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Foreword by Jeff Gray

The composition of software tools to support a task-specific process is a need that
often arises in projects of all sizes. Engineers, scientists, and others who have
expertise in a certain domain often depend on the integration of a tool pathway
to complete work-related tasks. For example, a business analyst may export data
from a company-specific dashboard to conduct some analysis using a specialized
secondary tool, with visualization of the results then handled by a third tool that
best serves the particular requirements of a project.

The need to compose software tools is not new. Over a quarter-century ago,
the “software component” wars between standardization efforts like OpenDoc,
with direct competition from Microsoft’s Object Linking and Embedding (OLE)/
Component Object Model (COM), rivalled that of the fervor of a religious debate.
The need to compose and analyze information from different sources of origin has
been a common need in computer-based solutions.

Engineers use models to abstract properties of a system, which can then be
analyzed by different tools for various purposes. For example, avionics engineers
may have a model that one division of a company uses for reliability analysis, and a
separate model and supporting tool used by colleagues on another team for failure
modes effect analysis. These two separate models and tools represent the same
targeted system, but are created and maintained by different groups, for different
objectives. In such a common scenario, each tool is a highly specialized package
that contributes to a critical step in the engineering process.

Although tool vendors offer what they advertise as all-encompassing tool suites,
many of the tools used in practice are very rarely integrated across the engineering
process. Often, the tools were not designed with composition in mind, resulting
in isolated stovepipes. In such cases, engineers must force integration in a human
intensive and error-prone manner. Solving the model composition problem across
diverse tools is not easy and requires consideration of both syntax (e.g., file formats,
APIs) and semantics (i.e., what is the meaning of a concept in each individual
tool and how do concepts map across tools?). The different abstractions used in
separate models may also lead to topics of uncertainty and ambiguity, such as when
one model captures more detail than another model, leading to a lossy situation
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vi Foreword by Jeff Gray

during a round-trip translation between models. Simple composition solutions are
insufficient in the case of complex engineering tools and processes. The composition
solution must also account for the evolution of the system, as tools and processes
change over time. Scalability is also a concern. Adding a new tool to the analysis
tools ecosystem should not break the process or require exponential effort.

The editors and authors of this book recognize that the same challenges exist for
software and systems engineers who use different models and (often independent)
tools to analyze desired system properties (e.g., functional correctness, performance,
and reliability). They wrote, “The composition of systems, their models and
analyses is a challenging but unavoidable issue for today’s complex systems”
(Chap. 1). At the “Composing Model-Based Analysis Tools” Dagstuhl seminar in
November 2019, they assembled an impressive cohort of experts in both software
engineering and formal methods to discuss the challenges and potential solutions for
analysis tool composition. The various chapter authors cover a range of foundational
topics (e.g., modeling language composition, tool integration, uncertainty, and
ambiguity) from the perspectives of formal methods and software engineering,
with representation from both industry and academia. Readers are also offered a
series of case studies that concretize the most important challenges and issues faced
in applying model-based composition to analysis tools in different domains and
contexts.

This book is recommended to anyone who is involved in the important decisions
that emerge when composing multiple analysis tools during software and systems
modeling. The book is suitable for both practitioners and researchers, and may also
serve as a textbook for a graduate course on model-based analysis tools.

Tuscaloosa, AL, USA Jeff Gray
May 2021



Foreword by Antonio Vallecillo

It is essential to have good tools, but it is also essential that the
tools should be used in the right way

Wallace D. Wattles

Conceptual modeling aims at raising the level of abstraction at which systems are
described to cope with their increasing complexity. To this end, precise languages
are used to represent the elements of the system that are relevant to the purposes of
the modelers, abstracting away those that are not. These high-level representations
of a system are known as software models, and their role in software engineering
has been gaining relevance as soon as they were considered, stored, and managed
like any other software artifacts.

Based on these principles, model-based engineering (MBE) is the software
engineering discipline that advocates the use of these software models as primary
artifacts for the software engineering process. In addition to the initial goals
of being useful to capture user requirements and architectural concerns, and to
generate code from them, software models are proving to be effective for many
other engineering tasks. Model-based engineering approaches, such as model-driven
modernization, models-at-runtime, or model-based testing, already provide useful
concepts, mechanisms, and tools for the engineering of complex systems at the right
level of abstraction. Software engineers have also realized the extensive possibilities
that models offer when treated as actual software artifacts, and how they enable, for
example, the development of powerful software engineering tools.

It was more than a decade ago, when MBE was starting to gain acceptance as a
software engineering discipline, that Jean Bézivin contacted me because he was
happy to see the remarkable developments, artifacts, and tools produced by the
modeling community, but worried about the lack of interoperability between them.
At that moment in time I was working on tools for the RM-ODP framework, and
I was facing similar problems for integrating the separate analysis tools available
for each viewpoint language. As a visionary, Jean thought that such interoperability
was key to the successful development and adoption of MBE, and that models were
again the essential elements to achieve it. Therefore, he coined the term “model-
driven interoperability” to refer to this approach.

vii



viii Foreword by Antonio Vallecillo

We were fully aware that interoperability implies much more than simply
defining a common serialization format, for example, XMI. This would just resolve
the syntactic (or “plumbing”) issues between models and modeling tools. Interop-
erability should also involve further aspects, including the integration of different
behavioral specifications, reaching agreements on names and concepts (ontologies),
overcoming the differences between separate models of operation (e.g., discrete vs.
continuous), or handling other semantic issues such as inconsistency management
or exception handling. Furthermore, interoperability not only means being able to
exchange information, but also to exchange services and functions to effectively
operate together.

We soon realized that the best way to proceed was to set up a forum for the
modeling community to discuss all these issues, because it was not a one-person
effort (or even two). So, we contacted Richard Mark Soley from OMG, who at
the time was also concerned about the same issues, and the three of us decided
to organize a workshop at the MODELS 2010 conference in Oslo, on “Model-
Driven Interoperability”,1 where the community could meet to exchange ideas and
problems about these topics. The workshop was a great success, and more than
30 people participated by presenting their contributions, proposing problems and
challenges, and exploring possible solutions. We all discovered there that the subject
entailed more complexity than expected, that the relevance to industry was higher
than anticipated, but at the same time that successful solutions could be possible if
MBE concepts and techniques were used.

Unfortunately, and despite the interest raised by the first edition, the workshop
was not continued and no other dedicated forum took its place to allow the
software engineering community discuss about making tools interoperate using
MBE technologies and artifacts. This is why I was so glad to learn about the
Dagstuhl seminar on “Composing Model-based Analysis Tools” and, even more,
about this book!

I believe that this initiative fills an existing gap in current research on this
fundamental topic by compiling the main concepts and issues related to the
composition of model-based analysis tools and, more importantly, by describing a
set of concrete case studies that illustrate successful implementations of the book’s
central ideas. I am sure that the software engineering community, both researchers
and practitioners, will truly appreciate the efforts made by the editors and authors
to put together such a useful and valuable compilation of concepts, results, and case
studies into a coherent body of work.

Finally, I am very grateful to the editors for inviting me to write the foreword
to this book, especially when the authors are all the world’s best-known experts
on model-based concepts and tools. This is undoubtedly the best book that could
have been written on this topic, and I look forward to the next Dagstuhl seminar,

1 Bézivin J., Soley R.M., Vallecillo A. (2011) Model-Driven Interoperability: MDI 2010. In: Dingel
J., Solberg A. (eds) Models in Software Engineering, MODELS 2010. Lecture Notes in Computer
Science, vol 6627. Springer. https://doi.org/10.1007/978-3-642-21210-9_14.

https://doi.org/10.1007/978-3-642-21210-9_14
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which I hope will be held soon to further discuss about this fascinating subject and
to produce the continuation of this excellent book!

Málaga, Spain Antonio Vallecillo
May 2021



Preface

Modelling and analysis are key to managing the increasing complexity and het-
erogeneity of today’s software-intensive systems. Historically, different research
communities have studied the modelling and analysis of different software quality
properties (e.g., performance or security) for different types of systems. As a result,
the tools available for designing and maintaining software that meets such properties
are also distinct, using different languages and techniques, making interaction
difficult. This leads to a significant amount of unnecessary development work when
building modern applications that must meet combinations of these properties—for
example, it may be necessary to construct redundant models in different formalisms
and using different tools to support analyses for different quality properties.

We, the editors of this book, have been working on modelling and analysing
software-intensive systems for a long time. In our work, we faced the need for
more flexibility in model-driven engineering and for decomposing and composing
models and analyses in several areas. Addressing this need provokes fundamental
questions—for example, on validity, uncertainties, behaviour and property preser-
vation, and termination of analyses. Traditionally, research on these topics has
been conducted in different communities isolated from each other. This is why
we organised the Dagstuhl seminar 19481 on “Composing Model-based Analysis
Tools”, held in 24–29 November 2019, at Schloss Dagstuhl, Leibniz Center for
Informatics, Germany, to bring together researchers and industry experts from
the software engineering and formal methods communities to leverage synergy
effects and make progress towards establishing the foundations for a common
understanding on composing model-based analysis tools.

This book is an outcome of this Dagstuhl seminar. As such, it presents current
challenges, background on those challenges, and concepts to address those chal-
lenges in the broad area of the composition of model-based analysis tools, based on
the discussions initiated during the seminar. The book also illustrates and underpins
the challenges and concepts by discussing case studies.

We are grateful to the participants of Dagstuhl seminar 19481, who were kind
enough to accept the challenge of participating in the seminar and later writing this
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xii Preface

book. We hope that the seminar and the book will make a small contribution towards
bringing these communities together into this joint endeavour.

Karlsruhe, Germany Robert Heinrich
Málaga, Spain Francisco Durán
Menlo Park, CA, USA Carolyn Talcott
London, UK Steffen Zschaler
May 2021
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Chapter 1
Introduction

Robert Heinrich, Francisco Durán, Carolyn Talcott, and Steffen Zschaler

Abstract This chapter sets the scene, describes the context, and motivates the need
for more detailed research on composing model-based analysis tools. We give a
general motivation of the topic of the book and a high-level overview of the area.
We then describe the goals of the book, its target audience, and the structure of the
remainder of the book. Furthermore, we give suggestions for how to read the book.

1.1 Motivation and Context

Software is an essential part in various facets of our daily life. Mobility, energy
supply, economics, production, and infrastructure, for example, strongly depend
on software which is not always of high quality. Critical issues that arose from
poor software quality can be found manifold in the press. For example, Denver
International Airport opened, delayed, and over budget, due to a dysfunctional
automated baggage-handling system [Don02]; a new online banking system at TSB
Bank led to access and confidentiality issues for its customers, and eventually forced
the CEO to step down [Mon18]; and a supply-chain attack against SolarWinds
inserted a Trojan Horse into installation packages enabling attackers to access
customers’ systems running the affected products [Int21].
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2 R. Heinrich et al.

Besides functional correctness, highly relevant quality properties for today’s
systems include, for example, performance, as directly perceived by users, confi-
dentiality, as important legal constraint for system design, and maintainability, as
important decision factor for system evolution.

Ensuring these properties is a major challenge for design engineers. Several
techniques have been developed to effectively model and analyse different facets
of software quality, such as response time or failure rate of systems. However, the
very different nature of quality properties has led to the use of different analysis
techniques and mostly independent tools for modelling and analysing different
quality properties. For instance, while some of the properties (e.g., performance,
reliability, and availability) are quantitative, other ones (e.g., confidentiality and
safety) are essentially qualitative.

Depending on the size and complexity of the systems and the available details,
different tools and techniques must be used for modelling and analysing quality.
For modelling dependability, for example, techniques like fault trees [Ves+81],
Markov chains [Gil05], and reliability block diagrams [Čep11] are available.
Similarly, a range of techniques are available for dependability analysis, including
simulations—using numerical, analytical, or graphical techniques—and analytical
methods.

Although methods and procedures are not standardised for most industries, and
there are several open questions, known techniques, both for the modelling and
analysis, are successfully used in cases such as defence, transportation, and space
industries.

