Chapter 9)
GTSMorpher: Safely Composing et
Behavioural Analyses Using Structured
Operational Semantics

Steffen Zschaler and Francisco Duran

Abstract We are seeing an increase in the number of different languages and
design tools used for designing and implementing such systems, fuelled by research
in domain-specific modelling languages leading to increasingly more reliable and
production-ready environments for language-oriented programming (LOP). While
LOP has undeniable benefits for the efficiency and effectiveness of software
development, it creates new problems for software analysis: most existing analysis
tools are tied to a specific representation of the software to be analysed. LOP is
predicated on developing bespoke representations for each type of problem. This
requires analysis tools to be, at least partially, reimplemented and adapted for each
new such language.

One approach is to build transformations that compile a model in a given lan-
guage into a representation that can be handled by a given analysis tool (cf. Chap. 5
of this book). A key challenge here is to ensure that these transformations
correctly reflect the semantics of the original language in the analysis-tool-specific
representation. This is non-trivial and becomes even more challenging when more
than one analysis tool is to be applied to a given system design.

In this chapter, we present a different approach, where analyses are directly
represented as executable domain-specific modelling languages (XxDSMLs), making
their operational semantics explicit as graph-transformation rules. Powerful compo-
sition operations provide support for the independent and reusable development of
analysis tools and languages, which can then be woven at will. In previous work,
we have developed the formal foundations for this approach and have shown the
conditions under which such composition is safe, even when combining multiple
different analyses. In this chapter, we introduce GTSMorpher, a software tool
that allows xXDSMLs and their compositions to be expressed in the context of the

S. Zschaler (PX)
King’s College London, London, UK
e-mail: szschaler@acm.org

F. Durén
University of Mdlaga, Mdlaga, Spain
e-mail: duran@lcc.uma.es

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 189
R. Heinrich et al. (eds.), Composing Model-Based Analysis Tools,
https://doi.org/10.1007/978-3-030-81915-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81915-6_9&domain=pdf
mailto:szschaler@acm.org
mailto:duran@lcc.uma.es
https://doi.org/10.1007/978-3-030-81915-6_9

190 S. Zschaler, F. Durdn

Eclipse Modelling Framework. We demonstrate the use of GTSMorpher through
case studies.

This case-study chapter illustrates concepts introduced in Chap. 4 and addresses
Challenge 1 in Chap. 3 of this book.

9.1 Introduction

Quality properties of software-intensive systems are increasingly important. At
the same time, we are seeing an increase in the number of different languages
and design tools used for designing and implementing such systems, fuelled by
research in domain-specific modelling languages (DSMLs) leading to increasingly
more reliable and production-ready environments for language-oriented program-
ming (LOP) [War94]. LOP takes Naur’s insight that all programming is theory
building [Nau86] and follows it to its natural consequence, contending that software
should be developed in problem-specific languages rather than general-purpose
programming languages. While LOP has undeniable benefits for the efficiency
and effectiveness of software development, it creates new problems for software
analysis: most existing analysis tools are tied to a specific representation of the
software to be analysed. LOP, on the other hand, is predicated on developing
bespoke representations for each type of problem. This requires analysis tools to
be, at least partially, reimplemented and adapted for each new such language.

One approach is to build transformations that compile a model in a given lan-
guage into a representation that can be handled by a given analysis tool (cf. Chap. 5
of this book [Hei+21], [GMO04]). A key challenge here is to ensure that these
transformations correctly reflect the semantics of the original language in the
analysis-tool-specific representation. This is non-trivial and becomes even more
challenging when more than one analysis tool is to be applied to a given system
design.

In this chapter, we present an alternative approach, predicated on the idea that
modelling a language’s semantics explicitly—producing an executable domain-
specific modelling language (xDSML)—makes it possible to reason about these
semantics when developing analysis tools. We introduce GTSMorpher, a tool, and
DSML for specifying graph-transformation systems and their algebraic composi-
tion. We use graph transformations [Cor+97] to capture a language’s operational
semantics and then combine and reuse them with semantic guarantees. The ap-
proach indeed enables a modular approach to analysis (see Chaps. 4 and 5 of this
book [Hei+21]), in which different analyses can be combined into one modelling
language, so that different analyses can be enabled depending on what a project
requires.

Graph-transformation systems (GTSs) were proposed in the late seventies as
a formal technique for the rule-based specification of the dynamic behaviour of
systems [Ehr79]. Recent uses of GTSs in the context of model-driven engineer-
ing (MDE) have proposed more practical uses of different forms of parametric GTSs

9 GTSMorpher: Composing Behavioural Analyses 191

for reusing model transformations, and reusing and composing DSML definitions.
For example, in [LG13], de Lara and Guerra propose the use of transformation
templates expressed over metamodel concepts that can then be instantiated. A
metamodel concept defines structural requirements on a metamodel that allow a
transformation to be executed. Metamodel semantics are not captured by metamodel
concepts. In [DZT13, Dur+17], Duran et al. propose a more general form of
parametrised GTSs where the parameter is not just a type graph, but a complete
GTS, and where composition of GTSs is based on a GTS amalgamation construc-
tion. In the same way metamodel concepts gather the structural requirements, the
set of rules of parameter GTSs are behavioural requirements over the concrete GTSs
used in their instantiation. Thus, parametrised GTSs extend the metamodel concept
notion to include the behavioural semantics of the metamodels.

GTS morphisms (see, e.g., [Eng+97, Ehr+06, GPS98b, EHCO05]) are a key ingre-
dient of GTSs and GTS compositions. The use of GTS morphisms enables useful
syntactic and semantic guarantees. For example, morphisms are used in [LG13]
so that transformations can be guaranteed to be syntactically reusable. In the
case of [Dur+17], the use of suitable morphisms enables guarantees on behaviour
protection of amalgamated GTSs. However, graph morphisms and GTS morphisms
require a strong structural similarity between source and target graphs and GTSs,
which hinders their applicability.

The need for powerful and flexible mechanisms for relating GTSs, to broaden op-
portunities for GTS reuse, has been attempted to solve in different ways. In the case
of models, represented as graphs, this has been resolved more or less pragmatically
by supporting a specific, fixed set of adaptations to be applied prior to applying the
morphism (see, e.g., [LG13, Lar+07, DMC12, LG14]). To support complete GTSs,
rules must also be related in a flexible manner. In [GPS98a, GPS98b], Groe-Rhode
et al. introduce temporal and spatial refinement relations, in which rules are refined
into either sequences or amalgamations of rules. However, despite the introduction
of derived attributes and links as in [DMC12] or [LG14], and the behavioural
relations provided for GTS morphisms as in [Dur+17], we do not find a satisfactory
solution until the proposal of GTS families in [ZD17].

Often, even where there is an intuitive match, no morphism can be established,
due to structural mismatches. In [ZD17], Zschaler and Duran propose the use of GTS
transformers to refactor GTSs with the goal of resolving these mismatches between
source and target GTSs so that GTS morphisms can be defined. GTS transformers
are basically functions and can successively be applied to our source GTS to find the
one on which the morphism can be defined. This basic idea is systematised with the
notion of GTS families. Given a set of transformers T, the T-family of a GTS GTSy
is the set of GTSs reachable from GTSy using the transformers in 7. The problem
of defining a mapping morphism between a GTS GTS and a target GTS GTS; then
amounts to finding a GTS in the family of GTS(from which the morphism can be
defined. This way, the problem becomes a model-based search problem [Joh+19].
In this chapter, however, instead of blindly searching for such matches, we use the
capabilities of the GTSMorpher tool to specify the explicit transformation steps to
be applied.

