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Abstract This chapter gives an introduction to the key concepts and terminology
relevant for model-based analysis tools and their composition. In the first half
of the chapter, we introduce concepts relevant for modelling and composition of
models and modelling languages. The second half of the chapter then focuses on
concepts relevant to analysis and analysis composition. This chapter, thus, lays the
foundations for the remainder of the book, ensuring that readers can go through the
book as a coherent piece.
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2.1 Models, Modelling Languages, and Their Composition

In this section, we give an overview of core concepts that must be considered when
composing semantics, languages, and models, and discuss how these core concepts
are interrelated.

Scientists as well as engineers (including software engineers) use models to
address complexity. Given this, it is worthwhile to precisely clarify what a model is.
A commonly agreed-upon general definition, given by Stachowiak [Sta73], states
that a model has three main characteristics:

• There is (or will be) an original.
• The model is an abstraction of the original.
• The model fulfils a purpose with respect to the original.

A model can be called valid if it fits for its purpose with respect to the original
within certain validity boundaries. Interestingly, engineers and scientists differ in
their viewpoint here [Com+20]: A scientist regards the model as invalid (or bad), if
it does not describe the real world. An engineer regards the produced artefact as bad
if it does not fit to the model.

We may have explicit representations of models, which can be defined using
natural language or a more formal modelling language. Existing modelling lan-
guages can be classified as general-purposemodelling languages, such as the unified
modeling language (UML) [BRJ98], and domain-specific modelling languages
(DSML) [Kle08]. For example, software developers regularly use class diagrams
to define data structures, concepts of the real world and their relations, and also
technical architectures within the software.

The advantage of such explicit models is that they can be used as documentation,
be subjected to different forms of analysis, or even be used as a source to produce
some output, including code generation or 3-D printing. The specific focus that a
modelling language usually has may be a burden for the modeller, because of the
restrictions that it imposes, but also enables many smart constructive and analytic
algorithms based on that language. For example, state machines can be checked
for completeness and determinism, the structured query language (SQL) provides
efficient database retrieval and storage based on E/R-models, etc.
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It is also possible that models, instead of being expressed in a certain modelling
language, are encoded directly within a general-purpose programming language,
like C++, Python, or Java. These models are typically used, for example, in
simulations, such as of phenomena in climate and weather, at the atomic level,
in cell biology, or in the wider universe. In this case, the sole and only form of
analysis is through direct execution and an examination of the resultant execution
trace. The availability of code also allows the possibility of checking certain coding
properties, as type consistency or the correct handling of exceptions. Tools like
Coverity [Syn] or CodeSonar [Gra] provide quite sophisticated forms of what is
typically called (static) program analyses. The following discussions concentrate on
modelling languages and their use for the definition of models. A discussion of the
use of modelling languages in the construction of simulation models can be found
in [ZP20].

2.1.1 Types of Models and Their Role in Analysis

Various types of models [Lee18] and the roles they can play [Küh16] are de-
scribed in the literature. Here, we adopt the distinction made by Combemale et
al. [Com+20], who consider three types of models: engineering, scientific, and
machine learning models.

An engineering model is used to specify and represent a targeted system [Lee18].
It drives the development of the system to be built by specifying concerns such as,
e.g., braking and obstacle avoidance in on-board control systems for autonomous
vehicles, traffic management models, information systems, or business rules. En-
gineering models are typically used as a means to develop a physical system, a
software-based system (including behaviour, structure, and the interaction of the
system with its context), or both (e.g., cyber-physical systems). Engineering models
can be described using both domain-specific and general-purpose languages.

A scientific model is a representation of some aspects of a phenomenon of the
world [GL16]. Scientific models are applied to describe, explain, and analyse the
phenomenon based on established scientific knowledge defining a theory. A theory
provides a framework with which models of specific phenomena and systems can
be constructed. Scientific models are used in various application areas ranging from
climate change models, to electromagnetic models, protein synthesis models, or
metabolic network models. Typical examples include continuous, equation-based
formalisms like differential equations, or discrete-event models.

A machine learning model is created by automated learning algorithms based
on sample data (i.e., training data) to make predictions or decisions without
being explicitly programmed for the task at hand. It approximates the conceptual
relationship between a given input and the expected, or a priori unknown, target
output. Machine Learning models can be applied in various application areas
such as image classification, feature extraction, defect density prediction, language
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translation, or motion planning of robots. Common formalisms include neural
networks, Bayesian classifiers, and statistical models.

According to [Com+20], a model can play several roles with respect to its
purpose: It can be descriptive, prescriptive, or predictive.

• A model plays a descriptive role if it describes some current or past properties of
the system under study, facilitating understanding and enabling analysis.

• A model plays a prescriptive role if it describes properties of the system to be
built, driving the constructive process—including runtime evaluation in the case
of self-adaptive systems.

• A model plays a predictive role if it is used to predict properties of the system
that one cannot or does not want to measure.

Each type of model can play several roles, which determine whether and how
the model is used in analysis. A scientific model is descriptive first and then may
become predictive, e.g., to support what-if analyses [Bru+15]. The model may
also become prescriptive, e.g., if embedded into a socio-technical system. For
example, a prescriptive model of a decision-making tool for climate change using
a predictive simulator based on a descriptive scientific model of the earth’s water
cycle [Com+20].

An engineering model typically starts by being descriptive and then, at design
time, is refined and transformed into a prescriptive model. Then, once the system is
built as prescribed, the model becomes descriptive again as a kind of documenta-
tion [Hei+17]. An engineering model may also be used as a predictive model. For
example, a system architecture model can be applied to predict the performance of
a specified system configuration [Reu+16].

A machine learning model is typically used in a predictive role to infer new
knowledge based on some hypothetical input data. It might also be descriptive of a
current or past relationship, or prescriptive if machine learning results are used for
decision-making [Com+20]. For example, we may have a prescriptive model of a
smart factory where a predictive model is used to make decisions about production
plans based on descriptive historical data.

