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Chapter 6
Data Center Architecture, Operation, 
and Optimization

Kaiyang Liu, Aqun Zhao, and Jianping Pan

6.1  �Introduction

The explosive growth of workloads driven by data-intensive applications, e.g., web 
search, social networks, and e-commerce, has led mankind into the era of big data 
[1]. According to the IDC report, the volume of data is doubling every 2 years and 
thus will reach a staggering 175 ZB by 2025 [2]. Data centers have emerged as an 
irreplaceable and crucial infrastructure to power this ever-growing trend.

As the foundation of cloud computing, data centers can provide powerful parallel 
computing and distributed storage capabilities to manage, manipulate, and analyze 
massive amounts of data. A special network, i.e., data center network (DCN), is 
designed to interconnect a large number of computing and storage nodes. In com-
parison with traditional networks, e.g., local area networks and wide area networks, 
the design of DCN has its unique challenges and requirements [3], which are sum-
marized as follows:

Hyperscale:  Currently, over 500 hyperscale data centers are distributed across the 
globe. We are witnessing the exponential growth of scale in modern data centers. 
For example, Range International Information Group located in Langfang, China, 
which is one of the largest data centers in the world, occupies 6.3 million square feet 
of space. A hyperscale data center hosts over a million servers spreading across 
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hundreds of thousands of racks [4]. Data centers at such a large scale put forward 
severe challenges on system design in terms of interconnectivity, flexibility, robust-
ness, efficiency, and overheads.

Huge Energy Consumption:  In 2018, global data centers consumed about 205 tWh 
of electricity, or 1% of global electricity consumed in that year [5]. It has been pre-
dicted that the electricity usage of data centers will increase about 15-fold by 2030 
[6]. The huge energy consumption prompts data centers to improve the energy effi-
ciency of the hardware and system cooling. However, according to the New York 
Times report [7], most data centers consume vast amounts of energy in an incongru-
ously wasteful manner. Typically, service providers operate their facilities at maxi-
mum capacity to handle the possible bursty service requests. As a result, data centers 
can waste 90% or more of the total consumed electricity.

Complex Traffic Characteristics:  Modern data centers have been applied to a wide 
variety of scenarios, e.g., Email, video content distribution, and social networking. 
Furthermore, data centers are also employed to run large-scale data-intensive tasks, 
e.g., indexing Web pages and big data analytics [8]. Driven by diversified services 
and applications, data center traffic shows complex characteristics, i.e., high fluc-
tuation with the long-tail distribution. In fact, most of the flows are short flows, but 
most of the bytes are from long flows [9]. Short flows are processed before optimi-
zation decision takes place. Furthermore, data centers suffer from fragmentation 
with intensive short flows. It is a challenge to handle traffic optimization tasks in 
hyperscale data centers.

Tight Service-Level Agreement:  The service-level agreement (SLA) plays the most 
crucial part in a data center lease, spelling out the performance requirements of 
services that data centers promise to provide in exact terms. It has been increasingly 
common to include mission-critical data center services in SLAs such as power 
availability, interconnectivity, security, response time, and delivery service levels. 
Considering the inevitable network failures, congestion, or even human errors, con-
stant monitoring, agile failure recovery, and congestion control schemes are neces-
sary to provide tight SLAs.

To solve these significant technical challenges above, DCNs have been widely 
investigated in terms of network topology [3], routing [10], load balancing [11], 
green networking [12], optical networking [13], and network virtualization [14]. 
This book chapter presents a systematic view of DCNs from both the architectural 
and operational principle aspects. We start with a discussion on the state-of-the-art 
DCN topologies (Sect. 6.2). Then, we examine various operation and optimization 
solutions in DCNs (Sect. 6.3). Thereafter, we discuss the outlook of future DCNs 
and their applications (Sect. 6.4). The main goal of this book chapter is to highlight 
the salient features of existing solutions which can be utilized as guidelines in con-
structing future DCN architectures and operational principles.
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6.2  �Data Center Network Topologies

Currently, the research on the DCN topologies can be divided into two types: switch 
centric schemes and server centric schemes. Some of the topologies originate from 
the interconnection networks in supercomputing for both categories. Furthermore, 
some researchers have introduced optical switching technology into the DCN and 
proposed some full optical and optical/electronic hybrid topologies. Others have 
introduced wireless technology into the DCN and proposed some wireless DCN 
topologies. Besides, in the real world, most service providers have built their pro-
duction data centers with some specific topologies.

6.2.1  �Switch-Centric Data Center Network Topologies

In the switch-centric DCN topologies, the network traffic is all routed and for-
warded by the switches or routers. These topologies include Fat-tree [15], VL2 [16], 
Diamond [17], Aspen Trees [18], F10 [19], F2 Tree [20], Scafida [21], Small-World 
[22], and Jellyfish [23]. In this section, some representative schemes are selected for 
introduction.

Fat-tree:  Fat-tree is proposed by Al-Fares et al., which drew on the experience of 
Charles Clos et al. in the field of telephone networks 50 years ago [15]. A general 
Fat-tree model is a k-port n-tree topology [24]. In the data center literature, a special 
instance of it with n = 3 is usually adopted. In this Fat-tree topology, each k-port 
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Fat-tree has many advantages. Firstly, it eliminates the throughput limitation of the 
upper links of the tree structure and provides multiple parallel paths for communica-
tion between servers. Secondly, its horizontal expansion reduces the cost of building 
a DCN. Finally, this topology is compatible with Ethernet structure and IP-configured 
servers used in existing networks. However, the scalability of Fat-tree is limited by the 
number of switch ports. Another drawback is that it is not fault-tolerant enough and is 
very sensitive to edge switch failures. Finally, the number of switches needed to build 
Fat-tree is large, which increases the complexity of wiring and configuration.

VL2:  VL2 is proposed by Greenberg et al. using a Clos Network topology in [16]. 
VL2 is also a multi-rooted tree. When deployed in DCNs, VL2 usually consists of 
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three levels of switches: the Top of Rack (ToR) switches directly connected to serv-
ers, the aggregation switches connected to the ToR switches, and the intermediate 
switches connected to the aggregation switches. The number of the switches is 
determined by the number of ports on the intermediate switches and aggregation 
switches. If each of these switches has k ports, there will be k aggregation switches 

and 
k

2
 intermediate switches. There is exactly one link between each intermediate 

switch and each aggregation switch. The remaining 
k

2
 ports on each aggregation 

switch are connected to 
k

2
 different ToR switches. Each of the ToR switches is con-

nected to two different aggregation switches, and the remaining ports on the ToR 

switches are connected to servers. There are 
k2

4
 ToR switches because 

k

2
 ToR 

switches are connected to each pair of aggregation switches. While intermediate 
switches and aggregation switches must have the same number of ports, the number 
of ports on a ToR switch is not limited. If kToR ports on each ToR switch are con-

nected to servers, there will be 
k

k
2

4
· ToR servers in the network. Figure 6.2 shows the 

VL2 topology with k = 4, kToR = 2.

