relevant agents’ preferences should be identified, and any relevant statements
that touch on important concepts such as fairness should be generated. Using
these features, preferences, and concepts, various explanations could be gener-
ated using subsets of them. The selected subset should be transferred in a certain
communication form. The personalization of explanations could also be used at
this stage since explanations are subjective and depend on multiple factors [38].
As to personalize explanations, there is a need to build a user, or mental model
[21] that influences the generation of explanations.

In our resource allocation scenario in vehicle fleets, the allocation process
can provide a set of constraints that lead to the proposed allocation. It will be
necessary to identify the relevant constraints and generalize statements related to
other agents’ preferences and general system constraints related to fairness [26].
Then, we can use user satisfaction models to choose the best constraints, and
generalized statements to present.

3 AV-OLRA Metamodel

Fig. 3. AV-OLRA’s dynamic composition of connected sets.

In previous work, we presented AV-OLRA a metamodel for resource allocation in
autonomous vehicle fleets [11]. In this model, an autonomous vehicle is any vehicle
that can make autonomous decisions, and interact with other entities in the sur-
rounding environments, besides its self-driving capabilities. We consider vehicles
communicate locally within limited ranges, and can pass transitive messages.

Connectivity between two vehicles is achieved if the distance between them
is less than or equals their communication range. However, as the vehicles’ com-
munication range is limited, and to maximize their connectivity, two vehicles can
be connected by transitivity if both are connected to another vehicle. We define
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the concept of connected set (CS) as a dynamic set of entities that can commu-
nicate with each other either directly or by transitive message passing. CSs are
composed, split, and merged at run-time based on vehicles’ movement as shown in
Fig. 3. When the communication range is long enough, all vehicles in some urban
area can communicate globally i.e. all the vehicles belong to one CS.

Considering the transport requests as dynamic resources that can be con-
sumed by or allocated to vehicles, the AV-OLRA metamodel is formulated as:

AV -OLRA :=
(R,V,G, T )

(1)

where R defines a dynamic set of resources that occur to be available for a specific
time window at the time of execution, representing passengers’ requests; the set
of consumers V represent a fleet of m autonomous vehicles that are mobile and
can only communicate within a limited range; G is a directed graph representing
the urban infrastructure network that defines the problem spatial environment,
with N the set of nodes, and E the set of edges, eij ∈ E is the edge between the
nodes i and j, ω is a valuation function that associates each edge e ∈ E with
the value ωe based on a temporal distance measure (e.g., average driving time in
minutes), which will be used to calculate the operational costs of vehicle trips;
T defines the temporal dimension of the problem as a discrete-time horizon.

Instantiating this metamodel by defining the feature model of these com-
ponents results in an AV-OLRA problem model while defining these features’
exact values leads to an AV-OLRA problem instance. A problem model can be
solved with different solution models. A solution model defines the strategy by
which the allocation is computed. Applying a strategy X to a problem instance
I results in assigning values to allocation variables, which means achieving a
feasible solution if it exists.

Example. The dial-a-ride problem (DARP) model can be defined in some urban
area u by defining the u’s urban network features (number of nodes, edges, facil-
ities, etc.). The fleet’s vehicles are taxis with a set of attributes for capacity as
the number of seats, average speed, energy consumption, and communication
range. The requests are trip requests with attributes for some passengers, pick-
up and drop-off locations, time-window, and budget. An instance of this problem
model is defined by the exact values of node locations, edge distances, number
of vehicles in the fleet with their capacities speed, range, and initial locations, in
addition to the set of passenger requests and the time slot in which the scenario
takes place (the time horizon of the problem instance). Here the allocation vari-
ables are the vehicles’ schedules; for each vehicle, we have a schedule as a list
of couples (location, time) defining the locations that the vehicle needs to visit
(for pick-up or delivery) and their potential visit time.

4 Explainable MAS for AV-OLRA Recommendation

In this section, we introduce EX-AV-OLRA, an extension to AV-OLRA meta-
model with explainability-related components. We present a multi-agent model
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for an explainable recommendation system that realizes the EX-AV-OLRA
model. EX-AV-OLRA model is formulated as:

EX-AV -OLRA :=
(R,V,G, T ,X )

(2)

where
(R,V,G, T )

define an AV-OLRA and X defines the explaining mechanism.
We aim to design a recommender system in which a human user sets the sce-

nario parameters to create an AV-OLRA instance, setting objective and utility
preferences. The system’s output is a recommendation to use the solution method
that is the best match to user preferences, supported with multi-level explanations
of why particular methods are recommended and why others are discouraged.

Communicating

Acting

Planning

information sharing

coordination

update schedule

update beliefs

Fig. 4. Generic AV agent behavior in AV-OLRA (dashed components are generic, to
be implemented for any specific strategy).

The generic multi-agent model of AV-OLRA consists basically of Autonomous
Vehicle (AV) agents who are mobile in their spatial environment to serve trip
requests and may communicate within a limited range with other agents and
surrounding artifacts. We can distinguish three different sub-behaviors (acting,
communicating, and planning) shown in Fig. 4.

The multi-agent model for the explainable recommender system extends the
previous model. An additional agent type Monitor Agent (MA) plays the role of
proxy for AV s to produce human-readable personalized explanations for the rec-
ommended methods. Unlike the inter-AV s’ limited-range communication model,
the MA can interact with AV s globally (see Fig. 5).

Fig. 5. MA and AV agents interaction.
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This interaction is only to monitor the performance of AV agents and log-
ging the explanations of their actions during the simulation. The MA’s role is
to aggregate the explanations of AV s’ actions during the simulation to enable
building explainable recommendations. In practice, only the AV s are deployed.
Their communication constraints in real world scenarios should be taken into
account during the simulation. To do so, this global interaction means should
never be used for communication between AV s.

4.1 AV Agents’ Behavior

An AV agent repeatedly performs the following actions representing the behav-
ior of a vehicle in the system: 1. read the received messages and update the
context (communicating sub-behavior), 2. choose the locations to visit (plan-
ning sub-behavior), 3. act by performing a driving action (acting sub-behavior),
4. broadcast context information (communicating sub-behavior).

The acting and communicating sub-behaviors are always the same whatever
the problem instance and whatever the chosen solution model. The AV agent
can perform four actions (moving, waiting-for/marauding requests, picking-up,
and dropping off) as a transport vehicle. As a communicating agent, an AV
can join/leave a connected set and send, receive, or broadcast messages. The
communication behavior depends mainly on the value of the communication
range, which is an attribute of the scenario. The planning sub-behavior repre-
sents how an AV obtains its dynamic schedule. This behavior depends on the
allocation mechanism, which is specific to each coordination mechanism that
defines the solution model. A coordination mechanism is defined by three com-
ponents 〈DA,AC,AM〉, where DA denotes the level of decision autonomy which
is either centralized (C) or decentralized (D); AC denotes the agents’ coopera-
tiveness level with (S) or without (N) sharing of schedule information, and AM
is the chosen allocation mechanism (e.g. “Auctions”, “Greedy”, “DCOP”, etc.).

Communicating

Acting

Planning

Monitor-agent
interacting

Monitor Agent

Explaining

Generating
explanation

information sharing

coordination

update schedule

update beliefs

decision features

context evolution

Fig. 6. Explainable AV agent behavior in EX-AV-OLRA

In this work, we propose to add another sub-behavior (the explaining sub-
behavior) to the AV model. This sub-behavior consists of two phases generating
explanation and monitor-agent interacting as shown in Fig. 6.
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Table 1. Examples of solution models and what should be explained.

Solution DA AC AM Explanation examples

Selfish D N Greedy Why prioritizing a specific request?

Dispatching C S MILP Which constraints are violated?

Market D S Auctions How winner determination computed?
Why accepting some trade options?

Cooperative D S DCOP What are individual costs and utilities?

Generating explanation phase is triggered whenever a decision is taken (in
planning sub-behavior). The AV gathers all information related to the taken
decision (the leading constraints, context information, potential improvement
in the solution quality, etc.), in addition to the changed decision variables and
their values. This information, together with the contextual data gathered in the
previous steps from the agent belief base, are used to generate an understandable
explanation for the taken decision. When the explanation is generated, the agent
moves to the monitor-agent interacting phase. In the monitor-agent interacting
phase, the generated explanations are sent to the monitor agent and stored in
the AV belief base. To reflect the behavior of AV s in real world scenarios, the
MA should never play the role of communication mediator between AV s.

The set of possibly explainable actions and decisions depend basically on the
chosen solution model. Table 1. Lists some examples of solution models in line
with their possibly explainable decisions.

AV Agents

Monitor Agent

Dialog Interface

Simulation Statistics Interface

Human User

Fig. 7. The interacting behavior of the Monitor Agent.

4.2 Monitor Agent ’s Behavior

The role of the MA is to be a proxy between AV s and the user. It interacts with
the user via dialogues to build a user profile that simulates the user preferences
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and objectives. MA could be formed in a group of agents for fault tolerance and
backup reasons and to avoid having a bottleneck in the model. Additionally,
members inside this group may execute different explanations behaviors and
interact/cooperate to provide the explanation to the human. The most impor-
tant point is to have one interface with the human user to avoid overwhelming
her/him with many interfaces. We can look at the monitor agent as the personal
assistant of the human that could be embedded in his/her smartphone for exam-
ple. Therefore, and even with a group ofMAs, the interface with the human is
preferably unified through one agent as a representative of the group.

MA gathers the statistics of decisions and their explanations from AV s. It
aggregates these explanations in several abstraction levels. Following a similar
approach of [33], the MA builds a multilevel explanation tree. The leaves of this
tree correspond to particular agent’s actions explanations. The root corresponds
to the global abstract explanation for the final recommendation, and interme-
diate levels correspond to explanations for the evolution of evaluation metrics.
At the end of the simulation scenario, it ranks the different solution methods
based on their matching to the user profile providing a summary explanation for
the ranking decision. The user could ask for a detailed explanation –to handle
this, the MA defines a new granularity for selecting the right level of explanation
that is communicated to the user. While the user is asking for more details, MA
proceeds from the root to leaves gradually, providing at every step the corre-
sponding level of explanations. It stops when the user stops asking or reaching
the leaves representing the atomic details that can not be expanded. The next
section discusses how an MA computes its recommendation.

4.3 Computing the Recommendations

The objective of MA is to assign values to its decision variable by the end of the
scenario execution. MA has three sets of variables: profiles, recommendation and
explanation variables. The recommendation variables are the ranking values for
the different candidate methods. The explanation variables aggregate individual
AV s’ explanations and MA’s reasoning on the evolution of the evaluation metrics
during the execution. The profile variables define a model based on the available
features of allocation methods that match the user-defined features profile. If
we manage to get such a model, then making recommendations for a user is
relatively easy. We need to look at the user profile and compute its similarity to
the different candidate methods. The candidates are then ranked based on their
similarity value.

The user profile u in the set of user profiles U is represented by a vector
of n features u = [u1, ..., un] defines the user’s preferred values for the different
evaluation metrics. Given that the system implements k solution methods that
are potential candidates, this set of candidate methods is represented by M =
{m1, ...,mk}; m ∈ M is the feature vector of the candidate m = [fm

1 , ..., fm
n ] we

define a distance dist function to calculate the n-dimensional euclidean distance
between feature vectors:

dist : U × M → R
+
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dist(x, y) =

√√
√
√

n∑

i=1

(xi − yi)2

A perfect-match method m′ to user profile u if exists, will have dist(u,m′) = 0
otherwise the following similarity function will be used to rank the candidate
methods:

sim : U × M → [0, 1]

In its simplest form, sim function is the inverse of dist.

sim(x, y) =
1

dist(x, y)

so that the highest recommended method m′ to user u is the one with higher
value of sim(u,m′).

4.4 Creating and Communicating the Explanations

As seen before, we need explanations that are scalable for multiple levels, we can
distinguish two types of actions to be explained: the AV ’s individual decisions
and the aggregated decision by MA.

The classical approach in XAI is the straightforward design of interpretable
models on the original data to reveal the logic behind actions proposed by the
system. State-of-the-art interpretable models, including decision trees, rules, and
linear models; are considered to be understandable and readable by humans [27].
This applies to the individual decisions of AV s in our model, every AV is an
autonomous agent having predefined interpretable behavior, and can justify his
decisions with their technical and social reasons (based on its believes of itself
and the context).

Another XAI approach is the post hoc interpretability, given the decisions
made by the system, the problem consists of reconstructing an explanation to
make the system intelligible without exposing or modifying the underlying model
internally. The generation of explanations is an epistemic and computational
action, carried out on-demand according to the current state of a model, and
meta-knowledge on the functionalities of the system. It is intended to produce
a trustworthy model based on features or exemplars. This applies to the aggre-
gation of decisions made by MA, to the statistics-based matching, and to the
recommendations.

An explanation can indeed be in any type of interaction. The advantage
of human-like interaction is that it provides to the user higher levels of satis-
faction, trust, confidence, and willingness to use autonomous systems. For this
reason, many techniques have been developed to generate natural language (NL)
descriptions of agent behavior and detected outliers or anomalies. This entails
answering questions such as, why did an agent choose a particular action? Or
what training data were most responsible for that choice? The internal state and
action representations of the system are translated into NL by techniques such
as recurrent neural networks [15], rationale generation [16], adding explanations
to a supervised training set such that a model learns to output a prediction as
well as an explanation [8].
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5 ExDARP: A Use Case of Explainable Decisions in
Decentralized DARP

In DARP scenarios, a fleet of vehicles is distributed through an urban network to
satisfy passenger dynamic trip requests. A human User sets the scenario param-
eters, including fleet size, vehicle characteristics, request distribution model in
addition to the user-defined objective, and utility preferences.

The User of the system is a representative of the transport authority; he
wants to know the best solution method for solving the problem regarding the
authority’s preferences and the actual context parameters. The Monitor Agent
uses this information to build the user profile and the scenario profile, which is
then passed to the simulator. The system runs simulations with several solution
methods; at each simulation tick, a snapshot of the problem context is solved
with the different solution methods, explanations for local decisions are logged,
and statistics for evaluation metrics are computed. At the end of the scenario
execution, the results from different solution methods are compared, assessed in
line with the statistics and user preferences.

Solution methods with the highest match to user preferences are recom-
mended to the User (abstractly, macro-level) explaining the features of these
methods – e.g., greedy method favors closer requests with short distances, which
means lower operational cost. The User can also ask the system to monitor
why some solution method is not suitable for his scenario – e.g., centralized dis-
patching requires continuous communication between vehicles and the dispatch-
ing portal, this consumes bandwidth in dynamic settings, making it unsuitable
for scenarios with limited communication. – or, centralized dispatching requires
exponential execution time to reach an optimal solution, it is unsuitable for
emergency response scenarios. If the User requires fine-grained details, he can
trace the evolution of evaluation metrics and ask for explanations for remarkable
spots – e.g., a valley in the QoS chart followed by a peak can be explained as
follows: at that time slot, 70% of vehicles were carrying passengers on the route
to their far destinations, so for a while, only a low number of requests is sat-
isfied, which means low values of QoS for a while; when these long trips ended
one by one, the number of satisfied requests increases rapidly causing the peak
in QoS. The User can continue asking for finer-grained details until reaching an
explanation for individual vehicle actions.

Figure 8 illustrates a simple instance of DARP in a part of an urban network
where the two vehicles V1 and V2 located in A and B are available and aware of a
passenger request d1 to travel from C to H which is announced at t1. Consider-
ing the symmetric weights on edges represents the edge crossing operational cost
in terms of the average time that a vehicle needs to move between its two ends.
In the absence of central authority, vehicle agents should act autonomously and
make decentralized decisions to find a solution in which the request is allocated
to one of them. One of the common decentralized solution methods to such allo-
cation problems is the market-based allocation [2,10,13] in which coordinating
vehicle trips is handled by market mechanisms such as auctions and trade offers.
Both V1 and V2 can serve d1 without violating its constraints. To decide who
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Fig. 8. A simple instance of DARP

serve it, vehicles instantiate an auction on d1 where V1’s offer BidV1 is to serve
d1 with total operational cost of 11, while V2 offers to serve it with 13. V1 can
explain its offer as “Serving d1 costs me 11 time units because: Following the
shortest paths, reaching C (the pick-up location of d1) from my current location
A requires 4 time units, and reaching H (the drop-off location of d1) from C
requires at least 7 time units”. In the same way V2 can explain: “Serving d1 costs
me 13 time units because: Following the shortest paths, reaching C (the pick-up
location of d1) from my current location B requires 6 time units, and reaching
H (the drop-off location of d1) from C requires at least 7 time units”.

V1 wins the auction on d1, Explaining “how winner determination computed?”
(see line 3 in Table 1.) can be: “V1’s offer has a lower cost than V2’s. The lower the
cost is, the better the QoB achieved.” Or, “V1 reaches pick-up location 2 time units
earlier than V2 which means lower waiting time so better QoS”.

(a) straightforward auction. (b) schedule exchange auction.

Fig. 9. Combinatorial auctions.

After d1 is added to V1’s schedule, a new request d2 for a passenger trip from
J to K specifying the pick-up time-window at J as twd2 = [5, 15] is announced.
V2 can offer to serve it with 11 time unit (pick-up in 7 time units and delivery
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after 4), as shown in Fig. 9(a). While V1 cannot offer a reasonable bid, it explains:
“I am committed to d1, the earliest pick-up I can offer for d2 is t27 which violates
d2’s time-window constraint”.

Some run-time optimization protocols such as ORNInA [10] and the sliding-
horizon method [2] allow vehicles to exchange their scheduled requests if this
exchange improves the global quality of the solution. V2 can offer to pull d1 from
V1’s schedule for extra cost of 2 time units, so that V1 can bid for d2 with only
8 time units without violating its time-window constraint Fig. 9(b).

This exchange should be explained because it increases d1’s waiting time by 2
time units. In ORNInA optimization protocol, V1 should accept V2’s pull bid, and
then an explanation to “why accepting the exchange?” would be: “Abandoning
d1 in favor of V2 decreases the global operational cost value by 1. It also decreases
the accumulated waiting time by 1”

6 Related Work

Basically, one can distinguish between post hoc interpretability and the design of
the explanation. In the former, the task is to create an explanation of the decision
made by the system. While in the latter, the task is to design an interpretable
model with its explanations.

Post-hoc interpretability approaches are divided into three categories depend-
ing on the motivation for having an explanation: model explanation, outcome
explanation, and model inspection. The model explanation problem is to under-
stand the reasoning of the system as a whole, while, the outcome explanation
problem is to provide an explanation of the output of an intelligent system on
a given input instance. Finally, the model inspection problem lies between the
two previous problems [19].

We are interested in the outcome explanation problem because in this type
it is not necessary to explain all the logic behind the system, only explaining
why a certain decision has been returned for a particular input. Approaches that
solve the outcome explanation problem yield a locally interpretable model that
can explain the system output for a specific input in human-readable terms. For
example, the locally interpretable model might be a decision tree constructed
from a neighborhood of the instance in question, and an explanation might be
the path of the decision tree followed by the attribute values of the instance.
The proposed agnostic solutions to the problem of outcome explanation are
generalizable by definition. Thus, in some cases, they can also be used for diverse
data types. A recent proposal is LORE (LOcal Rule-based Explanations) [18],
which overcomes previous solutions in terms of performance and clarity of the
explanations. LORE first relies on a local interpretable predictor learned on a
synthetic neighborhood generated by a genetic algorithm. Then, it generates an
explanation which comprises (i) a decision rule, which explains the reasons for the
decision; (ii) a set of counterfactual rules, suggesting changes in the functionality
of the instance that lead to a different outcome. Another agnostic explanation
method is MAME (Model Agnostic Multilevel Explanations) [33], which takes
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as input a post-hoc local explainability technique and an unlabeled dataset.
Then generates multiple explanations for each of the examples corresponding to
different levels of cohesion between explanations of the examples. As mentioned
earlier, this type of methods could be applied to explain the aggregation of
decisions made by MA.

The work of [7] argues that explainable planning can be designed as a wrapper
around an existing planning system that uses the existing planner to answer chal-
lenging questions. To do so, they presented a prototype framework for explain-
able planning as a service.

In the task allocation domain, [42] introduces AlgoCrowd that offers effi-
cient and explainable AI task allocation optimization designed to emphasize on
fair treatment of workers, whiling reducing managers’ workload to find suitable
workers for tasks. they aimed at guaranteeing that workers of similar capability
and productivity receive equitable incomes in the long run. This objective is
translated into minimizing the workers’ regret when their incomes are compared
to similar peers.

In the domain of passenger transport, Ehmke and Horstmannshoff [14] pro-
pose the idea of personalized creation of multi-modal travel itineraries. They
demonstrate the potential and limitations of “black box” mathematical opti-
mization and discuss how to include more complex passenger preferences. Using
solution sampling, they present a simple idea to identify the solution space’s
characteristics and allow travelers to restrict or improve their preferences inter-
actively. These works consider central “black-box” AI tools and provide expla-
nations produced by another external or wrapper AI tool. We consider in this
paper a decentralized “transparent-box” multi-agent model.

In the “black-box” models, the user is unaware about the technical and log-
ical reasons of the decisons so that another explaining system aims at reasoning
on these decisions and provide explanations for them. On the other hand, in the
“transparent-box” models, the user is aware about the system’s logic and agent
behaviors, so we can say the system is technically interpretable for every individ-
ual decision but the aggregation of these decisions to achieve the global objectives
still need to be explained. Therefor, In our decentralized transparent-box multi-
agent model, the required explanation should not only focus on technical reasons
but also it is necessary to convey the user’s preferences. It is necessary to decide
what to reveal about agents’ preferences to increase user satisfaction, trust, and
control while considering how those features led to the final decision.

Agent-based approaches have been employed in the literature to provide
explanations to humans in intelligent transport systems. For example, Mualla et
al. proposed a Human-Agent Explainability Architecture (HAExA) to formulate
context-aware explanations for remote robots represented as agents [28,31]. Con-
sidering that the human understandability of AI is subjective, they conducted
empirical human-computer interaction studies employing Agent-based Simula-
tion (ABS) [29]. The experiment scenario was about investigating the role of XAI
in the communication between Unmanned Aerial Vehicles (UAVs) and humans
in the context of package delivery in a smart city [30]. Their results showed that a
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balance between the simplicity of explanations and adequacy of the information
contained in the explanations is needed. One interesting research direction, which
we considered in this paper, is the importance of user-aware explanations [38].
Additionally, The results showed that ABS offers a test-bed environment to con-
duct human studies that facilitate the explanations reception by the human and
visualize the behavior of the remote robots, represented as agents.

7 Conclusion

In this work, we explore the direction of explaining planning decisions in multi-
agent resource allocation for ODT scenarios. Because there exists a huge variety
of methods for resource allocation, the choice between these methods cannot
be considered a straightforward decision. Moreover, these cannot be only seen
as technical issues. The need for matching human satisfaction and controllable
decisions requires these decisions to be transparent and self-explainable.

We aimed at conceptually designing a multi-agent model for an explainable
recommendation of resource allocation mechanisms that match the user pref-
erences and objectives in solving ODT scenarios, in particular contexts. We
defined the system’s main components and how the explanations are generated
and aggregated in multiple levels of abstraction, to scale for the user-defined
level. We defined some general guidelines and assumptions for generating the
explanations and communicating them to human users. We illustrated this pro-
posal through some case study examples.

However, to bring this model into reality many open questions should be
addressed, including: How generic is this model to explain the variety of alloca-
tion mechanisms? How to define the right levels of detail that match the user
needs, cognitive capacities, and competencies? How can we assess the quality
of explanation and could that be automatic? We propose to deploy a proof-of-
concept implementation of this model to address these challenges.
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Abstract. Because of recent and rapid developments in Artificial Intelli-
gence (AI), humans and AI-systems increasingly work together in human-
agent teams. However, in order to effectively leverage the capabilities of
both, AI-systems need to be understandable to their human teammates.
The branch of eXplainable AI (XAI) aspires to make AI-systems more
understandable to humans, potentially improving human-agent team-
work. Unfortunately, XAI literature suffers from a lack of agreement
regarding the definitions of and relations between the four key XAI-
concepts: transparency, interpretability, explainability, and understand-
ability. Inspired by both XAI and social sciences literature, we present a
two-dimensional framework that defines and relates these concepts in a
concise and coherent way, yielding a classification of three types of AI-
systems: incomprehensible, interpretable, and understandable. We also
discuss how the established relationships can be used to guide future
research into XAI, and how the framework could be used during the
development of AI-systems as part of human-AI teams.

Keywords: Explainable AI · Human-agent teaming · Transparency ·
Interpretability · Understandability · Explainability

1 Introduction

Rapid developments in the field of Artificial Intelligence (AI) have resulted in
the design and adoption of intelligent systems/agents (A/IS) working together
with humans. For such human-AI teams to work effectively and efficiently, it
is crucial that AI-systems are understandable and predictable to their human
teammates [22–24]. The eXplainable Artificial Intelligence (XAI) community
aims to make AI more understandable, however, there is a lack of clear definitions
and relationships between key concepts in XAI. The objective of this paper is to
identify similarities, differences and inconsistencies in the description and usage
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of these concepts, and to establish a framework in which the concepts can be
unambiguously defined and related to each other.

Autonomous and intelligent systems/agents (A/IS) are characterized by their
abilities to sense their environment, reason about their observations and goals,
and consequently make decisions and act within their environment in a goal-
driven manner [9]. Thanks to these capabilities, A/IS often outperform humans
with respect to handling complex problems and rapid and rational decision-
making. Consequently, the adoption domains of A/IS range from applications
in healthcare to military defense. On the other hand, humans still surpass A/IS
regarding the handling of uncertainty and unexpected situations. In an attempt
to assemble their diversity in skills and leverage the unique abilities of both,
A/IS and humans are increasingly paired to create human-agent teams (HATs).

Several factors are crucial for and determine the success of human-agent
teams. Some of the most cited involve mutual trust and understanding; shared
mental models and common ground; observability, predictability and directabil-
ity; transparency and explainability; and teaming intelligence [22–24,33]. Unfor-
tunately, many of these factors are lacking in contemporary human-agent
teams. For example, most A/IS demonstrate extremely limited directability
and often possess only rudimentary teaming intelligence (i.e., the knowledge,
skills, and strategies necessary to effectively team) [23]. Furthermore, A/IS
often demonstrate poor transparency and explainability, making it hard for
human teammates to properly understand their inner workings, behavior, and
decision-making [3,26,30]. This, in turn, negatively affects factors like mutual
trust and understanding, eventually resulting in decreased global team perfor-
mance [22,23].

To understand the behavior of A/IS, humans attribute A/IS behavior by
assigning particular mental states (i.e., Theory of Mind) that explain the behav-
ior [3,14,28–30]. Such mental states involve beliefs, desires/goals, emotions, and
intentions. For example, humans trying to understand a robot entering a burn-
ing house can do so by attributing it to the goal to save a victim. A/IS capa-
ble of self-explaining their behavior and actions based on the reasons for the
underlying intentions (e.g., beliefs, goals, emotions) help human teammates to
build this ToM of the A/IS. This, in turn, will result in better understanding
of the capabilities and limits of the A/IS and eventually better human-agent
collaboration [3].

Explainable AI (XAI) methods, techniques, and research emerged as a means
of making AI-systems more understandable to humans [16]. This relatively new
community is characterized by the distinction between data-driven - and goal-
driven XAI [3] (or perceptual vs. cognitive XAI [31]). Data-driven XAI is about
explaining and understanding the decisions and inner workings of “black-box”
machine learning algorithms given certain input data [3,15]. In contrast, goal-
driven XAI/explainable agency refers to building goal-driven A/IS (e.g., robots)
explaining their actions and reasons leading to their decisions to lay users [3,25].

Although fundamentally different branches, both data- and goal-driven XAI
are characterized by the same fundamental issue: a lack of consensus with regards
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to the definition of and relations between key XAI concepts. Furthermore, pro-
vided definitions often suffer from a high level of ambiguity because they fre-
quently refer to related notions. For example, the concepts of transparency, inter-
pretability, explainability, and understandability are all frequently used in XAI
literature, but often interchangeably, differently, with recourse to each other, or
without even being defined. Without establishing clear distinctions and relations
between these notions, the resulting ambiguity significantly hampers the com-
prehensibility of research centered around these concepts. We argue that prior
to implementing, manipulating, or investigating these key concepts it is funda-
mental to first define and relate them. Only in this way, we can truly know what
exactly we are trying to develop and evaluate.

To address the lack of agreement concerning the definition of and relations
between key XAI notions, we propose a two-dimensional explanation framework
that establishes clear concept definitions and relationships between them. This
framework is based on both XAI and social sciences literature, and focuses pri-
marily on A/IS disclosing and clarifying causes underlying their behavior and
reasoning to human teammates (i.e., goal-driven XAI). Our framework explic-
itly addresses the lack of consensus and ambiguity problem by establishing clear
distinctions and relations between system transparency, interpretability, explain-
ability, and understandability. More specifically, the framework discriminates
between system interpretability and understandability as passive and subjective
characteristics concerning user knowledge of the system, versus system trans-
parency and explainability as active and objective characteristics involved with
disclosing and clarifying relevant information. Ultimately, these definitions result
in the classification of three types of AI-systems: incomprehensible, interpretable,
and understandable systems. We argue transparency can make incomprehensible
systems interpretable, and explainability can make interpretable systems under-
standable. Adopting our distinctive concept definitions and mutual relationships
can benefit XAI community by clarifying what kind of systems can be developed,
and how we can evaluate them.

The remainder of the paper is structured as follows. In Sect. 2 we demonstrate
the terminology problem by providing an overview of literature defining the key
concepts. Next, we present our two-dimensional framework in Sect. 3. In Sect. 4
we discuss how the framework can be used to guide future XAI research, be
applied in practice, and other relevant future directions. Finally, we conclude
our paper in Sect. 5.

2 Background

Several works introduced or defined key XAI concepts such as interpretability,
explainability, transparency, and understandability. However, the lack of con-
sensus on the exact meanings and relations between these notions remains a
prevalent issue. This section aims to highlight the problem and discuss relevant
and significant prior contributions, before proposing our framework attempt-
ing to establish clear distinctions and relations between the concepts. First, we
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Table 1. Several definitions for key XAI concepts, illustrating their ambiguity and
relatedness.

Concept Definition

Explainability How well humans can understand AI-system decisions [30,37]

Interpretability To explain or present in understandable terms to humans [4,11]
How well humans can understand AI-system decisions [30,37]

Transparency Representing system states in a way that is open to scrutiny,
analysis, interpretation, and understanding by humans [1]
Characteristic of model to be understandable for humans [4]
Capacity of method to explain how a system works, even
when behaving unexpectedly [37]

Understandability To make a human understand how a model works, without any
need for explaining its internal structure [4]
Measuring how well humans understand model decisions [4]
Capacity of a method of explainability to make a model
understandable by end users [37]

demonstrate the lack of consensus problem and ambiguity of several proposed
definitions. Next, we discuss some definitions, distinctions, and classifications
that influenced our work. Finally, we discuss a framework that might help to
unambiguously define and relate XAI concepts.

2.1 Problem

Unambiguously defining and relating XAI concepts is challenging. A small survey
of available definitions in the literature demonstrates it is particularly hard to do
so without recourse to related concepts (Table 1). Table 1 clearly demonstrates
the ambiguity and relatedness of the defined concepts, and fails to provide any
clear distinctions between them. For example, all of these concepts are defined
at least once as how understandable the AI-system is to humans.

2.2 Transparency

Turilli and Floridi [36] introduce a clear definition for transparency which influ-
enced our work. They suggest transparency refers to forms of information visi-
bility and the possibility of accessing information, intentions, or behaviors that
have been intentionally revealed through a process of disclosure. This disclosed
information (i.e., made explicit and openly available) can then be exploited by
potential users to support their own decision-making process.

Despite considering transparency and explainability as synonyms, Walms-
ley’s [38] discussion of transparency influenced our work. Walmsley [38] divides
the notion of transparency into two major categories: outward - vs. functional
transparency. Outward transparency concerns the relationship between the AI-
system and externals, such as developers and users. This includes transparency
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about development reasons, design choices, values driving the system devel-
opers, and capabilities and limitations of the system. In contrast, functional
transparency concerns the inner workings of the system. This includes trans-
parency about how and why the system behaves in general (type functional
transparency1), or came up with certain decisions or actions (token functional
transparency2).

2.3 Related Work

Ciatto et al. [8] propose an abstract and formal framework for XAI that, in
contrast to most work, introduces a clear distinction between interpretation and
explanation. The framework stresses the objective nature of explanation, in con-
trast with the subjective nature of interpretation. The act of interpreting some
object X is defined as the activity performed by an agent A assigning a subjective
meaning to X. Furthermore, Ciatto et al. [8] argue an object X is interpretable
for an agent A if it is easy for A to assign a subjective meaning to X (i.e., A
requires low computational or cognitive effort to understand X ). The authors
stress the subjective nature of interpretations, as agents assign them to objects
according to their State of Mind and background knowledge.

In contrast, explaining is defined as the epistemic and computational activ-
ity of producing a more interpretable object X’ out of a less interpretable one
X, performed by agent A. They argue this activity can be considered objec-
tive because it does not depend on the agent’s perceptions and State of Mind.
Consider, for example, decision tree extraction (the explaining activity) from a
neural network (object X ) to produce a decision tree (the explanation/object
X’ ). In the end, the effectiveness of the explanations always remains a subjective
aspect.

This framework differs from ours in a few ways. In particular, Ciatto et al. [8]
provide a formal framework focused on data-driven XAI, whereas we provide
more general definitions in a goal-driven XAI context. In contrast, the intentions
of the paper and provided definitions are similar to our work. We also define
interpretability as a subjective system characteristic reflecting user knowledge
about a system, and explainability as an epistemic and computational activity
aimed at increasing user knowledge about the system.

Barredo Arrieta et al. [4] provide a brief clarification of the distinctions
and similarities between transparency, interpretability, explainability, and under-
standability. So this part of their work is very similar in its intents to our work,
despite focusing on data-driven XAI instead of goal-driven XAI. However, we
argue that their attempt at clarifying the distinctions and similarities between
the concepts fails to resolve any ambiguity. For example, the authors first argue
interpretability is a passive model characteristic referring to the level at which
a given model makes sense for a human, but later as the ability to explain or
provide the meaning in understandable terms to a human.

1 Also referred to as global explanations in XAI literature.
2 Also referred to as local explanations in XAI literature.
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In summary, Barredo Arrieta et al. [4] define interpretability (i.e., their first
definition), understandability, and transparency as passive model characteristics
reflecting human knowledge and understanding of a model. In contrast, they
define explainability as an active model characteristic, denoting any action taken
by a model with the intent of clarifying or detailing its internal functions. Unlike
Barredo Arrieta et al. [4], we consider transparency as an active system character-
istic concerned with disclosing information to generate knowledge about system
elements. Similar to them, we also define interpretability and understandability
as passive characteristics reflecting system knowledge and understanding, and
explainability as actively clarifying or detailing system elements.

Rosenfeld and Richardson [32] formally define explainability and its rela-
tionship to interpretability and transparency, in the case of a ML-based clas-
sification algorithm. The authors define explainability as the ability for the
human user to understand the algorithm’s logic. This ability to understand is
achieved from the explanation, which they define as the human-centric objective
for the user to understand the algorithm, using an interpretation. Interpreta-
tion/interpretability is defined as a function mapping data, data schemes, out-
puts, and algorithms to some representation of the algorithm’s internal logic. Fur-
thermore, the authors argue an interpretation is transparent when the connection
between the interpretation and algorithm is understandable to the human, and
when the logic within the interpretation is similar to that of the algorithm.

All in all, the work of Rosenfeld and Richardson [32] differs from our work
in several ways. First of all, they focus on data-driven XAI and provide formal
definitions, whereas our work focuses on goal-driven XAI and provides more gen-
eral definitions. More importantly, the provided definitions differ from our view.
Rosenfeld and Richardson [32] consider explainability as passive and subjective,
defining it as the ability to understand. In contrast, we consider explainabil-
ity as an active system characteristic, and argue their definition of explainabil-
ity reflects understandability instead. In addition, the authors consider inter-
pretability as active and objective, defining it as providing representations of an
algorithm’s internal logic. However, we consider interpretability as passive and
subjective, reflecting user knowledge and understanding of a system/algorithm,
and argue their definition of interpretability reflects explainability instead.

Sanneman and Shah [34] propose an interesting situation awareness-based
levels of XAI framework. This framework argues AI-systems part of human-AI
teams should explain what the system did or decided (XAI for Perception), why
the system did this (XAI for Comprehension), and what the system might do
next (XAI for Projection). The authors argue XAI for Comprehension should
provide information about causality in the system, aimed at supporting user
comprehension of the system’s behavior. Examples include explanations linking
behavior to the system’s goals, constraints, or rules.

This framework broadly aligns with ours, but includes a few differences
as well. First of all, we agree with their distinction between providing infor-
mation for perception and comprehension. However, whereas Sanneman and
Shah [34] define both of them as explanations, we refer to XAI for Perception as
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transparency/disclosing information, and XAI for Comprehension as explainabil-
ity/clarifying disclosed information. We argue XAI for Projection can be defined
as both transparency and explainability, depending on whether the system dis-
closes next actions (i.e., transparency) or also clarifies them (i.e., explainability).
Furthermore, the framework only focuses on explaining AI-system behavior like
actions or decisions. However, we argue it is also possible and sometimes even
necessary to explain system elements like goals, knowledge, development reasons,
or design choices. By doing so, human users can build more complete mental
models of the AI-system. Therefore, our framework also incorporates disclosing
and clarifying other relevant system elements like goals or knowledge.

Doran et al. [10] introduce an interesting distinction between opaque, inter-
pretable, and comprehensible AI-systems that influenced our work. They define
opaque AI-systems as systems where the mechanisms mapping inputs to out-
puts are invisible to users. Consequently, the reasoning of the system is not
observable or understandable for users. In contrast, interpretable AI-systems are
characterized as systems where users cannot only see, but also study and under-
stand how inputs are mapped to outputs. The authors argue that interpretable
systems imply transparency about the underlying system mechanisms. Finally,
they define comprehensible AI-systems as systems emitting symbols (e.g., words
or visualizations) along with their output to allow users to relate properties of
the input to their corresponding output. According to this classification, inter-
pretable systems can be inspected to be understood (i.e., letting users draw
explanations by themselves), while comprehensible systems explicitly provide a
symbolic explanation of their functioning [8].

This classification of AI-systems is quite similar to the one provided in
our work. However, whereas Doran et al. [10] focus on data-driven XAI and
argue the notions of interpretation and comprehension are separate, we focus on
goal-driven XAI and argue understanding/comprehension implies interpretation.
More specifically, we claim transparency can make incomprehensible systems
interpretable, and explainability can make these interpretable systems under-
standable. We will explain our definitions, relationships, and classification in
detail in the next section.

3 A Two-Dimensional Framework to Classify AI

In this section we present and discuss our two-dimensional explanation frame-
work providing clear distinctions and relations between key XAI concepts
(Fig. 1). In short, our framework makes a distinction between incomprehensible,
interpretable, and understandable AI-systems, and argues system transparency
can make incomprehensible systems interpretable, whereas explainability can
make interpretable systems understandable. In the following sections, we will
explain and illustrate our framework by introducing our definitions of the con-
cepts transparency and explainability (Sect. 3.1), and interpretability and under-
standability (Sect. 3.2). After that, we illustrate and discuss our framework based
on the example of a search and rescue human-agent teaming scenario where a
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Fig. 1. Two-dimensional explanation framework providing distinctive definitions and
relationships between key XAI concepts.

human collaborates with a goal-driven A/IS (Sect. 3.3). Finally, we extend our
framework to include some other relevant factors enabled by system transparency
and explainability in Sect. 3.4.

3.1 Transparency vs. Explainability

Whereas most prior work strongly ties or even equates system explainability to
interpretability (e.g., [30,37]), we consider them fundamentally different. Instead,
we strongly tie system transparency to explainability. However, we also argue
for a major distinction between these two notions. Inspired by [1] and [36], we
define system transparency as “disclosing the relevant outward and functional
system elements to users, enabling them to access, analyze, and exploit this
disclosed information”. Here, functional system elements concern elements like
goals, knowledge, beliefs, decisions, and actions. In contrast, outward elements
concern aspects like development reasons, intended users, and design choices.

System transparency can answer “what”-questions [30] requiring descriptive
answers concerning the system elements. Consider, for example, a goal-driven
autonomous and intelligent agent collaborating with a human teammate to save
victims after an earthquake. According to our definition, system transparency
is both an active [4] and objective [8] system characteristic achieved by, for
example, disclosing the goal to save all injured children first by collaborating with
trained firefighters. By doing so, the human teammate can gain knowledge about
these system elements (here a goal and intended users respectively), without
necessarily always knowing the relations between them.

The disclosure of relevant elements can be considered active in the sense that
it is an epistemic and computational activity aimed at increasing user knowledge,
and objective because this activity itself does not depend on the human’s per-
ceptions or State of Mind. Put differently, the computational implementation of
transparency is independent of the human user’s perceptions and State of Mind,
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and thus reproducible in principle [8]. However, the exact effectiveness and con-
tent of the disclosed information is a subjective aspect, reflected by measures of
interpretability and understandability.

Inspired by [4,8], and [34] we define system explainability as “clarifying dis-
closed system elements by providing information about causality and establishing
relations with other system elements, making it easier for users to understand,
analyze, and exploit this information”. Explainability can answer “how”- and
“why”-questions [30] requiring clarifying answers concerning the system elements
and how they relate and depend on each other. For example, system explainabil-
ity can involve clarifying the disclosed goal to save all children first by linking
it to the norm that children are most vulnerable, or that it will not give safety
instructions because it assumes the user is a firefighter and familiar with these.
Just as transparency, we characterize system explainability as an active [4] and
objective [8] system characteristic aimed at increasing user knowledge and where
the epistemic and computational activity itself does not depend on the human’s
perceptions or State of Mind.

In summary, the main difference between system transparency and explain-
ability boils down to disclosing vs. clarifying. Transparency aims to provide
descriptive answers providing knowledge about system elements. In contrast,
explainability aims to ease understanding by clarifying the relations between
system elements. Both are considered active and objective system characteris-
tics, since they are epistemic and computational activities aimed at increasing
user knowledge without depending on user’s perceptions or State of Mind. We
define transparency and explainability from a system-centric point of view as
methods for sharing information, hence the categorization as active and objec-
tive/independent from the user. However, we argue that the subjective aspect
concerning the effectiveness and content of the shared information also plays a
crucial role, as reflected by measures of interpretability and understandability.

3.2 Interpretability vs. Understandability

In contrast to transparency and explainability, we define system interpretabil-
ity and understandability as passive and subjective characteristics reflecting
user knowledge of the system and depending on the user’s State of Mind
and background knowledge. In addition, we argue transparency makes system
interpretable, whereas explainability makes interpretable systems understand-
able. Although we strongly tie interpretability to understandability, we argue for
a major distinction between these two notions as well.

Inspired by [4,8,10] and [36], we define system interpretability as “the level
at which the system’s users can assign subjective meanings, draw explanations,
and gain knowledge by accessing, analyzing, and exploiting disclosed outward
and functional system elements”. Our definition implies interpretability is both
a passive [4] and subjective [8] system characteristic. Passive in the sense that
interpretability reflects a degree of user knowledge about system elements, oppo-
site to actively sharing information to generate knowledge (i.e., transparency).
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Furthermore, interpretability can be considered subjective in the sense that it is
highly dependent on the user’s State of Mind and background knowledge [8].

Consider, again, the example of the goal-driven A/IS collaborating with a
human to save victims after an earthquake. Disclosing its goal to save all children
first enables human users to gain knowledge and assign subjective meanings or
draw explanations by themselves (i.e., interpret). However, without clarifying
the disclosed goal and relating it to other system elements (i.e., explainability),
these interpretations can vary considerably. For example, the human could draw
the conclusion that the system knows/beliefs the area contains a lot of children
but only few elderly or adults.

On the other hand, we define system understandability as “the level at which
the system’s users have knowledge of disclosed and clarified outward and func-
tional system elements, and the relationships and dependencies between them”.
Understandability involves knowing how and why the system reasons and func-
tions, based on explanations clarifying and relating disclosed system elements.
For example, clarifying the goal to save all children first because they are most
vulnerable provides the user with knowledge about the relationship between the
goal and a specific norm.

In summary, the main difference between system interpretability and under-
standability boils down to a difference in cognitive effort required to have knowl-
edge of the system elements [8]. More specifically, we argue interpretability
requires more cognitive effort because it implies inferring the meaning of and rela-
tions between disclosed information without explicit knowledge of this meaning
and relations themselves. In contrast, understandability requires less cognitive
effort because it implies knowing the meaning of and relations between disclosed
and clarified information (facilitated by explanations). Both are considered pas-
sive [4] and subjective [8] system characteristics, since they reflect a degree of
user knowledge about the system depending on the user’s State of Mind and
background knowledge. So we define interpretability and understandability from
a user-centric point of view reflecting the subjective effectiveness of the trans-
parency and explainability content. Here, transparency and explainability will
be most effective when their content is tailored to the user’s State of Mind and
background knowledge.

3.3 Two-Dimensional Framework to Classify AI

Our framework (Fig. 1) distinguishes between three types of AI-systems (incom-
prehensible, interpretable and understandable) and establishes relations between
them by integrating the defined concepts of Sect. 3.1 and Sect. 3.2. We will illus-
trate our framework in the context of a search and rescue human-agent teaming
scenario, where a human collaborates with a goal-driven A/IS.

When collaborating with incomprehensible systems, humans can not interpret
or understand the system elements because they are not disclosed and clarified.
For example, without disclosing and clarifying its decision to search through the
kitchen because it perceived stuck people, a human will not be able to inter-
pret or understand the system’s behavior. Our framework argues transparency
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can turn incomprehensible systems into interpretable ones. By disclosing its rel-
evant functional and outward system elements (i.e., transparency), the human
can access and exploit this information to assign subjective meanings and gain
knowledge (i.e., interpret). Consider, for example, an A/IS disclosing the deci-
sion to search through the kitchen of a collapsed house to its human teammate.
By doing so, the human can utilize this information to interpret that the A/IS
perceived something urgent in the kitchen. Furthermore, we argue explainability
can turn interpretable systems into understandable systems. By clarifying the
disclosed system elements and relations between them (i.e., explainability), the
human can more easily exploit this information to gain knowledge and build
a mental model of the system (i.e., understandability). Consider, for example,
an A/IS disclosing the decision to search through the kitchen, because it per-
ceived two trapped children there. By providing a belief-based explanation for
the decision, the system clarifies this decision and how it relates to other system
elements like perceptions.

Our proposed framework has several implications. First of all, pursuing sys-
tem understandability should be the ultimate goal, since it can improve col-
laboration and team performance in human-agent teams [3]. Furthermore, the
framework implies that system transparency and explainability are active and
objective characteristics which can be manipulated by designers to bring about
the desired effects. In contrast, system interpretability and understandability are
considered passive and subjective characteristics which can be measured to val-
idate the effects of transparency and explainability.

3.4 Extended Framework

We extend our two-dimensional framework to include several often encountered
XAI notions. This framework (Fig. 2) mainly illustrates the opportunities system
transparency and explainability can provide to human teammates. Again, we
discuss the framework in the context of a search and rescue human-agent teaming
scenario where a human collaborates with a goal-driven A/IS.

The extended framework argues that when a system is interpretable, it is
already both controllable and directable. Here, we define system controllability
as “the extent to which human users can change or overrule functional system
elements”. For example, when the A/IS discloses the decision to search through
the kitchen, its human teammate can overrule this decision by changing it to
searching the basement instead (i.e., the system is controllable).

Next, we define system directability as “the extent to which human users can
guide the actions of the system”. This is different from system controllability
in the sense that directability does not involve changing or overruling system
elements, but rather accepting them and guiding the corresponding actions or
dividing the work. For example, the human teammate could also accept the
disclosed decision to search the kitchen but direct the action of the A/IS by
giving the order to enter the kitchen first to assess its safety (i.e., the system is
directable). Even though system interpretability already enables system control-
lability and directability, we argue system understandability will further improve
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Fig. 2. Extended two-dimensional explanation framework providing distinctive defini-
tions and relationships between key XAI concepts.

these two characteristics. For example, when the human teammate has more
knowledge of the system, it can more effectively control and direct its functional
elements such as actions or goals.

Furthermore, we argue that system understandability enables several other
important notions such as system contestability, predictability, verifiability, and
traceability. We define system contestability as “the extent to which human
users can challenge or dispute system elements and the relations between them”.
Again, consider the example of the A/IS disclosing the decision to search through
the kitchen, by clarifying it perceived two trapped people there. By doing so, the
human teammate can contest this decision and dispute the underlying reason,
for example by asking why they should search through the kitchen when there
is a trapped baby in another room (i.e., the system is contestable).

We argue system understandability also enables system predictability. We
define system predictability as “the extent to which human users can estimate
future or other functional system elements”. Consider the example of a system
disclosing its goal to save all children first because of the norm that children are
more vulnerable than adults. The human could use this explanation to predict
that the agent’s next actions will be focused on searching children rather than
adults.

The extended framework also argues system understandability enables system
verifiability. Here, we define system verifiability as “the extent to which human
users can check that the system elements and relations between them make
sense and sound valid”. We do not refer to formal verification of systems using
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formal methods involving mathematical models of systems and analyzing them
using proof-based methods. Rather, we refer to a more informal verification of
the plausibility of system elements and relations between them. Again, consider
the example of a system disclosing its goal to save all children first because of
the norm that children are more vulnerable than adults. Based on the provided
explanation the human could informally verify that the reasoning aligns with
the decision and sounds valid (i.e., the system is verifiable).

Finally, we argue system understandability enables system traceability. We
define system traceability as “the extent to which human users are able to find
the cause of functional system elements like decisions, goals, or beliefs”. Again,
consider the example of the A/IS disclosing the decision to search through the
kitchen, by clarifying it perceived two trapped people there. The human team-
mate could use the provided explanation to infer that the decision to search the
kitchen was caused by the detection of two trapped people.

In summary, the extended framework argues system interpretability and
understandability enable important factors such as system controllability,
directability, contestability, predictability, verifiability, and traceability. These fac-
tors are crucial for and determine the success of human-agent teams [22–24,33].
Therefore, pursuing system understandability should be the main goal when
developing AI-systems part of human-agent teams.

4 Discussion

In this work we have presented a two-dimensional explanation framework pro-
viding distinctive XAI concept definitions and relationships between them. In
this section, we will discuss how our presented relationships between the con-
cepts can be used to guide future research into these relationships. Additionally,
we will describe how we believe this framework can be applied in practice.

4.1 Evaluation of Main Framework

Several assumptions arise from the proposed relationships in our presented
framework. Below, we introduce these assumptions as claims and describe their
corresponding requirements. Next, we discuss whether these assumptions can be
evaluated, and how they offer a road map for future research.

– Claim 1 - System explainability results in more knowledge/complete mental
models of the system than transparency
Requirement 1 - Manipulating/implementing system transparency and
explainability
Requirement 2 - Measuring user knowledge of a system

– Claim 2 - Increased user knowledge of a system results in improved human-
agent collaboration and eventually team performance
Requirement 1 - Subjective and objective measurements of human-agent
collaboration
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Fig. 3. Examples of system transparency and explainability in the context of a (simu-
lated) search and rescue mission.

We will illustrate how these claims can be evaluated using the example of a
simulated search and rescue mission where a human operator and self-explaining
A/IS collaborate to search and rescue victims. To validate Claim 1, implementing
system transparency and explainability would be required. Examples of imple-
menting system transparency involve disclosure of the system’s goals, decisions,
and intended users. Figure 3 shows several examples of system transparency in
the context of the search and rescue mission.

Implementing system explainability can be achieved in many different ways.
However, a fundamental requirement is providing information about causal-
ity in the system and establishing relations between system elements. Existing
approaches from the XAI literature include explanations of actions based on
state information [2,19,27]; explanations of actions based on goals [5,17,18];
explanations of decisions based on demonstrating that alternative decisions
would be sub-optimal [35]; and sequence-based explanations clarifying the next
action(s) [5,17]. Figure 3 shows several concrete examples of system explainabil-
ity in the context of the search and rescue operation.

Validating Claim 1 would also require the measurement of human user knowl-
edge and understanding of the system, which can be done both subjectively and
objectively. Subjective examples from the XAI literature include asking ques-
tions related to perceived understandability of the system and its model [20],
and asking users to choose which of two possible system outputs is of higher
quality (implicitly measures understanding) [11]. However, objectively measur-
ing user knowledge and understanding of the system would be a more robust
indicator than the subjective alternatives.