2.1.2 What Is a Modelling Language?

According to [Com+16], a modelling language defines a set of models that can be
used for modelling purposes. Its definition consists of

• Syntax, describing how its models appear,
• Semantics, describing what each of its models means, and
• Pragmatics, describing how to use its models according to their purpose.

This is a rather general definition which can be realised in various ways. Graphical,
tabular, and textual forms of syntax are possible. The semantics can, for example, be
defined in denotational form [Sto77], where a semantic domain is mathematically
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defined and a mathematical function relates syntactic elements to elements of the
semantic domain. The semantics could also be defined by explaining the execution
effect of model elements, for example, using abstract machines.

Models need a precisely defined semantics. Semantics describes the precise
meaning [HR04] of each well-formedmodel in terms of the semantic domain, which
is generally well understood. We also speak of a formalism or formal language
instead of a modelling language. Such a semantics is the formal foundation for
understanding whether a model is correct; that is, whether desired properties are
satisfied. For example, the set of words over an alphabet can be used as a semantic
domain for state machines. A concrete state machine can then be mapped to the
subset of accepted words.

There are different formalisms and formal methods for the specification of well-
defined semantics, such as rewriting logic semantics [MR04], small-step/structural-
operational semantics [Plo04], or big-step/natural semantics [Kah87] or their
extensions to distributed, event driven systems [BS01]. In many cases, however, no
explicit semantics is available, or we may say that there are different forms of ad hoc
semantics. For instance, despite different attempts to provide a formal semantics,
the semantics of Python continues to be defined primarily by the behaviour of the
Python interpreter, just as the semantics of Java is provided by its virtual machine.

The main purpose of software is “to do”. Therefore, many modelling languages
concentrate on software and the behaviour it specifies. However, it is worthwhile
to mention that semantics should not be confused with behaviour as such, because
purely structural languages, such as class diagrams, also have semantics, which in
this case is the set of possible object structures.

It is also worthwhile to note that the semantics should not be confused with a real
world interpretation. For a precise study of the phenomena of a formal language,
the semantic domain should be a mathematically well understood, precisely defined
construction. It is then up to us to interpret this in the real world. For example, words
over an alphabet may be interpreted as sequences of human actions in workflows,
sequences of messages over a communication channel, or sequences of produced
physical component parts in a production line.

A sound semantic definition is very helpful to understand what shall be analysed
and what the desired outcomes of analysis techniques are. This is true for binary
results of analyses, but also for quantifiable results that rely, for example, on statisti-
cal considerations. In practice, an explicitly defined semantics is not always needed.
Sometimes the language designers already have a good informal understanding and
can directly encode the desired properties into algorithmically executable analysis
techniques. However, if the domain is complicated, not very well understood, or
if the DSML is newly defined, then an intermediate step consisting of mapping the
syntax of the language into a semantic domain, before designing executable analysis
techniques, has proven very helpful in practice. Such a mapping into a semantic
domain can indeed explain the desired and technically implemented results of an
analysis techniquemuch better. This even holds if it is not formally defined, but used
as a shared understanding for a formal language. The following examples illustrate
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the use of semantic domains (traces, object-diagram structures, or Petri nets) for
different analysis problems.

• The failure rate of state machines can be well explained using a set of traces.
In this case the syntax is the state machines, and the semantics its traces. The
analysis technique needed is the efficient examination of a representative finite
set of traces or a BDD-like1 integrated representation of all traces.

• The coverage of test sets can be well explained over an appropriate minimal set
of object structures that can be derived from a class diagram. In this case the
syntax is the class diagrams, and the semantics its object structures. The analysis
technique needed is a monitoring of the tests and a finite grouping of relevant
object structures into equivalence classes.

• The set of reachable states of a machine can be understood using a mapping from
state machines into Petri nets. In this case the syntax is the state machines, and
the semantics its Petri net representation. The wide range of tools available for
Petri nets provide the needed analysis technique.

According to the above definition of models, a model has a purpose with respect
to its original. In practice, a model can be used for more than one purpose, typically
associated with the above-mentioned model roles, and such purposes may change
during the model’s use in various activities of a development process. For example:

(a) A business analyst uses a model to capture and convey requirements and other
related information known about the system to be developed.

(b) A developer uses the same model to constructively implement a system fitting
to the model.

(c) Quality assurance may use the same model to analyse different quality proper-
ties.

(d) Testers use that model both to identify potential problems and derive tests.
(e) Engineering models might be used to realise a digital twin that collects data,

provides services and, to some extent, also controls the physical twin [Bib+20].

While for all those the semantics of a model is the same, they use the model in rather
different ways and therefore also need rather different functionality centred around
the model.

2.1.3 Metamodels

Tools need a suitable representation of models to manage them. An approach that
has proved itself useful for constructive as well as analytical tools is metamodelling
technology [Gro06].

1 BDD stands for Binary Decision Diagram.
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It is a core idea of model-driven engineering (MDE) to also use models for
explicitly defining modelling languages: this is calledmetamodelling. Let us borrow
the following definitions of metamodel and conformance from [Com+16].

A metamodel is a model describing the abstract syntax of a language. It is
commonly agreed that a metamodel is usually defined as a class diagram, very
similar to UML class diagrams. A metamodel therefore describes a set of object
structures, where each of these object structures describes the abstract syntax and
therefore the essence of a model, which is needed for analysis, code synthesis, or
other development activities.

A model conforms to a given metamodel if each model element is an instance
of a metamodel element. Such a model is considered valid with respect to the
language represented by the metamodel. It is a big advantage of the metamodelling
approach that exactly the same metamodel can be used within a tool both to
represent the abstract syntax and to operate on such model, for example, for code
generation or for the application of some analysis technique (see Chap. 11 of this
book [Hei+21] for an example). A metamodel therefore serves a dual purpose,
defining the language and all the models in that language (i.e., the syntax), and
serving as basic infrastructure for tooling. The class diagram however only captures
the abstract syntax, which needs to be augmented by a concrete representation,
usually in diagrammatic, tabular, or textual form.