The difference of VL2 with Fat-tree is that the topology between intermediate 
switches and aggregation switches forms a complete bipartite graph, and each ToR 
switch is connected to two aggregation switches. VL2 reduces the number of cables 
by leveraging higher speed switch-to-switch links, e.g., 10  Gbps for switch-to-
switch links and 1 Gbps for server-to-switch links.

6.2.2  �Server-Centric Data Center Network Topologies

In the server-centric DCN designs, the network topologies are constructed by recur-
sion. The servers are not only computing devices but also routing nodes and will 
actively participate in packet forwarding and load balancing. These topologies avoid 
the bottleneck in the core switches through recursive design, and there are multiple 
disjoint paths between servers. Typical topologies include DCell [25], BCube [26], 

Fig. 6.1  The Fat-tree topology with k = 4 ports
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FiConn [27], DPillar [28], MCube [29], MDCube [30], PCube [31], Snowflake [32], 
HFN [33], and so on.

DCell:  DCell topology was proposed by Guo et al. [25] in 2008 which uses lower-
level structures as the basic cells to construct higher-level structures. DCell0 is the 
lowest cell in DCell, which is composed of one n-port switch and n servers.1 The 
switch is used to connect all of the n servers in the DCell0. Let DCellk be a level-k 
DCell. Firstly, DCell1 is built from a few DCell0s. Each DCell1 has (n + 1) DCell0s, 
and each server of every DCell0 in a DCell1 is connected to a server in another 
DCell0, respectively. Therefore, the DCell0s are connected, with only one link 
between every pair of DCell0s. A similar method is applied to build a DCellk from a 
few DCellk−1s. In a DCellk, each server will finally have k + 1 links: the first link or 
the level-0 link connected to a switch when forming a DCell0, and level-i link con-
nected to a server in the same DCelli but a different DCelli−1. Suppose that each 
DCellk−1 has tk − 1 servers, then a DCellk will consist of tk DCellk−1s, and thus tk − 1 · tk 
servers. Obviously, we have tk = tk − 1 · (tk − 1 + 1). Figure 6.3 shows a DCell1 with n = 4.

DCell satisfies the basic requirement of DCNs such as scalability, fault tolerance, 
and increased network capacity. The main idea behind DCell not only depends on 
switches but also takes the advantage of the network interface card (NIC) deployed 
within servers to design the topology. The number of servers in a DCell increases 
double-exponentially with the number of server NIC ports. A level-3 DCell can sup-
port 3,263,442 servers with 4-port servers and 6-port switches. DCell also over-
comes the constraint of a single point of failure as in tree-based topologies.

BCube:  To overcome the issue of traffic congestion bottleneck and NIC installa-
tion, Guo et  al. proposed a new hypercube-based topology known as BCube for 
shipping-container-based modular data centers [26]. It is also considered a module 
version of DCell. The most basic element of a BCube, which is named as BCube0, 
is also the same as a DCell0: n servers connected to one n-port switch. The main 
difference between BCube and DCell lies in how they scale up. BCube makes use 
of more switches when building higher-level structures. While building a BCube1, n 
extra switches are used, connecting to exactly one server in each BCube0. 
Consequently, a BCube1 contains n BCube0s and n extra switches, which means if 
the switches in the BCube0s are considered, there are 2n switches in a BCube1. In 
general, a BCubek is built from n BCubek−1s and nk extra n-port switches. These 

1 Unlike Fat-tree and VL2, n is used to represent the number of ports in DCell and BCube.

Fig. 6.2  The VL2 
topology with k = 4 ports 
and kToR = 2
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extra switches are connected to only one server in each BCubek−1. In a level-k 
BCube, each level requires nk n-port switches. BCube makes use of more switches 
when building higher-level structures, while DCell uses only level-0 n-port switches. 
However, both BCube and DCell require servers to have k + 1 NICs. The implica-
tion is that servers will be involved in switching more packets in DCell than in 
BCube. Figure 6.4 shows a BCube1 with n = 4.

Just like DCell, the number of levels in a BCube depends on the number of ports 
on the servers. The number of servers in BCube grows exponentially with the levels, 
much slower than DCell. For example, when n = 6, k = 3, a fully constructed BCube 
can contain 1296 servers. Considering that BCube is designed for container-based 
data centers, such scalability is sufficient.

Fig. 6.3  The DCell topology with n = 4 ports

Fig. 6.4  The BCube topology with n = 4 ports
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6.2.3  �Data Center Network Topologies Originated 
from Interconnection Networks

Some of the DCN topologies originate from the interconnection network topolo-
gies, which have been applied to connect the multiple processors in the supercom-
puting domain. The typical examples include Clos [34], FBFLY [35], Symbiotic 
[36], Hyper-BCube [37], and so on, some of which are switch-centric topologies 
and the others are server-centric ones.

FBFLY:  FBFLY [35] was proposed by Abts et al., which originates from the flat-
tened butterfly, a cost-efficient topology for high-radix switches [38]. The FBFLY 
k-ary n-flat topology takes advantage of recent high-radix switches to create a scal-
able but low-diameter network. FBFLY is a multidimensional directed network, 
similar to a k-ary n-cube torus. Each high-radix switch with more than 64 ports 
interconnects servers and other switches to form a generalized multidimensional 
hypercube. A k-ary n-flat FBFLY is derived from a k-ary n-fly conventional butter-
fly. The number of supported servers is N = kn in both networks. The number of 

switches is n · kn − 1 with port number 2k in the conventional butterfly and is 
N

k
kn= −1 

with port number n(k −  1)  +  1  in FBFLY.  The dimension of FBFLY is n −  1. 
Figure 6.5 shows an 8-ary 2-flat FBFLY topology with 15-port switches. Here, c is 
the abbreviation for concentration, which means the number of servers and c = 8. 
Although it is similar to a generalized hypercube, FBFLY is more scalable and can 
save energy by modestly increasing the level of oversubscription. The size of 
FBFLY can scale from the original size of 84 = 4096 to c · kn − 1 = 6144. The level of 
oversubscription is moderately raised from 1:1 to 3:2.