For when rigorous and precise methods are required, different formal methods
have been used to provide mathematical reasoning, so that once the system’s
intended behaviour is modelled, one can construct a proof that the given system
satisfies its requirements. For example, for dependability analysis, we can find
proposals using Petri nets, model checking, and higher-order logic theorem proving.
A survey on the use of formal methods for dependability modelling and analysis is
given in [AHT16].

Model-driven engineering (MDE) seems a promising technique to efficiently de-
signing and reasoning about behaviour and quality of systems in various disciplines.
Indeed, it has been very successfully applied to improve the efficiency of software
development and analysis, including the representation and analysis of quality
properties. In the context of performance and dependability analysis, tool-supported
approaches like Palladio [Reu+16], Modellica [Mod13] or AADL [FGH06], are
good examples of the possibilities.

Recent innovations, like the Internet of Things, production automation, and
cyber-physical systems, combine several domains such as software, electronics, and
mechanics. Consequently, also the analyses for each of these individual domains
need to be combined to predictively analyse the overall behaviour and quality. The
composition of systems, their models, and analyses is a challenging but unavoidable
issue for today’s complex systems. We believe MDE techniques can help in such
composition. Or at least, that these techniques may contribute to the improvement
of the situation in these regards.
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Existing MDE approaches to modelling and analysis are not sufficient to com-
pose modular analyses combining domain-specific modelling languages (DSMLs).
Indeed, an approach like Palladio already provides a modelling language for the
analysis of performance, reliability, maintainability, and other quality properties of
systems. However, it, like other similar approaches, relies on a monolithic modelling
language and monolithic analysis tools, making the extension of the language
and tools, so that they provide support for new properties, challenging. Thus,
the internal structure of Palladio’s modelling language and analysis tools eroded
over time due to uncontrolled growth of dependencies, instance incompatibility,
and incompatible extensions [Str+16]. Furthermore, there is no way to verify
the non-interference between the analyses provided. On the other hand, we have
witnessed interesting advances in some of these issues, for example, in the fields
of graph rewriting, algebraic specification, or tree automata. First attempts towards
composable modular models have been developed in recent years, attempting to
compose, not only the structure of models and DSMLs, but also their dynamic
aspects (behaviour and semantics). These indeed may be good foundations for
building composable modular analyses.

Furthermore, since models are abstractions of reality, they are not a faithful repre-
sentation of the system but they contain uncertainties [KO01, Wal+03]. Identifying
and handling these uncertainties is a challenge for the research community [EM13,
PM14] that is, at present, only partially addressed. The combination of models from
different domains and usage perspectives may exacerbate the effect of such uncer-
tainties by creating, for instance, model inconsistencies, incoherence, mismatches
in granularities of models, mismatches in the underlying assumptions made when
creating the different models, etc. The study of the existence, quantification, and
management of the new uncertainties created during the combination of models is
an unaddressed task that should be tackled to trust the results of the subsequent
model-based analysis.

1.2 Goals of the Book

This book fills a gap in the existing research literature. There is a wide literature
on software engineering, model-driven engineering, analysis tools, and formal
methods. We, however, do not know of any publication that presents solutions to
the challenges raised in the previous section.

This book was created with the belief that sharing specific challenges and
advances in some of the aforementioned fields might lead to new approaches and
alternative views so some of these challenges may be tackled.

We target more flexibility in MDE by decomposing and composing models and
analyses, a topic whose challenges have been the focus of research in software
engineering and formal methods, respectively. Traditionally, research on this topic
is conducted in these communities in isolation. This book presents joint works
of members of the software engineering and formal methods communities and
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representatives from industry with the goal of establishing the foundations for a
common understanding.

We envision an environment in which modelling languages and analysis tech-
niques for the different quality properties are independently provided, and where
one can pick up the desired ones at will. In addition to being able to perform such
a composition of models and analyses, the combined analysis would allow us to
analyse the trade-offs between different properties (e.g., performance vs. security).
Furthermore, it allows to share the analysis effort between computation resources
as much as possible. This leads to the following interesting questions, relevant for
research and industry, for which we provide a common understanding and first
answers in this book.

• How can different analysis formalisms be composed safely and correctly?
• How can different analysis tools be composed efficiently, effectively, and cor-

rectly?
• How does composition of analyses interact with the need for continuously

updated and incremental analysis?
• How are analysis results from composed analysis best presented to users in an

actionable form?
• How does analysis composition affect analysis uncertainty and vice versa?

1.3 Target Audience

Central to the book is to provide more flexibility in MDE by enabling the
decomposition and composition of models and analyses, a fundamental question in
software engineering. This also provokes questions in the field of formal methods—
for example, on validity, uncertainties, behaviour and property preservation, and
termination of analyses. Traditionally, research on these topics is conducted in the
formal methods community isolated from the software engineering community.

This book addresses readers from research and industry in the software engi-
neering and formal methods communities to make progress towards establishing
the foundations for a common understanding.

We do not expect any specific knowledge from potential readers, but the book
is mainly targeted to researchers in the field of software engineering and formal
methods as well as to software engineers from industry with basic familiarity
with quality properties, model-driven engineering, and analysis tools. No specific
technical knowledge is required, and most terminology used is either widely known
by the software engineering/formal methods communities, or will be introduced in
the book. The focus is mainly on providing an introduction to the concepts and
commonalities.

Readers of the book should expect to learn about concepts fundamental for the
composition of model-based analysis tools, a detailed description of technical and
research challenges, as well as a description of case studies addressing some of these
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challenges. More specifically, researchers in the field will receive an overview of
the state of the art and current challenges, research directions, and recent concepts,
while practitioners will be interested to learn about concrete tools and practical
applications in the context of case studies.

1.4 Structure of the Book

The book is structured in two parts and organised around five fundamental core
aspects of the subject:

1. The composition of languages, models, and analyses;
2. The integration and orchestration of analysis tools;
3. The continual analysis of models;
4. The exploitation of results; and
5. The way to handle uncertainty in model-based developments.

After a chapter on foundations and common terminology and a chapter on
challenges in the field, a chapter is devoted to each of the above five core aspects in
the first part of the book. These core chapters are accompanied by additional case-
study chapters, in the second part of the book, in which specific case studies are
presented in further detail to illustrate the concepts and ideas previously introduced.

When talking about the composition of languages, models, and analyses, we
need to understand the different elements impacting analysis compositionality,
their different classes, and specific conditions of composition. This is the main
focus of Chap. 4. Chapter 5 addresses the challenge of how to orchestrate the
composition of analyses implemented in different tools, and how to combine and
integrate them. Of course, the possible solutions are diverse. The chapter introduces
a reference architecture and orchestration strategies for the integration of existing
analysis tools into modelling environments. Independently of whether analyses are
performed by isolated tools or in coordination, they must be ready to repeat such
analyses after input-system changes. In many cases, systems must be analysed
after each change during both design and runtime phases. Continual model-based
analysis must be performed efficiently and ideally in a modular way without re-
assessing the complete system whenever analysing a specific part of the system
is sufficient. Chapter 6 presents techniques to address this challenge. Of course,
when discussing interconnection and coordination as well as provision of inputs
and communication of results, data and interfaces come into play. In this regard, the
last two core chapters elaborate on two key aspects, namely using the results of the
analyses (Chap. 7) and their associated uncertainty (Chap. 8). Chapter 7 classifies
the different ways of using and presenting the results of analyses, and demonstrates
these with several real-world examples. The last core chapter, Chap. 8, is devoted to
uncertainty. It discusses the different forms of uncertainty we may find in models,
analyses, and results, and describes the importance of recognising its presence
and relevance. It also explores the main different forms currently used to include
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uncertainty in the models of systems and how existing tools can use them, with a
particular focus on analysis composition.

The case-study chapters in the second part of the book illustrate the core
concepts and provide further details by discussing specific tools. Software should be
developed in problem-specific languages rather than general-purpose programming
languages. However, most existing analysis tools are tied to a specific representation
of the software to be analysed. Chapter 9 discusses how to model a language’s
semantics explicitly to make it possible to reason about semantics when developing
and composing analysis tools. Composing modelling languages and analysis tools
still requires significant efforts to properly consider syntax and semantics as well as
related analyses and syntheses. Chapter 10 demonstrates object-oriented language
engineering concepts that enable composing models of heterogeneous languages.
Evolving modelling languages and analysis tools over time may cause design smells.
These design smells are structures that require refactoring. Decomposition is key
for refactoring design smells in modelling languages and analysis tools. Chapter 11
presents a case study for the evolution of a historically-grown model-based analysis
approach. The chapter discusses how techniques for decomposition and purpose-
oriented composition can help refactoring modelling languages and analysis tools.
Design issues may not only occur in modelling languages and analysis tools but also
in model transformations. Chapter 12 presents a tool for the static analysis of the
ATL model transformation language. The tool also serves as a case study for result
representation, as it focuses on how transformation developers can exploit analysis
results to understand and fix transformation problems and achieve higher quality
transformations. Chapter 13 presents a case study on how to use different tool-
orchestration strategies to combine various tools for the analysis of actor models.

1.5 How to Read This Book

This book can of course be read sequentially from start to finish. However,
depending on your goals, different strategies may be more suitable:

• Researchers in software engineering or formal methods, and in particular PhD
students, may find it useful to focus on a particular challenge in the composition
of model-based analysis tools. In this case, you may wish to start by reading
Chap. 2 to understand the fundamental terminology used before delving more
deeply into the specific core chapter corresponding to your challenge of choice.
You may wish to first read Chap. 3 to get an overall overview of the challenges
and help you pick the right core chapter to start from. Each of the case-study
chapters in the second part of the book is linked to one or more of the challenges
and provides a concrete instantiation of the challenges and some solutions.

• As a practitioner in software engineering, you may find it more useful to start
directly with one of the case-study chapters in the second part of the book. From
there, you can always link back to the corresponding core chapters.
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• If you are a master’s student studying software analysis, then the foundations
chapter (Chap. 2) will be your best starting point. You will likely then find it
useful to read the chapters in the first part of the book (Chaps. 4–8) to gain an
overview of the key challenges in the field and the general solution approaches.
Depending on your specific focus, you may then want to read specific case-study
chapters from the second part of the book.
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Abstract This chapter gives an introduction to the key concepts and terminology
relevant for model-based analysis tools and their composition. In the first half
of the chapter, we introduce concepts relevant for modelling and composition of
models and modelling languages. The second half of the chapter then focuses on
concepts relevant to analysis and analysis composition. This chapter, thus, lays the
foundations for the remainder of the book, ensuring that readers can go through the
book as a coherent piece.
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2.1 Models, Modelling Languages, and Their Composition

In this section, we give an overview of core concepts that must be considered when
composing semantics, languages, and models, and discuss how these core concepts
are interrelated.

Scientists as well as engineers (including software engineers) use models to
address complexity. Given this, it is worthwhile to precisely clarify what a model is.
A commonly agreed-upon general definition, given by Stachowiak [Sta73], states
that a model has three main characteristics:

• There is (or will be) an original.
• The model is an abstraction of the original.
• The model fulfils a purpose with respect to the original.

A model can be called valid if it fits for its purpose with respect to the original
within certain validity boundaries. Interestingly, engineers and scientists differ in
their viewpoint here [Com+20]: A scientist regards the model as invalid (or bad), if
it does not describe the real world. An engineer regards the produced artefact as bad
if it does not fit to the model.

We may have explicit representations of models, which can be defined using
natural language or a more formal modelling language. Existing modelling lan-
guages can be classified as general-purpose modelling languages, such as the unified
modeling language (UML) [BRJ98], and domain-specific modelling languages
(DSML) [Kle08]. For example, software developers regularly use class diagrams
to define data structures, concepts of the real world and their relations, and also
technical architectures within the software.

