
185© The Author(s), under exclusive license to Springer Nature
Switzerland AG 2021
M. Toy (ed.), Future Networks, Services and Management,
https://doi.org/10.1007/978-3-030-81961-3_6

Chapter 6
Data Center Architecture, Operation,
and Optimization

Kaiyang Liu, Aqun Zhao, and Jianping Pan

6.1  �Introduction

The explosive growth of workloads driven by data-intensive applications, e.g., web
search, social networks, and e-commerce, has led mankind into the era of big data
[1]. According to the IDC report, the volume of data is doubling every 2 years and
thus will reach a staggering 175 ZB by 2025 [2]. Data centers have emerged as an
irreplaceable and crucial infrastructure to power this ever-growing trend.

As the foundation of cloud computing, data centers can provide powerful parallel
computing and distributed storage capabilities to manage, manipulate, and analyze
massive amounts of data. A special network, i.e., data center network (DCN), is
designed to interconnect a large number of computing and storage nodes. In com-
parison with traditional networks, e.g., local area networks and wide area networks,
the design of DCN has its unique challenges and requirements [3], which are sum-
marized as follows:

Hyperscale:  Currently, over 500 hyperscale data centers are distributed across the
globe. We are witnessing the exponential growth of scale in modern data centers.
For example, Range International Information Group located in Langfang, China,
which is one of the largest data centers in the world, occupies 6.3 million square feet
of space. A hyperscale data center hosts over a million servers spreading across

K. Liu (*)
Department of Computer Science, University of Victoria, Victoria, BC, Canada

School of Computer Science and Engineering, Central South University, Changsha, China
e-mail: liukaiyang@uvic.ca

A. Zhao
School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China

J. Pan
Department of Computer Science, University of Victoria, Victoria, BC, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81961-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-81961-3_6#DOI
mailto:liukaiyang@uvic.ca

186

hundreds of thousands of racks [4]. Data centers at such a large scale put forward
severe challenges on system design in terms of interconnectivity, flexibility, robust-
ness, efficiency, and overheads.

Huge Energy Consumption:  In 2018, global data centers consumed about 205 tWh
of electricity, or 1% of global electricity consumed in that year [5]. It has been pre-
dicted that the electricity usage of data centers will increase about 15-fold by 2030
[6]. The huge energy consumption prompts data centers to improve the energy effi-
ciency of the hardware and system cooling. However, according to the New York
Times report [7], most data centers consume vast amounts of energy in an incongru-
ously wasteful manner. Typically, service providers operate their facilities at maxi-
mum capacity to handle the possible bursty service requests. As a result, data centers
can waste 90% or more of the total consumed electricity.

Complex Traffic Characteristics:  Modern data centers have been applied to a wide
variety of scenarios, e.g., Email, video content distribution, and social networking.
Furthermore, data centers are also employed to run large-scale data-intensive tasks,
e.g., indexing Web pages and big data analytics [8]. Driven by diversified services
and applications, data center traffic shows complex characteristics, i.e., high fluc-
tuation with the long-tail distribution. In fact, most of the flows are short flows, but
most of the bytes are from long flows [9]. Short flows are processed before optimi-
zation decision takes place. Furthermore, data centers suffer from fragmentation
with intensive short flows. It is a challenge to handle traffic optimization tasks in
hyperscale data centers.

Tight Service-Level Agreement:  The service-level agreement (SLA) plays the most
crucial part in a data center lease, spelling out the performance requirements of
services that data centers promise to provide in exact terms. It has been increasingly
common to include mission-critical data center services in SLAs such as power
availability, interconnectivity, security, response time, and delivery service levels.
Considering the inevitable network failures, congestion, or even human errors, con-
stant monitoring, agile failure recovery, and congestion control schemes are neces-
sary to provide tight SLAs.

To solve these significant technical challenges above, DCNs have been widely
investigated in terms of network topology [3], routing [10], load balancing [11],
green networking [12], optical networking [13], and network virtualization [14].
This book chapter presents a systematic view of DCNs from both the architectural
and operational principle aspects. We start with a discussion on the state-of-the-art
DCN topologies (Sect. 6.2). Then, we examine various operation and optimization
solutions in DCNs (Sect. 6.3). Thereafter, we discuss the outlook of future DCNs
and their applications (Sect. 6.4). The main goal of this book chapter is to highlight
the salient features of existing solutions which can be utilized as guidelines in con-
structing future DCN architectures and operational principles.

K. Liu et al.

187

6.2  �Data Center Network Topologies

Currently, the research on the DCN topologies can be divided into two types: switch
centric schemes and server centric schemes. Some of the topologies originate from
the interconnection networks in supercomputing for both categories. Furthermore,
some researchers have introduced optical switching technology into the DCN and
proposed some full optical and optical/electronic hybrid topologies. Others have
introduced wireless technology into the DCN and proposed some wireless DCN
topologies. Besides, in the real world, most service providers have built their pro-
duction data centers with some specific topologies.

6.2.1  �Switch-Centric Data Center Network Topologies

In the switch-centric DCN topologies, the network traffic is all routed and for-
warded by the switches or routers. These topologies include Fat-tree [15], VL2 [16],
Diamond [17], Aspen Trees [18], F10 [19], F2 Tree [20], Scafida [21], Small-World
[22], and Jellyfish [23]. In this section, some representative schemes are selected for
introduction.

Fat-tree:  Fat-tree is proposed by Al-Fares et al., which drew on the experience of
Charles Clos et al. in the field of telephone networks 50 years ago [15]. A general
Fat-tree model is a k-port n-tree topology [24]. In the data center literature, a special
instance of it with n = 3 is usually adopted. In this Fat-tree topology, each k-port

switch in the edge level is connected to
k

2
 servers. The remaining

k

2
 ports are con-

nected to
k

2
 switches at the aggregation level. The

k

2
 aggregation level switches,

k

2
 edge level switches, and the connected servers form a basic cell of a Fat-tree,

called a pod. At the core level, there are
k

2

2






 k-port switches, each connecting to

each of the k pods. Figure 6.1 shows the Fat-tree topology with 4-port switches. The

maximum number of servers in a Fat-tree with k-port switches is
k3

4
.

Fat-tree has many advantages. Firstly, it eliminates the throughput limitation of the
upper links of the tree structure and provides multiple parallel paths for communica-
tion between servers. Secondly, its horizontal expansion reduces the cost of building
a DCN. Finally, this topology is compatible with Ethernet structure and IP-configured
servers used in existing networks. However, the scalability of Fat-tree is limited by the
number of switch ports. Another drawback is that it is not fault-tolerant enough and is
very sensitive to edge switch failures. Finally, the number of switches needed to build
Fat-tree is large, which increases the complexity of wiring and configuration.

VL2:  VL2 is proposed by Greenberg et al. using a Clos Network topology in [16].
VL2 is also a multi-rooted tree. When deployed in DCNs, VL2 usually consists of

6  Data Center Architecture, Operation, and Optimization

188

three levels of switches: the Top of Rack (ToR) switches directly connected to serv-
ers, the aggregation switches connected to the ToR switches, and the intermediate
switches connected to the aggregation switches. The number of the switches is
determined by the number of ports on the intermediate switches and aggregation
switches. If each of these switches has k ports, there will be k aggregation switches

and
k

2
 intermediate switches. There is exactly one link between each intermediate

switch and each aggregation switch. The remaining
k

2
 ports on each aggregation

switch are connected to
k

2
 different ToR switches. Each of the ToR switches is con-

nected to two different aggregation switches, and the remaining ports on the ToR

switches are connected to servers. There are
k2

4
 ToR switches because

k

2
 ToR

switches are connected to each pair of aggregation switches. While intermediate
switches and aggregation switches must have the same number of ports, the number
of ports on a ToR switch is not limited. If kToR ports on each ToR switch are con-

nected to servers, there will be
k

k
2

4
· ToR servers in the network. Figure 6.2 shows the

VL2 topology with k = 4, kToR = 2.

The difference of VL2 with Fat-tree is that the topology between intermediate
switches and aggregation switches forms a complete bipartite graph, and each ToR
switch is connected to two aggregation switches. VL2 reduces the number of cables
by leveraging higher speed switch-to-switch links, e.g., 10 Gbps for switch-to-
switch links and 1 Gbps for server-to-switch links.

6.2.2  �Server-Centric Data Center Network Topologies

In the server-centric DCN designs, the network topologies are constructed by recur-
sion. The servers are not only computing devices but also routing nodes and will
actively participate in packet forwarding and load balancing. These topologies avoid
the bottleneck in the core switches through recursive design, and there are multiple
disjoint paths between servers. Typical topologies include DCell [25], BCube [26],

Fig. 6.1  The Fat-tree topology with k = 4 ports

K. Liu et al.

189

FiConn [27], DPillar [28], MCube [29], MDCube [30], PCube [31], Snowflake [32],
HFN [33], and so on.

DCell:  DCell topology was proposed by Guo et al. [25] in 2008 which uses lower-
level structures as the basic cells to construct higher-level structures. DCell0 is the
lowest cell in DCell, which is composed of one n-port switch and n servers.1 The
switch is used to connect all of the n servers in the DCell0. Let DCellk be a level-k
DCell. Firstly, DCell1 is built from a few DCell0s. Each DCell1 has (n + 1) DCell0s,
and each server of every DCell0 in a DCell1 is connected to a server in another
DCell0, respectively. Therefore, the DCell0s are connected, with only one link
between every pair of DCell0s. A similar method is applied to build a DCellk from a
few DCellk−1s. In a DCellk, each server will finally have k + 1 links: the first link or
the level-0 link connected to a switch when forming a DCell0, and level-i link con-
nected to a server in the same DCelli but a different DCelli−1. Suppose that each
DCellk−1 has tk − 1 servers, then a DCellk will consist of tk DCellk−1s, and thus tk − 1 · tk
servers. Obviously, we have tk = tk − 1 · (tk − 1 + 1). Figure 6.3 shows a DCell1 with n = 4.