Fig. 6.5  The 8-ary 2-flat FBFLY topology
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Symbiotic:  Symbiotic [36] was proposed by Hussam et al. to build an easier plat-
form for distributed applications in modular data centers. Communication between 
servers applies a k-ary 3-cube topology, which is also known as a direct-connect 3D 
torus and is employed by several supercomputers on the TOP500 list. This topology 
is formed by having each server directly connected to six other servers, and it does 
not use any switches or routers. In each dimension, k servers logically form a ring. 
Symbiotic can support up to k3 servers. Each server is assigned an address, which 
takes the form of an (x, y, z) coordinate that indicates its relative offset from an arbi-
trary origin server in the 3D torus. They refer to the address of the server as the 
server coordinate, and, once assigned, it is fixed for the lifetime of the server.

6.2.4  �Optical Data Center Network Topologies

The electronic data center architectures have several constraints and limitations. 
Therefore, with the ever-increasing bandwidth demand in data centers and the con-
stantly decreasing price of optical switching devices, optical switching is envisioned 
as a promising solution for DCNs. Besides offering high bandwidth, optical net-
works have significant flexibility in reconfiguring the topology during operation. 
Such a feature is important considering the unbalanced and ever-changing traffic 
patterns in DCNs. Optical DCN can be classified into two categories, i.e., optical/
electronic hybrid schemes such as c-Through [39] and Helios [40], and fully optical 
schemes such as optical switching architecture (OSA) [41].

c-Through:  c-Through [39] is a hybrid network architecture that makes use of both 
electrical packet switching networks and optical circuit switching networks. 
Therefore, it is made of two parts: a tree-based electrical network part which main-
tains the connectivity between each pair of ToR switches and a reconfigurable opti-
cal network part which offers high bandwidth interconnection between some ToR 
electrical switches. Due to the relatively high-cost optical network and the high 
bandwidth of optical links, it is unnecessary and not cost-effective to maintain an 
optical link between each pair of ToR switches. Instead, c-Through connects each 
ToR switch to exactly one other ToR switch at a time. Consequently, the high-
capacity optical links are offered to pairs of ToR switches transiently according to 
the traffic demand. The estimation of traffic between ToR switches and reconfigura-
tion of the optical network is implemented by the control plane of the network. 
Figure 6.6 shows a c-Through network.

To configure the optical network part of c-Through, the traffic between ToR 
switches should be estimated. c-Through estimates the rack-to-rack traffic demands 
by observing the occupancy of the TCP socket buffer. Since only one optical link is 
offered to each ToR switch, the topology should be configured so that the most 
amount of estimated traffic can be satisfied. In [39], the problem is solved using the 
max-weight perfect matching algorithm [42]. The topology of the optical network 
is configured accordingly.

K. Liu et al.
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Helios:  Helios [40] is another hybrid network with both electrical and optical 
switches, which are organized as two-level multi-rooted ToR switches and core 
switches. Core switches consist of both electrical switches and optical switches to 
make full use of the two complementary techniques. Unlike c-Through, Helios uses 
the electrical packet switching network to distribute the bursty traffic, while the 
optical circuit switching part offers baseline bandwidth to the slow-changing traffic. 
On each of the pod switches, the uplinks are equipped with an optical transceiver. 
Half of the uplinks are connected to the electrical switches, while the other half are 
connected to the optical switch through an optical multiplexer. The multiplexer 
combines the links connected to it to be a “superlink” and enables flexible band-
width assignment on this superlink.

Helios estimates bandwidth demand using the max-min fairness algorithm [43] 
among the traffic flows measured on pod switches, which allocates fair bandwidth 
for TCP flows. Similar to c-Through, Helios computes optical path configuration 
based on max-weighted matching. Unlike c-Through, both the electrical switches 
and the optical switches are dynamically configured based on the computed con-
figuration. Helios decides where to forward traffic, the electrical network or the 
optical network.

OSA:  Unlike optical/electronic hybrid schemes, OSA [41] explores the feasibility 
of a pure optical switching network, which means that it abandons the electrical 
core switches and use only optical switches to construct the switching core. The 
ToR switches are still electrical, converting electrical and optical signals between 
servers and the switching core. OSA allows multiple connections to the switching 
core on each ToR switch. However, the connection pattern is determined flexibly 
according to the traffic demand. Since the network does not ensure a direct optical 
link between each pair of racks with traffic demand, the controlling system con-
structs the topology to make it a connected graph, and ToR switches are responsible 
to relay the traffic between other ToR switches.

Fig. 6.6  The c-Through network topology [39]
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OSA estimates the traffic demand with the same method as Helios. However in 
OSA, there can be multiple optical links offered to each rack, and the problem can 
no longer be formulated as the max-weight matching problem. It is a multi-com-
modity flow problem with degree constraints, which is NP-hard. In OSA, the prob-
lem is simplified as a max-weight b-matching problem and approximately solved by 
applying multiple max-weight matching.

Compared with electronic switching, optical switching has potentially higher 
transmission speed, more flexible topology, and lower cooling cost, so it is an 
important research direction of DCNs. However, the existing optical DCN, such as 
OSA, still faces some problems. For example, the current design of OSA is for con-
tainer data centers (i.e., small data centers that can be quickly deployed for edge 
computing applications in the IoT world), and its scale is limited. To design and 
build large-scale DCNs is very challenging from the perspective of both architecture 
and management. Also, the ToR switch used in OSA is the switch that supports opti-
cal transmission and electric transmission at the same time, which makes it difficult 
to be compatible with pure electric switch in traditional data centers.

6.2.5  �Wireless Data Center Network Topologies

Wireless/wired hybrid topologies:  Wireless technology has the flexibility to adjust 
the topologies without rewiring. Therefore, Ramachandran et al. introduced wire-
less technology into DCNs in 2008. Subsequently, Kandula et al. designed Flyways 
[44, 45], by adding wireless links between the ToR switches to alleviate the rack 
congestion problem to minimize the maximum transmission time. However, it is 
difficult for the wireless network to meet all the requirements of DCNs by itself, 
including scalability, high capacity, and fault tolerance. For example, the capacity of 
wireless links is often limited due to interference and high transmission load. 
Therefore, Cui et al. introduced wireless transmission to alleviate the congestion of 
the hotspot servers, which took wireless communication as a supplement to wired 
transmission, and proposed a heterogeneous Ethernet/wireless architecture, which 
is called WDCN [46]. In order not to introduce too many antennas and interfere with 
each other, Cui et al. regarded each rack as a wireless transmission unit (WTU). 
This design makes the rack not block the line of sight transmission.

The wireless link scheduling mechanism proposed by Cui et  al. includes two 
parts: collecting traffic demand and link scheduling. A specific server in a WTU is 
designated as the unit head of the WTU. The unit head is responsible for collecting 
local traffic information and executing the scheduling algorithm. Each unit head is 
equipped with a control antenna, and all unit heads broadcast their traffic load in 
push mode through a common 2.4/5  GHz channel. Therefore, all units can get 
global traffic load distribution and can schedule the wireless link independently. 
After collecting the traffic demand information, the head server needs to allocate 
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channels for wireless transmission. Cui et al. proposed a heuristic allocation method 
[46] to achieve this goal.