The advantage of such explicit models is that they can be used as documentation,
be subjected to different forms of analysis, or even be used as a source to produce
some output, including code generation or 3-D printing. The specific focus that a
modelling language usually has may be a burden for the modeller, because of the
restrictions that it imposes, but also enables many smart constructive and analytic
algorithms based on that language. For example, state machines can be checked
for completeness and determinism, the structured query language (SQL) provides
efficient database retrieval and storage based on E/R-models, etc.
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It is also possible that models, instead of being expressed in a certain modelling
language, are encoded directly within a general-purpose programming language,
like C++, Python, or Java. These models are typically used, for example, in
simulations, such as of phenomena in climate and weather, at the atomic level,
in cell biology, or in the wider universe. In this case, the sole and only form of
analysis is through direct execution and an examination of the resultant execution
trace. The availability of code also allows the possibility of checking certain coding
properties, as type consistency or the correct handling of exceptions. Tools like
Coverity [Syn] or CodeSonar [Gra] provide quite sophisticated forms of what is
typically called (static) program analyses. The following discussions concentrate on
modelling languages and their use for the definition of models. A discussion of the
use of modelling languages in the construction of simulation models can be found
in [ZP20].

2.1.1 Types of Models and Their Role in Analysis

Various types of models [Lee18] and the roles they can play [Küh16] are de-
scribed in the literature. Here, we adopt the distinction made by Combemale et
al. [Com+20], who consider three types of models: engineering, scientific, and
machine learning models.

An engineering model is used to specify and represent a targeted system [Lee18].
It drives the development of the system to be built by specifying concerns such as,
e.g., braking and obstacle avoidance in on-board control systems for autonomous
vehicles, traffic management models, information systems, or business rules. En-
gineering models are typically used as a means to develop a physical system, a
software-based system (including behaviour, structure, and the interaction of the
system with its context), or both (e.g., cyber-physical systems). Engineering models
can be described using both domain-specific and general-purpose languages.

A scientific model is a representation of some aspects of a phenomenon of the
world [GL16]. Scientific models are applied to describe, explain, and analyse the
phenomenon based on established scientific knowledge defining a theory. A theory
provides a framework with which models of specific phenomena and systems can
be constructed. Scientific models are used in various application areas ranging from
climate change models, to electromagnetic models, protein synthesis models, or
metabolic network models. Typical examples include continuous, equation-based
formalisms like differential equations, or discrete-event models.

A machine learning model is created by automated learning algorithms based
on sample data (i.e., training data) to make predictions or decisions without
being explicitly programmed for the task at hand. It approximates the conceptual
relationship between a given input and the expected, or a priori unknown, target
output. Machine Learning models can be applied in various application areas
such as image classification, feature extraction, defect density prediction, language
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translation, or motion planning of robots. Common formalisms include neural
networks, Bayesian classifiers, and statistical models.

According to [Com+20], a model can play several roles with respect to its
purpose: It can be descriptive, prescriptive, or predictive.

• A model plays a descriptive role if it describes some current or past properties of
the system under study, facilitating understanding and enabling analysis.

• A model plays a prescriptive role if it describes properties of the system to be
built, driving the constructive process—including runtime evaluation in the case
of self-adaptive systems.

• A model plays a predictive role if it is used to predict properties of the system
that one cannot or does not want to measure.

Each type of model can play several roles, which determine whether and how
the model is used in analysis. A scientific model is descriptive first and then may
become predictive, e.g., to support what-if analyses [Bru+15]. The model may
also become prescriptive, e.g., if embedded into a socio-technical system. For
example, a prescriptive model of a decision-making tool for climate change using
a predictive simulator based on a descriptive scientific model of the earth’s water
cycle [Com+20].

An engineering model typically starts by being descriptive and then, at design
time, is refined and transformed into a prescriptive model. Then, once the system is
built as prescribed, the model becomes descriptive again as a kind of documenta-
tion [Hei+17]. An engineering model may also be used as a predictive model. For
example, a system architecture model can be applied to predict the performance of
a specified system configuration [Reu+16].

A machine learning model is typically used in a predictive role to infer new
knowledge based on some hypothetical input data. It might also be descriptive of a
current or past relationship, or prescriptive if machine learning results are used for
decision-making [Com+20]. For example, we may have a prescriptive model of a
smart factory where a predictive model is used to make decisions about production
plans based on descriptive historical data.

2.1.2 What Is a Modelling Language?

According to [Com+16], a modelling language defines a set of models that can be
used for modelling purposes. Its definition consists of

• Syntax, describing how its models appear,
• Semantics, describing what each of its models means, and
• Pragmatics, describing how to use its models according to their purpose.

This is a rather general definition which can be realised in various ways. Graphical,
tabular, and textual forms of syntax are possible. The semantics can, for example, be
defined in denotational form [Sto77], where a semantic domain is mathematically
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defined and a mathematical function relates syntactic elements to elements of the
semantic domain. The semantics could also be defined by explaining the execution
effect of model elements, for example, using abstract machines.

Models need a precisely defined semantics. Semantics describes the precise
meaning [HR04] of each well-formed model in terms of the semantic domain, which
is generally well understood. We also speak of a formalism or formal language
instead of a modelling language. Such a semantics is the formal foundation for
understanding whether a model is correct; that is, whether desired properties are
satisfied. For example, the set of words over an alphabet can be used as a semantic
domain for state machines. A concrete state machine can then be mapped to the
subset of accepted words.

There are different formalisms and formal methods for the specification of well-
defined semantics, such as rewriting logic semantics [MR04], small-step/structural-
operational semantics [Plo04], or big-step/natural semantics [Kah87] or their
extensions to distributed, event driven systems [BS01]. In many cases, however, no
explicit semantics is available, or we may say that there are different forms of ad hoc
semantics. For instance, despite different attempts to provide a formal semantics,
the semantics of Python continues to be defined primarily by the behaviour of the
Python interpreter, just as the semantics of Java is provided by its virtual machine.

The main purpose of software is “to do”. Therefore, many modelling languages
concentrate on software and the behaviour it specifies. However, it is worthwhile
to mention that semantics should not be confused with behaviour as such, because
purely structural languages, such as class diagrams, also have semantics, which in
this case is the set of possible object structures.

It is also worthwhile to note that the semantics should not be confused with a real
world interpretation. For a precise study of the phenomena of a formal language,
the semantic domain should be a mathematically well understood, precisely defined
construction. It is then up to us to interpret this in the real world. For example, words
over an alphabet may be interpreted as sequences of human actions in workflows,
sequences of messages over a communication channel, or sequences of produced
physical component parts in a production line.

A sound semantic definition is very helpful to understand what shall be analysed
and what the desired outcomes of analysis techniques are. This is true for binary
results of analyses, but also for quantifiable results that rely, for example, on statisti-
cal considerations. In practice, an explicitly defined semantics is not always needed.
Sometimes the language designers already have a good informal understanding and
can directly encode the desired properties into algorithmically executable analysis
techniques. However, if the domain is complicated, not very well understood, or
if the DSML is newly defined, then an intermediate step consisting of mapping the
syntax of the language into a semantic domain, before designing executable analysis
techniques, has proven very helpful in practice. Such a mapping into a semantic
domain can indeed explain the desired and technically implemented results of an
analysis technique much better. This even holds if it is not formally defined, but used
as a shared understanding for a formal language. The following examples illustrate
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the use of semantic domains (traces, object-diagram structures, or Petri nets) for
different analysis problems.

• The failure rate of state machines can be well explained using a set of traces.
In this case the syntax is the state machines, and the semantics its traces. The
analysis technique needed is the efficient examination of a representative finite
set of traces or a BDD-like1 integrated representation of all traces.

• The coverage of test sets can be well explained over an appropriate minimal set
of object structures that can be derived from a class diagram. In this case the
syntax is the class diagrams, and the semantics its object structures. The analysis
technique needed is a monitoring of the tests and a finite grouping of relevant
object structures into equivalence classes.

• The set of reachable states of a machine can be understood using a mapping from
state machines into Petri nets. In this case the syntax is the state machines, and
the semantics its Petri net representation. The wide range of tools available for
Petri nets provide the needed analysis technique.

According to the above definition of models, a model has a purpose with respect
to its original. In practice, a model can be used for more than one purpose, typically
associated with the above-mentioned model roles, and such purposes may change
during the model’s use in various activities of a development process. For example:

(a) A business analyst uses a model to capture and convey requirements and other
related information known about the system to be developed.

(b) A developer uses the same model to constructively implement a system fitting
to the model.

(c) Quality assurance may use the same model to analyse different quality proper-
ties.

(d) Testers use that model both to identify potential problems and derive tests.
(e) Engineering models might be used to realise a digital twin that collects data,

provides services and, to some extent, also controls the physical twin [Bib+20].

While for all those the semantics of a model is the same, they use the model in rather
different ways and therefore also need rather different functionality centred around
the model.

2.1.3 Metamodels

Tools need a suitable representation of models to manage them. An approach that
has proved itself useful for constructive as well as analytical tools is metamodelling
technology [Gro06].

1 BDD stands for Binary Decision Diagram.
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It is a core idea of model-driven engineering (MDE) to also use models for
explicitly defining modelling languages: this is called metamodelling. Let us borrow
the following definitions of metamodel and conformance from [Com+16].

A metamodel is a model describing the abstract syntax of a language. It is
commonly agreed that a metamodel is usually defined as a class diagram, very
similar to UML class diagrams. A metamodel therefore describes a set of object
structures, where each of these object structures describes the abstract syntax and
therefore the essence of a model, which is needed for analysis, code synthesis, or
other development activities.

A model conforms to a given metamodel if each model element is an instance
of a metamodel element. Such a model is considered valid with respect to the
language represented by the metamodel. It is a big advantage of the metamodelling
approach that exactly the same metamodel can be used within a tool both to
represent the abstract syntax and to operate on such model, for example, for code
generation or for the application of some analysis technique (see Chap. 11 of this
book [Hei+21] for an example). A metamodel therefore serves a dual purpose,
defining the language and all the models in that language (i.e., the syntax), and
serving as basic infrastructure for tooling. The class diagram however only captures
the abstract syntax, which needs to be augmented by a concrete representation,
usually in diagrammatic, tabular, or textual form.

2.1.4 Property Models

In model-based analysis, we are interested in understanding certain properties of
the system under study. When the property of interest can vary, such properties
must be made explicit by the developers and then provided to the tooling. Given
this, it is necessary to give the desired properties a precise semantics in addition to
the models. For that purpose, we distinguish between properties that talk about the
semantic domain of the model, e.g., the set of possible system runs, reachability of
states in a model, or climate behaviour, versus pure syntactical properties, such as
readability or cyclomatic complexity of code.

As a consequence of these considerations, a semantic property is itself a kind of
model, which we call a property model. The property is then the set of all elements
of the semantic domain that satisfy the property. Formulated in set-theoretical form:
A model fulfils a property, exactly if the semantics of the model is contained in
the semantics of the property. Or, formulated in logical form: The semantics of the
model implies the semantics of the property.
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2.1.5 Two Dimensions of Model Compositionality

Models need to be compositional along two dimensions, namely concerns and
subsystems. To tackle the complexity of systems development, it is often necessary
to use diverse models describing different aspects or viewpoints of the system as a
whole or of subsystems.

The separation of concerns is important for enabling contributions by different
subject-matter experts, and enables parallel development and evolution. This is why
modern modelling languages, such as UML [BRJ98] and SysML [Gro12], provide
a number of different sublanguages, allowing the modeller to concentrate only on
certain aspects of the system.

Model reuse is only possible if the models are developed in independent,
relatively encapsulated pieces. Building models as encapsulated pieces implies a
mechanism and opportunity for composition, and building up a description of the
overall system. For example, we may use state charts to describe the behaviour of
individual components, and then combine them into a model of the system as a
whole. These behavioural descriptions of components can then be reused to build
models of different systems.

In summary, the two dimensions of model composition are:

(a) Within the modelling language, models are semantically composed to produce
larger specifications. This form of composition usually goes along with the
composition of the system components.

(b) Models of different aspects of the same component are composed to give a more
complete description of this component.

2.1.6 Models of Context

In many cases, in addition to the models of the system or component to be built, we
require a model of the context of the system or component.