DCell satisfies the basic requirement of DCNs such as scalability, fault tolerance,
and increased network capacity. The main idea behind DCell not only depends on
switches but also takes the advantage of the network interface card (NIC) deployed
within servers to design the topology. The number of servers in a DCell increases
double-exponentially with the number of server NIC ports. A level-3 DCell can sup-
port 3,263,442 servers with 4-port servers and 6-port switches. DCell also over-
comes the constraint of a single point of failure as in tree-based topologies.

BCube:  To overcome the issue of traffic congestion bottleneck and NIC installa-
tion, Guo et al. proposed a new hypercube-based topology known as BCube for
shipping-container-based modular data centers [26]. It is also considered a module
version of DCell. The most basic element of a BCube, which is named as BCube0,
is also the same as a DCell0: n servers connected to one n-port switch. The main
difference between BCube and DCell lies in how they scale up. BCube makes use
of more switches when building higher-level structures. While building a BCube1, n
extra switches are used, connecting to exactly one server in each BCube0.
Consequently, a BCube1 contains n BCube0s and n extra switches, which means if
the switches in the BCube0s are considered, there are 2n switches in a BCube1. In
general, a BCubek is built from n BCubek−1s and nk extra n-port switches. These

1 Unlike Fat-tree and VL2, n is used to represent the number of ports in DCell and BCube.

Fig. 6.2  The VL2
topology with k = 4 ports
and kToR = 2

6  Data Center Architecture, Operation, and Optimization

190

extra switches are connected to only one server in each BCubek−1. In a level-k
BCube, each level requires nk n-port switches. BCube makes use of more switches
when building higher-level structures, while DCell uses only level-0 n-port switches.
However, both BCube and DCell require servers to have k + 1 NICs. The implica-
tion is that servers will be involved in switching more packets in DCell than in
BCube. Figure 6.4 shows a BCube1 with n = 4.

Just like DCell, the number of levels in a BCube depends on the number of ports
on the servers. The number of servers in BCube grows exponentially with the levels,
much slower than DCell. For example, when n = 6, k = 3, a fully constructed BCube
can contain 1296 servers. Considering that BCube is designed for container-based
data centers, such scalability is sufficient.

Fig. 6.3  The DCell topology with n = 4 ports

Fig. 6.4  The BCube topology with n = 4 ports

K. Liu et al.

191

6.2.3  �Data Center Network Topologies Originated
from Interconnection Networks

Some of the DCN topologies originate from the interconnection network topolo-
gies, which have been applied to connect the multiple processors in the supercom-
puting domain. The typical examples include Clos [34], FBFLY [35], Symbiotic
[36], Hyper-BCube [37], and so on, some of which are switch-centric topologies
and the others are server-centric ones.

FBFLY:  FBFLY [35] was proposed by Abts et al., which originates from the flat-
tened butterfly, a cost-efficient topology for high-radix switches [38]. The FBFLY
k-ary n-flat topology takes advantage of recent high-radix switches to create a scal-
able but low-diameter network. FBFLY is a multidimensional directed network,
similar to a k-ary n-cube torus. Each high-radix switch with more than 64 ports
interconnects servers and other switches to form a generalized multidimensional
hypercube. A k-ary n-flat FBFLY is derived from a k-ary n-fly conventional butter-
fly. The number of supported servers is N = kn in both networks. The number of

switches is n · kn − 1 with port number 2k in the conventional butterfly and is
N

k
kn= −1

with port number n(k − 1) + 1 in FBFLY. The dimension of FBFLY is n − 1.
Figure 6.5 shows an 8-ary 2-flat FBFLY topology with 15-port switches. Here, c is
the abbreviation for concentration, which means the number of servers and c = 8.
Although it is similar to a generalized hypercube, FBFLY is more scalable and can
save energy by modestly increasing the level of oversubscription. The size of
FBFLY can scale from the original size of 84 = 4096 to c · kn − 1 = 6144. The level of
oversubscription is moderately raised from 1:1 to 3:2.

Fig. 6.5  The 8-ary 2-flat FBFLY topology

6  Data Center Architecture, Operation, and Optimization

192

Symbiotic:  Symbiotic [36] was proposed by Hussam et al. to build an easier plat-
form for distributed applications in modular data centers. Communication between
servers applies a k-ary 3-cube topology, which is also known as a direct-connect 3D
torus and is employed by several supercomputers on the TOP500 list. This topology
is formed by having each server directly connected to six other servers, and it does
not use any switches or routers. In each dimension, k servers logically form a ring.
Symbiotic can support up to k3 servers. Each server is assigned an address, which
takes the form of an (x, y, z) coordinate that indicates its relative offset from an arbi-
trary origin server in the 3D torus. They refer to the address of the server as the
server coordinate, and, once assigned, it is fixed for the lifetime of the server.

6.2.4  �Optical Data Center Network Topologies

The electronic data center architectures have several constraints and limitations.
Therefore, with the ever-increasing bandwidth demand in data centers and the con-
stantly decreasing price of optical switching devices, optical switching is envisioned
as a promising solution for DCNs. Besides offering high bandwidth, optical net-
works have significant flexibility in reconfiguring the topology during operation.
Such a feature is important considering the unbalanced and ever-changing traffic
patterns in DCNs. Optical DCN can be classified into two categories, i.e., optical/
electronic hybrid schemes such as c-Through [39] and Helios [40], and fully optical
schemes such as optical switching architecture (OSA) [41].

c-Through:  c-Through [39] is a hybrid network architecture that makes use of both
electrical packet switching networks and optical circuit switching networks.
Therefore, it is made of two parts: a tree-based electrical network part which main-
tains the connectivity between each pair of ToR switches and a reconfigurable opti-
cal network part which offers high bandwidth interconnection between some ToR
electrical switches. Due to the relatively high-cost optical network and the high
bandwidth of optical links, it is unnecessary and not cost-effective to maintain an
optical link between each pair of ToR switches. Instead, c-Through connects each
ToR switch to exactly one other ToR switch at a time. Consequently, the high-
capacity optical links are offered to pairs of ToR switches transiently according to
the traffic demand. The estimation of traffic between ToR switches and reconfigura-
tion of the optical network is implemented by the control plane of the network.
Figure 6.6 shows a c-Through network.

To configure the optical network part of c-Through, the traffic between ToR
switches should be estimated. c-Through estimates the rack-to-rack traffic demands
by observing the occupancy of the TCP socket buffer. Since only one optical link is
offered to each ToR switch, the topology should be configured so that the most
amount of estimated traffic can be satisfied. In [39], the problem is solved using the
max-weight perfect matching algorithm [42]. The topology of the optical network
is configured accordingly.

K. Liu et al.

193

Helios:  Helios [40] is another hybrid network with both electrical and optical
switches, which are organized as two-level multi-rooted ToR switches and core
switches. Core switches consist of both electrical switches and optical switches to
make full use of the two complementary techniques. Unlike c-Through, Helios uses
the electrical packet switching network to distribute the bursty traffic, while the
optical circuit switching part offers baseline bandwidth to the slow-changing traffic.
On each of the pod switches, the uplinks are equipped with an optical transceiver.
Half of the uplinks are connected to the electrical switches, while the other half are
connected to the optical switch through an optical multiplexer. The multiplexer
combines the links connected to it to be a “superlink” and enables flexible band-
width assignment on this superlink.

Helios estimates bandwidth demand using the max-min fairness algorithm [43]
among the traffic flows measured on pod switches, which allocates fair bandwidth
for TCP flows. Similar to c-Through, Helios computes optical path configuration
based on max-weighted matching. Unlike c-Through, both the electrical switches
and the optical switches are dynamically configured based on the computed con-
figuration. Helios decides where to forward traffic, the electrical network or the
optical network.

OSA:  Unlike optical/electronic hybrid schemes, OSA [41] explores the feasibility
of a pure optical switching network, which means that it abandons the electrical
core switches and use only optical switches to construct the switching core. The
ToR switches are still electrical, converting electrical and optical signals between
servers and the switching core. OSA allows multiple connections to the switching
core on each ToR switch. However, the connection pattern is determined flexibly
according to the traffic demand. Since the network does not ensure a direct optical
link between each pair of racks with traffic demand, the controlling system con-
structs the topology to make it a connected graph, and ToR switches are responsible
to relay the traffic between other ToR switches.

Fig. 6.6  The c-Through network topology [39]

6  Data Center Architecture, Operation, and Optimization

194

OSA estimates the traffic demand with the same method as Helios. However in
OSA, there can be multiple optical links offered to each rack, and the problem can
no longer be formulated as the max-weight matching problem. It is a multi-com-
modity flow problem with degree constraints, which is NP-hard. In OSA, the prob-
lem is simplified as a max-weight b-matching problem and approximately solved by
applying multiple max-weight matching.