The application of wireless technology makes the DCN topologies no longer 
fixed and saves the complex wiring work, so it has a certain application prospect in 
the DCN environment. The introduction of Flyways and WDCN alleviates the band-
width problem of hot servers, and achieved certain results, and made the traffic 
demand and wireless link scheduling become the focus of research. However, under 
the premise of providing enough bandwidth, the transmission distance of wireless 
technology is limited, which limits its deployment in large-scale data centers. 
Besides, WDCN uses the broadcast method to collect traffic demand, which makes 
it face the problems of clock synchronization and high communication overhead. 
Moreover, the measurement results show that the data center traffic is constantly 
changing, and this makes the location of the hot servers uncertain, which poses a 
greater challenge to topology adjustment.

All wireless DCN topologies:  Based on the 60 GHz wireless communication tech-
nology, Shin et al. proposed a DCN with all wireless architecture [45, 47]. They 
aggregated the switch fabric to the server nodes and expected to arrange the server 
nodes to be closely connected, low stretch, and support failure recovery. To achieve 
this requirement, the network card of each server was replaced by Y-switch [47]. 
The servers are also arranged in a cylindrical rack, so that the communication chan-
nels between and within the racks can be easily established, and these connections 
together form a closely linked network topology.

The topology is modeled as a mesh of Cayley graphs [48]. When viewed from the 
top, connections within a story of the rack form a 20-node, degree-k Cayley graph, 
where k depends on the signal’s radiation angle (Fig. 6.7). This densely connected 
graph provides numerous redundant paths from one server to multiple servers in the 
same rack and ensures strong connectivity. The transceivers on the exterior of the 
rack stitch together Cayley sub-graphs in different racks. There is great flexibility in 
how a data center can be constructed out of these racks, but they pick the simplest 
possible topology by placing the racks in rows and columns for ease of maintenance. 
Figure 6.7 illustrates an example of the two-dimensional connectivity of four racks in 
2 by 2 grids: small black dots represent the transceivers and the lines indicate the 
connectivity. A Cayley graph sits in the center of each rack: lines coming out of the 
Cayley graphs are connections through the Y-switches. Relatively long lines connect-
ing the transceivers on the exterior of the racks show the wireless inter-rack connec-
tions. Further, since the wireless signal spreads in a cone shape, a transceiver is able 
to reach other servers in different stories in the same or different racks.

There are still many problems in the scalability and performance of all wireless 
DCNs. First of all, the competition of the MAC layer greatly affects the perfor-
mance of the system. Secondly, the performance of the wireless network is greatly 
affected by the number of network hops. Finally, the performance of multi-hop 
restricts the scalability of the Cayley data center. However, the advantages and con-
tinuous development of wireless technology make it possible to build small- and 
medium-sized data centers for specific applications.
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6.2.6  �Production Data Center Network Topologies

Nowadays, production data centers have become indispensable for the service pro-
viders, such as Google, Facebook, Microsoft, Amazon, and Apple. Large IT compa-
nies built several production data centers to support their business. Others rented out 
to provide services to medium-sized and small-sized enterprises that cannot afford 
their own data centers.

Google’s Jupiter:  Singh et al. introduced Google’s five generations of DCNs based 
on Clos topology in the last 10 years [49]. The newest-generation Jupiter is a 40G 
datacenter-scale fabric equipped with dense 40G capable merchant silicon. Centauri 
switch is employed as a ToR switch, which includes four switch chips. Four 
Centauris composed a Middle Block (MB) for use in the aggregation block. The 
logical topology of an MB is a two-stage network. Each ToR chip connects to 8 
MBs with 2 × 10G links to form an aggregation block. Six Centauris are used to 
build a spine block. There are 256 spine blocks and 64 aggregation blocks in Jupiter.

Facebook’s next-generation data center fabric:  After the “four-post” architecture 
[51], Facebook proposed its next-generation data center fabric [50]. As is shown in 
Fig. 6.8, the basic building block of this data center fabric is the server pod, which 
is composed of 4 fabric switches and 48 rack switches. The network scale can be 
extended by increasing the number of server pods. To implement building-wide 

Fig. 6.7  The Cayley data center topology [47]
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connectivity, 4 independent planes have been created, each scalable up to 48 spine 
switches within a plane. Each fabric switch in each server pod connects to each 
spine switch within its local plane.

Both Google’s Jupiter and Facebook’s next-generation data center fabrics are 
based on switch-centric DCN topologies, so they have similar characteristics which 
are those of switch-centric topologies.

6.3  �Operations and Optimizations in Data Center Networks

In a dynamic environment characterized by demand uncertainties, high energy con-
sumption, low average resource utilization, and ever-changing technologies, how to 
optimize the performance and efficiency of data center operations is a continuous 
challenge. This section presents a series of operation and optimization schemes that 
are implemented to enable secure, on-demand, and highly automated services in 
data centers.

Fig. 6.8  The Facebook data center fabric topology [50]
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6.3.1  �Data Forwarding and Routing

On the basis of a given DCN topology, data forwarding and routing schemes deter-
mine how data packets are delivered from a sender to a receiver. Due to the unique 
features of DCNs, data forwarding and routing are not the same as other networks, 
e.g., Internet or LAN.

	1.	 Hyperscale data centers have hundreds of thousands switches that interconnect 
millions of servers. Operating at such a large scale exerts great pressure on for-
warding and routing schemes. Unlike the Internet, the sender already knows the 
topology of DCNs. So the sender also knows the number of available paths to the 
receiver. How to use the regularities of the DCN topology to scale up forwarding 
and routing is a critical challenge.

	2.	 People deploy data centers to deliver communication- and computation-intensive 
services, such as web searching, video content distribution, and big data analyt-
ics on a large scale. All these applications are delay sensitive. Major cloud pro-
viders, e.g., Amazon and Google, have reported that a slight increase in the 
service latency may cause observable fewer user accesses and thus a consider-
able revenue loss [52]. This means forwarding and routing schemes should be 
highly efficient with less introduced overheads when handling intensive data 
requests.

	3.	 Servers in data centers may experience downtime frequently [53]. All these fail-
ures should be transparent to the client. Therefore, agility has become increas-
ingly important in modern DCNs as there is a requirement that any servers can 
provide services to any kinds of applications.2 Facing network crash or server 
failure, data forwarding and routing schemes should be able to route traffic using 
alternate paths without interrupting the running application.