Currently, objective methods and metrics for measuring user knowledge and
understanding of systems are lacking. Nevertheless, Sanneman and Shah [34]
propose a relevant method based on the widely-used and empirically validated
Situation Awareness Global Assessment Technique (SAGAT) [12,13]. In short,
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their proposed technique involves freezing simulations of representative tasks
at random time points, followed by asking questions measuring user knowledge
about information related to system behavior. It is crucial to first define the
human informational needs related to system behavior. Accordingly, a list of
questions regarding the informational needs can be specified and used to measure
user knowledge of the system.

Whereas Sanneman and Shah [34] focus solely on measuring user knowl-
edge related to AI-system behavior, the test/technique can also be extended to
include information related to other relevant system elements like goals, knowl-
edge, decisions, or even development reasons. Some example questions based
on the information in Fig. 3 include “Which room will the agent search next?”;
“What is the current action of the agent?”; “Why is the agent going to search
in the kitchen?”; and “Why will the agent save all kids first?”.

Validating Claim 2 would require the subjective and objective measurement
of human-agent collaboration and team performance. Subjective measures could
include user satisfaction [7] or system usability [6], whereas objective measures
could include aspects like the number of victims rescued or seconds required to
finish tasks. The outlined example experiment, discussed example implementa-
tions of transparency and explainability, and suggested metrics for measuring
user knowledge, human-agent collaboration, and team performance can be used
as a road map for future work aimed at validating the assumptions arising from
our framework.

4.2 Evaluation of Extended Framework

Several assumptions arise from the proposed relationships in our extended frame-
work as well. Below, we introduce these assumptions as claims and describe their
corresponding requirements. Next, we discuss whether these assumptions can be
evaluated, and how they offer a road map for future research.

– Claim 3 - System transparency already enables system controllability and
directability, but not system contestability, predictability, verifiability, and
traceability
Requirement 1 - Implementing system transparency
Requirement 2 - Measuring system controllability, directability, contestabil-
ity, predictability, verifiability, and traceability

– Claim 4 - System explainability enables system contestability, predictability,
verifiability, and traceability
Requirement 1 - Implementing system explainability
Requirement 2 - Measuring system contestability, predictability, verifiabil-
ity, and traceability

Validating Claims 3 and 4 would require implementing system transparency
and explainability, and measuring system controllability, directability, contesta-
bility, predictability, verifiability, and traceability. An example of subjectively
measuring these system characteristics could be freezing the simulated experi-
ment at random points, followed by measuring perceived system controllability,
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directability, contestability, predictability, verifiability, and traceability. One app-
roach involves Likert-scale questions3 asked to the human users. Table 2 shows
example questions for each of these variables, though full questionnaires would
require more research and validation of the exact scales. The outlined example
experiment, discussed example implementations of transparency and explainabil-
ity, and suggested metrics for measuring system controllability, directability, con-
testability, predictability, verifiability, and traceability can be used as a road map
for future work aimed at validating the assumptions arising from our extended
framework.

Table 2. Example questions for subjectively measuring the system variables in the
extended framework.

Variable Example question

Controllability “I feel like I can change the system’s decision”

Directability “I feel like I can guide the system’s behavior”

Contestability “I feel like I can challenge the system’s decision”

Predictability “I feel like I can predict the system’s next action”

Verifiability “I feel like I can check that the system’s behavior makes sense”

Traceability “I feel like I can find the cause of the system’s decision”

4.3 Application of Framework

Here we briefly address how our framework can be used in practice. Specifi-
cally, what difference can the framework make when developing systems part of
human-agent teams? Consider the example of developing an autonomous and
intelligent drone which should collaborate with a human operator (e.g., a fire-
fighter) during the aftermath of an earthquake. The goal of the team is to search
and rescue trapped victims as soon as possible. Our framework can be particu-
larly helpful by mapping specific types of context and informational needs onto
requiring either system transparency or explainability. For example, the drone
can be developed/implemented in such a way that when the workload or time
pressure is high, the drone displays transparency only. Similarly, contextual fac-
tors that could be mapped onto system explainability include low time pressure
and operator workload, or when the user has an imprecise mental model of the
system. In this way, the framework can contribute to developing adaptive sys-
tems able to tailor their communication of relevant information to the needs and
requirements of both users and situations.

4.4 Future Work

Based on the work presented in this paper, we identify a few key ideas for future
work. A possible first direction could be to conduct experiments aimed at vali-
3 For example ranging from “Totally Disagree” to “Totally Agree” on a 7-point scale.



A Two-Dimensional Explanation Framework to Classify AI 135

dating the assumptions arising from our framework. Some ideas, requirements,
and examples concerning this validation have been discussed in more detail in
Sect. 4.1 and Sect. 4.2.

For now, our framework focuses on sharing information regarding mental
constructs like decisions or goals. A relevant suggestion for future work would
be to extend the framework with a more physical domain as well by including
literature/perspectives from explainable and understandable robots. For exam-
ple, the role of visual and body cues could be incorporated in the framework.
Furthermore, our provided framework is rather broad/general and informally
defined. Therefore, another suggestion would be to formalize it and make it
more concrete by providing examples in terms of different computational frame-
works/architectures (e.g., transparency vs. explainability differences between
agents using BDI vs. PDDL models). In addition, we currently do not consider
situations where the user may be under the false impression of understanding
the system, but only consider cases where their understanding actually matches
the system’s models/elements. We also do not consider different roles taken by
human and agent, such as commander or supervisor. In future work, it would
be interesting to extend the framework by including these two aspects, and see
how it affects our proposed definitions.

Another future direction for this work would be to extend the framework to
include context- and user-awareness required for tailoring system transparency
and explainability to specific needs and requirements. The need for personal-
ized and context-dependent system transparency and explainability is one of
the main goals within XAI community and research [3]. However, the actual
implementation and investigation is still somewhat in its infant stages. Cur-
rently, our proposed framework does not address context- and user-dependent
system transparency and explainability, so this would be a relevant suggestion
for future work. Ideas involve mapping specific types of context or user knowl-
edge to requiring either system transparency or explainability. Furthermore,
these aspects could also be mapped onto transparency and explanation modal-
ity/presentation instead of just content. Examples include mapping high work-
load to system transparency, rudimentary system knowledge to explainability,
or visual thinkers to receiving visual explanations and verbal thinkers receiving
textual explanations. Another idea involves adapting system transparency and
explainability based on the interdependence relationship between human and sys-
tem. For example, the system could adapt its communication based on whether
joint activity is required (i.e., hard interdependence) or when joint activity is
optional (i.e., soft interdependence) [21,22].

5 Conclusion

In this paper, we propose a two-dimensional explanation framework introducing
clear distinctions and relationships between the key XAI notions transparency,
interpretability, explainability, and understandability. This concise and compre-
hensive framework explicitly addresses the lack of consensus and ambiguity prob-
lem surrounding these concepts. We argue that adopting our distinctive concept
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definitions and mutual relations can greatly benefit XAI community, as clearly
defining concepts and relationships between them is a pre-requisite for both the
implementation and evaluation of these concepts. Furthermore, the framework
yields a classification of AI-systems as incomprehensible, interpretable, or under-
standable, guiding the research and development to establish understandable AI
(e.g., by setting requirements for contestability, predictability, verifiability and
traceability).

Acknowledgements. This work is part of the research lab AI*MAN of Delft Univer-
sity of Technology.
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Abstract. Since their appearance, computer programs have embodied
discipline and structured approaches and methodologies. Yet, to this day,
equipping machines with imaginative and creative capabilities remains
one of the most challenging and fascinating goals we pursue. Intelligent
software agents can behave intelligently in well-defined scenarios, relying
on Machine Learning (ML), symbolic reasoning, and the ability of their
developers for tailoring smart behaviors to specific application domains.
However, to forecast the evolution of all possible scenarios is unfeasi-
ble. Thus, intelligent agents should autonomously/creatively adapt to
the world’s mutability. This paper investigates the meaning of imag-
ination in the context of cognitive agents. In particular, it addresses
techniques and approaches to let agents autonomously imagine/simulate
their course of action and generate explanations supporting it, and for-
malizes thematic challenges. Accordingly, we investigate research areas
including: (i) reasoning and automatic theorem proving to synthesize
novel knowledge via inference; (ii) automatic planning and simulation,
used to speculate over alternative courses of action; (iii) machine learn-
ing and data mining, exploited to induce new knowledge from experience;
and (iv) biochemical coordination, which keeps imagination dynamic by
continuously reorganizing it.

Keywords: Multi-agent systems · Imagination · BDI ·
Cognitive agents · XAI

1 Introduction

Imagination is among the most powerful tools humankind has ever had. Funda-
mentally, imagination is responsible for the spontaneous creation of novel ideas
which do not originate directly from the human senses. Such a mental process
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enabled humans to design complex concepts and artifacts, shaping the societies
we live in nowadays [1].

Over the years, imagination and creativity have been considered the nemesis
of discipline and structured approaches in general [2]. Indeed, at an individual
level, imagination is a relatively simple process. It can be conceived as a never-
ending activity occurring within each person’s mind along their entire lifetime.
Such activity copes with reorganizing a person’s beliefs, perceptions, feelings, and
habits repeatedly to generate novel believes, abilities, desires, insights about the
future, and needs—which in turn may motivate novel activities.

Let us consider two simple examples commonly dealt with:

Counterfactual thinking: it is a retrospective “what if” analysis, elaborating
how things could have been different (e.g., regretting a decision, “I should
have behaved differently”) – also known as staircase wit – from which a lesson
is supposably learned.

Speculative thinking: mentally simulating possible future scenarios according
to models of (i) the world, and (ii) other agents/humans behaviours—e.g.,
imaging the effect a proposed example might have on the reader.

There, imagination is a key enabler for intelligent behavior.
In modern Artificial Intelligence (AI), many research efforts are devoted to

the engineering of smart mechanisms, which enable software agents to behave
intelligently in well-defined scenarios. Most of these mechanisms are either based
on Machine Learning (ML) or on symbolic reasoning (including planning or
automatic theorem proving) [3]. Nevertheless, the capability of software agents
(intended as intelligent virtual entities) to behave intelligently strongly depends
on their developers’ capability of tailoring smart behaviors on the particular sce-
nario the software agents operate into. Arguably, however, it is unfeasible for
developers to forecast all possible evolutions a real-world scenario may be sub-
ject to. Accordingly, intelligent software agents should also adapt to the world
by autonomously figuring out how to deal with its mutability—similarly to what
a human would do. Notably, one of the significant areas where adaptability is
expected to play a major role is XAI. Indeed, there is an increasing push for
intelligent systems capable of explaining their own behavior [4]. However, cur-
rent research efforts are mostly focused on supporting data scientists in draw-
ing explanations in particular cases. Even when explanations are delegated to
autonomous agents, their capability to generate effective explanations still relies
on their developers’ foresight. In other words, the problem of letting agents
autonomously generate explanations is still open.

Human beings heavily leverage on imagination to adapt to the world. In par-
ticular, they exploit both counterfactual and speculative thinking to adapt the
way they interact with their interlocutor. Arguably, similar mechanisms could be
conceived for agents willing to attain the capability of generating explanations.

Accordingly, in this paper, we discuss (i) what imagination may mean for
software agents, (ii) how it could be technically realized within modern agent
frameworks, (iii) what is the role of imagination-equipped agents in modern
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data-driven AI, and (iv) how can imagination support the autonomous genera-
tion of explanations. In doing so, we restrict our scope to the case of cognitive
agents, as their abstractions are rich enough to capture a general – yet precise
– notion of imagination. In particular, we focus on the Belief-Desire-Intention
(BDI) agent architectures as they represent the best viable bridge among theory
and practice—being backed by effective technologies such as Jason [5].

Within the scope of this paper, we conceive imagination as a non-terminating
background activity carried on by an agent behind the scenes, possibly while
doing anything else. The imagination activity takes care of continuously revising
an agent’s internal knowledge, possibly (i) obliterating useless information; (ii)
synthesizing novel information out of the current and previous experience; (iii)
dismissing or generating desires and needs; (iv) critically analyzing the previous
courses of actions w.r.t. their goals; (v) simulating possible similar/alternative
behaviors to be exploited in similar situations; and (vi) looking for post-hoc
motivations for their actions. Thanks to such an ability, agents would become not
only able to acquire novel information but also novel capabilities (i.e., procedural
knowledge), possibly acquiring the (bits of) self-awareness required to provide
explanations about their own courses of action.

In practice, the imagination abstraction leverages mechanisms laying at the
intersection of different research areas, such as: (i) symbolic reasoning and auto-
matic theorem proving (which are exploited to synthesize novel knowledge via
inference), (ii) automatic planning and simulation (which is exploited to specu-
late over alternative courses of action), (iii) machine learning and data mining
(which are exploited to induce new knowledge from experience), and (iv) bio-
chemical coordination (which keeps imagination dynamic by continuously reor-
ganizing it).

The rest of the paper is organized as follows. Section 2 briefly presents the
current background technologies and their state-of-the-art supporting our notion
of imagination. Section 3 introduces, defines, and discusses the concept of imag-
ination and our practical view. Section 4 elicits the challenges related to our
definition of imagination and the related research areas involved. Finally, Sect. 5
concludes the paper.

2 State of the Art

The investigation of mechanisms for agents’ imagination roots from cross-
disciplinary components. In particular, this section provides a brief background
on (i) human imagination mechanisms; (ii) cognitive agent architectures; (iii)
imagination mechanisms including inference, data-driven learning, biochemical
coordination, & simulation; and (iv) computational creativity.

2.1 Imagination in Humans

In the late 80s and early 90s, constructivist [6,7] and developmental [8]
approaches inspired many advancements in AI. In particular, virtual agents have
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been equipped with “inherent” learning mechanisms, allowing them to make
sense of their environment and exploit its affordances1 [6,10]. Such an approach
has been inspired by constructivism [11] and developmental learning, promoted
by the Swiss psychologist Jean Piaget (1930s), and adapted by Drescher into
a bottom-up developmental approach to interact with the surrounding environ-
ment named Schema mechanism [6].

In the context of autonomous agents, such Schemas are pieces of knowledge
processed by the agents to comprehend and react to their environments. The
developmental process of Schemas is characterized by:

Assimilation: describes how humans or agents perceive and adapt to new infor-
mation, fitting them into existing cognitive schemas.

Accommodation: restructures existing Schemas to handle novel information.

Intuitively, the cognitive growth of an intelligent system would imply the
evolution/extension of both very specific knowledge and overall dynamics coor-
dinating the several learning-related aspects. In the last decade, constructivist
approaches have been used for smart environments [12,13] and transport sys-
tems [14]. The studies contributing to these aspects provide contributions highly
specialized in simplistic and very structured domains [15]. Nevertheless, such
individual approaches can be hand-crafted together into architectures relying
on traditional component-based software development methodologies. However,
although the single components can evolve singularly, the reconciling system
is constrained by the hand-crafted interconnection mechanisms. Consequently,
such lack of flexibility precludes architecture-level evolution (i.e., autonomous
architectural adaptation and growth of the systems) and learning [7].

The lack of generalization characterizing current solutions impedes the appli-
cation of intelligent/learning systems in general-purpose scenarios, being inca-
pable of applying themselves autonomously to arbitrary problems. Therefore,
imagination cannot be a cross-system functionality.

2.2 Cognitive Agents

The philosopher Michael Bratman formalized human practical reasoning in the
beliefs-desires-intentions (BDI) model as a way to explaining future-directed
intention [16]. Successively, it became a model to program intelligent agents,
which made its first appearance in the Rational Agency project at the Stanford
Research Institute in the mid 1980s [17]. Such a model is characterized by:

Beliefs: a set of facts and rules representing an agent’s epistemic memory, pos-
sibly containing its knowledge about the world, itself, and other agents.

Desires: a set of goals the agent is willing to achieve, test, or maintain.
Intentions: a set of tasks the agent is currently carrying on.
Plans: a set of recipes representing the agent’s procedural memory, encoding the

procedural know-how about tasks.
1 The term, originally coined by Gibson, refers to what the environment offers an

individual [9].
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Any cognitive feature of a BDI agent may vary during its lifetime. For
instance, novel beliefs appear in the agents’ minds whenever they receive novel
perceptions from their sensors, while stale beliefs simultaneously disappear. Sim-
ilarly, novel beliefs may arise while agents interact among each other – or with
humans – or as they chose to memorize some information they have deducted
via reasoning. The occurrence of relevant events may provoke the desire pool’s
update (i.e., acquiring new goals to be achieved/tested/maintained and/or dis-
card some goals). Agents’ desires eventually lead to spawning novel intentions
(activities to achieve/test/maintain goals the agent is committed to). While car-
rying on an intention, agents may select one or more plans among those support-
ing the corresponding desire’s accomplishment. Plans may involve the execution
of one or more actions – possibly affecting the world via actuators – or the
accomplishment of further sub-goals, which may, in turn, require the execution
of further plans as part of the same intention.

In the scope of this paper, it is worth highlighting that the BDI model allows
agents to exhibit more complex behavior than purely reactive models, unbound
to the computational overhead of other cognitive architectures [17]. Furthermore,
being rooted in folk-psychology, it has been outlined as an excellent candidate to
represent everyday explanations [18,19] (since it is considered as the attribution
of human behavior using “everyday” terms such as beliefs, desires, intentions,
emotions, and personality traits [20,21]).

The BDI model has also been identified as the most used/suitable archi-
tecture to generate explanations for goal-driven agents/robots [19,22,23]. The
trend of attributing to the BDI model the suitability for XAI applications is rein-
forced by user studies supporting the human tendency to attribute a State of
Mind (SoM) to robots and agents. In such a context, the lack of communication
or misalignment due to lack of transparency can result in ill-formed SoM [24].
To avoid such a risk and the consequent drop of trust in the system, BDI agents
are envisioned to employ folk-psychology to explain their SoM [19,25].

2.3 Mechanisms for Imagination

In our view, the agents’ imagination process must rely on mechanisms employ-
ing different techniques, such as inference, data-driven learning, biochemistry-
inspired coordination, and simulation.

Logic Inference. In computational logic [26], inference is the process of rig-
orously drawing conclusions out of premises. The existing inference procedures
depend on the given logic formalism at hand, and they may serve different pur-
poses (depending on their nature). Overall, there are three main sorts of infer-
ence: deductive, inductive, and abductive.

Deductive inference dictates under which conditions conclusions can be drawn
out of some axioms, i.e., rules and facts considered true. In other words,
deduction elicits the knowledge which is possibly implicit into the axioms.
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Inductive inference aims at estimating rules out of a number of positive (and
negative) examples of facts satisfying (or violating) the rule. In other words,
induction attempts to generalize principles by distilling patterns from generic
observations/contingencies.

Abductive inference: aims at hypothesizing which premises could provoke
some evidences, given a number of rules describing how causes provoke effects.
In other words, abduction attempts to speculate on the possible causes of
some phenomenon (e.g., finding the most straightforward and most likely
explanation for an observation), given that the general rules governing that
phenomenon are known.

Logic programming (LP) technologies (e.g., Prolog) enable users – and poten-
tially agents – to encode their knowledge into logic facts and rules, which
may then be queried via logic solvers [27]. Accordingly, by endowing agents
with adequate LP technologies, they can autonomously exploit inference when
required [27].

Learning from Data. Data-driven AI falls into the context of the so-called
machine learning (ML). Learning from data is commonly the activity performed
via supervised or unsupervised learning and comprises a broad set of meth-
ods and tools such as reinforcement learning, classification, regression, time
series forecasting, pattern recognition, generative models [28]. Supervised learn-
ing leverages on the existence of many input/expected-output examples and
consists of looking for the best function mapping the available inputs into the
corresponding expected outputs. In a sense, supervised learning is very similar
to logic induction, except that it does not assume knowledge to be encoded via
logic clauses, and it is better suited for learning from numeric data. Unsupervised
learning aims at finding similarities and patterns possibly buried into numerical
data without any expected outcome at hand. Thus, pieces of information are
extracted from data through some optimality criterion.

By exploiting the wide availability of task-specific techniques and algorithms
in ML, agents may be equipped with the capability of managing different sorts
of data to serve disparate purposes [29]. For instance, by wrapping neural net-
works, agents may gain image and speech recognition capabilities, as well as the
capability of analyzing and forecasting time-related measurements.

Finally, it is worth mentioning another relevant perspective intersecting ML
and MAS: learning autonomously, continuously, and adaptively to increment
skills and knowledge (a.k.a, lifelong ML or continuous learning—CL henceforth).
In the context of ML, it entails updating the prediction models periodically
with novel tasks and data distributions, still being able to (re)use and retain
knowledge and skills over time. CL is beneficial when data or tasks’ availability
varies over time (i.e., no longer or not yet available), and it is imperative to
consider prior knowledge [30,31].
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Biochemical Coordination. Within the scope of self-organizing MAS, bio-
chemical coordination is the study of interaction among agents mediated by
biochemistry-inspired patterns. There, information is modelled as molecules,
i.e., chunks of data characterized by a concentration value denoting their rel-
evance [32]. Such molecules may diffuse among different locations (e.g., to rep-
resent information exchanges), aggregate with each others (e.g., to represent
more complex data structures), and evaporate, (e.g., reduce their concentration
as the carried information loses relevance). The concentration and nature of
such molecules determine the dynamics of the systems relying on the biochemi-
cal metaphor. A number of coordination rules are commonly in place, affecting
(and being affected by) the concentration of molecules within a given context,
and governing information diffusion, aggregation, evaporation, or generation.

Due to their nature, such sorts of systems are inherently stochastic and fuzzy,
and therefore ideal to realize resilient, robust, and self-organizing applications. In
this context, pieces of information are not solely true or false, but rather more or
less concentrated. Therefore, inconsistencies and contradictory data may simul-
taneously co-exist with no harm, as long as consistent truths eventually emerge
by becoming significantly more concentrated. The combination of such features
determines biochemical coordination mechanisms eligible to support imagina-
tion, as it may spawn several (possibly inconsistent) ideas, properly balancing
evaporation, diffusion, and aggregation to retain only the most useful ones.

Multi-agent Based Simulation. Simulation is one of the most employed tech-
niques to identify/reach potentially useful outcomes. Agent simulation technol-
ogy has been outlined as an efficient platform helping to understand autonomous
behavior and decision-making [33]. An agent-based simulation (ABS) model is a
set of interacting intelligent entities that reflect, within an artificial environment,
the relationships in the real world [33]. Thus, ABS is typically used for helping
decision-makers cope with complex and changing environment in the domains
such as UAVs (cf. [34] and the references therein), IoT, and CPS [35,36], and to
model and optimize robot behavior [37].

It is worth noticing that most of the works in the ABS literature focus on
inter-agent relationships and their interaction with the environment [17]. Con-
versely, this paper aims at tackling the intra-agent perspective, where agents
should be capable of simulating multiple states of themselves and their actions
within their own “mind”. This internal simulation process is analogous to human
“mental simulation” where humans rely on the ability to construct mental mod-
els to imagine what will happen or what could be [38–40]. Such capability has
helped humans in physical reasoning [41,42], spatial reasoning, and counterfac-
tual reasoning [43].

Similarly, agents can mimic this “mental” modeling and analyze the assumed
outcomes of its own actions, identify and possibly exploring arguably reason-
ably paths leading to potentially creative scenarios even in robustly novel situ-
ations [40]. Such explorations might lead to totally unforeseen solutions, which
without a simulation based on a trial and error approach would not have been
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discovered/investigate. Hence, agents may reflect upon a set of simulations rep-
resenting themselves in different/alternative scenarios.

2.4 Computational Creativity

In its broadest scope, creativity is defined as the ability to generate new forms
and artifacts autonomously [44]. In the literature, creativity is classified as either
biological (the ability to generate new cells, organs, organisms, or species [44])
or psychological (the ability to generate new ideas and artifacts). Researches in
AI have been pushing to extend the notion of creativity to virtual systems [45].
For example, a recent study, inspired from enactive AI [46,47], investigates how
computational creativity can be adopted by autonomous agents [48]. Despite this
progress, most of the works in this domain are either carried out at the concep-
tual level or solely rely on data-driven mechanisms (e.g., generative adversarial
networks, a.k.a. GANs) to generate “creative” contents (e.g., music [49] or pic-
tures [50]).

In contrast with these works (primarily ML-centered), we envision agents
questioning their beliefs, knowledge, and goals continuously. In particular, agents
should combine classic planning, reinforcement learning, and in-mind simulation
about their future actions to simulate and possibly provide explanations about
their courses of actions.

3 Imagination in Cognitive Agents

Overall, BDI agents’ dynamics are moved by intentions and directed by desires.
Equipped with sensors and actuators, they can respectively perceive and affect
the world they live into. However, an agent’s admissible pool of desires and
plans is defined/constrained by human developers. Indeed, developers tend to
dictate agents’ initial desires and plans to keep their dynamics predictable and
controllable. However, this prevents the full exploitation of agents’ autonomy,
adaptability, and, ultimately, intelligence.

Arguably, to let agents access a higher degree of intelligence, they should be
endowed with the capability of spontaneously generating new desires, acquiring
novel beliefs, and learning novel plans. Briefly speaking, we consider imagination
as the activity devoted to supporting such capability. Thus, we define imagina-
tion as an agent’s intention aimed at maintaining its innate desires of being
creative, curious, and effective. More precisely, in our framework, agents are
assumed to be endowed with (at least) one maintenance desire since their cre-
ation. Such desire pushes them to (attempt to) be creative, curious, and effective
whenever they can. To be creative, an agent should keep looking for novel infor-
mation, as well as novel ways to do what it needs to do (i.e., it must keep trying
to enrich its belief and plan bases). To be curious, an agent should keep exploring
the world and search for novel stimuli or just doing things to learn something
new (i.e., it must keep trying to enrich its desires). To be effective and prove the
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way it deliberates and acts, an agent should keep improving its epistemic and
procedural knowledge (i.e., improve its belief and plan bases).

To accomplish such an innate desire, BDI agents must spawn an intention
that will be part of them for their whole lifetime. The basic functioning of this
intention is relatively straightforward: to keep revising the agents’ beliefs, desires,
and plans to generate novel epistemic/procedural knowledge or improve the cur-
rent one. We call this intention “imagination”.

To accomplish its purpose, the imagination intention may leverage and com-
bine several basic mechanisms coming from different branches of AI. Imagination
can exploit mechanisms deriving from the classes of activities listed below (inde-
pendently from technical details). For example,

knowledge acquisition is the process of converting raw data (i.e., percepts or
beliefs) into general and reusable knowledge (e.g., in the form of logic rules
or sub-symbolic predictors)

knowledge synthesis is the process of inferring or distilling novel knowledge
out of pre-existing ones

speculation is the process of exploring alternative truths, situations, or courses
of actions based on previous experiences

knowledge revision is the process of criticizing the pre-existing knowledge,
possibly evicting stale or wrong information

The remainder of this section analyzes how mechanisms from the many
branches of AI may be exploited to support such activities. Figure 1 provides
a summarizing characterization.

Fig. 1. Imagination in cognitive agents: AI mechanisms.

3.1 Acquiring Knowledge via Learning and Induction

BDI agents acquire information either by perceiving the environment or by com-
municating with other agents. In both cases, information comes in the form of
raw data and can be stored either symbolically or sub-symbolically. Each datum
represents a particular event from the external world. While the single event
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may be potentially useless per se, the frequent occurrence of similar events may
generate value in the long run. Indeed, agents – similarly to humans – may distill
valuable knowledge out of statistically relevant anterior experience (i.e., data).

Differently from data, however, knowledge is an aggregated and reusable form
of information. It must be reusable because that is what makes it valuable enough
to memorize it. It must be aggregated because agents’ cognitive resources (such
as computational power and memory) are inherently limited, in practice, and
such limitations affect how and to what extent data can be actually reused. How-
ever, the way data is actually aggregated to make it reusable depends remarkably
on its nature.

In case data is symbolically represented, it is interpreted as logic facts and
stored into symbolic knowledge bases that the agent may efficiently update and
query. When this is the case, logic induction may be used to distill rules out of
facts. While facts are contingent, rules are synthetic, and they may be reused
in several similar situations. Furthermore, symbolic rules are human-intelligible.
Thus, they can be used by agents as a basis to construct explanations for their
reasoning or behavior.

Conversely, when data is represented sub-symbolically, machine learning can
be exploited to draw knowledge out of it. When this is the case, data is inter-
preted as tensors of numbers used to train a predictor (e.g., a neural network).
This usually makes knowledge both aggregated and reusable, despite not directly
intelligible (and explainable) for humans. Accordingly, induction can be exploited
by agents willing or requiring to manipulate symbolic information, either because
they need to take discrete decisions or because they care about the intelligibil-
ity of their decisional process. Conversely, machine learning can be exploited by
agents needing to manipulate sub-symbolic information—possibly because they
need to take fuzzy decisions, and can tolerate errors to a certain extent.

3.2 Synthesizing Knowledge via Deduction, Abduction, and
Generative Methods

The external world is not the only source of valuable knowledge. Indeed, intel-
ligent agents should also be able to synthesize novel knowledge out of what
they already know. The way they do so, however, may vary depending on the
nature of the knowledge at hand. For instance, when knowledge is represented in
symbolic form, deductive or abductive reasoning procedures may be exploited to
infer novel information out of it. Conversely, when knowledge is sub-symbolically
represented, generative methods may be exploited instead.

In particular, deductive reasoning may be exploited to make implitic knowl-
edge explicit. In fact, deduction can derive specific facts out of rules. In other
words, it is dual w.r.t. induction. Thanks to deduction, agents may for instance
select useful knowledge for the contingent situation they are immersed into, out
of general rules. Similarly, abductive reasoning may be exploited by agents will-
ing to draw hypotheses about the causes which lead to a particular situation. In
other words, abduction let agents synthesize likely facts which justify the facts
they already know to be true, according to the rules they know to hold in a
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particular context. Accordingly, abduction is one of the mechanisms supporting
speculative thinking.

Conversely, generative methods – such as GAN – may be exploited by agents
needing to produce human-comprehensible representations (e.g. audio, video,
etc.) of categories they already know how to recognize and manipulate—such
as faces [51], shapes [52], handwriting [53], speech, etc. These representations
might serve as key enablers for explainable synthesized knowledge. In turn,
generative methods may be key enablers for (i) computational creativity, as
they let agents produce original representations; (ii) counterfactual thinking, as
they support the generation of variants of any given concept; and (iii) effective
human-machine interactions, as they let agents enrich their interactions with
humans with randomly-generated examples or analogies.

3.3 Speculating via Simulation and Planning

Mentally simulating scenarios is a fundamental human capability [39]. Once
people have enough information about the characterization and dynamics of the
surrounding world, simulating the effects of their actions becomes a common
practice (to a certain extent). Often, it is only after having mentally simulated
the most likely outcomes of their course of actions that an individual chooses
how to act. Then, by comparing the actual outcomes with the expected ones,
humans may learn how to improve their behavior w.r.t. their goals. Furthermore,
even when a direct experience is lacking, simulating the possible effects of a given
action is still better than acting randomly.

In the AI literature, planning is the activity performed by agents willing to
deliberate what to do in a particular context. Planning algorithms commonly
leverage on rich descriptions of (i) the environment, (ii) agents’ actions, (iii)
their effects, and (iv) some description of the target goal the agent is willing to
achieve. Through such descriptions, planning algorithms (attempt to) compute
viable workflows of actions that should lead agents towards the target goal.
However, even when only a few agents and small deterministic environments
are involved, planning is computationally costly. Therefore, when complex non-
deterministic environments are in place (where several agents interact in non-
trivial ways), planning may quickly become unfeasible.

Scientific researchers often tackle the complexity of systems by simulating
simplified parametric models executed multiple times, with randomly generated
parameters. Doing so allows drawing statistical conclusions based on the data
generated by such in-silico experiments. Accordingly, agents may follow a similar
approach, in their minds, to decide what to do or what to expect. In other words,
agents may leverage simulation to realize speculative thinking.

MAS have been exploited for the purpose of simulation since their very
beginning—cf. ABS in Sect. 2.3. However, currently, most ABS research efforts are
devoted to exploiting MAS in simulations rather than the opposite. Conversely,
the idea of letting an agent simulate itself and its environment is quite new—other
than very challenging. According to such a perspective, we envision equipping each
agent with an ABS sub-system capable of simulating an entire MAS. Using inner
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simulations, agents could then try out different actions and sequence of actions
that are otherwise too costly or even dangerous to try in the real environment,
other than retrying the same scenario over and over again with different rules
or parameters. Similarly to humans, agents may then exploit such capability to
autonomously discover plans, rules, or even policies for situations that they have
either already experienced, or not.

3.4 Adaptively Revising Knowledge via Biochemical Coordination

Simulating the world to discover novel plans, rules, or – more generally – back-
ground knowledge may eventually lead to the creation of chunks of potentially
useless information. By doing so, efficiency issues in both information storage
and retrieval may arise. However, a more conservative strategy may prevent
agents from discovering novel and potentially useful information. Accordingly,
some general strategies should be exploited to allow each agent to decide what
knowledge to retain and discard dynamically.

Here we welcome the idea that no “one size fits all” solution exists to select
knowledge based on expected utility. Indeed, any predefined strategy may be
affected by the biases of who designed it or be tailored to a particular scenario
while being sub-optimal in other ones. For this reason, we argue that an adaptive
strategy based on a biochemical metaphor would be preferable.

From such a perspective, we assume the many mechanisms proposed so far
– inference, machine learning, planning, simulation – to produce information in
the form of molecules. Agents’ minds can then be conceived as containers of
molecules of different sorts—e.g., beliefs, neurons, plans, etc. Such molecules’
concentration may increase over time as the corresponding information may be
produced multiple times or on a per-usage basis. For instance, the same rule
may be induced from different data in different instants or be frequently used.
Similarly, different runs of a simulation may lead to the frequent exploitation of
similar courses of action. This, in turn, may lead an agent to increase the con-
centration of one or more plans. At the same time, we assume the information
is subject to evaporation on a uniform basis. In other words, all sorts of infor-
mation evaporate at the same pace. As a global effect, only relevant information
would be able to survive, in the long run – where by relevant we mean either fre-
quently generated or frequently used, without requiring to a-priori define what
is actually relevant.

Finally, aggregation and mutation mechanisms may fit the picture by sup-
porting random and periodic modifications or combinations of pre-existing in-
formation—e.g., by merging similar plans/rules into more articulated ones, or
by slightly altering some parameter of a wrapped neural network to change its
behavior. Such random modifications may then be adaptively confirmed or dis-
carded, depending on whether they result to be relevant or not for the agent. In
the former case, their concentration would increase, whereas in the latter case,
it would decrease.
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4 Open Challenges

As we discussed in the previous sections, imagination within the context of
agent intentions entails the provision of continuous knowledge acquisition, syn-
thesis, revision and exploration. While we identified both the existing approaches
(cf. Sect. 2) as well as the specific research areas (cf. Sect. 3) to investigate, we
acknowledge the existence of key challenges to tackle in the process. These are
summarized as follows:

C1) Knowledge heterogeneity. Acquisition of knowledge is essential to feed a
creative process, whether it is intending to combine information to derive
new insights, for synthesizing explainable knowledge, for confronting dif-
ferent views, or even for exploration of uncharted territory. Nevertheless,
agents will be exposed to the challenge of extreme variety among the dif-
ferent knowledge sources that they run across. Solving semantic and data-
representation heterogeneity issues arising from this diversity will be a nec-
essary step. An example would be using knowledge graph matching and
fusion techniques [54]. Moreover, given the need for integrating symbolic
and sub-symbolic sources, tools and techniques for a coherent integration
between both will have to be studied [55].

C2) Goal generation. A fundamental step in a creative cycle is establishing clear
goals, even if these may be updated in the future. While a goal may define
an overall scope for the development of creative activities, in some cases, the
goals may not be entirely known a priori. In such conditions, goal genera-
tion [56] must be part of the creative process that needs to be incorporated
into the agent model [57].

C3) Knowledge alignment. Even when knowledge heterogeneity has been
addressed, it will still be required to align different understandings of
observed phenomena relevant to the creative plan’s scope. For example,
if knowledge sources’ provenance is dissimilar, simply aligning terminologies
and concepts is not enough [58]. At this point, it is crucial to study models
that allow handling contradictions, assumptions, explainable outcomes, and
interpretations as part of the knowledge alignment task [59,60].

C4) Information uncertainty. Creative agents must take into account not only
the potential inaccuracy of their information sources but also the eventual
uncertainty of their own artificial imagination. The exploration and naviga-
tion over radically new ideas and approaches entail high risk, meaning that
oftentimes they may lead to dead-ends. Agents may need to incorporate risk
management strategies [61] allowing them not to constrain themselves only
to safe knowledge but leave enough space for behavioral models that adapt
to different levels of uncertainty. This also applies to uncertainty in XAI
outcomes and their consequences on inter-agent agreements.

C5) Reasoning complexity. The generation of new knowledge may require reason-
ing over potentially large and/or complex knowledge graphs [62]. Depend-
ing on the complexity of these graphs’ underlying logics, reasoning tasks
may become increasingly expensive in terms of computation. Moreover, the
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agents’ autonomous nature will necessitate further exploration of decen-
tralized reasoning techniques, including partial knowledge and probabilistic
approaches. An additional challenge to tackle is the combination of explica-
ble results of data-driven AI predictions. Multi-agent speculative reasoning
may need to be combined with machine learning outcomes to address this
challenge.

C6) Hypotheses evaluation. Agents will be able to propose hypotheses that may
need to be validated or refuted [63]. This ability should be accompanied by a
robust framework for managing assumptions, claims, justifications, explana-
tions, and proofs [64,65]. As explained in the previous point, reasoning and
sub-symbolic outcomes have to be evaluated with respect to the hypotheses.
Agents may eventually have different or plainly contradictory points of view,
for which reconciling mechanisms may need to put in place. While in some
cases competitive approaches may be preferred (e.g., working towards the
same goal but under different imaginative hypotheses and assumptions), in
others, it might be necessary to align and establish a cooperation scheme.

C7) Explicable knowledge revision. When the results of explicable machine learn-
ing and, in general, generated sub-symbolic knowledge are produced, agents
need to navigate through them and understand their implication over exist-
ing information [66]. This may lead to invalidating previous beliefs or to
changing the uncertain status or certain facts. The challenge of explaining
these decisions, and providing justification of the imaginative paths taken
by a community of agents, shall be addressed to understand the path that
leads to creative activities. The provenance of knowledge and the changes
may lead to even reconsidering information that was deemed false or invalid
in a previous iteration.

C8) Exploration. Agent imagination requires substantial space for the explo-
ration of new knowledge and experimentation through novel approaches.
Although exploratory agents have been studied in the past [67], it remains
a challenge to establish a formal framework for discovery in large knowledge
spaces. Approaches like link traversal of knowledge graphs may serve as a
starting point, although they may need to be extended to a cooperative
scenario where different agents run exploratory tasks under coordination
mechanisms.

C9) Accountability. Imaginative processes in multi-agent systems entail the
exploration and creation of new knowledge, as well as the validation of
previous and new ideas. The consequences of these actions may lead to
decisions and actions for which there should be clear responsibilities. In
that context, the provenance information emanating from exploratory pro-
cesses and knowledge revision decisions will need to be associated with trust
mechanisms allowing to ensure proper attribution to an agent or a person
embodied by an agent. Furthermore, accountability [68] in terms of ethical
and even legal terms should be studied, not only from a purely technical per-
spective (e.g., accountability networks, knowledge graph ledgers) but also
from a psycho-social point of view (i.e., human-agent accountability).
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5 Conclusions

This paper provided a ground for discussing the meaning of imagination in the
setting of cognitive agents, selected possible tools and approaches, and elicited
the envisioned contextual challenges. In particular, the investigated research are
(i) reasoning and automatic theorem proving, (ii) automatic planning and sim-
ulation, (iii) machine learning and data mining, and (iv) biochemical coordi-
nation. Finally, the intuitions proposed directions collapsed in the definition of
challenges in the areas of knowledge heterogeneity, goal generation/definition,
knowledge alignment, information uncertainty, reasoning complexity, hypothesis
evaluation, explicable knowledge revision, exploration, and accountability.

To address these challenges, in the future we plan to explore a number of
practical research directions aimed at creating the technological playground for
supporting our notion of imagination. For instance, the problem of letting agent
programming technologies support several logics and inference procedures, is far
from being solved [69]. A similar statement holds for the simulation of large-
scale MAS composed by cognitive agents. For this reason, our first efforts shall
be devoted to (i) the development (resp. extension) of novel (resp. existing)
agent programming framework to support inductive, and abductive reasoning –
for instance, via the 2P-Kt technology [70] –, (ii) the development of simulation
frameworks for cognitive agents, supporting virtualization of both space and time
– for instance via the Alchemist simulator [71] –, (iii) blending (either existing or
novel) agent programming frameworks and mainstream ML frameworks—such as
TensorFlow, PyTorch, etc. Conversely, concerning the design of and biochemical
coordination at the single agent level, we argue that further research is needed.
Along this path, our first step will consist of a formalization, aimed at further
clarifying possibilities and challenges.
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Abstract. We explored the potential contribution of eXplainable Arti-
ficial Intelligence (XAI) for the evaluation of Artificial Intelligence (AI),
in a context where such an evaluation is performed by independent third-
party evaluators, for example in the objective of certification. The exper-
imental approach of this paper is based on “explainable by design” deci-
sion trees that produce predictions on health data and bank data. Results
presented in this paper show that the explanations could be used by the
evaluators to identify the parameters used in decision making and their
levels of importance. The explanations would thus make it possible to
orient the constitution of the evaluation corpus, to explore the rules
followed for decision-making and to identify potentially critical relation-
ships between different parameters. In addition, the explanations make
it possible to inspect the presence of bias in the database and in the
algorithm. These first results lay the groundwork for further additional
research in order to generalize the conclusions of this paper to different
XAI methods.

Keywords: Artificial intelligence · Explainable AI · Evaluation of AI ·
Experimental methods

1 Introduction

There are strong needs from public authorities for a coherent and strict veri-
fication of Artificial Intelligence (AI) [10] systems. So, those systems must be
tested according to reference testing methods that are not aimed at improving
performance, but at proving that the output behaviors of the system are safe
and compliant with regulation. In the European regulatory framework, exter-
nal evaluation – that is to say, performed by an independent third-party entity
rather than by the developers themselves – is required for critical systems, such
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as medical devices. For non-critical systems, designers of AI solutions must prove
through self-declaration that their solutions are law-compliant.

The inspection of AI by a third party currently tends to rely on audits (inspec-
tion based on declarations and direct observation) and on tests on “represen-
tative samples”. The determination of the test database is a challenge: all the
factors influencing the system’s decision-making must be known to the evalua-
tor, who can then choose the relevant configurations of the input data, and set
the distribution of these configurations within the test database. In addition,
even the information provided by the designer may be insufficient. It is therefore
necessary to be able to rely on elements of information which, without necessar-
ily revealing the designer’s industrial secrets, can enlighten the evaluator on the
most optimal way to proceed with the tests.

The 2020 technical report from the European Commission on the robust-
ness and explainability of AI [8] states that the integration of AI components in
products and services, and their use in sensitive contexts, both require the inter-
vention from regulatory organizations to avoid potential harm to EU citizens.
Explainable Artificial Intelligence (XAI) is thus recognized as a potential lever
for the deployment of trustworthy AIs. We took the hypothesis that XAI could
constitute a valuable tool for evaluators, since it could provide information to
facilitate the evaluation and make it more transparent. The exploration focuses
on the use case of automatic prediction.

This study focuses on the use case of “explainable by design” decision trees
that produce predictions on health data and bank data. The paper is structured
as follows: Sect. 2 presents several limitations associated to the traditionally used
methods for the evaluation of AI, and how the added-value of XAI has rarely
been explored in this context. Section 3 focuses on the experimental method
designed to estimate the usability of such an XAI model for AI evaluation.
Section 4 presents the results of the experiments. Conclusions and outlook are
given thereafter in Sect. 5.

2 State of the Art

2.1 Issues in the Evaluation of Artificial Intelligence

The evaluation of AI has two main objectives: its functional assessment, and its
regulatory compliance. From a functional point of view, the evaluation provides
a quantified and objective estimate of performance through benchmarking, for
example to identify the causes of under-performance or to compare the system
with the technological state of the art. From an economic, regulatory and societal
point of view the evaluation allows assessing the degree of compliance of the
system with safety, ethical and acceptability requirements.

The process of evaluation of AI may require either testing the system on
representative samples, or an audit of the software, or both. The audit relies
on the inspection of the elements constituting the AI algorithms, for example
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as recommended by the French High Autority for Health in the context of AI-
driven medical devices [3] (including, in particular, a description of samples used
for initial model learning or relearning, and a description of the models used).

The evaluation is performed either in “black box” conditions, or in “white
box”: the white box evaluation consists in inspecting the source code of the
system, an example being cash register systems [12] where national finance laws
require the inspection of the critical functions of such systems. These systems are
rule-based, which enables direct inspection. But such direct inspection of AI algo-
rithms, due to their complexity and probabilistic nature, is not an adapted strat-
egy for performance assessment or compliance verification. While some recent
work in formal method evaluation shows promising advances [6], the immediate
prospects are still limited. In addition to that the evaluator may not even have
access to technical information, for example when a client requests a comparison
of different products on the market. The independent evaluator thus relies mainly
on “black box” evaluation, by submitting input test data to the system, and by
observing the resulting outputs, without necessarily knowing or controlling the
mechanisms that led to these results.

Testing AI systems through data sets traditionally consists of three main
phases: the first stage is the selection of test data; then, the design of a reference
data set (the ground truth associated to the test data, often provided by a
human expert) and obtaining the hypothesis data set (outputs from the system).
The final phase consists in performing the comparison between the reference
and the hypothesis, through metrics (F-measure, accuracy, etc.) to estimate
the performance of the evaluated system. The selection of pertinent test data
represents a challenge for the external and independent evaluation of AI systems.
For instance, the most challenging issues concern the estimation of the domain
of functioning of the system: do the data appropriately cover it? Can we spot
that the set of data is out of the scope of the system (which may then explain
low performance)? Or has the system been trained on the same set of test data?
The last situation often happens if the data is hard to collect in the domain
of application (for example, with natural language applications on low-resource
languages), and the evaluation may need to be performed with open-access data.

Another challenge of AI evaluation lies in the selection of the evaluation
metrics. Indeed, the performance metric is sometimes binary and the indica-
tors are easy to observe. In the case of an autonomous vehicle, evaluating its
stopping function before a red light implies a performance metric based on the
success or failure of the stop. But such a simplistic metric is not adapted for
decisions involving several parameters. Evaluating the global stopping feature of
an autonomous vehicle thus needs to include external factors, such as the level of
criticality of the stop when, for example, an individual is in front of the vehicle
(opposed to an inanimate object). A score fully representative of the performance
must then take into account all the factors of influence of the decision.

Independent evaluation of AI thus requires the access to information of the
internal mechanisms of the system, so as to identify the factors of influence of
the decision-making, the domain of functioning, etc. The information conveyed
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by an AI algorithm able to explain its decisions could help address several of the
traditional issues of AI evaluation.

2.2 XAI for Third-Party Evaluation

Literature traditionally identifies five types of target audiences for XAI, who
present different interests in an explanation of the decision-making [1,2,7]:
domain experts (e.g. doctors, bank advisor), individuals impacted by the deci-
sions of the model, regulatory entities/agencies, developers who design the AI
solutions, and managers who deploy AI solutions.

We note that there are two common objectives for all users: the need to
understand the model and the compliance with a set of specifications (e.g. regu-
latory). Our study focuses on an alternate user type, the “inspectors” (insurance
agent, auditor, public authorities, third-party independent evaluator, etc.), who
share commonalities with both the regulatory entities and data scientists. This
public presents specific expectancies that have not really been broached by the
community up to now. As indicated in [8], “the concepts of robustness and
explainability of AI systems have emerged as key elements for a future regula-
tion of this technology”. XAI should help the evaluator to ensure the responsible
use of AI techniques. The link between the explainability of a system and its
auditability is also highlighted in [2]. However, apart from these general consid-
erations on the importance of explainability for such an audience, the literature
does not provide arguments to justify the provision of explanations for the exter-
nal evaluation.

3 Methodology

3.1 Context

In this work, we took as a use case models that are interpretable by design,
which means that the algorithm making the prediction also provides explana-
tions. In the context of this work, the explanations are represented in the form
of a decision tree. Half of the samples are used for training and the other half
are used as test data. In addition, the algorithm’s prediction is quantified using
evaluation metrics: precision, recall, f-measure.

We note that the context and scope of this work do not allow for a fully
representative study. Indeed, to achieve the general research objective and to
verify the research hypothesis, it would require having different AI solutions, as
well as different XAI techniques in order to carry out a comparative study. The
main purpose of the experimental method described here is to lay the foundations
of the method, and to define all the research and methodological questions which
should be resolved in subsequent work.

3.2 Experimental Data

We conducted our experiments on two data sets: a publicly available dataset on
health domain, and a private data set in the banking domain.
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Health Data - The health data set used is entitled “Risk factors associated
with low infant birth weight” [11,14], also named “LBW” (low birth weight). The
original data set contains 189 samples, where each sample represents a newborn
baby. Each sample is described through 10 attributes, which provide information
about the baby (related to weight) and the mother (among which age, ethnicity,
health history). The classification for each sample is represented by the binary
attribute “low”, which indicates whether a baby’s birth weight is less than 2500 g
(low = 1) or greater (low = 0). Table 1 describes the attributes.

Table 1. LBW health database: the 10 attributes and their description, adapted
from [14].

Attribute Description

low Indicator of birth weight less 2.5 kg (1 = low; 0 = normal)

age Mother’s age in years (min: 14, max: 45)

lwt Mother’s weight in pounds at last menstrual period (min: 80 lbs, max: 250 lbs)

race Mother’s race (1 = white, 2 = black, 3 = other)

smoke Smoking status during pregnancy (1 = smoker, 0 = non-smoker)

ptl Number of previous premature labours (min: 0, max: 3)

ht History of hypertension (1 = yes, 0 = no)

ui Presence of uterine irritability (1 = presence, 0 = absence)

ftv Number of physician visits during the first trimester (min: 0, max: 6)

bwt Birth weight in grams (min: 709 g, max: 4990 g)

One can note that the low number of samples (189 samples), makes it unsuit-
able for a relevant medical study, and that the distribution of the “race” factor
is not homogeneously distributed: 96 samples for “white” (51%), 67 for “other”
(35%), and only 26 for “black” (14%).

Bank Data - The experiment was also conducted on a private data set issued
by a bank specialized in consumer loans (works, household appliances, automo-
bile, etc.). Bank customers mainly use a website to apply for a loan, with a
low approval rate (14.75%). This data base is not publicly available for business
property reasons, but was made accessible for the needs of our experiment. The
scientific relevance of presenting results on non-publicly available data may be
questioned; data sharing is highly constrained by economic pressures for compet-
itiveness, and initiatives for data federation are still at the research stage (one
can cite, for example, the European program GAIA-X [4]). The present article
provides however a thorough description of this data, and allows extending the
observations performed on the public LBW corpus to a real-life application.

The data set contains 17,011 samples, in CSV format. Each sample presents
a request made by a customer on the bank’s website, and contains 33 attributes
that describe the type of credit requested, the customer’s income and per-
sonal situation, etc. The attributes mentioned in this study are presented in
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Table 2. The decision taken (attribute “Result credit”) will be either “Refused”
or “Approved”. In this case, the goal of the AI application is to provide advice
to the user at the end of their website request, to help them increase the chances
of being approved.

Table 2. Bank database: attributes and their description (excerpt).

Attributes Descriptions

Date Date of the start of the loan request

Product Type of loan product (usually indicate what the lean is for)

Amount Amount of money asked for the loan (in euros)

Salary User’s salary (in euros/month)

Other revenue User’s other type of revenue (in euros per month)

Revenue Salary + Other revenue

Gender Gender of the user

Work contract Kind of professional contract of the user

Cluster localisation Geographical cluster

Cluster number Number part of the cluster code

Cluster letter Letter part of the cluster code

Result credit Is the loan request approved?

Timezone Timezone of the user

3.3 Experiments

Our research hypothesis is that the explanations can help refining the constitu-
tion of a relevant test database, and identifying potential biases of an AI algo-
rithm, such as model bias and discrimination bias [9]. In particular, we expected
that explanation provided by decision trees may facilitate test data preparation:
obtaining data that fully matches the domain of functioning of the system can be
impossible (for logistic reasons such as cost of collection or labelling, for exam-
ple). XAI may help estimating the tolerance of the algorithm to variations in
the testing data.