2.1.4 Property Models

In model-based analysis, we are interested in understanding certain properties of
the system under study. When the property of interest can vary, such properties
must be made explicit by the developers and then provided to the tooling. Given
this, it is necessary to give the desired properties a precise semantics in addition to
the models. For that purpose, we distinguish between properties that talk about the
semantic domain of the model, e.g., the set of possible system runs, reachability of
states in a model, or climate behaviour, versus pure syntactical properties, such as
readability or cyclomatic complexity of code.

As a consequence of these considerations, a semantic property is itself a kind of
model, which we call a property model. The property is then the set of all elements
of the semantic domain that satisfy the property. Formulated in set-theoretical form:
A model fulfils a property, exactly if the semantics of the model is contained in
the semantics of the property. Or, formulated in logical form: The semantics of the
model implies the semantics of the property.
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2.1.5 Two Dimensions of Model Compositionality

Models need to be compositional along two dimensions, namely concerns and
subsystems. To tackle the complexity of systems development, it is often necessary
to use diverse models describing different aspects or viewpoints of the system as a
whole or of subsystems.

The separation of concerns is important for enabling contributions by different
subject-matter experts, and enables parallel development and evolution. This is why
modern modelling languages, such as UML [BRJ98] and SysML [Gro12], provide
a number of different sublanguages, allowing the modeller to concentrate only on
certain aspects of the system.

Model reuse is only possible if the models are developed in independent,
relatively encapsulated pieces. Building models as encapsulated pieces implies a
mechanism and opportunity for composition, and building up a description of the
overall system. For example, we may use state charts to describe the behaviour of
individual components, and then combine them into a model of the system as a
whole. These behavioural descriptions of components can then be reused to build
models of different systems.

In summary, the two dimensions of model composition are:

(a) Within the modelling language, models are semantically composed to produce
larger specifications. This form of composition usually goes along with the
composition of the system components.

(b) Models of different aspects of the same component are composed to give a more
complete description of this component.

2.1.6 Models of Context

In many cases, in addition to the models of the system or component to be built, we
require a model of the context of the system or component.

In systems modelling, the term “context” refers to models which are needed
for system construction and analysis but which do not describe entities to be
built. Instead they describe the environment of the system. Considering contexts
is important as they affect the system to be built for two reasons:

(a) If the implementation of the system can rely on certain assumptions about how
it is being used, then certain internal optimisations become possible.

(b) When using the implemented subsystem/component, the context model actually
gives restrictions on how it can be composed into a larger system.

If we lift this understanding of context to the metamodel (the language definition
level, Sect. 2.1.3), we also have to draw a line between the artefacts to be manip-
ulated and the additional context information. As an example, given all potential
executions of a system, a context model may define the subset of executions that
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need to be analysed. In addition, one could also consider platform-specific parts of
the semantics definition (like scheduling policies) as a context model which act as
a parameter to the analysis. Alternatively, such information could have also been
considered as part of the model’s semantics. The choice depends on the specific
questions to be studied and on the available analysis tools.

In the case of security analysis, for example, the context model may include
an attack model (e.g., the Dolev–Yao model [DY83]), giving the capabilities of
attackers of concern. When analysing robustness or resilience against faulty or
inaccurate sensors or actuators, a context model might include fault models. In
the case of a multi-agent system, analysis might focus on a single agent to reduce
analysis complexity, using a context model that includes a model of the remaining
agents, suitably abstracted.

2.1.7 Model and Language Composition

Composition of models and the languages used to describe them is key to coping
with the complexity inherent in modelling diverse aspects of large systems, possibly
modelled in models expressed in heterogeneous languages. This, therefore, implies
that also languages need to be composed.

In general, when composing languages, we need to understand what to compose,
given as shown in Sect. 2.1.2, that a language is defined by syntax, semantics, and
pragmatics. Assume you have one syntax definition and two different semantic
definitions. For the purpose of composition, we might view these as two different
languages. However, having one syntax and semantics definition, and two pragmat-
ics descriptions, we would still consider this to be one language, with two ways of
using it. Consequently, when considering composition, we would treat syntax and
semantics definitions as constitutional parts of the language (any change of either
will change the language), while the pragmatics description would not be part of the
language and, hence, not subject of language composition.

Looking at the efforts to standardise UML in recent years, we can observe that
a clear, precise, and well integrated semantics for such a language is not easy to
achieve. This is partially due to the complexity of UML itself, partially due to
political problems, because different driving forces have different understandings
and interpretations, but also partly due to the overwhelming desire that UML should
cover every domain of software systems. Actual realisations of components may
differ in multiple details, for example in communication forms, timing, interaction
of threads, sharing of memory, etc. If UML is mainly used for communication
between developers in the form of “paper-based” models, this lack of semantics
is not necessarily harmful. For sophisticated analysis techniques, however, this is a
strong impediment.

For an advanced and potentially integrated form of composite semantics, it is
necessary, as a consequence of the above discussion, to also think of composition
of models of different aspects and, therefore, as well on the modelling languages
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used for describing these aspects. Instead of a one-size-fits-all language, such as
UML, a feasible alternative could be to use small individual modelling languages,
allowing us to describe small and focused models, and then integrate the models
by integrating the analysis techniques or the results of the analysis algorithms as
described in Sect. 4.4.2 of this book [Hei+21].

Knowing that to manage complexity it is important to decompose the problem,
so different aspects can be addressed individually, as well as to decompose system
models into models of subsystems, it is clear that we also need mechanisms to
compose models, including those written in different heterogeneous languages.

Forms of Model Composition Although there is work on model composition,
coming up with a complete classification of forms of model composition is
challenging, because the form of composition very often depends on the form of
the models and the aspects they describe. For example:

• Class diagrams can be merged (see, e.g., [Obj17, DDZ08]).
• State machines can be composed using the cross product for synchronous

communication, but there are also other forms of composition when allowing
asynchronous communication or feedback (see, e.g., [LV03, Chapter 4]).