In systems modelling, the term “context” refers to models which are needed
for system construction and analysis but which do not describe entities to be
built. Instead they describe the environment of the system. Considering contexts
is important as they affect the system to be built for two reasons:

(a) If the implementation of the system can rely on certain assumptions about how
it is being used, then certain internal optimisations become possible.

(b) When using the implemented subsystem/component, the context model actually
gives restrictions on how it can be composed into a larger system.

If we lift this understanding of context to the metamodel (the language definition
level, Sect. 2.1.3), we also have to draw a line between the artefacts to be manip-
ulated and the additional context information. As an example, given all potential
executions of a system, a context model may define the subset of executions that
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need to be analysed. In addition, one could also consider platform-specific parts of
the semantics definition (like scheduling policies) as a context model which act as
a parameter to the analysis. Alternatively, such information could have also been
considered as part of the model’s semantics. The choice depends on the specific
questions to be studied and on the available analysis tools.

In the case of security analysis, for example, the context model may include
an attack model (e.g., the Dolev–Yao model [DY83]), giving the capabilities of
attackers of concern. When analysing robustness or resilience against faulty or
inaccurate sensors or actuators, a context model might include fault models. In
the case of a multi-agent system, analysis might focus on a single agent to reduce
analysis complexity, using a context model that includes a model of the remaining
agents, suitably abstracted.

2.1.7 Model and Language Composition

Composition of models and the languages used to describe them is key to coping
with the complexity inherent in modelling diverse aspects of large systems, possibly
modelled in models expressed in heterogeneous languages. This, therefore, implies
that also languages need to be composed.

In general, when composing languages, we need to understand what to compose,
given as shown in Sect. 2.1.2, that a language is defined by syntax, semantics, and
pragmatics. Assume you have one syntax definition and two different semantic
definitions. For the purpose of composition, we might view these as two different
languages. However, having one syntax and semantics definition, and two pragmat-
ics descriptions, we would still consider this to be one language, with two ways of
using it. Consequently, when considering composition, we would treat syntax and
semantics definitions as constitutional parts of the language (any change of either
will change the language), while the pragmatics description would not be part of the
language and, hence, not subject of language composition.

Looking at the efforts to standardise UML in recent years, we can observe that
a clear, precise, and well integrated semantics for such a language is not easy to
achieve. This is partially due to the complexity of UML itself, partially due to
political problems, because different driving forces have different understandings
and interpretations, but also partly due to the overwhelming desire that UML should
cover every domain of software systems. Actual realisations of components may
differ in multiple details, for example in communication forms, timing, interaction
of threads, sharing of memory, etc. If UML is mainly used for communication
between developers in the form of “paper-based” models, this lack of semantics
is not necessarily harmful. For sophisticated analysis techniques, however, this is a
strong impediment.

For an advanced and potentially integrated form of composite semantics, it is
necessary, as a consequence of the above discussion, to also think of composition
of models of different aspects and, therefore, as well on the modelling languages
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used for describing these aspects. Instead of a one-size-fits-all language, such as
UML, a feasible alternative could be to use small individual modelling languages,
allowing us to describe small and focused models, and then integrate the models
by integrating the analysis techniques or the results of the analysis algorithms as
described in Sect. 4.4.2 of this book [Hei+21].

Knowing that to manage complexity it is important to decompose the problem,
so different aspects can be addressed individually, as well as to decompose system
models into models of subsystems, it is clear that we also need mechanisms to
compose models, including those written in different heterogeneous languages.

Forms of Model Composition Although there is work on model composition,
coming up with a complete classification of forms of model composition is
challenging, because the form of composition very often depends on the form of
the models and the aspects they describe. For example:

• Class diagrams can be merged (see, e.g., [Obj17, DDZ08]).
• State machines can be composed using the cross product for synchronous

communication, but there are also other forms of composition when allowing
asynchronous communication or feedback (see, e.g., [LV03, Chapter 4]).

For software code written in typical programming languages (e.g., Java or
C), composition of different code components is typically not performed at the
source-code level. Instead, composition is normally delayed to the binding stage.
For example, in virtual machines this only happens when loading the compiled
code. Composition is conceptually clearly understood on the source-code level,
but modularity allows to defer the actual composition to a very late stage, which
supports agility of development. In contrast, state machines have composition
techniques that are applied directly on the state machine models. This is true for
many other modelling languages, too.

It is important that analysis techniques are designed to be as modular as possible.
They can then be applied to certain model subsets, for example, the models of
a subsystem, independently of other subsystems. This will lead to more efficient
analysis execution, delivering results more quickly, potentially even immediate
feedback during editing, and to a better reuse of the analysis results when composing
the overall system (see also Chap. 7 of this book [Hei+21]). However, some analyses
cannot be modularised. These analyses need a holistic view of the overall system
model and an understanding of how the system will be used in its context, which
therefore also needs to be explicitly modelled.

Forms of Language Composition Composition of models within a given language
is already a challenge, but has been addressed at least in formal methods and also
by a variety of tools. Composition of models expressed in different languages is
equally important, in particular in the context of holistic analysis techniques.

When composing models expressed using different languages, some consistency
checks are necessary. One needs to ensure that symbols defined in one language,
for example, classes in class diagrams, are consistently used in the other languages,
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for example, in object diagrams or performance models. These checks can in many
cases be executed automatically.

Composition of models may be interpreted as the integration of models into one
single uniform model, but it may also mean that models of subsystems or concerns
are somehow coordinated. For example, state machines that describe the behaviour
of individual components of a component diagram may be connected through
component diagram channels [SGW94] in various ways, and their composition is
of course dependent on the component diagram structure.

An alternative to coordinating models in different languages is to compose
the languages and then compose models within the resulting language. Given
that metamodels are class diagrams, we have several alternatives for language
composition:

• We can use merging algorithms for class diagrams to get an integrated meta-
model. This, however, involves a lot of design choices, especially when the
language concepts that should be the same are technically realised in different
forms in the different metamodels. See, e.g., [Cla11], and works on Concepts,
Templates and Mixin Layers by de Lara and Guerra [LG10], Melange [WTZ10],
model amalgamation [Dur14, Dur+17] or the GTS Morpher in Chap. 9 of this
book [Hei+21].

• We can define mappings between metamodels that would allow to translate the
complete model of one language or at least certain parts of one model into a
model of the other language. This approach is more decentralised, because it does
not need a one-fits-all integrated metamodel. However, it leads to redundancy on
the model level, which in turn leads to issues when evolving models. Changes in
the different models need to be synchronised. See, e.g., [Hu+11, GS18, Hid+16]
for an overview on bidirectional model transformations.

• We can define consistency relations between the metamodels. These relations
can, however, only be used to check consistency, but are not helpful in construc-
tive adaptations.

These forms of composition may also be mixed in different ways. And of course,
we may have cases in which neither the metamodels nor the models are integrated
at all. In these cases, the execution of the models may still be synchronised both in
time and events and potentially also in shared data. Chapter 9 of this book [Hei+21]
describes a form of metamodel composition that includes a composition of the
semantics.

2.1.8 Model Transformations and Transformation Models

In order to explicitly capture relations between models, we need to establish a
transformation model [Béz+06], which, in turn, obeys its own transformation
language, often specified in form of a transformation metamodel.
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Transformation metamodels typically connect a source and a target language
(metamodel) through explicit constructs for expressing relations (e.g., QVT-
Relational [OMG16]) or algorithmic translations (e.g., QVT-Operational [OMG16]
or ATL [Jou+08]). A transformation model specifies a set of model transformations,
one for each acceptable combination of input models. It is, therefore, sometimes
referred to as a model transformation specification.

Relational transformation models can potentially specify model transformations
in different directions, including transformations used to bi-directionally synchro-
nise different models [Hu+11, GS18, Hid+16]. Algorithmic transformation models
typically fix a particular transformation direction.

Many transformation languages come with dedicated engines for efficiently “ex-
ecuting” a given transformation model; that is, for instantiating the corresponding
model transformation for a given set of input models.

Model transformations have been used in many different areas, including model
translation, model composition, refinement, etc. Surveys [CH06, REP12, Men13]
provide classifications of model transformation approaches and languages, showing
the features of the most prominent ones. More recently, in [Kah+19], Kahani et al.
provide a detailed overview of the state of the art in model transformation techniques
and tools by presenting a catalogue of 60 metamodel-based transformation tools,
which are categorised in accordance with several attributes.

The correctness of model transformations is key for MDE. Their correctness is
even more important if model transformations are used to compose models and
interoperate analysis tools, since the validity of such analysis rely not only on the
analyses or analysis tools themselves but also on the translations to which models
and analysis results are subjected. [CS12] and [Amr+15] present exhaustive reviews
of the literature on the verification of model transformations analysing the types
of transformations, on the properties that the different existing techniques verify,
and the verification techniques that have been applied to validate such properties.
[RW15] also surveys research on model transformation verification by classifying
existing approaches based on the techniques used (testing, theorem proving, model
checking, etc.), level of formality, transformation language used, and properties
verified.

Related to the verification of model transformations, we have testing and static
analysis of such transformations. For example, surveys such as [Mus+09, Bau+10,
SCD12] present views on the state of the art in the area of model transformation
testing. Sánchez Cuadrado, Guerra, and de Lara make an interesting proposal
in [CGL17] for the static analysis of model transformations. They present a method
for the static analysis of ATL model transformations (also discussed in Chap. 12 in
this book [Hei+21]). Their goal is to discover typing and rule errors using static
analysis and type inference.

Formally and systematically defining the semantics of transformation languages
is important to ensure consistent and predictable execution of transformations.
Different approaches have been taken for defining the semantics of model trans-
formations. For example, in [TV10, TV11], Troya and Vallecillo give a formal
semantics of the ATL 3.0 model transformation language [Jou+08] using rewriting
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logic and Maude. [RN08] translates model transformation definitions in the QVT
(Query/View/Transformation) [OMG16] language to a graph production system,
thus providing a graph transformation-based semantics to it. Guerra and de Lara
propose in [GL12] a formal, algebraic semantics for QVT-Relations check-only
transformations, defining a notion of satisfaction of QVT-Relations specifications
by models. In [CS13], Calegari and Szasz present a formal semantics for the
meta-object facility (MOF) and QVT-Relations languages based on the Theory
of Institutions. With this approach, the semantics given reflects the conformance
relation between models and metamodels, and the satisfaction of transformation
rules between pairs of models. Indeed, the theory facilitates the definition of
semantic-preserving translations between the given institutions and other logics
which will be used for verification.

2.2 Analysis and Analysis Composition

The essence of analysis is to answer questions about properties of interest of a
system under study. However, an analysis generally does not reason directly about
such a system, but instead about a model of the system. An analysis that reasons
about a model of a system under study is called a model-based analysis in this book.
To allow a model to be used to answer questions about the system it represents, the
properties of the model need to adequately reflect those of the system under study.
Models can be used to represent the structure of a system (i.e., its parts and how
they are connected), the behaviour of a system (i.e., what it actually does when it
is executed), the interaction of the system with its context (i.e., other systems, the
physical environment, or humans), quality aspects of the system (e.g., performance,
code complexity, or energy consumption), or a combination of these. Similarly,
properties can target structure (e.g., to reason about connectivity or potential flow of
information), behaviour (e.g., to reason about the correctness of what the system
does, or how it interacts with other components or its environment), or quality
aspects (to determine if the system guarantees a desired quality).

From a semantically and precisely defined relation between models and prop-
erties, we need to derive practical algorithmic analysis techniques, that effectively
compute the answer to a query on the composition of a system model and its context.
We define an analysis as the following judgement:

M,C �T Q � A

stating that the query Q on a system model M in the context C leads to the answer
A using the technique T . The satisfaction relation, often denoted by M,C |� Q

is an instance of such entailment where A = true. From the literature, we know a
number of such precisely defined satisfaction relations, such as

(a) Logical implication for various forms of logic [Tom99],
(b) Refinement and various forms of (bi)-simulation relations [Mil89],
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(c) Satisfaction of temporal logic formulas by automata [CES83], and
(d) consistency checks for object structures with respect to given data structure

definitions (e.g., class diagrams) [RG00].