Compared with electronic switching, optical switching has potentially higher
transmission speed, more flexible topology, and lower cooling cost, so it is an
important research direction of DCNs. However, the existing optical DCN, such as
OSA, still faces some problems. For example, the current design of OSA is for con-
tainer data centers (i.e., small data centers that can be quickly deployed for edge
computing applications in the IoT world), and its scale is limited. To design and
build large-scale DCNs is very challenging from the perspective of both architecture
and management. Also, the ToR switch used in OSA is the switch that supports opti-
cal transmission and electric transmission at the same time, which makes it difficult
to be compatible with pure electric switch in traditional data centers.

6.2.5  �Wireless Data Center Network Topologies

Wireless/wired hybrid topologies:  Wireless technology has the flexibility to adjust
the topologies without rewiring. Therefore, Ramachandran et al. introduced wire-
less technology into DCNs in 2008. Subsequently, Kandula et al. designed Flyways
[44, 45], by adding wireless links between the ToR switches to alleviate the rack
congestion problem to minimize the maximum transmission time. However, it is
difficult for the wireless network to meet all the requirements of DCNs by itself,
including scalability, high capacity, and fault tolerance. For example, the capacity of
wireless links is often limited due to interference and high transmission load.
Therefore, Cui et al. introduced wireless transmission to alleviate the congestion of
the hotspot servers, which took wireless communication as a supplement to wired
transmission, and proposed a heterogeneous Ethernet/wireless architecture, which
is called WDCN [46]. In order not to introduce too many antennas and interfere with
each other, Cui et al. regarded each rack as a wireless transmission unit (WTU).
This design makes the rack not block the line of sight transmission.

The wireless link scheduling mechanism proposed by Cui et al. includes two
parts: collecting traffic demand and link scheduling. A specific server in a WTU is
designated as the unit head of the WTU. The unit head is responsible for collecting
local traffic information and executing the scheduling algorithm. Each unit head is
equipped with a control antenna, and all unit heads broadcast their traffic load in
push mode through a common 2.4/5 GHz channel. Therefore, all units can get
global traffic load distribution and can schedule the wireless link independently.
After collecting the traffic demand information, the head server needs to allocate

K. Liu et al.

195

channels for wireless transmission. Cui et al. proposed a heuristic allocation method
[46] to achieve this goal.

The application of wireless technology makes the DCN topologies no longer
fixed and saves the complex wiring work, so it has a certain application prospect in
the DCN environment. The introduction of Flyways and WDCN alleviates the band-
width problem of hot servers, and achieved certain results, and made the traffic
demand and wireless link scheduling become the focus of research. However, under
the premise of providing enough bandwidth, the transmission distance of wireless
technology is limited, which limits its deployment in large-scale data centers.
Besides, WDCN uses the broadcast method to collect traffic demand, which makes
it face the problems of clock synchronization and high communication overhead.
Moreover, the measurement results show that the data center traffic is constantly
changing, and this makes the location of the hot servers uncertain, which poses a
greater challenge to topology adjustment.

All wireless DCN topologies:  Based on the 60 GHz wireless communication tech-
nology, Shin et al. proposed a DCN with all wireless architecture [45, 47]. They
aggregated the switch fabric to the server nodes and expected to arrange the server
nodes to be closely connected, low stretch, and support failure recovery. To achieve
this requirement, the network card of each server was replaced by Y-switch [47].
The servers are also arranged in a cylindrical rack, so that the communication chan-
nels between and within the racks can be easily established, and these connections
together form a closely linked network topology.

The topology is modeled as a mesh of Cayley graphs [48]. When viewed from the
top, connections within a story of the rack form a 20-node, degree-k Cayley graph,
where k depends on the signal’s radiation angle (Fig. 6.7). This densely connected
graph provides numerous redundant paths from one server to multiple servers in the
same rack and ensures strong connectivity. The transceivers on the exterior of the
rack stitch together Cayley sub-graphs in different racks. There is great flexibility in
how a data center can be constructed out of these racks, but they pick the simplest
possible topology by placing the racks in rows and columns for ease of maintenance.
Figure 6.7 illustrates an example of the two-dimensional connectivity of four racks in
2 by 2 grids: small black dots represent the transceivers and the lines indicate the
connectivity. A Cayley graph sits in the center of each rack: lines coming out of the
Cayley graphs are connections through the Y-switches. Relatively long lines connect-
ing the transceivers on the exterior of the racks show the wireless inter-rack connec-
tions. Further, since the wireless signal spreads in a cone shape, a transceiver is able
to reach other servers in different stories in the same or different racks.

There are still many problems in the scalability and performance of all wireless
DCNs. First of all, the competition of the MAC layer greatly affects the perfor-
mance of the system. Secondly, the performance of the wireless network is greatly
affected by the number of network hops. Finally, the performance of multi-hop
restricts the scalability of the Cayley data center. However, the advantages and con-
tinuous development of wireless technology make it possible to build small- and
medium-sized data centers for specific applications.

6  Data Center Architecture, Operation, and Optimization

196

6.2.6  �Production Data Center Network Topologies

Nowadays, production data centers have become indispensable for the service pro-
viders, such as Google, Facebook, Microsoft, Amazon, and Apple. Large IT compa-
nies built several production data centers to support their business. Others rented out
to provide services to medium-sized and small-sized enterprises that cannot afford
their own data centers.

Google’s Jupiter:  Singh et al. introduced Google’s five generations of DCNs based
on Clos topology in the last 10 years [49]. The newest-generation Jupiter is a 40G
datacenter-scale fabric equipped with dense 40G capable merchant silicon. Centauri
switch is employed as a ToR switch, which includes four switch chips. Four
Centauris composed a Middle Block (MB) for use in the aggregation block. The
logical topology of an MB is a two-stage network. Each ToR chip connects to 8
MBs with 2 × 10G links to form an aggregation block. Six Centauris are used to
build a spine block. There are 256 spine blocks and 64 aggregation blocks in Jupiter.

Facebook’s next-generation data center fabric:  After the “four-post” architecture
[51], Facebook proposed its next-generation data center fabric [50]. As is shown in
Fig. 6.8, the basic building block of this data center fabric is the server pod, which
is composed of 4 fabric switches and 48 rack switches. The network scale can be
extended by increasing the number of server pods. To implement building-wide

Fig. 6.7  The Cayley data center topology [47]

K. Liu et al.

197

connectivity, 4 independent planes have been created, each scalable up to 48 spine
switches within a plane. Each fabric switch in each server pod connects to each
spine switch within its local plane.

Both Google’s Jupiter and Facebook’s next-generation data center fabrics are
based on switch-centric DCN topologies, so they have similar characteristics which
are those of switch-centric topologies.

6.3  �Operations and Optimizations in Data Center Networks

In a dynamic environment characterized by demand uncertainties, high energy con-
sumption, low average resource utilization, and ever-changing technologies, how to
optimize the performance and efficiency of data center operations is a continuous
challenge. This section presents a series of operation and optimization schemes that
are implemented to enable secure, on-demand, and highly automated services in
data centers.

Fig. 6.8  The Facebook data center fabric topology [50]

6  Data Center Architecture, Operation, and Optimization

198

6.3.1  �Data Forwarding and Routing

On the basis of a given DCN topology, data forwarding and routing schemes deter-
mine how data packets are delivered from a sender to a receiver. Due to the unique
features of DCNs, data forwarding and routing are not the same as other networks,
e.g., Internet or LAN.

	1.	 Hyperscale data centers have hundreds of thousands switches that interconnect
millions of servers. Operating at such a large scale exerts great pressure on for-
warding and routing schemes. Unlike the Internet, the sender already knows the
topology of DCNs. So the sender also knows the number of available paths to the
receiver. How to use the regularities of the DCN topology to scale up forwarding
and routing is a critical challenge.

	2.	 People deploy data centers to deliver communication- and computation-intensive
services, such as web searching, video content distribution, and big data analyt-
ics on a large scale. All these applications are delay sensitive. Major cloud pro-
viders, e.g., Amazon and Google, have reported that a slight increase in the
service latency may cause observable fewer user accesses and thus a consider-
able revenue loss [52]. This means forwarding and routing schemes should be
highly efficient with less introduced overheads when handling intensive data
requests.

	3.	 Servers in data centers may experience downtime frequently [53]. All these fail-
ures should be transparent to the client. Therefore, agility has become increas-
ingly important in modern DCNs as there is a requirement that any servers can
provide services to any kinds of applications.2 Facing network crash or server
failure, data forwarding and routing schemes should be able to route traffic using
alternate paths without interrupting the running application.

Currently, data forwarding and routing schemes have been extensively investi-
gated for DCNs [15, 16, 25, 26, 36, 43, 54–56], which can be classified into differ-
ent categories based on different criteria. A summary of important data forwarding
and routing schemes is presented in Table 6.1, which shows the comparison of these
schemes based on five criteria which are briefly described as follows:

Topology:  Is the scheme designed for a particular data center topology or can be
applied to a generic network?

Implementation:  Is the scheme performed in a distributed or centralized manner?

Structure:  Which component is involved in packet forwarding with the proposed
routing scheme? Typically, forwarding occurs at switches. But in several designs,
servers perform forwarding between their equipped network interface cards (NICs).

2 If a specific number of servers are fixed for specific applications without agility, data centers may
operate at low resource utilization with growing and variable demands.

K. Liu et al.

199

Traffic:  Can the scheme support unicast or multicast?

Stack:  Is the scheme performed at Layer-2 (Ethernet) or Layer 2.5 (shim layer) or
Layer-3 (network) of the TCP/IP stack?