For software code written in typical programming languages (e.g., Java or
C), composition of different code components is typically not performed at the
source-code level. Instead, composition is normally delayed to the binding stage.
For example, in virtual machines this only happens when loading the compiled
code. Composition is conceptually clearly understood on the source-code level,
but modularity allows to defer the actual composition to a very late stage, which
supports agility of development. In contrast, state machines have composition
techniques that are applied directly on the state machine models. This is true for
many other modelling languages, too.

It is important that analysis techniques are designed to be as modular as possible.
They can then be applied to certain model subsets, for example, the models of
a subsystem, independently of other subsystems. This will lead to more efficient
analysis execution, delivering results more quickly, potentially even immediate
feedback during editing, and to a better reuse of the analysis results when composing
the overall system (see also Chap. 7 of this book [Hei+21]). However, some analyses
cannot be modularised. These analyses need a holistic view of the overall system
model and an understanding of how the system will be used in its context, which
therefore also needs to be explicitly modelled.

Forms of Language Composition Composition of models within a given language
is already a challenge, but has been addressed at least in formal methods and also
by a variety of tools. Composition of models expressed in different languages is
equally important, in particular in the context of holistic analysis techniques.

When composing models expressed using different languages, some consistency
checks are necessary. One needs to ensure that symbols defined in one language,
for example, classes in class diagrams, are consistently used in the other languages,
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for example, in object diagrams or performance models. These checks can in many
cases be executed automatically.

Composition of models may be interpreted as the integration of models into one
single uniform model, but it may also mean that models of subsystems or concerns
are somehow coordinated. For example, state machines that describe the behaviour
of individual components of a component diagram may be connected through
component diagram channels [SGW94] in various ways, and their composition is
of course dependent on the component diagram structure.

An alternative to coordinating models in different languages is to compose
the languages and then compose models within the resulting language. Given
that metamodels are class diagrams, we have several alternatives for language
composition:

• We can use merging algorithms for class diagrams to get an integrated meta-
model. This, however, involves a lot of design choices, especially when the
language concepts that should be the same are technically realised in different
forms in the different metamodels. See, e.g., [Cla11], and works on Concepts,
Templates and Mixin Layers by de Lara and Guerra [LG10], Melange [WTZ10],
model amalgamation [Dur14, Dur+17] or the GTS Morpher in Chap. 9 of this
book [Hei+21].

• We can define mappings between metamodels that would allow to translate the
complete model of one language or at least certain parts of one model into a
model of the other language. This approach is more decentralised, because it does
not need a one-fits-all integrated metamodel. However, it leads to redundancy on
the model level, which in turn leads to issues when evolving models. Changes in
the different models need to be synchronised. See, e.g., [Hu+11, GS18, Hid+16]
for an overview on bidirectional model transformations.

• We can define consistency relations between the metamodels. These relations
can, however, only be used to check consistency, but are not helpful in construc-
tive adaptations.

These forms of composition may also be mixed in different ways. And of course,
we may have cases in which neither the metamodels nor the models are integrated
at all. In these cases, the execution of the models may still be synchronised both in
time and events and potentially also in shared data. Chapter 9 of this book [Hei+21]
describes a form of metamodel composition that includes a composition of the
semantics.

2.1.8 Model Transformations and Transformation Models

In order to explicitly capture relations between models, we need to establish a
transformation model [Béz+06], which, in turn, obeys its own transformation
language, often specified in form of a transformation metamodel.
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Transformation metamodels typically connect a source and a target language
(metamodel) through explicit constructs for expressing relations (e.g., QVT-
Relational [OMG16]) or algorithmic translations (e.g., QVT-Operational [OMG16]
or ATL [Jou+08]). A transformation model specifies a set ofmodel transformations,
one for each acceptable combination of input models. It is, therefore, sometimes
referred to as a model transformation specification.

Relational transformation models can potentially specify model transformations
in different directions, including transformations used to bi-directionally synchro-
nise different models [Hu+11, GS18, Hid+16]. Algorithmic transformation models
typically fix a particular transformation direction.

Many transformation languages come with dedicated engines for efficiently “ex-
ecuting” a given transformation model; that is, for instantiating the corresponding
model transformation for a given set of input models.

Model transformations have been used in many different areas, including model
translation, model composition, refinement, etc. Surveys [CH06, REP12, Men13]
provide classifications of model transformation approaches and languages, showing
the features of the most prominent ones. More recently, in [Kah+19], Kahani et al.
provide a detailed overview of the state of the art in model transformation techniques
and tools by presenting a catalogue of 60 metamodel-based transformation tools,
which are categorised in accordance with several attributes.

The correctness of model transformations is key for MDE. Their correctness is
even more important if model transformations are used to compose models and
interoperate analysis tools, since the validity of such analysis rely not only on the
analyses or analysis tools themselves but also on the translations to which models
and analysis results are subjected. [CS12] and [Amr+15] present exhaustive reviews
of the literature on the verification of model transformations analysing the types
of transformations, on the properties that the different existing techniques verify,
and the verification techniques that have been applied to validate such properties.
[RW15] also surveys research on model transformation verification by classifying
existing approaches based on the techniques used (testing, theorem proving, model
checking, etc.), level of formality, transformation language used, and properties
verified.

Related to the verification of model transformations, we have testing and static
analysis of such transformations. For example, surveys such as [Mus+09, Bau+10,
SCD12] present views on the state of the art in the area of model transformation
testing. Sánchez Cuadrado, Guerra, and de Lara make an interesting proposal
in [CGL17] for the static analysis of model transformations. They present a method
for the static analysis of ATL model transformations (also discussed in Chap. 12 in
this book [Hei+21]). Their goal is to discover typing and rule errors using static
analysis and type inference.