The work is exploratory in nature, on a research subject still under-explored
by the scientific community; the experimental protocol was therefore built incre-
mentally during this work based upon desk research and the observations made
during the trials. We explored several data bases (including the health and bank
databases presented in this paper) to observe the predictions of the AI algorithm
and the corresponding explanations. Then, we carried out our initial tests on the
health data use case, because it contains few samples and is therefore suitable
for carrying out manipulations and observations. We then chose the bank data
use case to perform all the tests and finalize the experimental protocol.
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We designed and tested a set of manipulations that can be systematically
applied to enhance the evaluator’s testing protocol, among which:

– Changes to the configuration of the algorithm (depth and minimum number
of samples per leaf). The objective is to identify potential necessary features
for explanation-assisted evaluation;

– Various data groupings have been carried out in particular for the observation
of bias (via ethical and moral parameters) and implicit errors (via parameters
deemed as important for decision-making);

– Semantic groupings of data in order to estimate their proximity of weight in
decision-making. For example, the “Salary”, “Other revenue” and “Revenue”
parameters are estimated to belong to the same semantic field;

– Variations in the size of the learning and test corpus, in order to estimate the
influence caused by the size of the test data corpus (for example in the case
of supervised learning systems);

– Removal of parameters (for example parameters with an ethical impact) in
order to estimate their influence on decision-making;

– Transformation of the parameters’ type (for example, changing from a con-
tinuous to a discrete dimension for the “age” parameter) in order to estimate
the impact on the explanations.

4 Results

This section presents the most relevant observations performed on both use cases
(health and bank), which highlights the potential usability of XAI for third-party
evaluation.

4.1 Health Data

Data Groupings - The goal of these experiments is to explore how the expla-
nations can provide additional information to the evaluator. The evaluator may,
by expertise, estimate that certain attribute values are not relevant for the eval-
uation, or that they may cause a bias of the algorithm which should be verified.
For example, taking ethnic origin into account in automatic decision making can
lead to ethical biases, such as misclassification for certain ethnicities, or any type
of discrimination towards vulnerable groups or minorities.

The first test consisted in grouping the data according to the “race” attribute.
Three models have been generated, each running only on the samples of a same
value (“black”, “white”, “other”). Figure 1 shows the results for each model,
including the results obtained when all samples are processed.

The scores show that the model running only on “black” samples has lower
performance than all other models, either in terms of average performance or in
terms of distribution (scores can reach zero). We also note that the difference
in precision scores between “black” and “white” is particularly marked. These
differences are also observed with the “other” model. From these tests, we can say
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Fig. 1. Accuracy, F-measure and recall for several groupings of the “race” attribute
(all samples: model d15 m6, “black”: black d15 m6, “white”: white d15 m6, “other”:
other d15 m6). (health data)

Fig. 2. Decision tree of the model, computed on all samples.
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that the algorithm tends to show a biased functioning, which presents differences
in performance according to ethnicity.

We pursued the exploration of this potential ethical bias through the analy-
sis of the explanations. The explanations are presented as a decision tree, repre-
sented in Fig. 2. Here we can see that the parameters used in decision making are
“ptl” (number of previous premature labours), “lwt” (mother’s weight in pounds
at last menstrual period), “smoke” (smoking status during pregnancy), “age”,
and “ht” (history of hypertension). The attribute “race” is not a parameter in
the decision.

These explanations inform the evaluators that even if there is a performance
bias in the model, it does not seem to guide decision making. The explanations
provided by XAI may allow the evaluator to verify how “disputable” parameters
are processed in the model, through the analysis of their effective weight in
decision making.

Another analysis concerned the “ftv” parameter (number of physician visits
during the first trimester, ranging from 0 to 6). The results presented in Table 3
show that models with ftv superior to 1, their F1 and recall scores are all zero,
which may indicate the importance of such samples in the decision making. This
information may be relevant for the constitution of the test data set, since it
would imply that the distribution of this attribute must be carefully set dur-
ing data collection. The explanation trees indicate that for models where ftv is
superior to 1, decision trees are dramatically reduced (simple selection of either
true or false). One can notice that only few samples are available for these val-
ues. These explanations could tend to justify the importance of resorting to a
reasonable amount of samples of each value, to place the model in conditions
where it can run “optimally” – or at least, not biased by the testing conditions
themselves.

Table 3. Performance scores and decision trees for several groupings of the “ftv”
attribute. (health data)

Samples Samples Precision F1 Recall Decision tree

All samples 95 0.568 0.305 0.346 (Complex decision tree, not reproduced here)

ftv = 0 50 0.720 0.461 0.353 (Complex decision tree, not reproduced here)

ftv = 1 24 0.792 0 0 if “ptl” <0.5, then “false”; else “true”

ftv = 2 15 0.867 0 0 “false”

ftv = 3 4 0.250 0 0 “true”

ftv = 4 2 1 0 0 “false”

ftv = 5 No sample for “ftv = 5”

ftv = 6 Only one sample for “ftv = 6” “false”

Transform the Type of Attributes - The evaluator may not have test data
that is of the same exact type as the data the system has been trained on.
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For example, an algorithm may have been developed to process age values in
continuous format (20, 21 years old, etc.), but the evaluation corpus will only
present age categories (“young adult”, “Senior”, etc.). We will therefore explore
how the system reacts to variations in the types of data, and whether decision
trees can provide us with additional information to guide an optimal presentation
of the data.

From these ideas, we transformed the age values from continuous format to
four categories, and then to two categories while respecting the decision frontier
decided in the initial model (22.5 years old). Results are presented in Table 4.

Table 4. Performance scores for different types of the “age” attribute for different
value format. (health data)

Age format Categories and number of samples Precision F1 Recall

Type: continuous 189 samples 0.568 0.305 0.346

Type: enum - [14–18] (Youth): 35 samples

- ]18–25] (YoungAdult): 100 samples

- ]25–35] (MiddleAge): 51 samples

- ]35–60] (Senior): 3 samples

0.695 0.473 0.5

Type: enum - [14–22.5) (Youth): 94 samples

- [22.5–45] (NotYouth): 95 samples

0.695 0.491 0.538

We observe that initially “age” was an important parameter in decision mak-
ing (see Fig. 2), and our manipulation made it disappear, replaced by the “ftv”
(number of physician visits during the first trimester), the new decision tree is
presented in Fig. 3. Our “categorical” corpus chosen for the evaluation there-
fore had an impact on the mechanisms of the algorithm, which we were able to
visualize thanks to the explanations.

Fig. 3. Decision tree with the attribute “age” in 4 categories: Youth, YoungAdult,
MiddleAge, Senior (health data).

Next, we would like to verify whether our division, chosen only on the basis
of a priori expert knowledge, influenced the explanations. We made a trans-
formation of the age attribute into two categories while respecting the decision
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Fig. 4. Decision tree with the attribute “age” in 2 categories: Youth, NotYouth (health
data).

frontier in the initial model (22.5 years old). We notice that the decision tree
(see Fig. 4) is the same as the initial one, and the performance scores are a little
higher. This allows us to identify a tolerance threshold in the variations that the
evaluation dataset may present: in the case presented, in order not to bias the
operation of the algorithm too much (ask it to operate on a type of data outside
its operating domain), it is possible to perform the tests on a database divided
according to a slice of age 22.5 years.

We note that this manipulation can only be carried out if the developer of
the algorithm provides the evaluator with the database that they used during
the development, because this database had to guide the configuration of the
parameters of his model. Carrying out this manipulation on a database selected
by the evaluator alone would not be relevant.

4.2 Bank Data

Exploration of Parameters - In addition to graphical visualization of the
explanations (decision trees), the explanations also provide the occurrence counts
of the parameters used in the decision-making process. A first observation of
the parameters (see Table 5) indicates that the prediction performed on the
banking database ignores 6 parameters: “Date”, “Profession”, “Work contract”,
“District”, “Cluster number” and “Cluster letter” (they are absent from the
table).

The exploration of the parameters count highlights that “Timezone” is used
in the decision-making. Relying on the timezone could indicate that the moment
(summer time vs standard time) when the user makes their request is important.
The context of the banking sector at a given time is relevant information, as it
may be more or less advantageous for a bank to allocate a loan depending on
the timing. In our view, this is only a descriptive attribute (at certain times
loans have or have not been granted), which may lend itself to data mining by a
data scientist or a financial analyst, but it does not appear to be a meaningful
basis for future decision making. In addition, we noted earlier that the “Date”
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Table 5. Number of occurrences of the 26 parameters in the tree. (bank data)

Parameter # Parameter # Parameter #

Since profession 12 Gender 9 Flag homephone 3

Revenue minus installment 11 Amount 8 Current housing 2

Salary 11 New 1st holder 7 Flag cellphone 2

Installment 11 Other revenue 6 Education 2

Revenue 10 Number dependents 6 Civility 2

Age 10 Flag employmentphone 5 Cluster localisation 1

Since housing 10 Two holders 4 Product 1

Duration 9 Timezone 3 Client status 1

Revenue on installment 9 Origin code 3

parameter was not used in decision making, which could lead us to believe that
the use of “Timezone” can be an implicit error in the model.

From the exploration of parameters, we also note that decision-making is
based on the gender of the loan applicant. Non-discrimination based on gender
is a European obligation, mentioned for example in the Directive 2004/113/EC
for the equal treatment of men and women in the access to goods and services [5].
We note however that in the present use case, the decision is not for loan grant-
ing, but meant to produce advice to the user. Further enquiries should then be
conducted to determine the legality of basing this automatic decision-making on
gender. In the context of the study, however, this highlights how the explanations
can drive the exploration performed by a third-party evaluator.

In these cases, the explanations allow identifying the essential parameters of
the algorithm, which may be the starting point of further enquiries. In addition,
an exploration of the explanations may allow the evaluator to identify a possible
cause of under-performance of the algorithm, or the invalidity of a decision-
making process in the context of external auditing.

Remove Some Parameters - Some attributes may be absent from the test
database, or under-represented, for example because these elements are hard to
model at the moment of database collection. In this phase of the experimentation,
we want to verify whether removing certain attributes from the database would
have an impact on decision making, through the explanations provided. Results
are shown in Table 6.

Three parameters, used in the decision making process, seem to have a link
with the economic autonomy of the applicant: “Salary”, “Other revenue” and
“Revenue”. In order to see if the absence of any of this information has a
significant impact on the model, we performed tests by removing one of the
three parameters each time. We only observe slight variations in performance.
Such an observation could have been performed without explanation from the
decision tree. However, as shown in the last column, we notice that the vari-
able “Work contract” which is normally not used, seems to become a decision
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Table 6. Accuracy, Recall and F1 scores of the tests by eliminating certain parameters
(first column). The last column lists the parameters that are not used by the algorithm.
(bank data)

Removed Acc. F1 Rec. Unused variables

– 0.853 0.421 0.345 Date, Profession, District, Work contract,

Cluster number, Cluster letter

Revenue 0.857 0.428 0.345 Date, Profession, District, Work contract,

Cluster number, Cluster letter, Revenue

Other revenue 0.850 0.390 0.309 Date, Profession, District, Work contract,

Cluster number, Other revenue

Salary 0.855 0.420 0.339 Date, Profession, District, Cluster number,

Cluster letter, Salary, Product, Cluster localisation

Gender 0.853 0.424 0.349 Date, Profession, District, Work contract,

Cluster letter, Product, Gender

Timezone 0.854 0.422 0.345 Date, Profession, District, Work contract,

Cluster number, Cluster letter, Timezone

factor when “Salary” is not available for decision making (at the same time,
the variables “Product” and “Cluster localisation” are no longer used in deci-
sion making). Similarly, another variable “Cluster letter” which is normally not
used, seems to become a decision factor when “Other revenue” is not available
for decision making. This manipulation tends to show that explanations may
provide a more thorough understanding of the impact of the parameters on
decision making, that can validate the choices made for the test corpus.

In addition, we also carried out tests by eliminating the two parameters
“Timezone” and “Gender” previously mentioned. In the case of the removal
of “Timezone”, we notice that the difference in performance is insignificant, in
comparison with the performance when no parameter was removed (first row of
the table). On the other hand, this deletion did not lead to a modification of the
parameters used by the algorithm (see last column). This test therefore allows
us to verify that a parameter, identified as being able to generate or explain an
error in decision-making, seems to have little influence on the performance and
operation of the algorithm.

In the case of “Gender”, the performance also remains globally stable. How-
ever, one point of attention concerns the fact that there seems to be a link with
the parameter “Product” (what the loan will be used for): if “Gender” is deleted,
then “Product” has no more weight in the decision making. We understand that
the database has descriptive value: there is naturally a distribution in terms of
gender and use of the loan within the population. However, this manipulation
allows us to draw the attention of the evaluator toward a potential gender bias
of the algorithm, who would derive from the database that “for a given gender,
it is generally this type of credit that is granted”. An algorithm trained on such
information would then be based on a detrimental causal relationship, which
could be explored further by the evaluator.
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5 Conclusions and Outlook

Public authorities express a pressing need for methods and tools for a thorough
inspection and validation of AI, including requirements on traceability, non-
discrimination, or transparency, which could potentially be verified thanks to
XAI tools. Indeed, as by [13], “Machine learning models can only be debugged
and audited when they can be interpreted”. Our research work aims to explore
the contribution of XAI to third-party evaluation, in particular by providing
additional information for test data selection and bias inspection. The study
presents an experimental protocol based on an explainable by design prediction
system, exemplified on two use cases (health and banking).

The various observations presented in this paper show that the explanations
could make it possible to:

– Indicate the parameters used in decision-making, which makes it possible to
identify, for example, parameters having an ethical impact (e.g. the ethnic
origin of the health use case) or relating to an implicit error of the model
(e.g. the use of the timezone in the banking use case);

– Indicate the level of importance of the parameters in decision-making, in order
to estimate whether the parameters deemed “critical”, either for performance
or inspection of bias, really have a weight or not (e.g. ethnic origin in health,
or gender in banking);

– Guide the constitution of the evaluation corpus, by providing information on
the domain of operation of the algorithm (e.g. the groupings of data accept-
able by the algorithm for age in health data);

– Explore the rules followed for decision making, and thus identify poten-
tially critical relationships between different parameters (e.g. the relationship
between gender and type of loan in the bank use case);

As there is a clear distinction between models that can be interpreted by
design, also referred to as “transparent”, and the inherently non-transparent
algorithms such as neural networks that can be explained using external or “post
hoc” XAI techniques [1,8], it will be necessary to complement this study with
analysis of other techniques of XAI, for other types of AI algorithms. This work
nonetheless encourages further exploration of XAI for the community of third-
party evaluators, for it may help producing testing procedures that match better
the algorithm characteristics (parameters, operating area, etc.). This work also
shows that the conclusions drawn from the explanations need to be analyzed in
conjunction with several additional observations, including expert knowledge in
the domain of application (healthcare, banking, etc.) and with the descriptive
information provided, for example, through an audit of the machine learning
algorithm.
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Abstract. Enterprise Resource Planning (ERP) software is used by
businesses and extended via customisation. Automated custom code
analysis and migration is a critical issue at ERP release upgrade times.
Despite research advances, automated code analysis and transformation
require a huge amount of manual work related to parser adaptation, rule
extension and post-processing. These operations become unmanageable
if the frequency of updates increases from yearly to monthly intervals.
This article describes how the process of custom code analysis to custom
code transformation can be automated in an explainable way. We develop
an aggregate taxonomy for explainability and analyse the requirements
based on roles. We explain in which steps on the new code migration
process machine learning is used. Further, we analyse additional effort
needed to make the new way of code migration explainable to different
stakeholders.

Keywords: Explainable automated source-code transformation ·
Multi-modal conversational interfaces · Explainability taxonomy

1 Introduction

Enterprise resource planning (ERP) systems, such as SAP Business One1 and
Oracle E-Business Suite2, have been implemented by many large and medium
size companies [5]. The ERP software market grew globally by 10% and reached
$ 35 billion in 2018 [18]. The costs of initial implementation range for medium
to large scale businesses from $ 150.000 to over $10 million.

Although ERP system vendors recommend to limit code customisation and
adapt the business processes to the system, studies report a significant number
1 https://www.sap.com/products/business-one.html.
2 https://www.oracle.com/de/applications/ebusiness/.
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of customisations in existing ERP systems. For instance, 74% of the companies
studied in [9] have adjusted their systems to a degree between moderate and high.
The possibility to adapt an ERP system to the business needs and processes of
an organisation (i.e. create custom programs) is one of the key requirements for
the choice of a specific ERP software [33].

An ERP upgrade implies major changes caused by an implementation of
a new version of an already installed ERP system [5]. ERP upgrades can add
up to 25–33% of the initial implementation costs for one upgrade [33], most
of them caused by labour costs. In average, the costs can increase by $ 1,5
million (between $37.500 and $3,3 million). According to [36], usually a major
ERP system upgrade is needed every three years. Cloud-based SAP solutions,
however, move to a quarterly release cycle. Current change in the market leader’s
platform to the SAP S/4HANA ERP software and HANA database forces SAP
customers to spend resources on migration of their custom code base [31]. ABAP
(Advanced Business Application Programming), the proprietary programming
language of SAP, is normally used for custom programs.

Several companies developed rule-based solutions to support SAP customers
in their custom code migration tasks within SAP upgrade projects. However, all
state-of-the-art solutions share two major problems:

1. Frequent manual updates of the rule-based solution would be required in
order to keep it compatible with quarterly updates of the cloud-based SAP
ERP solutions, but they are time-consuming and labour-expensive.

2. The reports generated by the current set of tools usually consist several hun-
dreds of spreadsheets. Usually experts review these reports using standard
Business Intelligence software and decide which custom programs must be
maintained. This is expensive and exhausting.

This is why, technological innovation that transfers academic advances in
Machine Learning (ML) and Robotic Process automation (RPA) to the field of
software transformation in legacy ERP systems is urgently needed. To tackle
this challenge, we developed a plan for knowledge transfer for this specific prob-
lem in a close collaboration with one of the technology leaders in the domain
of automated ERP custom-code upgrade, smartShift Technologies3. Although
SAP itself offers a standard solution for custom code upgrade, it only covers
unused code and some database compatibility checks. The smartShift tools also
analyse syntax and functional errors in the custom code. This is why we chose
this solution as our baseline. The business case discussed here is the service of
automated custom code migration offered by smartShift.

One of the important questions within this business case is the question of
decision explainability. First, the service providers needs to ensure the quality
of analysis and migration with a certain level of accuracy. Second, the service
provider can be made liable for problems in the work of the ERP system after
migration caused by the wrong decisions made by the AI system. Third, errors

3 https://smartshifttech.com.

https://smartshifttech.com
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in the process of code transformation can delay other dependent tasks in the
upgrade project and cause additional costs, which should be avoided.

The process of code migration is monitored on both sides, the service provider
and the customer. This is why the explanations need to be reasonable for multiple
stakeholders and multiple roles. With this motivation, we focus on the question:
Is additional effort needed in order to make a transformation from an
existing rule-based to an ML-based system in an explainable way?

Because the notion of explainability is a complex phenomenon by itself,
we first create an aggregate taxonomy of explainability as explained in Sect. 2.
Section 3 briefly describes the steps in the innovation process. Further in Sect. 4,
we use the aggregate taxonomy to evaluate feasibility and cost of a potential
transformation of a rule-based system to an ML-based system used in the ERP
domain. Section 5 discusses the results and future research directions.

2 Dimensions of Explainability

Scholar literature on XAI developed several approaches for managing explain-
ability. The works deal with such issues as interpretability [21,26], fairness [40]
and transparency [7]. Each of these terms is recognised as very complex, so that
efforts have been made to break them down to a well-defined set of features or
parameters [2,39].

It has been recognised that explainability of ML systems has to target system-
related aspects, such as data, models and algorithms [2,39], and user-related
features, such as the user’s knowledge of the domain and the interface [12,37].
Some authors propose to include explainability as a non-functional requirement
in the process of software design by focusing on the real users’ need for explana-
tions of the system’s behaviour [6]. This, in turn, is very difficult given that the
notions of interpretable, intelligible, explainable and understandable AI are vague
and overlapping. For example, [39] discusses multiple definitions of these terms
from literature and, finally, uses interpretability as a synonym to all termsthat
describe the process and the result of human sense-making by using, training
and modifying an ML system. In contrast [13] uses the term transparency for
“decisions affecting us explained to us in terms, formats, and languages we can
understand” [13, p. 29].

What is more, case studies such as [12] show that in industrial applications
of XAI, different users have different needs (data scientists want to see the data
while ML engineers want to see the trained model).

In order to make the explainability requirement manageable, we created an
aggregate of existing taxonomies for XAI [2,13,39]. The interface dimension has
not been mentioned in the earlier taxonomies, however, it is an important aspect.
As pointed out in [2], interactive explanations are rarely studied; a few examples
not mentioned in [2] include [1,16].

The aggregated taxonomy is presented in Table 1. It includes six dimensions:
user, object, scope, directness, interaction and interface. The taxonomy can be
used as follows: first we need to understand who will be the user of the expla-
nations. Then, based on the description of the role or the persona, we need to
determine the object of explanations (can be more than one).
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Table 1. Aggregated dimensions of explainability based on [2,12,13,39] and own work

Dimension Values Reference

User e.g. based on roles or personas [2,12]

Object Data: bias, causality, [2,13,39]

Model: optimiser, training, prediction

Evaluation: accuracy, fairness of the decisions, safety
and reliability of the system

Scope Local vs. global [2]

Directness Directly interpretable, post-hoc explanation after
training, surrogate approximation model

[2,13]

Interaction Static vs. interactive [2]

Interface Visualisation, voice, text, virtual or augmented reality,
multi-modal

Own work

Fig. 1. Cut colour paper circles, write the dimensions on them and assemble in the
center, then rotate and bring the needed dimensions together on a line to construct a
vector describing your case
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For every object, explanations can be of different scope (local or global).
The models used for each object can be either directly interpretable (e.g. a
small and simple set of rules) or can be explained post-hoc or using a surrogate,
approximation model. The explanations for each of those cases can be either
static or interactive. For both static and interactive explanations, we can use
different interfaces, e.g. conversational, visual and multi-modal. Figure 1 shows
how this taxonomy can be visually used to choose the right features.

3 Steps in the Innovation Process

This section explains the changes needed in the custom-code upgrade process
in order to go from the rule-based existing system to an ML-based system with
a multi-modal conversational interface. In theory it is possible to have multiple
interfaces for the same XAI system (e.g. an app, a website and an Alexa skill.
However, we chose a multi-modal conversational interface for our business case,
as explained below.

3.1 Custom Code Analysis

Custom code analysis includes detection of unused custom code, syntactic,
semantic and functional analysis. It addresses two key requirements for a suc-
cessful ERP upgrade project:

1. System clean-up and
2. Replacement of custom programs whose functionality is already covered by

the standard functionality of the target version (obsolete programs).

System clean-up includes identification of duplicates, outdated, or unused
functions in the custom code. Between 40% and 70% of the customisations in
an average SAP system are not in use [10]. Replacement of obsolete custom pro-
grams with standard functionality implies a detailed analysis of the features in
the target ERP version [5]. We challenge scholar state of the art by applying
natural language processing (NLP) methods, models and tools to legacy pro-
gramming languages. We analyse the ABAP custom code on syntactic, semantic
and functional levels.

In the first step we develop a general method based on NLP state-of-the-
art to identify and track custom programs that are obsolete, no longer in use
or incompatible with application functionality, data model and interfaces. The
automation of the custom code analysis happens in four stages:

1. Detection of unused custom code. It includes custom programs that have
not been activated in the ERP system for more than N months (in practice,
6 ≤ N ≤ 18), including underutilized dependencies (modules that are used
only partially and contain blocks of “dead code”) [41].
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2. Syntactic analysis. It includes checks with respect to the target ERP related
to the syntactic correctness of the custom programs, the correctness of the
data model, and the API interface compatibility with the target platform.
This step can be formulated as a machine-translation problem in which the
translation happens from code with syntactic errors to correct code [28].

3. Semantic analysis. This phase detects code clones. Following [32] we distin-
guish between structural clones (exact copies of code, copies with renaming
and/or modification) and semantic clones (programs that do the same with-
out being structurally similar). Code clones are intentionally introduced by
programmers because they help to address changes quickly, save procedure
calls and are encouraged by template-based programming. However, code
clones increase maintenance costs, cause bug propagation and have negative
impact on design and system understanding [32]. Scientists distinguish four
types of semantic clones with different grades of syntactic similarities. Type
1 of code clones are syntactically very similar, while Type 4 code clones have
no syntactic similarities. The problem can be technically solved using neural
models, for example convolutional [42] or rule-based approaches, for example
graph-based [35].

4. Functional analysis. This step detects obsolete programs. Detection of
obsolete programs is one instance of the Type 4 semantic clone detection.
Neural models have been shown to be most successful for this task [42]. Cus-
tom code is usually unstructured bulk of programs while SAP uses so-called
tile architecture in which all programs are classified by business area. There-
fore, we can also specify the detection of obsolete custom programs as a text
classification task with the classes from SAP core. Deep Learning-based text
classification approaches are in this case also the most successful [25].

These four stages of the custom code analysis deliver facts about the actual state
of the software code in a particular ERP system with respect to a particular
target release version. Thus, these analysis steps need to be repeated for each
source-target pair each time.

Usually, the results of such an analysis are presented to a business analyst
in the form of hundreds of spreadsheets (the number depends on the system’s
size and the number of identified issues in the custom code). The business ana-
lyst makes decisions related to the code transformation using standard business
intelligence software. We decided to automate this process using multi-modal
conversational interfaces. We store the facts learned about the current state of
the system in a knowledge base. The next section explains the implementation
of the multi-model conversational interface.

3.2 Multi-modal Conversational Interface

Conversational interfaces, also called chatbots, support explainability of complex
technical systems [16] and facilitate complex problem solving [11]. Multi-modal
conversational interfaces have been explored in the bio-informatics domain [8]
and fashion retail applications [20]. The authors in [8] formulate seven design
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Fig. 2. Preliminary design of the multi-modal conversational interface

principles for multi-modal conversational interfaces which we use for the design
of our system. Figure 2 shows the current modalities.

The visualisation area presents the contextual view on the data from the
knowledge base as requested by the user via the conversation area. The con-
versation area is designed and developed as a standard chatbot design pipeline
consisting of skills, natural language understanding (NLU) module and natural
language generation (NLG) module

1. Skills are defined manually using the SAP CAI interface4. Each skill contains
the domain knowledge of the analysed custom code, e.g. obsolete code, unused
code etc. Therefore, the skills are the same for each system to be analysed
and explored with the help of the new interface.

2. Because Intent-based language understanding is commonly used in NLU plat-
forms for task-based interactions. Intents represent the identified meaning of a
user’s utterance. NLU models are usually trained on a large number of exam-
ples of user inputs. Because no conversational training data for the custom
code upgrade domain are available, we use other types of documents such as
analysis reports and written customer communication.

3. For the NLG module, we define the chatbot’s interaction profile that is con-
sistent with the corporate environment. We use the persona methodology to
define the chatbot’s personality aligned with the company’s brand [23].

4 https://cai.tools.sap, former recast.ai.

https://cai.tools.sap
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The advantage of the multi-modal interface is that the users can simulate
software code transformation results before they trigger the actual transforma-
tion in the development system. The so-called “what-if”-analysis can be easily
initiated in the conversational area of the interface, and visualised in the visu-
alisation area. Because bad user experience also may negatively influence the
explainability of the system [34], we apply recent conversational user experience
(CUX) findings when designing the interaction with the multimodal interface,
see for instance [14].

3.3 Source-Code Transformation

An automated source-code transformation can be then triggered via the conver-
sational interface and includes:

1. Archiving of unused custom programs;
2. Removal of obsolete programs;
3. Code transformation for custom programs that are currently in use and whose

function is not covered by the core programs. Modification of functions incom-
patible with new interfaces (i.e. cloud interfaces).

The latter item, automated source-code transformation, is also known as source
code translation or language migration. Academic literature reports various
types of source-code translation: translation from a programming language
to pseudo-code and back [30]; from one programming language to a differ-
ent programming language [17]; from code with errors to code without errors
(code repair) [24]; from proprietary languages to non-proprietary languages (e.g.
ABAP to Java) [27]; from source code to natural language (source code sum-
marisation) [15]; and from a natural language to API code templates [29]. In
this project we perform transformations from ABAP to ABAP (proprietary lan-
guage) while correcting errors in the code.

4 Explainability Requirements and Costs

As explained in Sect. 3, ML is used in several phases of the analysis and transfor-
mation process, and also for the conversational part of the multi-modal interface.
In this section we analyse, what kind of explainability we need at which step,
and what are their costs. In order to obtain the requirements for explainability,
we use the aggregate taxonomy presented in Sect. 2. We summarise in Table 2
how the explainability requirements change if the proposed innovation replaces
the existing rule-based system.
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Table 2. Changes in explainability requirements caused by transformation from the
rule-based solution to the ML-based solution described in Sect.3, differences marked
in bold

Dimension Before After

User ABAP developer, project
manager, business analyst

ABAP developer, project manager,
business analyst, ML/NLP engineer

Object Data: causality Data: bias, causality

Model: classification Model: optimiser, training, prediction

Evaluation: accuracy,
safety

Evaluation: accuracy, safety

Scope Local: single rules Local: single prediction of an error

Global: behaviour of the code
analyser and its parts, behaviour of
the NLU

Directness Directly interpretable Post-hoc, surrogate

Interaction Static Interactive

Interface Spreadsheets Multi-modal, conversational

4.1 Explainability Requirements

As suggested in Sect. 3.1, the code transformation task can be defined as a
machine-translation problem. NLP methods have been successfully used for sim-
ilar tasks for software code (see Sect. 3.3 for references). Neural machine-learning
models deliver the most accurate results on tasks similar to machine translation,
including software code migration. However, these models are the least inter-
pretable. Although attempts are made to make neural models explainable [3,38],
the explanations are mostly limited to visualisation of functions and variables.
Such explanations are only accessible to ML experts. For instance, if visualisa-
tion of a function in the model training process has a particular curve, what does
it mean for the expert? How would an expert explain this curve to a non-expert
(simplified explanations)? This question must find an answer in the design of
the multi-modal interface: the knowledge stored in the knowledge base needs to
be formulated in natural-language utterances and/or visual elements in a way
accessible to the target user group.

Because different roles may need different explanations, we analyse here the
explainability requirements by role:

1. ML/NLP engineer: is interested in validating the models and the data for a
particular release version and a particular set of custom programs. This role
would need static views on data (both bias and causality) and models (opti-
mizer and training) as well as evaluation of the accuracy. Static visualisations
are an appropriate way used in most ML tools to generate surrogate-based
and post-hoc explanations. This role would need explanations on the global
level, but may need to have access to single predictions for evaluation.
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2. ABAP developer: wants to know why a particular program has been classified
as incorrect or obsolete. The explanation needs to be static, local and post-hoc
at the level of model.

3. Project manager: needs to ensure a smooth execution of the project and is
interested in the global picture of the code analysis in order to plan human
resources for post-processing and quality assessment. Explanations for this
role need to be interactive, global, post-hoc, the object of the explanations
will be mostly model and evaluation.

4. Business analyst: is interested in the global picture and in simulations. This
role would need interactive, global explanations of the surrogate model.

A set of explainability tools similar to AIX360 described in [2] can be built and
offered to the users via multi-modal interface.

Because the user of the analysis results will mainly interact with the new
multi-modal interface, static explanations can be generated in the process of
interaction with the interface. The explanations can have the form of natural-
language utterances generated by the chatbot, or visual shown in the visual-
isation area, or a synchronised version of both areas where a visualisation is
generated and an utterance explains what the visualisation is supposed to show.
The conversational area of the interface does not have to be restricted on text
input. As CUX research suggests, a wise combination of textual and visual ele-
ments improves the CUX [14], and consequently, it improves transparency of the
system to the target user group. Therefore, we use the 12 heuristics suggested
in [14] for the interface and interaction design.

In addition, humans usually use less precise formulations in their requests
that computer systems store in the models. As Hagras (2018) [13] and Alonso et
al. ([1]) point out, humans are able to communicate effectively with imprecisely
defined labels such as slow, slightly and infrequent, while computer systems need
a specific numerical value for such labels. The numerical values for these labels
would be different for different people, but the conversational interface needs to
map them to precise numbers. Both works suggest using fuzzy logic to deal with
such issues. One possible consequence of this could be additional effort in the
system’s explanations of the sort “Did you mean...?”

4.2 Explainability Costs

The number of tools that support explainability tasks is growing and the range
of the problems tackled becomes wider and wider. We can see the explainability
requirements for which no tools or methods currently exist as infinitely large.
For those requirements that are currently supported by tools, we set the cost at
1. For directly interpretable parts of the systems, we set the costs as 0.

As shown in Table 2, the new system needs to be made explainable for dif-
ferent roles. Each role may need different parts of the system to be explained
in different ways. Therefore, costs of explainability can be different for different
roles. In Table 3 we specify the explainability costs for each of the parts of the
new technology.
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Table 3. Explainability costs for each step in the innovation process

Step Explainability type Cost

Unused code detection Directly interpretable 0

Syntactic analysis Post-hoc or surrogate 1

Semantic analysis

- Structural clones Directly interpretable 0

- Semantic clones Post-hoc or surrogate 1

Functional analysis Post-hoc or surrogate 1

NLU Post-hoc 1

NLG Directly interpretable 0

Simulation Surrogate 1

As we can see from Table 3, it is possible to find an explainable model for
each part so that costs are never infinitely large. Specific methods for explainable
neural models have been developed, for example [4,19,22,38]. However, they may
be insufficient for users who are not ML engineers. The multi-modal conversa-
tional interface can help to solve this issue in the form of feature generalisation
and zoom-in/zoom-out visualisations. Also, simplified explanations as described
above would be required.

5 Conclusions

This research was motivated by the question, whether an XAI system would
cause addition costs as compared to non-XAI version. We analysed a use case
from the SAP custom code transformation domain. To evaluate the costs we
proposed an aggregated taxonomy for XAI based on six dimensions: user, object,
scope, directness, interaction and interface.

We found that the new approach will cause additional effort at all six dimen-
sions. However, due to recent progress in the implementation of explainable
neural models such as [4,19,22,38], the costs are not infinitely large. Neverthe-
less, the creation of a multi-modal interactive interface for explanations would
require integration of the explainable models in the process from the beginning.

The proposed approach brings the risk that the explainable methods
described in the academic literature are not suitable for deployment in a deployed
system. However, tool sets for XAI such as AIX360 show that it is technically
possible at least in some cases.
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Abstract. Financial markets are a real life multi-agent system that is
well known to be hard to explain and interpret. We consider a gradi-
ent boosting decision trees (GBDT) approach to predict large S&P 500
price drops from a set of 150 technical, fundamental and macroeconomic
features. We report an improved accuracy of GBDT over other machine
learning (ML) methods on the S&P 500 futures prices. We show that
retaining fewer and carefully selected features provides improvements
across all ML approaches. Shapley values have recently been introduced
from game theory to the field of ML. They allow for a robust identifica-
tion of the most important variables predicting stock market crises, and
of a local explanation of the crisis probability at each date, through a
consistent features attribution. We apply this methodology to analyse in
detail the March 2020 financial meltdown, for which the model offered a
timely out of sample prediction. This analysis unveils in particular the
contrarian predictive role of the tech equity sector before and after the
crash.

Keywords: Explainable AI · GBDT · Multi-agent environment ·
Financial markets meltdown

1 Introduction

Financial markets are a real life multi agent systems that is well known to be
hard to forecast and to explain. The prediction of equity crashes, although par-
ticularly challenging due to their infrequent nature and the non-stationary fea-
tures of financial markets, has been the focus of several important works in the
past decades. For instance, [38] have proposed a deterministic log-periodic model
with finite-time explosion to represent equity prices bubbles and crashes. In more
recent works, [14] and [35] have introduced machine-learning approaches to the
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prediction of global equity crises, emphasizing the importance of cross-market
contagion effects. Our goal in this work is to use an AI model that is accurate
and explainable to solve the multi-agent system environment of financial mar-
kets. Hence, we introduce a gradient boosting decision tree (GBDT) approach
to predict large falls in the S&P500 equity index, using a large set of technical,
fundamental and macroeconomic features as predictors. Besides illustrating the
value of carefully selecting the features and the superior accuracy of GBDT over
other ML approaches in some types of small/imbalanced data sets classification
problems, our main contribution lies in the explanation of the model predictions
at any date. Indeed, from a practitioner viewpoint, understanding why a model
provides certain predictions is at least as important as its accuracy. Although
the complexity of AI models is often presented as a barrier to a practitioner
understanding of their local predictions, the use of SHAP (SHapley Additive
exPlanation) values, introduced for the first time by [24] in machine-learning
applications, makes AI models more explainable and transparent. Shapley values
are the contributions of each individual feature to the overall crash logit proba-
bility. They represent the only set of attributions presenting certain properties
of consistency and additivity, as defined by Lundberg. In particular, the most
commonly used variable importance measurement methodologies fail to pass the
consistency test, which makes it difficult to compare their outputs across differ-
ent models. Shapley values enlighten both the global understanding and the local
explanations of machine learning prediction models, as they may be computed
at each point in time.

In our context, this approach first allows us to determine which features
most efficiently predict equity crashes (and in which global direction). We infer
from a features importance analysis that the S&P500 crash probability is driven
by a mix of pro-cyclical and counter-cyclical features. Pro-cyclical features con-
sist either of positive economic/equity market developments that remove the
prospect of large equity price drops, or alternatively of negative economic/equity
market shocks that portend deadly equity downward spirals. Among these pro-
cyclical features, we find the 120-day S&P500 Price/Earnings ratio percent
change, the global risk aversion level, the 20-day S&P500 sales percent change,
the six-months to one-year US 2 Yrs and 10 Yrs rates evolution, economic sur-
prises indices, and the medium-term industrial metals, European equity indices
and emerging currencies price trends. Conversely, counter-cyclical features can
either be positive economic/equity market anticipations predating large equity
price corrections, or negative shocks involving a reduced risk of equity downside
moves. Important contrarian indicators are the put/call ratio, the six-months
S&P500 sales percent change, the 100-day Nasdaq 100 Sharpe ratio and the
U.S. 100-day 10 Yrs real interest change. Sharpe ratios are well known to be pre-
dictive in asset management. Indeed it can be shown that Sharpe ratio makes
a lot of sense for manager to measure their performance. The distribution of
Sharpe ratio can be computed explicitly [4]. Sharpe ratio is not an accident and
is a good indicator of manager performance [7]. It can also be related to other
performance measures like Omega ratio [6] and other performance ratios [5].
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A second crucial contribution of Shapley values is to help uncover how dif-
ferent features locally contribute to the logit probability at each point in time.
We apply this methodology to analyse in detail the unfolding of the events sur-
rounding the March 2020 equity meltdown, for which the model offered a timely
prediction out of sample. On January 1, 2020, the crash probability was fairly
low, standing at 9.4%. On February 3, we observe a first neat increase in the
crash probability (to 27%), driven by the 100-day Nasdaq Sharpe Ratio contrar-
ian indicator. At the onset of the Covid crash, on March 2, 2020, most pro-cyclical
indicators concurred to steeply increase the crash probability (to 61%), as given
by Fig. 5, in a way that proved prescient. Interestingly, the Nasdaq 100 index had
already started its correction by this date, prompting the tech sector contrarian
indicators to switch back in favor of a decreased crash probability. On April 1st,
the crash probability plummeted back to 29%, as the Nasdaq 100 appeared over-
sold while the Put/Call ratio reflected extremely cautious market anticipations.
Overall, the analysis unveils the role of the tech sector as a powerful contrarian
predictor before and after the March 2020 crash.

1.1 Related Works

Our work can be related to the ever growing field of machine learning applica-
tions to financial markets forecasting. Indeed, robust forecasting methods have
recently garnered a lot of interest, both from finance scholars and practitioners.
This interest can be traced back as early as the late 2000’s where machine learn-
ing started to pick up. Instead of listing the large amount of works, we will refer
readers to various works that reviewed the existing literature in chronological
order.

In 2009, [3] surveyed already more than 100 related published articles using
neural and neuro-fuzzy techniques derived and applied to forecasting stock mar-
kets, or discussing classifications of financial market data and forecasting meth-
ods. In 2010, [22] gave a survey on the application of artificial neural networks in
forecasting financial market prices, including exchange rates, stock prices, and
financial crisis prediction as well as option pricing. And the stream of machine
learning was not only based on neural network but also genetic and evolutionary
algorithms as reviewed in [2].

More recently, [39] reviewed the application of cutting-edge NLP techniques
for financial forecasting, using text from financial news or tweets. [34] covered the
wider topic of machine learning, including deep learning, applications to financial
portfolio allocation and optimization systems. [30] focused on the use of support
vector machine and artificial neural networks to forecast prices and regimes
based on fundamental and technical analysis. Later on, [37] discussed some of the
challenges and research opportunities, including issues for algorithmic trading,
back testing and live testing on single stocks and more generally prediction in
financial market. Finally, [36] reviewed deep learning as well as other machine
learning methods to forecast financial time series. As the hype has been recently
mostly on deep learning, it comes as no surprise that most reviewed works relate



192 J. J. Ohana et al.

to this field. One of the only works, to our knowledge, that refers to gradient
boosted decision tree applications is [21].

Recently, [35], used machine learning to provide early signal to predict finan-
cial crises. The article emphasizes that regional crashes may spread to the whole
market, increase the probability of re-occurrence of crises in the near term and
show universal and characteristic behavior that machine learning can capture.
Likewise, [18] proved that machine learning techniques are able to extract and
identify dominant predictive signals, that includes variations on momentum, liq-
uidity, and volatility. They show that machine learning methods are able to
provide predictive gains thanks to capturing nonlinear interactions missed by
other methods. The aim of this article is to present a machine learning planning
algorithm that captures universal and reproducible behaviours to timely invest
in and divest from equity markets. On another theme, [8,9,11] or [10] showed
that deep reinforcement learning are a good alternative to traditional portfolio
methods. However, if one wants specifically to target crisis detection, a good
alternative is rather to tackle this planning exercise as a supervised learning
problem.

Interestingly, Gradient boosting decision trees (GBDT) are almost non-
existent in the financial market forecasting literature. As is well-known, GBDT
are prone to over-fitting in regression applications. However, they are the method
of choice for classification problems as reported by the ML platform Kaggle. In
finance, the only space where GBDT have become popular is the credit scoring
and retail banking literature. For instance, [13] or [28] reported that GBDT are
the best ML method for this specific task as they can cope with limited amount
of data and very imbalanced classes.

When classifying stock markets into two regimes (a ‘normal’ one and a ‘crisis’
one), we are precisely facing very imbalanced classes and a binary classification
challenge. In addition, when working with daily observations, we are faced with
a ML problem with a limited number of data. These two points can seriously
hinder the performance of deep learning algorithms that are well known to be
data greedy. Hence, our work investigates whether GBDT can provide a suitable
method to identify stock market regimes. In addition, as a byproduct, GBDT
provide explicit decision rules (as opposed to deep learning), making it an ideal
candidate to investigate regime qualification for stock markets. In this work, we
apply our methodology to the US S&P 500 futures prices. In unreported works,
we have shown that our approach may easily and successfully be transposed to
other leading stock indices like the Nasdaq, the Eurostoxx, the FTSE, the Nikkei
or the MSCI Emerging futures prices.

Concerning explainable AI (XAI), there has been plenty of research on trans-
parent and interpretable machine learning models, with comprehensive surveys
like [1] or [16]. [33] discusses at length XAI motivations, and methods. Fur-
thermore, [23] regroup XAI into three main categories for understanding, diag-
nosing and refining. It also presents applicable examples relating to the pre-
vailing state-of-the-art with upcoming future possibilities. Indeed, explainable
systems for machine learning have has applied in multiple fields like plant stress
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phenotyping [17], heat recycling, fault detection [25], capsule Gastroenterol-
ogy [26] and loan attribution [27]. Furthermore, [27] use a combination of LIME
and Shapley for understanding and explaining models outputs. Our application
is about financial markets which is a more complex multi-agent environment
where global explainability is more needed, hence the usage of Shapley to pro-
vide intuition and insights to explain and understand model outputs.

1.2 Contribution

Our contributions are threefold:

– We specify a valid GBDT methodology to identify stock market regimes,
based on a combination of more than 150 features including financial, macro,
risk aversion, price and technical indicators.

– We compare this methodology with other machine learning (ML) methods
and report an improved accuracy of GBDT over other ML methods on the
S&P 500 futures prices.

– Last but not least, we use Shapley values to provide a global understanding
and local explanations of the model at each date, which allows us to analyze
in detail the model predictions before and after the March 2020 equity crash.

1.3 Why GBDT?

The motivations for Gradient boosting decision trees (GBDT) are multiple:

– GBDT are the most suitable ML methods for small data sets classification
problems. In particular, they are known to perform better than their state-
of-the-art cousins, Deep Learning methods, for small data sets. As a matter
of fact, GBDT methods have been Kagglers’ preferred ones and have won
multiple challenges.

– GBDT methods are less sensitive to data re-scaling, compared to logistic
regression or penalized methods.

– They can cope with imbalanced data sets.
– They allow for very fast training when using the leaf-wise tree growth (com-

pared to level-wise tree growth).

2 Methodology

In a normal regime, equity markets are rising as investors get rewarded for
their risk-taking. This has been referred to as the ‘equity risk premium’ in the
financial economics literature [29]. However, there are subsequent downturns
when financial markets switch to panic mode and start falling sharply. Hence,
we can simply assume that there are two equity market regimes:

– a normal regime where an asset manager should be positively exposed to
benefit from the upward bias in equity markets.
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– and a crisis regime, where an asset manager should either reduce its equity
exposure or even possibly short-sell when permitted.

We define a crisis regime as an occurrence of index return below the historical
5% percentile, computed on the training data set. The 5% is not taken randomly
but has been validated historically to provide meaningful levels, indicative of real
panic and more importantly forecastable. For instance, in the S&P 500 market,
typical levels are returns of −6 to −5% over a 15-day horizon. To predict whether
the coming 15-day return will be below the 5% percentile (hence being classified
as in crisis regime), we use more than 150 features described later on. Simply
speaking, these 150 features are variables ranging from risk aversion measures
to financial metrics indicators like 12-month-forward sales estimates, earning
per share, Price/Earnings ratio, economic surprise indices (like the aggregated
Citigroup index that compiles major figures like ISM numbers, non farm payrolls,
unemployment rates, etc.).

We only consider two regimes with a specific focus on left-tail events on the
returns distribution because we found it easier to characterize extreme returns
than to predict outright returns using our set of financial features. In the ML
language, our regime detection problem is a pure supervised learning exercise,
with a two-regimes classification. Hence the probability of being in the normal
regime and the one of being in the crisis regime sum to one.

Daily price data are denoted by Pt. The return over a period of d trading
days is simply given by the corresponding percentage change over the period:
Rd

t = Pt/Pt−d −1. The crisis regime is determined by the subset of events where
returns are lower or equal to the historical 5% percentile denoted by C. Returns
that are below this threshold are labeled “1” while the label value for the normal
regime is set to “0”. Using traditional binary classification formalism, we denote
the training data X = {xi}Ni=1 with xi ∈ R

D and their corresponding labels
Y = {yi}Ni=1 with yi ∈ 0, 1. The goal is to find the best classification function
f∗(x) according to the temporal sum of some specific loss function L(yi, f(xi))
as follows:

f∗ = arg min
f

N∑

i=1

L(yi, f(xi))

Gradient boosting assumes the function f to take an additive form:

f(x) =
T∑

m=1

fm(x) (1)

where T is the number of iterations. The set of weak learners fm(x) is
designed in an incremental fashion. At the m-th stage, the newly added function,
fm is chosen to optimize the aggregated loss while keeping the previously found
weak learners {fj}m−1

j=1 fixed. Each function fm belongs to a set of parameter-
ized base learners that are modeled as decision trees. Hence, in GBDT, there
is an obvious design trade-off between taking a large number of boosted rounds
and very simple based decision trees or a limited number of base learners but
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of larger size. From our experience, it is better to take small decision trees to
avoid over-fitting and an important number of boosted rounds. In this work, we
use 500 boosted rounds. The intuition between this choice is to prefer a large
crowd of experts that difficultly memorize data and should hence avoid over-
fitting compared to a small number of strong experts that are represented by
large decision trees. Indeed, if these trees go wrong, their failure is not averaged
out, as opposed to the first alternative. Typical implementations of GBDT are
XGBoost, as presented in [15], LightGBM as presented [19], or Catboost as pre-
sented [31]. We tested both XGBoost and LightGBM and found threefold speed
for LighGBM compared to XGBoost for similar learning performances. Hence,
in the rest of the paper, we will focus on LightGBM.

For our experiments, we use daily observations of the S&P 500 merged back-
adjusted (rolled) futures prices using Homa internal market data. Our daily
observations are from 01 Jan 2003 to 15 Jan 2021. We split our data into three
subsets: a training sample from 01 Jan 2003 to 31 Dec 2018, a validation sample
used to find best hyper-parameters from 01 Jan 2019 to 31 Dec 2019 and a test
sample from 01 Jan 2020 to 15 Jan 2021.

2.1 GBDT Hyperparameters

The GBDT model contains a high number of hyper-parameters to be specified.
From our experience, the following hyper-parameters are very relevant for imbal-
anced data sets and need to be fine-tuned using evolutionary optimisations as
presented in [12]: min sum hessian in leaf, min gain to split, feature fraction,
bagging fraction and lambda l2. The max depth parameter plays a central role
in the use of GBDT. On the S&P 500 futures, we found that very small trees
with a max depth of one performs better over time than larger trees. The 5
parameters mentioned above are determined as the best hyper parameters on
the validation set.

2.2 Features Used

The model is fed by more than 150 features to derive a daily ‘crash’ probability.
These data can be grouped into 6 families:

– Risk aversion metrics such as equities’, currencies’ or commodities’ implied
volatilities, credit spreads and VIC forward curves.

– Price indicators such as returns, sharpe ratio of major stock markets, dis-
tance from long term moving average and equity-bond correlation.

– Financial metrics such as sales growth or Price/Earnings ratios forecast 12
month forward.

– Macroeconomic indicators such as economic surprises indices by region
and globally as given by Citigroup surprise index.

– Technical indicators such as market breath or put-call ratio.
– Rates such as 10 Yrs and 2 Yrs U.S. rates, or break-even inflation information.
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2.3 Process of Features Selection

Using all raw features would add too much noise in our model and would lead
to biased decisions. We thus need to select or extract only the most meaningful
features. As we can see in Fig. 1, we do so by removing the features in 2 steps:

– Based on gradient boosting trees, we rank the features by importance or
contribution.

– We then pay attention to the severity of multicollinearity in an ordinary least
squares regression analysis by computing the variance inflation factor (VIF)
to remove co-linear features. Considering a linear model Y = β0 + β1X1 +
β2X2 + .. + βnXn + ε, the VIF is equal to 1

1−R2
j
, R2

j being the multiple R2

for the regression of Xj on other covariates. The VIF reflects the presence of
collinear factors that increase the variance in the coefficient estimates.

At the end of this 2-part process, we only keep 33% of the initial features.

Fig. 1. Probabilities of crash

In the next section, we will investigate whether removing correlated features
improves the out-of-sample precision of the model.

3 Results

3.1 Model Presentation

Although our work is mostly focused on the GBDT model, we compare it against
common ML models, namely:
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– a support vector model with a radial basis function kernel, a γ parameter of
2 and a C parameter of 1 (RBF SVM). We use the sklearn implementation.
The two hyper parameters γ and C are found on the validation set.

– a Random Forest (RF) model, whose max depth is set to 1 and boosted
rounds are set to 500. We purposely tune the RF model similarly to our
GBDT model in order to benefit from the above mentioned error averaging
feature. We found this parameter combination to perform well for annual
validation data sets ranging from year 2015 onward on the S&P 500 market.
We note that a max depth of 1 does not allow for interaction effects between
features.

– a first deep learning model, referred to in our experiment as Deep FC (for
fully connected layers), which is naively built with three fully connected layers
(64, 32 and one for the final layer) with a drop out in of 5% between and Relu
activation, whose implementation details rely on tensorflow keras 2.0.

– a second more advanced deep learning model consisting of two layers referred
to in our experiment as deep LSTM: a 64 nodes LSTM layer followed by a
5% dropout followed by a 32 nodes dense layer followed by a dense layer with
a single node and a sigmöıd activation.

For both deep learning models, we use a standard Adam optimizer whose benefit
is to combine adaptive gradient descent with root mean square propagation [20].