192 S. Zschaler, F. Durdn

This approach offers a powerful reuse opportunity for model-based analysis tools
when systems are developed using xDSML-based specifications. The possibilities
for the modularisation of analyses as a parametrised GTS have been previously
shown in, e.g., [Dur+17]. In [Mor+14], Moreno-Delgado et al. showed how the
approach can be applied to reimplement the analysis provided by the Palladio simu-
lator (see [Reu+16] and Chap. 11 of this book [Hei+21]). However, while the theory
has been developed, for this approach to become practically viable, tool support
is required. In this chapter, we introduce GTSMorpher, a tool, and DSML for
specifying graph-transformation systems and their algebraic composition. We show
how GTSMorpher can be used to specify weavings of simple graph-transformation
systems as per [Dur+17] as well as of GTS families [ZD17]. A new case study in
Sect. 9.4 shows a reimplementation of the Karlsruhe Architectural Maintainability
Prediction (KAMP) approach [Ros+15] using the GTSMorpher tool. The tool
ensures the correctness of weaving specifications and outputs GTSs in the Henshin
format [Str+17] that can be executed or analysed further.

We have shown in previous work [Dur+17] that the same composition mech-
anism can also be used to combine multiple analyses on top of one xDSML.
For example, [DZT13] shows an example of capturing performance analysis in
this form. Generally, we encode analyses using the idea of history-determined
variables [AL94]—variables whose current value can be inferred from the current
and past values of other variables. In an MDE context, we encode these as observer
objects in our models, using additional Observer metaclasses or metaassociations
in the metamodel as suggested by Troya in [Tro+13]. This is combined with an
operational semantics expressed using graph-transformation rules specifying how
model state changes over time (which is similar to Abadi/Lamport’s temporal
logic of actions (TLA) [Lam94] approach). As in TLA, updates to the observers
(history-determined variables) are simply included in the update parts of the
graph-transformation rules giving the xXDSML’s operational semantics. This way,
properties such as performance, reliability, efficiency, etc. of a modelled system can
easily be read off at any point by inspecting the values captured by observer objects
and links.

In the remainder, Sect.9.2 gives a motivating example, which we will use in
Sect. 9.3 to introduce the GTSMorpher tool. In Sect. 9.4 we walk through a more
complex case study before concluding in Sect. 9.5.

9.2 Motivating Example

In this section, we present a simplified example of how a model-based analysis can
be modelled using an xXDSML in a way where this can be safely composed into
different XDSMLs and, thus, easily reused.

Consider the example of a simple xXDSML specifying production-line systems.
Figure 9.1 gives an overview of the language’s metamodel. It can be seen that in
the language we can specify production-line systems by connecting various types

9 GTSMorpher: Composing Behavioural Analyses 193

»
[E ProductionLineModel] EE Part]

[0..*] part

l J* 1

f T
[0..*] elts I |
[0..*] head [0..*] handle
| Eg NamedElement | [E i AR]
[name : EString I
A | J
[EE Container | [E Operator]
|] I J
ZF [0..1] tray
, | o |
| EE Machine [0..1] ou E Conveyor [0..1] tray E Tray]
| 4 4 J

[0..1] in

[| GenHead] [H GenHandle] { B Transformer 1

J J { J{ J
i

[|
[E Assembler] [E Polisher]

l) | J

Fig. 9.1 Metamodel for the PLS xDSML

of machines via different kinds of containers. Different kinds of parts are produced
and manipulated by the machines and transported via the containers. The operational
semantics of this XDSML can be captured using several graph-transformation rules.
Figure 9.2 shows such rules, specifying operational semantics of the production-
line system (PLS) language. In particular, the behaviour of the Polisher machine is
specified by the Polish rule (in the bottom right corner of Fig. 9.2). From these rules,

194 S. Zschaler, F. Durdn

=> Rule Assemble rﬁ Rule Pack

«preserve» parts _|«preserve» «preserve» «delete»
t:Tray «delete»” |he:Head t:Tray _%lrltst lh:Hammer|
arts «aelete»
«delet;i Egll:gs,serve» d |head
in45reser . «preserve» handle part% «delete»
«preserver [T part «delete» «delete
«preserve» ha:Handle «Createx» «preserve»
a:Assembler «preserve» tray pls:ProductionLineModel
pls:ProductionLineModel «preserve»
«createy|
\l/g'Flere ve» handle

preserve create parts «preserver «delete» rts «delete»
« » « »

c:Conveyor |__parts_-|h:Hammer. «create» o:Operator | |ha:Handle[STT= farts [he:Head |
«create» «deleter

L J J

=> Rule Move => Rule Polish

«preserve» «preserve» «preservex | “Preserve» arts
c:Conveyor |_tray t:Tray in t:Tray «deleter v
«preserve» r
«preserve» «preserve»
p:Polisher h:Part
«preserve» -
parts pl'Part " parts «preserve»
. |_out c:Conveyor arts
«delete» «cCreate» «preserve» «create»

L J \ J

=> Rule GenHead => Rule GenHandle

«preserve» «preserve» «preserve» «preserve»
ghe:GenHead pls:ProductionLineModel gha:GenHandle pls:ProductionLineModel
out\|/<<preserve» parts$ «create» out \|;<preserve>> parts$ «create»

«preserve» «create»

«preserve» parts :<create>> <_FZ: parts h:Hand!

c:Conveyor h:Head c:Conveyor :Handle
«create» «create»

L J \ J

Fig. 9.2 PLS’s rules expressed in Henshin [Str+17]. Henshin uses colour coding and textual labels
to compactly present all parts of a graph-transformation rule. Elements represented in grey (and
labelled preserve) are matched by the rule, but not changed. Elements in green (and labelled
create) are added, while elements in red (and labelled delete) are removed

we can, for example, generate a simulation of a given production-line system for
further analysis.

Let us now consider specifying an analysis of production-line systems. As a very
simplistic example, we will specify an analysis that allows to keep track of parts
manipulated by a specific machine. This can, for example, be used to track reliability
or performance of any given machine. Rather than changing the PLS xDSML to
introduce the relevant observer objects and associations directly, we want to specify
our analysis in a reusable format that can be woven into the PLS xDSML, but also
into other xDSMLs. Figure 9.3 shows how we might capture this in a metamodel.
Note the green association (made) indicating the new observer association we need
to add to the metamodel to capture elements manipulated by a given server. In the
following, we will consider everything in the metamodel not coloured in green

9 GTSMorpher: Composing Behavioural Analyses 195

[E Queue [0.*] elts E@ Element]

0.1 out | 0-11in Z[F |
[B server) \[H output] [H nput]
Fig. 9.3 Analysis metamodel
= Rule process
«delete» «create» made «create»
i:lnput 0:Output
delete»| elts «create» | elts
«preserve» kpreserve» [«preserve» out |«preserve»
i1g:Queue - s:Server «preserves 0qg:Queue

Fig. 9.4 Rule specifying the analysis based on the abstract server metamodel

the interface of our analysis xXDSML (and, technically, will annotate it with the
@Interface annotation). To compose our analysis into the PLS xDSML, we will
need to establish a mapping instantiating every interface concept with a concept
in the PLS metamodel. Figure 9.4 shows a rule specifying the semantics of our
analysis: whenever a Server produces a part on its out Queue, it will record this fact
by establishing a made link.