Formally and systematically defining the semantics of transformation languages
is important to ensure consistent and predictable execution of transformations.
Different approaches have been taken for defining the semantics of model trans-
formations. For example, in [TV10, TV11], Troya and Vallecillo give a formal
semantics of the ATL 3.0 model transformation language [Jou+08] using rewriting
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logic and Maude. [RN08] translates model transformation definitions in the QVT
(Query/View/Transformation) [OMG16] language to a graph production system,
thus providing a graph transformation-based semantics to it. Guerra and de Lara
propose in [GL12] a formal, algebraic semantics for QVT-Relations check-only
transformations, defining a notion of satisfaction of QVT-Relations specifications
by models. In [CS13], Calegari and Szasz present a formal semantics for the
meta-object facility (MOF) and QVT-Relations languages based on the Theory
of Institutions. With this approach, the semantics given reflects the conformance
relation between models and metamodels, and the satisfaction of transformation
rules between pairs of models. Indeed, the theory facilitates the definition of
semantic-preserving translations between the given institutions and other logics
which will be used for verification.

2.2 Analysis and Analysis Composition

The essence of analysis is to answer questions about properties of interest of a
system under study. However, an analysis generally does not reason directly about
such a system, but instead about a model of the system. An analysis that reasons
about a model of a system under study is called a model-based analysis in this book.
To allow a model to be used to answer questions about the system it represents, the
properties of the model need to adequately reflect those of the system under study.
Models can be used to represent the structure of a system (i.e., its parts and how
they are connected), the behaviour of a system (i.e., what it actually does when it
is executed), the interaction of the system with its context (i.e., other systems, the
physical environment, or humans), quality aspects of the system (e.g., performance,
code complexity, or energy consumption), or a combination of these. Similarly,
properties can target structure (e.g., to reason about connectivity or potential flow of
information), behaviour (e.g., to reason about the correctness of what the system
does, or how it interacts with other components or its environment), or quality
aspects (to determine if the system guarantees a desired quality).

From a semantically and precisely defined relation between models and prop-
erties, we need to derive practical algorithmic analysis techniques, that effectively
compute the answer to a query on the composition of a systemmodel and its context.
We define an analysis as the following judgement:

M,C �T Q � A

stating that the query Q on a system model M in the context C leads to the answer
A using the technique T . The satisfaction relation, often denoted by M,C |� Q

is an instance of such entailment where A = true. From the literature, we know a
number of such precisely defined satisfaction relations, such as

(a) Logical implication for various forms of logic [Tom99],
(b) Refinement and various forms of (bi)-simulation relations [Mil89],
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(c) Satisfaction of temporal logic formulas by automata [CES83], and
(d) consistency checks for object structures with respect to given data structure

definitions (e.g., class diagrams) [RG00].

Analysis techniques can be categorised along different dimensions, including
automation degree, time, result type, purpose, quality, and composition of analysis,
that we will discuss in the following.

2.2.1 Automation Degree

The first dimension for categorising analysis techniques is the degree by which they
can be automated by tools. An analysis can be carried out fully automatically by a
tool, semi-automatically (i.e., interactively or tool-assisted), or manually, depending
on the kind and complexity of the analysis problem. The reason for its level of
automation is diverse. While some analyses can be performed in a fully automatic
way, others are computationally expensive or undecidable, which makes them less
amenable to full automation. Software that partially or fully automates an analysis
is called analysis tool in this book. There are multiple alternatives for analysis
automation, including:

• Typically, analysis such as type checking and well-formedness checking can be
carried out fully automatically.

• In the formal methods community, there are several techniques and their
supporting tools such as model checking [CES83, KNP11, Ben+95], symbolic
execution [Kin76, How77], automated theorem proving (e.g., Hoare logic-based
verifiers [Hoa69]), and satisfiability modulo theories and solvers [Bar+09] to
analyse a system automatically.

• In some cases, we may perform analysis on specific aspects of systems. For
example, at the programming level, data-flow and control-flow analyses are
techniques that allow the user to perform checks on the dynamic aspects of our
programs, checking, for example, whether a storage location has been initialised
before it is being used, or whether a program leaks information.

• Simulation is another example of automated analysis. Simulation typically works
with specific scenarios and supports detailed analysis of functional and non-
functional (e.g., performance) aspects of a system’s behaviour.

• While the satisfaction of many properties can, in principle, be checked au-
tomatically, this is not always possible efficiently, for example, when using
backtracking-based exponential algorithms. Model checking of large models is a
prominent example. Largemodels cannot be model-checked automatically due to
the state explosion problem [Cla+11]. As a result, analysis algorithms sometimes
stop with an undetermined result. In some cases, a combination of various
techniques might be used to perform the analysis, such as abstract interpretation,
refinement checking, and modular or incremental analysis. Another alternative
is to provide a partial analysis result. For example, bounded model checking
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explores the system’s state space up to a specific depth, and provides a valid
result only up to that depth.

• It may be that the analysis judgement cannot be automatically established, but
needs help from the developers/designers. For example, in program verification,
analysis users provide explicit hints and assertions, such as loop invariants,
to support the analysis. In general, verification systems based on theorem
proving—for example, Isabelle [NPW02] or PVS [OS08]—fall into that category
where the tool can often provide semi-automatic proof assistance, but active
proving effort is needed. Another common example are verification tools driven
by developer-provided annotations, written using notations such as the Java
Modeling Language (JML) [Bur+03] or Spec# [BLS05].

• Finally, there are informal but systematic methodological techniques. In this case,
explicit reviews of models according to the defined properties are carried out—
for example, certification processes in which the properties are met if all the
reviewing criteria are determined to hold. Of course, certifiers may be assisted
by all kinds of analysis tools to do this.

2.2.2 Design Time vs. Runtime Analyses

The time at which the analysis takes place is another dimension to categorise
analysis techniques. In this dimension we consider design-time, runtime, or hybrid
analysis techniques.