We train each model using either the full set of features or only the filtered
ones, as described in Fig. 1. Hence, for each model, we add a suffix ‘raw’ or ‘FS’
to specify if the model is trained on the full set of features or after features
selections. We provide the performance of these models according to different
metrics, namely accuracy, precision, recall, f1-score, average precision, AUC and
AUC-pr in Table 1. The GBDT with features selection is superior according to all
metrics and outperforms in particular the deep learning model based on LSTM,
confirming the consensus reached in the ML community as regards classification
problems in small and imbalanced data sets.

Table 1. Model comparison

Model Accuracy Precision Recall F1-score Avg precision AUC AUC-pr

GBDT FS 0.89 0.55 0.55 0.55 0.35 0.83 0.58

Deep LSTM FS 0.87 0.06 0.02 0.05 0.13 0.74 0.56

RBF SVM FS 0.87 0.03 0.07 0.06 0.13 0.50 0.56

Random Forest FS 0.87 0.03 0.07 0.04 0.13 0.54 0.56

Deep FC FS 0.87 0.01 0.02 0.04 0.13 0.50 0.56

Deep LSTM Raw 0.84 0.37 0.33 0.35 0.21 0.63 0.39

RBF SVM Raw 0.87 0.02 0.01 0.05 0.13 0.50 0.36

Random Forest Raw 0.86 0.30 0.09 0.14 0.14 0.53 0.25

GBDT Raw 0.86 0.20 0.03 0.05 0.13 0.51 0.18

Deep FC Raw 0.85 0.07 0.05 0.02 0.13 0.49 0.06
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3.2 AUC Performance

Figure 2 provides the ROC Curve for the two best performing models, the GBDT
and the Deep learning LSTM model with features selection. ROC curves enables
to visualize and analyse the relationship between precision and recall and to
investigate whether the model makes more type I or type II errors when iden-
tifying market regimes. The receiver operating characteristic (ROC) curve plots
the true positive rate (sensitivity) on the vertical axis against the false positive
rate (1 - specificity, fall-out) on the horizontal axis for all possible threshold val-
ues. The two curves are well above the blind guess benchmark that is represented
by the dotted red line. This effectively demonstrates that these two models have
some predictability power, although being far from a perfect score that would be
represented by a half square. Furthermore, the area under the GBDT curve with
features selection is 0.83, to be compared with 0.74, the one of the second best
model (deep LSTM), also with Features selection. Its curve, in blue, is mostly
over the one of the second best model (deep LSTM), in red, which indicates that
in most situations, GBDT model performs better than the deep LSTM model.

Fig. 2. ROC curve of the two best models (Color figure online)

4 Understanding the Model

4.1 Shapley Values

Building on the work of [24], we use Shapley values to represent the contribution
of each feature to the crisis probability. SHAP (SHapley Additive exPlanation)
values explain the output of a function f as a sum of the effects of each feature.
It assigns an importance value to each feature that represents the effect on the
model prediction of including that feature. To compute this effect, a model fS∪{i}



Explainable AI Models 199

is trained with that feature present, and another model fS is trained with the
feature withheld. This method hence requires retraining the model on all feature
subsets S ⊆ M\{i}, where M is the set of all features. Then, predictions from
the two models are compared through the difference fS∪{i}(xS∪{i}) − fS(xS),
where xS represents the values of the input features in the set S. Since the effect
of withholding a feature depends on other features in the model, the preceding
differences are computed on all possible differences fS∪{i}(xS∪{i}) − fS(xS),
for all possible subsets S ⊆ M\{i}. Shapley values are then constructed as a
weighted average of all these differences, as follows:

Definition 1. Shapley Value. The Shapley value Φi attributed to feature i is
defined as:

Φi =
∑

S⊆M\{i}

|S|! (|M | − |S| − 1)!

|M |!
(
fS∪{i}(xS∪{i}) − fS(xS)

)

where |A| refers to the cardinal of the set A, M is the complete set of features,
S is the subset of features used, and xS represents the values of the input features
in the set S. Proofs from game theory shows that Shapley values are the only
possible consistent approach such that the sum of the feature attributions is equal
to the output of the function we are to explain. Another approach for providing
explanation is LIME, which is a model-agnostic local approach. Compared to
LIME as presented in [32], Shap has the advantage of consistency, and focus at
global interpretability versus local for LIME.

The exact computation of SHAP values is challenging. In practice, assuming
features’ independence, we approximate fS(xS) by the Shapley ‘sampling value’,
i.e. the conditional mean of the global model prediction f̂(X) (calibrated on the
complete set of features), marginalizing over the values xC of features that are
not included in set S:

fS(xS) = E[f̂(X)|xS ] ≈
∫

f̂(xS , xC)p(xC)dxC

In our application, with max depth of 1, interaction effects between features are
discarded, which allows to compute Shapley values trivially from Eq. (1).

4.2 Shapley Interpretation

We can rank the Shapley values by order of magnitude importance, defined
as the average absolute Shapley value over the training set of the model: this is
essentially the average impact on model output when a feature becomes “hidden”
from the model. Furthermore, the correlation of a feature to its Shapley value
provides insight into the effect of this feature on the probability of a stock market
crash. Figure 3 represents the joint behavior of Shapley and features values to
better grasp their non-linear dependencies.

Concerning Fig. 3, we observe that the most significant feature is the 250 days
percent change in S&P 500 Price Earnings ratio (using the forward 1 Yr Earnings
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of the index as provided by Bloomberg). This reflects the presence of persistent
cycles during which market participants’ bullish anticipations regarding future
earnings growths and market valuations translate into reduced downside risk for
equity prices.

By the same token, a positive (resp. negative) 250-day change in the US 2 Yrs
yield characterizes a regime of growth (resp. recession) in equities. A positive
change in the Bloomberg Base Metals index is associated to a reduced crash
probability. The same reasoning applies to the FX Emerging Basket, the S&P
Sales evolution, the Euro Stoxx distance to its 200-day moving average and the
EU Economic Surprise Index. Similarly, a higher (resp. lower) Risk Aversion
implies a higher (resp. lower) crash probability and the same relationship is
observed for the realized 10-day S&P 500 volatility.

Interestingly, the model identifies the Put/Call ratio as a powerful contrarian
indicator. This is a well-known feature highly examined by traditional financial
experts. Indeed, a persistently low level of the Put/Call ratio (as reflected by
a low 20-day moving average) reflects overoptimistic expectations and therefore
an under-hedged market. Last but not least, the Nasdaq 100 is identified as
a contrarian indicator: the higher the Nasdaq 20-day percent change and the
higher the Nasdaq 100-day and 250-day Sharpe Ratios, the higher the crash
probability. More generally, foreign markets are used pro-cyclically (Euro Stoxx,
BCOM Industrials, FX emerging) whereas most domestic price indicators are
used counter-cyclically (Nasdaq 100, S&P 500). This is an example where we
can see some strong added value from the machine learning approach over a
human approach, as the former combines contrarian and trend following signals
while the latter is generally biased towards one type of signals.

4.3 Joint Features and Shapley Values Distribution

Because some of the features have a strongly non-linear relation to the crisis
probability, we also display in Fig. 3 the joint behavior of features and Shapley
values at each point in time. The y-axis reports the Shapley values, i.e. the
feature contributions to the model output in log-odds (we recall that the GDBT
model has a logistic loss) while the color of the dot represents the value of that
feature at each point in time. This representation uncovers the non-linearities in
the relationship between the Shapley values and the features.

For instance, a large 250-day increase in the P/E ratio (in red color) has a
negative impact on the crash probability, everything else equal. The same type of
dependency is observed for the change in US 10 Yrs and 2 Yrs yields: the higher
(resp. lower) the change in yield, the lower (resp. higher) the crash probability.

However, the dependency of the Shapley value to the 120-day BCOM Indus-
trial Metals Sharpe ratio is non-linear. Elevated Sharpe ratios portend a lower
crash probability while the relation vanishes for low Sharpe ratios. An ambiguous
dependency is also observed for the 100-day Emerging FX Sharpe ratio, which
explains its muted correlation to the Shapley value. This observation is all the
more striking as this feature is identified as important in terms of its global abso-
lute impact on the model output. By the same token, the 20-day percent change
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in S&P 500 Sales does not display a linear relationship to the crash probability.
First of all, mostly elevated values of the change in sales are used by the model.
Second, large increases in S&P 500 sales are most of the time associated with a
drop in the crash probability, but not in every instance.

The impact of the distance of the Euro Stoxx 50 to its 200-day moving average
is mostly unambiguous. Elevated levels in the feature’s distribution generally
(but not systematically) involve a decrease in the crash probability, whereas low
levels of this feature portend an increased likelihood of crisis. The 20-day Moving
Average of the Put/Call Ratio intervenes as a linear contrarian predictor of the
crash probability.

The 20-day percent change in the Nasdaq 100 price is confirmed as a con-
trarian indicator. As illustrated in Fig. 3, the impact of the 20-day Nasdaq 100
returns is non-linear, as negative returns may predict strongly reduced crash
probabilities, while positive returns result in a more moderate increase in the
crash probability. Conversely, the 20-day Euro Stoxx returns have a pro-cyclical
linear impact on the crash probability, as confirmed by Fig. 3. As previously
stated, the GBDT model uses non-US markets in a pro-cyclical way and U.S.
markets in a contrarian manner.

4.4 Local Explanation of the Covid March 2020 Meltdown

Not only can Shapley values provide a global interpretation of features’ impacts,
as described in Sect. 4.2 and in Fig. 3, but they can also convey local explanations
at every single date.

The Fig. 4 provides the Shapley values for the model on February, 2020. At
this date, the model was still positive on the S&P 500 as the crash probability
was fairly low, standing at 9.4%. The 6% 120-day increase in the P/E ratio, the
low risk aversion level, reflecting ample liquidity conditions, and the positive EU
Economic Surprise index all concurred to produce a low crash probability. How-
ever, the decline in the US LIBOR rate, which conveyed gloomy projections on
the U.S. economy, and the elevated Put/Call ratio, reflecting excessive specula-
tive behavior, both contributed positively to the crash probability. On February
3, we observe a first steep increase in the crash probability, driven by the 100-
day Nasdaq Sharpe Ratio contrarian indicator. At the onset of the Covid crash,
on March 2, 2020, the crash probability dramatically increased on the back of
deteriorating industrial metals dynamics, falling Euro Stoxx and FTSE prices,
negative EU economic surprises and decreasing S&P 500 P/E, which caused the
model to identify a downturn in the equities’ cycle. This prediction eventually
proved prescient. Interestingly, the Nasdaq 100 index had already started its cor-
rection by this date, prompting the tech sector contrarian indicators to switch
back in favor of a decreased crash probability.

We can do the same exercise for April 1, 2020. The crash probability plum-
meted as contrarian indicators started to balance pro-cyclical indicators: the
Nasdaq 100 appeared oversold while the Put/Call ratio reflected extremely cau-
tious market anticipations. During several months, the crash probability stabi-
lized between 20% and 30% until the start of July, which showed a noticeable
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Fig. 3. Marginal contribution of features with full distribution

decline of the probability to 11.2%. The P/E cycle started improving and the
momentum signals on base metals and other equities started switching side.
Although the crash probability fluctuated, it remained contained throughout
the rest of the year.
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Fig. 4. Shapley values for 2020-01-01

Last but not least, if we look at Shapley value at the beginning of December
2020, we can draw further conclusions. At the turn of the year, most signals
were positive on the back of improving industrial metals, recovering European
equity markets dynamics, and improving liquidity conditions (reflected by a
falling dollar index and a low Risk Aversion). Although this positive picture is
balanced by falling LIBOR rates and various small contributors, the features’
vote sharply leans in favor of the bullish side.
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Fig. 5. Shapley values for 2020-03-02

5 Conclusion

In this paper, we have shown how the GBDT method may classify financial
markets into normal and crisis regimes, using 150 technical and fundamental
features. When applied to the S&P 500, the method yields a high out-of-sample
AUC score, which suggests that the machine is able to efficiently learn from pre-
vious crises. Our approach also displays an improved accuracy compared to other
ML methods, confirming the relevance of GBDT in solving highly imbalanced
classification problems with a limited number of observations. Furthermore, the
proposed approach could be applied to other fields where crisis detection is key
and where data are non stationary like climate catastrophe, weather patterns
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earthquakes, shocks in power grids and any other economical crash and more
generally any extreme events in times series.

AI models complexity are often a barrier to a practitioner understanding of
their local predictions. Yet, from the practitioner viewpoint, understanding why
a model provides a certain prediction as at least as important as the accuracy
of this prediction. Shapley values allow for a global understanding of the model
behavior and for a local explanation of each feature’s contribution to the crash
probability at each observation date. This framework shed light on the unfolding
of the model predictions during the events that surrounded the March 2020
equity meltdown. In particular, we unveiled the role of the tech equity sector as
a powerful contrarian predictor during this episode.

A few caveats are in order to conclude this paper. First, the model is short-
term in nature and should be employed with an agile flexible mindset, rather
than to guide strategic investment decisions. Second, one must be careful not
becoming overconfident about the forecasting ability of the model, even on a
short-term horizon as the model only captures a probability of crash risk, gen-
erating false positive and false negative signals. More importantly, as financial
markets exhibit a strongly non stationary behavior, it is subject to large out of
sample prediction errors should new patterns emerge.
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Abstract. The advent of Artificial Intelligence (AI) has brought about
significant changes in our daily lives with applications including indus-
try, smart cities, agriculture, and telemedicine. Despite the successes of
AI in other “less-technical” domains, human-AI synergies are required to
ensure user engagement and provide interactive expert knowledge. This
is notably the case of applications related to art since the appreciation
and the comprehension of art is considered to be an exclusively human
capacity. This paper discusses the potential human-AI synergies aiming
at explaining the history of art and artistic style transfer. This work is
done in the context of the “Smart Photobooth” a project which runs
within the AI & Art pavilion. The latter is a satellite event of Esch2022
European Capital of Culture whose main aim is to reflect on AI and the
future of art. The project is mainly an outreach and knowledge dissem-
ination project, it uses a smart photo-booth, capable of automatically
transforming the user’s picture into a well-known artistic style (e.g.,
impressionism), as an interactive approach to introduce the principles
of the history of art to the open public and provide them with a simple
explanation of different art painting styles. Whereas some of the cutting-
edge AI algorithms can provide insights on what constitutes an artistic
style on the visual level, the information provided by human experts
is essential to explain the historical and political context in which the
style emerged. To bridge this gap, this paper explores Human-AI syn-
ergies in which the explanation generated by the eXplainable AI (XAI)
mechanism is coupled with insights from the human expert to provide
explanations for school students as well as a wider audience. Open issues
and challenges are also identified and discussed.
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1 Introduction

In the last decade, AI has become omnipresent with applications spanning from
autonomous vehicles, agriculture, and industry. In recent years, this wave has
also spread to new domains such as digital history and cultural heritage. In
this particular context, making the cultural heritage more accessible and more
engaging by bringing it closer to more audiences is considered to be one of the
main contributions of the latest generation of AI systems [15]. For instance,
MonuMAI is a smartphone app allowing for artistic knowledge dissemination.
MonuMAI classifies photos (e.g., taken for a monument’s facade) and classifies
it into different architectonic style and provide visual hints explaining why the
photo belongs to the style. To do that, MonumMAI relies on deep learning
classifiers supported by expert knowledge [36]. Other works in the literature
aim to increase the accessibility of cultural heritage for target user groups. This
can be either for users with special needs (e.g., elderly people with mobility
constraints [33,34]), or to enhance the level of audience engagement by providing
comprehensible and interactive content. In this paper, we present the Smart
Photobooth project, a project within the context of Esch2022 European capital
of culture.

The Smart Photobooth is an outreach project aiming to disseminate knowl-
edge about the history of art and artistic styles as well as the latest machine
learning mechanisms and their applications in the domain of art generation and
classification. The smart booth relies on Neural Style Transfer (NST) [30] to
transfer an input image (typically the portrait of the user) to one of the most
famous artistic styles (e.g., cubism). NST relies on machine learning Generative
Adversarial Networks (GAN) to achieve the transfer [30].

After the user gets their transformed portrait, they receive both (i) a short
tutorial explaining the style and its position in the history of art based on well-
known paintings from the style and (ii) an AI explanation highlighting the style
features appearing in the transferred user portrait.

Recently, eXplainable Artificial Intelligence (XAI) has been identified as a
powerful approach to support these outreach efforts by helping to interpret the
otherwise incomprehensible inner-workings of sophisticated machine learning
mechanisms such as the advanced GANs powering the NST process [12,15].
In particular, XAI has been suggested as a possible solution to “explain a given
artwork’s success in terms of the underlying influencing artistic styles” [15].

However, this is a challenging task since, in contrast to many other disci-
plines (math, physics, chemistry), making art “understandable” requires a com-
bination of objective and subjective interpretations to analyze its message. For
instance, analyzing the objective features of Guernica, the famous painting by
the Spanish artist Pablo Picasso is not enough to understand the background
and the interpretations of this painting. The latter information is highly subjec-
tive, controversial, and depends on the historical circumstances surrounding the
creation of the painting [48]: the Spanish Civil war, Picasso being commissioned
by Manuel Azana, the president of the short-lived Spanish Republic, to create a
large mural for the Spanish pavilion at the 1937 Paris World’s Fair, as well as the
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bombing of Guernica, a town in the Basque country, on the 26th of April, 1937
by the Condor Legion of the Nazi German air forces, and Picasso’s discussion
with his friend the poet Juan Larrea who urged him to make the bombing his
subject [38], etc.

To overcome this challenge, in this paper we propose a human-agent archi-
tecture allowing us to foster the needed synergies between the involved parties.
Namely, the human end-user, the artist, and the black-box machine learning
mechanism. Based on the context, the user preferences, and the artists’ recom-
mendations, the agent provides personalized explanations combining machine
learning interpretation, agent explainability, as well as the artist’s expert analy-
sis. The architecture is discussed, the challenges it raises and are identified and
discussed.

The rest of this paper is organized as follows. Section 2 lays out the back-
ground for this work. Section 3 introduces the Smart Photobooth project.
Section 4 presents the proposed architecture, Sect. 5 identifies the challenges and
the open issues, and Sect. 6 concludes this article.

2 Background

2.1 AI & Art

Works combining AI and art in the literature fall into two categories. The first
is using AI in the process of creating new art while the second is using AI to
analyze existing human-created art.

AI Art Generation. The recent rapid evolution of Deep Neural Networks
(DNN) has accelerated the use of AI technologies to create art. In particular,
GANs are among the cutting-edge technologies used in this domain. The latter
involves a couple of systems of DNNs designed to compete against each other.
For instance, in the case of GANs generating visual art, a DNN, called the gen-
erator, is trained to generate realistic images whereas the other DNN (known
as the discriminator) is trained to classify generated images as fake while iden-
tifying real artistic pieces as real art. The training of the GAN is achieved once
the generator becomes capable of creating output that cannot be identified as
fake by the discriminator (i.e., the generator outperforms the discriminator).
Recently, this type of models has been implemented in different configurations
(e.g., CycleGAN [60], StyleGAN [31], BigGAN [7]) and has achieved remark-
able results in generating human faces (2D [45] and 3D [55]), music [35], as well
as furniture [58]. Another application of AI Art generation is transferring some
features of the input. Face aging and NST are notable examples.

Understanding AI with Art. The advent of AI has a significant impact on
art access ability and understandability. Several works in the literature have
explored how AI can help make cultural heritage more accessible for users with
special needs. For instance, haptic interfaces have been proposed to be used by
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museums to help visitors with visual impairments formulate mental pictures of
the objects and provide important contextual and navigation information [10,
13,18,56] (cf. [47] for a review).

Moreover, in recent decades, thousands of artworks have been digitized and
are now available online for access and analysis. OmniArt [53] and Art500 [40]
are among the biggest artwork datasets. The former includes about two million
artworks allowing for author, style, period, type and iconography retrieval, color
classification, and object detection, whereas the latter contains about 550 thou-
sand artworks. The Metropolitan Museum of Art of New York also released in
2017 over 406.000 indexed pictures of public domain artwork [1]. The datasets
can retrieve items by authors, genre, styles, events, and historical figures.

Artistic Style Classification. Based on the datasets mentioned above, recent
works in the literature propose to classify paintings into their artistic styles
(Renaissance, Baroque, Impressionism, etc.). Many of these works rely on
style patterns and definitions proposals by the Swiss art historian Heinrich
Wölfflin [57]. In particular, Wölfflin identifies five key visual principles each
defined by two contrasting visual schemes [11,57]:

(i) Linear vs. Painterly. In the former, elements are clearly outlined and
boundaries are clear while in the latter, elements are fused and contours and
edges are blurry. (ii) Closed vs. Open forms. In the former, elements are
balanced with the frame. Vertical and horizontal compositions are dominant. In
the latter, diagonal components are dominants with an impression of the space
going beyond the edges of the picture. (iii) Planner in which elements are
organized in successive planes parallel to the picture plane versus Recessional
which gives an illusion of depth and where elements are arranged on various
planes. (iv) Multiplicity. Elements appear distinct and independent, versus
Unity where elements are fused into a single whole. (v) Absolute clarity with
explicit and articulated forms versus relative clarity with less clearly struc-
tured forms avoiding objective clearness in an intended manner. Recent works
in the literature suggested that convolutional neural networks trained to clas-
sify paintings according to their artistic style, implicitly learn features related to
Wölfflin’s concepts. For instance, Elgammal et al. [17] used a convolutional neu-
ral network to classify paintings into their artistic styles. The results obtained
showed that the network managed to smoothly place an artwork into a tempo-
ral arrangement based on learning style labels. In a related work, the authors
in [11] trained a convolutional neural network to predict the values of the five
Wölfflin concepts (or features). The result of this work showed that the proposed
network learned to discriminate meaningful features corresponding to the visual
characteristics of Wölfflin’s concepts.

But, according to other authors, such as Lecoutre, Negrevergne and Yger [39]
or Tan et al. [54], identifying the artistic style of a picture in a fully automatic
way is a challenging problem since classifying visual styles cannot rely on any
definitive feature. This is especially difficult for non-representational artwork.
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For these reasons, in this work, we overcome this problem by relying on
an autonomous agent capable of combining the explanation obtained from the
artist with the interpretation obtained by the machine learning mechanism. The
artist provides the broader view, the historical context, and insights on the
artist’s background influencing his works (e.g., political thought), while the XAI
mechanism obtains the values of Wölfflin features and illustrates them on the
transformed portrait of the user.

2.2 Styles in Modern and Contemporary Art Painting

The moment a painter takes out his brush and palette and starts painting on
a canvas, it is possible that a new style will emerge [2]. Styles in painting had
their heyday during the late 19th century and early 20th century. The style dis-
played or expressed in a painting can become part of an art movement, in which
case there is a group of artists who have defined a certain style (in painting or
other artistic disciplines). The individual interpretation was the most common
impulse that made certain styles evolve to a peak, disseminate and transform
into a new style. In the period mentioned above, also called ‘modernism’, we
can count more than 100 different styles among which the Hurufiyya movement
(Islamic calligraphy), Peredvizhniki (Russian ‘wanderers’ protesting against aca-
demic restrictions), Letras y figuras (depiction of letters of the alphabet during
the Spanish colonial period in the Philippines) and many more [37].

Impressionism became one of the best-known movements in western Europe.
The impressionists rejected, like their Russian contemporaries (the Peredvizh-
niki, Wanderers) classical and imperative aesthetic rules, incorporated by the
Salons that detained a monopoly in the field of contemporary art exhibitions.
An important innovator within this group was Claude Monet (1840–1926). In
the American Magazine of Art (1927), Lilla Cabot Perry reveals the remarkable
method Monet used to paint in the typical impressionistic style: He had grooved
boxes filled with canvases placed at various points in the garden where there was
barely room for him to sit as he recorded the fleeting changes of the light on his
water-lilies and arched bridges. He often said that no painter could paint more
than one half an hour on any outdoor effect and keep the picture true to nature,
and remarked that in this respect he practiced what he preached [46].

Just after the turn of the century in 1907, Pablo Picasso painted The Young
Ladies of Avignon/The Brothel of Avignon, where Aviñón refers to a street in
Barcelona. This proto-cubist work introduces ‘primitive style’ from Africa in
western art. At that time masks and sculptures from African countries became
popular and were on sale in shops in Paris but also exhibited in museums. In the
‘Autobiography of Alice B. Toklas’, Toklas - who was befriended with Picasso -
explains his radical turn in style as follows: “In these early days when he created
cubism the effect of the African art was purely upon his vision and forms, his
imagination remained purely Spanish” [52].

Ten years later. Fountain, an artwork of Marcel Duchamp (1887–1968) was
submitted to the 1917 exhibition of the American Society of Independent Artists
in New York. Sitting on a pedestal, turned upside down and signed with the
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artist’s name R. Mutt. Fountain sparked raging controversy after Duchamp’s
colleagues refused to recognize the item as a legitimate work of art and requested
it to be removed. Duchamp coined the term ‘readymade’ for this work but, while
final evidence is missing, it could have been the ‘Dada baroness’ Elsa von Freytag
- Loringhoven who came up with this idea and not Duchamp, who was a friend
of her [19].

The utensil, called ‘ready made’ was an object, not made by an artist but
ready to be chosen as an artwork. The case of the Fountain had the power to
stop the development of all future styles and movements. This did not happen
immediately but at the end of the Sixties. In The conspiracy of Art, the philoso-
pher Jean Baudrillard describes the consequences of the removal of the artist
from the artwork and even from the art world. He points to ‘a new reality’ that
is not about creating styles but about creating interchangeable components that
can each serve as ‘reality’: a procession of models providing autonomy for the
virtual, freeing it from reality, and the simultaneous autonomy of reality that
we now see functioning for itself - motu proprio - in a hallucinatory perspective,
in other words, self - referential ad infinitum. Cast out from its own framework,
from its own principle, extraneous, reality has itself become an extreme phe-
nomenon. In other words, we can no longer think of it as reality, but only as
otherworldly, as if seen from another world - as an illusion [5].

2.3 Neural Style Transfer

Style Transfer, often called Neural Style Transfer (NST), is the practice of manip-
ulating a piece of data like an image or video to adopt the inherent style of
another piece of data [29]. Common uses for this type of application come under
the form of Deep Fakes, the image of a given person projected onto someone
else’s in a video, and the projection of a certain style onto a photograph, similar
to a filter.

The main technology used nowadays for this type of functionality is the
previously mentioned Generative Adversarial Network [21]. One of the more
prominent GAN architectures with the objective of style transfer is the so-called
Cycle-Consistent Generative Adversarial Network [61], CycleGAN in short, first
proposed by Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. in 2017.
One of the characteristic advantages of the CycleGAN is that it doesn’t require
paired training data to deliver results. What this means is that when a GAN is
trained on two domains, by adding a piece of data to the set of one domain, it is
not necessary to add the equivalent data of the opposite domain. This facilitates
the creation of CycleGAN datasets since data can be compiled into each domain
without further complications.

Just like with a regular GAN, both Generators and Discriminators are
competing with each other. The Generators learn to create better fakes and
the Discriminators learn to better detect the fakes. Together, the models get
incrementally better at their tasks, learning from each other and adapting
accordingly [8].
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In addition to that, the Generator models are trained to not just create new
images in the target domain, but instead reconstruct versions of the input images
from the source domain. This is achieved by using generated images as input
to the corresponding generator model and comparing the output image to the
initial images. Passing an image through both generators is what we designate as
a cycle. Together, each pair of generator models get trained to better reproduce
the original source image, referred to as cycle consistency.

Another advanced implementation of style transfer can be found in Style-
GAN [32]. In contrast to CycleGAN, this one does not need an entire dataset
for the desired target-style application, one image proves sufficient. A StyleGAN
works similarly to the traditional GAN implementation, however, after a Style-
GAN has successfully been trained, it offers much finer control over the generated
result than was previously possible. To achieve style transfer, StyleGAN is fed
reference data on specific convolution layers. When it reaches those layers in the
generation process, it will attempt to map the current sample to that target
piece of data, effectively blending the image information into the end result.

2.4 XAI

The recent rapid development of Artificial Intelligence (AI) technology, as well
as its widespread use in our daily lives, have raised several concerns about the
human understandability of this sophisticated technology. To address this con-
cern, eXplainable AI (XAI) [4] emerged to interpret the sometimes intriguing
results of AI and ML learning mechanisms [22] as well as autonomous agents
and robots [3]. In future AI systems, it is vital to guarantee a smooth human-
agent interaction, as it is not straightforward for humans to understand the
agent’s state of mind, and explainability is an indispensable ingredient for such
interaction [41].

Explanations can be provided by AI for a multitude of purposes including,
control and debugging of AI systems, transparency, and accountability, as well
as training and education. In the latter, case the main aim of the explanations
is to help users understand how the system works and get a glance at its inner
workings. Examples of these educational explanations including firefighter train-
ing [26], and UAV operation [43,44]. Moreover, recently, the advantages of using
XAI in humanities and arts. Yet, this line of research is in its early stages of
development with many considerable challenges ahead [47].

3 The Smart Photobooth Project

The Smart Photobooth is a playful and interactive intelligent “machine” where
the users can experiment with AI, and learn about the process of how intelligent
machines are trained. For this, we have chosen to combine AI and Art. Science &
Art have a vibrant and exciting relationship. Thus, they form a perfect combina-
tion to engage different audiences - of all ages, genders, and backgrounds - and
entice them to learn more and explore computational methods. In particular, we
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have chosen to use AI to manipulate images to resemble artistic styles for two
reasons: (i) humans are very visual and drawn to images, which are a powerful
media to provoke interaction and enable easy communication – even more in the
era of internet and social media - and (ii) the Smart Photobooth is similar to an
interactive version of the Snapchat filter (which is widely known and popular).
The Smart Photobooth is the perfect package to deliver our machine-learning &
art message to a wider audience, in particular to teenagers, including those who
are not technology drawn.

When the user enters the booth, they can take a portrait of themselves and
then select a style to transform their image into. The set of available styles are
selected by a professional artist (e.g., impressionism, cubism, etc.). The style
transfer is conducted using a NST mechanism (cf. Sect. 2). The NST mechanism
is pre-trained using two training sets representing artistic styles as well as end-
user portraits.

Once the user obtains the output (i.e., their portrait pictured in the chosen
style), they also obtain a multi-media presentation explaining both (i) the basic
principles of the chosen style, its historical context, main contributors and most
famous paintings, and (ii) an illustration of how the style influenced the visual
features of the output image. This is obtained by the XAI mechanism which
explains what of Wölfflin’s features are present in the output image and how to
they correspond to the style chosen by the user.

The project will be developed and presented in two different venues: a) Space
1 - workshops in the Scienteens Lab at the University of Luxembourg for STEM
(science, technology, engineering, and mathematics) high school students in Lux-
embourg (April–July 2021); b) Space 2 - exhibition in the Luxembourg Sci-
ence Center for various types of visitors - children, teenagers, families (August–
December 2021). In 2022, we plan to have the Smart Photobooth exhibited for
the whole year in the AI & Art Pavilion. The Pavilion, supported by Esch2022
Capital of Culture, will be providing various interactive programs and a series
of exhibitions for all types of visitors for the duration of Esch2022.

4 Architecture

Figure 1 depicts our proposed architecture to explain the history of arts to human
users by agents. On the bottom side of the figure, a training dataset is used to
train the model after preprocessing it to handle any abnormalities. The result
of the training model will be stored in the Art Knowledge Base, which will be
the input to build the deployment machine learning model. The GAN-based
NST algorithm takes as input: (i) The input image of the human user to be
converted; (ii) an input dataset of images similar to the human user image;
(iii) the deployment model features. The output of the algorithm is the output
image with a specific art style. This image will be presented to the human and
will help along with some features from the deployment model to provide some
ML analysis to be used for the explanations. The explanation model in the agent
formulates the explanations based on three sources:
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Fig. 1. Explainable Human-Agent Architecture for Art: Bottom side is the machine
learning model including the GAN-based NST Algorithm. Top side is the agent model
responsible for explainability. Two-ways arrow between the Explanation Interface and
Human User to highlight an interaction where the feedback from the user is used to
update the Explanation Model.

(i) An objective analysis based on the insights provided by the ML algorithm
and model; (ii) A subjective analysis provided by the expert in the domain (the
artist) which will store relevant knowledge in the Expert Knowledge Base; (iii)
Another subjective analysis performed on the human user side to guarantee that
the personalized explanations are built based on the preference of the human.
For this step, the literature highlights the need to move towards human-centered
Models as explanations are subjective [51]. This knowledge about the human user
is collected depending on the various interactions with him/her and stored in
the Interaction History Base, hence the two-ways arrow between the Explanation
Interface and the Human User.

Finally, the formulated explanations are communicated by the agent to the
human user through an interface that allows for the following two tasks: (i)
generating the explanations based on the explanation components formulated in
the explanation model. The generation could use templates or be more sophisti-
cated by relying on NLP techniques. (ii) Providing the explanation to the human
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through the explanation reception process that allows the interaction with the
human and considers its cognitive load.

5 Open Challenges and Research Directions

Using XAI for AI & Art dissemination is a domain in its early stages of develop-
ment with most of the pioneering work carried out at the conceptual front [15].
The Smart Photobooth is a work-in-progress aiming to operationalize and test
XAI-based art dissemination in a real-life context. As explained in the pre-
vious sections, the project proposes an architecture that combines expertise
from the artist, input from the end-user, and the output of the most advanced
machine learning mechanisms. The intelligent agent proposed by our architecture
is in charge of combining these heterogeneous data and making them accessi-
ble and understandable by different stakeholders. The project still being in its
early implementation phase, this section identifies the following challenges and
research directions we will pursue to address them.

(i) Explaining heterogeneous AI systems: The Smart Photobooth
project involves multiple AI systems. Namely: The NST systems, the style inter-
pretation system, and the agent which is in charge of obtaining the artist’s
explanation, and the input characterizing the user. Combining these heteroge-
neous explanations is a challenging task notably because it involves both sym-
bolic knowledge (user data and artist input) and sub-symbolic knowledge within
the black-box machine learning mechanism. One potential solution to address
this issue is to resort to the latest advances in neuro-symbolic AI which pro-
poses to integrate the symbolic AI systems [20] (i.e., agents knowledge is rep-
resented by logic and reasoning) with the sub-symbolic knowledge within the
GANs and the convolutional neural networks. Recent works in XAI suggested
that this neuro-symbolic integration is highly beneficial to XAI [9]. In particu-
lar, compared with the current approach which relies on a simple concatenation
of expert explanations with the visual descriptors originating from the neural
network, the neuro-symbolic approach allows for a better understanding of the
system’s output since the symbolic knowledge extracted from the neural network
can be reasoned and manipulated by the agent. Moreover, information extracted
also be made accessible/understandable by the artist who can also interact with
the knowledge to tune the performance of the machine learning mechanism. (ii)
Users with Special Needs: Most of the explanations and insight provided
by the Smart Photobooth are communicated audio-visually. For this reason,
the content is inaccessible for users with visual and/or audio impairment. One
alternative solution is to rely on solutions currently being developed to make
cultural heritage accessible for this category of users. For instance, bind photog-
raphy [59] can assist users with low visual acuity take their photos by providing
audio feedback that facilitates aiming the camera. Additionally, online accessi-
bility of explanations is needed for those who could not visit the artworks gal-
leries [42] (iii) Gamification: In recent years, gamification [14,25,28] has been
a trending topic in domains as diverse as education, information studies, and
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human–computer interaction [50]. It is also considered an interesting means of
supporting user engagement and enhancing positive use patterns, such as increas-
ing user activity, social interaction, or quality and productivity of actions [23].
These desired use patterns are considered to emerge as a result of the posi-
tive, intrinsically motivating [49], and gameful experiences [28] brought about
by game/motivational affordances implemented into a service [24]. Recently, art
organizations have also sought to gamify different aspects of their institutions to
engage visitors, increase fundraising, or improve marketing objectives [6]. The
application of gamification in education and outreach settings like in the context
of this paper is still a relatively new trend, but it has gained attention due to its
ability to increase student motivation and engagement. According to [16], there
are three main concerns when considering gamifying the learning experience:
“(i) insufficient evidence exists to support the long-term benefits of gamification
in educational contexts; (ii) the practice of gamifying learning has outpaced
researchers’ understanding of its mechanisms and methods; (iii) the knowledge
of how to gamify an activity in accordance with the specifics of the educational
context is still limited.”

6 Conclusions

This paper presented the Smart Photobooth, an interdisciplinary outreach and
knowledge dissemination project organized by the University of Luxembourg.
The project relies on XAI to explain the history of art and artistic styles to
end-users. Delivering such explaining requires a combination of explanations
provided by the human expert (an artist) with interpretation obtained from
a machine learning mechanism. To achieve this synergy, the paper proposed
an architecture powered by an agent who is in charge of accomplishing this
combination. The components of the architecture were identified and explained.
Open issues and challenges were identified with their potential solutions. The
Smart Photobooth project is a work-in-progress, as the project started in early
2021. Currently, the Photobooth is being installed and the proposed architecture
and the XAI mechanism are being implemented. The next step is to evaluate
the explanations and assess how well they performed in engaging the end-users
and enhancing their knowledge on the history of art. To do so, specific XAI
metrics [27] will be defined, several user studies will be conducted, and their
results will be statistically validated, studied, and analyzed.
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Ume̊a University, Ume̊a, Sweden
{amber.zelvelder,marcus.westberg,kary.framling}@umu.se

Abstract. Reinforcement Learning performs well in many different
application domains and is starting to receive greater authority and trust
from its users. But most people are unfamiliar with how AIs make their
decisions and many of them feel anxious about AI decision-making. A
result of this is that AI methods suffer from trust issues and this hinders
the full-scale adoption of them. In this paper we determine what the
main application domains of Reinforcement Learning are, and to what
extent research in those domains has explored explainability. This paper
reviews examples of the most active application domains for Reinforce-
ment Learning and suggest some guidelines to assess the importance
of explainability for these applications. We present some key factors
that should be included in evaluating these applications and show how
these work with the examples found. By using these assessment crite-
ria to evaluate the explainability needs for Reinforcement Learning, the
research field can be guided to increasing transparency and trust through
explanations.

Keywords: Reinforcement Learning · Explainable AI · XAI ·
Interpretable Machine Learning

1 Introduction

One key obstacle hindering the full scale adoption of Machine Learning, includ-
ing Reinforcement Learning (RL), is its inherent opaqueness. This prevents these
‘black box’ approaches (i.e.; systems that hide their inner logic from users) from
becoming more widespread and receiving greater authority and trust in deci-
sions. Being opaque and having no explanations for why the autonomous agent
takes an action or makes a decision can cause both practical and ethical issues
[18,19]. With the recent increased calls for transparency in computer-based
autonomous decision-making, there has been a surge in research into making
Machine Learning algorithms more transparent. RL is often thought to not need
further transparency if the reward condition is known, but in RL there is a vari-
ety of applications, each with their own set of interactions, recommendations etc.
These different applications of RL will also have different needs when it comes
to explainability.

c© Springer Nature Switzerland AG 2021
D. Calvaresi et al. (Eds.): EXTRAAMAS 2021, LNAI 12688, pp. 223–240, 2021.
https://doi.org/10.1007/978-3-030-82017-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-82017-6_14&domain=pdf
http://orcid.org/0000-0003-0357-9487
http://orcid.org/0000-0001-5261-8898
http://orcid.org/0000-0002-8078-5172
https://doi.org/10.1007/978-3-030-82017-6_14


224 A. E. Zelvelder et al.

This paper will seek to review how different application domains might affect
explainability, and assess applications within these domains to determine the
amount and type of explainability. We will start by setting out the background
of RL, Explainable AI (XAI) and the state of XAI in RL. In this background
section, we will go into detail on the main application areas in which RL is
being used, or can potentially be used, followed by an overview of the types
of explainability and then which types of XAI have been applied to RL. Then
we show our methodology to find examples of RL applications. We will then
present possible evaluation criteria and key factors for assessing explanations
in RL. After that we will make an assessment of the most notable examples of
applications we have identified in RL. Finally, we will conclude with a summary
of our findings and present what we believe are the remaining challenges that
future work could be based on.

2 Background

In RL, an algorithm learns dynamically from its environment and is driven by
either a reward or penalty being given when reaching or being in a specific state
or states [24,46]. Because of the way RL algorithms learn, through maximising
the final reward, it is particularly suited for problems that require a solution that
weighs the short term outcome against the long term outcome [46]. Robotics
is the application domain that RL is the most prominent in by far [25], but
it has gradually started to see more extensive use in control systems [29] and
networking [33]. RL has also been showcased publicly as highly proficient in
playing and winning a variety of games, such as GO , checkers and video games
[4,12].

With the rise of deep learning, it has been made possible to scale RL to
attempt tackling decision-making problems on a larger scale [3]. But with this
increase in applications being developed using AI such as RL, there has also
been an increase in demand for more transparency [50]. In addition to there
being legal calls for transparency, there is also the argument that if autonomous
agents can be clear about the reasons for their actions, this would help build
rapport, confidence and understanding between the AI agents and human oper-
ators, thereby increasing the acceptability of the systems and enhancing end-user
satisfaction [2,18].

Just like RL, XAI started gaining increased popularity in the 90s with sym-
bolic reasoning systems, such as MYCIN. The interest in XAI remained mostly
academic until the rise of Machine Learning (ML) and its involvement in making
increasingly important decisions. The interest in explanations really took off after
some concerns regarding bias within Machine Learning. Among the more well
known and publicised cases of bias are the Amazon recruitment algorithm that
advised against hiring women [38], and Flickr’s image tagging algorithm that
tagged people of some ethnicities as animals or objects [52]. A more common
bias within RL is the possibility of model bias, where the learning environment
is too different from the intended target environment [10]. Now the interest level
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in XAI is high due to contemporary trust issues and ethics debate in the field
of autonomous AI decision-making and the legal debate and requirements that
are being imposed as a result. Despite the increased interest in XAI and the
widespread implementation of RL in both research and industry, ways to imple-
ment explanations into RL have not been thoroughly researched.

One of the reasons lack of active development in RL explanations is because
there is an underlying assumption that knowing the reward for RL is explicable
enough. Another reason is that RL is often used in more mechanical situations,
rather then conversational, in which case there might not be a user to directly
interact with or the user is an expert to whom the actions are explicable when
combined with observations of the environment.

In the following sections we will present the most prominent Application
Domains where RL is used, the types of XAI that are relevant to RL and the
current existing XAI techniques implemented for RL.

2.1 RL Main Application Domains

RL can be considered to be in its early stages of development when it comes to
applications. The majority of works in the literature use simple test scenarios
that are not always representative of real-life needs, but as some of these could
be considered simplified versions of general applications, we will use some sim-
plified examples to illustrate the potential use of RL in each application domain
cluster outlined. We will rely on several examples from the recent edition of Sut-
ton and Barto’s book [46] on RL in order to identify the main clusters of RL
applications. We will also include references to more recent works in literature
where appropriate. These will be primarily used to illustrate the potential of RL
within specific domain clusters.

Physics. Numerous examples of applied RL involve simplified Physics tasks.
This is because we have easy access to mathematical models of the laws of
physics, which allow us to build simulated environments in which the algorithm
is tested. The simplified and well-known examples of this category (e.g.; cart-
pole [46]) can also be moved to a more applied domain. Another example is
the mountain-car task, where an under-powered vehicle surrounded by two hills
needs to get up a hill but doesn’t have the power to ascend it without gathering
momentum by backing up the other way first [13,46]. This example could serve in
the optimization of fuel use in actual cars in that situation if further developed.

Robotics. Due to it’s similarity to the natural learning process, RL is well-
suited to train the movement of robots, particularly the optimization of reaching
movement goals. Because of this, robotics is an application area where RL has
been thoroughly trialled and successfully applied for a variety of purposes [27].
Robotics usually uses a delayed or continuous reward, as it is the set of actions
they seek to reward, rather than individual actions. One common application is
to use it for path optimization, where the reward is given if the destination is
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reached (and sometimes a bigger reward if it didn’t take long). Many examples
of successful applications of RL in Robotics can be found in the survey done by
Kober et al. [25].

Games. Playing games is one of the ways RL is most well-known to people
outside of the Computer Science expertise. RL has been shown to have great
potential at learning games, because most games have a clear reward structure
of winning the game. There have been cases of RL-trained algorithms being
able to beat the (human) masters of the games Go and Chess [4]. There has
been further research in making algorithms that can tackle multiple games [45].
Research into RL algorithms that perform video games on a human level (e.g.;
With the same tools and at the same or higher skill level as a person) is also being
performed, and has had some success [4,12]. Deep RL is also being used in newer
research into using machine learning to play games and videogames, including
videogames with or against other human players, with promising preliminary
results [3].

Autonomous Vehicles and Transport. Although most autonomous vehicles
use supervised learning to make sure they learn the correct rules, there has been
research into using Reinforcement Learning instead [43]. Also, in the transport
sector there are related systems that are using machine learning. For instance,
transport systems use route optimization in a way similar to robotics, and there
are also urban development applications that use machine learning to manage
traffic control [30,35].

Healthcare. The healthcare sector is increasingly utilising ML in their systems,
and this includes RL [20]. A lot of the current work on bringing machine learning
to the healthcare sector is still in the early stages, but ML algorithms that
enhance Computer Vision are already used commercially in diagnostics, medical
imaging and surgery, to supplement the medical personnel [17,28]. With ML
starting to influence the sector, and the motivation to improve this sector being
high, new research is performed continuously to increase the successful use of
ML. While ML within healthcare currently mostly supports the experts and
professionals, research is also taking more interest in developing algorithms that
interact directly with the (potential) patients, to either help them know what
doctor they need, whether they are at risk of special ailments, or how to manage
their health, either generally or with a specific condition [39].

Finance Predictions. Some areas of finance are doing research into how RL
and other machine learning methods could be used to predict developments in
aspects of the market [40]. As the finance sector already extensively uses rule-
and trend-based models to try to stay ahead of the curve, machine learning is
a natural next step for finance. Most applications within finance follow current
trends and make estimations based on historical data [6].
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Other. There are a few other domains in which RL development is prominent,
which will not be as obviously relevant to this paper, but still are worth men-
tioning as possible domains to look into at a later point. Reinforcement learning
is used in industry to try to alert when machines need preventative mainte-
nance [9,15]. It is also used to assist with elevator scheduling [7,53] using a
continuous-time Markov chain [16]. Other ways RL is used is in various types
of optimization, examples including network communication optimization and
general network management [16], optimising/minimising resource consumption
[29] and optimising memory control [4]. RL is also being used to automatically
optimise the web data shown to users by advertisers [4].

2.2 XAI Types

Sheh [44] proposes a way of categorising the types of explanations that are most
commonly required for AI in different contexts. Further research into this has
been done by Anjomshoae et al. [2], leading to a distinction of several types of
explanations that are currently used in AI.

Teaching explanations aim to teach humans (General users, domain
experts, AI experts) about the concepts that the AI has learned. These expla-
nations don’t always need to be accompanied by a decision, as the teaching is
what is at the core of the explanation. These explanations can take the form of
hypotheticals, for example as answers to follow-up questions regarding a previ-
ous explanation (i.e. “if parameter X was different, how would this have affected
the decision?”).

A possible subtype of teaching explanations are contrastive explanations,
where the hypotheticals involve showing the user why the decision is better by
contrasting it with the poorer choice(s). There has already been research into
how contrastive explanations can be used in RL [2,49]. In this research, the
possible consequences of other actions were generated to show them in contrast
to what decision was made [36].

There are introspective explanations in the form of tracing explana-
tions and informative explanations. The former is a trace of internal events
and actions taken by the AI, the purpose of which is to provide a complete
account (of desired granularity) of the decision process to track down faults
or causes behind incorrect decisions. The latter type involves explaining dis-
crepancies between agent decisions and user expectation by looking at the pro-
cess behind the given decision, the purpose here being to improve human-robot
and human-system interaction by either pointing out where an error may have
occurred or convince the user that the agent is correct. What both have in com-
mon is that they draw directly from the underlying models and decision-making
processes of the agent. Due to the nature of ML, these kinds of introspective
explanations are often not compatible with such techniques, and in the few cases
that they might be, they will not be complete [44].

By contrast, post-hoc explanations provide rationalisations of the
decision-making process without true introspection. These explanations are help-
ful in models where tracing underlying processes is not an option, such as with
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black-box models. These explanations can be derived from a simulation of what
the underlying processes might be like, sometimes working from a parallel model
that attempts to sufficiently approximate the hidden model.

Execution explanations are the simplest form of explanations, presenting
the action or set of actions that the AI agent undertook. Similar to tracing
explanations, this type of explanation provides a history of events, but does so
by listing the explicit operations undertaken.

Post-hoc and execution explanations, together with teaching explanations,
form the three types of explanations most compatible with RL, though their
usefulness varies. Post-hoc and execution explanations provide methods of trac-
ing and forming narratives regarding decision-making without having to “look
inside the box”. In turn, teaching explanations can help users understand the
model of the application better.

2.3 Explainable Reinforcement Learning

In RL there is not necessarily a reason for the algorithm to take an action or
make a suggestion. The actions or decisions made by the algorithm are often
based on the experience that algorithm builds. Because of this there has been a
particular interest in contrastive, post-hoc and tracing explanations for RL. Since
gaming applications have been a very popular domain for RL, and games are
generally a low-risk activity, it is a very popular domain to test new techniques
in. Videogames have been used to test the understanding and clarity of saliency
maps as explanations [1,21]. A numerical explanation has also been studied using
videogames, and these studies also include user feedback to assess the quality
of the explanations [11,21,42]. Another method of creating explanations for RL
has been to amend the RL algorithm, to maintain an amount of “memory” [8],
which provides a form of tracing explanation. This has also been implemented
in a way to provide a visual representation of the internal memory of an agent
by Jaunet et al.[23], which can be used a combination between a teaching and
a tracing explanation. There is also some research looking into transparent or
interpretable models, such as PIRL, hierarchical policies and LMUT [41].

3 Methodology

In order to make sure that our proposed evaluation criteria are thorough and
applicable in existing application domains, we performed a literature survey
of RL survey papers and books to extract as many examples as possible of RL
being used in practice, or having a potential use in practice. We have assessed 19
pieces of literature, of which 14 contained viable examples. In total we noted 91
examples of possible applications. The levels of detail of each of these applications
varied and some refer to the same application. In Fig. 1 we show a breakdown
of the number of examples found in the more prominent sources.
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For each survey paper we assessed whether the methods and applications
found were applied to any scenario that could be used in practice. For each of
these we made note of the survey papers they were mentioned in, their general
application domain, a description of the application and, if mentioned, the RL
method and the reward setup. After we had listed these, we assessed similari-
ties between different listings and merged them in our data where appropriate,
preserving the multiple sources. We were then left with 50 examples that could
be evaluated. After these examples were collected, we found that they were in
8 different categories (Fig. 2). In this we found 16 were in the robotics domain,
8 each in the games, control systems and networking domains, 3 in autonomous
vehicles and 2 in both finance and healthcare.

32%16%

16%

16% 6%
6%
4%
4%

Robotics
Control systems

Games
Networking

Autonomous Vehicles and transport

Navigation

Finance

Healthcare

Fig. 2. Application domains of Practical examples

3.1 Analysis of Application Domains

Many of the examples in robotics show that RL can be used for a robotic agent
to master its understanding of physics by achieving balance of itself or another
object, or making some other type of adjustments based on gravity and other
laws of physics [4,13,24,26,27]. Another type of robotics that frequently uses RL
is robots that move around and perform a task, such as moving objects [4,24,26]
or finding an exit [4,31]. There are also robots that use RL to play ball games
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[5,26,31] and one example uses RL to do a peg-hole insertion [26]. Another
important point to make about robotics is that a lot of RL applications in other
domains can also be connected to robotics. For instance, in healthcare one of the
applications is gesture reading and replication [32], which would be a combina-
tion of computer vision and robotics. Games have often been used to showcase
how well a machine learning algorithm can perform, as with TD-Gammon and
Samuel’s Checker player beating human masters of the games of backgammon
and checkers [4,24]. Most applications in this domain are one versus one board
games. There are also applications that use RL for playing videogames [4,22].
The examples within the control systems domain found were primarily in opti-
mization [4,24], resource allocation [4,24,29] and task scheduling [4,24,29]. A lot
of these applications are located in factory settings, but there are also examples
in smart homes and Internet-of-Things settings. Most of the networking appli-
cations are related to access control, caching and connection preservation [4,33].
There was one example relating to personalising web services [4] and network
security [33]. In Autonomous vehicles and Transport, the applications are
primarily about avoiding collision and interpreting other traffic [5,26,33,43].
Navigation is very similar to the Autonomous vehicles, with the main differ-
ence being that traffic is not necessarily a problem [4,14,24]. In finance we
found two examples, one involved creating economic models [4] and the other
was an automated trading application [5]. In healthcare, we found the appli-
cation mentioned before that reads and replicates surgical gestures [32] and an
application that detects and maps a person’s bloodvessels [54].