Then, we introduce the data forwarding and routing schemes in detail.

Fat-tree Architecture by M. Al-Fares et al. [15]:  This work presented Fat-tree
topology, which uses interconnected identical commodity Ethernet switches for full

end-to-end bisection bandwidth. A Fat-tree contains k pods and
k

2

2






 core switches.

Each pod is assigned with
k

2
 edge switches and

k

2
 aggregation switches. Each edge

switch is connected with
k

2
 servers. A novel addressing scheme is designed to spec-

ify the position of a switch or a server in the Fat-tree. The core and edge/aggregation

switches are addressed in the form of 10. n. j. i, i j
k

, ∈ 





1
2
, , and 10.pod.switch.1,

pod, switch ∈ [0, k − 1], respectively. The
k

2
 servers connected to an edge switch are

addressed as 10.pod.switch.server, server
k

∈ +





2
2

1, . In Fat-tree, all inter-pod traf-

fic is transmitted through the core switches. For load balancing, the proposed data
forwarding and routing scheme evenly allocates the traffic among core switches. To
achieve this goal, a centralized controller is deployed to maintain two-level for-
warding tables at all routers. In this way, the data forwarding is simplified to a static
two-level table lookup process, with no need to execute the scheme when a packet
arrives. However, how to handle failure is not provided in this work. Another limita-
tion is that the wiring cost is high due to the Fat-tree topology.

DCell [25]:  As the first recursive DCN topology, DCell addresses its server with a
(k + 1)-tuple {ak, ak − 1, …, a1, a0}, where ak indicates the server belongs to which
DCellk, and a0 denotes the number of servers in DCell0. Let tk denotes the number of

servers in DCellk. Each server is assigned with a unique ID uid a a tk
j

k

j j= + ×
=

−∑0
1

1.

Table 6.1  Summary of data forwarding and routing schemes in DCNs

Scheme Topology Implementation Structure Traffic Stack

M. Al-Fares [15] Fat-tree Centralized Switch-centric Unicast L3
DCell [25] Custom Distributed Server-centric Unicast L3
BCube [26] Hypercube Distributed Server-centric Unicast L3
VL2 [16] Clos Distributed Switch-centric Unicast L2.5
PortLand [54] Fat-tree Centralized Switch-centric Multicast L2
Hedera [43] Fat-tree Centralized Switch-centric Multicast L3
Symbiotic [36] CamCube Distributed Switch-centric Multicast L3
XPath [55] Generic Centralized Switch-centric Unicast L3
FatPaths [56] Custom Distributed Switch-centric Unicast L2
PBARA [57, 58] Generic Distributed Both Unicast L3

6  Data Center Architecture, Operation, and Optimization

200

The server in DCellk can be recursively defined as [ak, uidk]. Then, DCellRouting, a
divide-and-conquer-based routing scheme, is proposed with the consideration of
server failures. We assume that the sender and receiver belong to different DCellk−1
but are in the same DCellk. The link {n1, n2} between two DCellk−1 can be obtained.
The sub-paths are: from the sender to n1, from n1 to n2, and from n2 to the receiver.
We repeat the above process until all sub-paths are direct links. The shortcoming is
that DCell cannot guarantee the shortest path can be obtained.

BCube [26]:  As a recursive topology, the server in BCube is similarly identified
with {ak, …, a1, a0}. We have ai ∈ [0, n − 1] as BCube0 contains n servers and BCubek

contains n BCubek. The server address is defined as baddr = ×
=
∑
i

k

i
ia n

0

. Similarly, the

switch is identified as {l, sk − 1, …, s0}, where l denotes the level of switch,
sj ∈ [0, n − 1], j ∈ [0, k − 1], 0 ≤ l ≤ k. With this design, servers connected to the
same switch only have a single-digit difference in the addresses. For data forward-
ing, the relay node will calculate the difference in the addresses and change one
digit in each step. Theoretical analysis shows that a data packet needs to be transmit-
ted with k + 1 switches and k servers at most in routing. Compared with DCell and
Fat-tree, BCube provides better network throughput and fault tolerance performance.
However, the scalability of BCube is limited. For example, with k = 3, n = 8, only
4096 servers are supported.

VL2 [16]:  VL2 is a flexible and scalable architecture based on the Clos topology,
which provides uniform high capacity among servers in the data center. For flexible
addressing, VL2 assigns IP addresses based on the actual service requirements. To
achieve this goal, two types of IP addresses are designed, i.e., location-specific IP
addresses (LA) for network devices (e.g., switches and interfaces) and application-
specific IP addresses (AA) for applications. LA is used for routing, which varies if
the physical location of the server changes or VMs migrate. In contrast, AA is
assigned to an application, which remains unchanged. Each AA is mapped to an
LA. A centralized directory system is deployed to maintain the mapping informa-
tion. VL2 designs a new 2.5 shim layer into the classic network protocol stack to
answer the queries from users. The shim layer replaces AA with LA when sending
packets and replaces LA back to AA when receiving packets. The shortcoming of
VL2 is that it does not provide the bandwidth guarantee for real-time applications.

PortLand [54] and Hedera [43]:  PortLand is a scalable, fault-tolerant layer 2 for-
warding and routing protocol for data center networks. Observing that data centers
are with known baseline topologies and growth models, PortLand adopts a central-
ized fabric manager to store the network configuration. A 48-bit hierarchical Pseudo
MAC (PMAC) addressing scheme is proposed for efficient routing and forwarding.
Each host (physical or virtual) is assigned with a unique PMAC, encoding the phys-
ical location and the actual MAC (AMAC) address. For routing, when an edge
switch receives a data packet, it sends the Address Resolution Protocol (ARP)
request for IP to MAC mapping. The request is sent to the fabric manager for its
PMAC. After receiving the PMAC address, the edge switch creates an ARP reply

K. Liu et al.

201

and sends it to the source node for further routing. As an extension work, Hedera
implementation augments the PortLand routing and fault tolerance protocols.
Hedera tries to maximize the utilization of bisection bandwidth with the least sched-
uling overhead in DCNs. Flow information from constituent switches is collected,
which is used to compute nonconflicting paths. This instructs switches to reroute
traffic accordingly. The shortcoming is that Portland and Hedera only maintain a
single fabric manager, which is at risk of malicious attacks.

Symbiotic [36]:  Symbiotic routing allows applications to implement their routing
services in the CamCube topology. CamCube [59] directly connects a server with
several other servers without any switches or routers, forming a 3D torus topology
which uses content addressable network (CAN). Symbiotic routing provides a key-
based routing service, where the key space is a 3D wrapped coordinate space. Each
server is assigned an (x, y, z) coordinate which determines the location of the server.
With the key-based routing, all packets are directed toward the receiver. Each appli-
cation is assigned with a unique ID on each server. When a data packet arrives at the
server, the kernel determines which application the packet belongs to and then
queues the packet for execution. The limitation of symbiotic routing is that it
requires a CamCube topology; thus, it may not be applicable to other widely used
data center network topologies.

XPath [55]:  By using existing commodity switches, XPath explicitly controls the
routing path at the flow level for well-structured network topologies, e.g., Fat-tree,
BCube, and VL2. To address the scalability and deployment challenges of routing
path control schemes, e.g., source routing [60], MPLS [61], and OpenFlow [62],
XPath preinstalls all desired paths between any two nodes into IP TCAM tables of
commodity switches. As the number of all possible paths can be extremely large, a
two-step compression algorithm is proposed, i.e., path set aggregation and path ID
assignment for prefix aggregation, compressing all paths to a practical number of
routing entries for commodity switches. The limitation of XPath is that it needs to
contact the centralized controller for every new flow in the DCN to obtain the cor-
responding path ID.

FatPaths [56]:  FatPaths is a simple, generic, and robust routing architecture for
low-diameter networks with Ethernet stacks. Currently, many low-diameter topolo-
gies, e.g., Slim Fly [63], Jellyfish [23], and Xpander [64], have been designed to
improve the cost-performance trade-off when compared with the most commonly
used Clos topologies. For example, Slim Fly is 2× more cost- and power-efficient
than Fat-tree and Clos while reducing the latency by about 25%. However, tradi-
tional routing schemes are not suitable for low-diameter topologies. As only one
shortest path exists between any pair of servers, limiting data flow to the shortest
path does not utilize the path diversity, which may incur network congestion.
FatPaths improves the path diversity of low-diameter topologies by using both mini-
mal and non-minimal paths. Then, the transport layer is redesigned based on new
advances for Fat-tree topology [65], removing all TCP performance issues for ulti-
mately low latency and high bandwidth. Furthermore, flowlet switching is used to
prevent packet reordering in TCP, ensuring simple and effective load balancing.

6  Data Center Architecture, Operation, and Optimization

202

PBARA [57, 58]:  Port-based addressing and routing architecture (PBARA) applies
a kind of port-based source-routing address for forwarding, which renders the table-
lookup operation unnecessary in the switches. By leveraging the characteristics of
this addressing scheme and the regularity of the DCN topologies, a simple and
efficient routing mechanism is proposed, which is completely distributed among the
servers, without switch involvement, control message interaction, and topology
information storage. The load-balancing and fault-tolerance mechanisms have been
designed based on the addressing and routing schemes. The PBARA architecture
places all the control functions in servers and keeps the switches very simple. The
switches can really realize the goal of no forwarding tables, state maintenance, or
configuration, and can implement high-speed packet forwarding through hardware.
It may lead to the innovation of the switch architecture. Therefore, it can improve
the forwarding performance and reduce the cost and energy consumption of the
entire DCN. The PBARA architecture is originally proposed based on the Fat-tree
topology [57] and then is extended to the other DCN topologies including F10,
Facebook’s next-generation data center fabric and DCell [58], which shows that it
can be used in a generic DCN topology.