Design-time analysis techniques deal with analysing models of the system
at design and compile time. Such analyses can be done either at the program
level or using an abstract model of the system for analysis. Design-time analysis
is helpful to identify violations before they occur, and can help to find design
problems early, when they are easier or less expensive to fix. However, in some
cases, analyses must be postponed to runtime. This is due to (i) the nature of the
analysis, e.g., in case of undecidable satisfaction relations or the state explosion
problem in model checking, or (ii) the lack of detailed information at design
time, as a design-time model often describes the system at an abstract level.
Although analysis can be done ad hoc, design-time analysis is often done using
more formal, semantics-based techniques. This includes the semantics techniques
alreadymentioned above, as well as others, such as abstract interpretation [CC77] or
matching logic [RES10]. Model-based software development is an example where
various model transformation and analysis techniques are employed to design and
analyse a software system [Voe+13, Kus+17].

A runtime analysis is based on a notion of execution of the model or system. To
this end, execution traces or similar elements are included in the semantic domain
of the modelling formalism, which may be augmented with information needed
for the analysis (e.g., security properties in a security analysis). At runtime, the
desired properties can be checked against individual system executions, against an
abstract model of the system, which is maintained and updated at runtime to reflect
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the changing behaviour of an adaptive system (called models@runtime) [BGS19],
or against the events that occurred during execution. Runtime verification [LS09]
is an example of runtime analysis where an execution of the system is analysed—
for example, to check simple assertions, temporal logic formulas, automaton-based
properties, etc. Testing is another example of dynamic analysis [Bin00].

In a hybrid approach, the results of design-time analysis are used to generate a
monitor that runs along with the system, observes its behaviour, analyses it, and
possibly dynamically adapts itself (see, e.g., [GS02, Ald+19, KS18]).

2.2.3 Quantitative vs. Qualitative Analyses

As a third dimension, we may categorise analysis techniques according to whether
the answer to the query is binary (true or false), or quantifiable. Queries about
whether a given predicate holds of a system under study are the main example
of qualitative analysis. The predicate can concern a specific scenario, or it can
concern “all” executions in some class of contexts. A simple example is analysis
of the function computed, such as the isSorted property of the list returned. Another
example is an analysis to check that a system rejects illegal input (that is formally
specified). Checking that specified state invariants hold is another example.

While many types of analyses can be formulated as satisfaction relations that
are binary, in practice there are also a lot of queries that deal with quantifiable
properties. For example, the quality of service needs to be measured by the up-
time of the system, by behaviour under load, or by meantime of delay for transport
of data, video and speech. Properties are then often defined using probabilities,
intervals, or numbers (representing measurements).

Quantifiable properties usually lead to analysis techniques that also produce
quantified results, that can be thought of as a degree of satisfaction. This opens the
possibility for different system models to be compared by how well they satisfy a
certain property, enabling an optimisation-based approach to software design, such
as is explored in the field of search-based software engineering [HMZ12] or, in the
modelling context, search-based model-driven engineering [BSA17, Joh+19].

Often, the quantities are expressed in the property, using, for example, interval
ranges for some quantity or bounds on probabilities, while the checking itself is
binary. For example, timing can be modelled using formalisms including timed
automata [AD94], or timed transition rules [ÖM07], with properties expressed
with timed temporal logics that are checked by model checkers such as UP-
PAAL [BDL04] or Maude [Cla+07]. To model properties about performance, or
check the probability of events occurring or conditions holding, probabilistic models
can be used. Properties of such models can be expressed in probabilistic variants of
temporal logics and checked by stochastic model checkers such as Prism [KNP11].
Precision of analysis can be traded for scalability by using statistical model checking
using tools such as PVeStA [AM11]. Statistical methods rely on sampling the
execution space, for example, using simulators. Simulation is a technique for
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quantifying satisfaction executing the system model on exemplary input data and
simulated interaction with the system’s context. The analysis collects aggregated
data about the overall system behaviour in the form of traces, which are then used
to quantify satisfaction.

2.2.4 Purpose of Analysis

A further dimension for categorising analysis techniques is their purpose. Seeing
“analysis” as answering queries about systems under study, we identify the follow-
ing possibilities:

Structural analysis is concernedwith analysing the system at the structural level.
A structural model describes the elements of the system and their relationships,
e.g., a call graph describes the methods of a program and their invocation
relationships, or a component model (e.g., BIP [BBS06]) allows us to express
the architecture of a system as a set of modules and their interactions. From such
models, dependency relations can be derived. Coordination models often work
at the level of components, organising the interactions. The underlying graph
structure may give useful insights, for example, identifying hubs or components
that mediate interactions. Graph rewriting and transformation systems [Roz97]
is a class of techniques often used to analyse the systems structure.

Behavioural analysis is concerned with properties of system executions. A
behavioural model allows analysing a system’s runtime behaviour—its inter-
actions and results—by reasoning about properties of the model’s semantics.
For example, “does the light go on when the door opens?”; “does the data
store correctly save and retrieve data?”; or “does a warehouse robot pick the
correct packages?” The analyst may only be interested in behaviour in a specific
set of conditions, such as a particular set of data, or a particular region of the
warehouse. These restrictions can be expressed as a context model to compose
with the system model, or simply specified in a configuration file. The first
question above might be analysed, e.g., using a dynamic dependency analysis of
sensor and actuator events. The second question might be treated as a verification
problem: The analyst would develop a formal model of the data store, express the
properties as formulas, and use a model checker or theorem prover to show that
the model satisfies the corresponding formulas. For answering the third question,
the analyst might choose testing, providing a variety of tasks to test the robots
capability.