In Sect. 9.3, we introduce our GTSMorpher tool and show how it can be used to
specify these xDSMLs and their composition so that the analysis is included in the
result. After that, we will walk through a more complex analysis composition and
reuse case study.

9.3 The GTSMorpher Tool

In this section, we give a brief walk-through of GTSMorpher using the example from
Sect. 9.2, before we apply GTSMorpher to a new example of analysis composition
in the next section.

196 S. Zschaler, F. Durdn

GTSMorpher supports the formal specification and analysis of GTSs and mor-
phisms between them (GTS morphisms) as well as the automated composition
of GTSs based on GTS morphisms. This enables the existing theory on GTS
morphisms and GTS amalgamation to be applied to real-world GTSs, which would
otherwise be impractical as the size and complexity of even simple GTS specifi-
cations quickly make it difficult for a human to validate correctness or compute
amalgamations manually. In addition to this, GTSMorpher provides a number of
features to simplify the specification of GTS morphisms and amalgamations: Code-
completion support makes it easier to correctly reference various constituent parts
of a GTS, while morphism auto-completion, interface morphisms, and GTS-family
support [ZD17] allow very compact specifications of complex morphisms and
amalgamations. Where analyses are specified as GTSs (or xDSMLs), GTSMorpher
supports the automated weaving of analyses into arbitrary xXDSMLs, enabling
analysis reuse across DSMLs.

To support the specification of GTSs and GTS morphisms, GTSMorpher pro-
vides a textual DSML for specifying algebraic manipulations of GTSs. A GTS
is encoded as a type graph (an Ecore metamodel [Ste+09]) and, optionally, a
module of Henshin graph-transformation rules [Str+17]. GTSMorpher supports
the specification of plain GTSs as well as GTS families [ZD17], as well as the
expression of GTS morphisms and GTS amalgamations [Dur+17], which can
be reused as inputs for further morphism and amalgamation definitions. GTSs
produced from any GTSMorpher specification can be exported as Ecore metamodels
and Henshin modules for use in further analysis and execution. GTSMorpher has
been developed in the Xtext language workbench and can be obtained from its
Github repository.'

The foundation of safe composition of GTSs lies in the notion of GTS
morphisms—mappings between the elements of two GTSs that ensure the structure
of the GTSs is preserved. We, therefore, start by showing how a GTS morphism is
expressed in the GTSMorpher DSML. On top of GTS morphisms, we can weave
GTSs by computing the pushout of a suitable span of GTSs and GTS morphisms.
In this section, we show how this can be expressed and controlled in GTSMorpher.

9.3.1 Specifying GTS Morphisms

GTSs and GTS morphisms are expressed in .gts files. These are text files using the
syntax below (syntax completion is available throughout the Eclipse editor).

1 GTSMorpher is available at https://github.com/gts-morpher/gts_morpher.

https://github.com/gts-morpher/gts_morpher

9 GTSMorpher: Composing Behavioural Analyses 197

Basic GTS Syntax

The easiest way to specify a GTS is through a GTS literal as below:

gts PLS {
metamodel: "pls"
behaviour: "plsRules"

}

Here, PLS can be an arbitrary, optional name for the GTS that may later be used
to reference the GTS. The metamodel clause references an Ecore package defining
the metamodel of the GTS. The behaviour clause references a Henshin module the
rules of which are considered to be the rules of the GTS. It is acceptable to leave
out the behaviour clause. Some alternative forms of specifying GTSs exist; these all
differ primarily by what is specified between the curly braces: we will discuss GTS
families and GTS amalgamation later.

Any GTS specification may be annotated with two modifiers:

1. export: This annotation indicates that the .ecore (and optionally the .henshin) file
of the GTS should be generated into the src-gen/ folder of the containing Eclipse
project.

2. interface_of : These GTSs are formed from the original metamodel and rules by
only considering a sub-GTS typable over the metamodel elements explicitly
annotated with @Interface. This is particularly useful for GTS amalgamation as
described below.

Finally, a GTS specification can reference another named GTS. This is particu-
larly useful when referencing a pre-defined GTS from a mapping specification.

Basic Morphism Syntax

A GTS morphism is specified as a mapping between two GTSs, using a map clause
as shown in Listing 9.1.

Here, from and to each specify a GTS. The block in curly braces after from and
to is actually a GTS specification (see above) with the gts keyword left out.

The mandatory type_mapping section describes the type-graph morphism part
of the GTS morphism by providing a clan morphism between the two metamod-
els [Lar+07]. This is achieved through a list of mapping statements that map a class,
reference, or attribute.?

Similarly, the optional behaviour_mapping section describes rule mappings. If the
GTSs do not have rules, the behaviour_mapping clause should also be left out and the
file only specifies a clan morphism between the metamodels. Each rule mapping is
started using the keyword rule followed by the name of the rule in the source GTS,

2The careful reader will have noticed the metaclasses InputQueue and OutputQueue being
referenced here. These will be explained later, when we introduce the definition of GTS families.

198
map {
from interface_of {
Server
}
to {
metamodel: "pls"
behaviour: "plsRules"

}

type_mapping {

}

class server.
class server.
class server.
// reference
// attribute

//

Server => pls.Polisher
InputQueue => pls.Tray
OutputQueue => pls.Conveyor
YYY => XXX

YYYy => XXX

behaviour_mapping {

}
}

rule process
object
object o =>
object s =>

to polish {

iq => t

pt2
p

object oq => ¢

link [s—>iq

link [ogq—>o0:
link [ig—>i:
link [s—>o0q:

object i =>

}

:in] => [p—>t:in]

elts] => [c—>pt2:parts]
elts] => [t—>pt:parts]
out] => [p—>c:out]

pt

Listing 9.1 Syntax for specifying GTS morphisms

S. Zschaler, F. Durdn

the keyword to, and the name of the rule in the target GTS. Each rule mapping again
contains a list of mappings for objects, links, and slots (attribute constraints) in the
rule as well as for rule parameters.

Extensive validation is performed for any mapping specification, including
to check whether it represents a (potential) GTS morphism. Eclipse error and
warning markers provide information and hint about the results of these checks.
Slot mappings are considered valid if the associated expressions are syntactically
identical, subject to parameter renaming.

9 GTSMorpher: Composing Behavioural Analyses 199

Morphism Auto-Completion and Unique Auto-Completion

The system will create error markers if type or behaviour mappings are not
complete. As it can be quite tedious to type out all parts of the mapping, it is
possible to ask the system to automatically complete a partial mapping by adding
the keyword auto—complete at the start of the specification:

auto—complete map { ... }

As long as the mappings specified do not break the conditions for a GTS mor-
phism, the system will attempt to complete the morphism automatically. The user
can request for the completed morphisms to be exported as .gts files for inspection.
Auto-completion uses a backtracking algorithm tentatively adding mappings and
checking if morphism properties are still maintained. Mappings are not selected
randomly: the structure of the metamodel and rules and existing mappings are taken
into account to identify mappings that are likely to maintain morphism properties.