6.3.2  �Traffic Optimization

The characteristics of data traffic determine how network protocols are designed for
efficient operation in DCNs. Most workloads in data centers fall into two categories:
online transaction processing (OLTP) and batch processing. Typically, OLTP is
characterized by different kinds of queries that need to analyze massive data sets,
e.g., web search. The characteristics of OLTP traffic can be summarized as follows:

Patterns:  Most of the data exchanging traffic happens within servers on the same
rack. To be more specific, the probability of exchanging traffic for server pairs
inside the same rack is 22× higher than that for server pairs in different racks [66].
The inter-rack traffic is incurred by the distributed query processing, e.g.,
MapReduce applications, where a server pushes or pulls data to many servers across
the cluster. For example, the server either does not talk to any server outside its rack
or talks to about 1–10% of servers outside its rack [66].

Congestion:  Data center experiences network congestion frequently. For example,
86% links observe congestion lasting at least 10 s and 15% of them observe conges-
tion lasting at least 100 s [66]. Furthermore, most congestions are short-lived. Over
90% of congestions are no longer than 2 s while the longest lasted for 382 s [66].

Flow Characteristics:  Most of the flows are short flows, but most of the bytes are
from long flows [67].

Batch processing is the execution of jobs, e.g., big data analytics, that can run
without end user interaction. Each job consists of one or more tasks, which use a

K. Liu et al.

203

direct acyclic graph (DAG) as the execution plan if task dependencies exist. Further,
each task creates one or multiple instances for parallel execution. In a recently
released Alibaba trace [68, 69], the percentages of jobs with single task and tasks
with single instance are over 23% and 43%, respectively. Furthermore, 11% jobs
only create one instance. In addition, 99% jobs have less than 28 tasks and 95%
tasks have less than 1000 instances. The complexity of batch jobs brings more pres-
sure on the data center operation. The system requires a decent amount of expenses
in the beginning, which needs to be trained to understand how to schedule the traffic
of batch jobs. Furthermore, debugging these systems can be tricky.

Traffic optimization in DCNs has been explored extensively, which mainly
focuses on load balancing and congestion control. The main goal of traffic optimi-
zation in DCNs is the flow scheduling to improve network utilization and other
quality of service (QoS) parameters (e.g., delay, jitter, data loss, etc.), which can be
categorized into link-based and server-based scheduling [11].

6.3.2.1  �Link-Based Scheduling

Link-based scheduling schemes aim to balance traffic among links, which contain
two crucial procedures, i.e., congestion information collection and path selection.

Congestion Information Collection:  Existing scheduling schemes use explicit con-
gestion notification (e.g., FlowBender [70] and CLOVE [71]), data sending rate
(e.g., Hedera [43], CONGA [72], HULA [73], and Freeway [74]), or queue length
at switch (DeTail [75] and Drill [76]) to represent the congestion information.

Path Selection:  With the congestion information, the scheduling schemes deter-
mine the paths of data flows. The static ECMP [77] scheme randomly hashes the
flows to one of the equal-cost paths, which is convenient to be deployed in DCNs.
However, this random scheme cannot properly schedule large flows, which easily
incurs network congestions. Some schemes, e.g., CONGA [72], HULA [73], DeTail
[75], and Freeway [74], forward flows to the least congested paths. CONGA [72] is
a distributed load balancing scheme which obtains the global congestion informa-
tion among leaf switches. The TCP flows are split into flowlets to achieve fine-
grained load balancing. The flowlet is assigned to the least congested path based on
the congestion table maintained by each leaf switch. However, due to the limited
size of switch memory, CONGA is not scalable to large topologies as only a small
amount of congestion information can be maintained. To address this limitation,
HULA [73] only tracks congestion for the best path to the destination in each switch.
Furthermore, HULA is designed for programmable switches without requiring cus-
tom hardware. DeTail [75] presents a new cross-layer network stack to reduce the
long tail of flow completion times (FCT). In the link layer, a combined input/output
queue is used to sort packets based on their priority in each switch. In the network
layer, local egress queue occupancies indicate network congestion. In the transport
layer, the out-of-order packets are processed. In the application layer, the flow

6  Data Center Architecture, Operation, and Optimization

204

priorities are determined based on the deadlines. However, as the network stack is
modified, DeTail may not be suitable for traditional hardware. Freeway [74] divides
the traffic into long-lived elephant flows and latency-sensitive mice flows. According
to the path utilization, the shortest paths are dynamically divided into low-latency
paths for mice flows and high-throughput paths for elephant flows. The limitation of
these schemes is that the precise path utilization is hard to be obtained in real time.

To relieve the requirement of precise path utilization information, some other
methods, e.g., Hedera [43], Multipath TCP (MPTCP) [78], and Drill [76], forward
flows to the less congested paths. Hedera [43] is a centralized scheme for passive
load balancing. Hedera detects large flows in DCNs3 and assigns them to the paths
with enough resources for the maximization of path utilization. However, Hedera is
not optimal as the large flows which do not reach the rate limitation may not be
scheduled to proper paths. To improve throughput, MPTCP [78] establishes multi-
ple TCP connections between servers by using different IP addresses or ports. Data
flows are stripped into subflows for parallel transmission. However, MPTCP may
increase the FCT with more additional TCP connections. With no need to collect
global congestion information, Drill [76] uses local queue occupancies at each
switch and randomized algorithms for load balancing. When a data packet arrives,
DRILL randomly chooses two other available ports and compares them with the
port which transmits the last packet. The port with the smallest queue size is selected.
Drill is a scalable scheme for large-scale data center network topologies as (1) no
extra overhead is introduced, and (2) there is no need to modify the existing hard-
ware and protocols.

Some other schemes, e.g., DRB [79] and CLOVE [71], adopt the weighted-
round-robin method to achieve load balancing. By utilizing the characteristics of
Fat-tree and VL2 topologies, DRB [79] evenly distributes flows among available
paths. For each packet in a data flow, the sender selects one of the core switches as
the bouncing switch and transmits the data packet to the receiver through that
switch. DRB selects the bouncing switch by digit-reversing the IDs of core switches,
ensuring that no two successive data packets pass the same path. CLOVE [71] uses
ECN and in-band network telemetry (INT) [80] to detect the congestion informa-
tion and calculate the weight of paths. Then, flowlets are assigned to different paths
by rotating the source ports in a weighted round-robin manner.

With the blooming of machine learning techniques in solving complex online
optimization problems, recent research efforts proposed learning-based schemes for
automatic traffic optimization. CODA [81] utilized an unsupervised clustering
scheme to identify the flow information with no need for application modification.
AuTO [9] is a two-level deep reinforcement learning (DRL) framework to solve the
scalability problem of traffic optimization in DCNs. Due to the non-negligible com-
putation delay, current DRL systems for production data centers (with more than
105 servers) cannot handle flow-level traffic optimization as short flows are gone
before the decisions come back. AuTO mimics the peripheral and central nervous

3 The large flows are detected if their rates are larger than 10% of the link capacity.

K. Liu et al.

205

systems in animals. Peripheral systems are deployed at end-hosts to make traffic
optimization decisions locally for short flows. A central system is also deployed to
aggregate the global traffic information and make individual traffic optimization
decisions for long flows, which are more tolerant of the computation delay. Iroko
[82] analyzes the requirements and limitations of applying reinforcement learning
in DCNs and then designs an emulator which supports different network topologies
for data-driven congestion control.

6.3.2.2  �Server-Based Scheduling

Server-based scheduling schemes are designed to balance loads between servers for
the improvement of system throughput, resource utilization, and energy efficiency.
From the viewpoint of computation, server-based scheduling can be classified into
Layer-4- and Layer-7-based schemes. Layer-4 load balancing schemes work at the
transport layer, e.g., Transmission Control Protocol (TCP) and User Datagram
Protocol (UDP). Without considering application information, the IP address and
port information are used to determine the destination of the traffic. Ananta [83] is
a Layer-4 load balancer that contains a consensus-based reliable controller and sev-
eral software multiplexers (Muxes) for a decentralized scale-out data plane. The
Mux splits all incoming traffic and realizes encapsulation functionality in software.
Google Maglev [84] provides distributed load balancing that uses consistent hash-
ing to distribute packets across the corresponding services. However, software load
balancers suffer high latency and low capacity, making them less than ideal for
request-intensive and latency-sensitive applications. For further performance
improvement, Duet [85] embedded the load balancing functionality into switches
and achieved low latency, high availability, and scalability at no extra cost. SilkRoad
[86] implements a fast load balancer in a merchant switching ASIC, which can scale
to ten million connections simultaneously by using hashing to maintain per-
connection state management.

In contrast, Layer-7 load balancers operate at the highest application layer, which
are aware of application information to make more complex and informed load
balancing decisions. Traditional Layer-7 load balancers are either dedicated hard-
ware middleboxes [87] or can run on virtual machines (VMs) [88]. The key problem
of Layer-7 load balancers is that when a load balancing instance fails, the TCP flow
state for the client-server connections is lost, which breaks the data flows. To solve
this problem, Yoda [89] keeps per-flow TCP state information with a distrib-
uted store.