Quality analysis is concerned with assurance of quality properties of a system
(often also called non- or extra-functional properties, as for example defined
in the ISO/IEC 25010 [25011] standard). Quality properties include perfor-
mance, reliability, or availability. Similar to testing, the analysis of such quality
properties depends on the expected usage of the system. For example, in the
analysis of security aspects, attack models describe the “usage” of the system
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by an attacker. Safety analysis requires a definition of states deemed unsafe
and conditions that could lead to safety violations if the system is not properly
designed and implemented. Effects of a successful security attack could lead
to unsafe conditions, unavailability, or other quality failures. Thus, combining
analysis of, e.g., security with other quality properties is important.
In addition, information about the execution environment is needed to interpret
executions regarding the quality property under analysis. Examples are the
speed of hardware resources in case of performance, or the security guarantees
provided in case of security analysis. In principle, such models of the execution
environment could be seen a part of specific semantic models for quality
analyses. However, as they describe environmental factors, not being part of
the system being built, and as their change does not change the system (but the
analysis results), we consider these environment models also as context [Zsc09].

Structural/behavioural co-analysis The system’s structure and behaviour can
affect each other, e.g., if component interaction is constrained by the system
structure, this will affect component’s internal executions and, consequently,
the whole system’s execution. While structural analyses may operate only on
syntactical elements and behavioural analyses concern system executions, co-
analyses of structure and behaviour consider both aspects. HPobSAM [KKS19]
is a model to co-specify the system’s behaviour and structure using graph
transition systems. Chapter 9 of this book [Hei+21] presents a tool for the
composition of DSMLs defined with both structure and behaviour (defined with
graph transformation rules). Other formalisms, e.g., graph grammars [Roz97]
and rewriting logic [Mes92, Mes12], can also nicely express both structure and
behaviour.

Table 2.1 summarises, for each kind of analysis, which kind of models are
required. Table 2.2 shows, for different analysis types, the information to be
provided by context models.

2.2.5 Correction and Counterexamples

Knowing that a satisfaction relation has not been met, or that the degree of
satisfaction is not high enough, is only half of the solution. We also need to
understand how to improve the model and the implemented system in such a
way that the desired properties are met. Again, we can see different categories of
assistance here:

Table 2.1 Kinds of analyses
and their required model kinds

Syntax Semantics Context

Structural x

Behavioural x x (x)

Quality x x x
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Table 2.2 Examples of different analyses and their required context models

Analysis Kind Required information in context models

Simple dependency analysis (e.g.,
static component dependencies)

structural –

Advanced dependency analysis
(e.g., slicing, points-to)

Behavioural start item for analysis

Verification Behavioural Fixation of parameters in semantic
specification, e.g., platform-specific
scheduling policies

Testing Behavioural execution environment, test case
specification

Performance, reliability Quality Usage profile, deployment and resource
descriptions, description of external
service quality

Safety Quality Definition of set of safe/unsafe states

Security Quality Attacker model, model of platform
security

Maintainability Quality Change propagation rules, seed
modification

• The analysis technique tells us that the satisfaction relation is not met, but gives
no hint beyond that.

• If the satisfaction relation is not met, we at least get hints where the problem
is located. This may be, for example, specific elements in the model which
contributed to the problem, or the places where certain desired invariants have not
been met the first time. Another example is counterexample generation by model
checkers [HKB09], where when a property is not satisfied, a counterexample
is usually generated and provided to the user that can help identify the reason
of violation. A counterexample is usually an execution trace that violates the
property.

• As a result of the analysis, we not only get the location where the problem arises,
but also a list of suggestions, what can be done to correct the problem. This is
typically the case in an integrated development environment (IDE) that checks
context conditions already while source code is being edited, and suggests a list
of possible corrections on the fly. This, however, is more effective if the problem
can be relatively easily localised. There is a lot of experience on what the typical
error sources are in many different cases: wrong type chosen for a variable in a
program; unsatisfiable trigger condition of a transition in an automaton; or not
enough redundancy on the available compute nodes in a performance model.

• The last category of analysis techniques not only identifies flaws, but also auto-
matically corrects them. Automatic program repair techniques (see [GMM19]
for a survey) fit in this category, where several techniques are used, e.g.,
a generate-validate-test approach to generate a fix that will be tested before
being accepted (e.g., GenProg [Gou+12]), or a semantics-driven approach where
formal approaches are used to synthesise a patch (e.g., Angelix [MYR16]).
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See Chap. 7 of this book [Hei+21] for an in-depth discussion of how analysis results
can be used.

2.2.6 Quality of Analyses

Two important concepts related to the quality of an analysis are soundness
and completeness. Recall that analysis was earlier defined as the judgement
M,C �T Q � A, where analysis technique T is used to answer query Q over
the model M in context C. Here, we focus just on those cases where the answer
A is either true or false. Thus, the analysis is answering the question whether the
property Q holds of M in context C. To determine the soundness or completeness
of T , a “ground truth” is needed. One form of ground truth is a semantics of both
models and properties. Thus we assume a mapping [[M]]C giving the meaning of
M in context C as an element of a semantic domain D, and a mapping [| Q |] of
properties to subsets of D.

T is sound if T derives true as the answer to Q only when Q is actually true of
M in context C. That is, [[M]]C ∈ [| Q |]. An analysis technique T that incorrectly
derives true in this case—that is, that says that the answer to Q is true when it
is actually false—is unsound. To ensure soundness, T will answer false in cases
where T cannot prove true. Another option is for T to only answer false when Q is
definitely false for M in C. Such an analysis is said to be complete. For instance, if
T is an analysis technique that checks for deadlocks, M is a model of a concurrent
system, and Q is the property “M is deadlock-free in contextC”, a sound version of
T will not answer true when it cannot prove that M is deadlock-free in context
C, meaning it may potentially answer false in some cases where M actually is
deadlock-free. A complete version of T will not answer false when M is deadlock-
free in contextC, but may potentially answer truewhen M is not deadlock-free (i.e.,
when it may deadlock). For some properties, it may be difficult or even impossible
to fully establish ground truth. Measuring reliability or performance are examples.
How does one know if a real system satisfies 99.9% up-time, or if the system
responds within 1 s with probability 0.95?