Users can claim that only a unique auto-completion to a morphism exists by
adding the unique keyword:

auto—complete unique map { ... }

Checking whether a unique auto-completion exists is expensive as it may require
searching the complete space of possible mappings (as opposed to checking if a
completion is possible, where we can stop once one completion has been found). To
avoid interfering with the editing experience, GTSMorpher will initially only add a
warning marker to the unique keyword to show that this claim has not been checked
yet. To check unique completability, users must explicitly request a validation.
If auto-completion is not unique, an error marker will be added to the file. This
provides quick-fix suggestions for mappings to add to sufficiently constrain the
possible auto-completions. Suggestions are provided in order of potential impact;
the top suggestion should offer the quickest path to unique auto-completion.

Mapping with Virtual Rules

When a rule in the source GTS cannot be mapped to any rule in the target GTS, it
can be mapped to a virtual rule, automatically generated by GTSMorpher. This is
useful, for example, where we want to produce amalgamations that introduce new
rules into an existing GTS. In such a case, there is no rule that can be mapped
to, but the amalgamation still requires a complete morphism. Mapping a rule to a
virtual rule is indicated using a rule mapping of the following form (we will call
such mappings “to-virtual mappings”):

rule init to virtual

Note that virtual is a language keyword, rules named “virtual” are not supported.
From such a rule mapping, GTSMorpher will generate a virtual rule with the same

200 S. Zschaler, F. Durdn

structure as the source rule and use that in the mapping. Note that to-virtual rule
mappings cannot specify any element mappings; these are all implicit, because the
rule is dynamically generated only when needed. At the same time, there is only one
valid mapping between source rule and virtual rule, so there is no need to specify
any explicit element mappings.

Mapping to arbitrary virtual rules may affect behaviour-preservation properties
of the morphism [Dur+17]. To ensure behaviour in the target GTS is preserved, it
is possible to constrain virtual rules to be identity rules; that is their left- and right-
hand sides must be identical. Adding an identity rule to a GTS does not change the
behaviours modelled apart from adding stuttering steps. Only identity rules can be
mapped to virtual identity rules, of course, and the tool will check this. To specify a
rule mapping to a virtual identity rule (a “to-identity rule mapping”) the following
form of rule mappings should be used (where init is the name of a rule in the source
GTS):

rule init to virtual identity

Note that the word identity is a keyword in the morphism language. It is therefore
not possible to map rules named “identity”.

Where possible, auto-completion will consider completing by introducing to-
virtual or even to-identity rule mappings. This behaviour can be restricted by
claiming auto-completion is possible using only to-identity rule mappings or
without using to-virtual mappings at all, to ensure behaviour preservation:

* auto—complete to—identity—only map { ... } claims that only to-identity mappings
might need to be introduced.

* auto—complete without—to—virtual map { ... } claims that no to-virtual mappings
will need to be introduced to complete the morphism.

Conversely, rule mappings can be established from virtual empty source rules.
This is useful where the target GTS contains rules that cannot be matched by
any of the source rules—for example where the target GTS contains more rules
than the source GTS, as is the case when reusing the specifications of non-
functional properties as described in [DZT13]. There is no need to consider identity
source rules or any other more complex source rules: For empty source rules rule
morphisms trivially exist.

A rule mapping from an empty source rule (a “from-empty rule mapping”) is
defined as follows:

rule empty to do

where do is the name of a rule in the target GTS. empty is a keyword in the language
and cannot be the name of a rule.

Auto-completion can consider introducing from-empty rule mappings automat-
ically. Note that this is very likely to reduce the chances of producing unique
auto-completions as from-empty mappings can be trivially introduced and can be
trivially complemented with to-virtual mappings to ensure all rules in both GTSs
have a mapping. In order to produce more intuitive behaviour, GTSMorpher will

9 GTSMorpher: Composing Behavioural Analyses 201

gts_family ServerFamily ({

{

metamodel: "server"
behaviour: "serverRules"
transformers: "transformerRules"

}
Listing 9.2 Syntax for specifying GTS families

(1) not try to introduce from-empty mappings if a mapping with an actual source
rule can be found, and (2) only try to introduce from-empty rule mappings if
explicitly instructed to do so. The following syntax allows from-empty mappings
to be included:

auto—complete allow—from—empty map { ... }

9.3.2 GTS Families

You can specify that the source or target of a GTS morphism should be taken
from a GTS family by providing the definition of the family and the sequence
of transformers to apply to the family’s root GTS when picking the GTS you
actually want. GTS families are described in more detail in [ZD17]. Intuitively, the
T-GTS family of a GTS GTSy is the set of GTSs reachable from GTSp using the
transformers in T.

To specify a GTS family, replace the GTS specification with one that follows
the format shown in Listing 9.2. In it, metamodel and behaviour describe the root
GTS of the family as usual. Although the transformers introduced in [ZD17] can be
specified in different ways, here we restrict ourselves to transformers specified using
Henshin rules. transformers references a Henshin module (typed over Ecore and
Henshin) with the transformer rules of the GTS family. GTS family specifications
can be used anywhere a GTS is expected.

We can then specify a specific GTS in this family by specifying the sequence
of transformers to be applied on the root GTS of the family. Listing 9.3 shows this
in an example. AdaptedServer picks a specific variant of our Server GTS that can be
mapped cleanly onto the PLS xXDSML. The using clause indicates the sequence of
transformer applications, including their actual parameters, to be used in deriving
the correct GTS from inside the family. Specifically, it introduces the separate
InputQueue and OutputQueue subclasses of Queue that are needed for mapping to
Tray and Conveyor. We do not show the transformers used in this example here. These

202 S. Zschaler, F. Durdn

gts AdaptedServer {
family: ServerFamily

using [
addSubClass (server.Queue, "InputQueue"),
addSubClass (server.Queue, "OutputQueue"),
reTypeToSubClass (serverRules.process , server.Queue,

server . InputQueue, "iq"),
reTypeToSubClass (serverRules.process , server.Queue,
server . OutputQueue, "oq"),

mvAssocDown (server.Server.in, server.InputQueue),
mvAssocDown (server.Server.out, server.OutputQueue)

1
}

Listing 9.3 AdaptedServer is a GTS in the ServerFamily GTS family

gts ServerPLS {
weave (dontLabelNonKernelElements , preferMap2TargetNames): {
mapl: interface_of (AdaptedServer)
map2: Server2PLS
}
}

Listing 9.4 Syntax for GTS amalgamation

can be found on the GTSMorpher repository. Examples of some other transformers
will be shown later.

9.3.3 GTS Amalgamation

Once a valid morphism has been described (either as a complete map or by using
unique auto-completion), GTS amalgamation can be performed (as per [Dur+17]).
Where the source GTS is declared using interface_of , amalgamation will assume an
inclusion to be defined by the @Interface annotations.

GTS amalgamation is specified in a special form of GTS specification shown
in Listing 9.4. map1 and map2 are expected to, together, define a span; that is both
mappings must have the same source GTS. No further checks of the morphisms
are undertaken, and no guarantees are given w.r.t. semantics preservation of the
amalgamation step (although we are working on supporting this in future versions of
GTSMorpher). Both mapl and map2 can be defined either by referencing an existing
named mapping or by using the interface_of keyword.

The weave clause can be extended with parameters specifying the rules to use
when generating names for the amalgamated model elements. By default, weaving

9 GTSMorpher: Composing Behavioural Analyses 203

will preserve the names of all model elements that contributed to a given woven
element. If these names are all identical, the new model element will have the
same name. Otherwise, all names will be joined together using underscores as the
separator. Names of model elements that are not mapped from the kernel GTS will
be prefixed with left__ (for mapl) or right__ (for map2), respectively, to indicate
their provenance. Through parameters, weave can be instructed to give preference
to names defined in one of the GTSs involved. If any naming option leads to names
that are not unique within their scope, the weaver will fall back to the default naming
strategy for these elements. The choices we have made in the example above will
result in the woven xDSML to use the PLS names wherever possible.