As discussed above, the load balancing can be actively achieved by scheduling
computing tasks into appropriate servers. From another viewpoint of storage, traffic
optimization can also be passively achieved by optimizing the storage location with
data replica placement and erasure code schemes in DCNs. By creating full data
copies at storage nodes near end users, data replication can reduce the data service
latency with good fault tolerance performance. An intuitive heuristic is hash—hash
data and replicas to data centers so as to optimize for load balancing, which has

6  Data Center Architecture, Operation, and Optimization

206

been widely adopted in the distributed storage systems today, such as HDFS [90].
Nevertheless, this simple heuristic is far from ideal as it overlooks the skewness of
data requests. Yu et al. [91] designed a hypergraph-based framework for associated
data placement (ADP), achieving low data access overheads and load balancing
among geo-distributed data centers. However, the centralized ADP is not effective
enough in terms of the running time and computation overhead, making it slow to
react to the real-time changes in workloads. Facebook Akkio [92] is a data migra-
tion scheme, which adapts to the changing data access patterns. To improve the
scalability of the solution for petabytes of data, Akkio groups the related data with
similar access locality into a migration unit. DataBot [93] is a reinforcement
learning-based scheme which adaptively learns optimal data placement policies,
reducing the latency of data flows with no future assumption about the data requests.
The limitation of data replication is that it suffers from high bandwidth and storage
costs with the growing number of replicas.

With erasure codes, each data item is coded into K data chunks and R parity
chunks. The original data item can be recovered via the decoding process from any
K out of K + R chunks. Compared with replication, erasure codes can lower the
bandwidth and storage costs by an order of magnitude while with the same or better
level of data reliability. EC-Cache [94] provides a load-balanced, low-latency cach-
ing cluster that uses online erasure coding to overcome the limitations of data repli-
cation. Hu et al. [95] designed a novel load balancing scheme in coded storage
systems. When the original storage node of the requested data chunk becomes a
hotspot, degraded reads4 are proactively and intelligently launched to relieve the
burden of the hotspot. Due to the non-negligible decoding overhead, erasure codes
may not be suitable for data-intensive applications.

6.4  �Future Data Center Networks and Applications

According to the prediction of Oracle Cloud, 80% of all enterprises plan to move
their workloads to the cloud data centers [96]. The amount of stored and processed
data continues to increase, from 5G and Internet of Things (IoT) devices to emerging
technologies, e.g., artificial intelligence, augmented reality, and virtual reality. These
new technologies are dramatically reshaping the data center in order to meet the ris-
ing demands. However, Forbes reported that only 29% engineers said their data cen-
ters can meet the current needs [97]. Here, we list several future data center trends
that let network infrastructure meet the ultimate challenges of the upcoming days.

Low Latency: From Milliseconds to Microseconds and Nanoseconds.  Currently, a
significant part of the communication traffic is within DCNs. Network latency can
affect the performance of delay-sensitive applications, e.g., web search, social
networks, and key-value stores in a significant manner. The latencies for current

4 The action of parity chunk retrieval for decoding is defined as degraded read.

K. Liu et al.

207

DCNs are in the order of milliseconds to hundreds of microseconds, which use (1)
the mainstream Hadoop and HDD/SSD as the storage solution, (2) TCP as the com-
munication protocol, and (3) statistical multiplexing as the communication link
sharing mechanism. The latencies are planned to be reduced by an order of magni-
tude to microseconds or even nanoseconds with the evolving of future data center
architectures. The storage access latencies have been reduced to tens of microsec-
onds by all using NVMe SSD or even tens of nanoseconds with the emerging stor-
age class memory (SCM). Through network virtualization, the data center is
virtualized to a distributed resource pool for scalable all-IP networks, improving the
resource utilization. Furthermore, TCP introduces many extra overheads. This
means the processors need to spend a lot of time in managing network transfers for
data-intensive applications, reducing the overall performance. In contrast, remote
direct memory access (RDMA) allows servers to exchange data in the memory
without involving either one’s processor, cache, or operating system. RDMA is the
future of data center storage fabrics to achieve low latency.

In-Network Computing.  The newly emerged programmable network devices (e.g.,
switches, network accelerators, and middleboxes) and the continually increasing
traffic motivate the design of in-network computing. In future DCNs, the computing
will not start and end at the servers but will be extended into the network fabric. The
aggregation functions needed by the data-intensive applications, e.g., big data,
graph processing, and stream processing, have the features that make it suitable to
be executed in programmable network devices. The total amount of data can be
reduced by arithmetic (add) or logical function (minima/maxima detection) that can
be parallelized. By offloading computing tasks onto the programmable network
devices, we can (1) reduce network traffic and relieve network congestion, (2) serve
user requests on the fly with low service latency, and (3) reduce the energy con-
sumption of running servers. How to enable in-network computing inside commod-
ity data centers with complex network topologies and multipath communication is
a challenge. The end-to-end principle which has motivated most of the networking
paradigms of the past years is challenged when in-network computing devices are
inserted on the ingress-egress path.

Data Center Automation.  With the explosive growth of traffic and the rapid expan-
sion of businesses in data centers, manual monitoring, configuration, troubleshoot-
ing, and remediation are inefficient and may put businesses at risk. Data center
automation means the process of network management, e.g., configuration, schedul-
ing, monitoring, maintenance, and application delivery, can be executed without
human administration, which increases the operational agility and efficiency. Massive
history traces have been accumulated during the operation of data centers. Machine
learning, which gives computers the ability to learn from history, is a promising solu-
tion to realize data center automation. The purposes of the learning-based data center
automation are to (1) provide insights into network devices and servers for automatic
configurations, (2) realize adaptive data forwarding and routing according to network
changes, (3) automate all scheduling and monitoring tasks, and (4) enforce data cen-
ter to operate in agreement with standards and policies.

6  Data Center Architecture, Operation, and Optimization

208

High Reliability and Availability in the Edge.  Providing highly available and reli-
able services has always been an essential part of maintaining customer satisfaction
and preventing potential revenue losses. However, downtime is the enemy of all
data centers. According to the Global Data Center Survey report in the year 2018,
31% of data center operators reported they experienced a downtime incident or
severe service degradation [98]. The time to full recovery for most outages was
1–4 h, with over a third reporting a recovery time of 5 h or longer. The downtime in
data centers is costly. It has been reported that about $285 million have been lost
yearly due to failures [99]. According to the global reliability survey in 2018, 80%
of businesses required a minimum uptime of 99.99% [100]. To achieve high reli-
ability and availability, equipment redundancy is widely utilized in the data center
industry. Compared with redundancy in hyperscale data centers, providing services
at the edge of the network is attracting increasing attention. In the not-too-distant
future, edge data centers are likely to explode as people continue to offload their
computing and storage tasks from end devices to centralized facilities. With data
being captured from so many different sources, edge data centers are going to
become as common as streetlights to ensure high reliability and availability. The
hyperscale data centers may work together with edge computing to meet the com-
puting, storage, and latency requirements, which creates both opportunities and
threats to the design of the existing system.

References

	 1.	Y. Mansouri, A.N. Toosi, R. Buyya, Data storage management in cloud environments: tax-
onomy, survey, and future directions. ACM Comput. Surv. 50(6), 1–51 (2018)

	 2.	D. Reinsel, J. Gantz, J. Rydning, The digitization of the world from edge to core, IDC white
paper (2018), [Online]: https://www.seagate.com/em/en/our-story/data-age-2025/

	 3.	W. Xia, P. Zhao, Y. Wen, H. Xie, A survey on data center networking (DCN): infrastructure
and operations. IEEE Commun. Surv. Tuts. 19(1), 640–656 (2017)

	 4.	T. Ye, T.T. Lee, M. Ge, W. Hu, Modular AWG-based interconnection for large-scale data
center networks. IEEE Trans. Cloud Comput. 6(3), 785–799 (2018)

	 5.	N. Jones, How to stop data centres from gobbling up the world’s electricity. Nature 561(7722),
163–167 (2018)

	 6.	A.S.G. Andrae, T. Edler, On global electricity usage of communication technology: trends to
2030. Challenges 6(1), 117–157 (2015)

	 7.	Power, pollution and the internet (2012), [Online]: https://www.nytimes.com/2012/09/23/
technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html

	 8.	T. Benson, A. Akella, D.A. Maltz, Network traffic characteristics of data centers in the wild,
in ACM IMC, 2010, pp. 267–280

	 9.	L. Chen, J. Lingys, K. Chen, F. Liu, AuTO: scaling deep reinforcement learning for
datacenter-scale automatic traffic optimization, in ACM SIGCOMM (2018), pp. 191–205

	 10.	K. Chen, C. Hu, X. Zhang, K. Zheng, Y. Chen, A.V. Vasilakos, Survey on routing in data
centers: insights and future directions. IEEE Netw. 25(4), 6–10 (2011)

	 11.	J. Zhang, F.R. Yu, S. Wang, T. Huang, Z. Liu, Y. Liu, Load balancing in data center networks:
a survey. IEEE Commun. Surv. Tuts. 20(3), 2324–2352 (2018)

K. Liu et al.

https://www.seagate.com/em/en/our-story/data-age-2025/
https://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html
https://www.nytimes.com/2012/09/23/technology/data-centers-waste-vast-amounts-of-energy-belying-industry-image.html