Most analysis techniques T cannot be both sound and complete, due to the
undecidability of the problem, or its complexity. Because of this, the precision and
recall of T are also both important. Precision measures how often T derives true
correctly, in comparison to how often it derives true overall. For instance, a precision
of 0.75 would indicate that, in 3 out of 4 cases, T answers true for query Q when
Q is actually true, while in 1 out of 4 cases it incorrectly answers true when the
proper answer is false. A sound analysis will have a precision of 1.0 since it never
incorrectly answers true. Recall instead measures how often T answers true when it
could, correctly, answer true. For instance, a recall of 0.6 means that, given M and
C whereQ is true, T correctly answers true 60% of the time and otherwise answers
false. A complete analysis has a recall of 1.0. Since computation of both precision
and recall require knowledge of the correct answers to Q across the input M and
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C, these values would generally be computed as a benchmark across an existing
collection of known inputs as a way to test the quality of the analysis.

Note that, along with what has been discussed above, an analysis also needs
to satisfy some more basic requirements. For instance, the results of running an
analysis should be both repeatable and reproducible. By repeatable, we mean
that an analysis set up under identical conditions will yield the same results. By
reproducible, we mean that, given the proper instructions, an analysis set up and
conducted by different operators on the same models or systems of interest will
yield the same results.

2.2.7 Analysis Composition

It is not always possible to answer a query using a single model or a single property
or one analysis technique. There are various reasons for this, such as

(i) The high computational complexity of an analysis technique to handle large
and complex models and queries, e.g., model checking of large models is still
a major issue due to the state explosion problem,

(ii) The lack of expressiveness of the modelling or property language to express
anymodel or query, for instance a temporal property cannot be expressed using
propositional logic, or

(iii) Infeasibility of designing techniques (both, modelling and analysis techniques)
to answer all queries, as each technique can be used to answer a specific class
of queries.

Different modelling and analysis techniques can be composed to answer a query
properly. For instance, to ensure that a large-scale system is trustworthy, several
aspects of security and safety should be checked and analysed, where each aspect
itself needs different techniques to be analysed, possibly at different levels of
abstraction, at different stages of the system life-cycle, with various classes of prop-
erties, etc. Security consists of three main aspects, namely confidentiality, integrity,
and availability. Confidentiality can concern confidentiality of communications,
computations, or storage, and different methods can be used to specify, enforce,
and ensure each case. For example, encryption can be used to ensure confidentiality
of data during communication while information flow control mechanisms can be
used to ensure that computations will not leak information.

We may formulate analysis composition in terms of the following general rule
using the judgement introduced earlier in this section:

M1, C1 �T1 Q1 � A1 M2, C2 �T2 Q2 � A2 ψ

M,C �T Q � A

where M = M1||mM2 is the composition of models using the composition operator
||m, C = C1||cC2 is the result of composing the contexts using the operator ||c, T is
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the composed analysis technique, Q = Q1||QQ2 is the new query as the result of
composingQ1 and Q2, and A is the final answer result of the composition of partial
answers A1 and A2. This rule informally states that if the queryQi on the modelMi

with the contextCi using the analysis technique Ti leads to the answerAi , i ∈ {1, 2},
the query Q using a combination of techniques T1 and T2 under the condition ψ

will lead to the answer A on the composed model M in the composed context C.
The side-condition ψ specifies the conditions under which this composition can be
performed, as it is not always possible to arbitrarily compose analyses.

Establishing the composed judgement using this rule can be done in a mathe-
matically sound way, or informally based on some heuristics or expert knowledge.
This depends on several factors, such as the existence of a formal definition of the
semantics of the prerequisite judgements, the existence of a suitable algorithm or
procedure to divide the problem into smaller problems in a sound way (i.e., basic
judgements by decomposing the model, context, and query), etc. As an example, the
query “Is this system secure?” can be decomposed into three subqueries, each query
stating that the system is secure in terms of confidentiality, integrity, and availability.
Similarly, these subqueries can be decomposed further into simpler properties,
each of which is possibly analysed using a different technique. This means that
basic judgements might be established using different methods, such as verification,
performance modelling, model-based testing, simulation, penetration testing, etc.
The models or properties of the composed judgements could be specified using a
multi-view modelling language or an ordinary single-view language.

We proceed by instantiating this general rule with two classic examples: the
assume-guarantee verification [AL95] and Hoare logic. In the case of assume-
guarantee verification of concurrent systems/programs, let M,S |� G state that
a system with the modelM will guarantee the relation G (guarantee), if it runs in an
environment ensuring the relation S (assumption) on the states. The model is usually
specified using a state transition system and the relation is a predicate that specifies
some conditions on the transitions (i.e., a pair of states). A simple assume-guarantee
verification rule looks like the following:

M1, S ∪ G2 |� G1 M2, S ∪ G1 |� G2 ψ

M1||M2, S |� G1 ∪ G2
.

The rule informally states that if a module Mi runs in an environment S ∪ Gj and
guarantees Gi , i, j ∈ {1, 2}, i �= j , then, if the two modules run concurrently in the
environmentS, they will together guaranteeG1∪G2. The notation∪ is used to show
the union of two relations. This entailment relation M,S |� G can be expressed as
M,S �V G � True using our above judgement. The model composition operator
||m is a formal well-defined parallel composition operator that computes the product
of the two models. The context composition operator returns the intersection of two
relations. Such assume-guarantee judgements should be used with caution as they
have subtle conditions for validity [AL93].

As the second instantiation, let {p}c{q} be a Hoare logic’s judgement for
sequential programs that informally states that if a program c starts in a state that
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satisfies the precondition p, if it terminates, the final state will satisfy the post-
condition q . The rule for sequential composition of two programs is specified using
the following rule:

{p}c1{q} {q}c2{r}
{p}c1; c2{r} .

The judgement {p}c{q}, in terms of our judgement, is specified as c, p �V q �
True, where the model is the program semantics usually described using a state
transition system, the context is the precondition p, the query is the satisfaction of
q on termination, and the composition operator of models is the ordinary sequential
composition “;”. The composition operator on the contexts returns the context of the
first judgement.
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