9.4 An Application Example

This section shows how the mechanisms introduced in the previous sections may be
useful in the development of generic tools with minimal effort. Specifically, we il-
lustrate how to exploit the capabilities of GTSMorpher by developing an alternative
implementation of the Karlsruhe Architectural Maintainability Prediction (KAMP)
approach [Ros+15]. KAMP evaluates the maintainability of IT systems based
on the metamodel of their architectures. More precisely, assuming a component-
based architecture, and given an initial request for change, it predicts the change
propagation in the software architecture model. In the KAMP approach, components
are considered black boxes. Although no knowledge about component internals is
required, the model of the software architecture is supposed to include information
on both technical and organisational tasks—including source code files, test cases,
build configurations, etc.—and contain explicit interface specifications that bind
them in the software process. This information and change propagation rules are
then used by KAMP to calculate the change propagation in the software architecture
automatically. As a result of the process, KAMP gives a list with all the structural
and organisational tasks to execute the change request.

A complete implementation of the approach requires a detailed distinction of
elements and tasks, so that specific and friendly information is provided to the final
user. However, the core of the tool is quite simple; it just “taints” those elements
affected by a given change. By using the propagation rules, this “tainting” of
elements leads to the identification of all elements affected by an initial change
request. However, given a DSML description, possibly including both a metamodel
and transformation rules describing its behaviour, the application of the approach
would require the modification of the model on which the propagation is to be
performed. This is, for example, the approach followed to implement the technique
on the Palladio system (cf. [Ros+15]).

To define the KAMP approach generically, so that we can apply it to any DSML
description, we just need the possibility of tainting elements and propagating such
tainting. In other words, the KAMP approach is defined just by the DSML defined
by the metamodel in Fig.9.5 and the propagation rule in Fig.9.6. To be able to

204 S. Zschaler, F. Durdn

[E Taintable

[tainted : EBoolean = false

~— 1 J

| |
B T] [B e]

)
1 |
[0..1] target
Fig. 9.5 KAMP’s metamodel (kamp)

)
=> Rule propagate

target

s:Source t:Target

O tainted=true o tainted=false->true

. J

Fig. 9.6 KAMP’s rules (kampRules)

propagate the tainting on any specific system, we just need to be able to instantiate
the KAMP DSML on the specific places on which change is propagated in the
system. The good news is that we only need to indicate the specific propagation
points, since the propagation will happen always in the same way. Even more, we
can assure that the modified system thus obtained behaves in exactly the same as the
original system.

9.4.1 Making PLS Taintable

Instead of using a complex system, we show in the rest of the section how to apply
the KAMP approach to the PLS language introduced in Sect.9.2. To do it, we
need to first extend the PLS language so that elements may be tainted, and then
introduce the propagation rules on any specific propagation point. Notice that if
the attribute was introduced together with the propagation rules, we would get a
different attribute on each instantiation. Instead, we first introduce the attribute, a
boolean attribute tainted, and then each propagation rule operating on such same
attribute. With the machinery provided by GTSMorpher this is very simple. We just

9 GTSMorpher: Composing Behavioural Analyses 205

[] Element]

l [tainted : EBoolean = false J

Fig. 9.7 Taintable’s metamodel (taintable)

auto—complete unique allow—from—empty map ITaintable2PLS ({
from interface_of { Taintable }
to PLS

type_mapping {
class taintable .Element => pls.NamedElement
}

}

Listing 9.5 GTS morphism to enable PLS to become taintable

need a GTS with the metamodel depicted in Fig. 9.7 and no rules. In this metamodel,
the only element not annotated with @ Interface is precisely the tainted attribute.

gts Taintable {
metamodel: "taintable"

}

To be able to taint any element of the PLS language we just need to instantiate the
generic Taintable GTS with the PLS, and specifically by mapping the Element class
to the NamedElement class, thus giving the tainted attribute to all named elements of
the PLS. Given the PLS GTS defined as

gts PLS {
metamodel: "pls"
behaviour: "plsRules"

}

we can instantiate the Taintable generic GTS just by providing the GTS morphism
ITaintable2PLS from the GTS interface_of {Taintable} to the PLS GTS that maps the
class Element to the class NamedElement as shown in Listing 9.5. Notice the use
of the allow-from-empty directive. GTS morphisms require injective and surjective
mappings between the two rule sets. That is, for each rule in the target GTS—the
PLS in this case—we need a rule in the source GTS. Since there are no rules in
the interface of the Taintable GTS, empty rules are used instead. To simplify the
exhaustive definition of these mappings, the combined use of the allow-from-empty
and auto-complete directives automatically generates all these required mappings.

Given the ITaintable2PLS morphism and the inclusion of the interface of Taintable
into itself, the amalgamation GTS TaintablePLS is constructed as shown in List-
ing 9.6.

206 S. Zschaler, F. Durdn

export gts TaintablePLS {
weave (dontLabelNonKernelElements , preferMap2TargetNames): {
mapl: interface_of (Taintable)
map2: ITaintable2PLS

}
}

Listing 9.6 Constructing TaintablePLS

The TaintablePLS GTS is as the PLS GTS but with an additional attribute tainted
in the NamedElement class, which is inherited by all its subclasses, which can now
be “tainted”.

9.4.2 Adding Taint Propagation

The following step is to instantiate the KAMP GTS with the PLS using different
mapping morphisms specifying the different links on which we want to propagate
the tainting. Notice that now the tainted attribute is part of the interface, and
therefore, it will be mapped into the homonymous attribute in the TaintedPLS GTS.
In what follows we are going to carry on several instantiations to illustrate different
cases.

The KAMP GTS Family

Assume we are interested in specifying change propagation due to the parts being
generated. If a machine changes, the tray on which the parts generated by it are
placed requires change. The transformers taking parts from such trays, as well as
operators, will also need to adjust to change. This change needs to be propagated
along the structure of specific instance models, since the change required by a
machine implies the change on a subsequent tray, which changes transformers and
operators taking parts from them. In turn, change in these transformers, which are
themselves machines, will require change in subsequent trays, transformers, and
operators. Notice however that the conveyors between machines and trays do not
require change, since they are just moving bands to transport objects. Given the
nature of the KAMP approach, tainting may be propagated as required using the
relations between these elements. First, we need to define the KAMP GTS:

gts kampGTS {
metamodel : "kamp"
behaviour: "kampRules"

9 GTSMorpher: Composing Behavioural Analyses 207

However, these relations are not always direct, nor mimic the pattern provided by
the KAMP rules. In other words, no morphism can directly be defined for any of
these links, and therefore all these instantiations require the introduction of GTS
transformers through appropriate GTS families.

Consider for example the in association of the Machine class. In the KAMP’s
propagation rule, the tainting goes from Source to Target, whilst we are interested in
the opposite direction for the in association of the Transformer class, since we want
it to propagate from the tray objects to the subsequent transformers taking pieces
from them. The same situation is found for the tray association of the Operator class.
Moreover, the multiplicity of this association is 0..*, whilst the target association
of the Source class in KAMP’s metamodel (see Fig.9.5) has multiplicity 0..1.
Finally, the relation between a machine and its subsequent tray is not direct, since
it happens through an intermediate conveyor. Of course, we could define a more
general metamodel with alternative cases and corresponding alternative rules, but
we do not need to. This is precisely the reason for transformers and families, to be
able to specify the nature of an abstraction as the one provided by KAMP, manage
the variability of situations through transformers, and then adjust the source GTS so
that the instantiation may take place.