Analysis techniques can be categorised along different dimensions, including
automation degree, time, result type, purpose, quality, and composition of analysis,
that we will discuss in the following.

2.2.1 Automation Degree

The first dimension for categorising analysis techniques is the degree by which they
can be automated by tools. An analysis can be carried out fully automatically by a
tool, semi-automatically (i.e., interactively or tool-assisted), or manually, depending
on the kind and complexity of the analysis problem. The reason for its level of
automation is diverse. While some analyses can be performed in a fully automatic
way, others are computationally expensive or undecidable, which makes them less
amenable to full automation. Software that partially or fully automates an analysis
is called analysis tool in this book. There are multiple alternatives for analysis
automation, including:

• Typically, analysis such as type checking and well-formedness checking can be
carried out fully automatically.

• In the formal methods community, there are several techniques and their
supporting tools such as model checking [CES83, KNP11, Ben+95], symbolic
execution [Kin76, How77], automated theorem proving (e.g., Hoare logic-based
verifiers [Hoa69]), and satisfiability modulo theories and solvers [Bar+09] to
analyse a system automatically.

• In some cases, we may perform analysis on specific aspects of systems. For
example, at the programming level, data-flow and control-flow analyses are
techniques that allow the user to perform checks on the dynamic aspects of our
programs, checking, for example, whether a storage location has been initialised
before it is being used, or whether a program leaks information.

• Simulation is another example of automated analysis. Simulation typically works
with specific scenarios and supports detailed analysis of functional and non-
functional (e.g., performance) aspects of a system’s behaviour.

• While the satisfaction of many properties can, in principle, be checked au-
tomatically, this is not always possible efficiently, for example, when using
backtracking-based exponential algorithms. Model checking of large models is a
prominent example. Large models cannot be model-checked automatically due to
the state explosion problem [Cla+11]. As a result, analysis algorithms sometimes
stop with an undetermined result. In some cases, a combination of various
techniques might be used to perform the analysis, such as abstract interpretation,
refinement checking, and modular or incremental analysis. Another alternative
is to provide a partial analysis result. For example, bounded model checking
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explores the system’s state space up to a specific depth, and provides a valid
result only up to that depth.

• It may be that the analysis judgement cannot be automatically established, but
needs help from the developers/designers. For example, in program verification,
analysis users provide explicit hints and assertions, such as loop invariants,
to support the analysis. In general, verification systems based on theorem
proving—for example, Isabelle [NPW02] or PVS [OS08]—fall into that category
where the tool can often provide semi-automatic proof assistance, but active
proving effort is needed. Another common example are verification tools driven
by developer-provided annotations, written using notations such as the Java
Modeling Language (JML) [Bur+03] or Spec# [BLS05].

• Finally, there are informal but systematic methodological techniques. In this case,
explicit reviews of models according to the defined properties are carried out—
for example, certification processes in which the properties are met if all the
reviewing criteria are determined to hold. Of course, certifiers may be assisted
by all kinds of analysis tools to do this.

2.2.2 Design Time vs. Runtime Analyses

The time at which the analysis takes place is another dimension to categorise
analysis techniques. In this dimension we consider design-time, runtime, or hybrid
analysis techniques.

Design-time analysis techniques deal with analysing models of the system
at design and compile time. Such analyses can be done either at the program
level or using an abstract model of the system for analysis. Design-time analysis
is helpful to identify violations before they occur, and can help to find design
problems early, when they are easier or less expensive to fix. However, in some
cases, analyses must be postponed to runtime. This is due to (i) the nature of the
analysis, e.g., in case of undecidable satisfaction relations or the state explosion
problem in model checking, or (ii) the lack of detailed information at design
time, as a design-time model often describes the system at an abstract level.
Although analysis can be done ad hoc, design-time analysis is often done using
more formal, semantics-based techniques. This includes the semantics techniques
already mentioned above, as well as others, such as abstract interpretation [CC77] or
matching logic [RES10]. Model-based software development is an example where
various model transformation and analysis techniques are employed to design and
analyse a software system [Voe+13, Kus+17].

A runtime analysis is based on a notion of execution of the model or system. To
this end, execution traces or similar elements are included in the semantic domain
of the modelling formalism, which may be augmented with information needed
for the analysis (e.g., security properties in a security analysis). At runtime, the
desired properties can be checked against individual system executions, against an
abstract model of the system, which is maintained and updated at runtime to reflect
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the changing behaviour of an adaptive system (called models@runtime) [BGS19],
or against the events that occurred during execution. Runtime verification [LS09]
is an example of runtime analysis where an execution of the system is analysed—
for example, to check simple assertions, temporal logic formulas, automaton-based
properties, etc. Testing is another example of dynamic analysis [Bin00].

In a hybrid approach, the results of design-time analysis are used to generate a
monitor that runs along with the system, observes its behaviour, analyses it, and
possibly dynamically adapts itself (see, e.g., [GS02, Ald+19, KS18]).

2.2.3 Quantitative vs. Qualitative Analyses

As a third dimension, we may categorise analysis techniques according to whether
the answer to the query is binary (true or false), or quantifiable. Queries about
whether a given predicate holds of a system under study are the main example
of qualitative analysis. The predicate can concern a specific scenario, or it can
concern “all” executions in some class of contexts. A simple example is analysis
of the function computed, such as the isSorted property of the list returned. Another
example is an analysis to check that a system rejects illegal input (that is formally
specified). Checking that specified state invariants hold is another example.

While many types of analyses can be formulated as satisfaction relations that
are binary, in practice there are also a lot of queries that deal with quantifiable
properties. For example, the quality of service needs to be measured by the up-
time of the system, by behaviour under load, or by meantime of delay for transport
of data, video and speech. Properties are then often defined using probabilities,
intervals, or numbers (representing measurements).

Quantifiable properties usually lead to analysis techniques that also produce
quantified results, that can be thought of as a degree of satisfaction. This opens the
possibility for different system models to be compared by how well they satisfy a
certain property, enabling an optimisation-based approach to software design, such
as is explored in the field of search-based software engineering [HMZ12] or, in the
modelling context, search-based model-driven engineering [BSA17, Joh+19].

Often, the quantities are expressed in the property, using, for example, interval
ranges for some quantity or bounds on probabilities, while the checking itself is
binary. For example, timing can be modelled using formalisms including timed
automata [AD94], or timed transition rules [ÖM07], with properties expressed
with timed temporal logics that are checked by model checkers such as UP-
PAAL [BDL04] or Maude [Cla+07]. To model properties about performance, or
check the probability of events occurring or conditions holding, probabilistic models
can be used. Properties of such models can be expressed in probabilistic variants of
temporal logics and checked by stochastic model checkers such as Prism [KNP11].
Precision of analysis can be traded for scalability by using statistical model checking
using tools such as PVeStA [AM11]. Statistical methods rely on sampling the
execution space, for example, using simulators. Simulation is a technique for
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quantifying satisfaction executing the system model on exemplary input data and
simulated interaction with the system’s context. The analysis collects aggregated
data about the overall system behaviour in the form of traces, which are then used
to quantify satisfaction.

2.2.4 Purpose of Analysis

A further dimension for categorising analysis techniques is their purpose. Seeing
“analysis” as answering queries about systems under study, we identify the follow-
ing possibilities:

Structural analysis is concerned with analysing the system at the structural level.
A structural model describes the elements of the system and their relationships,
e.g., a call graph describes the methods of a program and their invocation
relationships, or a component model (e.g., BIP [BBS06]) allows us to express
the architecture of a system as a set of modules and their interactions. From such
models, dependency relations can be derived. Coordination models often work
at the level of components, organising the interactions. The underlying graph
structure may give useful insights, for example, identifying hubs or components
that mediate interactions. Graph rewriting and transformation systems [Roz97]
is a class of techniques often used to analyse the systems structure.

Behavioural analysis is concerned with properties of system executions. A
behavioural model allows analysing a system’s runtime behaviour—its inter-
actions and results—by reasoning about properties of the model’s semantics.
For example, “does the light go on when the door opens?”; “does the data
store correctly save and retrieve data?”; or “does a warehouse robot pick the
correct packages?” The analyst may only be interested in behaviour in a specific
set of conditions, such as a particular set of data, or a particular region of the
warehouse. These restrictions can be expressed as a context model to compose
with the system model, or simply specified in a configuration file. The first
question above might be analysed, e.g., using a dynamic dependency analysis of
sensor and actuator events. The second question might be treated as a verification
problem: The analyst would develop a formal model of the data store, express the
properties as formulas, and use a model checker or theorem prover to show that
the model satisfies the corresponding formulas. For answering the third question,
the analyst might choose testing, providing a variety of tasks to test the robots
capability.

Quality analysis is concerned with assurance of quality properties of a system
(often also called non- or extra-functional properties, as for example defined
in the ISO/IEC 25010 [25011] standard). Quality properties include perfor-
mance, reliability, or availability. Similar to testing, the analysis of such quality
properties depends on the expected usage of the system. For example, in the
analysis of security aspects, attack models describe the “usage” of the system
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by an attacker. Safety analysis requires a definition of states deemed unsafe
and conditions that could lead to safety violations if the system is not properly
designed and implemented. Effects of a successful security attack could lead
to unsafe conditions, unavailability, or other quality failures. Thus, combining
analysis of, e.g., security with other quality properties is important.
In addition, information about the execution environment is needed to interpret
executions regarding the quality property under analysis. Examples are the
speed of hardware resources in case of performance, or the security guarantees
provided in case of security analysis. In principle, such models of the execution
environment could be seen a part of specific semantic models for quality
analyses. However, as they describe environmental factors, not being part of
the system being built, and as their change does not change the system (but the
analysis results), we consider these environment models also as context [Zsc09].

Structural/behavioural co-analysis The system’s structure and behaviour can
affect each other, e.g., if component interaction is constrained by the system
structure, this will affect component’s internal executions and, consequently,
the whole system’s execution. While structural analyses may operate only on
syntactical elements and behavioural analyses concern system executions, co-
analyses of structure and behaviour consider both aspects. HPobSAM [KKS19]
is a model to co-specify the system’s behaviour and structure using graph
transition systems. Chapter 9 of this book [Hei+21] presents a tool for the
composition of DSMLs defined with both structure and behaviour (defined with
graph transformation rules). Other formalisms, e.g., graph grammars [Roz97]
and rewriting logic [Mes92, Mes12], can also nicely express both structure and
behaviour.

Table 2.1 summarises, for each kind of analysis, which kind of models are
required. Table 2.2 shows, for different analysis types, the information to be
provided by context models.

2.2.5 Correction and Counterexamples

Knowing that a satisfaction relation has not been met, or that the degree of
satisfaction is not high enough, is only half of the solution. We also need to
understand how to improve the model and the implemented system in such a
way that the desired properties are met. Again, we can see different categories of
assistance here:

Table 2.1 Kinds of analyses
and their required model kinds

Syntax Semantics Context

Structural x

Behavioural x x (x)

Quality x x x
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Table 2.2 Examples of different analyses and their required context models

Analysis Kind Required information in context models

Simple dependency analysis (e.g.,
static component dependencies)

structural –

Advanced dependency analysis
(e.g., slicing, points-to)

Behavioural start item for analysis

Verification Behavioural Fixation of parameters in semantic
specification, e.g., platform-specific
scheduling policies

Testing Behavioural execution environment, test case
specification

Performance, reliability Quality Usage profile, deployment and resource
descriptions, description of external
service quality

Safety Quality Definition of set of safe/unsafe states

Security Quality Attacker model, model of platform
security

Maintainability Quality Change propagation rules, seed
modification

• The analysis technique tells us that the satisfaction relation is not met, but gives
no hint beyond that.

• If the satisfaction relation is not met, we at least get hints where the problem
is located. This may be, for example, specific elements in the model which
contributed to the problem, or the places where certain desired invariants have not
been met the first time. Another example is counterexample generation by model
checkers [HKB09], where when a property is not satisfied, a counterexample
is usually generated and provided to the user that can help identify the reason
of violation. A counterexample is usually an execution trace that violates the
property.