Currently, data forwarding and routing schemes have been extensively investi-
gated for DCNs [15, 16, 25, 26, 36, 43, 54–56], which can be classified into differ-
ent categories based on different criteria. A summary of important data forwarding 
and routing schemes is presented in Table 6.1, which shows the comparison of these 
schemes based on five criteria which are briefly described as follows:

Topology:  Is the scheme designed for a particular data center topology or can be 
applied to a generic network?

Implementation:  Is the scheme performed in a distributed or centralized manner?

Structure:  Which component is involved in packet forwarding with the proposed 
routing scheme? Typically, forwarding occurs at switches. But in several designs, 
servers perform forwarding between their equipped network interface cards (NICs).

2 If a specific number of servers are fixed for specific applications without agility, data centers may 
operate at low resource utilization with growing and variable demands.
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Traffic:  Can the scheme support unicast or multicast?

Stack:  Is the scheme performed at Layer-2 (Ethernet) or Layer 2.5 (shim layer) or 
Layer-3 (network) of the TCP/IP stack?

Then, we introduce the data forwarding and routing schemes in detail.

Fat-tree Architecture by M.  Al-Fares et  al. [15]:  This work presented Fat-tree 
topology, which uses interconnected identical commodity Ethernet switches for full 

end-to-end bisection bandwidth. A Fat-tree contains k pods and 
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fic is transmitted through the core switches. For load balancing, the proposed data 
forwarding and routing scheme evenly allocates the traffic among core switches. To 
achieve this goal, a centralized controller is deployed to maintain two-level for-
warding tables at all routers. In this way, the data forwarding is simplified to a static 
two-level table lookup process, with no need to execute the scheme when a packet 
arrives. However, how to handle failure is not provided in this work. Another limita-
tion is that the wiring cost is high due to the Fat-tree topology.

DCell [25]:  As the first recursive DCN topology, DCell addresses its server with a 
(k + 1)-tuple {ak, ak − 1, …, a1, a0}, where ak indicates the server belongs to which 
DCellk, and a0 denotes the number of servers in DCell0. Let tk denotes the number of 

servers in DCellk. Each server is assigned with a unique ID uid a a tk
j

k

j j= + ×
=

−∑0
1

1. 

Table 6.1  Summary of data forwarding and routing schemes in DCNs

Scheme Topology Implementation Structure Traffic Stack

M. Al-Fares [15] Fat-tree Centralized Switch-centric Unicast L3
DCell [25] Custom Distributed Server-centric Unicast L3
BCube [26] Hypercube Distributed Server-centric Unicast L3
VL2 [16] Clos Distributed Switch-centric Unicast L2.5
PortLand [54] Fat-tree Centralized Switch-centric Multicast L2
Hedera [43] Fat-tree Centralized Switch-centric Multicast L3
Symbiotic [36] CamCube Distributed Switch-centric Multicast L3
XPath [55] Generic Centralized Switch-centric Unicast L3
FatPaths [56] Custom Distributed Switch-centric Unicast L2
PBARA [57, 58] Generic Distributed Both Unicast L3
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The server in DCellk can be recursively defined as [ak, uidk]. Then, DCellRouting, a 
divide-and-conquer-based routing scheme, is proposed with the consideration of 
server failures. We assume that the sender and receiver belong to different DCellk−1 
but are in the same DCellk. The link {n1, n2} between two DCellk−1 can be obtained. 
The sub-paths are: from the sender to n1, from n1 to n2, and from n2 to the receiver. 
We repeat the above process until all sub-paths are direct links. The shortcoming is 
that DCell cannot guarantee the shortest path can be obtained.

BCube [26]:  As a recursive topology, the server in BCube is similarly identified 
with {ak, …, a1, a0}. We have ai ∈ [0, n − 1] as BCube0 contains n servers and BCubek 

contains n BCubek. The server address is defined as baddr = ×
=
∑
i

k

i
ia n

0

. Similarly, the 

switch is identified as {l, sk  −  1, …, s0}, where l denotes the level of switch, 
sj ∈ [0, n − 1], j ∈ [0, k − 1], 0 ≤ l ≤ k. With this design, servers connected to the 
same switch only have a single-digit difference in the addresses. For data forward-
ing, the relay node will calculate the difference in the addresses and change one 
digit in each step. Theoretical analysis shows that a data packet needs to be transmit-
ted with k + 1 switches and k servers at most in routing. Compared with DCell and 
Fat-tree, BCube provides better network throughput and fault tolerance performance. 
However, the scalability of BCube is limited. For example, with k = 3, n = 8, only 
4096 servers are supported.

VL2 [16]:  VL2 is a flexible and scalable architecture based on the Clos topology, 
which provides uniform high capacity among servers in the data center. For flexible 
addressing, VL2 assigns IP addresses based on the actual service requirements. To 
achieve this goal, two types of IP addresses are designed, i.e., location-specific IP 
addresses (LA) for network devices (e.g., switches and interfaces) and application-
specific IP addresses (AA) for applications. LA is used for routing, which varies if 
the physical location of the server changes or VMs migrate. In contrast, AA is 
assigned to an application, which remains unchanged. Each AA is mapped to an 
LA. A centralized directory system is deployed to maintain the mapping informa-
tion. VL2 designs a new 2.5 shim layer into the classic network protocol stack to 
answer the queries from users. The shim layer replaces AA with LA when sending 
packets and replaces LA back to AA when receiving packets. The shortcoming of 
VL2 is that it does not provide the bandwidth guarantee for real-time applications.

PortLand [54] and Hedera [43]:  PortLand is a scalable, fault-tolerant layer 2 for-
warding and routing protocol for data center networks. Observing that data centers 
are with known baseline topologies and growth models, PortLand adopts a central-
ized fabric manager to store the network configuration. A 48-bit hierarchical Pseudo 
MAC (PMAC) addressing scheme is proposed for efficient routing and forwarding. 
Each host (physical or virtual) is assigned with a unique PMAC, encoding the phys-
ical location and the actual MAC (AMAC) address. For routing, when an edge 
switch receives a data packet, it sends the Address Resolution Protocol (ARP) 
request for IP to MAC mapping. The request is sent to the fabric manager for its 
PMAC. After receiving the PMAC address, the edge switch creates an ARP reply 
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and sends it to the source node for further routing. As an extension work, Hedera 
implementation augments the PortLand routing and fault tolerance protocols. 
Hedera tries to maximize the utilization of bisection bandwidth with the least sched-
uling overhead in DCNs. Flow information from constituent switches is collected, 
which is used to compute nonconflicting paths. This instructs switches to reroute 
traffic accordingly. The shortcoming is that Portland and Hedera only maintain a 
single fabric manager, which is at risk of malicious attacks.