4 Key Criteria

There are several factors that contribute to the need for explainability, a large
amount of which relate to Human-Computer Interaction (HCI), but there are
several other types of factors that contribute. In this section we explain the dif-
ferent criteria that drive the evaluation and assessment of explanations, the need
for explanations and the types of explanations required. We start by describing
four key factors (Fig. 3) which we will use for assessments, we then have a few
sections to highlight notable contributing factors that assist in the evaluation of
the key factors and in what way they contribute to the key factors.

Out of the key factors, two are closely related to HCI, User Expectancy and
User Expertise, and two of them more related to the consequences of the appli-
cation, Urgency of the output and Legality. The first key factor, and perhaps
the best starting point for assessing the explanations, is the User Expectancy.
The amount of explanation a user expects is a direct influence on the amount of
explanation required, but it is also influenced by the users expectations of the
applications actions or outputs [37]. If a user expects little or no explanation,
and the application gives the expected output, there is no need for an explana-
tion. But if the user expects an explanation, or if the application is behaving
in a way that is outside of the user expectations, a more expansive explanation
would be required. Because of the nuances of this factor, it also has a strong
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Fig. 3. Four key factors that influence the need for explainability

influence on the type of explanation that would be the most suitable for the
application. The other user-connected key factor is, the User Expertise. The
level of expertise the intended user has varies between every application. This
factor mostly dictates the type of explanation to be made available [47]. If the
user can be anyone, the explanations will need to be more informative, using
general language. If the target users are experts in the application domain, but
not on this specific application, an informative explanation that is specific to
the domain can be presented. Finally, if the user is an expert on the application
and/or any devices the application controls, an explanation that helps the user
trace down faults within the system, and explanations of executed actions would
be preferred.

A key factor that gives a limitation on the detail and type of explanation
given is the Urgency of the Output. Longer and detailed explanations also
take longer to produce and also take longer for the user to interact with. This is
a time-bound scale, which means that it determines if there is time to produce
any form of explanation before a decision is taken. If an action needs to be taken
immediately, like in an autonomous vehicle, there might not be enough time to
explain it to the user, so in this case an explanation can not be expected until
later. If there is no urgency, the application can produce a full report and even
request the user to approve the decision or action based on the explanation.

Finally, a factor that has gotten more important recently, is the Legality.
This factor is driven by the laws affecting the application domain, AI in general
or the specific case of the application. In this case it matters if it affects or
evaluates an individual or group of individuals. If it can do neither there is no
legal need for explanations. If it evaluates, then there should be the possibility
to produce an explanation of the evaluation, but this can be retrospective. If
it affects, it is preferred that an immediate explanation is given, as well as a
retrospective explanation being made available.

These key factors were chosen on the grounds that they cover and represent
the core areas of XAI concern. Differences in user expertise has shown to affect
expectations of output and explanatory content [47], and the context of the
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audience has great impact on how explanations are to be tailored [37]. In this
way, expertise and expectancy have a fair amount of overlap, but in this paper we
treat expectancy separately to acknowledge other factors that can also impact
expectations, and if explanations are to be expected at all. Urgency of output
is chosen because it has a defining impact on the nature of explanation to be
provided and the context in which it is delivered. Finally, legality is of great
concern for XAI researchers both on the basis of ethical and economic concerns,
thus placing it as a very important key factor.

In the following sections we explain how some important criteria feed into
these key factors.

4.1 The Intended User

The starting point for any application should be the intended user. This is very
important for explanations, as there has to be an individual or group of individu-
als that the explanation would be intended for. The user affects both HCI-based
aspects of the key factors and it also influences both the amount of explanation
that should be given, as well as the type of explanations (see Sect. 2.2). The
development of an application and explanations for the applications should be
started from the user expectations, requirements and expertise.

4.2 Means of Interaction

Any application that includes direct interaction with some kind of user will need
some explanation, but this can be limited by the means that the application or
the user have to interact. With many RL implementations, there is some limita-
tion to what kind of interaction there can be, and this can limit the possibilities
of their communication. For instance, in robotics the application can usually
interact by movement or other non-verbal communication, which humans can
sometimes intuitively interpret [51]. In applications located in factories or other
industrial devices, the means might just be a digital display or a blinking light.
In other RL applications the interaction can be done via a monitor, or using
audio. This contributing factor has no great influence on the key factors, but is
used as a limitation to the type of explanations that can be implemented for an
application.

4.3 Industry Sector

The type of industry sector that an application is developed in and for is key
in determining the need and nature of the explainability of machine learning
and AI systems. The industry often dictates who the intended user is, and what
aspects of the system needs automation. For instance, an AI in healthcare can
either interact with the medical professionals, or with the patients themselves.
But in the manufacturing industry, the user is far more likely to be a person
who has expert knowledge on the topic of the algorithm. Although explanations
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are preferred in most industry sectors, the need for explanations is greater in
some than in others. For instance, in the healthcare sector it is very important
for AI to explain themselves, because the decision or advice of the RL algorithm
could affect the health of an individual. This is the case for all users of AI within
healthcare, and it has been shown that people are more likely to trust the health
advice of an AI if an explanation and/or motivation is given by the AI that
pertains to the patient personally [39]. This is different from the finance sector,
where financial predictions are often assumed to be estimates, so a motivation
or detailed explanation is not needed as much, but a chart or list of rules as a
form of introspective informative explanation to support the prediction would
be preferred. This contributing factor strongly influences the HCI aspects of the
key factors, as well as the other key factors to a lesser extend, depending on the
specific application.

4.4 Urgency/Time-Restraint

The urgency by which an algorithm needs to make a decision has some influence
on how much explanation can be expected and/or is needed. If it is, for instance,
an AI that drives a car, making the decision to do an emergency brake for a
suddenly crossing pedestrian is more important than explaining it. The same
goes for a machine stopping production if there is a misalignment in the system.
Both of these could be followed up by a longer explanation, after the urgency is
reduced. In other examples, such as an algorithm that makes mortgage agreement
decisions, time is of less importance than an explanation regarding how a decision
was made.

4.5 Legal

This factor is emphasized by recent legislation across the world. As the EU
has recently passed a law known as the GDPR [48], which dictates that if an
algorithm is fully or partially responsible for any decisions made regarding a
person, that person has the right to know the reasons behind the algorithm’s
conclusion.

4.6 Responsibility

Whether the user, the creator of the application, the manufacturer of a device
using the application, or some other individual or organisation has the responsi-
bility for action or decisions chosen by the application is also a driver for wanting
or needing explanations of differing types. This contributing factor is tied to the
legality key factor.

5 Assessment

Although some of the key factors can be subjective, in Fig. 4 we show an overview
of how the unique examples found in Sect. 3 could be classified on a scale of 1–5
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on the key factors presented in Sect. 4. This gives an overview of the need for
explanations in different sectors and shows how much variability exists in the
domains. For a specific application, the details of how the specific key factors are
relevant are more important then just their value. Therefore, in this section we
will evaluate four of the scenarios we extracted from the examples reviewed in
Sect. 3. We are using the key factors from Sect. 4 to perform this evaluation. The
examples in this section were chosen because they are from varied application
domains and have very different users. They are therefore expected to have very
different needs when it comes to explanations.

Fig. 4. Figure for classification of known examples on a scale of 1–5

5.1 A Box-Moving Robot

This example was chosen for evaluation because the functionality of the robot
is simple and can be kept within the robotics domain, but has the potential of
being used in many other domains with minor changes. We will be assuming
the robot is an industry-ready adaptation and has therefore the capability to
find a (specific) box, move the box, and recover from a position in which the
robot itself is stuck in a corner [4,24,26,34]. This application does not have
a specific intended user, which presents two options as to who to regard as a
user; the person who has given the robot a task to do, or anybody who might
be in the area where the robot operates. This implies that the user expertise
and expectation of explanations will be low, assuming the robot performs as
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intended. The urgency in the case of this robot is mostly not time-critical as the
robot can wait to make a decision if there is no threat of any kind present. This
means that the robot has time to display an indicator or play a sound to facilitate
human understanding. Specific design decisions may limit these capacities. For
example, the OBELIX robot [34] currently has no means to play sounds or
show any kind of display, which means its means of communications are left to
physical movements. The robot does not make decisions about people, but has
a chance to encounter people within its work space. This means that the only
legal requirement for the robot to give an explanation is when it interferes with
an individuals actions in any way, such as by bumping into them or obstructing
their path with the boxes.

5.2 Cloud Computing Resource Allocation

This example was picked because cloud computing is increasingly popular, and
the optimisation of all its procedures is critical to its success. In the cloud
computing resource allocation problem, there is a server cluster with a certain
amount of physical servers and each of these physical servers can provide a lim-
ited number of resources [29]. A job will be processed when enough resources
are available, the algorithm is employed to optimise how and when the jobs are
allocated and to which machines, to optimise the processing time and minimise
the power consumption. In this scenario, a user will be the person who submits
a job to the cloud computing. The user will generally have some expertise in
cloud computing, but the amount of expertise will vary. A user will typically
have little to no expectation of explanations, unless the system has issues with
the performance. As one of the goals of the algorithm is to optimise the time,
there is no time to explain actions before they are taken. As individuals are
not evaluated, there is no legal requirement for explanations. The recommended
type of explanation would be a tracing explanation or execution explanation to
track down the cause of a fault within the system.

5.3 Frogger Videogame

We are evaluating the frogger videogame as an example from the gaming domain.
This example was selected because there already exist an experimental study into
explanations [11,42] for this game and because of its iconic reputation. In the
game of Frogger you need to guide a frog from one side of a map to the other. In
the first part, the frog needs to avoid being hit by a car, and at the second part
the frog needs to jump between moving logs to reach the other side of a river.
Since this is a game being played by the RL algorithm, there is no user, only
observers. We can assume the user knows the rules of the videogame, but has no
further expertise. As the objects other than the frog move in real-time, that is
the time sensitivity required for the reactions. The game doesn’t make decisions
on individuals, so there is no legal requirement for explanations. Because of
academic interest, the explanations currently being developed for Frogger are to
indicate, either numerically or by description, what observations of the AI are
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being most relevant in its decision at any point during the run. This application
is therefore often used to perform benchmarking of explanation techniques and
user studies.

5.4 Surgical Robot

The example of a surgical robot has been chosen because it has a strong contrast
with the other examples so far. The specific example we use is of a robot perform-
ing a suturing task [32]. In the referenced paper this is being done in a simulated
environment, but since the goal is to let it perform in a medical environment, we
shall evaluate it as such. The robot is performing a medical operation (suture)
on a person (the patient), and is being monitored by another person (the doc-
tor). The intended user is the doctor, who will have a high amount of medical
expertise to assess that the robot does the correct procedures, and will also be
capable of spotting any mistakes made. In the application, a display of certain
parameters was included, so this display could be considered a starting point for
an explanation. The display in the example indicated how accurate the expected
kinaesthetic response was compared to the actual, which can indicate a possi-
ble problem if the accuracy is too far off. Since the performance of this robot
directly affects the health of an individual, this means that legally there is a
strict requirement for explanations to be available prior to use on a patient.

6 Discussion

There are still issues that prevent RL from more widespread application in gen-
eral, with the core issues being centered around the inability to adapt, lack of cor-
relation, application complexity, increasingly larger and more complex data and
the narrow focus of current XAI techniques [27,51]. In RL there is a reward state
that can always help clarify the goal that the algorithms are working towards,
so one of the important steps towards explainability is to make sure the reward
states can be viewed by the user in a way the typical user can understand.
As RL algorithms can sometimes use very complicated reasoning, which might
be beyond what a human understands, it can be hard for an algorithm to be
accompanied by an explanation that a human can easily follow. This is further
complicated if the system has to make several actions in succession that each
require a longer explanation than a human would be able to keep up with. In
deep RL this becomes even more of a problem as the input and the parameters
are very expansive, making it harder to tie specific outcomes to specific param-
eters. Another challenge is that an explanation must be good enough that a
human can help keep it accountable. Related to this is the problem of who can
be held responsible for any wrong decision that is made as a consequence of an
explanation being insufficient. Because XAI is still in early stages of implemen-
tation within machine learning and even more so when it comes to RL, due to
RL having a more limited application area, there is very little existing research
in XAI for RL. In RL most current research into explainability is focusing on



Assessing Explainability in Reinforcement Learning 237

‘recommender’ systems. However, as presented earlier in this paper, RL is used
or will soon be used in many other critical areas where explanations might be
required in various degrees.

7 Conclusion

This paper has shown which application domains RL is most used in, and why
explainability is important in RL. It has also presented guidelines that can be
used to evaluate the explainability needs for specific applications. The guidelines
are centered around the HCI aspects of user expectations and expertise as well as
the urgency of the output and the legal requirements where applicable. We have
assessed various notable applications that use RL algorithms using the guidelines
provided. As we continue to work towards Explainable RL, the guidelines set out
in this paper will help identify the need for explainability in new RL applications.
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Kristijonas Čyras1,2(B) , Myles Lee2, and Dimitrios Letsios2,3

1 Ericsson Research, Stockholm, Sweden
kristijonas.cyras@ericsson.com

2 Imperial College London, London, UK
myles.lee15@imperial.ac.uk

3 King’s College London, London, UK
dimitrios.letsios@kcl.ac.uk

Abstract. Scheduling is a fundamental optimisation problem that has
a wide range of practical applications. Mathematical formulations of
scheduling problems allow for development of efficient solvers. Yet, the
same mathematical intricacies often make solvers black-boxes: their out-
comes are hardly explainable and interactive even to experts, let alone
lay users. Still, in real-world applications as well as research environ-
ments, lay users and experts likewise require a means to understand why
a schedule is reasonable and what would happen with different schedules.
Building upon a recently proposed approach to argumentation-supported
explainable scheduling, we present a tool, Schedule Explainer, that pro-
vides interactive explanations in makespan scheduling easily and with
clarity.

Keywords: Explainability · Scheduling · Implementation

1 Introduction

Mathematical optimisation affords effective techniques for solving well-defined
problems involving resource constraints and objective functions. Makespan
scheduling (also known as job shop scheduling) is one such fundamental dis-
crete optimisation problem [6] concerning effective resource allocation. Makespan
scheduling underlies numerous real-life applications, ranging from nurse roster-
ing in hospital settings [12] to massive scale industrial sheet production.1 While
highly-effective optimisation solvers, such as CPLEX [7], are readily available
to tackle optimisation problems including that of scheduling, they by and large
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suffer from the lack of explainability: they are seen as black-boxes unable to
interact with and/or justify to the user their solutions or answer queries about
those proposed by the user.

Explainability in scheduling includes, but is not necessarily limited to, sup-
porting a user of a system equipped with an optimisation solver in understanding
as to why the system behaved as it did and how it would respond to the user’s
interactions with the system. To be (at least partially) explainable, an optimi-
sation solver should be able to justify why a solution is good and to interact
with the user in order to modify the solution and answer whether and why the
resulting one is good or not. Explainability is seen to be of critical importance
in clinical settings [10] and is arguably an important issue in industrial applica-
tions of optimisation. Typical queries in scheduling runs of families of products
in manufacturing centres to match incoming orders would be:

– Why not put order X in run A instead of run B?
– Why not swap orders X and Y?
– Why not merge runs A and B?

Similarly, user questions in scheduling applications to nurse rostering could be:

– What if nurse A were to do job Y rather than job X?
– Why is job X assigned to nurse A rather than nurse B?
– Why is the schedule good?

Recently, a novel approach ArgOpt of argumentation for explainable schedul-
ing was proposed [4]. ArgOpt combines (computational) argumentation [9]—a
branch of Knowledge Representation and Reasoning within the field of AI—with
optimisation to explain the goodness of schedules. Specifically, abstract argumen-
tation (AA) [5] affords an intermediate layer in between an optimisation solver
and its user, capturing the makespan scheduling problem and the mathematical
conditions underlying the goodness of schedules. The AA representation of the
problem and its solutions allows to formulate and extract formal argumentative
explanations which are in turn transformed into user-friendly natural language
explanations about a given schedule.

The authors in [4] show that ArgOpt meets crucial desiderata in terms of
soundness and completeness of explanations as well as cognitive and computa-
tional tractability. In particular, they establish that various sound and complete
formal AA explanations can be extracted in time at most quadratic in the input
size of the problem, and illustrate how those can be turned into template-based
natural language explanations. However, the approach is described only in prin-
ciple, without detailing how its implementation would look in practice.

In this paper we complement the work of [4] by providing a concrete imple-
mentation of the AA-based explainable scheduling pipeline. Specifically, we
design and develop a system that connects an optimisation solver on the one
end with an interactive graphical user interface (GUI) supporting explanations at
the other end through an AA layer in the middle. Our tool, Schedule Explainer,2

2 https://github.com/kcyras/aes.

https://github.com/kcyras/aes
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allows to instantiate and solve a makespan scheduling problem, interact with the
schedules given, indifferently, by an optimisation solver or the user, and provide
concise actionable explanations to the goodness of schedules.

In what follows, we first give the necessary background on makespan schedul-
ing and argumentation, and summarise the relevant findings of ArgOpt. In Sect. 3
we present the main algorithms of Schedule Explainer. In Sect. 4 we describe our
tool and briefly review some related tools in Sect. 5. We conclude in Sect. 6.

2 Preliminaries

We adopt preliminaries on makespan scheduling [6], background on Abstract
Argumentation (AA) [5] and ArgOpt results from [4].

2.1 Makespan Scheduling

An instance I of the makespan scheduling problem is a pair (M,J ), where J =
{1, . . . , n} is a set of n independent jobs with a vector p = {p1, . . . , pn} of
processing times which have to be executed by a set M = {1, . . . , m} of m
parallel identical machines. Job j ∈ J must be processed by exactly one machine
i ∈ M for pj units of time non-preemptively, i.e. in a single continuous interval
without interruptions. Each machine may process at most one job per time.
The objective is to find a minimum makespan schedule, i.e. to minimise the last
machine completion time.

We henceforth assume an instance I = (M,J ) of a makespan scheduling
problem with M = {1, . . . , m} and J = {1, . . . , n}, for m,n � 1, unless stated
otherwise.

In a standard mixed integer linear programming formulation, binary decision
variable xi,j is 1 if job j ∈ J is executed by machine i ∈ M and 0 otherwise.
Thus, a schedule of (M,J ) can be seen as an m × n matrix S ∈ {0, 1}m×n with
entries xi,j ∈ {0, 1} representing job assignments to machines, for i ∈ M and
j ∈ J .

Given a schedule S, let Ci be the completion time of machine i ∈ M in S and
let Cmax = max1�i�m{Ci} be the makespan. The problem is formally described
by Equations (1a)–(1e) below: (1a) minimises the makespan; (1b)–(1c) define the
makespan; constraint (1d) ensures each job is assigned to exactly one machine.

min
Cmax,Ci,xi,j

Cmax (1a)

Cmax � Ci i ∈ M (1b)

Ci =
n∑

j=1

xi,j · pj i ∈ M (1c)

m∑

i=1

xi,j = 1 j ∈ J (1d)

xi,j ∈ {0, 1} j ∈ J , i ∈ M (1e)
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Definition 1. A schedule S is:

– feasible iff S meets constraint (1d);
– optimal iff S is feasible and minimises the makespan (1a).

As finding optimal schedules is generally NP-hard, ArgOpt tractably evalu-
ates schedules that are provably approximately optimal, or efficient, as described
next.

Definition 2. Let S be a schedule.

– Machine i ∈ M is critical iff Ci = Cmax.
– Job j ∈ J is critical iff xi,j = 1 and i ∈ M is critical.
– S satisfies the single exchange property (SEP) iff for every critical machine

i ∈ M, for every critical job j ∈ J such that xi,j = 1, for any k �= i it holds
that Ci � Ck + pj.

– S satisfies the pairwise exchange property (PEP) iff for every critical machine
i ∈ M, for every critical job j ∈ J such that xi,j = 1, for every k �= i and
l �= j such that xk,l = 1 it holds that if pj > pl, then Ci + pl � Ck + pj.

– S is efficient iff S is feasible and satisfies both SEP and PEP.

SEP concerns improving a schedule by exchanging critical jobs between
machines. PEP concerns exchanges of critical jobs with other jobs on other
machines. SEP and PEP are necessary (but not sufficient) optimality conditions.

ArgOpt also accommodates fixed user decisions that insist on specific
(non-)assignments of jobs to machines.

Definition 3. Let D−,D+ ⊆ M × J be, resp., negative and positive fixed
decisions, D = (D−,D+) be fixed decisions.3 We say D is satisfiable iff

– D− ∩ D+ = ∅,
– �(i, j), (k, j) ∈ D+ with i �= k,
– ∀j ∈ J ∃i ∈ M such that (i, j) �∈ D−.

We say that schedule S satisfies

– D− iff (i, j) ∈ D− implies xi,j = 0;
– D+ iff (i, j) ∈ D+ implies xi,j = 1;
– D = (D−,D+) iff S satisfies both D− and D+.

S violates D−, D+, D iff it does not satisfy D−, D+, D, resp.

3 This slightly relaxes the notion of fixed decisions from [4] to accommodate for ill-
posed user queries, allowing explanations over validations of the user input too,
useful in practical applications. For instance, if fixed decisions are not satisfiable,
then that should be explained.
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2.2 Abstract Argumentation (AA)

An AA framework (AF ) is a directed graph (Args,�) with

– a set Args of arguments, and
– a binary attack relation � over Args.

For a, b ∈ Args, a � b means that a attacks b, and a �� b means that a does
not attack b. With an abuse of notation, we extend the attack notation to sets
of arguments as follows. For A ⊆ Args and b ∈ Args:

– A � b iff ∃a ∈ A with a � b;
– b � A iff ∃a ∈ A with b � a;

A set E ⊆ Args of arguments, also called an extension, is

– conflict-free iff E �� E;
– stable iff E is conflict-free and ∀b ∈ Args \ E, E � b.

2.3 ArgOpt

ArgOpt maps instances of makespan scheduling problem into AA frameworks
and establishes one-to-one correspondences between schedules satisfying certain
properties and the stability of extensions naturally corresponding to those sched-
ules. We here recap the main definitions and results concerning the mappings
and correspondences.

First, the problem instance is mapped to AA as follows.
The feasibility AF (ArgsF ,�F ) is given by

– ArgsF = {ai,j : i ∈ M, j ∈ J },
– ai,j �F ak,l iff i �= k and j = l.

In what follows, unless stated otherwise, (ArgsF ,�F ) is a feasibility AF.
A natural mapping arises between schedules and extensions thus. A schedule

S and an extension E ⊆ ArgsF are corresponding, denoted S ≈ E, when the
following invariant holds: xi,j = 1 iff ai,j ∈ E. Under this natural mapping, the
feasibility AF captures the space of feasible schedules: for any S ≈ E, S is feasible
iff E is stable.

ArgOpt captures schedule efficiency via schedule-specific AA frameworks as
follows. We henceforth assume, unless stated otherwise, a fixed but otherwise
arbitrary schedule S. The efficiency4 AF (ArgsS ,�S) is given by

– ArgsS = ArgsF ,
– �S = (�F \{(ai,j , ai′,j) : Ci = Cmax, xi,j = 1, Ci > Ci′ + pj}) ∪

{(ai′,j′ , ai,j) : Ci = Cmax, xi,j = 1, xi′,j′ = 1, i′ �= i, j′ �= j, pj > pj′ , Ci +
pj′ > Ci′ + pj}.

4 It is called optimality in [4], but we rename it efficiency instead, to better match the
definitions of optimal and efficient schedules as in Definitions 1 and 2.
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We say that (ArgsF ,�F ) is underlying (ArgsS ,�S). Then S being efficient
equates to the corresponding extension E being stable in the efficiency AF: if
(ArgsS ,�S) is the efficiency AF and S ≈ E, then E is stable in (ArgsS ,�S) iff
S is efficient.

Finally, ArgOpt captures fixed decisions via schedule-specific AA frameworks:
given fixed decisions D = (D−,D+), the fixed decision AF (ArgsD,�D) is
given by

– ArgsD = ArgsF ,
– �D = (�F ∪{(ai,j , ai,j) : (i, j) ∈ D−}) \ {(ak,l, ai,j) : (i, j) ∈ D+, (k, l) ∈

M × J }.

Then S is feasible and satisfies D iff E ≈ S is stable in (ArgsD,�D).
[4] also show that building all of the above AFs and checking whether the

extension corresponding to a given schedule of interest is stable can be done in
time at most quadratic, i.e. O(n2m2), in the size of the problem, i.e. nm. This
low overhead guarantee ensures that explanations concerning the goodness of
schedules can be efficiently extracted from the AFs in question. The argumen-
tative explanations are defined thus.

For (Args,�) ∈ {(ArgsF ,�F ), (ArgsS ,�S), (ArgsD,�D)} and E ≈ S, an
attack a � b with a, b ∈ E explains why S:

(i) is not feasible, when (a, b) ∈�F ;
(ii) is not efficient, when (a, b) ∈�S \ �F ;
(iii) violates fixed decisions, when (a, b) ∈�D \ �F .

Intuitively, if S is (i) either infeasible due to some job scheduled more than
once, (ii) or inefficient as witnessed by some pairwise exchange(s), (iii) or violat-
ing some negative fixed decision(s), then this is reflected in the relevant attack
relation of the given AF.

Similarly, a non-attack E �� b with b �∈ E explains why S:

(i) is not feasible, when � =�F ;
(ii) is not efficient, when � =�S and b �S E;
(iii) violates fixed decisions, when � =�D and b is unattacked.

So if S is (i) either infeasible due to some job being unscheduled, (ii) or inefficient
as witnessed by some single exchange(s), (iii) or violating some positive fixed
decision(s), then this is reflected by the absence of specific attacks in the relevant
attack relation of the given AF.

Given appropriately formalised explanations as attacks and non-attacks, we
can proceed to define algorithms for extracting explanations from AFs as well
as for translating them into accessible templated natural language explanations
as suggested in [4].
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3 Algorithms

We here give the (pseudo-)algorithms implemented in Schedule Explainer. To
this end, we first introduce some notation. We then advance algorithms for con-
struction of AFs, verification of stable extensions and explanation generation.

3.1 Notation

In our algorithms we use Boolean tensors represented as multi-dimensional arrays
to encode data structures for manipulating AFs. For instance, 0d1,...,dn is the
zero-valued tensor. We omit the dimensions if clear from the context. We also
extend matrix subscripts to n dimensions. For example,

02×2 =
[
0 0
0 0

]
.

Adjacency matrices represent directed graphs by indicating edges. If we gen-
eralise edges to multiple dimensions, then the graph’s corresponding adjacency
matrix becomes higher-dimensional, as illustrated in Fig. 1.

(x1,y1)

(x2,y1)

(x1,y2)

(x ,y2)

⎡

⎢⎢⎣

[
0 0
1 0

] [
0 0
1 0

]

[
0 1
0 0

] [
1 0
0 0

]

⎤

⎥⎥⎦

Fig. 1. A directed graph with 2-dimensional nodes and its corresponding 4-dimensional
adjacency tensor.

We will interpret attack relations as directed graphs with 2-dimensional nodes
themselves, with machines and jobs being the two dimensions.

We use operators over Boolean tensors to manipulate data structures. In
particular, ¬©, ∧© and ∨© are, respectively, element-wise negation, conjunction
and disjunction operators over tensors. Formally, where x, y and z have the same
dimensions d1, . . . , dn and i1 ∈ {1, . . . , d1}, . . . , in ∈ {1, . . . , dn}:

– ¬© is a prefix unary function such that ¬©x = y iff xi1,...,in = 1 − yi1,...,in ;
– ∧© is an infix binary function such that x∧©y = z iff xi1,...,in ·yi1,...,in = zi1,...,in ;
– ∨© is an infix binary function such that

x ∨© y = z iff xi1,...,in − xi1,...,in · yi1,...,in + yi1,...,in = zi1,...,in .

For instance:

¬©
[
1 0
0 1

]
=

[
0 1
1 0

]
;

[
0 0
1 1

]
∧©

[
0 1
0 1

]
=

[
0 0
0 1

]
;

[
0 0
1 1

]
∨©

[
0 1
0 1

]
=

[
0 1
1 1

]
.
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3.2 Constructing AFs

In what follows, we assume as given a fixed set Args = M × J of arguments
and will consider as dynamic the various attack relations �⊆ Args × Args.
Thus, in delineating the algorithms of Schedule Explainer, we slightly deviate
from ArgOpt in simplifying the notation. When appropriate, we also assume a
schedule S as given as well as its corresponding extension E ≈ S (slightly abusing
the notation).

In our algorithms, we manipulate Boolean tensors as data structures repre-
senting the attack relations as follows:

Definition 4. � is a Boolean tensor data structure to store � such that
(i1, j1) � (i2, j2) iff �i1,j1,i2,j2= 1.

We may add various subscripts to � and � in describing different algorithms,
for instance �F and �F .

Algorithm 1 constructs the feasibility AF.

Algorithm 1
1: function Cons-Feasibility(m, n)

2: �F ← 0(m×n)2

3: for j ∈ J , i1 ∈ M, i2 ∈ M do
4: if i1 �= i2 then
5: �F i1,j,i2,j ← 1

6: return �F

�F can be constructed trivially in O(m2n2) computational complexity, due
to complexity of zero-initialising �F .

To deal with efficiency we use the following predicates capturing single and
pairwise exchange conditions given in Definition 2:

Definition 5. Define operators SEP and PEP as follows:

– SEP(i1, i2, j1) iff Ci1 = Cmax ∧ xi1,j1 = 1 ∧ Ci1 > Ci2 + pj1

– PEP(i1, i2, j1, j2) iff Ci1 = Cmax ∧ xi1,j1 = 1 ∧ xi2,j2 = 1 ∧ i1 �= i2 ∧ j1 �=
j2 ∧ pj1 > pj2 ∧ Ci1 + pj2 > Ci2 + pj1 .

Algorithm 2 constructs the efficiency AF. There and henceforth, x encodes a
given schedule S as an m × n matrix.

The construction of �S is expensive because of the explicit for-loops to
iterate over the M2 × J 2 space to compute the edges that satisfy PEP and to
copy �F . We added an optimisation by computing SEP outside of the j2 loop,
because PEP is invariant of j2. Algorithm 2 returns the value of C to be used
later, rather an recompute its value when necessary.

To deal with fixed decisions we use the following predicates capturing the
conditions of positive and negative fixed decisions given in Definition 3:
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Algorithm 2
1: function Cons-Efficiency(m, n, p, x, �F )
2: C ← x · p
3: Cmax ← max(C)
4: �S ← �F

5: for i1 ∈ M do
6: if Ci1 = Cmax then
7: for j1 ∈ J do
8: if xi1,j1 = 1 then
9: for i2 ∈ M do

10: if SEP(i1, j1, i2) then
11: �Si1,j1,i2,j1 ← 0

12: for j2 ∈ J do
13: if PEP(i1, j1, i2, j2) then
14: �Si1,j2,i2,j2 ← 1

15: return (�S ,C)

Definition 6. Let D = (D−,D+) be fixed decisions. Define operators DP+ and
DP− as follows:

– DP+(i1, i2, j1, j2) iff (i2, j2) ∈ D+

– DP−(i1, i2, j1, j2) iff (i1, j1) ∈ D− ∧ i1 = i2 ∧ j1 = j2.

Algorithm 3 constructs the fixed decision AF. There and henceforth, D
denotes given fixed decisions.

Algorithm 3
1: function Cons-FixedDecisions(m, n, D, �F )
2: �D ← �F

3: for (i, j) ∈ D− do
4: �Si,j,i,j ← 1

5: for (i1, j1) ∈ D+, i2 ∈ M, j2 ∈ J do
6: �Di2,j2,i1,j1 ← 0

7: return �D

We are now able to construct the various AFs required for extracting argu-
mentative explanations concerning schedules.

3.3 Verifying Stability

We now need to make sure we can verify stability of extensions, because checking
whether the extension corresponding to a given schedule is stable in an AF is a
fundamental procedure in ArgOpt. While there exist numerous tools for tackling
this task (see e.g. [2] for an excellent overview), they are by and large generic
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and would require pipeline integration with e.g. ASP or SAT solvers. Instead, we
provide a direct efficient algorithm suited for AFs constructed from makespan
scheduling instances.

Algorithm 4 returns two tensors: u encodes unattacked arguments outside
the extension and c encodes attacks among arguments in the extension (thus
allowing to check for conflict-freeness). ū and c̄ represent nodes and edges to
ignore, respectively, useful in tailoring explanations to particular constraints.
By default, ū = 0 and c̄ = 0.

Algorithm 4
1: function Compute-Stability(x, �, ū, c̄)
2: u ← Compute-Unattacked(x, �, ū)

3: c ← 0(m×n)2

4: for i ∈ M, j ∈ J do
5: ci,j ← Compute-Conflicts(x, �i,j , c̄i,j)

6: return (u, c)

7: function Compute-Unattacked(x, �, ū)
8: u ← ¬© x
9: for i ∈ M, j ∈ J do

10: if xi,j = 1 then
11: u ← u ∧© ¬© �i,j

12: u ← u ∧© ¬© ū
13: return u
14: function Compute-Conflicts(x, �i,j , c̄i,j)
15: ci,j ← 0m×n

16: if xi,j = 1 then
17: ci,j ← x ∧© �i,j

18: ci,j ← ci,j ∧© ¬© c̄i,j
19: return ci,j

The following establishes the correctness of Algorithm 4.

Theorem 1. Compute-Stability(x, �, 0, 0) = (0, 0) iff E is stable in
(Args,�).

Proof. First, define a lexicographical ordering ≺ on Args as follows: (i1, j1) ≺
(i2, j2) iff i1 < i2 ∨ i1 = i2 ∧ j1 < j2. We proceed with several intermediate
lemmas.

Lemma 1. If Compute-Unattacked(x, �, ū) = u, then ∀k ∈ M ∀� ∈
J we have uk,� = 1 iff (¬∃k′ ∈ M such that ∃�′ ∈ J with
xk,� = 0, xk′,�′ = 1, �k′,�′,k,�= 1, ūk,� = 0).

Proof. Take arbitrary x, � and ū. After line 8, we have α :
[∀k ∈ M ∀� ∈ J uk,� = 1 iff xk,� = 0], by definition of ¬©. Define loop invari-
ant β that holds at each iteration of the i and j loops: β : ∀k ∈ M ∀� ∈ J
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– (k, �) ≺ (i, j) =⇒ (uk,� = 1 iff ¬∃k′ ∈ M s.t. ∃�′ ∈ J with
xk,� = 0, xk′,�′ = 1, �k′,�′,k,� = 1);

– (k, �) � (i, j) =⇒ (uk,� = 1 iff xk,� = 0).

Then β follows from α because, initially, i = 1 and j = 1, so there is no (k, �) ≺
(i, j), whence uk,� = 1 iff xk,� = 0 holds trivially given α.

Now, at line 10, if xi,j = 1, then we know both β and xi,j = 1 hold. At line 11,
any argument (k, �) attacked by (i, j) is set to be attacked, so ui,j = 0. But at an
arbitrary iteration, values i and j are overwritten so we retain ∃k′, �′ (k′, �′) �
(k, �). Then after line 11 we know that ∀k ∈ M ∀� ∈ J (k, �) � (i, j) =⇒
(uk,� = 1 iff ¬∃k′ ∈ M s.t. ∃�′ ∈ J with xk,� = 0, xk′,�′ = 1, �k′,�′,k,�= 1) and
that (k, �) � (i, j) =⇒ (uk,� = 1 iff xk,� = 0). Thus, the next iteration of (i, j)
means that β will follow.

Otherwise, if at line 10 we have xi,j = 0, then β trivially holds as only i or
j have changed values.

Consequently, at the end of the loop we have ∀k ∈ M ∀� ∈ J uk,� = 1
iff (¬∃k′ ∈ M such that ∃�′ ∈ J with xk,� = 0, xk′,�′ = 1, �k′,�′,k,�= 1). Since
after line 12 u will be filtered by ū, we get ∀k ∈ M ∀� ∈ J ūk,� = 0 =⇒ uk,� = 1.
As ū = 0 by default, the statement follows.

Lemma 2. If Compute-Conflicts(x, �i,j, c̄i,j) = ci,j, then ∀k ∈ M ∀� ∈ J
we have ci,j,k,� = 1 iff xi,j = 1, xk,� = 1, �i,j,k,�= 1, c̄i,j,k,� = 0.

Proof. At line 15, ci,j,k,l = 0 by default. At line 16, if xi,j = 1, then (i, j) may
be attacked. At line 17, (i, j) � (k, �) when xk,� = 1 and �i,j,k,�= 1. At line 18,
c̄i,j,k,� = 1 =⇒ ci,j,k,� = 0. Combining these statements the claim follows.

Lemma 3. If Compute-Stability(x, �, ū, c̄) = (u, c), then

– ∀(k1, �1) ∈ Args \ E ūk1,�1 = 0 =⇒ (∃(k2, �2) ∈ E : (k2, �2) � (k1, �1) iff
uk1,�1 = 0);

– ∀(k1, �1), (k2, �2) ∈ E c̄k1,�1,k2,�2 = 0 =⇒ ((k1, �1) � (k2, �2) iff
ck1,�1,k2,�2 = 1).

Proof. Assume Compute-Stability(x, �, ū, c̄) = (u, c). First, let (k1, �1) ∈
Args \E and assume ūk1,�1 = 0. On the one hand, if uk1,�1 = 0, then by Lemma 1,
∃(k2, l2) with xk2,l2 = 1 and �k2,�2,k1,�1= 1. I.e. (k2, l2) ∈ E and (k2, �2) �
(k1, �1). On the other hand, if (k2, l2) ∈ E with (k2, �2) � (k1, �1), then xk2,l2 = 1
and �k2,�2,k1,�1= 1, so by Lemma 1, uk1,�1 = 0.

For the second statement, let (k1, �1), (k2, �2) ∈ E. Then xk1,�1 = 1 and
xk2,�2 = 1. Assume c̄k1,�1,k2,�2 = 0. If (k1, �1) � (k2, �2), then �k2,�2,k1,�1=
1, whence ck1,�1,k2,�2 = 1 follows from Lemma 2. If ck1,�1,k2,�2 = 1, then
�k1,�1,k2,�2= 1 by Lemma 2 too, whence (k1, �1) � (k2, �2), as required.

Compute-Stability(x, �, 0, 0) = (0, 0) iff E is stable in (Args,�) now
follows from Lemma 3.

We next show how to extract user-friendly explanations pertaining to
schedules.
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3.4 Generating Explanations

As suggested in [4], we generate templated natural language explanations from
the argumentative explanations identifiable in the various AFs (see Sect. 2.3). In
the following algorithms, the generated explanations are given in italics, to be
accordingly instantiated with the job and machine names in the user interface.

Algorithm 5 generates explanations regarding feasibility. As [4] do not state
explanations for trivial cases when m = 0 or n = 0, to complement their work,
we handle these cases with additional explanations.

Note that a problem with the naive implementation of generating an explana-
tion for each conflict in c results in k2 explanations for k conflicting machines for
a job. This results in superfluous text for the user. To summarise these explana-
tions, Algorithm 5 constructs a pseudo-schedule z, interpreted as x transposed
and rows filtered if

∑
i∈M xi,j > 1 for all jobs j. Then non-zero indices of z

referring to the machines that cause over-allocation are used.

Algorithm 5
1: function Explain-Feasibility(u, c)
2: if m = 0 then
3: if n = 0 then
4: There are no jobs, so the schedule is feasible.
5: else
6: There are no machines to allocate jobs.

7: else
8: y ← 0n, z ← 0n×m

9: for j ∈ J , i1 ∈ M, i2 ∈ M do
10: if ci1,j,i2,j = 1 then
11: yj ← 1, zj,i1 ← 1, zj,i2 ← 1

12: if uT
0 = 0 ∧ y = 0 then

13: Each job is allocated to exactly one machine.
14: else
15: for j ∈ J do
16: if u0,j = 1 then
17: Job j is not allocated to any machine.

18: if yj �= 0 then
19: Job j is over-allocated to machines {i | i ∈ M, zj,i = 1}.

Algorithm 6 generates explanations regarding efficiency.
In addition to finding explanations as proposed in ArgOpt, Algorithm 6 sorts

in decreasing order the possible exchanges by improvements in the makespan of
the schedule. While such exchanges do not guarantee the quickest convergence
to an efficient schedule, it may be reasonable for the user to consider first the
biggest problems.

A key limitation with sorting by reduction pertains to multiple critical
machines. In such cases, all reductions are zero, as single or pairwise exchanges
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Algorithm 6
1: function Explain-Efficiency(p, C, u, c)
2: i1 ← first argmax of C
3: reasons ← empty list
4: for j1 ∈ J , i2 ∈ M do
5: if ui2,j1 = 1 then
6: reason ← Job j1 can be allocated to machine i2.
7: append reason to reasons

8: for j2 ∈ J do
9: if ci1,j1,i2,j2 = 1 then

10: reason ← Job j1 and j2 can be swapped on machines i1 and i2.
11: append reason to reasons

12: sort reasons by 〈reduction, processing time〉
13: if reasons is empty then
14: All jobs satisfy SEP and PEP.
15: else
16: output reasons

result in local optimisations of the same objective value. To find a strictly more
efficient schedule, we look k steps ahead, with k the number of critical machines.
To this end, we would need to generate instructions of k actions, which may cause
an exponential explosion in k on the explanation length. Instead, we restrict the
explanation space by considering only one critical machine. This reduces the
computational complexity by a factor of m, which is significant since efficiency
is the most expensive schedule property to explain.

Algorithm 7 generates explanations regarding fixed decisions. (There y refers
to allocations violating positive fixed decisions D+.) In contrast to [4], we assume
that fixed decisions D = (D−,D+) need not be satisfiable (see Definition 3),
whence we must check the conditions for this and generate explanations accord-
ingly (lines 2–8).

Overall, Schedule Explainer executes Algorithm 8 to explain the goodness of
schedules.

4 Tool

We here detail the overall design of Schedule Explainer and illustrate its interface.
Schedule Explainer integrates the algorithms described in Sect. 3 with, on

the one end, an optimisation solver of choice, and a GUI on the other end.
Specifically, the tool allows to formulate an instance of a makespan scheduling
problem, which can then be either passed to the optimisation solver to obtain a
schedule, or a candidate schedule can be manually generated (e.g. randomised).
The working schedule as well as fixed decisions can be revised at any time.

The tool then allows for explaining whether and why the schedule is good
in terms of feasibility, efficiency and fixed decisions, presenting natural language
explanations to the user. Importantly, the explanations are actionable in that



256 K. Čyras et al.

Algorithm 7
1: function Explain-FixedDecisions(D, u, c)
2: for j ∈ J do
3: if ∃i ∈ M. (i, j) �∈ D− then
4: Job j cannot be allocated to any machine.

5: if D− and D+ are not disjoint then
6: Job j subject to conflicting negative and positive fixed decisions.

7: if |{i ∈ M | (i, j) ∈ D+}| > 1 then
8: Job j cannot be allocated to multiple machines.

9: y ← 0m×n

10: for i ∈ M, j ∈ J do
11: y ← y ∨© ci,j

12: if u = 0 ∧ y = 0 then
13: All jobs satisfy user fixed decisions.
14: else
15: for i ∈ M, j ∈ J do
16: if ui,j then
17: Job j must be allocated to machine i.

18: if yi,j then
19: Job j can’t be allocated to machine i.

the user can apply the actions suggested by the tool, such as reassigning jobs,
to improve the schedule. Upon an action being applied, the tool immediately
recomputes whether the schedule is good and gives explanations accordingly.

Schedule Explainer is therefore an interactive tool: it allows the user to easily
engage with the scheduling problem, its solutions and explanations thereof, via
an accessible GUI. The GUI keeps in view the definition of the problem and its
parameters and at the same time presents the actionable explanations in natural
language, alongside a standard cascade chart schedule visualisation. When the
user applies any of the actions suggested, the chart indicates pre- and post-
action situations and the tool refreshes the explanations and actions accordingly.
Figure 2 shows a screenshot of the Schedule Explainer’s GUI. We note that
the GUI is proof-of-concept and specific applications of the tool may require
appropriate adaptations, as in e.g. [3].

The tool is implemented in Python, which allows for easy integration with
several optimisation solvers, particularly GLPK [1] via Pyomo, and offers a wide
range of libraries for various functionalities, including graphical interfaces. The
tool easily runs on a personal laptop, with computation of explanations taking
well under 1 s for problems with mn � 1000. (Optimisation solver running times
can be much greater, but this is irrelevant from the explanation point of view.)
Schedule Explainer is publicly available at https://github.com/kcyras/aes.

https://github.com/kcyras/aes
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Algorithm 8
1: function Explain(m, n, p, D, x)
2: �F ← Cons-Feasibility(m, n)
3: (uF, cF) ← Compute-Stability(x, �F , 0, 0)
4: Explain-Feasibility(uF, cF)
5: (�S ,C) ← Cons-Efficiency(m, n, p, x, D, �F )
6: (uS, cS) ← Compute-Stability(x, �S , uF, cF)
7: Explain-Efficiency(p, C, uS, cS)
8: �D ← Cons-FixedDecisions(m, n, x, �F )
9: (uD, cD) ← Compute-Stability(x, �D, uF, cF)

10: Explain-FixedDecisions(uD, cD)

5 Related Work

Explainable scheduling is a relatively new paradigm within either explainable AI
or optimisation: there has been some recent activity in, for instance, Workshops
on Explainable Planning (XAIP).5 However, to the best of our knowledge no
implemented systems for explaining makespan scheduling exist, other than the
application front-end [3] which itself uses the back-end presented in this paper.

We are likewise not aware of commercial optimisation solvers’ capabilities
in terms of explaining the goodness of schedules. We will nevertheless briefly
discuss two relevant and readily available scheduling tools, namely Setmore [11]
and LEKIN [8], to indicate the possible limitations in terms of explainability.

Setmore is a commercial online application that records appointments, sched-
ules and employees, designed for small businesses where managers can organise
appointments on a calender. Makespan schedules are formulae where employees
are machines and appointments are jobs. The graphical interface enables users
to quickly glance at appointments and their times, clearly indicating overlap-
ping appointments. Modification of an existing schedule is well-facilitated within
the interface, where appointments can be moved or swapped between employ-
ees. However, the application does not offer explainability as such: it is limited
to data input verification and spawning validation error messages for infeasi-
ble schedules. Furthermore, no notion of optimality is at play in Setmore, per-
haps naturally because appointment optimality is not well-defined for arbitrary
businesses.

LEKIN is an academic-oriented scheduling application to teach students
scheduling theory and its applications. The application features numerous opti-
misation algorithms for scheduling and supports flexible makespan scheduling
settings. The application validates a schedule’s feasibility at input, whence infea-
sibility results in error messages. The application computes optimal schedules
and produces common scheduling performance metrics such as makespan com-
pletion time and tardiness. However, these metrics are global across all machines
5 http://xaip.mybluemix.net/.

http://xaip.mybluemix.net/
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Fig. 2. A screenshot of Schedule Explainer’s GUI. Machines are named by integers
1 to 4 and jobs by capital letters A to H. Denotation of job processing times, fixed
decisions and working schedule is self-explanatory. The schedule together with the last
action applied to it is visualised as a cascade chart: job E was moved from machine 4
to machine 1 so as to satisfy both the positive and negative fixed decisions.

and give no indication as to improving schedules. Moreover, no explanation is
presented regarding the pre- and post-optimised schedules.

It is clear that both applications offer limited explanations, explicitly via
error messages and implicitly via cascade charts. Similar considerations apply
to very advanced, commercial scheduling tools, such as Greycon’s OptStudio or
OptaPlanner.6 Instead, for effective knowledge transfer, our Schedule Explainer
provides actionable textual explanations accompanied by cascade charts to help
the user to understand why a particular schedule is good or not and how to
possibly improve it.

6 Conclusions and Future Work

We presented Schedule Explainer, an interactive tool for argumentation-
supported explanations in the makespan scheduling setting. The tool realises
the recently proposed ArgOpt approach [4] by integrating an optimisation solver
with an argumentation-driven engine to provide actionable textual explanations
pertaining to the goodness of schedules in a visually-supporting user interface.

In the future it would be interesting to evaluate our tool in various settings:
for instance with computer science students to gauge whether it can help to
better understand makespan scheduling and optimisation techniques, as well
as with generic audiences to see if Schedule Explainer with an appropriately

6 https://www.optaplanner.org/.

https://www.optaplanner.org/
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enhanced graphical interface such as the one in [3] can be of educational value in
real-life applications such as doctor appointment scheduling. Providing person-
alised explanations would also be desirable, as well as accounting for a poten-
tially exponential blow-up in the number of explanations. We stipulate that such
explorations would also entail some user studies and for easier accessibility in
such settings it may as well be useful to develop a web interface for Schedule
Explainer. It would also be beneficial to extend the tool to more complicated
makespan scheduling problems such as flow- and open-shop scheduling, interval
scheduling, scheduling with user preferences.
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Abstract. Practical reasoning is such an essential cornerstone of artificial intel-
ligence that it is impossible to see how autonomous agents can be realized with-
out it. As a first step of practical reasoning, an autonomous agent is required to
form its intentions by choosing amongst its motivations in light of its beliefs. An
autonomous agent is also expected to seamlessly revise its intentions whenever
its beliefs or motivations change. In the modern world, it becomes an impelling
priority to endow agents with explainable practical reasoning capabilities in order
to foster the trustworthiness of artificial agents. An adequate framework of prac-
tical reasoning must be able to (i) capture the process of intention formation, (ii)
model the joint revision of beliefs and intentions, and (iii) provide explanations
for the chosen beliefs and intentions. Despite the abundance of approaches in
the literature for modelling practical reasoning, such approaches fail to possess
at least one of the previously mentioned capabilities. In this paper, we present
formal algebraic semantics for a logical language that can be used for practical
reasoning. We demonstrate how our language possesses all of the aforementioned
capabilities providing an adequate framework for explainable practical reasoning.

Keywords: Explainable agency · Practical reasoning · Algebraic semantics

1 Introduction

“What should I do?” is a question that an artificial agent is compelled to answer if it is
fully autonomous. The process of deliberation the agent undergoes in order to answer
this question is referred to as practical reasoning [6]. In this way, practical reasoning
is reasoning about what to do. According to Bratman, practical reasoning is a matter
of weighing reasons for and against competing actions, where the relevant reasons are
provided by the agent’s motivations and beliefs [29]. Modelling practical reasoning has
posed a difficult challenge over the years for philosophers, logicians, and computer sci-
entists alike and has received less attention than theoretical reasoning or reasoning about
what to believe. The process of practical reasoning can be thought of as comprising two
separate subprocesses: (i) a process of deliberation where the agent forms its intentions
by choosing among its possibly conflicting motivations in light of its possibly uncertain
beliefs, and (ii) a process of means-end reasoning to decide on a sequence of actions
to achieve the selected intentions [40]. As an example of a typical practical reasoning
scenario, consider the following situation.
c© Springer Nature Switzerland AG 2021
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Example 1. Doc is a medical rescue agent operating in a disaster zone. Doc’s task is to
assess the victims’ injuries and accordingly decide either to treat them on the spot or
take them to the hospital. For most cases, a victim with any open wounds must be taken
to the hospital. Due to the hospital’s limited capacity, Doc should not take a victim it
can treat to the hospital. For this reason, it is awarded points for treating victims that it
can treat on the spot. Doc is assigned a case of a little girl with what appears to Doc to
be an open wound. Doc thinks it can treat her on the spot, and actually desires to treat
her to earn more reward points. At the same time, Doc feels obliged to take the girl to
the hospital as it is not very certain that it can treat her. What should Doc do? ��

In the above example, Doc needs to do practical reasoning in order to either form
an intention to treat the girl or take her to the hospital. However, it can not intend both
as it believes that it can not do both. Practical reasoning is thus a process of filtering out
an agent’s motivations to form its intentions guided by its beliefs. In practical settings,
the agent’s beliefs and motivations are being continuously revised. Consequently, the
revision of beliefs and motivations must be reflected on the agent’s intentions. In our
example, for instance, if Doc drops its belief that it can not treat a victim on the spot and
take them to the hospital, Doc can now have both intentions. Similarly, if it drops its
obligation to take the girl to the hospital, it will only have the intention to treat the girl
on the spot to earn more reward points. This process of revising the agent’s beliefs and
motivations to preserve the consistency of its beliefs and intentions will be referred to
as the joint revision of beliefs and intentions. Unlike the tremendous body of literature
on belief revision, this problem of the joint revision of beliefs and intentions has been
scarcely investigated [22].