• As a result of the analysis, we not only get the location where the problem arises,
but also a list of suggestions, what can be done to correct the problem. This is
typically the case in an integrated development environment (IDE) that checks
context conditions already while source code is being edited, and suggests a list
of possible corrections on the fly. This, however, is more effective if the problem
can be relatively easily localised. There is a lot of experience on what the typical
error sources are in many different cases: wrong type chosen for a variable in a
program; unsatisfiable trigger condition of a transition in an automaton; or not
enough redundancy on the available compute nodes in a performance model.

• The last category of analysis techniques not only identifies flaws, but also auto-
matically corrects them. Automatic program repair techniques (see [GMM19]
for a survey) fit in this category, where several techniques are used, e.g.,
a generate-validate-test approach to generate a fix that will be tested before
being accepted (e.g., GenProg [Gou+12]), or a semantics-driven approach where
formal approaches are used to synthesise a patch (e.g., Angelix [MYR16]).
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See Chap. 7 of this book [Hei+21] for an in-depth discussion of how analysis results
can be used.

2.2.6 Quality of Analyses

Two important concepts related to the quality of an analysis are soundness
and completeness. Recall that analysis was earlier defined as the judgement
M,C �T Q � A, where analysis technique T is used to answer query Q over
the model M in context C. Here, we focus just on those cases where the answer
A is either true or false. Thus, the analysis is answering the question whether the
property Q holds of M in context C. To determine the soundness or completeness
of T , a “ground truth” is needed. One form of ground truth is a semantics of both
models and properties. Thus we assume a mapping [[M]]C giving the meaning of
M in context C as an element of a semantic domain D, and a mapping [| Q |] of
properties to subsets of D.

T is sound if T derives true as the answer to Q only when Q is actually true of
M in context C. That is, [[M]]C ∈ [| Q |]. An analysis technique T that incorrectly
derives true in this case—that is, that says that the answer to Q is true when it
is actually false—is unsound. To ensure soundness, T will answer false in cases
where T cannot prove true. Another option is for T to only answer false when Q is
definitely false for M in C. Such an analysis is said to be complete. For instance, if
T is an analysis technique that checks for deadlocks, M is a model of a concurrent
system, and Q is the property “M is deadlock-free in context C”, a sound version of
T will not answer true when it cannot prove that M is deadlock-free in context
C, meaning it may potentially answer false in some cases where M actually is
deadlock-free. A complete version of T will not answer false when M is deadlock-
free in context C, but may potentially answer true when M is not deadlock-free (i.e.,
when it may deadlock). For some properties, it may be difficult or even impossible
to fully establish ground truth. Measuring reliability or performance are examples.
How does one know if a real system satisfies 99.9% up-time, or if the system
responds within 1 s with probability 0.95?

Most analysis techniques T cannot be both sound and complete, due to the
undecidability of the problem, or its complexity. Because of this, the precision and
recall of T are also both important. Precision measures how often T derives true
correctly, in comparison to how often it derives true overall. For instance, a precision
of 0.75 would indicate that, in 3 out of 4 cases, T answers true for query Q when
Q is actually true, while in 1 out of 4 cases it incorrectly answers true when the
proper answer is false. A sound analysis will have a precision of 1.0 since it never
incorrectly answers true. Recall instead measures how often T answers true when it
could, correctly, answer true. For instance, a recall of 0.6 means that, given M and
C where Q is true, T correctly answers true 60% of the time and otherwise answers
false. A complete analysis has a recall of 1.0. Since computation of both precision
and recall require knowledge of the correct answers to Q across the input M and
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C, these values would generally be computed as a benchmark across an existing
collection of known inputs as a way to test the quality of the analysis.

Note that, along with what has been discussed above, an analysis also needs
to satisfy some more basic requirements. For instance, the results of running an
analysis should be both repeatable and reproducible. By repeatable, we mean
that an analysis set up under identical conditions will yield the same results. By
reproducible, we mean that, given the proper instructions, an analysis set up and
conducted by different operators on the same models or systems of interest will
yield the same results.

2.2.7 Analysis Composition

It is not always possible to answer a query using a single model or a single property
or one analysis technique. There are various reasons for this, such as

(i) The high computational complexity of an analysis technique to handle large
and complex models and queries, e.g., model checking of large models is still
a major issue due to the state explosion problem,

(ii) The lack of expressiveness of the modelling or property language to express
any model or query, for instance a temporal property cannot be expressed using
propositional logic, or

(iii) Infeasibility of designing techniques (both, modelling and analysis techniques)
to answer all queries, as each technique can be used to answer a specific class
of queries.

Different modelling and analysis techniques can be composed to answer a query
properly. For instance, to ensure that a large-scale system is trustworthy, several
aspects of security and safety should be checked and analysed, where each aspect
itself needs different techniques to be analysed, possibly at different levels of
abstraction, at different stages of the system life-cycle, with various classes of prop-
erties, etc. Security consists of three main aspects, namely confidentiality, integrity,
and availability. Confidentiality can concern confidentiality of communications,
computations, or storage, and different methods can be used to specify, enforce,
and ensure each case. For example, encryption can be used to ensure confidentiality
of data during communication while information flow control mechanisms can be
used to ensure that computations will not leak information.

We may formulate analysis composition in terms of the following general rule
using the judgement introduced earlier in this section:

M1, C1 �T1 Q1 � A1 M2, C2 �T2 Q2 � A2 ψ

M,C �T Q � A

where M = M1||mM2 is the composition of models using the composition operator
||m, C = C1||cC2 is the result of composing the contexts using the operator ||c, T is
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the composed analysis technique, Q = Q1||QQ2 is the new query as the result of
composing Q1 and Q2, and A is the final answer result of the composition of partial
answers A1 and A2. This rule informally states that if the query Qi on the model Mi

with the context Ci using the analysis technique Ti leads to the answer Ai , i ∈ {1, 2},
the query Q using a combination of techniques T1 and T2 under the condition ψ

will lead to the answer A on the composed model M in the composed context C.
The side-condition ψ specifies the conditions under which this composition can be
performed, as it is not always possible to arbitrarily compose analyses.

Establishing the composed judgement using this rule can be done in a mathe-
matically sound way, or informally based on some heuristics or expert knowledge.
This depends on several factors, such as the existence of a formal definition of the
semantics of the prerequisite judgements, the existence of a suitable algorithm or
procedure to divide the problem into smaller problems in a sound way (i.e., basic
judgements by decomposing the model, context, and query), etc. As an example, the
query “Is this system secure?” can be decomposed into three subqueries, each query
stating that the system is secure in terms of confidentiality, integrity, and availability.
Similarly, these subqueries can be decomposed further into simpler properties,
each of which is possibly analysed using a different technique. This means that
basic judgements might be established using different methods, such as verification,
performance modelling, model-based testing, simulation, penetration testing, etc.
The models or properties of the composed judgements could be specified using a
multi-view modelling language or an ordinary single-view language.

We proceed by instantiating this general rule with two classic examples: the
assume-guarantee verification [AL95] and Hoare logic. In the case of assume-
guarantee verification of concurrent systems/programs, let M,S |� G state that
a system with the model M will guarantee the relation G (guarantee), if it runs in an
environment ensuring the relation S (assumption) on the states. The model is usually
specified using a state transition system and the relation is a predicate that specifies
some conditions on the transitions (i.e., a pair of states). A simple assume-guarantee
verification rule looks like the following:

M1, S ∪ G2 |� G1 M2, S ∪ G1 |� G2 ψ

M1||M2, S |� G1 ∪ G2
.

The rule informally states that if a module Mi runs in an environment S ∪ Gj and
guarantees Gi , i, j ∈ {1, 2}, i �= j , then, if the two modules run concurrently in the
environment S, they will together guarantee G1∪G2. The notation ∪ is used to show
the union of two relations. This entailment relation M,S |� G can be expressed as
M,S �V G � True using our above judgement. The model composition operator
||m is a formal well-defined parallel composition operator that computes the product
of the two models. The context composition operator returns the intersection of two
relations. Such assume-guarantee judgements should be used with caution as they
have subtle conditions for validity [AL93].

As the second instantiation, let {p}c{q} be a Hoare logic’s judgement for
sequential programs that informally states that if a program c starts in a state that



2 Foundations 31

satisfies the precondition p, if it terminates, the final state will satisfy the post-
condition q . The rule for sequential composition of two programs is specified using
the following rule:

{p}c1{q} {q}c2{r}
{p}c1; c2{r} .

The judgement {p}c{q}, in terms of our judgement, is specified as c, p �V q �
True, where the model is the program semantics usually described using a state
transition system, the context is the precondition p, the query is the satisfaction of
q on termination, and the composition operator of models is the ordinary sequential
composition “;”. The composition operator on the contexts returns the context of the
first judgement.
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Chapter 3
Overview of Challenges in Composing
Model-Based Analysis Tools

Francisco Durán, Robert Heinrich, Carolyn Talcott, and Steffen Zschaler

Abstract This chapter introduces the key challenges in composing model-based
analysis tools, giving references to book chapters discussing each challenge in more
detail.

The composition of model-based analysis tools is a broad area of research with a
range of different challenges. In the first part of this book [Hei+21], we will discuss
the main challenges in detail. This chapter gives a first overview of these challenges.
It is meant to serve as an orientation for readers and a guide to the chapters that
follow.

The first two challenges we will discuss in this book are about what is required
to make the composition of model-based analysis tools feasible. We will need to
discuss:

Challenge 1. The theoretical foundations—how to compose the underlying lan-
guages, models, and analyses, and

Challenge 2. The practical implications—how to integrate and orchestrate existing
analysis tools.

Clearly, there are interactions between these challenges: how to integrate and
orchestrate analysis tools will be informed by the choices made in composing the
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underlying languages, models, and analyses. Chapter 4 discusses the theoretical
foundations, introducing the notion of composition and a mathematical character-
isation of what composition of analyses involves. In the course of this discussion,
the chapter will discuss subchallenges such as the composition of semantics and
formalisms, and the composition of analysis techniques vs. the composition of
analysis results (cf. also Chap. 7). The chapter also provides brief descriptions of
some examples of analysis composition in the real world. Chapter 5, then, builds
on Chap. 4 by discussing the challenges involved in integrating and orchestrating
existing analysis tools into modelling environments and proposing a reference
architecture to highlight key concepts. This helps to address subchallenges such
as interoperability between different analysis tools, and bridging different levels
of abstraction between modelling environments and analysis tools. The chapter
provides an overview of different orchestration strategies and real-world examples
where these strategies have been used.

Once we have discussed these foundational challenges, we are ready to discuss
other challenges that are orthogonal, but that fundamentally affect the composition
of analyses and analysis tools. We will discuss three such additional high-level
challenges:

Challenge 3. Continual model-based analysis. Continual and incremental analysis
is increasingly more important: On the one hand, the systems and properties we
want to analyse become more complex. On the other hand, we are aiming for
increasingly tight feedback loops in the system development process, requiring
analyses to run fast and efficiently. Chapter 6 discusses the challenges that this
brings. The chapter introduces an abstract framework for capturing the key
components of continual analysis and shows how this can be used to describe
real-world analysis systems, through several case studies. The chapter then goes
on to describe how continual analysis can benefit from, but can also complicate
the composition of analysis tools and formalisms.

Challenge 4. Exploiting analysis results. Analysis is done to get results that can
inform the use or improvement of a modelled system. But how are these results
affected by the composition of different analyses and analysis tools? And,
conversely, how can the results of analysis be used to inform the composition
of analyses? Chapter 7 discusses this challenge and offers a general model
and terminology of results exploitation in the context of analysis composition.
The terminology is exemplified through nine case studies of different forms of
analysis composition.