Figures 9.8, 9.9, and 9.10 define several transformer rules. The addPathElement
transformer allows us to introduce an intermediary class between the source and
target classes; the reverseReference transformer allows us to reverse a link; and
adjustMultiplicity allows us to change the multiplicity of a link. Although some famil-
iarity with Henshin’s metamodel and with its way of specifying transformation rules
is required to understand them, these rules just define changes on the metamodels
and rules of the GTSs on which they are applied. For example, the adjustMultiplicity
rule just specifies a change in the multiplicities of the reference specified as
parameter. The most complex one of these three transformers is the addPathElement
one. Given an EReference instance srcRef, between a source class srcClass and a
target class tgtClass, it introduces a new class newClass as target of srcRef, and a new
reference newRef from this newClass to tgtClass. Correspondingly, all those rules in
which the reference appears are modified introducing new intermediate nodes of
class newClass appropriately linked.

The KAMP family is then defined as the family of GTSs reachable from the
KAMP GTS using the transformer rules. In general, one would want to provide a
set of general transformers and expect the GTSMorpher tool to search for the right
version of the source GTS so that the instantiation may take place. Instead, here, we
explicitly control the application of transformers as pointed out above.

gts_family KAMPFamily {
kampGTS
transformers: "transformerRules"

208

S. Zschaler, F. Durdn

$ Rule addPathElement(in srcRef:EReference, in newClassName EString, in newRefName:EString, in newNodeName:EString, i...

des

reserve*/rules/no

{

TS

«create*/rules/node

CEIESERES «preserver»
:EAnnotation <<zresetrvg>> rcRef-EReference
—" " eAnnotations - eStructuralFeature
1 source="Interface’ = lowerBound=Ib
«preserve»
= upperBound=ub
«preserve*/rules/nodes» <preserve’ /rules/nodes» type
nodes = :Node - «preserve»
«preserje*/rules/node ¥rcClass:EClass
type
«preserve*/rules/node}», eClassifiers eType
. ource «preserve» «create»
«preserve*/ryles/nodes» «preserve*/rules/nodes
* edges T «preserve»
«preserve* frules» «preserve*/rules/nodes» «crdate® /rules /noderpck:EPackage
lhs:Graph :Edge
target
eClassifiers
0 ? «create»
nodes «create*/rules/nodes»
«create*/rules/nodes» target «create”/rules/nodes» | origin | |:Node
" Jdelete* /rules/nodes» = name=newNodeName
nodes «preserve* /rules /nodes»
«preserve*/rules/nodes: ‘Node type
type . «create*/rules/nodps»
«preserve*/rules/nodes;
origin «create»
«preserve*/rules/node$» N sourde newClass:EClass !
«dreate*/rules/nodgsh
N target| = name=newClassName |€—
«create*/rules/nodek» -
Q eAnnotation,
edges «create* frules/nodes» [«create» «create»
«create*/rules/nodes» :Edge £S D
T TTYPG :EAnnotation
«(lelete» . "
lhs tybe Interface
«preserve*/rules» . Y|
«create*/rules/nodeg»
«create»
newRef:EReference
- R «create*/rules/nodes»
«preserve®rules» mappings :Mapping — = name=newRefName
<> H
:Rule >
«create*/rdles/node = lowerBound=Ib
0 0 =1 upperBound=ub
type & .
ion
. «preserve*/rules/nodesp «eAnprations
mappings «create»
«preserve*/rules/nodes» pe ree'llpe))e :EAnnotation
«
- «preserve*/ruled/npdeg» "
«preserve*/rules/nodes» 1 source="Interface
:Mapping
rhs imadge «preserve»
«preserve*/rules» «create*/rules/nodesp tgtClass:EClass
mage —>
«presgrve* frilec/node type
«preserve* frules/nodes» «create*/rules/nodeg»
nodes .
‘Node tylpe!
«preserve*/rules/nodes» Jpe «create*/rules/nodesp
«preserve*/rules/nodes»
source
«preserve*/rules/node¢» |
«preserve”/rules /nodes» «create™/rules/nodes»
‘Edge :Node
«preserve*/rules/nodes» =1 name=newNodeName
d target
edges * $
9 nodes karget «create*/rulesj/nodes» urce
‘ «create*/rules/nodes» «delete*/rules/nodes» &HESte /rules/n
«preserve*/rules» «preserve*/rules/nodes» «create*/rules/nodes» [
rhs:Graph nodes :Node target iEdge |
>

edges
«create*/rules/nodes»

Fig. 9.8 addPathElement transformer (transformerRules)

9 GTSMorpher: Composing Behavioural Analyses 209

Rule reverseReference(in ref:EReference)

target eStructuralFeatures
srcNode:Node «create*» «delete» eType . SrcClass:EClass
source e
«delete*» «create»

type
e:Edge P ref:EReference
d ltir?et «create» -
o «aelete™ o
tgtNode:Node b/ source eType| eStructuralFeaturestgtClass:EClass
«Create*» «delete»

. J

Fig. 9.9 reverseReference transformer (transformerRules)

$ Rule adjustMultiplicity(in ref:EReference, in Ib:Elnt, in ub:Elnt, var origLb:Eint, var origUb:EInt)

ref:EReference
= lowerBound=origLb->Ib

= upperBound=origUb->ub

. J

Fig. 9.10 adjustMultiplicity transformer (transformerRules)

Instantiating the Propagation Rules

To propagate the tainting from a machine to its subsequent tray, we can use the
addPathElement transformer. Basically, this transformer modifies the source GTS
by introducing a new class between two classes linked by some association and
updates any rules referencing this association. This transformer takes as arguments
the name of the association to operate on, plus identifiers for the new class, reference
and node, together with the multiplicity for the additional association. The following
GTS PatternMachineOutTray (cf. Listing 9.7) is the result of applying this transformer
on the target association of the Source class using the addPathElement transformer
of the KAMPFamily family.

export gts PatternMachineOutTray {
family : KAMPFamily
using [
addPathElement(kamp. Source . target , "newClass", "newRef",
"newNode", 0, 1)

}

Listing 9.7 Constructing PatternMachineOutTray

210 S. Zschaler, F. Durdn

auto—complete unique allow—from—empty
map IPatternMachineOutTray2TaintablePLS {
from interface_of { PatternMachineOutTray }
to TaintablePLS

type_mapping {
class kamp.Source => pls.Machine
class kamp. Target => pls.Tray
}
}

Listing 9.8 A morphism from PatternMachineOutTray to the taintable PLS, ready for weaving
tainting

export gts TaintedPLSMachineOutTray {
weave (dontLabelNonKernelElements , preferMap2TargetNames): {
mapl: interface_of (PatternMachineOutTray)
map2: I[PatternMachineOutTray2TaintablePLS

}
}

Listing 9.9 Constructing TaintedPLSMachineOutTray

All elements in KAMPS’s metamodel are annotated as interface. New elements

introduced by transformers are also annotated as interfaces. To construct new GTSs
as a result of the amalgamation of previously defined GTSs, we need to define mor-
phisms from a kernel interface to the system on which we wish to act, in this case the
TaintablePLS GTS that resulted from the previous amalgamation. The instantiating
morphism can now be defined from the interface of the PatternMachineOutTray GTS
to the TaintablePLS GTS as shown in Listing 9.8.
Notice the use of the auto-complete directive, with which the mapping for other
elements in the interface sub-GTS is automatically calculated. In particular, notice
that we do not need to provide an explicit mapping for the new path element
introduced. Notice also the use of the allow-from-empty directive as above.