Symbiotic [36]:  Symbiotic routing allows applications to implement their routing 
services in the CamCube topology. CamCube [59] directly connects a server with 
several other servers without any switches or routers, forming a 3D torus topology 
which uses content addressable network (CAN). Symbiotic routing provides a key-
based routing service, where the key space is a 3D wrapped coordinate space. Each 
server is assigned an (x, y, z) coordinate which determines the location of the server. 
With the key-based routing, all packets are directed toward the receiver. Each appli-
cation is assigned with a unique ID on each server. When a data packet arrives at the 
server, the kernel determines which application the packet belongs to and then 
queues the packet for execution. The limitation of symbiotic routing is that it 
requires a CamCube topology; thus, it may not be applicable to other widely used 
data center network topologies.

XPath [55]:  By using existing commodity switches, XPath explicitly controls the 
routing path at the flow level for well-structured network topologies, e.g., Fat-tree, 
BCube, and VL2. To address the scalability and deployment challenges of routing 
path control schemes, e.g., source routing [60], MPLS [61], and OpenFlow [62], 
XPath preinstalls all desired paths between any two nodes into IP TCAM tables of 
commodity switches. As the number of all possible paths can be extremely large, a 
two-step compression algorithm is proposed, i.e., path set aggregation and path ID 
assignment for prefix aggregation, compressing all paths to a practical number of 
routing entries for commodity switches. The limitation of XPath is that it needs to 
contact the centralized controller for every new flow in the DCN to obtain the cor-
responding path ID.

FatPaths [56]:  FatPaths is a simple, generic, and robust routing architecture for 
low-diameter networks with Ethernet stacks. Currently, many low-diameter topolo-
gies, e.g., Slim Fly [63], Jellyfish [23], and Xpander [64], have been designed to 
improve the cost-performance trade-off when compared with the most commonly 
used Clos topologies. For example, Slim Fly is 2× more cost- and power-efficient 
than Fat-tree and Clos while reducing the latency by about 25%. However, tradi-
tional routing schemes are not suitable for low-diameter topologies. As only one 
shortest path exists between any pair of servers, limiting data flow to the shortest 
path does not utilize the path diversity, which may incur network congestion. 
FatPaths improves the path diversity of low-diameter topologies by using both mini-
mal and non-minimal paths. Then, the transport layer is redesigned based on new 
advances for Fat-tree topology [65], removing all TCP performance issues for ulti-
mately low latency and high bandwidth. Furthermore, flowlet switching is used to 
prevent packet reordering in TCP, ensuring simple and effective load balancing.
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PBARA [57, 58]:  Port-based addressing and routing architecture (PBARA) applies 
a kind of port-based source-routing address for forwarding, which renders the table-
lookup operation unnecessary in the switches. By leveraging the characteristics of 
this addressing scheme and the regularity of the DCN topologies, a simple and 
efficient routing mechanism is proposed, which is completely distributed among the 
servers, without switch involvement, control message interaction, and topology 
information storage. The load-balancing and fault-tolerance mechanisms have been 
designed based on the addressing and routing schemes. The PBARA architecture 
places all the control functions in servers and keeps the switches very simple. The 
switches can really realize the goal of no forwarding tables, state maintenance, or 
configuration, and can implement high-speed packet forwarding through hardware. 
It may lead to the innovation of the switch architecture. Therefore, it can improve 
the forwarding performance and reduce the cost and energy consumption of the 
entire DCN. The PBARA architecture is originally proposed based on the Fat-tree 
topology [57] and then is extended to the other DCN topologies including F10, 
Facebook’s next-generation data center fabric and DCell [58], which shows that it 
can be used in a generic DCN topology.

6.3.2  �Traffic Optimization

The characteristics of data traffic determine how network protocols are designed for 
efficient operation in DCNs. Most workloads in data centers fall into two categories: 
online transaction processing (OLTP) and batch processing. Typically, OLTP is 
characterized by different kinds of queries that need to analyze massive data sets, 
e.g., web search. The characteristics of OLTP traffic can be summarized as follows:

Patterns:  Most of the data exchanging traffic happens within servers on the same 
rack. To be more specific, the probability of exchanging traffic for server pairs 
inside the same rack is 22× higher than that for server pairs in different racks [66]. 
The inter-rack traffic is incurred by the distributed query processing, e.g., 
MapReduce applications, where a server pushes or pulls data to many servers across 
the cluster. For example, the server either does not talk to any server outside its rack 
or talks to about 1–10% of servers outside its rack [66].

Congestion:  Data center experiences network congestion frequently. For example, 
86% links observe congestion lasting at least 10 s and 15% of them observe conges-
tion lasting at least 100 s [66]. Furthermore, most congestions are short-lived. Over 
90% of congestions are no longer than 2 s while the longest lasted for 382 s [66].

Flow Characteristics:  Most of the flows are short flows, but most of the bytes are 
from long flows [67].

Batch processing is the execution of jobs, e.g., big data analytics, that can run 
without end user interaction. Each job consists of one or more tasks, which use a 
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direct acyclic graph (DAG) as the execution plan if task dependencies exist. Further, 
each task creates one or multiple instances for parallel execution. In a recently 
released Alibaba trace [68, 69], the percentages of jobs with single task and tasks 
with single instance are over 23% and 43%, respectively. Furthermore, 11% jobs 
only create one instance. In addition, 99% jobs have less than 28 tasks and 95% 
tasks have less than 1000 instances. The complexity of batch jobs brings more pres-
sure on the data center operation. The system requires a decent amount of expenses 
in the beginning, which needs to be trained to understand how to schedule the traffic 
of batch jobs. Furthermore, debugging these systems can be tricky.

Traffic optimization in DCNs has been explored extensively, which mainly 
focuses on load balancing and congestion control. The main goal of traffic optimi-
zation in DCNs is the flow scheduling to improve network utilization and other 
quality of service (QoS) parameters (e.g., delay, jitter, data loss, etc.), which can be 
categorized into link-based and server-based scheduling [11].

6.3.2.1  �Link-Based Scheduling

Link-based scheduling schemes aim to balance traffic among links, which contain 
two crucial procedures, i.e., congestion information collection and path selection.

Congestion Information Collection:  Existing scheduling schemes use explicit con-
gestion notification (e.g., FlowBender [70] and CLOVE [71]), data sending rate 
(e.g., Hedera [43], CONGA [72], HULA [73], and Freeway [74]), or queue length 
at switch (DeTail [75] and Drill [76]) to represent the congestion information.