Challenge 5. Living with uncertainty. Any system development involves a substan-
tial amount of uncertainty: For example, requirements may be incomplete or
only partially known, or there may not be enough information about real-
world impacts of a system’s behaviour. An interesting question is, then, how
uncertainty is affected by analysis composition and, conversely, how it can
affect analysis composition. For example, composing different analyses may re-
duce overall uncertainty. However, at the same time, analysis composition may
lead to a compounding of uncertainty. Chapter 8 discusses these subchallenges
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in more detail, including the error quantification under analysis composition;
the combination of different analyses to reduce overall uncertainty; and the
handling of uncertainty/incompleteness in underlying models.

Following these detailed discussions of challenges, the chapters in the second
part of this book [Hei+21] will build on these challenges and give examples in the
context of specific case studies and tools.
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Abstract This chapter targets a better understanding of the compositionality of
analyses, including different forms of compositionality and specific conditions of
composition. Analysis involves models, contexts, and properties. These are all
expressed in languages with their own semantics. For a successful composition of
analyses, it is therefore important to compose models as well as the underlying
languages. We aim to develop a better understanding of what is needed to answer
questions such as “When I want to compose two or more analyses, what do I need to
take into account?” We describe the elements impacting analysis compositionality,
the relation of these elements to analysis, and how composition of analysis relates
to compositionality of these elements.

This core chapter addresses Challenge 1 introduced in Chap. 3 of this book (the
theoretical foundations—how to compose the underlying languages, models, and
analyses).
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4.1 Introduction and Problem Statement

To tackle the complexity of systems design and development, it is necessary
to use a multitude of models describing certain aspects, or viewpoints, of the
system as a whole or of its subsystems. These models may be expressed using
formalisms that provide multiple sublanguages, or special purpose formalisms,
or both. Understanding the prerequisites for model composition helps to solve
challenges in system design. If the models are specified in different languages
describing a variety of views, language composition is required. Even if the models
are only augmented with variants of extra properties, compositionality of these kinds
of properties must be addressed.

Thus language, semantics, and model composition are an important basis to
address the question of how to compose analyses. One main question discussed
in this chapter is when and how language, semantics, or model composition is in
accordance with, or orthogonal to, analysis composition.

For analysis of behavioural and/or quantitative aspects of a model of a system
or system component, it is important to also provide (a model of) the execution
context—information about patterns of use, and about elements that affect the
behaviour but are not part of the modelled system. Thus, we need to understand
the ways context can be composed with other contexts and with models of the
system under study, and how this relates to the properties being analysed (see also
Sect. 2.1.6 of this book [Hei+21]).

This chapter addresses a better understanding of what is needed to answer
questions such as “When I want to compose models or analyses, what do I need to
take into account?”; “What are the key relations among models of systems, contexts,
and properties and their underlying formalisms?” and “What do these relations tell
us about composing analyses?”.

The chapter begins with a discussion of core concepts and their interrelations.
Sections 4.2 and 4.3 recall the key aspects concerning the concepts of model and
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analysis discussed in detail in Chap. 2 of this book [Hei+21]. Section 4.4 takes
a broad view of composition and the relations of composition to the elements of
analysis, and identifies several forms of composition. Section 4.5 builds on the
discussion of core concepts and presents a mathematical framework characterising
the relations between models, analyses, and results: how analyses compose, and
how composition of the models analysed relates to the analysis results. Section 4.6
presents a diverse sample of formalisms, composition issues, and current practice,
to illustrate the ideas presented in the earlier sections. Section 4.7 concludes with a
summary of the concepts and challenges and suggests promising research directions.

4.2 Brief Overview of Models and Their Composition

Chapter 2 of this book [Hei+21] already contains a detailed definition of the basic
concepts that are needed to understand this chapter. We therefore just repeat some
core concepts here. We refer to the definition by Stachowiak [Sta73] to describe
what a model is. General purpose languages, such as the UnifiedModeling Language
(UML) [BRJ98], become complex and require analysis techniques to better handle
the complexity both of the language and systems described. Unfortunately, also
analysis techniques become complex and therefore require to be decomposed.

By definition, a model has a purpose with respect to the original [Sta73],
and can play one or several roles with respect to this purpose. An engineering
model typically starts by being descriptive, and then, at design time, is viewed as
prescriptive.

According to [Com+16], a modelling language defines a set of models that can be
used for modelling purposes. Various forms of syntax are possible. The semantics
can, for example, be defined in the denotational form [HR04]. As discussed in
Chap. 2 of this book [Hei+21], a sound semantic definition is very helpful to
understand what shall be analysed and what the desired outcomes of analysis
techniques are.

In model-based analysis, interesting properties can vary. Thus, we use property
models in an explicit language with their own precise semantics. In the very same
spirit, we use context models to describe entities of the context, outside of the system
to be built.

Composition of models in various forms is a key to cope with complexity,
but not easily achievable. Furthermore, advanced and potentially integrated forms
of composite semantics, need composition of models of different aspects, their
modelling languages, and finally also their associated analysis techniques.

We use metamodelling technology [Gro06] in constructive as well as analytical
tools to manage models in an accessible form. [Com+16] defines: “A metamodel is
a model describing the abstract syntax of a language”. Composing models described
in heterogeneous languages requires a composition of the metamodels in a useful
way. Assuming that metamodels are class diagrams, we therefore have several
alternatives for integration: merging algorithms, mappings between metamodels,
and consistency relations between the metamodels. Constructive algorithmic trans-
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lations as well as relations between models can be defined explicitly using a
transformation model.

4.3 Brief Overview of Analysis

Analysis is the process of answering questions about a system under study. The
system may be too complex to reason directly about it, or it may not yet exist. Thus,
analysis techniques work with models: models of (some aspect of) the system of
interest, of its context, and of the question being asked, i.e., a property.

As proposed in Sect. 2.2 of this book [Hei+21], the idea of analysis can be
captured formally by the relation

M,C �T Q � A

where M, C, Q, and A are (respectively) models of the system, context, question,
and answer domains, and T is an analysis technique.

Analysis can be characterised along multiple dimensions. One dimension is the
level of automation. At one end of the spectrum, determining whether a property
holds may be a fully automatic process, while at the other it may involve informal
social processes. Many techniques involve user guided automation. Another dimen-
sion is whether the analysis is static or dynamic. A static analysis works over the
syntax of the input models, and usually happens at design time. A dynamic analysis
occurs during system or model execution, and may be online (monitoring) or offline
(analysis of traces from logged information). Simulation sits on the borderline.

The answer domain of an analysis can be simply a two-element set reflecting
success or failure. This is referred to as Qualitative analysis and includes checking
satisfaction of a given property. Alternatively, in a Quantitative analysis, the answer
domain is richer: real numbers, a probability distribution, or even tables and
other structured data are used. Performance analysis is an example of quantitative
analysis.

Similarly to a model having a purpose, an analysis also has a purpose. We
distinguish three main kinds of purpose: analysis of model/system structure; analysis
of functional aspects of behaviour; and analysis of quality aspects of behaviour.
The analysis of structure works with syntactic descriptions, while the analysis
of behaviour requires a semantic domain (and possibly other information). The
purpose of a specific analysis may be a mixture of these basic kinds of purpose.
Tables 2.1 and 2.2 of Chap. 2 of this book [Hei+21] summarise the different
purposes and the elements (e.g., model, context) required for analysis.

Analysis techniques can be characterised by how helpful they are. When the
answer produced by an analysis is different from what is expected/desired (e.g.,
type inference fails, safety or security property fails, or a performance measure is
out of desired bounds), does the analysis technique provide a reason for failure?
Does it help to locate the cause? Does it help to correct the problem? See Chap. 7 of
this book [Hei+21] for more discussion of tools’ outputs and their use.
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Finally, an important consideration is the quality of an analysis. This includes
different notions of soundness: Does the analysis always give an answer? Is the
answer an over- or under-approximation? Does it produce false positives or false
negatives? These represent trade-offs of complexity and accuracy. Another quality
issue is whether the analysis is repeatable (by the same analyst) or reproducible (by
an independent analyst).

4.4 What Is Composition?

Figure 4.1 shows a holistic vision of composition of analyses across different syn-
tactic and semantic domains and corresponding properties of interest. In particular,
disparate models of different aspects are the main subjects to be composed/decom-
posed on the syntax and semantic level and also at the metamodel level. These
models include: system models, context models, property models, and models of
analysis results. Composition of analyses relates to compositionality on the syntax
and semantic level of the underlying formalisms to represent (sub)system models
and contexts (Fi ) and property models (PFi). The act of such compositions (the
operation COMP) forms a composite model formalism (COMP(F1, F2)) and a

Fig. 4.1 Multiple dimensions of composition. The three central columns represent two modelling
formalisms, F1 and F2 and their composition. Think of the top row as a metamodel, the middle
row as a system or component (syntactic) model, and the bottom row as a semantic model. The
outer columns represent properties, at each level. The question marks (“?”) stand for satisfaction
relations. The arrows connecting nodes (dots or question marks) represent relations such as
refinement, abstraction, satisfaction, instanceof, meaningof, etc.
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property formalism (COMPF (PF1, PF2)). The composition of model formalisms
and property formalisms enables global analysis [Cla+14]. Given a system model
composed with an intended environment of use, one can formulate analysis
questions that apply to a certain set of the individual submodels. These analysis
questions can be managed at the level of the submodels and contexts involved, by
defining and applying appropriate composition/decomposition relational operators
(e.g., merge, union, focus, restriction, etc.). These operators are grounded on
the semantic domains of the composed formalisms and their supported analysis
techniques.

In Sect. 4.4.1 we give examples of targets of composition, and in Sect. 4.4.2 we
characterise different forms of composition.

4.4.1 Targets of Composition

Based on the concepts described in the previous sections, for the purpose of
composing modelling languages and formalisms to enable global analysis, it is
necessary to think about the elements that are the targets of composition. These
include:

1. Components (of the system under study): architectural, functional, behavioural
2. Models of aspects of the system or its components
3. Application domain—communications, image processing, manufacturing,

chemical process control, . . .
4. User-facing language composed of several elements from sublanguages
5. Analysis formalisms and techniques (possibly made of several subanalyses

formalisms and techniques) such as constraint solving, unification, model
checking, or simulation

6. Syntactic domains and semantic domains of all specification languages/for-
malisms involved

7. Tools composed of several subtools dealing with sublanguages (or subanalyses)

4.4.2 Forms of Composition

Considering that the modelling languages and formalisms can be integrated on the
syntax and semantics level, and that analysis techniques or the results of the analysis
algorithms can be combined, we conceive three general composition approaches:

1. Model composition (white-box composition) is the analysis input-model com-
position realised by language integration (i.e., the definition of a new language
from a set of individual languages, for example, by metamodel unification or
weaving) [Cla+14, GRS09]. The internals of the composed individual models
are exposed at an arbitrary level of detail and open for modifications and for
analysis. Note that language composition is not always necessary for model
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composition. If there is a joint language for both models, or a transformation
to a joint language, there is no need for language composition. For example,
see “composition by transformation into a joint formalism” in Chap. 11 of this
book [Hei+21].

2. Result composition (black-box composition) is the composition of the analysis
results. The internals of the models remain encapsulated, only explicitly defined
interoperability interfaces are used to access the target analysis and render back
the results. Usually, a user-facing model is translated or mapped (e.g., by a
model transformation realising semantic translation [HR04]) into a concrete
model of the target analysis formalism, and then the results of the analysis
are lifted back to the level of the user-facing model. Various types of black-
box composition are possible, ranging from single analysis orchestration over
combined analysis orchestration to sequential analysis orchestration of black-
box analysis tools by exchanging results. (cf. Chap. 5 of this book [Hei+21]).

3. Analysis composition (grey-box composition) is the composition of the analysis
techniques by orchestrating the steps of two or more analysis algorithms.
Internal knowledge of models may be partially exposed through interfaces to
guide the coordination, but the composition remains modularised. For example,
see “composition by co-simulation” in Chap. 11 of this book [Hei+21].

In the white-box approach, the integration of two or more languages may
require additional information in the form of a correspondence between the syntax
and/or semantics of the constituent languages. It accommodates highly customised
composition semantics, but it is not easily extensible, and it is easily applicable only
if we have a high overlap between languages. The UML is a well known exemplar of
a compound language resulting by the integration of several modelling formalisms
properly revisited.