209

	 12.	E. Baccour, S. Foufou, R. Hamila, A. Erbad, Green data center networks: a holistic survey
and design guidelines, in IEEE IWCMC, 2019, pp. 1108–1114

	 13.	C. Kachris, I. Tomkos, A survey on optical interconnects for data centers. IEEE Commun.
Surv. Tuts. 14(4), 1021–1036 (2012)

	 14.	M.F. Bari, R. Boutaba, R. Esteves, L.Z. Granville, M. Podlesny, M.G. Rabbani, Q. Zhang,
M.F. Zhani, Data center network virtualization: a survey. IEEE Commun. Surv. Tuts. 15(2),
909–928 (2013)

	 15.	M. Al-Fares, A. Loukissas, A. Vahdat, A scalable, commodity data center network architec-
ture, in ACM SIGCOMM, 2008, pp. 63–74

	 16.	A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, S. Sengupta, VL2: a
scalable and flexible data center network, in ACM SIGCOMM, 2009, pp. 51–62

	 17.	Y. Sun, J. Chen, Q. Liu, W. Fang, Diamond: an improved fat-tree architecture for large-scale
data centers. J. Commun. 9(1), 91–98 (2014)

	 18.	M. Walraed-Sullivan, A. Vahdat, K. Marzullo, Aspen trees: balancing data center fault toler-
ance, scalability and cost, in ACM CoNEXT, 2013, pp. 85–96

	 19.	V. Liu, D. Halperin, A. Krishnamurthy, T. Anderson, F10: a fault-tolerant engineered net-
work, in USENIX NSDI, 2013, pp. 399–412

	 20.	G. Chen, Y. Zhao, D. Pei, D. Li, Rewiring 2 links is enough: accelerating failure recovery in
production data center networks, in IEEE ICDCS, 2015, pp. 569–578

	 21.	L. Gyarmati, T.A. Trinh, Scafida: a scale-free network inspired data center architecture. ACM
SIGCOMM Comput. Commun. Rev. 40(5), 4–12 (2010)

	 22.	J.Y. Shin, B. Wong, E.G. Sirer, Small-world datacenters, in ACM SOCC, 2011, pp. 1–13
	 23.	A. Singla, C.Y. Hong, L. Popa, P.B. Godfrey, Jellyfish: networking data centers randomly, in

USENIX NSDI, 2012, pp. 225–238
	 24.	X.Y. Lin, Y.C. Chung, T.Y. Huang, A multiple LID routing scheme for fat-tree-based

InfiniBand networks, in IEEE IPDPS, 2004, p. 11
	 25.	C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, S. Lu, DCell: a scalable and fault-tolerant network

structure for data centers, in ACM SIGCOMM, 2008, pp. 75–86
	 26.	C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, S. Lu, BCube: a high per-

formance, server-centric network architecture for modular data centers, in ACM SIGCOMM,
2009, pp. 63–74

	 27.	D. Li, C. Guo, H. Wu, K. Tan, Y. Zhang, S. Lu, FiConn: using backup port for server intercon-
nection in data centers, in IEEE INFOCOM, 2009, pp. 2276–2285

	 28.	Y. Liao, D. Yin, L. Gao, DPillar: scalable dual-port server interconnection for data center
networks, in IEEE ICCCN, 2010, pp. 1–6

	 29.	C. Wang, C. Wang, Y. Yuan, Y. Wei, MCube: a high performance and fault-tolerant network
architecture for data centers, in IEEE ICCDA, 2010, pp. 423–427

	 30.	H. Wu, G. Lu, D. Li, C. Guo, Y. Zhang, MDCube: a high performance network structure for
modular data center interconnection, in ACM CoNEXT, 2009, pp. 25–36

	 31.	L. Huang, Q. Jia, X. Wang, S. Yang, B. Li, PCube: improving power efficiency in data center
networks, in IEEE CLOUD, 2011, pp. 65–72

	 32.	X. Liu, S. Yang, L. Guo, S. Wang, H. Song, Snowflake: a new-type network structure of data
center. Chin. J. Comput. 34(1), 76–85 (2011)

	 33.	Z. Ding, D. Guo, X. Liu, X. Luo, G. Chen, A MapReduce-supported network structure for
data centers. Concurr. Comput. Pract. Exp. 24(12), 1271–1295 (2012)

	 34.	Y. Liu, J.K. Muppala, M. Veeraraghavan, D. Lin, M. Hamdi, Data center network topologies:
current state-of-the-art (Springer International Publishing, Cham, 2013), pp. 7–14

	 35.	D. Abts, M.R. Marty, P.M. Wells, P. Klausler, H. Liu, Energy proportional datacenter net-
works. ACM SIGARCH Comput. Archit. News 38(3), 338–347 (2010)

	 36.	H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, A. Donnelly, Symbiotic routing in future
data centers, in ACM SIGCOMM, 2010, pp. 51–62

	 37.	D. Lin, Y. Liu, M. Hamdi, J. Muppala, Hyper-BCube: a scalable data center network, IEEE
ICC, 2012, pp. 2918–2923

6  Data Center Architecture, Operation, and Optimization

210

	 38.	J. Kim, W.J. Dally, D. Abts, Flattened butterfly: a cost-efficient topology for high-radix net-
works. ACM SIGARCH Comput. Archit. News 35(2), 126–137 (2007)

	 39.	G. Wang, D. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng, M. Kozuch, M. Ryan,
c-Through: part-time optics in data centers. ACM SIGCOMM Comput. Commun. Rev. 40(4),
327–338 (2010)

	 40.	N. Farrington, G. Porter, S. Radhakrishnan, H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen,
A. Vahdat, Helios: a hybrid electrical/optical switch architecture for modular data centers.
ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010)

	 41.	K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, Y. Chen, OSA:
an optical switching architecture for data center networks with unprecedented flexibility, in
USENIX NSDI, 2012, pp. 239–252

	 42.	J. Edmonds, Paths, trees, and flowers. Can. J. Math. 17(3), 449–467 (1965)
	 43.	M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat, Hedera: dynamic flow

scheduling for data center networks, in USENIX NSDI, 2010, pp. 89–92
	 44.	J.P.S. Kandula, P. Bahl, Flyways to de-congest data center networks, in ACM HotNets,

2009, pp. 1–6
	 45.	D. Halperin, S. Kandula, J. Padhye, P. Bahl, D. Wetherall, Augmenting data center networks

with multi-gigabit wireless links, in ACM SIGCOMM, 2011, pp. 38–49
	 46.	Y. Cui, H. Wang, X. Cheng, B. Chen, Wireless data center networking. IEEE Wirel. Commun.

18(6), 46–53 (2011)
	 47.	J.Y. Shin, E.G. Sirer, H. Weatherspoon, D. Kirovski, On the Feasibility of Completely Wireless

Data Centers. Technical report (Cornell University, Ithaca, 2011) [Online]: http://hdl.handle.
net/1813/22846

	 48.	A. Cayley, On the theory of groups. Am. J. Math. 11(2), 139–157 (1889)
	 49.	A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon, S. Boving, G. Desai,

B. Felderman, P. Germano et al., Jupiter rising: a decade of Clos topologies and centralized
control in Google’s datacenter network, in ACM SIGCOMM, 2015, pp. 183–197

	 50.	A. Andreyev, Introducing data center fabric, the next-generation Facebook data center net-
work (2014), [Online]: https://code.facebook.com/posts/360346274145943/

	 51.	N. Farrington, A. Andreyev, Facebook’s data center network architecture, in IEEE OI, 2013,
pp. 49–50

	 52.	Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, I. Stoica, Low latency
geo-distributed data analytics, in ACM SIGCOMM, 2015, pp. 421–434

	 53.	O. Khan, R.C. Burns, J.S. Plank, W. Pierce, C. Huang, Rethinking erasure codes for cloud file
systems: minimizing I/O for recovery and degraded reads, in USENIX FAST, 2012, pp. 20–33

	 54.	R. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri, S. Radhakrishnan, A. Vahdat,
Portland: a scalable fault-tolerant layer 2 data center network fabric, in ACM SIGCOMM,
2009, pp. 39–50

	 55.	S. Hu, K. Chen, H. Wu, W. Bai, C. Lan, H. Wang, C. Guo, Explicit path control in commodity
data centers: design and applications, in USENIX NSDI, 2015, pp. 15–28

	 56.	M. Besta, M. Schneider, K. Cynk, M. Konieczny, E. Henriksson, S. Di Girolamo, T. Hoefler,
FatPaths: routing in supercomputers, data centers, and clouds with low-diameter networks
when shortest paths fall short. arXiv preprint arXiv:1906.10885 (2019)

	 57.	A. Zhao, Z. Liu, J. Pan, M. Liang, A simple, cost-effective addressing and routing architec-
ture for fat-tree based datacenter networks, in IEEE INFOCOM Workshop on DCPerf, 2017,
pp. 36–41

	 58.	A. Zhao, Z. Liu, J. Pan, M. Liang, A novel addressing and routing architecture for cloud-
service datacenter networks. IEEE Trans. Serv. Comput. (2019). https://doi.org/10.1109/
TSC.2019.2946164

	 59.	P. Costa, A. Donnelly, G. O’Shea, A. Rowstron, CamCube: a key-based data center, Technical
Report MSR TR-2010-74, Microsoft Research, 2010