We can now amalgamate this morphism and the inclusion of the interface of
the PatternMachineOutTray GTS into itself to generate the TaintedPLSMachineOutTray
GTS as shown in Listing 9.9.

The in link of the Transformer class goes from Transformer into Tray. However,
we want the tainting to propagate following the inverse direction. We can get
the required instantiation of the propagation rule by using the reverseReference
transformer rule to reverse the link in the source rule. As before, once the source
GTS is obtained we can define the morphism and then the amalgamation GTS (cf.
Listing 9.10).

The tray link of the Operator class presents a new challenge. So far, we just needed
to apply one transformer to be able to build the required morphism, but in this
case, we need to both reverse the link and change its multiplicity. We just need

9 GTSMorpher: Composing Behavioural Analyses 211

export gts PatternTransformerIn {
family : KAMPFamily
using [
reverseReference (kamp.Source.target)
1
}

auto—complete unique allow—from—empty
map PatternTransformerIn2PLSMachineOutTray {
from interface_of { PatternTransformerln }
to TaintedPLSMachineOutTray

type_mapping {
class kamp.Target => pls.Transformer
class kamp.Source => pls.Tray

}
}

export gts TaintedPLSTransformerln {
weave (dontLabelNonKernelElements , preferMap2TargetNames): {
mapl: interface_of (PatternTransformerln)
map2: PatternTransformerIn2PLSMachineOutTray
}
}

Listing 9.10 Construction of the TaintedPLSTransformerln GTS

to specify the sequence of transformers that lead to the intended target as shown in
Listing 9.11.

9.4.3 The Final Taint-Propagating PLS

After the consecutive instantiation of the Taintable GTS and of the KAMP GTS
on the specific links specified in the morphisms, we get an extended PLS GTS in
which the metamodel includes a tainted attribute in the NamedElement class and
propagation rules propagating the tainting along the links between named elements.
The extended PLS protects the semantics of the original PLS language, but in
addition it now provides this additional functionality to identify the part of the
model affected by any potential change as specified. In addition to the original
rules in Fig.9.2, the extended PLS GTS now also includes the rules depicted in
Fig.9.11. The application of these rules on an instance model in which some element
is tainted, specifying a change, would result in an instance model in which all
elements affected by the change are tainted, in accordance to the specified tainting
propagation rules.

212 S. Zschaler, F. Durdn

export gts PatternConveyorTray {
family : KAMPFamily
using [
adjustMultiplicity (kamp.Source.target, 0, —1),
reverseReference (kamp.Source.target)
1
}

auto—complete unique allow—from—empty
map PatternOperatorTray2TaintedPLSConveyorTray {
from interface_of { PatternConveyorTray}
to TaintedPLSTransformerln
type_mapping {
class kamp.Source => pls.Tray
class kamp. Target => pls.Operator
}
}

export gts TaintedPLSOperatorTray {
weave (dontLabelNonKernelElements , preferMap2TargetNames): {
mapl: interface_of (PatternConveyorTray)
map2: PatternOperatorTray2TaintedPLSConveyorTray
}
}

Listing 9.11 Constructing TaintedPLSOperatorTray

' 3\
=> Rule propagate
r
t:Operator tray s:Tray
o tainted=false->true 1 tainted=true
| J
' 3\
j Rule propagate_1
in
t:Transformer s:Tray
o tainted=false->true o tainted=true
| J
' N\
j Rule propagate_2
) out tray
s:Machine newNode:Conveyor t:Tray
1 tainted=true 1 tainted=false->true
- J

Fig. 9.11 The amalgamation adds these four rules to the behaviour of the PLS

9 GTSMorpher: Composing Behavioural Analyses 213

9.5 Conclusions and Outlook

In this chapter, we have shown a tool and case study showing how the explicit speci-
fication of a language’s operational semantics with graph transformations can make
it possible to reuse analysis techniques for different domain-specific modelling
languages. This approach allows the reuse of analysis techniques across different
domain-specific languages reducing the effort required for different domains to
benefit from particular analysis expertise. Because it enables a modular approach
to analysis (as discussed also in Chaps.4 and 5 of this book [Hei+21]), different
analyses can be combined into one modelling language, so that different analyses
can be enabled depending on what a project requires.

References

[AL94] Martin Abadi and Leslie Lamport. “An Old-Fashioned Recipe for Real Time”. In: ACM
Transactions on Programming Languages and Systems 16.5 (Sept. 1994), pp. 1543—
1571.

[Cor+97] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel,
and Michael Lowe. “Algebraic approaches to graph transformation I: Basic concepts
and double pushout approach”. In: Handbook of Graph Grammars and Computing by
Graph Transformation, Volume 1: Foundations. 1997. Chap. 3.

[DMC12] Zinovy Diskin, Tom Maibaum, and Krzysztof Czarnecki. “Intermodeling, Queries, and
Kleisli Categories”. In: Conf. Fundamental Approaches to Software Engineering. 2012,
pp. 163-177. https://doi.org/10.1007/978-3-642-28872-2_12.

[Dur+17] Francisco Duran, Antonio Moreno-Delgado, Fernando Orejas, and Steffen Zschaler.
“Amalgamation of Domain Specific Languages with Behaviour”. In: Journal of Logical
and Algebraic Methods in Programming 86 (1 2017), pp. 208-235. https://doi.org/10.
1016/j.jlamp.2015.09.005.

[DZT13] Francisco Durdn, Steffen Zschaler, and Javier Troya. “On the Reusable Specification
of Non-functional Properties in DSLs”. In: 5th Int’l Conf. on Software Language
Engineering, SLE. 2013, pp. 332-351. https://doi.org/10.1007/978-3-642-36089-3_19.

[EHCO5] Gregor Engels, Reiko Heckel, and Alexey Cherchago. “Flexible Interconnection
of Graph Transformation Modules”. In: Formal Methods in Software and Systems
Modeling. 2005, pp. 38-63. https://doi.org/10.1007/978-3-540-31847-7_3.

[Ehr+06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals
of Algebraic Graph Transformation. Springer, 2006. https://doi.org/10.1007/3-540-
31188-2.

[Ehr79] Hartmut Ehrig. “Introduction to the algebraic theory of graph grammars”. In: /st Graph
Grammar Workshop. 1979, pp. 1-69. https://doi.org/10.1007/BFb0025714.

[Eng+97] Gregor Engels, Reiko Heckel, Gabriele Taentzer, and Hartmut Ehrig. “A Combined
Reference Model- and View-Based Approach to System Specification”. In: Interna-
tional Journal of Software Engineering and Knowledge Engineering 7.4 (1997), pp.
457-4717. https://doi.org/10.1142/S0218194097000266.