Path Selection:  With the congestion information, the scheduling schemes deter-
mine the paths of data flows. The static ECMP [77] scheme randomly hashes the 
flows to one of the equal-cost paths, which is convenient to be deployed in DCNs. 
However, this random scheme cannot properly schedule large flows, which easily 
incurs network congestions. Some schemes, e.g., CONGA [72], HULA [73], DeTail 
[75], and Freeway [74], forward flows to the least congested paths. CONGA [72] is 
a distributed load balancing scheme which obtains the global congestion informa-
tion among leaf switches. The TCP flows are split into flowlets to achieve fine-
grained load balancing. The flowlet is assigned to the least congested path based on 
the congestion table maintained by each leaf switch. However, due to the limited 
size of switch memory, CONGA is not scalable to large topologies as only a small 
amount of congestion information can be maintained. To address this limitation, 
HULA [73] only tracks congestion for the best path to the destination in each switch. 
Furthermore, HULA is designed for programmable switches without requiring cus-
tom hardware. DeTail [75] presents a new cross-layer network stack to reduce the 
long tail of flow completion times (FCT). In the link layer, a combined input/output 
queue is used to sort packets based on their priority in each switch. In the network 
layer, local egress queue occupancies indicate network congestion. In the transport 
layer, the out-of-order packets are processed. In the application layer, the flow 
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priorities are determined based on the deadlines. However, as the network stack is 
modified, DeTail may not be suitable for traditional hardware. Freeway [74] divides 
the traffic into long-lived elephant flows and latency-sensitive mice flows. According 
to the path utilization, the shortest paths are dynamically divided into low-latency 
paths for mice flows and high-throughput paths for elephant flows. The limitation of 
these schemes is that the precise path utilization is hard to be obtained in real time.

To relieve the requirement of precise path utilization information, some other 
methods, e.g., Hedera [43], Multipath TCP (MPTCP) [78], and Drill [76], forward 
flows to the less congested paths. Hedera [43] is a centralized scheme for passive 
load balancing. Hedera detects large flows in DCNs3 and assigns them to the paths 
with enough resources for the maximization of path utilization. However, Hedera is 
not optimal as the large flows which do not reach the rate limitation may not be 
scheduled to proper paths. To improve throughput, MPTCP [78] establishes multi-
ple TCP connections between servers by using different IP addresses or ports. Data 
flows are stripped into subflows for parallel transmission. However, MPTCP may 
increase the FCT with more additional TCP connections. With no need to collect 
global congestion information, Drill [76] uses local queue occupancies at each 
switch and randomized algorithms for load balancing. When a data packet arrives, 
DRILL randomly chooses two other available ports and compares them with the 
port which transmits the last packet. The port with the smallest queue size is selected. 
Drill is a scalable scheme for large-scale data center network topologies as (1) no 
extra overhead is introduced, and (2) there is no need to modify the existing hard-
ware and protocols.

Some other schemes, e.g., DRB [79] and CLOVE [71], adopt the weighted-
round-robin method to achieve load balancing. By utilizing the characteristics of 
Fat-tree and VL2 topologies, DRB [79] evenly distributes flows among available 
paths. For each packet in a data flow, the sender selects one of the core switches as 
the bouncing switch and transmits the data packet to the receiver through that 
switch. DRB selects the bouncing switch by digit-reversing the IDs of core switches, 
ensuring that no two successive data packets pass the same path. CLOVE [71] uses 
ECN and in-band network telemetry (INT) [80] to detect the congestion informa-
tion and calculate the weight of paths. Then, flowlets are assigned to different paths 
by rotating the source ports in a weighted round-robin manner.

With the blooming of machine learning techniques in solving complex online 
optimization problems, recent research efforts proposed learning-based schemes for 
automatic traffic optimization. CODA [81] utilized an unsupervised clustering 
scheme to identify the flow information with no need for application modification. 
AuTO [9] is a two-level deep reinforcement learning (DRL) framework to solve the 
scalability problem of traffic optimization in DCNs. Due to the non-negligible com-
putation delay, current DRL systems for production data centers (with more than 
105 servers) cannot handle flow-level traffic optimization as short flows are gone 
before the decisions come back. AuTO mimics the peripheral and central nervous 

3 The large flows are detected if their rates are larger than 10% of the link capacity.
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systems in animals. Peripheral systems are deployed at end-hosts to make traffic 
optimization decisions locally for short flows. A central system is also deployed to 
aggregate the global traffic information and make individual traffic optimization 
decisions for long flows, which are more tolerant of the computation delay. Iroko 
[82] analyzes the requirements and limitations of applying reinforcement learning 
in DCNs and then designs an emulator which supports different network topologies 
for data-driven congestion control. 

6.3.2.2  �Server-Based Scheduling

Server-based scheduling schemes are designed to balance loads between servers for 
the improvement of system throughput, resource utilization, and energy efficiency. 
From the viewpoint of computation, server-based scheduling can be classified into 
Layer-4- and Layer-7-based schemes. Layer-4 load balancing schemes work at the 
transport layer, e.g., Transmission Control Protocol (TCP) and User Datagram 
Protocol (UDP). Without considering application information, the IP address and 
port information are used to determine the destination of the traffic. Ananta [83] is 
a Layer-4 load balancer that contains a consensus-based reliable controller and sev-
eral software multiplexers (Muxes) for a decentralized scale-out data plane. The 
Mux splits all incoming traffic and realizes encapsulation functionality in software. 
Google Maglev [84] provides distributed load balancing that uses consistent hash-
ing to distribute packets across the corresponding services. However, software load 
balancers suffer high latency and low capacity, making them less than ideal for 
request-intensive and latency-sensitive applications. For further performance 
improvement, Duet [85] embedded the load balancing functionality into switches 
and achieved low latency, high availability, and scalability at no extra cost. SilkRoad 
[86] implements a fast load balancer in a merchant switching ASIC, which can scale 
to ten million connections simultaneously by using hashing to maintain per-
connection state management.

In contrast, Layer-7 load balancers operate at the highest application layer, which 
are aware of application information to make more complex and informed load 
balancing decisions. Traditional Layer-7 load balancers are either dedicated hard-
ware middleboxes [87] or can run on virtual machines (VMs) [88]. The key problem 
of Layer-7 load balancers is that when a load balancing instance fails, the TCP flow 
state for the client-server connections is lost, which breaks the data flows. To solve 
this problem, Yoda [89] keeps per-flow TCP state information with a distrib-
uted store.