As autonomous artificial agents become more prevalent in a plethora of domains,
it becomes an impelling priority to endow agents with explainable practical reasoning
capabilities if we are to trust them to perform critical tasks [27]. A rescue agent like
the one presented in the previous example, for instance, must be able to explain why it
chose to treat a victim rather than take them to the hospital. For this reason, the topic of
eXplainable Artificial Intelligence (XAI) has attracted a lot of research interest in both
academia and industry with the main objective of developing transparent and under-
standable AI systems. However, most of the recent work on the topic focuses, almost
exclusively, on explaining the behaviour of black-box machine learning algorithms such
as deep neural networks (DNNs) [41, for instance]. Explaining the behaviour of goal-
driven logical agents has received much less attention in comparison [1]. The existing
approaches for explaining the behaviour of logic-based agents predominantly focus on
keeping track of the chain of reasoning that led the agent to hold a belief or adopt an
intention. Such explanations are not sufficient in a typical dynamic world where the
agent’s beliefs and intentions are always being revised. Explaining the reasons why
beliefs and intentions were accepted or rejected after the revision process is definitely
needed if the agent’s reasoning is truly transparent. In our rescue agent example, Doc
must be able to explain why it believes the girl has an open wound. Further, if Doc
drops this belief and accordingly does not intend to take her the hospital anymore, it
must be able to also explain why it dropped its belief and intention.

Several attempts have been made over the years to come up with theories of practical
reasoning, however, an adequate theory remains missing [39]. An adequate framework
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of practical reasoning must be able to (i) capture the process of intention formation,
(ii) model the joint revision of beliefs and intentions, and (iii) provide explanations
for the chosen beliefs and intentions after the revision. Unfortunately, the numerous
approaches in the literature for modelling practical reasoning fail to possess at least one
of the aforementioned capabilities. With the objective of addressing this gap, we present
in this paper formal algebraic semantics for a logical language we refer to as LogAPR
(“Log” stands for logic, “A” for algebraic, and “PR” for practical reasoning) that can
be utilized for first-person practical reasoning with its beliefs and different motiva-
tions while possessing the above mentioned three capabilities all in one framework. We
do not restrict the agent’s motivations to only desires or goals. Rather, in LogAPR,
reasoning with any number of arbitrary motivations can be modelled such as desires,
obligations, norms, promises, ... etc. The utility of adopting the first person perspective
has been investigated in the literature [2,13,32]. Following these approaches, we use
LogAPR to model the internal reasoning of an agent with its beliefs and motivations
rather than model an external observer’s reasoning about the beliefs and motivations of
an agent. We also follow [9,11] and treat intentions as a derived attitude from beliefs
and motivations rather than treating them as a basic mental attitude.

In giving the semantics of LogAPR, we depart from the mainstream modal
approaches and take the algebraic route, which has several merits that we presented
in previous work [19,24,25]. LogAPR is a recent addition to our growing family of
algebraic logics. Hence, independent motivations for the algebraic approach are also
motivations for LogAPR. The algebraic approach is based on an ontological commit-
ment to propositions as first-class individuals in the universe of discourse; this leads to
a language with no sentences, but with functional terms taken to denote propositions.
Though non-standard, the inclusion of propositions in the ontology has been suggested
by several authors [3,10,31,36]. What does this buy us? Take LogAB [24] for exam-
ple. As an algebraic language for reasoning about beliefs, LogAB strikes a middle
ground between two major approaches to doxastic logic: the dominant, modal app-
roach [15, for example] and the (now relatively out of fashion) first-order syntactical
approach [26,33, for instance]. This allows LogAB to avoid problems of logical omni-
science, which mar the classical modal approach, while staying immune to paradoxes
of self-reference plaguing the syntactical approach. Another example is LogAG [19],
an algebraic logic for non-monotonic reasoning about graded beliefs. As proven in [19],
LogAG can capture a wide array of non-monotonic reasoning formalisms providing a
unified framework for non-monotonicity. Last but not least, LogACn [25], which is an
algebraic logic for reasoning about preference, desire, and obligation, avoids the so-
called paradoxes of deontic logic [28] by, again, abandoning classical possible-worlds
semantics. These different motivations for the algebraic approach suggest that it is only
natural to consider a language like LogAPR if one is to model practical reasoning the
algebraic way.

The rest of the paper is structured as follows. In Sect. 2, we present the algebraic
foundations on which our proposed logic is based. Next, in Sect. 3, we present the
syntax and semantics of LogAPR. In Sect. 4, we present LogAPR theories and our
monotonic logic consequence relations for beliefs and motivations. Next, in Sect. 5,
we present corresponding non-monotonic consequence relations for reasoning with and
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jointly revising graded beliefs and motivations to form a consistent set of intentions.
In Sect. 6, we present our account of explanations for both the chosen and rejected
beliefs and intentions after the revision. In Sect. 7, we show how our proposed frame-
work addresses several gaps in the related work. Finally, in Sect. 8, we make some
concluding remarks. All the proofs of the theorems presented in this paper has been
omitted for space limitations but can be found at [18].

2 Algebraic Foundations

LogAPR is based on Boolean algebras. We start by reviewing Boolean algebra and then
extend the classical Boolean algebraic notion of filter to what we refer to as amultifilter.
In the next section, multifilters are used to define a logical consequence relation for
LogAPR accommodating practical reasoning with multiple mental attitudes.

Definition 1. A Boolean algebra is a sextupleA = 〈P,+, ·,−,⊥,�〉whereP is a non-
empty set with {⊥,�} ⊆ P . P is closed under the two binary operators+ and · and the
unary operator − with commutativity, associativity, absorption, and complementation
properties as detailed in [35].

The partial order ≤ on P is such that, for any p, q ∈ P , p ≤ q if p · q = p. Since
we are using Boolean algebras for reasoning purposes, we intuitively take elements of
P to be propositions and the operators +, ·, and − to be disjunction, conjunction, and
negation respectively. The order ≤ is provably a Tarskian logical consequence relation
[24]. On this interpretation, classical Boolean-algebraic filters [35] are logically-closed
sets of propositions. Henceforth, an arbitrary Boolean algebra A = 〈P,+, ·,−,⊥,�〉
is assumed.

Definition 2. A filter of A is a subset F of P where:

1. � ∈ F ;
2. if p, q ∈ F , then p · q ∈ F ; and
3. if p ∈ F and p ≤ q, then q ∈ F .

The filter generated by Q ⊆ P is the smallest filter F (Q) of which Q is a subset.

As practical reasoning involves joint reasoning with multiple mental attitudes, we
are interested, not in sets of propositions, but in tuples of such sets. Hence, we gener-
alize filters—logically-closed sets of propositions—to what we refer to as multifilters.
The generalization is twofold. First, multifilers are closed tuples of sets of proposi-
tions. Second, since the propositions in different mental attitudes are interdependent
and need not be logically-closed (motivations, for example [11]), we generalize the
classical order ≤ on propositions, on which filters are based, to a more liberal order on
tuples of sets of propositions. For a positive integer k, a k-preorder on A is a preorder
�k on (2P )k.

Definition 3. Let Q = 〈Q1, . . . ,Qk〉 be a tuple of subsets of P and � be a k-preorder
on A. The �-multifilter generated by Q, denoted F�(Q), is a tuple 〈FQ1, . . . , FQk〉
where FQi, for all 1 ≤ i ≤ k, is the smallest set containing Qi such that � ∈ FQi

and if 〈P1, . . . , Pk〉 � 〈P ′
1, . . . , P

′
k〉 and Pi ⊆ FQi, then P ′

i ⊆ FQi.
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The above properties of multifilters are intended generalizations of the three condi-
tions on filters presented in Definition 2 to accommodate reasoning with multiple sets
of propositions rather than a single set by utilising a k-preorder. To accommodate rea-
soning with mental states with attitudes that have different logical properties, the only
required closure condition on multifilters is based entirely on the k-preorder on tuples
of sets.

3 LogAPR Languages

The syntax of LogAPR consists of terms constructed algebraically from function sym-
bols. There are no sentences; instead, we use terms of a distinguished syntactic type to
denote propositions. Propositions are included as first-class individuals in the LogAPR
ontology and are structured in a Boolean algebra. Grades are also taken to be first-
class individuals. As a result, propositions about graded beliefs and motivations can be
constructed, which are themselves recursively gradable. A LogAPR language L is a
many-sorted language composed of a set of terms partitioned into three base sorts: σP

is a set of terms denoting propositions, σG is a set of terms denoting grades, and σI is
a set of terms denoting anything else. A LogAPR signature Ω includes a non-empty,
countable set of constant and function symbols each having a syntactic sort from the
set σ = {σP , σG, σI} ∪ {τ1 −→ τ2 | τ1 ∈ {σP , σG, σI} and τ2 ∈ σ} of syntactic
sorts. Intuitively, τ1 −→ τ2 is the syntactic sort of function symbols that take a sin-
gle argument of sort σP , σG, or σI and produce a symbol of sort τ2. In addition, an
alphabet Ω includes a countably infinite set of variables of the three base sorts; a set
of syncategorematic symbols including the comma, various matching pairs of brackets
and parentheses, and the symbol ∀; and a set of logical symbols defined as the union
of the following sets: (i) {¬} ⊆ σP −→ σP , (ii) {∧,∨} ⊆ σP × σP −→ σP , (iii)
{�,

.=} ⊆ σG × σG −→ σP , and (iv) {Ai}k
i=1 ⊆ σP × σG −→ σP . Ai(p, g) denotes

the proposition that the agent has attitude i towards proposition p with a grade of g.
This attitude could be a belief or some kind of a motivation. In the remainder of this
paper, we assume a LogAPR language L with a signature Ω.1

The basic ingredient of the LogAPR semantic apparatus is a LogAPR structure.

Definition 4. A LogAPR structure is a quintuple Sk = 〈D,A, a,�, e〉 where:

– D, the domain of discourse, is a countable set comprising three disjoint sets: (i) a
set of propositions P , (ii) a set of grades G, and (iii) the set P ∪ G of other entities;

– A = 〈P,+, ·,−,⊥,�〉 is a complete, non-degenerate Boolean algebra [35].
– a = {ai | 1 ≤ i ≤ k and ai : P × G −→ P} is a set of k grading functions;
– �: G × G −→ P is a ordering function imposing a total order on G;
– e : G×G −→ {⊥,�} is an equality function, where for every g1, g2 ∈ G: e(g1, g2) =

� if g1 = g2, and e(g1, g2) = ⊥ otherwise.

A valuation V of a LogAPR language is a triple 〈Sk,VF ,VX〉, where Sk is a
LogAPR structure, VF is a function that assigns to each function symbol an appropriate

1 Terms involving ‘⇒’ (material implication), ‘⇔’ (equivalence), and ‘∃’ are abbreviations
defined in the standard way.
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function on D, and VX is a function mapping each variable to a corresponding element
of the appropriate block ofD. For a valuation V = 〈S,VF ,VX〉with variable x and a ∈
D, V[a/x] = 〈S,VF ,VX [a/x]〉, where VX [a/x](x) = a, and VX [a/x](y) = VX(y)
for every y �= x. An interpretation of LogAPR terms is given by a function [[·]]V . The
behaviour of the interpretation function is depicted in Fig. 1.

Definition 5. Let L be a LogAPR language and let V be a valuation of L. An inter-
pretation of the terms of L is given by a function [[·]]V :

– [[x]]V = VX(x), for a variable x.
– [[c]]V = VF (c), for a constant c.
– [[f(t1, . . . , tm)]]V = VF (f)([[t1]]V , . . . , [[tm]]V), for an m-adic (m ≥ 1) function f .
– [[(t1 ∧ t2)]]V = [[t1]]V · [[t2]]V .
– [[(t1 ∨ t2)]]V = [[t1]]V + [[t2]]V .
– [[¬t]]V = −[[t]]V .
– [[∀x(t)]]V =

∏

a∈D
[[t]]V[a/x].

– [[Ai(t1, t2)]]V = ai([[t1]]V , [[t2]]V).
– [[t1 � t2]]V = [[t1]]V � [[t2]]V .
– [[t1

.= t2]]V = e([[t1]]V , [[t2]]V).

Fig. 1. The interpretation of LogAPR terms.

4 Monotonic Logical Consequence

Having defined the syntax and semantics of LogAPR, we proceed to defining
LogAPR theories and presenting a monotonic logical consequence relation for
LogAPR. In defining this relation, we employ our notion of multifilters from Sect. 2.
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Definition 6. A LogAPR theory T is a quadruple 〈A, R, C, b〉, where:

– A = 〈A1, . . . , Ak〉 is a k-tuple of subsets of σP representing the agent’s beliefs and
k − 1 motivation types;

– R is a set of bridge rules each of the form A1, . . . , Ak �−→ A′
1, . . . , A

′
k where

A1, . . . , Ak ⊆ σP and A′
1, . . . , A

′
k ⊆ σP ;

– C ⊆ {1, . . . , k}; and
– b ∈ C is the position of the set of beliefs in A.

Each set A1, ..., Ak in A represents a separate mental attitude of the agent including
its beliefs and different types of motivations. If a propositional term φ ∈ Ai, then
the agent has the attitude i towards φ. The existence of Ai(φ, g) in Aj for some 1 ≤
i, j ≤ k reflects that the agent has the attitude j towards Ai(φ, g). This facilitates the
representation of introspection and higher-order attitudes. The order of the attitudes in
A represents the agent’s character which will be utilized later for conflict resolution.
The bridge rules serve to “bridge” propositions across the different mental attitudes.
Intuitively, a bridge rule A1, . . . , Ak �−→ A′

1, . . . , A
′
k means that if every Ai follows

from Ai, then every A
′
j may be expanded with A′

j . The set C specifies the positions of
the sets in A that are closed under conjunction. In typical cases, only the set of beliefs
will be closed under conjunction. However, we do not enforce this for generality since
we do not restrict LogAPR theories to include particular types of motivations. Some
sets of motivations can be closed under conjunction as well if their indices are in C.
To distinguish the set of beliefs from the different sets of motivations, b indicates the
position of the beliefs set in A.

Example 2. Let “t(x)” denote the proposition that Doc treats x, “h(x)” the proposition
that Doc takes x to the hospital, “w(x)” the proposition that x is wounded, “o(x)” the
proposition that x has an open wound, and “p(x)” the proposition that x earns more
points. A possible LogAPR theory representing the situation described in Example 1
is T = 〈〈A1, A2, A3〉, R, {1}, 1〉. A1 represents Doc’s beliefs, A2 represents its desires,
and A3 its obligations. B,D, and O are mnemonics for A1,A2, and A3, and:

– A1 is made up of the following terms:
b1. B(∀x[o(x) ⇒ h(x)], 2)
b2. B(∀x[t(x) ⇔ ¬h(x)], 5)
b3. w(G)
b4. B(o(G), 6)
b5. B(t(G), 4)
in addition to beliefs about the natural order of the grades (interpreted as rational
numbers).

– A2 = {D(p(Doc), 10)} and A3 = {}.
– R is the set of instances of the following rule schema where x and g are variables.

r1. {w(x)}, {D(p(Doc), g)}, {} �−→ {}, {D(t(x), g)}, {}.
r2. {B(t(x), g) ∧ g � 5}, {}, {} �−→ {}, {}, {O(h(x), 10)}.

b1 represents Doc’s uncertain belief that if x is with an open wound, then Doc takes x
to the hospital; b2 represents Doc’s uncertain belief that Doc treats x if and only if Doc
does not take x to the hospital; b3 represents Doc’s certain belief that G is wounded;
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and b4 and b5 represent Doc’s uncertain beliefs that G has an open wound and that
Doc can treat G respectively. A2 contains only Doc’s desire to earn more points with
a degree of 10. r1 represents the bridge rule that if Doc desires to earn points with a
grade of g while believing that x is wounded, then Doc desires to treat x with the same
grade g. r2 represents that if Doc believes that he treats x with a grade smaller than 5,
then Doc is obliged to take x to the hospital with a higher grade of 10. ��

In Sect. 2, we defined multifilters based on an arbitrary partial order �. We now
define how to construct such an order for the tuples of sets propositions in P in light of
a LogAPR theory. ◦ is used to denote sequence concatenation in what follows.

Definition 7. Let T = 〈A, R, C, b〉 be a LogAPR theory and V a valuation.
A T

V -induced order, denoted �TV , is a preorder over (2P )k such that:

1. if A1, .. , Ak �−→ A′
1, .. , A′

k ∈ R, then 〈[[A1]]V , .. , [[Ak]]V〉 �TV

〈[[A′
1]]

V , .. , [[A′
k]]

V〉.
2. If i ∈ C and Pi ⊆ P , then 〈{}〉i−1◦Pi◦〈{}〉k−i �TV 〈{}〉i−1◦〈{

∏

p∈Pi

p}〉◦〈{}〉k−i〉.

3. if p, q ∈ P and p ≤ q, then 〈{}〉b−1◦〈{p}〉◦〈{}〉k−b �TV 〈{}〉b−1◦〈{q}〉◦〈{}〉k−b.

The intuition is that �TV is induced by the bridge rules in a LogAPR theory (Con-
dition 1), the set C (Condition 2), and the natural order ≤ among the beliefs (Condition
3). The natural order is only considered for the set of beliefs as motivations are typically
not closed under logical implication.

We next utilise a multifilter based on a T
V -induced order to define a set of logical

consequence relations one for beliefs and one for each type of motivation. The intuition
is that φ is an i-consequence if its denotation is in the ith set of the multifilter based on
the T

V -induced order.

Definition 8. Let T = 〈A, R, C, b〉 be a LogAPR theory. For any φ ∈ σP , φ is
an i-consequence of T, denoted T |=i φ, if for every valuation V , F�

TV ([[A]]V) =
〈FQ1, . . . , FQk〉 and [[φ]]V ∈ FQi.

Example 3. Recall the LogAPR theory presented in Example 2, the following are
examples of the possible belief and motivation consequences. We use |=B , |=D, and
|=O instead of |=1, |=2, and |=3 respectively for readability.

– T |=B B(o(G), 6) ∧ B(t(G), 4)
– T |=D D(p(D), 10), T |=D D(t(G), 10), T |=O O(h(G), 10)

The first belief consequence is a classical logical consequence of the set of beliefs since
only the set of beliefs is closed under conjunction.D(p(D), 10) is a desire consequence
as it is in A2. D(t(G), 10) and O(h(G), 10) are desire and obligation consequences
respectively as a result of applying the bridge rules r1 and r2. Note that the graded
belief o(G), for example, is not a belief consequence of T. This, in addition to defining
intention consequences from the different motivations consequences, will be addressed
in the next section. ��
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We next examine the properties of our just defined consequence relations. Each |=i

observes modified versions of the distinctive properties of Tarskian logical consequence
(reflexivity, monotony, and cut). Further, each |=i with i �= b is non-explosive. This last
property is very important for motivations as, for example, an agent can have inconsis-
tent desires without desiring everything.

Theorem 1. Let T = 〈A, R, C, b〉 and T
′ = 〈A′, R′, C, b〉. The following properties

are true.

1. (Reflexivity) If φ ∈ Ai, then T |=i φ.
2. (Monotony) Let Aj ⊆ A

′
j for all 1 ≤ j ≤ k, and R ⊆ R

′. If T |=i φ, then T
′ |=i φ.

3. (Cut) Let A′
i = Ai ∪{ψ} for some i, 1 ≤ i ≤ k, and A

′
j = Aj for j �= i, and R

′ = R.
If T |=i ψ and T

′ |=i φ, then T |=i φ.
4. (Non-Explosion of Motivations) If T |=i φ and T |=i ¬φ for i �= b, it is not

necessarily the case that T |=i ψ for all ψ ∈ σP .

5 Graded Consequence

As shown in the previous section, multifilters do not account for reasoning with graded
propositions or with the process of intention formation. In this section, we extend mul-
tifilters to handle both issues. Consider the LogAPR theory presented in Example 2.
Given that Doc believes B(o(G), 4), and does not believe ¬o(G), it makes sense for it
to accept o(G) despite its uncertainty about it. (Who is ever absolutely certain of their
beliefs?) Similarly, it makes sense for Doc to add its desire p(Doc) to its intentions
if they do not conflict with other intentions or beliefs. However, if we only use mul-
tifilters, we will never be able to reason with those graded beliefs and motivations as
they are not themselves in the agent’s theory but only grading propositions thereof (as
shown in Example 3). For this reason, we extend our notion of multifilters into a more
liberal notion of graded multifilters to enable the agent to conclude, in addition to the
consequences of the initial theory, beliefs and motivations graded by the initial beliefs
and motivations (like o(G)).

Henceforth, we consider a special class of LogAPR theories to simplify the pre-
sentation of the upcoming formal semantics.2 We consider only LogAPR theories
〈A, R, C, b〉 where, for every 1 ≤ i, j ≤ k, if Ai(φ, g) ∈

⋃k
l=1 Al, then (i) φ does

not contain any occurrence of Aj and (ii) there is no g′ �= g with Ai(φ, g′) ∈
⋃k

l=1 Al.
Since we are modelling joint reasoning with beliefs and different types of motivations,
we assume a tuple Q = 〈Q1, . . . ,Qk〉 of subsets of P . If ai(p, g) ∈ Qi we say that
p is graded in Qi. The rest of this section is dedicated to formally defining graded
multifilters and the non-monotonic consequence relation based on them.

Definition 9. The tuple of embedded graded propositions in Q, denoted E(Q), is a
tuple 〈E(Q1), . . . , E(Qk)〉 where E(Qi) = Qi ∪{p | ai(p, g) ∈ Qi} for all 1 ≤ i ≤ k.

Example 4. Recall the LogAPR in Example 2. Given a valuation V , let Q = [[A]]V .
We use d and o as mnemonics for a2 and a3 respectively. We use the syntactic ∧ and
⇔ operators here rather than their semantic counterparts for readability.

2 The complete semantics of LogAPR without the imposed restrictions can be found in [17].
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– F�
TV (Q) = 〈FQ1, FQ2, FQ3〉 where FQ1 = F ([[A1]]V),

FQ2 = {d(p(Doc), 10),d(t(G), 10)}, and FQ3 = {o(h(G), 10)}.
– E(F�

TV (Q)) = 〈E(Q1), E(Q2), E(Q3)〉 where:
• E(Q1) = FQ1 ∪ {∀x[o(x) ⇒ h(x)],∀x[t(x) ⇔ ¬h(x)], w(G), o(G), t(G)}.
• E(Q2) = FQ2 ∪ {p(Doc), t(G)}, E(Q3) = FQ3 ∪ {h(G)}. ��

A problem that we have to circumvent is that extracting the embedded graded propo-
sitions can introduce inconsistencies among the agent’s beliefs and motivations. As
shown in Example 4, Doc believes that he can not treat the girl on the spot and take
her to the hospital, desires to treat the girl, and is obliged to take her to the hospital.
To resolve the introduced inconsistencies, we allude to the agent’s character and the
grades of the inconsistent propositions to resolve them resulting in a consistent set of
beliefs and motivations. Given a LogAPR theory T = 〈A, R, C, b〉, the agent’s char-
acter is represented by the order of the attitudes in A. In Example 2, for instance, since
beliefs appears before desires and desires before obligations, then Doc prefers to give
up beliefs then desires then obligations to resolve any inconsistencies. After resolving
all the inconsistencies, the union of all the motivations sets makeup the agent’s inten-
tions. From now on, we will refer to extracting the embedded graded propositions in Q
and handling the inconsistencies in the resulting tuple as the telescoping of Q. A central
tool that will be used in telescoping Q is telescoping structures.

Definition 10. Let Sk be a LogAPR structure. A telescoping structure for Sk is a
triple T = 〈T ,O, s〉 where:

– T = 〈T1, . . . , Tk〉, with T1, . . . , Tk ⊆ P , is the tuple of top propositions;
– O is an ultrafilter of the subalgebra induced by Range(�) (an ultrafilter is a max-
imal filter with respect to not including ⊥ [35]); and

– s = 〈s1, s2〉 is a pair of selection functions with s1 : 2P −→ P and

s2 : 2(2
P)k −→ (2P)k.

The telescoping structure provides the tuple of top propositions T that will never
be given up together with their consequences. T is the semantic counterpart to A in
a LogAPR theory. Thus Tb is the set of top beliefs and Ti, where i �= b, is a set of
top motivations of type i. Just like we did with A, we assume that the order of the sets
in T represents the agent character from the least preferred to the most preferred. The
ultrafilterO provides a total order over grades to enable comparing them. The selection
function s1 picks a proposition from a set of propositions, and s2 picks a tuple of sets
of propositions from a set of k-tuples of sets of propositions. The order of the sets in T ,
the ultrafilter, and the selection functions will all be used when picking a consistent set
of beliefs and a consistent set of motivations making up the agent’s intentions.

We now proceed to defining precisely how the inconsistencies are resolved. To fulfill
this aim, we generalize the notion of a kernel of a belief base [20] to suit reasoning with
multiple sets of propositions. The intuition is that a ⊥-kernel is a tuple of sets, one for
each mental attitude, where the union of the sets is a subset-minimal inconsistent set.
This means that if we remove a single proposition from one of the sets in the ⊥-kernel,
the union becomes consistent. In what follows, we say that a set R ⊆ P is inconsistent
whenever the classical filter of R is proper (F (R) = P). Otherwise, R is inconsistent.
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Definition 11. Let X = 〈X1, . . . ,Xk〉, and the multifilter F�(X ) = 〈FX1, . . . , FXk〉.
X is a ⊥-kernel of Q if and only if each Xi ⊆ Qi, and

⋃k
i=1 FXi is a subset-minimal

inconsistent set. The set of ⊥-kernels in Q will be referred to as Q⊥.

Example 5. We go back to Example 4. The following are the ⊥-kernels in
E(F�

TV (Q)). The first set in each ⊥-kernel represents beliefs of Doc’s, the second
represents desires thereof, and the third obligations. Recall that ∀x[t(x) ⇔ ¬h(x)] has
a grade of 5, t(G) has a grade of 4, o(G) has a grade of 6, and ∀x[o(x) ⇒ h(x)] has a
grade of 2.

1. 〈{∀x[t(x) ⇔ ¬h(x)], t(G), o(G),∀x[o(x) ⇒ h(x)]}, {}, {}〉.
2. 〈{∀x[t(x) ⇔ ¬h(x)]}, {t(G)}, {h(G)}〉.
3. 〈{∀x[t(x) ⇔ ¬h(x)], o(G),∀x[o(x) ⇒ h(x)]}, {t(G)}, {}〉.
4. 〈{∀x[t(x) ⇔ ¬h(x)], t(G)}, {}, {h(G)}〉

The first kernel shows an inconsistency between Doc’s beliefs, the second between
Doc’s beliefs, desires, and obligations, the third between Doc’s beliefs and desires, and
the fourth between Doc’s beliefs and obligations. ��

But how do we choose propositions to give up from a ⊥-kernel and resolve incon-
sistency? The intuition is this: the proposition to be given up must be the proposition
with the least grade from the least preferred set in the mental state. Recall that the men-
tal state is ordered from the least preferred to the most preferred set. The role of the
selection function s1 becomes evident here. It selects a proposition with the least grade
from several propositions with the minimum grades in the least preferred set according
to the agent’s character. Utilizing s1 rather than just giving up all the propositions with
the least grade is motivated by giving up as few beliefs and motivations as possible.
This is called for as in practical reasoning we typically want to retain as much beliefs
and motivations as possible. In what follows, given a ⊥-kernel X = 〈X1, . . . ,Xk〉, we
say that Xi is the least preferred set in X if and only if Xi is the left-most set in X and
Xi �⊆ FTj where F�(T ) = 〈FT1, . . . , FTk〉. Insisting that Xi is not a subset of FTi

guarantees that it contains at least one graded proposition that could be given up (recall
that the logical consequences of T can not be given up).

Definition 12. Let X = 〈X1, . . . ,Xk〉 be a ⊥-kernel of Q, T = 〈T ,O, s〉 be a tele-
scoping structure, and F�(T ) = 〈FT1, . . . , FTk〉. A proposition p does not survive X
in i given T if and only if p �∈ FTi and all of the following are true.

1. p ∈ Xi where Xi is the least preferred set in X .
2. p ∈ s1(MinGrades) where MinGrades is the set of propositions with the mini-

mum grades in the difference of Xi and FTi.

The question now is which ⊥-kernels do we select from Q⊥ in order to give propo-
sitions up from them? We can just consider all of them, this will surely resolve all the
inconsistencies. However, in doing this, we might end up giving up beliefs and moti-
vations unnecessarily. Alternatively, we will only consider a subset of Q⊥. To define
this subset, we need to define first what will be referred to as a next-best ⊥-kernel. The
idea is that a next-best ⊥-kernel must be examined first to give up a proposition from
according to Definition 12.
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Definition 13. A next-best ⊥-kernel X ∗ is a ⊥-kernel in Q⊥ such that:

1. X ∗ has the longest prefix of sets that are subsets of their corresponding sets in
F�(T ); and

2. ifXj is the least preferred set inX ∗, thenXj contains at least one graded proposition
that has the maximum grade among the propositions with the minimum grades in the
least preferred sets of all the ⊥-kernels in Q⊥.

The set of next-best kernels in Q⊥ will be referred to as N (Q⊥).

The motivation behind the first condition is to tend to the ⊥-kernels that we are
forced to remove a proposition from a more preferred attitude according to the agent’s
character. In Example 5, for instance, even if Doc’s character prefers to give up its
beliefs the least, we are forced to give up from the first kernel a belief since both the
desires and obligations sets are empty. In this case, we consider the first kernel first in
hope that resolving the inconsistency in it will resolve the inconsistency in other kernels
so we end up considering less kernels and giving up less propositions. The second
condition has a similar motivation. We want to tend to the ⊥-kernels that contain the
proposition with the maximum grade among the minimas in the least preferred set of
all the kernels in Q⊥ in hope that if we give up this proposition up other inconsistencies
will be resolved as well. We will come back to these two conditions when we present
how the ⊥-kernels in Example 5 will be treated to resolve all the inconsistencies.

We now define the subset of Q⊥ to be considered by utilizing N (Q⊥). We first
pick using s2 a next-best⊥-kernelX ∗ fromN (Q⊥). Then, the proposition that does not
surviveX ∗ in i is removed fromQi, and we get the next-best kernels from the new tuple.
This process is repeated until no more ⊥-kernels remain. That is, all inconsistencies are
resolved.

Definition 14. Let T = 〈T ,O, s〉 be a telescoping structure. The set of ⊥-kernels to be
considered in Q, denoted N ∗(Q), is defined as follows.

1. N ∗(Q) = ∅ if Q⊥ = ∅.
2. Otherwise, N ∗(Q) = {s2(N (Q⊥))} ∪ N ∗(R) where R = 〈R1, . . . ,Rk〉 such

that Ri = Qi − {p} with p being the proposition that does not survive s2(N (Q⊥))
in i given T, and Rj = Qj for j �= i.

EmployingN ∗(Q), we now present the construction of the tuple of kernel survivors.
The tuple of kernel survivors constitutes the joint revision of beliefs and intentions as
it is removes from the set of beliefs and sets of motivations just enough propositions
to guarantee the joint consistency of its beliefs and filtered motivations making up the
agents intentions.

Definition 15. The tuple of kernel survivors of Q given T is κ(Q,T) where κ(Q,T) =
〈Q1 − O1, . . . ,Qk − Ok〉 where p ∈ Oi if and only if p does not survive any ⊥-kernel
X in i given T where X ∈ N ∗(Q).

We finally define graded multifilters as the multifilter of the telescoping of T .

Definition 16. Let T = 〈T ,O, s〉 be a telescoping structure. The graded multifilter
with respect to S, denoted F�(T), is F�(τT(T )) where τT(T ) = κ(E(F�(T )),T).
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The following theorem states that if the union of the sets in the multifilter of T is
consistent, then the union of the sets in the multifilter after getting T -induced graded
multifilter is consistent. This basically means that the process of telescoping is consis-
tency preserving. Accordingly, we can do the revision of the agent’s beliefs and inten-
tions while maintaining consistency amongst all the beliefs and intentions.

Theorem 2. Let T be a telescoping structure, F�(T ) = 〈FT1, . . . , FTk〉, and
F�(T) = 〈FT ′

1, . . . , FT ′
k〉. If

⋃k
i=1 FTi is consistent, then

⋃k
i=1 FT ′

i is consistent.

Just like we used multifilters to define logical consequence in Sect. 3, we now use
graded multifilters to define graded consequence as follows. We start by defining what
will be referred to as a canon which are the syntactic counterparts of the selection
functions in the telescoping structure. In the sequel, let a canon be a pair C = 〈s1, s2〉
where s1 : 2σP −→ σP and s2 : 2(2

σP )k −→ (2σP )k. In what follows, we define a
relevant telescoping structure given a LogAPR theory, a valuation, and a canon. This
notion will be used in the definition of graded consequence.

Definition 17. Let T = 〈A, R, C, b〉 be a LogAPR theory, V be a valuation, and C =
〈s1, s2〉 be a canon. A relevant telescoping structure given T, V , and C is T = 〈T ,O, s〉
such that:

– T = [[A]]V ;
– O is an ultrafilter that extends F ([[Ab]]V ∩ Range(�))3;
– s = 〈s1, s2〉 for any a set of propositional terms Γ and propositional term φ, if

s1(Γ ) = φ, then s1([[Γ ]]V) = [[φ]]V , and for any set of k-tuples of sets of proposi-
tional terms K and a k-tuple of sets of propositional terms X , if s2(K) = X , then
s2([[K]]V) = [[X]]V .

We are finally ready to define graded consequence. The intuition is that φ is a graded
i-consequence if its denotation is in the ith set of the graded multifilter based on the T

V

induced order and a relevant telescoping structure T.

Definition 18. Let T = 〈A, R, C, b〉 be a LogAPR theory, and canon C = 〈s1, s2〉.
φ ∈ σP is a graded i-consequence of T with respect to canon C, denoted T |�C

i φ, if,
for every valuation V , F�

TV (T) = 〈A1, . . . ,Ak〉 and [[φ]]V ∈ Ai where T is a relevant
telescoping structure given T, V , and C. φ is a graded belief (intention) consequence of
T, denoted T |�C

B φ (T |�C
I φ), if T |�C

b φ (T |�C
j φ for any j �= b).

Example 6. There are six possible characters for Doc reflected by the order of the sets
in A. We will indicate the order of the sets as a sequence of the initials of the attitudes
in A. We illustrate the construction of graded multifilters for all the possible orders. In
each case, we illustrate which propositions Doc ends up believing and intending. The
following table shows the set of next-best kernels to be considered N ∗([[A]]V) accord-
ing to Doc’s character and the removed propositions to resolve the inconsistency. We
indicate the kernels by using their numbers in the list shown in Example 5.

3 An ultrafilter U extends a filter F if F ⊆ U [35].
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Agent character N ∗([[A]]V) Removed proposition(s)

〈B, O, D〉 {2} belief: ∀x[t(x) ⇔ ¬h(x)]

〈B, D, O〉 {2} belief: ∀x[t(x) ⇔ ¬h(x)]

〈O, B, D〉 {(1 or 3), (2 or 4)} belief: ∀x[o(x) ⇒ h(x)], obligation: h(G)

〈O, D, B〉 {1, (2 or 4)} belief: ∀x[o(x) ⇒ h(x)], obligation: h(G)

〈D, B, O〉 {4, (2 or 3)} belief: t(G), desire: t(G)

〈D, O, B〉 {1, 4} belief: ∀x[o(x) ⇒ h(x)], obligation: h(G)

– If Doc’s character is selfish idealistic (〈B,O,D〉) or idealistic selfish (〈B,D,O〉),
N ∗([[A]]V) = {2} since it has the longest prefix of sets that are not subsets of
the top propositions and contains the proposition with the maximum grade among
the minimas (according to Definition 13). Hence, Doc will give up the belief
∀x[t(x) ⇔ ¬h(x)], and ends up intending to treat the girl and take her to the hospi-
tal. Notice here that if we did not choose the kernel that contains the proposition with
the minimum grade among the minimum grade of the propositions in the beliefs set
instead, one of the first or third kernels will be chosen giving up the belief with the
minimum grade ∀x[o(x) ⇒ h(x)], but the fourth kernel will have to be considered
next giving up t(G) from Doc’s beliefs as well. This illustrates that choosing the
kernel that contains the proposition with the maximum grade can end up in giving
up less propositions.

– If Doc’s character is selfish realistic (〈O,B,D〉), the set of next-bests to be consid-
ered will comprise one of the first or third kernels and one of the second or fourth
kernels based on the choice of the selection function s2. In any case, the belief
∀x[o(x) ⇒ h(x)] will then be given up from either the first or third kernels and
the obligation h(G) will be given up from one of the second or fourth kernels. Doc
ends up following its desire and intending to treat the girl on the spot as Doc’s char-
acter prefers its desires the most. If Doc’s character is realistic selfish (〈O,D,B〉),
the set of next-bests will comprise the first kernel as it has the longest prefix and one
of the second or fourth kernels. In this case, again, the belief ∀x[o(x) ⇒ h(x)] will
be given up from the first kernel and the obligation h(G) from one of the second or
fourth kernels. Doc ends up following its desire to treat the girl. Note that here even
though Doc’s character prefers its beliefs the most, Doc ends up giving up a belief
since its beliefs are inconsistent as indicated by the first kernel. Note here that if we
did not choose the kernel with the longest prefix (Condition 1 of Definition 13), we
would have chosen the second or fourth kernels first giving up the obligation h(G),
then the third kernel giving up the desire t(A), then finally the first kernel giving
up the belief ∀x[o(x) ⇒ h(x)]. In this case, Doc would have not have intended to
do anything. This illustrates that choosing the kernel with the longest prefix of sets
consisting of propositions that follow from the top propositions can end up in giving
up less propositions.

– If Doc’s character is idealistic realistic (〈D,B,O〉), the set of next-bests will com-
prise the fourth kernel and one of the second or third kernels. In this case, the belief
t(G) will be given up from the fourth kernel and the desire t(G) from the second or
third kernels. Doc ends up following its obligation by intending to take the girl to the
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hospital. If Doc’s character is realistic idealistic (〈D,O,B〉), the set of next-bests
will comprise the first and fourth kernels. In this case, the belief ∀x[o(x) ⇒ h(x)]
will be given up from the first kernel and the obligation h(G) will be given up
from the fourth kernel. Doc ends up following its desires and intending to treat the
girl. Note that even though we expect this character to give up its desires before its
obligations, an obligation was given up since the fourth kernel shows an inconsis-
tency between beliefs and obligations and Doc prefers to give up obligations before
beliefs. ��

6 Explanations

Throughout this section, we assume a LogAPR theory T = 〈〈A1, . . . , Ak〉, R, C, b〉
and a canon C = 〈s1, s2〉. We start by presenting a simplistic form of explanations for
a belief or an intention φ.

Definition 19. A support for φ as a graded belief (intention) consequence of T given
C is a LogAPR theory T

′ = 〈(A′
1, . . . , A

′
k), R

′, C, b〉 where A
′
1, . . . , A

′
k, R′ are the

smallest subsets4 of A1, . . . , Ak, R respectively where T
′ |�C

B φ (T′ |�C
I φ).

Since LogAPR is a non-monotonic logic capturing the joint revision of beliefs and
intentions, it makes sense to augment our explanations with reasons why φ survived the
revision. Moreover, in case φ does not survive the revision, the explanation should also
include the reason why it did not. Recall that, according to Definition 15, in order for
φ to be a belief/intention graded consequence, it has to survive all the ⊥-kernels in the
set of next-bests. Similarly, for φ not to be a belief/intention graded consequence it has
to not survive one of the kernels in the set of next-bests. Hence, we will use the set of
next-bests to explain why φ is or is not a belief/intention consequence. Since we will
provide our explanations in syntactic terms, the syntactic representation of the set of
next-bests is defined as follows.

Definition 20. Let Q = 〈Q1, . . . , Qk〉 be a tuple of sets of propositional terms. X =
〈X1, . . . , Xk〉 is a syntactic ⊥-kernel of Q if and only if, for every valuation V , [[X]]V

is a ⊥-kernel of [[Q]]V given T as per Definition 11 where T is a relevant telescoping
structure given T,V, and C. The syntactic representation of the set of next-bests N∗(Q)
is the set of syntactic representations of the ⊥-kernels in N ∗([[Q]]V) where N ∗([[Q]]V)
is as per Definition 14.

We now define an explanation for any belief/intention graded consequence φ as a
set of supports in T given C in addition to a set of syntactic ⊥-kernels that φ survives.
In what follows, for any tuple of sets of propositional terms Q = 〈Q1, . . . , Qk〉, let
E(Q) = 〈EQ1, . . . , EQk〉 where, EQi = Qi ∪{φ | Ai(φ, g) ∈ Qi} for all 1 ≤ i ≤ k.
Further, let Q⊥ be the set of syntactic ⊥-kernels of Q and Cn(T) = 〈A′

1, . . . , A
′
k〉 with

A
′
i = {φ | T |=i φ} for all 1 ≤ i ≤ k.

4 By smallest subsets, we mean that if we remove any proposition from any of A
′
1, . . . , A

′
k or

any rule from R
′, φ ceases to be an i-consequence.
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Definition 21. Let T |�C
B φ (T |�C

I φ) and Q = E(Cn(T))). An explanation for
accepting φ as a belief (intention) consequence is a pair (ES , EK) where:

– ES is the set of all supports for φ as a graded belief (intention) in T given C; and
– EK = {〈X1, . . . , Xk〉 | 〈X1, . . . , Xk〉 ∈ N∗(Q) and φ ∈ Xb (φ ∈ Xjforsome

j �= b)}.
On the other hand, an explanation for rejecting φ as a belief/intention consequence

is just one kernel K in N∗(Q) that φ does not survive as a belief/intention. Recall that
the only reason why φ would not survive is that it is in the least preferred set according
to the agent’s character with the least grade in this set.

Definition 22. Let T �|�C
B φ (T �|�C

I φ). An explanation for rejecting φ as a graded
belief (intention) consequence is X where X = 〈X1, . . . , Xk〉 ∈ N∗(Q) with
Q = E(Cn(T)) and φ ∈ Qb (φ ∈ Qj for some j �= b).

Example 7. We go back one last time to our running example. Suppose that Doc is
selfish realistic (the order of the sets is obligations, beliefs, then desires), and C =
〈s1, s2〉. We show below some belief and intention graded consequences with their
explanations:

– T |�C
B w(G). The explanation for w(G) is (ES , EK) where:

ES = {〈〈{}, {w(G)}, {}〉, {}, {2}, 2〉}; and EK = {}

Since w(G) ∈ A1, its explanation is just made up of its support. It was not involved
in any ⊥-kernels in N∗(Q), hence, EK is empty.

– T |�C
B o(G). The explanation for o(G) is (ES , EK) where:

ES = {〈〈{}, {B(o(G), 6)}, {}, 〉, {}, {2}, 2〉};
and EK = {〈{}, {∀x[t(x) ⇔ ¬h(x)], o(G),∀x[o(x) ⇒ h(x)]}, {t(G)}〉}.

The belief o(G)was graded inA1. This is why its support contains its grading propo-
sition. The ⊥-kernel in N∗(Q) where o(G) appeared but survived appears in EK .

– T |�C
I t(G). The explanation for t(G) is (ES , EK) where:

ES = {〈〈{}, {}, {D(p(D), 10)}〉, {r1}, {2}, 2〉};
and EK = {〈{h(G)}, {∀x[t(x) ⇔ ¬h(x)]}, {t(G)}〉}

The intention t(G) follows using a bridge rule and a desire. For this reason, both
the supporting desire and the bridge rule r1 appear in its support. The ⊥-kernel in
N∗(Q) where t(G) appeared but survived appears in EK .

We show below the explanations for why a belief and an intention were rejected by
specifying the kernel they do not survive.

– T �|�C
B ∀x[o(x) ⇒ h(x)].

Explained by: 〈{}, {∀x[t(x) ⇔ ¬h(x)], t(G), o(G),∀x[o(x) ⇒ h(x)]}, {}〉.
– T �|�C

I h(G).
Explained by: 〈{h(G)}, {∀x[t(x) ⇔ ¬h(x)]}, {t(G)}〉. ��
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7 Related Work

To the best of our knowledge, all of the existing approaches for practical reasoning in
the literature fail to account for at least one of: representing the process of intention
formation, capturing the joint belief and intention revision, or providing explanations
for the agent’s beliefs and intentions, which can all be accounted for in LogAPR as
we demonstrated in the previous section. In this section, we review the most prominent
approaches to practical reasoning pointing out what each approach fail to account for.

The most widely studied approach to modelling practical reasoning is the BDI archi-
tecture [34] and its extensions to include other mental attitudes such as obligations [5].
However, these models do not accomodate modelling preferences among the agent’s
beliefs or motivations or the joint belief and intention revision [22]. The existing logi-
cal approaches to modelling preferences within the BDI architecture are the graded-BDI
(g-BDI) model [8] and TEAMLOG [16]. While both approaches propose frameworks
for joint reasoning with graded beliefs, desires, and intentions; neither has an account
for the joint revision of the three mental attitudes. Moreover, the g-BDI model lacks pre-
cise semantics and TEAMLOG is based on a normal modal logic providing only a third-
person account of reasoning about the mental attitudes unlike the first-person account
offered by LogAPR. On the other hand, the joint revision of beliefs and intentions has
been attempted in [23]. These theories, however, do not account for desires or prefer-
ences over beliefs and intentions. Other approaches for goal generation like [9,14,38]
also exist in the literature, yet, none of them provide any account for explanation just
like all the previously mentioned approaches. A very recent approach to explaining BDI
agents exists presented in [12], however, it assumes a library of prioritized plans and a
selection function that selects intentions from the plan library. The process of intention
formation is not thoroughly studied unlike LogAPR and it is explicitly mentioned that
the revision process is outside their scope.

According to a recent literature review on explainable agency [1], most of the cur-
rently existing approaches focus on providing explanations to humans, only tackle sim-
ple pre-set scenarios [4,21, for example], and are argumentation-based. The approaches
proposed in [7,37] focus only on explaining beliefs without regarding the process of
intention formation or joint revision. On the other hand, the argumentation framework
presented in [30] provides an account for explaining the revision process, but it can
only represent preferences amongst goals not beliefs, all the beliefs and goals are rep-
resented as ground literals, and the only allowed beliefs in their framework are beliefs
about goals. It is worth noting here that LogAPR can be used as the underlying logic
on which any argumentation framework can be built. Notions employed by LogAPR
like supports and ⊥-kernels can be readily utilized to define arguments, counter argu-
ments, attacks, and defeaters. In this way, such argumentation framework built on top
of LogAPR will be able to account for the aspired trio of intention formation, joint
revision, and explanation.

8 Concluding Remarks

As we become increasingly relying on autonomous agents to perform critical tasks,
it becomes an impelling priority to endow artificial agents with explainable practical
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reasoning capabilities. An adequate framework for explainable practical reasoning must
be able to capture the process of intention formation and revision while providing expla-
nations for the chosen intentions after the revision. The problems of intention revision
and intention explanation after the revision have been scarcely studied. To this end, we
presented in this paper a powerful logical language for explainable practical reasoning
we refer to as LogAPR. We demonstrated how LogAPR provides an adequate frame-
work for practical reasoning. Future work include studying the non-monotonic proper-
ties of our graded consequence relations, modelling the process of means-end reason-
ing within LogAPR building on approaches to automated planning, and enhancing our
explanations by translating them to a natural language to facilitate their communication
to humans. We also plan on defining an argumentation framework build on LogAPR
as an underling logic to provide a novel argumentation based framework inheriting the
capabilities of LogAPR.
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Abstract. A well-studied trait of human reasoning and decision-making is the
ability to not only make decisions in the presence of contradictions, but also to
explain why a decision was made, in particular if a decision deviates from what is
expected by an inquirer who requests the explanation. In this paper, we examine
this phenomenon, which has been extensively explored by behavioral economics
research, from the perspective of symbolic artificial intelligence. In particular,
we introduce four levels of intelligent reasoning in face of contradictions, which
we motivate from a microeconomics and behavioral economics perspective. We
relate these principles to symbolic reasoning approaches, using abstract argumen-
tation as an exemplary method. This allows us to ground the four levels in a body
of related previous and ongoing research, which we use as a point of departure
for outlining future research directions.

Keywords: Symbolic artificial intelligence · Explainable artificial intelligence ·
Non-monotonic reasoning

1 Introduction

Over the last decades, the public perception of what artificial intelligence is (and is
not) has dramatically shifted. For example, in 1996 and 1997, when the reigning chess
champion Gary Kasparov played against IBM’s chess computer Deep Blue, the ability
of playing chess well was considered a key characteristic of human intelligence. Today,
as technically literate consumers can easily install a world champion-beating program
on their mobile phones, the focus has shifted to other problems, which range from dif-
ferent games like Starcraft and Go to real-world challenges like fully autonomous driv-
ing in inner cities. Even the Turing test [31], which roughly speaking requires a machine
to be able to deceive a human into thinking it is human, seems to fail the test of time;
given current socio-technical information systems, distinguishing men from machines
is increasingly challenging, even in contexts where the machine behavior is determined
by simple scripts, for example when social media bots spread misinformation [28].

Hence, to define characteristics of intelligent behavior, more abstract approaches
are required. Such approaches have, indeed, been introduced as principles of non-
monotonic reasoning; most notable are relaxed forms of monotony, such as restricted
c© Springer Nature Switzerland AG 2021
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monotony [14] (also known as cautious monotony) and rational monotony [24]1. From
a symbolic artificial intelligence perspective, these properties are very useful because
they can be formally verified. Still, the properties have some obvious limitations:

– The properties are merely indicators of intelligence; certainly, fairly “unintelligent
agents” can also satisfy restricted monotony and rational monotony, simply by never
inferring anything from any knowledge base.

– It is not clear how these properties relate to human intuitions of intelligence.

In this paper, we explore ways to address these limitations by i) building a conceptual
bridge between formal principles of non-monotonic reasoning and empirical, as well
as formal perspectives on human reasoning and decision-making and ii) illustrating
how different formal approaches to non-monotonic reasoning reflect different levels of
sophistication of human reasoning.

2 Human Intelligence: Bounded Rationality and Reasoning
Backwards

As a preliminary for a bridge between human reasoning and formal methods of auto-
mated reasoning, let us provide a brief overview of the development of models of human
reasoning and decision-making at the intersection of microeconomic theory and behav-
ioral psychology. At least since the middle of the 20th century, studies in the fields of
micro-economic theory and behavioral psychology attempt to identify patterns and for-
mal models of human decision-making and reasoning, both for descriptive (“How do
humans reason and make decisions?”) and prescriptive (“How should humans reason
and make decisions?”) purposes2. An early theory that is still very influential is the for-
mal model of rational economic man. According to the model (in its simplest variant),
when faced with a choice, which is modeled as the selection from a set of items S, a
rational decision-maker acts according to clear preferences, which are modeled as a par-
tial order � on S. The partial order is established such that ∃a∗ ∈ S, ∀a ∈ S, a∗ � a,
i.e. a∗ is preferred over all other elements in S. a∗ is the decision-maker’s choice. Given
another set S′, such that S ⊆ S′, for the decision-maker’s choice a′∗ ∈ S′ it must hold
true that a′∗ �∈ S or a′∗ = a∗; i.e., the preference relation on S must be consistent with
the preference relation on S′ (see, e.g. Osbourne and Rubinstein [25]). Consequently, a
rational economic decision-maker can make a decision in any situation and the prefer-
ences this decision implies are consistent with the preferences implied by all previous
decisions.

1 Let us highlight that we do not introduce the so-called AGM postulates [2] here, because the
success postulate stipulates (colloquially speaking) that “new” logical formulas are always
added to the belief base and never rejected; however, we assume that, intuitively, an intelligent
agent should be able to reject new beliefs under some circumstances.

2 Less formal models of human decision-making and reasoning have been, of course, subject of
in-depth study for much longer. Indeed, the management of contradictions that is at the center
of this paper is also the subject of the Shev Shema’tata, a book on the treatment of doubt in
Rabbinic law, written at the turn from the 18th to the 19th century [18].
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While the model of rational economic man remains influential and is a common
foundation of micro-economic curricula, its shortcomings have been criticized in high-
profile scientific venues since the 1950s, notably in Herbert Simon’s seminal paper A
Behavioral Model of Rational Choice [29]. A key argument made by Simon is that
the model is too simplistic in that it does not account for the information an agent has
(from our perspective: the agent’s beliefs) and hence the model can neither describe nor
prescribe the real-life decision-making processes of agents or organizations. A simple
example of economically irrational behavior is as follows: an agent chooses b from a
set {b, c} which establishes the preference b � c, but chooses c from a set {b, c, d},
which establishes the preference c � b. For instance, let us assume a choice from a
set of beverages: b := coffee, c := tea, d := juice. After choosing coffee from the
set of “tea and coffee”, a rational decision-maker must not choose tea from the set
of “tea, coffee, and juice”, given all other things remain the same. From a knowledge
representation perspective, one can of course argue that the presence of d allows us to
infer something about b and/or c that makes us reverse b � c to c � b3.