[GMO4] Vincenzo Grassi and Raffaela Mirandola. “A Model-driven Approach to Predictive Non
Functional Analysis of Component-based Systems”. In: Proc. Workshop on Models for
Non-Functional Aspects of Component-Based Software. 2004.

https://doi.org/10.1007/978-3-642-28872-2_12
https://doi.org/10.1016/j.jlamp.2015.09.005
https://doi.org/10.1016/j.jlamp.2015.09.005
https://doi.org/10.1007/978-3-642-36089-3_19
https://doi.org/10.1007/978-3-540-31847-7_3
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/BFb0025714
https://doi.org/10.1142/S0218194097000266

214 S. Zschaler, F. Durdn

[GPS98a] Martin GroBe-Rhode, Francesco Parisi-Presicce, and Marta Simeoni. ‘“Refinements of
Graph Transformation Systems via Rule Expressions”. In: 6¢h Int’l Workshop Theory
and Application of Graph Transformations. 1998, pp. 368-382. https://doi.org/10.1007/
978-3-540-46464-8_26.

[GPS98b] Martin Grofie-Rhode, Francesco Parisi-Presicce, and Marta Simeoni. “Spatial and Tem-
poral Refinement of Typed Graph Transformation Systems”. In: 23rd Int’l Symposium
Mathematical Foundations of Computer Science. 1998, pp. 553-561. https://doi.org/
10.1007/BFb0055805.

[Hei+21] Robert Heinrich, Francisco Duran, Carolyn L. Talcott, and Steffen Zschaler (eds.)
Composing Model-Based Analysis Tools. Springer, 2021. https://doi.org/10.1007/978-
3-030-81915-6.

[Joh+19] Stefan John, Alexandru Burdusel, Robert Bill, Daniel Striiber, Gabriele Taentzer,
Steffen Zschaler, and Manuel Wimmer. “Searching for Optimal Models: Comparing
Two Encoding Approaches”. In: Journal of Object Technology 18.3 (2019), 6:1-22.
https://doi.org/10.5381/j0t.2019.18.3.a6.

[Lam94] Leslie Lamport. “A Temporal Logic of Actions”. In: ACM Transactions on Program-
ming Languages and Systems 16.3 (1994), pp. 872-923.

[Lar+07] Juan de Lara, Roswitha Bardohl, Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and
Gabriele Taentzer. “Attributed Graph Transformation with Node Type Inheritance”. In:
Theoretical Computer Science 376 (2007), pp. 139-163. https://doi.org/10.1016/j.tcs.
2007.02.001.

[LG13] Juan de Lara and Esther Guerra. “From Types to Type Requirements: Genericity for
Model-Driven Engineering”. In: Software and Systems Modelling 12.3 (2013), pp. 453—
474. https://doi.org/10.1007/s10270-011-0221-0.

[LG14] Juan de Lara and Esther Guerra. “Towards the flexible reuse of model transformations:
A formal approach based on graph transformation”. In: Journal of Logical and Alge-
braic Methods in Programming 83.5-6 (2014). 24th Nordic Workshop on Programming
Theory (NWPT 2012), pp. 427-458. issn: 2352-2208. https://doi.org/10.1016/j.jlamp.
2014.08.005.

[Mor+14] Antonio Moreno-Delgado, Francisco Duran, Steffen Zschaler, and Javier Troya. “Mod-
ular DSLs for Flexible Analysis: An e-Motions Reimplementation of Palladio”. In:
Proc. 10th European Conf. on Modelling Foundations and Applications). 2014, pp.
132-147. https://doi.org/10.1007/978-3-319-09195-2_9.

[Nau86] Peter Naur. “Programming as Theory Building”. In: Microprocessing and Micropro-
gramming 15 (1986), pp. 253-261. https://doi.org/10.1016/0165-6074(85)90032-8.

[Reu+16] Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek, Heiko
Koziolek, Max Kramer, and Klaus Krogmann. Modeling and Simulating Software
Architectures: The Palladio Approach. MIT Press, 2016.

[Ros+15] Kiana Rostami, Johannes Stammel, Robert Heinrich, and Ralf H. Reussner.
“Architecture-based Assessment and Planning of Change Requests”. In: 1/th Inter-
national ACM SIGSOFT Conference on Quality of Software Architectures. 2015, pp.
21-30. https://doi.org/10.1145/2737182.2737198.

[Ste+09] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley Professional, 2009.

[Str+17] Daniel Striiber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner, Timo Kehrer,
Manuel Ohrndorf, and Matthias Tichy. “Henshin: A Usability-Focused Framework for
EMF Model Transformation Development”. In: 10th Int’l Conf on Graph Transforma-
tions. 2017, pp. 196-208.

[Tro+13] Javier Troya, Antonio Vallecillo, Francisco Duran, and Steffen Zschaler. “Model-
Driven Performance Analysis of Rule-Based Domain Specific Visual Models”. In:
Information and Software Technology 55.1 (2013), pp. 88-110. https://doi.org/10.1016/
j-infsof.2012.07.009.

https://doi.org/10.1007/978-3-540-46464-8_26
https://doi.org/10.1007/978-3-540-46464-8_26
https://doi.org/10.1007/BFb0055805
https://doi.org/10.1007/BFb0055805
https://doi.org/10.1007/978-3-030-81915-6
https://doi.org/10.1007/978-3-030-81915-6
https://doi.org/10.5381/jot.2019.18.3.a6
https://doi.org/10.1016/j.tcs.2007.02.001
https://doi.org/10.1016/j.tcs.2007.02.001
https://doi.org/10.1007/s10270-011-0221-0
https://doi.org/10.1016/j.jlamp.2014.08.005
https://doi.org/10.1016/j.jlamp.2014.08.005
https://doi.org/10.1007/978-3-319-09195-2_9
https://doi.org/10.1016/0165-6074(85)90032-8
https://doi.org/10.1145/2737182.2737198
https://doi.org/10.1016/j.infsof.2012.07.009
https://doi.org/10.1016/j.infsof.2012.07.009

9 GTSMorpher: Composing Behavioural Analyses 215

[War94] Martin P.Ward. “Language-oriented programming”. In: Software-Concepts and Tools
15.4 (1994), pp. 147-161. URL: http://www.gkc.org.uk/martin/papers/middle-out-t.
pdf.

[ZD17] Steften Zschaler and Francisco Durdn. “GTS Families for the Flexible Composition
of Graph Transformation Systems”. In: 20th Int’l Conf. Fundamental Approaches to
Software Engineering. 2017, pp. 208-225. https://doi.org/10.1007/978-3-662-54494-
5_12.

http://www.gkc.org.uk/martin/papers/middle-out-t.pdf
http://www.gkc.org.uk/martin/papers/middle-out-t.pdf
https://doi.org/10.1007/978-3-662-54494-5_12
https://doi.org/10.1007/978-3-662-54494-5_12

	9 GTSMorpher: Safely Composing Behavioural Analyses Using Structured Operational Semantics
	9.1 Introduction
	9.2 Motivating Example
	9.3 The GTSMorpher Tool
	9.3.1 Specifying GTS Morphisms
	Basic GTS Syntax
	Basic Morphism Syntax
	Morphism Auto-Completion and Unique Auto-Completion
	Mapping with Virtual Rules

	9.3.2 GTS Families
	9.3.3 GTS Amalgamation

	9.4 An Application Example
	9.4.1 Making PLS Taintable
	9.4.2 Adding Taint Propagation
	The KAMP GTS Family
	Instantiating the Propagation Rules

	9.4.3 The Final Taint-Propagating PLS

	9.5 Conclusions and Outlook
	References