As discussed above, the load balancing can be actively achieved by scheduling 
computing tasks into appropriate servers. From another viewpoint of storage, traffic 
optimization can also be passively achieved by optimizing the storage location with 
data replica placement and erasure code schemes in DCNs. By creating full data 
copies at storage nodes near end users, data replication can reduce the data service 
latency with good fault tolerance performance. An intuitive heuristic is hash—hash 
data and replicas to data centers so as to optimize for load balancing, which has 
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been widely adopted in the distributed storage systems today, such as HDFS [90]. 
Nevertheless, this simple heuristic is far from ideal as it overlooks the skewness of 
data requests. Yu et al. [91] designed a hypergraph-based framework for associated 
data placement (ADP), achieving low data access overheads and load balancing 
among geo-distributed data centers. However, the centralized ADP is not effective 
enough in terms of the running time and computation overhead, making it slow to 
react to the real-time changes in workloads. Facebook Akkio [92] is a data migra-
tion scheme, which adapts to the changing data access patterns. To improve the 
scalability of the solution for petabytes of data, Akkio groups the related data with 
similar access locality into a migration unit. DataBot [93] is a reinforcement 
learning-based scheme which adaptively learns optimal data placement policies, 
reducing the latency of data flows with no future assumption about the data requests. 
The limitation of data replication is that it suffers from high bandwidth and storage 
costs with the growing number of replicas.

With erasure codes, each data item is coded into K data chunks and R parity 
chunks. The original data item can be recovered via the decoding process from any 
K out of K + R chunks. Compared with replication, erasure codes can lower the 
bandwidth and storage costs by an order of magnitude while with the same or better 
level of data reliability. EC-Cache [94] provides a load-balanced, low-latency cach-
ing cluster that uses online erasure coding to overcome the limitations of data repli-
cation. Hu et  al. [95] designed a novel load balancing scheme in coded storage 
systems. When the original storage node of the requested data chunk becomes a 
hotspot, degraded reads4 are proactively and intelligently launched to relieve the 
burden of the hotspot. Due to the non-negligible decoding overhead, erasure codes 
may not be suitable for data-intensive applications. 

6.4  �Future Data Center Networks and Applications

According to the prediction of Oracle Cloud, 80% of all enterprises plan to move 
their workloads to the cloud data centers [96]. The amount of stored and processed 
data continues to increase, from 5G and Internet of Things (IoT) devices to emerging 
technologies, e.g., artificial intelligence, augmented reality, and virtual reality. These 
new technologies are dramatically reshaping the data center in order to meet the ris-
ing demands. However, Forbes reported that only 29% engineers said their data cen-
ters can meet the current needs [97]. Here, we list several future data center trends 
that let network infrastructure meet the ultimate challenges of the upcoming days.

Low Latency: From Milliseconds to Microseconds and Nanoseconds.  Currently, a 
significant part of the communication traffic is within DCNs. Network latency can 
affect the performance of delay-sensitive applications, e.g., web search, social 
networks, and key-value stores in a significant manner. The latencies for current 

4 The action of parity chunk retrieval for decoding is defined as degraded read.
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DCNs are in the order of milliseconds to hundreds of microseconds, which use (1) 
the mainstream Hadoop and HDD/SSD as the storage solution, (2) TCP as the com-
munication protocol, and (3) statistical multiplexing as the communication link 
sharing mechanism. The latencies are planned to be reduced by an order of magni-
tude to microseconds or even nanoseconds with the evolving of future data center 
architectures. The storage access latencies have been reduced to tens of microsec-
onds by all using NVMe SSD or even tens of nanoseconds with the emerging stor-
age class memory (SCM). Through network virtualization, the data center is 
virtualized to a distributed resource pool for scalable all-IP networks, improving the 
resource utilization. Furthermore, TCP introduces many extra overheads. This 
means the processors need to spend a lot of time in managing network transfers for 
data-intensive applications, reducing the overall performance. In contrast, remote 
direct memory access (RDMA) allows servers to exchange data in the memory 
without involving either one’s processor, cache, or operating system. RDMA is the 
future of data center storage fabrics to achieve low latency.

In-Network Computing.  The newly emerged programmable network devices (e.g., 
switches, network accelerators, and middleboxes) and the continually increasing 
traffic motivate the design of in-network computing. In future DCNs, the computing 
will not start and end at the servers but will be extended into the network fabric. The 
aggregation functions needed by the data-intensive applications, e.g., big data, 
graph processing, and stream processing, have the features that make it suitable to 
be executed in programmable network devices. The total amount of data can be 
reduced by arithmetic (add) or logical function (minima/maxima detection) that can 
be parallelized. By offloading computing tasks onto the programmable network 
devices, we can (1) reduce network traffic and relieve network congestion, (2) serve 
user requests on the fly with low service latency, and (3) reduce the energy con-
sumption of running servers. How to enable in-network computing inside commod-
ity data centers with complex network topologies and multipath communication is 
a challenge. The end-to-end principle which has motivated most of the networking 
paradigms of the past years is challenged when in-network computing devices are 
inserted on the ingress-egress path.

Data Center Automation.  With the explosive growth of traffic and the rapid expan-
sion of businesses in data centers, manual monitoring, configuration, troubleshoot-
ing, and remediation are inefficient and may put businesses at risk. Data center 
automation means the process of network management, e.g., configuration, schedul-
ing, monitoring, maintenance, and application delivery, can be executed without 
human administration, which increases the operational agility and efficiency. Massive 
history traces have been accumulated during the operation of data centers. Machine 
learning, which gives computers the ability to learn from history, is a promising solu-
tion to realize data center automation. The purposes of the learning-based data center 
automation are to (1) provide insights into network devices and servers for automatic 
configurations, (2) realize adaptive data forwarding and routing according to network 
changes, (3) automate all scheduling and monitoring tasks, and (4) enforce data cen-
ter to operate in agreement with standards and policies.
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High Reliability and Availability in the Edge.  Providing highly available and reli-
able services has always been an essential part of maintaining customer satisfaction 
and preventing potential revenue losses. However, downtime is the enemy of all 
data centers. According to the Global Data Center Survey report in the year 2018, 
31% of data center operators reported they experienced a downtime incident or 
severe service degradation [98]. The time to full recovery for most outages was 
1–4 h, with over a third reporting a recovery time of 5 h or longer. The downtime in 
data centers is costly. It has been reported that about $285 million have been lost 
yearly due to failures [99]. According to the global reliability survey in 2018, 80% 
of businesses required a minimum uptime of 99.99% [100]. To achieve high reli-
ability and availability, equipment redundancy is widely utilized in the data center 
industry. Compared with redundancy in hyperscale data centers, providing services 
at the edge of the network is attracting increasing attention. In the not-too-distant 
future, edge data centers are likely to explode as people continue to offload their 
computing and storage tasks from end devices to centralized facilities. With data 
being captured from so many different sources, edge data centers are going to 
become as common as streetlights to ensure high reliability and availability. The 
hyperscale data centers may work together with edge computing to meet the com-
puting, storage, and latency requirements, which creates both opportunities and 
threats to the design of the existing system.
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