Building on top of these initial insights, Tversky and Kahneman conducted a series
of behavioral psychology experiments to systematically identify shortcomings of mod-
els of economic rationality that led to refined models of rational decision-making, like
prospect theory [20], eventually winning Kahneman the Nobel Memorial Prize in Eco-
nomic Sciences [19]. While a broad range of other formal models has been developed
to address the aforementioned and similar shortcomings [27], further ground-breaking
empirical research has emerged about other aspects of human reasoning. Most notably
in the context of this paper is a line of research conducted by Jonathan Haidt (and oth-
ers), showing that humans are prone to first make an intuition-based decision and, if
required, then search for a “rational” (colloquially speaking) explanation [17].

To summarize, this brief overview of selected microeconomic and behavioral eco-
nomics research history gives us the following insights on perspectives on human rea-
soning and decision-making:

1. Traditionally, humans are considered intelligent, rational decision-makers that act,
at least roughly, according to formal model of clear and consistent preferences.

2. Empirical research about human behavior has systematically debunked assumptions
about economic rationality in human decision-making, leading to a refinement of
formal models of decision-making to models of bounded rationality.

3. More recently, additional empirical research has provided evidence for the hypoth-
esis that humans are prone to make intuition-based decisions and then reason back-
wards to generate convincing, “rational” explanations if required.

3 Levels of Intelligent Reasoning in Face of Contradictions

From the overview of perspectives on human decision-making, we can generate three
levels of intelligent reasoning in face of contradictions, which we outline in this section.

3 Indeed, empirical studies (conducted decades after the publication of Simon’s paper) show that
humans sometimes do exactly this [6].
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In addition, we describe a fourth level that prescribes desirable behavior that – by com-
bining principle-based reasoning and learning perspectives – goes beyond existing per-
spectives on human decision-making and reasoning.

3.1 Clear Preferences

At the most primitive level, the only property one expects from a decision-maker is to
be decisive. In microeconomic theory, this intuition is ingrained in the assumption that
when observing a decision-maker who chooses one option from a set of options A, a
partial order � on A that describes the decision-maker’s preferences can be inferred,
such that given the choice a∗ ∈ A, it holds true that ∀a ∈ A, a∗ � a, i.e. the decision-
maker strictly prefers the choice over all other possible alternatives that could have been
chosen. In its most primitive form, this model can be considered to merely cover a one-
shot observation: as long as an agent is decisive, clear preferences can be inferred from
a single decision and no consistency check with regard to previous decisions is per-
formed. From a reasoning perspective, this means that an inference method must always
come to a conclusion when drawing inferences from a belief base; no further conditions
need to be satisfied. This one-shot approach can be compared to the behavior of a pop-
ulist politician, who makes his decisions based on gut-feeling, notwithstanding that he
is aware of contradicting evidence, and does not care about the long-term consistency
of his actions (and speech acts).

3.2 Consistent Preferences

As an obvious next step, economists assess whether a decision-maker’s preferences are
consistent over a sequence of decisions; i.e., given a new choice a′∗ ∈ A′, such that
A ⊆ A′, if a′∗ ∈ A then a′∗ = a∗; this property follows from the model of clear
preferences as introduced in the previous subsection (see e.g. Rubinstein [27, p. 11] for
a proof). Again, from a reasoning perspective, the analogy is obvious: when drawing
inferences concl(A) from a belief base A, for the inferences concl(A′) that are drawn
from a belief base A′, such that A ⊆ A′, it must hold true that concl(A) = concl(A′)
unless a belief in A′ \ A is accepted as an element of concl(A′). Consequently, we can
see that the consistent preferences principle is in its motivation similar to notions of
“relaxed” monotony, in particular to cautious monotony [14], which can semi-formally
be described as if C ⊆ concl(A) and B ⊆ concl(A) then C ⊆ concl(A ∪ B).

3.3 Explainable “Backwards Reasoning”

As summarized in the previous section, behavioral psychology research suggests that
humans typically make intuition-based decisions and then find a “rational” explanation
if necessary. This reasoning backwards approach has traditionally been favored by neo-
classical economics, to the extent that the economist Steven Landsburg colloquializes it
as follows in his best-selling popular science book The Armchair Economist:
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“[We] stubbornly maintain the fiction that all people are rational at all times, and
[...] insist on finding rational explanations, no matter how outlandish, for all of this
apparently irrational behavior4 [23].”

Landsburg does not describe observations of common human decision-making falla-
cies, but instead refers to – albeit with some overstatement to underline his point –
a key aspect of the approach that he and some other economists use to build their
models. However, in the real-world, reasoning backwards is not considered a “reason-
able” approach to explain a decision or line of reasoning, which the following anecdote
illustrates.

Example 1. In 2019, world-renowned association football coach José Mourinho, who
at that time recently had joined Tottenham Hotspur F.C. (“the Spurs”), had the following
exchange with a journalist during a press conference5:

– Journalist: “When you were at Chelsea, you were asked whether you would ever
come to the Spurs and you said: ‘Never, I love the Chelsea fans too much.’ What has
changed?”

– Mourinho: “[That was] before I was sacked [at Chelsea].”

From a reasoning perspective, one can say that when asked about the inconsistency
between two conclusions, Mourinho produces a new belief that explains why the lat-
ter conclusion does not entail the initial conclusion. Technically, one could argue that
Mourinho has successfully assured that his decision to join Tottenham is indeed con-
sistent, because he has provided a new belief (an argument) that supports his change
of mind, and when considering the adoption of a belief as a part of a choice process,
his preferences are consistent (economically rational). From a logics perspective, the
existence of a conflict between the new belief and the previous beliefs can explain why
monotony of entailment is violated. Practically, it is – however – obvious that his stated
commitment to Chelsea was implied to last beyond his tenure as a coach at the club.
Indeed, both Mourinho and the journalists that are present laugh about the answer; they
are aware of how ridiculous the explanation that Mourinho has provided must look
from the perspective of a Chelsea fan (in particular when considering that Chelsea and
Tottenham are London city rivals).

3.4 Evidence-Based Principle Revision

Similarly to Tversky and Kahneman, who started off by taking formal models of eco-
nomic rationality and then systematically refined them as they observed diverging
human behavior in the real world, an intelligent agent should be able to start off with
an explainable model of reasoning and decision-making and then refine it based on the
observations it makes; i.e., the agent should make decisions/draw inferences as follows:

1. It should employ an explainable formal model that prescribes and describes its
behavior and satisfies some formal principles.

4 Note that this statement precedes a defense of the approach it describes.
5 See: http://s.cs.umu.se/hlzdqf.

http://s.cs.umu.se/hlzdqf
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2. It should be able to refine the model and adjust its principles if it observes that
changes are beneficial (based on feedback from its environment).

This hybrid approach requires a combination of symbolic (logic-based) and sub-
symbolic (machine learning-based) approaches to artificial intelligence. Considering
the example in the previous subsection, Mourinho could, for example, revise his rea-
soning principles after being subjected to the scorn of the Chelsea fans, and in the future
be more conservative when discarding previously drawn conclusions, at least the ones
he has publicly announced to be committed to.

4 Examples: Abstract Argumentation

Let us further illustrate the intuitions we have introduced in the previous section by
providing precise formal examples. As our reasoning method, we employ abstract argu-
mentation because it a) is a simple model that can be introduced without a lot of formal
preliminaries and b) has a clear focus on managing conflicts/contradictions.

Definition 1 (Argumentation Framework [13]).
An abstract argumentation framework is a tuple AF = (AR,AT ), where AR is a set
of elements (arguments) and AT ⊆ AR × AR is a set of attacks between arguments in
AR.

Given an argumentation framework AF = (AR,AT ) and two arguments a, b ∈ AR,
we say that “a attacks b” iff (a, b) ∈ AT . An argument a ∈ AR is acceptable with
regard to a set S ⊆ AR iff for each b ∈ AR it holds true that if b attacks a, then b is
attacked by S. In abstract argumentation, key concepts are the notions of conflict-free
and admissible sets.

Definition 2 (Conflict-free and Admissible Sets [13]).
Let AF = (AR,AT ) be an argumentation framework. A set S ⊆ AR is:

– conflict-free iff �a, b ∈ S, such that a attacks b;
– admissible iff S is conflict-free and each argument in S is acceptable with regard

to S.

Given an argumentation framework AF = (AR,AT ) and a set S ⊆ AR, we define
S+ = {a|a ∈ AR,∃b ∈ S, such that b attacks a}. Argumentation semantics deter-
mine which sets of arguments in an argumentation framework can be considered valid
conclusions. A set of such valid conclusions is called an extension. All argumentation
semantics that have been introduced by Dung in the initial paper are based on the notion
of an admissible set.

Definition 3 (Admissible Set-based Argumentation Semantics [13]).
Given an argumentation framework AF = (AR,AT ), an admissible set S ⊆ AR is:

– a stable extension of AF iff S attacks each argument that does not belong to S.
σstable(AF ) denotes all stable extensions of AF .

– a complete extension iff each argument that is acceptable w.r.t. S belongs to S.
σcomplete(AF ) denotes all complete extensions of AF .
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– a preferred extension of AF iff S is a maximal (w.r.t. set inclusion) admissible subset
of AR. σpreferred(AF ) denotes all preferred extensions of AF ;

– a grounded extension of AF iff S is the minimal (w.r.t. set inclusion) complete exten-
sion of AF . σgrounded(AF ) denotes all grounded extensions of AF .

Given an argumentation framework AF = (AR,AT ) and an argumentation semantics
σ, a set S ⊆ AR is called a σ-extension of AF iff S ∈ σ(AF ). Other semantics have
been defined that start of with the assumption of a maximal conflict-free (naive) set6.

Definition 4 (Naive Set-based Argumentation Semantics [32]).
A conflict-free set S ⊆ AR is a:

– naive extension iff S is maximal w.r.t. set inclusion among all conflict-free sets.
σnaive(AF ) denotes all naive extensions of AF .

– stage extension, iff S ∪ S+ is maximal w.r.t. set inclusion among all conflict-free
sets, i.e. there is no conflict-free set S′ ⊆ AR, such that (S′ ∪ S′+) ⊃ (S ∪ S+).
σstage(AF ) denotes all stage extensions of AF .

In the context of this paper, we are interested in how agents draw inferences from a
belief base to which new beliefs are added over time. For this, we depend on the notion
of argumentation framework expansion, and in particular on normal expansions.

Definition 5 (Argumentation Framework Expansions [7]).
An argumentation framework AF ′ = (AR′, AT ′) is:

– an expansion of another argumentation framework AF = (AR,AT ) (denoted by
AF 
E AF ′) iff AR ⊆ AR′ and AT ⊆ AT ′.

– a normal expansion of an argumentation framework AF = (AR,AT ) (denoted by
AF 
N AF ′) iff AF 
E AF ′ and �(a, b) ∈ AT ′ \ AT , such that a ∈ AR ∧ b ∈
AR.

Colloquially speaking, a normal expansion of an argumentation framework adds new
arguments to the argumentation framework, but neither removes arguments nor changes
attacks between existing arguments. To support the design and analysis of argumenta-
tion semantics, formal argumentation principles have been defined [4,30]. For example,
the uniqueness principle stipulates that an argumentation semantics must return exactly
one extension, given any argumentation framework.

4.1 Clear Preferences

From an argumentation perspective, an agent has clear preferences iff it can reach an
unambiguous conclusion, given any argumentation framework and the argumentation
semantics it employs. We can illustrate perspectives on this property given a particular
argumentation framework, e.g. AF = (AR,AT ) = ({a, b, c}, {(a, a), (b, c), (c, b)}).
Figure 1 depicts the argumentation framework. Below are some examples of how dif-
ferent argumentation semantics resolve AF :

6 More semantics exist, some of which address well-known issues with the semantics whose
definitions we provide in this paper. However, we consider an in-depth overview of argumen-
tation semantics out-of-scope.
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a

b c

Fig. 1. Given stable semantics, self-contradicting arguments may lead to the inability to reach any
conclusion, e.g., σstable({a, b, c}, {(a, a), (b, c), (c, b)}) = {}.

– Stable semantics: σstable(AF ) = {};
– Grounded semantics: σgrounded(AF ) = {{}};
– Preferred semantics: σpreferred(AF ) = {{b}, {c}}.
It is obvious that stable semantics does not satisfy the notion of clear preferences: it
does not return any extension for our argumentation framework. Conversely, preferred
semantics returns the extensions {a} and {b}. This does not reflect the clear preferences
principle, either, because several extensions are returned. However, an intelligent agent
that employs the semantics can certainly come to a decisive conclusion, for example
by considering use case-specific meta-data (like a time-stamp or the source of an argu-
ment), or by simply breaking the tie with an arbitrary method that considers language-
specific properties, like identifiers of the arguments7. Consequently, we argue that it
depends on the exact application scenario whether one wants an argumentation seman-
tics to be uniquely defined or not. For example, in one legal reasoning scenario, it can
make sense to dismiss conflicting statements of two witnesses as mutually inconsistent,
while in another scenario, it can be better to consider both statements and then select
a preferred statement based on situational context or meta-data (which is aligned with
the concept of burden of persuasion, see Prakken and Sartor [26]).

4.2 Consistent Preferences

To align with the consistent preferences property of economic rationality, we can create
a straight-forward argumentation principle (see our ongoing line of work [21,22]8): we
assume that an agent, given an argumentation semantics σ, resolves an argumentation
framework AF = (AR,AT ) by selecting any σ-extension E of AF (E ∈ σ(AF )).
This selection establishes the preferences ∀S ∈ 2AR, E � S. When continuing the
interaction with its environment, the agent adopts new, and potentially conflicting
beliefs, i.e. it normally expands AF and creates AF ′ = (AR′, AT ′), AF 
N AF ′.
When determining the σ-extensions of AF ′, the agent must find at least on extension
(∃E′ ∈ σ(AF )), such that the preferences established by inferringE′ fromAF ′ (∀S′ ⊆
2AR′

, E′ � S) are consistent with the preferences established by inferring E from AF .
Figure 2 illustrates the concept of consistent preferences in abstract argumentation.
For example, let us assume argument a denotes that a new business strategy should

7 Note that this would be a violation of the language independence principle.
8 In these works, we name the principle weak reference independence.
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a

(a) AF =
(AR,AT ) =
({a}, {}).

a

b c

d

(b) AF ′ =
(AR′, AT ′) =
({a, b, c, d}, {(b, a), (c, b), (d, c), (b, d)}).

Fig. 2. Consistent preferences. Assuming stage semantics, we have σstage(AF ) = {{a}} and
σstage(AF ′) = {{a, c}, {a, d}, {b}}. All σstage-extensions of AF ′ establish consistent prefer-
ences with regard to the only σstage-extension of AF . In contrast, assuming preferred seman-
tics, we have σpreferred(AF ) = {{a}} and σpreferred(AF ′) = {{}}; the only σpreferred-
extension of AF establishes the preferences ∀S ∈ 2AR, {a} � S, which is inconsistent with the
preferences established by the only σpreferred-extension of AF : ∀S′ ∈ 2AR′

, {} � S′.

be executed, to which an agent first commits: AF = (AR,AT ) = ({a}, {}), from
which we obviously conclude {a}. However, by consulting multiple stakeholders, the
agent collects the additional arguments b, c, and d that directly or indirectly argue for or
against the strategy: AF ′ = (AR′, AT ′) = ({a, b, c, d}, {(b, a), (c, b), (d, c), (b, d)}).
Now, considering some argumentation semantics, for example preferred semantics, the
only conclusion we can draw from AF ′ is {} (the only extension/valid conclusion does
not contain any arguments); this establishes the preference {} � {a}, which is inconsis-
tent with the preference {a} � {} as established by the previous decision. In contrast,
some other semantics, such as stage semantics, do not establish inconsistent prefer-
ences in this scenario9. σstage(AF ) = {{a}} and σstage(AF ′) = σstage(AF ′) =
{{a, c}, {a, d}, {b}}: because all σstage-extensions of AF ′ include an argument that is
not in AR, the preferences established by selecting any of the extensions are obviously
consistent with the preferences established by inferring {a} from AF .

Let us note that an open question – which we touch upon in Sect. 5 – is how to
adjust the consistent preferences principle to account for “undecided” arguments, i.e.
arguments that are, given an extension, neither part of the extension nor attacked by
any argument in the extension. Also, similar argumentation principles that are based on
other well-known properties can be and have been introduced, for example an abstract
argumentation equivalent of restricted (cautious) monotony [21,22].

4.3 Explainable “Backwards Reasoning”

An important feature of an intelligent agent is the ability to explain its inferences and
the resulting actions. Indeed, economists who build formal models of human decision-
making typically do not claim that their models are accurate representations of what

9 Let us note that stage semantics does not generally establish consistent preferences, given any
argumentation framework and any of its normal expansions, see [22].
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goes on in a human’s mind, but instead argue that when observing a human decision-
maker, their models are sufficiently precise to describe the decision-maker’s behavior
in an explainable (that is: formally analyzable) manner. In the artificial intelligence
community, the design and analysis of explainable agents is a research direction that
has gained tremendous traction over the past years [3]. Agents that employ symbolic
approaches to automated reasoning – such as formal argumentation – are often consid-
ered explainable, because each inference and action can be linked to the formal model
that generated it (see e.g. Zhong et al. [33]). However, when considering the iterative
argumentation approach we take in the context of this paper, it is clear that merely
pointing out general semantics behavior is not always sufficient to explain why exactly
the inferences drawn from an argumentation framework are fundamentally different
than the inferences that are subsequently drawn from one of its (normal) expansions.
To some extent, merely explaining an inference process by pointing to the entire for-
mal model that has been used to infer it resembles the reasoning backwards approach
as introduced as a description of human reasoning in behavioral economics. From an
argumentation perspective, we argue that an agent can take two approaches to reasoning
backwards:

1. It can take a principle that happens to be satisfied to explain the result of its inference
process.

2. If asked why a specific principle is violated, it can generate arguments and add them
to the argumentation framework, so that the principle is no longer violated.

As mentioned above, the first approach is obvious, and reflected in the way explain-
able argumentation is typically presented. The second approach reflects the Mourinho
example (Example 1), which is illustrated as a sequence of argumentation frameworks
by Fig. 3:

1. We start with an initial argumentation framework AF = ({a, b}, {(a, b), (b, a)}). a
denotes the obligation of maintaining the respect of the Chelsea fans while b denotes
taking a job at Tottenham; a and b attack each other. Our agent (Mourinho) infers a,
deciding to stay committed to Chelsea.

2. Later, our agent has a change of mind, and instead infers {b} from AF ′ = AF and
takes a job at Tottenham.

3. Another agent (the journalist) scrutinizes the Mourinho agent by highlighting that
the inference process implies inconsistent preferences.

4. The Mourinho agent responds to the scrutiny by producing an argument c (the relief
of the loyalty obligation because Chelsea has sacked him), which is in mutual con-
flict with argument a. Note that inferring {b, c} from AF ′′ does not imply prefer-
ences that are inconsistent with the preferences implied by inferring {a} from AF .

4.4 Evidence-Based Principle Revision

Let us go back to the previous example (Fig. 3). However, we now assume the Mourinho
agent is using the relational principle we have semi-formally introduced in Subsect. 4.2
to ensure consistent preferences. In the example, this means that the agent must not infer
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a

b

(a)
AF .

a

b

(b)
AF ′.

a

b

c

(c) AF ′′.

Fig. 3. Reasoning backwards. Given the argumentation framework ({a, b}, {(a, b), (b, a)}), an
agent first concludes {a} and at a later stage concludes {b}. When asked about the reason for
the inconsistency (preference reversal), the agent produces argument c (generating AF ′′) that
restores consistent preferences.

{b} from AF ′ after having inferred {a} from AF ; the expansion to AF ′′ is required
to then infer {b, c}, which is a principle-compliant conclusion. Let us assume that after
drawing this inference (and joining Tottenham), our agent’s reputation is severely dam-
aged, which makes the agent reflect about its inference process. Satisfying the consistent
preferences principle may have been a reasonable starting point, but we want to be able
to further evolve from there. Ideally, the agent analyzes its own inference process and
searches for principle-based improvements it can make. In our example, the agent can,
for instance assuming that it is using stage semantics, observe that the semantics also
supports inferring {a} from AF ′′: i.e. σstage(AF ′′) = {{a}, {b, c}}. Consequently, the
agent can “learn” a new principle that stipulates the following: given two argumenta-
tion frameworks AF ∗ and AF ∗∗ and a conclusion E∗ of AF ∗ (E∗ ∈ σstage(AF ∗)),
if inferring a conclusion E′ from AF ∗∗ (E∗∗ ∈ σstage(AF ∗∗)) is possible such that
E∗ ⊆ E∗∗, do not infer a conclusion D∗∗ from AF ∗∗ such that E∗ �⊆ D∗∗. The agent
can apply this principle and draw inferences in future scenarios accordingly (depicted
by Fig. 4). However, first the agent would need to (formally) verify whether enforcing
this new principle implies a violation of any other principle that the agent has already
adopted (in our example, the agent may still want to satisfy the consistent preferences

a

b

(a)
AF ∗.

a

b

c

(b) AF ∗∗.

Fig. 4. Evidence-based principle revision. Let us assume our agent has received negative feedback
from its actions that were based on the inferences drawn in Fig. 3. To learn from this experience,
the agent adjusts its reasoning principles and now always keeps previously inferred conclusions
(arguments) to the extent its semantics supports this.
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principle), and if so, whether previously adopted principles should be relaxed or entirely
discarded.

5 Research Directions

Based on the position we establish in the previous sections, we provide an overview of
relevant ongoing research directions and highlight open challenges. Again, our focus
is on formal argumentation as an exemplary method for automated non-monotonic
reasoning.

5.1 Consistent Preferences and Undecided Beliefs

Some of the argumentation examples we present in this paper draw from ongoing
research on economic rationality and formal argumentation [21,22]. An open question
in this line of research is how to adjust the model of consistent preferences in abstract
argumentation to support the notion of undecided arguments10. Let us highlight that this
question cannot be addressed by straight-forward tweaks of the economic rationality-
based argumentation principle, in particular because an agent must eventually commit
to a course of action; i.e., some arguments must not remain undecided. This can be
illustrated with the help of a simple example. We have two weather report sources: one
reports that it will rain (argument r) and the other reports it will not rain (argument ¬r).
Obviously, r and ¬r attack each other. We want to decide whether to take an umbrella
with us (argument u). If we think it does not rain, we do not take an umbrella with us
(¬r attacks u). Figure 5 depicts the corresponding argumentation framework.

r

¬ r u

Fig. 5. AF = ({r, ¬r, u}, {(r, ¬r), (¬r, r), (¬r, u)}). How can we manage undecided argu-
ments if we cannot be undecided about actions?

For example, given grounded semantics σgrounded, all arguments in the argumen-
tation framework are undecided. However, we must eventually make a decision on
whether or not to take the umbrella with us; i.e., to support undecided arguments, we
need to define two argument types: belief arguments that may be undecided and action
arguments that must never be undecided.

10 Given an argumentation framework and a semantics’ extension of this framework, the unde-
cided arguments are all arguments that are neither in the extension, nor attacked by any of the
arguments in the extension.
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5.2 Burdens of Persuasion

When analyzing consistency and monotony properties of inference methods like formal
argumentation approaches, it can be useful to apply intuitions that are provided by well-
established practical research domains. In this regard, a particularly interesting concept
is the notion of the burden of persuasion in legal research and practice. In case of two
conflicting statements, the burden of persuasion can be placed on one of the statements,
which implies that this statement requires additional justification; otherwise, it will be
automatically defeated. For example, given two contradicting witness statements, of
which one provides an alibi for the defendant, whereas the other one claims the defen-
dant was at the crime scene at the time of the crime, the burden of persuasion could be
laid on the latter argument to reflect the notion of in dubio pro reo11. Models of burdens
of persuasion have already been introduced to formal argumentation approaches [9,26].
In these approaches, the burden of persuasion is explicitly modeled. In contrast, from
the perspective of consistent inference, the burden of persuasion can automatically be
placed on new arguments when expanding an argumentation framework; i.e., if consid-
ering a new argument as part of the conclusion violates a consistency/monotony prop-
erty (because the new argument is, directly or indirectly, in conflict with an argument
that is part of a previous conclusion), the burden of persuasion is placed on this argu-
ment; additional conditions must be satisfied to allow for this argument to “kick out”
the previously inferred argument12. Formally integrating this intuition with models of
burdens of persuasion and consistency/monotony properties of formal argumentation
can be considered promising future research.

5.3 Intuitive Rationality

Independently of the research on formal models of economic rationality and formal
argumentation, recent research has started to shed light on what humans intuitively
think are “reasonable” conclusions that can be drawn from argumentation frame-
works [10,11]. The results suggest that while there is not necessarily one seman-
tics whose behavior is more intuitive to most humans than all other semantics, some
semantics (notably grounded and CF2 semantics13) seem to exhibit particularly intu-
itive behavior. As a result of these studies, SCF2 semantics has been introduced, which
addresses some issues CF2 semantics has with regard to the handling of self-attacking
arguments and even cycles that exceed a certain length [12]. The studies shed some light
on human evaluations of argumentation principles, which can, however, be investigated
more comprehensively. In particular, it is worth examining how well intuitive human
assessments align with the consistent preference argumentation principle that is based
on economic rationality (see Subsect. 4.2), as well as with other principles that can
emerge from cross-disciplinary perspectives on “rational” and “consistent” reasoning
and decision-making.

11 This is a constructed example that does not fully reflect real-world legal reasoning.
12 This notion is reflected by loop-busting approaches that have been proposed in the context of
formal argumentation and that are based on Talmudic logic [1].

13 For the sake of conciseness we do not introduce CF2 semantics in this paper; the semantics is
introduced by Baroni et al. in [5].
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5.4 Neuro-Symbolic Artificial Intelligence

Recently, combining machine learning and symbolic reasoning approaches has re-
emerged as a hot topic in artificial intelligence research [16]. This trend is possibly
accelerated because the machine learning break-throughs of the last decade have cre-
ated the initial expectation of rapid and continuous progress, which machine learning
alone cannot live up to. However, the integration of machine learning approaches and
symbolic methods (which is sometimes referred to as neural-symbolic AI) has been a
well-established research direction since several decades [15]. In Subsect. 4.4, we illus-
trate by example that a neuro-symbolic AI approach can be considered promising to
allow for the evidence-based revision of reasoning (argumentation) principles. While
formal argumentation has been integrated with machine learning methods, in particular
in the context of argument mining [8], to our knowledge no research combines these
hybrid approaches with a principle-based perspective.

To realize our proposal of an agent that can learn reasoning principles as it observes
and interacts with its environment, we need create formal models and implementations
at the intersection of non-monotonic symbolic reasoning and reinforcement learning, to
find answers to the following questions. i) Which principles should an agent inhibit stat-
ically by design and which principles should be learnable? ii) How can we design prin-
ciples that allow for a parameterization that facilitates learning? iii) To what extent is
principle revision use-case agnostic, to what extent is it use-case-dependent? iv) When
an agent learns new principles and hence updates its inference method, how does it
trade-off consistency with regard to previously drawn inferences and compliance with
the newly learned principles?

6 Conclusion

In this paper, we have introduced a formal perspective that takes inspirations from mod-
els of human models of decision-making reasoning to define levels of intelligent rea-
soning, i.e. the ability of an agent to:

1. reason in face of contradictions;
2. reason according to well-established principles, like the clear and consistent prefer-

ences principle that follows from economic rationality;
3. explain the resolution of contradictions according to whatever reasoning principles

that are satisfied in a given scenario;
4. dynamically revise a principle-based inference process based on feedback the agent

perceives as the result of interactions with its environment.

This perspective integrates well with a long-running line of research on non-monotonic
reasoning approaches, which we have illustrated for formal (abstract) argumentation.
In particular, dynamic models of formal argumentation that cover the expansion and
iterative resolution of argumentation frameworks, considering fundamental properties
of non-monotonic reasoning. However, as outlined in this paper, these models need
further refinement to fully reflect the idea of explainable intelligent reasoning in face of
contradictions.
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Abstract. A key challenge in making a transparent formalization of a
legal text is the dependency on two domain experts. While a legal expert
is needed in order to interpret the legal text, a logician or a programmer
is needed for encoding it into a program or a formula. Various existing
methods are trying to solve this challenge by improving or automating
the communication between the two experts. In this paper, we follow
a different direction and attempt to eliminate the dependency on the
target domain expert. This is achieved by inverting the translation back
into the original text. By skipping over the logical translation, a legal
expert can now both interpret and evaluate a translation.

Keywords: Legal knowledge base · Annotation editor · Formal
representation

1 Introduction

Machine legal reasoning has been around for more than 30 years and various
implementations have been developed [3,11,14]. Nevertheless, the authors con-
sider it safe to claim that legal machine reasoning is still not widely used, despite
the effort invested.

One of the most challenging tasks towards automated legal reasoning is the
ability to encode legislation in a machine readable form [13]. In this step, a
legislation written by law and policy makers needs to be converted into a formal
representation, which can then be read and analyzed by computer programs.

Among the difficulties in obtaining a perfect translation, one can mention:

1. The need to translate a possibly ambiguous legal text into an unambiguous
formal representation.

2. The need to decide on, usually, a specific interpretation of various legal terms,
which are left open in the legislation.

3. The fact that two separate domain experts are needed, one for the target,
formal, domain, and a legal expert capable of interpreting the legislation.

The first two difficulties are hard to overcome, although there is some work
in that direction [15]. On the other hand, there are more than a few approaches
and solutions to the third problem.
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One way to bridge the gap between the two domain experts is to facili-
tate communications between them. In [2], the problem of bridging between
two domain experts is likened to the software engineering problem of bridging
between client requirements and software. The agile methodology in software
engineering suggests that short iterations and frequent consultation with the
client can help to close the gap. The methodology described in this paper aims
at translating an intermediate legislation back into text, so the legal expert can
communicate problems back to the logician.

A second way to bridge the gap is described in [9] and is based on the
same legislation editor used in this paper. This methodology, which is based on
another Agile technique called Behavior-driven development1, supports dividing
the work between the two domain experts. The legal expert task is to write legal
“cases” (users stories in Agile), while the logician is still in charge of the legal
formalization process. The interaction between the two is achieved by executing
the cases against the formalized legislation. If a case fails, then the logician must
fix the formalization.

Another way is to introduce a formalization language which is closely related
to the legal text. A popular such language is SBVR [1]. While such languages
greatly facilitate the formalization effort [4], they are usually not expressive
enough to capture the semantics of legal texts, as is attested by the contiguous
search for more expressive languages. Several tools for multi-agent normative rea-
soning exists, for example Operetta for constructing normative specifications2,
however our tool is different mainly because of the interaction with the user.

Our solution is different and is based on taking out from the equation one
of the experts. By building on top of a previous work [5], in which a one-to-one
mapping between a legislation and its translation was established, we hope that
a legal expert can execute both the formalization and the evaluation steps.

The work in [5] was concerned with the question of “How similar is the
translation to the original legislation?. Existing translations, such as [12] and
[14], are normally very different from the legislation. For example, to obtain the
translation of a sentence of the form (part of the Regulation (EU) 2016/679 -
General Data Protection Regulation, hereinafter as “GDPR”, Article 13 par. 1):

the controller shall, at the time when personal data are obtained, provide
the data subject with all of the following information:
a) the identity and the contact details of the controller and, where appli-

cable, of the controller’s representative;
b) the contact details of the data protection officer, where applicable;”

Current approaches will generate two or three different statements, each con-
taining parts of the general conditions and adding new conditions and conclusion.
On the other hand, the extension in [5] to the annotation language described
in [8] enables a one-to-one mapping between the original legislation and its
translation.
1 https://www.agilealliance.org/glossary/bdd/.
2 http://www.cs.uu.nl/research/projects/opera/.

https://www.agilealliance.org/glossary/bdd/
http://www.cs.uu.nl/research/projects/opera/
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In this paper, we build on the fact that there is a one-to-one mapping between
the legislation and its translation and translate it back into a version of the
original legislation. This last translation also enjoys a one-to-one mapping, which
provides us with the main advantage of the method. The new methodology
requires only a legal expert for asserting the quality of the translation. The expert
is provided with the input and output of each paragraph and can determine if
the translated formalization faithfully represents the specific legal interpretation
of the input text, thus enhancing the transparency of the legal knowledge base.

This paper is organized as follows. In the next section, we present the editor
and describe the additional features which were implemented in order to sup-
port the results of this paper. The third section is dedicated to describing the
methodology and its application to article 7 of the GDPR. We conclude with an
overview of future work and improvements.

2 The Legislation Editor

This section is adapted from [8].
The legislation editor integrates theorem proving technology into a usable

graphical user interface (GUI) for the computer-assisted formalization of legal
texts and applying automated normative reasoning procedures on these artifacts.
In particular, the system includes

1. a legislation editor that graphically supports the formalization of legal texts
via the use of annotations,

2. means of assessing the quality of entered formalizations, e.g., by automatically
conducting consistency checks and assessing logical independence,

3. ready-to-use theorem prover technology for evaluating user-specified queries
wrt. a given formalization, and

4. the possibility to share and collaborate, and to experiment with different
formalizations and underlying logics.

The system is realized using a web-based Software-as-a-service and is avail-
able using a browser. It comprises a GUI that is implemented as a Javascript
browser application, and a NodeJS application on the back-end side which con-
nects to theorem provers, data storage services and relevant middleware. Using
this architectural layout, no further software is required from the user perspec-
tive for using the editor and its reasoning procedures, as all necessary software
is made available on the back end and the computationally heavy tasks are
executed on the remote servers only. The results of the different reasoning pro-
cedures are sent back to the GUI and displayed to the user.

2.1 The Annotation Editor

The annotation editor allows users to create formalizations of legal documents
that can be subsequently used for formal legal reasoning. The general function-
ality of the editor is described in the following.
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One of the main ideas of the editor is to hide the underlying logical details and
technical reasoning input and outputs from the user. We consider this essential,
as the primary target audience of the tool are legal experts who are not nec-
essarily logicians. It could greatly decrease the usability of the tool if a solid
knowledge about formal logic was required. This is realized by letting the user
annotate legal texts and queries graphically and by allowing the user to access
the different reasoning functionalities by simply clicking buttons that are inte-
grated into the GUI.

Another main idea of the editor is to enable a direct annotation of the original
text, without the need to modify it. This property is essential to the core result of
this paper - the ability to regenerate the original text from the annotations, which
can then be compared. It should be noted that many times, legal texts contain
implicit information. For example, the GDPR often talks about the processing
of data, but without always specifying that this is done by a processor. In such
cases, the users need to add the implicit text explicitly in the editor, so it can be
annotated. We encourage the user to put such text in square brackets, in order
to simplify the comparison between the original and the generated text at the
end of the process.

These two properties raise the need for an expressive annotation language,
which can capture not only language properties but also meta-language proper-
ties, such as exceptions and other complex relations. In order to support such a
language the annotations are organized into three layers.

In order to demonstrate the different elements of the editor, we will use
GDPR article 7, paragraph 2 as an example. The full annotation of this para-
graph can be seen in Fig. 1.

The editor employs a hierarchical approach to annotations. At the base,
there are “term” annotations, which are used to mark all relevant entities and
relations. These annotations are assigned specific colors, corresponding to their
entities. Entities normally denote a class of items or people while relations denote
actions or relations between different entities. An example of an entity which can
be seen in Fig. 1 is “give consent”, which corresponds to a relation between a
data subject, a controller and a specific data, processing and time.

On top of the term annotations, there are logical and normative properties,
such as obligations, conditions and negations. These annotations place a specific
context around term annotations, as well as other logical and normative ones. For
example, a term annotation might imply another, in which case the two relate
to each other as a condition and implication. If an annotation is an obligation,
such an annotation should be applied. In Fig. 1, we can see that the relation
between the first two terms and the following five is a condition in which the
conclusion is an obligation. This is obtained by setting each group of the two
groups of terms as a conjunction and setting the relationship between the two
groups as a conditional obligation, where the first part consists of the conditions
and the second consists of the obligation.

Lastly, the editor enables the user to annotate concepts which go beyond
direct logical and normative properties. For example, a sentence might be an
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exception of another, in which case the two must be bound together, despite the
fact that they may not appear together. Another example is when a sentence
refers to another but requires the replacement of some concepts with others.
The current text requires but a simple use of this feature. In Fig. 1, we can see
that each paragraph is being associated with its specific numbering using the
“Labeling” annotation. Such labels can be used later, for example in exceptions.
More complex examples can be found in the formalization of article 13 of the
GDPR, which is described in [6].

The formalization proceeds as follows: The user selects some text from the
legal document and annotates it, either as a term or as a composite (complex)
statement. In the first case, a name for that term is computed automatically, but
it can also be chosen freely. Different terms are displayed as different colors in the
text. In the latter case, the user needs to choose among the different possibilities,
which correspond to either logical connectives or higher-level sentence structures
called macros. The composite annotations are displayed as a box around the text
and can be done recursively.

Fig. 1. Article 7, par 2: full annotation

The editor also features direct access to the consistency check and logical
independence check procedures (as buttons). When such a button is clicked, the
current state of the formalization will be translated and sent to the back-end
provers, which determine whether it is consistent resp. logically independent.

User queries are also created using such an editor. In addition to the steps
sketched above, users may declare a text passage as goal using a dedicated
annotation button, whose contents are again annotated as usual. If the query is
executed, the back-end provers will try to prove (or refute) that the goal logically
follows from the remaining annotations and the underlying legislation. This way,
the tool can answer YES/NO questions on whether the goal logically follows the
facts and logical relations of formalized legislation.

A very important feature of the editor is the ability to check the formal-
ization. Often times, formalizations cannot be checked for correctness and can
contain, therefore, many errors and typos3. By clicking the “Save” button, the

3 Please refer to [5] for more information and examples.
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annotations are being converted into a formal structure, which is then being
converted into a legal text, for comparison. This process fails if the structure of
the annotations is incorrect and serves as a kind of “compiler”.

In the next section, we are going to discuss in more detail the generated legal
text, which can be found under the “Formalization” tab.

3 Legal Formalization

Formalization of legal text into a machine readable format is a rather complex
process. In such a process, the user inevitably encounters a number of problems
as described in Sect. 1. In previous research, the authors tackled a few such diffi-
culties by proposing an approach of interactive legal text formalization, where a
user or legal expert decides about some of the types of difficulties based on her
expertise in certain legal field [8]. An interpretation of different statements and
terms in a legislation or legal text is generally one of the biggest problems dur-
ing automatic formalization. Authors deal with the interpretation issue in such
a manner that legal experts as users solely interpret the legal text being formal-
ized. Using this approach the editing tool becomes more of a support tool while
formalizing legal text and only depends on the decisions of the user. This app-
roach is further advantageous because it can flexibly react on the development
of interpretation of a certain legal text in time.

In this article, the authors develop this approach further and tackle another
relevant problem. As described in Sect. 1, legal formalization using an editing tool
requires knowledge of both law and logic which in most cases requires the coop-
eration of a logician and a lawyer. The authors propose a solution in providing
user-friendly output of a formalization of legal text which is easily comprehensi-
ble for lawyers with basic knowledge of logic. This approach aims to reduce the
level of expertise in logic required and assumes that the legal expert is able to
both formalize the legislation and assess the accuracy of the output.

3.1 Article 7 of GDPR

We use GDPR as a representative legislation for the editing tool functioning
presentation. GDPR is one of the most discussed and in many aspects contro-
versial European legislations, which makes it an optimal use case for the purpose
of this study. The GDPR defines the principles of personal data processing and
the conditions of lawfulness of their processing. It also regulates the conditions
for expressing the consent given to the processing of data and the provision of
information and access to personal data. The GDPR is universally binding and
applicable in all Member States of EU. Regarding its universality, uniqueness
and relative strictness in duties and sanctions, it is not surprising that a great
deal of effort is being made to ensure compliance of personal data processing with
the regulation in the private sector and to analyze and interpret the wording of
the legislation in the public and academic sectors. This statement may be also
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supported by the rich case law concerning GDPR of both the general and Euro-
pean courts and other administrative institutions. The robustness of the GDPR
application then creates the need to simplify and make the legal document ide-
ally accessible to a wide range of citizens and institutions in a transparent and
simple form.

In a current state, the user is capable of formalizing the whole legislation,
which is the recommended way of using the editing tool. Regarding the scope
of this article, we decided to present the formalization of the whole of Article
7 of GDPR - Conditions for consent. For the same reason we do not formalize
the Article in context with the rest of the legislation, however this systematic
formalization could be done following the same methodology.

Consent, in the context of GDPR, is one of the lawful ways of processing
personal data in accordance with Article 6 par. 1 (a) of GDPR and it is one of the
most common ways to lawfully process personal data as it is part of a majority of
services a human can use or buy nowadays. Article 7 states necessary conditions
for the consent of a subject of personal data to be lawful and in accordance with
the European regulation.

The full wording of Article 7 GDPR is:
1. Where processing is based on consent, the controller shall be able to demon-

strate that the data subject has consented to processing of his or her personal
data.

2. If the data subject’s consent is given in the context of a written declaration
which also concerns other matters, the request for consent shall be presented in a
manner which is clearly distinguishable from the other matters, in an intelligible
and easily accessible form, using clear and plain language. Any part of such
a declaration which constitutes an infringement of this Regulation shall not be
binding.

3. The data subject shall have the right to withdraw his or her consent at
any time. The withdrawal of consent shall not affect the lawfulness of processing
based on consent before its withdrawal. Prior to giving consent, the data subject
shall be informed thereof. It shall be as easy to withdraw as to give consent.

4. When assessing whether consent is freely given, utmost account shall be
taken of whether, inter alia, the performance of a contract, including the pro-
vision of a service, is conditional on consent to the processing of personal data
that is not necessary for the performance of that contract.

3.2 Formalization of Article 7 Using the Legislation Editor

The formalization of legal text means the transformation of the text, including
its semantics, into the logical representation. The legislation editor uses the for-
malization performed by the user - legal expert - as an input. The formalization
is performed in the editor using annotations of the text as described in Sect. 2.1
in the Annotation tab.

The formalization in the legislation editor is based on the annotations of three
categories: terms, connectives and macro concepts. Terms are parts of the text
that the tool recognizes as an entity, entities can appear in the formalization
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any number of times. Connectives are logical constructs aimed to catch the
logical relationship among terms. Terms are marked as colored rectangles and
connectives and macros as grey borders in Fig. 1, the same term is always colored
with the same color. Annotations are performed by the expert who marks the
text according to her interpretation of the text and regarding the goal of the
formalization - what kind of questions about the legal text the user wants to
answer.

As it was mentioned in Sect. 1, the annotations methodology follows hierar-
chical order. It is recommended to firstly determine the legal text or parts of the
legal text which user wants to formalize and then to clarify the logical relation-
ships between the parts of the text. Given the example of Article 7 GDPR, this
article contains 4 paragraphs, all paragraphs relate to the conditions of consent,
which is gradually refined, therefore it is possible to start the formalization of
individual paragraphs separately.

Subsequent formalization shall follow a similar trend - firstly determine all
the terms (entities) in the text which the user considers important and mark
them as terms in the Annotation tab. After this step, the user shall mark the
logical relationships among marked terms. During this step, it is again necessary
to annotate the relations hierarchically, i.e. to start with external relationships
and gradually move on to internal ones.

Given Article 7 par. 1: 1. Where processing is based on consent, the controller
shall be able to demonstrate that the data subject has consented to processing of
his or her personal data.

This paragraph contains an obligation of a controller to demonstrate the
consent of a specific subject for the processing of his or her personal data if the
processing is based on consent. The essential entities of this paragraph are 6
following: processing, based on consent, controller, to demonstrate, data subject
and consent to processing of personal data. Therefore, we accept these 6 parts
of the sentence as terms bearing the meaning of the sentence. We use the leg-
islation editor annotations scheme to mark all these terms and choose the term
names and variables. Variables follow first-order logic methodology and they are
contained in the brackets behind the term names. They need to start with upper
case letter to be recognized as variables. Variables allow the user to address spe-
cific real-life subjects and objects and reason about them. Let us take the first
term processing. While processing, there is a specific subject and her personal
data to be processed by a specific controller in a specific situation in time. All
these characteristics of processing are changeable depending on the specific situ-
ation, therefore we accept them as variables. When annotating in the Annotation
tab of the tool, we mark first part of the sentence “Where processing” as a term
using the “Term” button as in Fig. 1 and choose the name processing(Data,
Subject, Time, Controller), where the order of variables is arbitrary, as in
Fig. 2. We annotate the other 5 terms in the same manner with the variables as
following:

“is based on consent” as term based on consent(Data, Subject, Time,
Controller, Consent, Processing)
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“the controller” as term controller(Controller)
“shall be able to demonstrate” as term to demonstrate(Controller, Con-

sent)
“that the data subject” as term data subject(Subject) “has consented to

processing of his or her personal data” as term give consent(Data, Subject,
Time, Controller, Consent, Processing)

Fig. 2. Annotation of a “Term”

Additionally, we annotate the number of paragraph “1.” as a label for this
paragraph using the “Term” button and choosing the name paragraph1. We
do this step in order to be able to use the sentence as a whole later in the situa-
tion, where it is needed to state a specific logical relationship between different
paragraphs. Therefore, there is no need to use variables for this term, since we
are choosing just a name for the paragraph.

“1.” as term paragraph1
This way we divided the first paragraph of Article 7 into different parts

marked as terms in the Annotation tab, all of the marked terms bearing dif-
ferent meaning and having different roles in the sentence. The second step in
formalization using the legislation editor is to define the logical relationships
between the terms in legal text.

As it was mentioned beforehand, during the annotation of logical relation-
ships, it is necessary to proceed from external logical relationships to internal
ones. Practically, annotation of logical relationships is similar to annotation of
the terms. We have to mark the whole text to which we intend to assign a logical
relationship and choose the correct logical relationship from the “Connectives”
button, which provides several options as we can see in Fig. 3.

First, we have to use the “Labelling” of the paragraph, which is a macro
concept listed in “Connectives” as “Labelling sentences”. This macro concept
accepts the first term in the marked text as a label and the rest as a sentence to
be labelled. In this case, the first marked term is the term paragraph1. This
means that if we need to refer to this paragraph in the future while formalizing of
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the regulation, we can use the term paragraph1 as a reference to this paragraph.
Labelling is a usual first step as it delimits the part of a text we will formalize
as a whole.

Fig. 3. The list of connectives

Secondly, we have to decide on the logical relationship of a paragraph (sen-
tence). This task requires knowledge of legal notions and legal language used
for expressing different legal statements. In the case of the first paragraph of
Article 7, this sentence expresses an obligation of the controller to demonstrate
the consent, however this obligation is conditioned by the first part of sentence,
according to which the processing must be based on a consent for the following
obligation to apply. We can deduce that the obligation of the controller in the
second part of the paragraph is conditioned by the first part of the paragraph.
This situation clearly leads to an implication of obligation, in the “Connectives”
list in Fig. 3 marked as “If/Then Obligation”. Therefore, we mark the whole
sentence, except the label paragraph1 as “If/Then Obligation”.

The first two terms - processing(Data, Subject, Time, Controller)
and based on consent(Data, Subject, Time, Controller, Consent, Pro-
cessing) are conditions for the obligation of the controller to apply. Thus, we
mark these two terms with another internal logical connective “And” (as a
conjunction).

The obligation of the controller is expressed in rest of the terms in this para-
graph - controller(Controller), to demonstrate(Controller, Consent),
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and data subject(Subject) and give consent(Data, Subject, Time, Con-
troller, Consent, Processing). Similarly, we mark these terms again with the
internal logical connective “And”.

To summarize this process, we can say that the controller is legally obligated
to demonstrate a consent expressed by the data subject for specific processing
of her personal data, if such processing is based on consent. Full obligation of
Article 7 paragraph 1 is in Fig. 4.

Fig. 4. Annotation of Article 7 par. 1

The legislation editor contains another two important buttons - “Save” and
“Run consistency check”. We save the formalization of the first paragraph with
the “Save” button and we check whether our formalization is correct by pressing
the “Run consistency check” button as in Fig. 4. This feature of the legislation
editor was already described in previous work of the authors, however the issue
tackled in this article is the following: even though the consistency check is
correct, is the user (lawyer) capable of assessing her formalization and deciding
whether it is correct and meaningful from both a legal and logical perspective?

To tackle this issue and simplify this task, we propose a work-in-progress
solution in the Formalization tab in the Legislation Editor.

Fig. 5. Formalization of Article 7 par. 1

The Formalization tab in Fig. 5 offers comparison of the original text and
logical formulae applied to the original text. Furthermore, logical formulae are
provided in such a way that the user can easily understand the logical rela-
tionships and evaluate their correctness. The current presentation displays the
internal logic formulae next to the relevant text. These formulae are denoted in
first-order Deontic logic [7] and variables are implicitly quantified over each of
the whole formulae displayed on the formalization tab. In future versions, this
logical terms will be replaced by their matching entities in a relevant ontology
(see for example, [10]).
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It should also be noted that we make a distinction between the formula
used for representing the knowledge, and the formula used for actual reasoning
over the knowledge. Once a theorem prover is being called, the representation
formula is being translated into the prover input logic. Issues such as conditional
obligations, negation-as-failure and others are resolved at this point, depending
on the target theorem prover.

The goal of the methodology of translating the original text into a formula
and then back into text, is that the output is as comprehensible and as similar
as the input, i.e. the original legal text in the left part of the Formalization tab.
At the same time, it is necessary to preserve the logical formulae used while
formalizating the text and present them in the output in a compatible way with
the text. To find the right balance of these two goals - to present both the original
text and logical formulae comprehensibly together - is the future work for the
authors of this article, the current setting is just the first attempt on this path.

As we can see in Fig. 5, first the legislation editor shows the label of the
paragraph. Subsequently, it shows the specific part of the original legal text and
the term allocated to this specific part of the text behind together with selected
variables. To clearly distinguish different semantic parts of texts, it lists the
terms on separate rows in the order as in the original text, therefore it preserves
the sequence of the original legal text. Additionally, different terms (different
parts of original text) are connected with logical words representing different
logical relationships.

Specifically, we can first observe the word “IF” which means that the follow-
ing terms are conditions. These following terms are connected with “AND”. The
obligation dependent on previous conditions is marked as “THEN YOU MUST”
and the following terms are the consequences that need to happen in order to
meet the obligation of this part of the regulation. The legal consequences are
again connected with “AND” to show that all of them need to apply. Detailed
formalization of the first paragraph is in Fig. 6.

Fig. 6. Formalization of Article 7 par. 1 - formulae

In this case, the comprehensibility is achieved through the indentation, sepa-
ration of the original text and allocated terms and differentiation of connectives
in upper case and terms or original text in lower case. The visual distinction of
logical parts of legal text is another way of presenting the output, although we
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are aware that in this direction, the legislation editor is limited and we accept
this as a future work issue. Nevertheless, we believe that our approach is the
right first step in the comprehensibility of formalization of legal text.

Regarding paragraph 1 of Article 7, the output is easily comparable with
the input in the left part of the Formalization tab. The check of formalization
is then easily performed by simply reading through the right formalized output
and assessing its legal meaning when comparing to the meaning of the original
text.

Given this formalization methodology, we can proceed with the rest of the
paragraphs in the same manner. In paragraph 2 as we can see in Fig. 1 we used
following terms:

“2.” as term paragraph2
“If the data subject’s consent is given” as term give consent(Data, Sub-

ject, Time, Controller, Consent, Processing)
“in the context of a written declaration which also concerns other matters”

as term written declaration other matters(Data, Subject, Time, Con-
troller, Consent)

“the request for consent shall be presented in a manner which is” as term
request for consent(Data, Subject, Time, Controller, Consent)

“clearly distinguishable from the other matters” as term distinguish-
able(Data, Subject, Time, Controller, Consent)

“in an intelligible” as term intelligible(Data, Subject, Time, Con-
troller, Consent)

“and easily accessible form” as term accessible(Data, Subject, Time,
Controller, Consent)

“using clear and plain language” as term language(Data, Subject, Time,
Controller, Consent)

“Any part of such a declaration” as term written declaration other
matters (Data, Subject, Time, Controller, Consent)

“which constitutes an infringement of this Regulation” as term infringe-
ment

“shall not be binding” as term binding
Subsequently, after labelling the paragraph, we chose two obligations based

on conditions as connectives for the two separate sentences in paragraph 2.
Therefore, we annotated them separately as “IF/THEN OBLIGATION” con-
nectives, where give consent(Data, Subject, Time, Controller, Consent,
Processing) and written declaration other matters(Data, Subject,
Time, Controller, Consent) are conditions for first implication and the fol-
lowing terms are consequences. written declaration other matters(Data,
Subject, Time, Controller, Consent) and infringement are conditions for
second implication and binding (annotated as a “NEGATION” first) is a con-
sequence.