	 60.	C.A. Sunshine, Source routing in computer networks. ACM SIGCOMM Comput. Commun.
Rev. 7(1), 29–33 (1977)

K. Liu et al.

http://hdl.handle.net/1813/22846
http://hdl.handle.net/1813/22846
https://code.facebook.com/posts/360346274145943/
https://doi.org/10.1109/TSC.2019.2946164
https://doi.org/10.1109/TSC.2019.2946164

211

	 61.	E. Rosen, A. Viswanathan, R. Callon, Multiprotocol label switching architecture, RFC
3031 (2001)

	 62.	N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
J. Turner, OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput.
Commun. Rev. 38(2), 69–74 (2008)

	 63.	M. Besta, T. Hoefler, Slim fly: a cost effective low-diameter network topology, in IEEE SC,
2014, pp. 348–359

	 64.	A. Valadarsky, M. Dinitz, M. Schapira, Xpander: unveiling the secrets of high-performance
datacenters, in ACM HotNets, 2015, pp. 1–7

	 65.	M. Handley, C. Raiciu, A. Agache, A. Voinescu, A.W. Moore, G. Antichi, M. Wójcik,
Re-architecting datacenter networks and stacks for low latency and high performance, in
ACM SIGCOMM, 2017, pp. 29–42

	 66.	S. Kandula, S. Sengupta, A. Greenberg, P. Patel, R. Chaiken, The nature of data center traffic:
measurements & analysis, in ACM IMC, 2009, pp. 202–208

	 67.	M. Alizadeh, A. Greenberg, D.A. Maltz, J. Padhye, P. Patel, B. Prabhakar, M. Sridharan, Data
center TCP (DCTCP), in ACM SIGCOMM, 2010, pp. 63–74

	 68.	Alibaba Cluster Trace, 2018. [Online]: https://github.com/alibaba/clusterdata
	 69.	Q. Liu, Z. Yu, The elasticity and plasticity in semi-containerized co-locating cloud workload:

a view from Alibaba trace, in ACM SoCC, 2018, pp. 347–360
	 70.	A. Kabbani, B. Vamanan, J. Hasan, F. Duchene, FlowBender: flow-level adaptive rout-

ing for improved latency and throughput in datacenter networks, in ACM CoNEXT, 2014,
pp. 149–160

	 71.	N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, J. Rexford, CLOVE:
congestion-aware load balancing at the virtual edge, in ACM CoNEXT, 2017, pp. 323–335

	 72.	M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut,
G. Varghese, CONGA: distributed congestion-aware load balancing for datacenters, in ACM
SIGCOMM, 2014, pp. 503–514

	 73.	N. Katta, M. Hira, C. Kim, A. Sivaraman, J. Rexford, HULA: scalable load balancing using
programmable data planes, in ACM SOSR, 2016, pp. 1–12

	 74.	W. Wang, Y. Sun, K. Zheng, M.A. Kaafar, D. Li, Z. Li, Freeway: adaptively isolating the
elephant and mice flows on different transmission paths, in IEEE ICNP, 2014, pp. 362–367

	 75.	D. Zats, T. Das, P. Mohan, D. Borthakur, R. Katz, DeTail: reducing the flow completion time
tail in datacenter networks, in ACM SIGCOMM, 2012, pp. 139–150

	 76.	S. Ghorbani, Z. Yang, P.B. Godfrey, Y. Ganjali, A. Firoozshahian, Drill: micro load balancing
for low-latency data center networks, in ACM SIGCOMM, 2017, pp. 225–238

	 77.	C.E. Hopps, Multipath issues in unicast and multicast next-hop selection, RFC 2991 (2000)
	 78.	C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, M. Handley, Improving datacen-

ter performance and robustness with multipath TCP, in ACM SIGCOMM, 2011, pp. 266–277
	 79.	J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu, Y. Xiong, D. Maltz,

Per-packet load-balanced, low-latency routing for clos-based data center networks, in ACM
CoNEXT, 2013, pp. 49–60

	 80.	C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, L.J. Wobkeret, In-band network telemetry
via programmable dataplanes, in ACM SIGCOMM, 2015

	 81.	H. Zhang, L. Chen, B. Yi, K. Chen, M. Chowdhury, Y. Geng, CODA: toward automatically
identifying and scheduling coflows in the dark, in ACM SIGCOMM, 2016, pp. 160–173

	 82.	F. Ruffy, M. Przystupa, I. Beschastnikh, Iroko: a framework to prototype reinforcement learn-
ing for data center traffic control, in NIPS, 2018

	 83.	P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D.A. Maltz, R. Kern, H. Kumar,
M. Zikos, H. Wu, C. Kim, N. Karri, Ananta: cloud scale load balancing, in ACM SIGCOMM,
2013, pp. 207–218

	 84.	D.E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov, E. Mann-Hielscher,
A. Cilingiroglu, B. Cheyney, W. Shang, J.D. Hosein, Maglev: a fast and reliable software
network load balancer, in USENIX NSDI, 2016, pp. 523–535

6  Data Center Architecture, Operation, and Optimization

https://github.com/alibaba/clusterdata

212

	 85.	R. Gandhi, H.H. Liu, Y.C. Hu, G. Lu, J. Padhye, L. Yuan, M. Zhang, Duet: cloud scale load
balancing with hardware and software, in ACM SIGCOMM, 2015, pp. 27–38

	 86.	R. Miao, H. Zeng, C. Kim, J. Lee, M. Yu, Silkroad: making stateful layer-4 load balancing
fast and cheap using switching asics, in ACM SIGCOMM, 2017, pp. 15–28

	 87.	F5 load balancer, 2020, [Online]: http://www.f5.com
	 88.	HAProxy load balancer, 2020, [Online]: http://haproxy.1wt.eu
	 89.	R. Gandhi, Y. C. Hu, M. Zhang, Yoda: a highly available layer-7 load balancer, in EuroSys,

2016, p. 21
	 90.	HDFS Architecture Guide, 2019, [Online]: https://hadoop.apache.org/
	 91.	B. Yu, J. Pan, A framework of hypergraph-based data placement among geo-distributed data-

centers. IEEE Trans. Serv. Comput. 13(3), 395–409 (2020)
	 92.	M. Annamalai, K. Ravichandran, H. Srinivas, I. Zinkovsky, L. Pan, T. Savor, D. Nagle,

M. Stumm, Sharding the shards: managing datastore locality at scale with Akkio, in USENIX
OSDI, 2018, pp. 445–460

	 93.	K. Liu, J. Wang, Z. Liao, B. Yu, J. Pan, Learning-based adaptive data placement for low
latency in data center networks, in IEEE LCN, 2018, pp. 142–149

	 94.	K.V. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica, K. Ramchandran, EC-cache: load-
balanced, low-latency cluster caching with online erasure coding, in USENIX OSDI, 2016,
pp. 401–417

	 95.	Y. Hu, Y. Wang, B. Liu, D. Niu, C. Huang, Latency reduction and load balancing in coded
storage systems, in ACM SoCC, 2017, pp. 365–377

	 96.	Oracle’s Top 10 Cloud Predictions, 2019, [Online]: https://questoraclecommunity.org/learn/
blogs/oracles-2019-top-10-cloud-predictions/

	 97.	The Data Center of The Future, 2020, [Online]: https://www.forbes.com/sites/
insights-vertiv/2020/01/22/the-data-center-of-the-future/

	 98.	Data Center Industry Survey Results, 2018, [Online]: https://uptimeinstitute.
com/2018-data-center-industry-survey-results

	 99.	B. Snyder, J. Ringenberg, R. Green, V. Devabhaktuni, M. Alam, Evaluation and design
of highly reliable and highly utilized cloud computing systems. J Cloud Comput. 4(1),
1–16 (2015)

	100.	80% of businesses now require uptime of 99.99% from their cloud service vendors,
2018, [Online]: https://www.techrepublic.com/article/80-of-businesses-now-require-
uptime-of-99-99-from-their-cloud-service-vendors/

K. Liu et al.

http://www.f5.com
http://haproxy.1wt.eu
https://hadoop.apache.org/
https://questoraclecommunity.org/learn/blogs/oracles-2019-top-10-cloud-predictions/
https://questoraclecommunity.org/learn/blogs/oracles-2019-top-10-cloud-predictions/
https://www.forbes.com/sites/insights-vertiv/2020/01/22/the-data-center-of-the-future/
https://www.forbes.com/sites/insights-vertiv/2020/01/22/the-data-center-of-the-future/
https://uptimeinstitute.com/2018-data-center-industry-survey-results
https://uptimeinstitute.com/2018-data-center-industry-survey-results
https://www.techrepublic.com/article/80-of-businesses-now-require-uptime-of-99-99-from-their-cloud-service-vendors/
https://www.techrepublic.com/article/80-of-businesses-now-require-uptime-of-99-99-from-their-cloud-service-vendors/

	Chapter 6: Data Center Architecture, Operation, and Optimization
	6.1 Introduction
	6.2 Data Center Network Topologies
	6.2.1 Switch-Centric Data Center Network Topologies
	6.2.2 Server-Centric Data Center Network Topologies
	6.2.3 Data Center Network Topologies Originated from Interconnection Networks
	6.2.4 Optical Data Center Network Topologies
	6.2.5 Wireless Data Center Network Topologies
	6.2.6 Production Data Center Network Topologies

	6.3 Operations and Optimizations in Data Center Networks
	6.3.1 Data Forwarding and Routing
	6.3.2 Traffic Optimization
	6.3.2.1 Link-Based Scheduling
	6.3.2.2 Server-Based Scheduling

	6.4 Future Data Center Networks and Applications
	References