The resulting formalization is in Fig. 7.
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Fig. 7. Formalization of Article 7 par. 2 - formulae

Again, we can observe two separated implications with obligations starting
with “IF” statement and continuing with “THEN YOU MUST”. These two
implications (sentences) are connected with the connective “AND” as two parts
of one paragraph labelled as “paragraph2”. Given the scope of this article, we
are not able to go through the formalization of all the paragraphs step by step,
however we are providing the outputs in Fig. 8 and Fig. 9.

Fig. 8. Formalization of Article 7 par. 3 - formulae

We used a permission to formalize the first sentence of paragraph 3 as a
right of subject of personal data to withdraw the consent. This permission is
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Fig. 9. Formalization of Article 7 par. 4 - formulae

simple, it is not conditioned by any other facts or actions. Similarly, we used
simple obligations without implications for the third and fourth sentences in this
paragraph given that these sentences mean simple obligations non-conditioned
by any precedent facts or actions to apply.

Regarding paragraph 4, we annotated the whole sentence as an obligation
with the implication “IF/THEN OBLIGATION” given that “whether assessing
if the consent is freely given” are conditions and considering the necessity of
processing of personal data for the performance of a contract are consequences
that must be met to comply with the GDPR regulation.

3.3 The Comprehensibility of Formalization - Future Work

It is evident that our attempt to provide a meaningful and comprehensible for-
malization tool for lawyers to be used without extensive knowledge of first-order
logic and logical reasoning is just a first step to achieve this rather ambitious
task. Our new feature of the legislation editor in the current setting offers only
limited visualization help for lawyers. This feature is based mainly on visual
indentation of different parts of texts (terms and connectives) and hierarchical
sequence of parts of the text. Nevertheless, we assume that the most impor-
tant lesson learned is that using as much of the original legal text as possible
to present in the output formulae, together with logical connectives, increases
the comprehensibility significantly. And mainly, it allows the user to compare
the original legal text with the formalized text in logical formulae which makes
the formalization task less time-consuming and more user-friendly. Our legis-
lation editor can do so because it stores the parts of original text as “Terms”
and although it continues to work only with the annotated terms (or labels), the
stored text is very helpful when the tool presents the output of the formalization
to the user.

As a future work, we intend to achieve higher comprehensibility with better
visualization of the output formulae using graphical features such as colours or
diagrams and connecting the formalized terms to the ontological dictionary. We
believe that enhancing the comprehensibility of output formulae is the main task
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to be solved on the way to usable formalization tool for lawyers without further
knowledge of advanced logic.

4 Conclusion

One of the major obstacles for the creation of a formal legal knowledge base, is
the dependency on both target and source domain experts. The target domain
experts, who are usually logicians or programmers, are most suitable for encod-
ing knowledge into formulae and programs, but they usually lack a deep under-
standing in the legal domain. On the other hand, most legal experts would find it
difficult to follow the legal meaning of a legislation in a completely formal form.
This dependency on two domain experts means that the trust legal experts can
place in a knowledge base is limited.

In this article, we build on our previous research ideas and applications in
legal reasoning and formalization of legal texts in order to make the formalization
process transparent. This is achieved by increasing the confidence of the legal
expert in the formalized knowledge.

Our approach is based on an assumption that if the formalization of legal
text is user-friendly enough and if the output of formalization is comprehensible
enough, the formalization of legal text can be performed by an expert in specific
legal domain without a deeper knowledge of first-order logic. We are trying to
achieve this goal by extending an existing legislation editor with a visualized
output of a formalization.

Using our approach, a lawyer with limited knowledge of first-order logic is
capable of translating certain legal text into formal language using a simple
annotation editor according to his expertise in a legal domain related to this
legal text. The formalization is only dependent on his expert interpretation of
the text. Furthermore, the lawyer is capable of properly checking the formalized
formulae of legal text and eventually, to correct the formalization according to
his best knowledge of interpretation and legal domain.

To demonstrate this approach, we formalize Article 7 of GDPR. We show
the practical use of the legislation editor in the formalization of Article 7 of
GDPR in a step by step manner. Subsequently, we show the visualized output
of the logical formulae as a result of legal text formalization. We argue that the
proposed design of the output formulae is sufficient and comprehensible enough
for a lawyer to assess the logical formulae and compare it to the original plain
legal text and potentially use it to correct the formalization.

This paper describes a very basic prototype with the sole purpose of demon-
strating the approach. In the future, we plan on enhancing the translation back
into legal text so it will be as similar to the original text as possible. For example,
a legal text might use various words to denote an obligation, such as “must”,
“should” and “obliged”. All these verbs are currently uniformly being translated
into “It is an obligation that”. By parsing the original text and extracting the
specific “obligation” verb, we can increase the similarity of the generated text
to the original.
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Another enhancement to the current version would be to create a two-
dimensional display of the legal text. Currently, both the original text and the
generated formula which denote a certain term are appearing in the translation.
In a two-dimensional approach, only the original text would be displayed and
the user would have the possibility to see which ontological entity is mapped to
it by clicking on or hovering over it.
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Abstract. Game theory is the most common approach to studying
strategic interactions between agents, but it provides little explanation
for game-theoretical solution concepts. In this paper, we use a game-
based argumentation framework to solve normal-form games. The result
is that solution concepts in game theory can be interpreted by extensions
of a game-based argumentation framework. We can use our framework
to solve normal-form games, providing explanation for solution concepts.

Keywords: Game theory · Argumentation framework · Explanation

1 Introduction

In a game, agents can influence one another’s payoffs by choosing different strate-
gies. Game theory provides mathematical models to deal with strategic inter-
actions between agents [9,12,21]. Argumentation copes with inconsistency and
support relation among arguments put forward by agents [2]. Therefore, it is
obvious that both game theory and argumentation address problems concerning
interaction among agents.

The interplay between games and argumentation can be treated in two
dimensions, one is to use games to analyze agents’ behavior in argumentation,
and the other is to apply argumentation to games. Lots of work has been done in
the former dimension [14–16,18]. For the later dimension, Dung has showed that
argumentation can be used to solve cooperative n-person games and the stable
marriage problem in his seminal paper about abstract argumentation frame-
work (AF) [5]. Dung’s work about applying argumentation to games is advanced
by [3,22], which respectively focus on cooperative n-person games and the stable
marriage problem (SMP). Fan and Toni extend the later dimension by applying
argumentation to normal-form games [7], which shows how assumption-based
argumentation can be used to solve normal-form games via dialogue. Fan and
Toni’s pioneering work is of great originality, but their approach is not efficient
and does not provide strict correspondence between argumentation frameworks
and game theory. This is the problem we try to solve.

Argumentation deals with support and attack among arguments in the pro-
cess of reasoning, and is widely used for providing explanation. Moulin et al.
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propose research perspectives for the integration of explanation and argumen-
tation capabilities [11]. Argumentation has been used to give explanation for
decision-making of a value-driven agent [10], scientific debates [20] and case-
based reasoning [4].

The field of applying argumentation to normal-form games largely remains
unexplored and may bring interesting research opportunities. An opportunity is
that normal-form games can benefit from argumentation in terms of explana-
tion. By mapping a normal-form game into an abstract argumentation frame-
work, strategic interactions between players can be explained by defenses and
attacks among arguments. In this article, we study how to represent normal-form
games using abstract argumentation frameworks and how to compute game-
theoretical solution concepts by argumentation semantics. In particular, game-
theoretical solution concepts are explained by how the corresponding arguments
are defended.

This article is written as follows: In Sect. 2, the theoretical background of the
article is presented. In Sect. 3, we construct a game-based argumentation frame-
work (GBA framework for short) to solve normal-form games with principled
techniques from the field of argumentation. Therefore, in Sect. 4, we prove the
correspondence between concepts in a GBA framework and game-theoretical
solution concepts. For example, stable extensions of a GBA framework corre-
spond to strict Nash equilibria of a game, and the grounded extension of a GBA
framework corresponds to the equilibrium in strictly dominant strategies of a
game. We compare the process of solving normal-form games using game the-
ory with that of our framework, and discuss why our framework provides better
explanation for solution concepts.

2 Backgrounds

In this section, we briefly review some important solution concepts in game
theory and some concepts in argumentation, which set up the theoretical basis
of this paper.

2.1 Normal-Form Games

The normal form is the most familiar representation of strategic interactions
in game theory. In a normal-form game, each player can select a single action
and play it. We call such a strategy a pure strategy. In this paper, scope of our
research is limited to pure strategy games, in which a strategy represents taking
an action with probability of 1. So according to [21], a pure strategy game can
be defined as follows:

Definition 1. Normal-form game. A (finite, n-person) normal-form game
is a tuple (N,S, u), where:
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– N is a finite set of n players, indexed by i;
– S = S1 × · · · × Sn, where Si is a finite set of strategies available to player i.

Each vector s = (s1, . . . , sn) is called a strategy profile;
– u = (u1, ..., un), where ui : S → R is a real-valued utility (or payoff) function

for player i.

We use si to denote strategies available to player i, and use Si to denote the
set of pure strategies for player i. We call a choice of strategy for each player
a pure-strategy profile, denoted by s. Formally, define s−i = (s1, s2, s3, . . . si−1,
si+1, . . . sn), a strategy profile s without player i’s strategy. Thus we write s =
(si, s−i). S−i is the set of all strategy profiles of players without player i.

There are many solution concepts in game theory [21], some of which are
defined as follows.

Definition 2. Strictly dominant strategy. Let si and s′
i be two strategies of

player i, then we say that si strictly dominates s′
i if ∀s−i ∈ S−i, ui(si, s−i) >

ui(s′
i, s−i). A strategy is strictly dominant for an agent if it strictly dominates

every other strategy for that agent.

Definition 3. Equilibrium in strictly dominant strategies. A strategy pro-
file s = (s1, ..., sn) in which every si is strictly dominant for player i is an
equilibrium in strictly dominant strategies.

Definition 4. Best response. Player i’s best response to the strategy profile s−i

is a strategy s∗
i ∈ Si such that ui(s∗

i , s−i) ≥ ui(si, s−i) for all strategies si ∈ Si.

Definition 5. Nash equilibrium. A strategy profile s = (s1, ...sn) is a Nash
equilibrium if, for all agents i, si is a best response to s−i.

An equilibrium in strictly dominant strategies is necessarily the unique Nash
equilibrium. Nash equilibria can be divided into two categories, strict and
weak, depending on whether or not every agent’s strategy constitutes a unique
best response to the other agents’ strategies.

Definition 6. Strict Nash. A strategy profile s = (s1, ...sn) is a strict Nash
equilibrium if, for all agents i and for all strategies s′

i �= si, ui(si, s−i) > ui(s′
i, s−i).

Definition 7. Weak Nash. A strategy profile s = (s1, ...sn) is a weak Nash
equilibrium if, for all agents i and for all strategies s′

i �= si, ui(si, s−i) ≥ ui(s′
i, s−i).

Intuitively, weak Nash equilibria are less stable than strict Nash equilibria,
because in the former case at least one player can deviate from Nash equilibria.
There can be only one strict Nash equilibrium in a game (but there is not
necessarily one).

Example 1. The Prisoners’ Dilemma [9]. There are two prisoners, each of
which has two strategies available: confess (F) or not confess (M). The game
can be represented as G = (N,S, u) with N = {1, 2} and S1 = {F1,M1},
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Prisoner 2

M2 F2

Prisoner 1 M1 −1, −1 −9, 0

F1 0, −9 −6, −6

S2 = {F2,M2}. The payoff to the two prisoners when a particular pair of strate-
gies is chosen is given in the table:
In this example, for prisoner 1, F1 is the best response to M2 and F2, for prisoner
2, F2 is the best response to M1 and F1. Therefore, strategy profile (F1, F2) is a
unique Nash equilibrium.

2.2 Abstract Argumentation Framework

The notions of an argumentation framework (AF) were first introduced in [5].
An AF can be viewed as a directed graph in which arguments are represented
by the nodes and the attack relation is represented as edges.

Definition 8. An argumentation framework is a pair AF = (A,R), where
A is a set of arguments, and R is a binary relation over A, i.e., R ⊆ A × A.

We use (α, β) ∈ R to denote that α attacks β. Given an AF, statuses of argu-
ments is evaluated, producing sets of arguments that are acceptable together,
which are based on the following three notions [10]:

Definition 9. Given AF = (A,R) and B ⊆ A
– A set B of arguments is conflict-free iff �α, β ∈ B such that (α, β) ∈ R.
– An argument α ∈ A is acceptable w.r.t. a set B (α is defended by B), iff

∀(β, α) ∈ R (β �∈ B, β �= α), ∃γ ∈ B such that (γ, β) ∈ R.
– A conflict-free set of arguments B is admissible iff each argument in B is

acceptable w.r.t. B.

An extension-based argumentation semantics can be viewed as a pre-defined
criterion, according to which the acceptability of arguments in an AF can be
determined.

Definition 10. Let AF = (A,R) be an argument framework, and E ⊆ A be an
admissible set of arguments.

– E is a complete extension of AF iff each argument in A that is acceptable
w.r.t. E is in E.

– E is the grounded extension of AF iff E is a minimal (w.r.t. set inclusion)
complete extension.

– E is a stable extension of AF iff E is conflict-free and ∀β ∈ A\E, ∃α ∈ E
such that (α, β) ∈ R.

We use ECO(AF ), EGR(AF ), EST (AF ) to denote the set of complete extensions,
grounded extension, and stable extensions of AF respectively.
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3 Game-Based Argumentation Framework

3.1 Applying Argumentation to Games

Dung introduced basic ideas of applying argumentation frameworks to n-person
cooperative games and the SMP in [5]. When dealing with n-person coopera-
tive games, Dung interprets < IMP,→> as an abstract AF, where argument
is an argument for a imputation (given payoff distribution among the agents)
and each attack denotes domination between imputations. Building on Dung’s
results, Young et al. further the correspondence between Dung’s argumentation
semantics and solution concepts in cooperative game theory [22]. When dealing
with the SMP, an argument is denoted with (m,w) that represents a man m
marries woman w. (m′, w′) attacks (m,w) iff: 1© m′ = m and m prefers w′ to w;
2© w′ = w and w prefers m′ to m. Bistarelli and Santini take Dung’s approach
and advanced the research of applying argumentation to the SMP [3].

Fan and Toni extend Dung’s work by mapping games in normal form into
assumption-based argumentation frameworks. To find the Nash equilibrium, they
translate each strategy profile into an assumption d(σα, σβ) that represent this
strategy profile is a Nash equilibrium, and a conclusion nD(σα, σβ) that repre-
sent this strategy profile is not a Nash equilibrium. An argument {d(σα, σβ)} 

d(σα, σβ) is attacked by an argument with a conclusion nD(σα, σβ). Dung con-
siders an imputation as an argument. Fan and Toni consider a strategy profile
as an argument. Both imputation and strategy profiles involve all players. From
this perspective, the approach Fan and Toni take is similar to Dung’s. Dung’s
approach proves to be rather successful in cooperative games, since a strict
correspondence can be established between solutions in cooperative games and
semantics of abstract AF [22]. But in Fan and Toni’s work about normal-form
games, the correspondence between solution concepts of normal-form games and
semantics of ABA is weak.

Dung uses different definition of argument and attack in different games.
Normal-form games are different from cooperative games. In cooperative games,
joint actions of groups of players are the primitives; in Non-cooperative games,
actions of individual players are the primitives [13].

3.2 Game-Based Argumentation Framework

In this paper, we propose a Game-based Argumentation (GBA) framework to
solve normal-form games through argumentation. We directly transform a strat-
egy available to a player into an argument for the player. The best response
relationship is transformed into attack relationship.

Definition 11 (Game-based argument). Given a normal-form game G =
(N,S, u), a game-based argument ai is interpreted as

“player i should choose strategy si”. Ai is a set of game-based arguments
available to player i. AG denotes the set of game-based arguments for all players,
that is to say AG = ∪n

i=1Ai.
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Example 2. In the Prisoners’ Dilemma, the game-based arguments available to
player 1 is A1 = {F1,M1}. The game-based arguments available to player 2 is
A2 = {F2,M2}. So AG = A1 ∪ A2 (Fig. 1).

Fig. 1. Game-based arguments and sets of game-based arguments in the Prisoners’
Dilemma.

If player i’s strategy si is not the best response facing player j’s strategy
sj , it is obvious that when player j choose strategy sj , player i will not choose
strategy si as a reaction. Similarly, in an argumentation framework, given that
ai is attacked by aj , ai will be unacceptable if aj has been decided as acceptable.
According to such a similarity, we have a definition as follows:

Definition 12. Given a normal-form game G = (N,S, u) and the set of game-
based arguments AG, RG ⊆ Ai × Aj (i and j are two different players) is a set
of game-based attacks. (aj , ai) ∈ RG iff si is not the best response to all s−i that
contain sj.

RG represents attack relation between game-based arguments put forward by
different players. Given ai a′

i and aj (the corresponding strategies are si s′
i and

sj), ai is attacked by aj if s′
i brings higher payoff than si w.r.t. sj .

Example 3. In the Prisoners’ Dilemma, if prisoner 2 chooses to play the strategy
M2, then prisoner 1 will prefer to choose the strategy F1 rather than M1, since
the payoff from playing strategy F1 is higher than M1. Using the above definition,
we can say that M1 is attacked by M2, as there exists F1 for player 1 such that
u1(F1,M2) > u1(M1,M2). Similarly, M1 is attacked by F2. The strategy attacks
are depicted in Fig. 2.

Figure 2 can be regarded as an AF and F1, F2 are acceptable. The corresponding
strategies are chosen in the Prisoners’ Dilemma.

However, the above approach to translating a game to a game-based argu-
mentation framework is problematic. In the Battle of the Sexes [9], Pat and Chris
must choose to attend either the opera or a prize fight. The game is represented
in the accompanying bimatrix.

The Battle of the Sexes can be represented in AG and RG through the Fig. 3:
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Fig. 2. Game-based arguments and strategy attacks in the Prisoners’ Dilemma.

Pat2

O2 F2

Chris1 O1 2,1 0,0

F1 0,0 1,2

Figure 3 can be regarded as an AF , in which {F1, O1} is acceptable if {F2, O2}
is unacceptable. But the corresponding strategies do not hold in the game, for
Chris cannot take 2 strategies and Pat takes no strategy.So there should be some
restrictions on the argument sets that represent solution concepts to a game.

Since a strategy profile in a normal-form game is in the form of (s1, s2,
s3, . . . , sn), each player can choose only one strategy. A strategy profile argu-
ments set that represents a strategy profile should be in the form of {a1, a2,
a3, . . . , sn} and is defined as follows:

Definition 13. Given a normal-form game G = (N,S, u) and the corresponding
game-based arguments set AG, a strategy profile arguments set (denoted as Asp)
is a set of arguments, which represents a strategy profile such that |Asp| = n,
for any a, b ∈ Asp(a �= b) it is not the case that there exists a player i such that
a ∈ Ai and b ∈ Ai. That is, every argument in Asp belongs to a strategy of a
distinct player.

We use ASP to denote the set containing all the possible Asp. Our game-
based argumentation (GBA) framework is defined as follows:

Definition 14. Given a normal-form game G = (N,S, u), the corresponding
GBA framework is defined as AFG = (AG,ASP ,RG), where AG is the set of
game-based arguments, ASP is the set of strategy profile arguments sets, and RG

is the set of game-based attacks.

In a GBA framework, argument sets that is acceptable should satisfy seman-
tics of AF and should contain arguments of each player. So the semantics of a
GBA framework is defined as follows:

Definition 15. Given a normal-form game G = (N,S, u), the corresponding
game-based framework AFG = (AG,ASP ,RG) and a semantic σ, Eσ(AFG) =
Eσ((AG,RG)) ∩ {A | A ∈ 2AG and ∀i ∈ N , ∃ai ∈ A}.
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Fig. 3. Game-based arguments and strategy attacks in the Battle of the Sexes.

According to the Definition14 and Definition 15, argument sets correspond to
solution concepts in normal-form games should be both in ASP and an extension
of AFG.

4 Properties of a Game-Based Argumentation Framework

4.1 Correspondences Between Game-Theoretical Solution Concepts
and Argument Extensions

The GBA framework is proposed to solve pure-strategy normal-form games.
When a two-person normal-form game is transformed into a GBA framework,
payoff functions are separately transformed into attacks. So there are interest-
ing correspondences between game-theoretical solution concepts computed from
payoff functions, such as dominant strategy and Nash equilibrium, and exten-
sions of a GBA framework. More precisely, an stable extensions of a GBA frame-
work that is Asp corresponds to a strict Nash equilibria of the underlying game,
and the grounded extension of a GBA framework that is in ASP corresponds to
the equilibrium in strictly dominant strategies of the underlying game.

In a n-person game, according to Definition 12, we have the following
proposition:

Proposition 1. Given a normal-form game G = (N,S, u) and the correspond-
ing AFG, if there does not exist a set Asp in the AFG which is conflict-free, then
there does not exist s = (s1, . . . , sn) which is an equilibrium.

Proof. Because there does not exist a set Asp = {a1, . . . , an} in the AFG which
is conflict-free, we have that given any aj there exists i ∈ N , such that (ai, aj) ∈
RG. According to the Definition 12, sj is not the best response to s−j which
includes si. That is to say, for any sj , there exists s−j to which sj is not the best
response, so there does not exist s = (s1, . . . , sn) which is an equilibrium. �

In a two-person game, we have the following proposition.

Proposition 2. Given a normal-form game G = (N,S, u) where N = {1, 2}
and the corresponding AFG, a1 is attacked by a2 iff s1 is not the best response
to s2.
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Proof. In a two-person game where N = {1, 2}, s2 is s−1. Since there are no
other players, according to Definition 12, it is obvious that a1 is attacked by
a2 iff s1 is not the best response to s2. �

Fig. 4. Game-based argument corresponding to dominant strategy is unattacked.

A dominant strategy is the best response to every strategy from opponents.
As shown in Fig. 4, an argument represent a dominant strategy is unattacked.
We have the following proposition:

Proposition 3. Given a normal-form game G = (N,S, u) where N = {1, 2}
and the corresponding AFG, a strategy s1 is dominant iff a1 is unattacked, i.e.,
�a2 ∈ A2, such that (a2, a1) ∈ RG.

Proof. Forwards: If a strategy s1 is dominant, according to the definition, ∀s′
1 ∈

S1 where s′
1 �= s1, s1 dominates s′

1. Thus ∀s2 ∈ S2, ui(s1, s2) ≥ ui(s′
1, s2), so

�s2 ∈ S2 such that u1(s1, s2) > u1(s′
1, s2), hence �a2 ∈ A2 such that (a2, a1) ∈

RG.
Backwards: Given an AFG transferred from G, if a game-based argument a1

is unattacked, we have: ∀s2 ∈ S2 and ∀s′
1 ∈ S1, u1(s1, s2) ≥ u1(s1, s2). Thus s′

1

is dominant. �

As shown in Fig. 5, arguments set correspond to an equilibrium in strictly
dominant strategies is not attacked and attack arguments represent dominated
strategies. For an equilibrium in strictly dominant strategies, we have the
theorem:

Theorem 1. Given a normal-form game G = (N,S, u) where N = {1, 2} and
the corresponding AFG, a strategy profile s = (s1, s2) is an equilibrium in strictly
dominant strategies, iff {a1, a2} = ASP ∩ EGR(AFG).

Proof. Forwards: Let G = (N,S, u) be a two-person game where s = (s1, s2) is
an equilibrium in strictly dominant strategies. According to Definition 2, both
s1 and s2 are strictly dominant, and according to Definition 2, ∀s′

1 ∈ S1 where
s′
1 �= s1, s′

1 is strictly dominated.
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Fig. 5. Arguments set correspond to an equilibrium in strictly dominant strategies is
not attacked and attack arguments outside the set.

We now transfer G to AFG. According to Proposition 3, a1, a2 is unattacked.
According to Definition 16 in [5], FAF is a characteristic function that maps a
set S to a set A that is acceptable w.r.t. S. In AFG, there is FAF (∅)={a1, a2}.
According to Definition 2, ∀s′

1 ∈ S1 where s′
1 �= s1, u1(s1, s2) > u1(s′

1, s2).
According to Definition 12, we have that a2 attacks every a′

1 in A1 except a1. Sim-
ilarly, a1 attacks every a′

2 in A2 except a2. Then we have that FAF ({a1, a2}) =
{a1, a2}, hence {a1, a2} is a complete extension. Also {a1, a2} is the least fixed
point of FAF , so {a1, a2} is the grounded extension.

Backwards: Given the AFG transferred from G. If EGR(AFG) = {{a1, a2}} ,
then {a1, a2} is the minimal complete extension and is conflict-free. According
to the Definition 12, there is no attack from a2 to A2, and there is no attack from
a1 to A1. So, either a1, a2 are unattacked, or a1 defends itself from A2 and a2

defends itself from A1. In the later case, FAF (∅) = ∅ and contradicts the premise
that {a1, a2} is the minimal complete extension. So both a1, a2 are unattacked
and there is no other unattacked arguments. According to Proposition 3, a1 is
the only dominant strategy and hence is a strictly dominant strategy. Similarly
a2 is a strictly dominant strategy. Then we have that strategy profile s = (s1, s2)
is an equilibrium in strictly dominant strategies. �

Proposition 4. Given a normal-form game G = (N,S, u) where N = {1, 2}
and the corresponding AFG, a strategy profile s = (s1, s2) is a Nash equilibrium
iff in the AFG transferred from G, the corresponding Asp = {a1, a2} is conflict-
free.

Proof. Forwards: Given a normal-form game G = (N,S, u) where N = {1, 2}, if
a strategy profile s = (s1, s2) is a Nash equilibrium, then s1 is the best response
to s2 and vice versa. According to Proposition 2, we have a2 does not attack a1.
Similarly, a1 does not attack a2, so the set Asp = {a1, a2} is conflict-free.

Backwards: Given an AFG transferred from G, if the set Asp = {a1, a2} is
conflict-free, then a1 does not attack a2 and vice versa. According to Proposi-
tion 2, s1 is the best response to s2 and vice versa. So s = (s1, s2) is a Nash
equilibrium. �
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Fig. 6. Arguments set correspond to a strict Nash equilibrium attack every argument
outside the set.

A Nash equilibrium is a stable strategy profile: no agent wants to change
its strategy if it knows what strategies other players has chosen. A weak Nash
equilibria are less stable than a strict Nash equilibria [17]. As shown in Fig. 6,
arguments set correspond to a strict Nash equilibrium attack every argument
outside it. For a strict Nash equilibrium, we have the following theorem:

Theorem 2. Given a normal-form game G = (N,S, u) where N = {1, 2} and
the corresponding AFG, a strategy profile s = (s1, s2) is a strict Nash equilibrium
iff {a1, a2} ∈ ASP ∩ EST (AFG).

Proof. Forwards:
Given a normal-form game G = (N,S, u) where N = {1, 2}, if a strategy

profile s = (s1, s2) is a strict Nash equilibrium, we have: s1 is the only best
response to s2 and vice versa, according to the Proposition 2, a1 does not attack
a2 and vice versa. So {a1, a2} is conflict-free.

Since s1 is the only best response to s2, ∀s′
1 ∈ S1 where s′

1 �= s1, s′
1 is not the

best response to s2. According to the Proposition 2, ∀a′
1 ∈ A1 where a′

1 �= a1,
a2 attacks a′

1. Similarly, ∀a′
2 ∈ A2 where a′

2 �= a2, a1 attacks a′
2. So in AFG,

{a1, a2} attacks every argument that is not in {a1, a2}, hence Asp = {a1, a2} is
a stable extension.

Backwards:
Given an AFG transferred from G, if Asp = {a1, a2} is a stable extension, we

have: a1 attack every a′
2 ∈ A2 where a′

2 �= a2. Similarly, a2 attack every a′
1 ∈ A1

where a′
1 �= a1.

According to Definition 11, s1 is the only best response to s2 and vice versa.
So the strategy profile s = (s1, s2) is a strict Nash equilibrium. �

4.2 Towards Explanation for Normal-Form Games

In an AF, acceptability of an argument is easy to understand through analyzing
whether it is defended. A set of arguments that contributes to defending an
argument a is regarded as explanation for the argument a [6,23]. Argumentation
frameworks are very interpretable and are widely used to provide explanations
for other models [1,8,10].
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The process of getting a solution provides an explanation for the solution.
Traditionally, game theory solves a game by first enumerating all possible strat-
egy profiles, and then eliminating dominated strategies and matching the best
responses based on the corresponding payoffs. To judge whether a strategy pro-
file is a solution in a normal-form game, players need to compute and compare
the payoffs of relevant strategy profiles. This process is not intuitive enough
and can be hard to understand. Our framework provides a graphic model to
depict strategic interaction between players. To judge whether a strategy profile
is a solution, players only need to judge whether corresponding arguments are
conflict-free and defended. This process is transparent and easy to understand.

Our framework provides a qualitative analysis of solution concepts in Normal-
form games, and draws some enlightening conclusions. For instance, we have
proved the correspondence between strict Nash and stable semantics. According
to [17], only strict Nash equilibria are asymptotically stable in the replicator
dynamics. Our framework has the potential to provide explanation for stability
of Nash equilibria.

5 Related Works

This paper focus on the interplay between games and argumentation. There is
lots of work about applying extensive games to argumentation dialogues, both
of which can be represented as trees. Games in extensive form have been proved
to be useful to determine optimal strategies in dialogues [18]. Dialectical argu-
mentation frameworks can be enhanced by using payoff functions that assign
values to every possible valid dialogue, hence one can lucidly realize a dialectical
argumentation framework as a game in extensive form [19].

There is several work about applying argumentation to games. Dung proposes
the basic idea of applying abstract argumentation to n-person cooperative games
and the SMP [5]. Young et al. further the correspondence between Dung’s four
argumentation semantics and solution concepts in cooperative game theory [22]
Bistarelli and Santini advanced Dung’s work on the SMP [3]. Fan and Toni
propose that Normal-form games can be translated into an ABA framework, and
correspondence is built between computing solution concepts and constructing
successful dialogues [7]. The problem Fan and Toni deal with is different from
Dung’s, but the approach they take is similar to Dungs.

When dealing with normal-form games, we take an approach that is differ-
ent from Fan and Toni’s. In our approach, an argument is transferred from an
action of an individual player instead of a strategy profile involving all players.
Attack relationship among arguments is based on the best response. Compared
with Fan and Toni’s approach, our approach has the following advantages: First
of all, the number of arguments is our approach is less. Since in a normal-form
game strategy, the number of strategies is less than the number of strategy
profiles. Secondly, we do not need to figure out whether a strategy profile is a
solution before generating attacks. In Fan and Toni’s approach, an argument
{d(σα, σβ)} 
 d(σα, σβ) is to be attacked by {} 
 nD(σα, σβ) only after strategy
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profile (σα, σβ) has been proved not a solution by game theory. Thirdly, in Fan
and Toni’s approach, an argument {d(σα, σβ)} 
 d(σα, σβ) can only be attacked
by {} 
 nD(σα, σβ), which shows no interaction between players. Our app-
roach shows strategic interactions between players through attacks and defenses
among arguments, which can serve as an explanation for game solutions. Finally,
we establish a strict correspondence between solution concepts in normal-form
games and semantics of argumentation frameworks. In our work, Nash equilib-
rium and dominant strategy correspond to different semantics, while in Fan and
Toni’s they are similar.

6 Results and Future Work

In this paper, We propose a new approach of applying abstract argumentation
to normal-form games. We put forward a GBA framework that can be used to
compute game-theoretical solution concepts. We have proved the correspondence
between concepts in a GBA framework and game-theoretical solution concepts.
These results show that games can be solved through argumentation, and game-
theoretical solution concepts can be explained through attacks and defences
among arguments. Based on the GBA frameworks, we will try to provide a
formal explanation for the stability of Nash equilibrium in our future work.
We may also expand the field of applying argumentation to games. Some related
questions include applying argumentation to extensive-form games and repeated
games. This paper has considered pure strategies, and applying argumentation
to mixed strategies games is an interesting and unstudied field.
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1 Background and Motivations

In recent decades, data-driven decision-making processes have increasingly influ-
enced strategic choices. This applies to both virtual and humans’ decisional
needs. The application domains of Machine learning (ML) algorithms are broad-
ening [1,2]. Ranging from finance to healthcare, ML supports humans in making
informed decisions based on the information buried within enormous amounts
of data. However, most effective ML methods are inherently opaque, meaning
that it is hard for humans (if possible at all) to grasp the reasoning hidden
in their predictions (so-called black boxes). To mitigate the issues arising from
such opaqueness, several techniques and methodologies aiming at inspecting ML
models and predictors have been proposed under the eXplainable Artificial Intel-
ligence (XAI) umbrella [3,4] (e.g., feature importance estimators, rule lists, and
surrogate trees [5]). Such tools enable humans to understand, inspect, analyse –
and therefore trust – the operation and outcomes of AI systems effectively.

The many XAI-related initiatives proposed so far constitute the building
blocks for making tomorrow’s intelligent systems explainable and trustable. How-
ever, to date, the ultimate goal of letting intelligent systems provide not only
valuable recommendations but also motivations and explanations for their sug-
gestions – possibly, interactively – is still unachieved. Indeed, current research
efforts focus on specific methods and algorithms, often tailored to single ML
tasks—e.g. classification and, in particular, image classification. For instance,
virtually all approaches proposed so far target supervised learning, and in par-
ticular, classification tasks [3,4,6]—and many of them are tailored on neural
networks [7]. In other words, there is still a long way to generality [8].

Moreover, while existing XAI solutions do an excellent job on inspecting ML
algorithms, current interpretation/explanations provide valuable insights solely
profitable by human experts, entirely neglecting the need for producing more
broadly accessible or personalised explanations that everybody could under-
stand. Recalling their social nature, explanations should rather be interactive
and tailored on the explainee’s cognitive capabilities and background knowledge
to be effective [9,10].

To complicate this matter, existing XAI solutions assume data to be cen-
tralised, homogeneous, and fully/continuously available for operation [8]. Such
circumstances rarely occur in real-world scenarios. For example, data is often
scattered through many administrative domains. Thus, even when carrying
similar information, datasets are commonly structured according to different
schemas—when not lacking structure at all. Privacy and legal constraints com-
plete the picture by making it unlikely for data to be fully available at any
given moment. In other words, the availability of data is more frequently partial
rather than total. Therefore, explainable intelligent systems should be able to
deal with scattering, decentralisation, heterogeneity, and unavailability of data,
rather than requiring data to be centralised and standardised before even start-
ing to process it—which would impose heavy technical, administrative, and legal
constraints on the production of both recommendations and explanations.
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Summarising, further research is needed to push XAI towards the construc-
tion of personalised explanations, which can be built in spite of decentralisation
and heterogeneity of information—possibly, out of the interaction among intel-
ligent software systems and human or virtual explainees.

Clearly, tackling personalisation, decentralisation, and heterogeneity entails
challenges from several perspectives. On the one hand, personalisation of expla-
nations must cope with the need for providing human-intelligible (i.e., symbolic)
explanations of incremental complexity, possibly iteratively adapting to the cog-
nitive capabilities, and background knowledge of the users who are receiving
the explanation. In turn, it requires enabling an interactive explanation process
both within the intelligent systems themselves (i.e., agent to agent) and with
the end-users. On the other hand, decentralisation of data opens to question-
ing how explanations can be produced or aggregated without letting data cross
administrative borders. Therefore, the need for collaboration among multiple
cross-domain software entities is imperative. Finally, the challenge of hetero-
geneity, of both data and ML techniques used to mine information out of it,
dictates the detection of some lingua franca to present recommendations and
explanations to the users in intelligible forms.

To address these challenges, the Expectation project has been recently
recommended for funding – along with other 11 projects – as part of the Chist-
Era 2019 call1 concerning “Explainable Machine Learning-based Artificial Intel-
ligence”. The project has started on April 1, 2021 and it will last up to the of
March 2024. In the remainder of this paper, we discuss how the project plans
to tackle the challenges posed by personalisation, decentralisation, and hetero-
geneity, by fruitfully combining abstractions, methods, and approaches from the
multi-agent systems, knowledge extraction/injection, negotiation, argumenta-
tion, and symbolic reasoning research areas.

2 State of the Art

The generation of personalised explanation for decentralised and heterogeneous
intelligent agents roots in several disciplines, including XAI, agreement technolo-
gies, personalisation, and AI ethics.

2.1 Explainable Agency

Neuro-symbolic integration [11,12] aims at bridging the gap between symbolic
and sub-symbolic AI, reconciling the two key branches of AI (connectionist AI –
relying on connectionist networks inspired from human neurons, and symbolic AI
– relying on logic, symbols, and reasoning) [13]. Sub-symbolic techniques (e.g.,
pattern recognition and classification) can offer excellent performance. However,
their outcomes can be biased and difficult to understand (if possible at all).
Seeking trust, transparency, and the possibility to debug sub-symbolic predic-
tors (so-called black boxes), the XAI community relies on reverse engineering
1 https://www.chistera.eu/projects-call-2019.

https://www.chistera.eu/projects-call-2019
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models trained on unknown datasets generating plausible explanations fitting
the outcome produced by the black box [14]. A typical practice is to train an
interpretable machine learning model (e.g., decision trees, linear model, or rules)
with the outcome of a black box [3,15,16].

Explainable agents go beyond the mere application of sub-symbolic ML mech-
anisms. Agents can leverage symbolic AI techniques (e.g., logic and planning
languages), which are easier to trace, reason about, understand, debug, and
explain [17]. However, they can still partially rely on ML predictors, thus deem-
ing necessary to be explaining their overall behavior (relying on neuro-symbolic
integration). Endowing virtual agents with explanatory abilities raises trust,
acceptability, and reduces possible failures due to misunderstandings [14,18].
Yet, it necessary to consider user characterisation (e.g., age, background, and
expertise), the context (e.g., why do the user need the explanation), and the
agents’ limits [14].

Built-in explainability is still rare in literature. Most of the works utterly
provide indicators which “should serve” as an explanation for the human user [3].
To date, such approaches have been unable to produce satisfying human-under-
standable explanations. Nevertheless, more recent contributions employ neuro-
symbolic integration to identifying factors influencing the human comprehension
of representation formats and reasoning approaches [19].

2.2 Agreement Technologies

Understanding other parties’ interests and preferences is crucial in human social
interaction. It enables the proposal of reasonable bids to resolve conflicts effec-
tively [20,21]. Agreement technologies (AT) [22] literature counts several tech-
niques to automatically learn, reproduce, and possibly predict an opponent’s
preferences and bidding strategies in conflict resolution scenarios [23].

AT are mostly based on heuristics [24,25] and traditional ML methods (e.g.,
decision trees [26,27], Bayesian learning [28–30], and concept-based learning
[31,32]) and rely on possibly numerous bid exchanges regulated by negotiation pro-
tocols [33]. By exploiting such techniques, machines can negotiate with humans
seamlessly, resolving conflicts with a high degree of mutual understanding [34].
Nevertheless, in human-agent negotiation, the complexity skyrockets. Humans
leverage on semantic and reasoning (e.g., employing similarities/differences) while
learning about the competitors’ preferences and generating well-targeted offers.
Conversely to agent-agent, the number of exchanged bids between parties is lim-
ited due to the nature of human interactions, and may employ unstructured data.
Therefore, classical opponent modeling techniques used in automated negotiation
in which thousands of bids are exchanged may not be suitable, and additional rea-
soning to understand humans’ intentions, interests, arguments, and explanations
supporting their proposals is required [35,36]. To the best of our knowledge, there is
no study incorporating exchanged arguments or explanations into opponent mod-
eling in agent-based negotiation literature.

Without explanations, human users may attribute a wrong state of mind to
agents/robots [18]. Thus, the creation of an effective agent-based explainable
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AT for human-agent interactions and the realisation of a common understand-
ing would require the integration of (i) ontology reasoning, (ii) understanding
humans’ preferences/interests by reasoning on any type of information provided
during the negotiation, and (iii) generating well-targeted offers with their sup-
portive explanations or motivations (i.e., why the offer can be acceptable for
their human counterpart). To the best of our knowledge, the state of the art still
needs concrete contributions concerning the three directions mentioned above.
Moreover, albeit the need for personalised motivations and arguments (e.g., con-
sidering user expertise, personal attributes, and goals) is well known in litera-
ture [14], most of the existing works are rather conceptual and do not consider
the overall big picture [37]. Furthermore, no work addresses explanation person-
alisation in the context of heterogeneous systems combining sub-symbolic (e.g.,
neural network) and symbolic (agents/robots) AI mechanisms.

2.3 AI Ethics

Due to the growing adoption of intelligent systems, machine ethics and AI ethics
have received a deserved increasing attention from scientists working in vari-
ous domains [38]. The growing safety, ethical, societal, and legal impacts of AI
decisions are the main reason behind this surge of interest [39]. In literature,
AI ethics includes implicitly- and explicitly-moral agents. In both cases, intelli-
gent systems depend on human intervention to distinguish moral from immoral
behaviour. However, on the one hand, implicitly-moral agents are ethically con-
strained from having immoral behaviour via rules set by the human designer [38].
On the other hand, explicitly-ethical agents (or agents with functional morality)
presume to be able to morally judge themselves (having guidelines or examples
of what is good and bad [38]).

Summarising, AI systems can have implicit and explicit ethical notions. The
main advantage of implicit AI ethics is that they are simple to develop and con-
trol, being incapable of unethical behaviour. Nevertheless, this simplicity implies
mirroring the ethic standing point and perception of the designer. Explicit-ethics
systems affirm to autonomously evaluate the normative status of actions and rea-
son independently about what they consider unethical, thus being able to solve
normative conflicts. Furthermore, they could bend/violate some rules, resulting
in better fulfilment of overarching ethical objectives. However, the main short-
coming of these systems is their complexity and possible unexpected behaviour.

3 The EXPECTATION Approach

This section elaborates on the limitations elicited from the state of art, the
related challenges, and formalises the needed interventions. The six major limi-
tations identified are:

(L1) Opaqueness of sub-symbolic predictors. Most ML algorithms leverage
a sub-symbolic representation of knowledge that is hard to debug for experts
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and hard to interpret for common people. Thus, the compliance of internal
mechanisms and results with ethical principles and regulations cannot be
verified/ensured.

(L2) Heterogeneity of rule extraction techniques. Extracting general-
purpose symbolic rules from any sort of sub-symbolic predictor can be a
difficult task (if possible, at all). Indeed, the nature of the data and the par-
ticular predictor at hand significantly impact the quality (i.e., the intelligibil-
ity) of the extracted rules. Furthermore, existing techniques to extract rules
to produce explanations mostly leverage structured, low-dimensional data,
given the scarcity of methods supporting more complex data (i.e., images,
videos, or audios). In particular, most of the existing works interpreting sub-
symbolic mechanisms place interpretable mechanisms (i.e., decision-tree) on
top of the predictors, thereby interpreting (e.g., reconstructing) from outside
their outcomes without really mirroring their internal mechanisms.

(L3) Manual amending and integration of heterogeneous predictors.
The update and integration of already pre-trained predictors are usually
handcrafted and poorly automatable. Moreover, it heavily relies on datasets
that might be available only for a limited period. Therefore, a sustainable,
automatable, and seamless sharing/reusing/integrating of knowledge from
diverse predictors is still unsatisfactory.

(L4) Lack of personalisation. Current XAI approaches are mostly one-way
processes (e.g., interactive interactions are rarely involved) and do not con-
sider the explainee’s context and background. Thus, the customisation and
personalisation of the explanations are still open challenges.

(L5) Tendency of centralisation in data-driven AI. The development of
sub-symbolic predictors usually involves the centralisation of training data in
a single point, which raises privacy concerns. Thus, letting a system composed
of several distributed intelligent components learning without centralising
data is still an open challenge.

(L6) Lack of explanation integration in Agreement Technologies. Cur-
rent negotiation and argumentation frameworks mostly leverage well-structu-
red interactions and clearly defined objectives, resources, and goals. Current
AT are not suitable for providing interactive explanations nor for reconcil-
ing fragmented knowledge. Moreover, although a few works explored more
sophisticated mechanisms (e.g., adopting semantic similarities via subsump-
tion to relate alternative values within a single bid), the need for ontological
reasoning to infer the relationship between several issues – possibly pivotal
in negotiation and argumentation of explanations – is still unmet.

To overcome the limitation mention, Expectation formalises the following
objectives:

(O1) To define an agent-based model embedding ML predictors relying on
heterogeneous (though potentially similar/complementary) knowledge, as in
training datasets, contextual assumptions & ontologies.

(O2) To design and implement a decentralised agent architecture capable of inte-
grating symbolic knowledge and explanations produced by individual agents.
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(O3) To define and implement agent strategies for cooperation, negotiation, and
trust establishment for providing personalised explanations according to the
user context.

(O4) To investigate, implement, and evaluate multi-modal explanation com-
munication mechanisms (visual, auditory, cues, etc.), the role of the type of
agent providing these explanations (e.g., robot, virtual agents), and their role
in explanation personalisation.

(O5) To validate and evaluate the personalised explainability results, as well
as the agent-based XAI approach for heterogeneous knowledge, within the
context of a prototype, focused on food and nutrition recommendations.

(O6) To investigate the specific ethical challenges that XAI is able to meet
and when and to what extent explicability is legally required in European
regulations, considering the AI guidelines and evaluation protocols published
by the national and European institutions (e.g., the Data Protection Impact
Analysis thanks to the open-source software PIA, CNIL guidelines), as well
as recent research on the ethics of recommender systems w.r.t. values such as
transparency and fairness.

INTRA-Agent
Explainability

O1

(i.e., negotiation argumentation)
in agent-user & agent-agent settings

O3

INTER-Agent
Explainability

O2

(i.e., SoM, knowledge)

O3

Proof-of-Concept
Implementation

O4,O5

O6

O2

O4,O5

Contributes to implemented inTopic A ects O2 A ects O4,O5

Fig. 1. Expectation’s objectives, topics, and respective interconnections.

The aforementioned objectives are clearly interdependent. In particular,
Fig. 1 groups and organises the objectives per contribution, effect, and imple-
mentation among each other.
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3.1 Research Method

Despite being still in its early stage, the project’s roadmap has already been
established. Expectation’s research and development activities will be carried
out along two orthogonal dimensions – namely intra- and inter-agent ones –, as
depicted in Fig. 2.

Fig. 2. Main components and interactions of the proposed architecture. (Color figure
online)

The envisioned scenario for this project assumes a 1-to-1 mapping between
end-users and software agents (cf. Fig. 2, rightmost part). Therefore, each soft-
ware agent interacts with a single user in order to (i) acquire their contextual
data (cf. blue dashed line in Fig. 2), and (ii) provide them with personalised
explanations taking that contextual information into account (cf. green solid
line in Fig. 2). This is the purpose of what we call intra-agent explainability.

However, the idea of building agents that provide precise recommendations
by solely leveraging on the data acquired from a single user is unrealistic. Accord-
ingly, we envision agents to autonomously debate and negotiate with each other
to mutually complement and globally improve their knowledge, thus generating
personalised and accurate recommendations. Addressing this challenge is the
purpose of what we call inter -agent explainability.

On the one hand, intra-agent explainability focuses on deriving explainable
information at the local level – where contextual information about the user
is most likely available – and on presenting it to the user in a personalised
way. To do so, symbolic knowledge extraction and injection play a crucial role.
The former lets agents fully exploit the predictive performance of conventional
ML-based black-box algorithms while still enabling the production of intelligible
information to be used for building personalised explanations. Conversely, by
injecting symbolic knowledge in ML-based systems, agents will be able to update,
revise, and correct the functioning of ML-based predictors by taking into account
users’ contextual information and feedback.
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On the other hand, inter-agent explainability focuses on enabling the agents
to exploit negotiation and argumentations to mutually improve their predictive
capabilities by exchanging the symbolic knowledge they have extracted from
given black boxes. Even in this context, the role of symbolic knowledge extrac-
tion is of paramount importance as it enables exchanges of aggregated knowledge
coming from different ML-predictors—which possibly offer different perspectives
on the problem at hand. To this end, inter-agent explainability requires for-
malising interaction protocols specifying what actions are possible and how to
represent this information so that both parties can understand and interpret it
seamlessly. Moreover, inter-agent interactions will require reasoning mechanisms
handling heterogeneous data received from other agents, including techniques to
detect conflicts and adopt resolution or mitigation policies accordingly.

By combining intra- and inter-agent explainability, Expectation will be able
to tackle decentralisation (of both data and agents), heterogeneity (of both data
and analysis techniques), and users’ privacy simultaneously. Indeed, the proposed
approach does not require data to be centralised to allow training and knowledge
extraction. Therefore, each agent can autonomously take care of the local data it
has access to by exploiting the ML-based analysis technique it prefers, while joint
learning is delegated to decentralised negotiation protocols which only exchange
aggregated knowledge. Users’ personal data is expected to remain close to the
user, while agents are in charge of blending the extracted symbolic knowledge
with the general-purpose background knowledge jointly attained by the multi-
agent systems via negotiation and argumentation. Heterogeneity is addressed
indirectly via knowledge extraction, which provides a lingua franca for knowledge
sharing in the form of logic facts and rules.

Notably, knowledge extraction is what enables bridging intra- and inter-agent
explainability too, as it enables the exchange of the extracted knowledge via
negotiation and argumentation protocols—which already rely on the exchange
of symbolic information.

Knowledge injection closes the loop by letting the knowledge acquired via
interaction to be used to improve the local data and analytic capabilities of
each individual agent. Finally, the purposes of preserving privacy and complying
with ethical implications are addressed by only allowing agents to share aggre-
gated symbolic knowledge. Moreover, we envision to equip the agents with ethics
reasoning engines combining techniques from both implicit and explicit ethics.

4 Discussion

To test the advancement produced by EXPECTATION, we envision combin-
ing the techniques mentioned above in a proof of concept cantered on a topic
which nowadays is delicate more than ever: a nutrition recommender system,
fostering a responsible and correct alimentation. Such a prototype will be tested
and evaluated according to the user-subjective such as understandability, trust,
acceptability, soundness, personalisation, perceived system autonomy, perceived
user autonomy, and fairness. The envisioned agent-based recommender system is
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intended to operate as a virtual assistant equipped with personalised explanatory
capabilities. This would make it possible to tackle two dimensions of the quest
for a correct regime (i) trust and acceptance, and (ii) autonomous personalisa-
tion, education, and explicability. In particular, the user will be provided with
transparent explanations about the recommendation received. The purpose of
the explanations is multi-faceted: (i) educative (i.e., improve the user knowledge
and raising his/her awareness about a given topic/suggestion), (ii) informative
(i.e., indicate the user on how the system works), and (iii) motivational (i.e., it
helps the user understanding how personal characteristics and decisions lead to
favorable/adverse outcomes).

Overall, Expectation is expected to impact beyond its lifespan. Such an
impact encompasses several aspects and is four-folded.

Impact of theoretical outcomes. Production of mechanisms to extract, com-
bine, explain, negotiate heterogeneous symbolic knowledge as well as cooper-
ation and negotiation strategies.

Impact of technological outcomes. Fostering the adoption of intelligent sys-
tems in health and safety-critical domains and inspiring new technology lever-
aging innovative multi-modal explanation communication mechanisms.

Impact in application domains. We expect uptake of the project results in
sectors (commercial/academic) such as eHealth, prevention, wellbeing appli-
cations, and distribution and restoration.

Impact of ethical aspects. Given the sensitive nature of personal data in the
context of the project, the proposed XAI prototype will develop generalisable
mechanisms to ensure compliance, fairness, transparency, and trust.

Acknowledgments. This work has been partially supported by the Chist-Era
grant CHIST-ERA-19-XAI-005, and by (i) the Swiss National Science Foundation
(G.A. 20CH21 195530), (ii) the Italian Ministry for Universities and Research, (iii)
the Luxembourg National Research Fund (G.A. INTER/CHIST/19/14589586 and
INTER/Mobility/19/13995684/DLAl/van), (iv) the Scientific and Research Council
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