There has also been significant work in the language semantics community
on creating modular language definitions that can be combined to form new
languages. This includes work related to algebraic specification [Bra+01], rewrit-
ing logic semantics [MB04, BM05], modular structural operational semantics
(MSOS) [Mos99, Mos02], implicitly-modular structural operational semantics (I-
MSOS) [MN08], monads in denotational semantics [Mog89, Mog91, Esp95],
abstract state machines [KP97], and the K framework [HŞR07, RS10]. This work
has tended to focus on methods for defining reusable language feature modules
(e.g., the ability to elide unused parts of the configuration in MSOS, the use of
context completion in K), which can then be reused in the construction of a new or
extended language. These would also qualify as white-box approaches since they
work directly over the formal definitions of the languages.

Black-box composition keeps the composition highly modular, allowing arbitrary
analysis tasks to be carried out and the results lifted back to the user-facing
domain level as long as they conform to the interfaces. A typical example of this
approach is the common practice of translating a user-facing model (including
some temporal logic properties) into a model checker input, and then translating
back the counterexample into concepts of the user-facing model language. However,
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because black-box composition cannot rely on internal structure of models, it can
only support a fixed composition semantics that is dictated by the corresponding
semantic mapping(s) and that might be too restrictive.

The grey-box approach represents a whole spectrum of grey shades in between
the white-box and black-box approaches realised via model-based analysis coordi-
nation [Cla+14]. Coordination can be achieved implicitly (implicit coordination),
via sharing concepts with the same semantics; the corresponding models do
not exchange information explicitly, but reason about artefacts related to shared
semantic concepts. Coordination can also be achieved via sharing of concepts
with different semantics; in this case, the corresponding models have to exchange
information explicitly via interfaces (explicit coordination). The information ex-
changed can be data or control based, and requires an orchestration model (and
therefore an orchestration formalism). A typical example of coordinated analysis
is co-simulation where the coupled and possibly interacting simulations of two or
more models up to a fixed point can create more detailed results. Hence, grey-
box composition takes the best of the first two approaches and works well for
highly heterogeneous languages, but requires sophisticated technicality of language
orchestration engines.

In order to combine together multiple analysis tools and, therefore, combine
multiple results, these forms of composition can be concretely realised by adopting
specific orchestration strategies of the analysis tools involved (see Chap. 5 of this
book [Hei+21] for more details). Chapter 11 of this book [Hei+21] illustrates how
to implement the different forms of composition by discussing examples of concrete
composition operators.

4.5 A Mathematical Characterisation of Models, Analyses,
and Composition

Many of the concepts we have described in the previous subsections are rather
well known, and have all been dealt with in the practical realisation of modelling
processes and engineering tools. However, to our knowledge, a general and unifying
view on how to deal with composition of analysis, and how composition of analysis
relates to compositionality of models and their semantics, contexts, and analysis
algorithms, does not exist yet.

In order to provide a precise understanding of how to put all these elements
in relation, this section provides a reference conceptual framework for the classes
of composition we have identified so far. For that purpose, we use mathematical
constructs that allow us to precisely define the effects, but of course need to be
embellished in very individual forms in the various domains of software systems,
analysis techniques, etc. Here we only give very short examples.



4 Composition of Languages, Models, and Analyses 53

4.5.1 Model

Section 2.1.2 of this book [Hei+21] describes the concept of models where mod-
elling formalisms provide a syntax, here called Syn, and a semantic domain, here
called Sem, that provides meaning for syntactic elements. We formalise meaning as
a semantic mapping [HR04]:

M : Syn → Sem.

In a mathematical setting, the semantic domain describes an infinite set of possible
realisations. For simplicity, one might think of all possible “implementations”. As
the semantic domain is infinite, usually that semantic mapping is just a mathematical
construction and has no algorithmic executability. Semantics in that sense serves
as background for a precise definition of the desired properties that can then be
proven either precisely or approximately through appropriate algorithmic analysis
techniques.

Modelling languages are usually designed to describe or constrain the set of
possible implementations. Therefore, by definition, a modelling language differs in
its purpose from a programming language, where usually a deterministic execution
is desired. The mathematical semantics of the model should therefore reflect that it is
a constraint on the set of implementations. To capture this, the semantics definition
is refined to a set based approach:

M : Syn → P(Sem).

One model therefore describes a set of possible implementations. For example,
a nondeterministic automaton describes a set of accepted words, a class diagram
describes a set of valid object structures, and usually a behavioural description, such
as an activity diagram or a Petri net describes a set of traces. If the mapping M is
appropriately defined, then mathematically a number of constructs can be easily
defined. For example, a model m ∈ Syn is consistent, exactly if M(m) �= ∅. Or a
model m2 is a refinement of another model m1, if M(m2) ⊂ M(m1).

As a consequence, it is also relatively easy to define the semantics of two (and
thus arbitrary many) models m1,m2, that describe different aspects of a system
simply by using the set of implementations that obey both models (i.e., intersection):
M(m1 + m2) = M(m1) ∩ M(m2). This property allows us to, in the following
discussion, only look at the single model, instead of the usually existing set of
individual artefacts developed during the project.

This general principle of semantic definitions can be applied to each kind of
syntactic artefact that is used during the development process, even if the artefacts
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are described in different languages. This in particular includes property definitions
and context models as well as models of the system itself. For simplicity, we assume
that for each language Syni at hand, we have an appropriate mapping Mi :

Mi : Syni → P(Sem).

This also serves as a nice mathematical integration of different modelling languages
on a semantic level. Please note that if, e.g., in an industrial setting, various different
models of different modelling languages are used, an integrated semantic domain is
not easy to construct. In [Bro+09a, Bro+09b], such an effort was made for object-
oriented systems as a basis for UML models.

4.5.2 Analysis

Mathematically, an analysis technique A has the very same signature as a semantic
mapping M . It analyses a model from the modelling language Syn and produces a
result R of an appropriate result domain Res:

A : Syn → Res.

As we discussed already, the purpose of an analysis, however, differs from the
semantic mapping M: usually the result domain Res is a rather simple domain,
covering a huge abstraction of what the original model described. Typical semantic
domains for Res are:

• Boolean, which means that the analysis checks whether a property is true or false,
• Real Numbers R, which means that the analysis measures some kind of fitness,
• A visual representation of Boolean or real numbers, which means that the

analysis is mainly dedicated for exhibiting certain information to the user.

Of course, more forms of analysis techniques are possible, especially if one analysis
technique produces only a subresult used in another analysis technique.

Because Res usually consists of finite, computable objects, we are interested
in algorithmically executable analysis techniques A as well. In complex situations,
this interest in algorithmic execution often prevents to directly use the semantics
domain Sem. In that sense, we might see analysis techniques to be algorithmic
executable abstractions of the semantics, and it then makes sense to have several
analysis techniques for different purposes available.
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We furthermore might be interested in extending an analysis algorithm by an
explicit definition of the desired properties (in language Syn2):

A : Syn × Syn2 → Res.

Chapter 9 of this book [Hei+21] provides examples of this form of analysis.
The correctness of an analysis technique can be reasoned about. For example,

a model m ∈ Syn fulfils a binary property definition p ∈ PL of a property
language PL exactly if M(m) ⊆ MPL(p). An analysis technique A is sufficient
if, for all models m ∈ Syn and for all properties p ∈ PL, it holds that A(m,p) ⇒
(M(m) ⊆ MPL(p)). Please note that this definition only demands an implication,
because it may be that the property holds, but the analysis technique may fail
to verify this. Based on these considerations we may even compare the quality
of analysis techniques according to their results. Assuming that both A1 and A2
are correct as defined above: A2 is better than A1, if it is more accurate, i.e.,
∀m,p : A1(m, p) ⇒ A2(m, p).

4.5.3 Composition

Composition has many different facets. Therefore, we need to be clear on what is to
be composed: Components in the system, models about the system, languages that
describe different viewpoints on the system, and finally analyses that calculate parts
of the results about models.

In this chapter, we concentrate on the composition of analyses and therefore
at first ignore that typically the system itself is also composed. In the following,
we simply assume that all models and property definitions describe the same
component. This simplification avoids the necessity to compose semantic domains
as well as semantic mappings. As a remark: Otherwise we would need a composition
technique on the semantics of the domain as well, which is of course possible but
complicates the following considerations unnecessarily. We simply assume that all
semantic mappings directly go to the same semantic domain Sem.

We also keep the above described simplification, that we look only at one
model, because we assume that we know how to semantically compose models. The
discussion below includes all forms of models, i.e., models describing the system,
models describing the context of the system, and potentially also models describing
interaction between both.

In the following, we give examples and mathematically define the notion of
composition of analyses according to the three forms of composition informally
introduced in Sect. 4.4.
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Simple Result Composition

Given two analysis techniques Ai , i ∈ {1, 2} producing individual results in their
own domains Resi based on the same model m, we can define a result composition
if an appropriate operator � is available:

A : Syn → Res1 � Res2

by

A(m) = A1(m) � A2(m).

As each analysis is conducted in isolation in a black-box manner and only the results
are composed, this adheres to the form black-box composition.

Model Decomposition and Result Composition

We decompose a model m = m1 � m2 and then can define

A(m1 � m2) = A1(m1) � A2(m2).

This black-box composition together with the decomposition of models is very
powerful, but potentially difficult to achieve in practice. It may be that in practice, a
mixture may apply: Instead of decomposing a model into disjoint elements, it may
be helpful to use algorithmically executable abstraction functions αi : Syn → Syn,
e.g., slicers, forget functions etc., and apply the following composition:

A(m) = A1(α1(m)) � A2(α2(m)).

This however works best if all available information is used, which means that no
information should be lost under the two abstractions, i.e., M(m) = M(α1(m)) ∪
M(α2(m)).

Please note that it may of course be possible for each Ai to be parameterised
with its own property definition language, then obviously different properties can
be considered.

Sequential Composition

Parameterisation can also be used to embed the results of one analysis technique
into the computation of another analysis technique. We can speak of sequential
composition of analysis techniques when the following applies:

A(m) = A2(m,A1(m)),
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where the second analysis A2 consumes the results of the first and produces the
overall result. From a functional point of view, we might also argue that the analyses
themselves are composed by A = λm.A2(m,A1(m)). Sequential composition,
however, still adheres to the form black-box composition, if only results are
exchanged between black-box analyses. If there is internal knowledge exposed by
orchestrating the steps of the analyses, this is considered grey-box composition. It
might even be that several analysis techniques depend mutually on their results.

Mutually Improving Analysis Composition

This shows a technically very interesting dependency, that in practice happens quite
often. An example is analysis coupling until a fixpoint is reached (cf. Sect. 5.7 of
this book [Hei+21]). The formal definitions would have the form:

Ai : Syn × Res3−i → Resi (i ∈ {1, 2})

A : Syn → Res

A(m) = (r, s) where (r, s) = (A1(m, s),A2(m, r)).

This is an equational definition for the results r and s that needs a careful
consideration to understand what the possible solutions are. Typically the mutual
dependencies need to be handled in an iterative, potentially approximating manner.

This works particularly well when, for example, an analysis technique A1 can
already deliver initial results with an “empty” input r0 and further iterations improve
the result in a desired direction. Formally, we derive an approximation using a series
of results rn, sn, where for each iteration step n ∈ N the next step is computed by
sn = A2(m, rn) and rn+1 = A1(m, sn) until the iteration can stop.

Again, mutually improving analysis composition adheres to the form black-box
composition, if only results are exchanged between black-box analyses. If there
is internal knowledge exposed by orchestrating the steps of the analyses this is
considered grey-box composition.

Simulation Composition

Simulation with time progress can be seen as a very special case of the above
definition, where the analysis techniques are not iteratively rerun, but the results
rn, sn are iteratively constructed in a stepwise manner.

In this grey-box composition, we probably have a timed structure on the result
domain, either in a stepwise manner Res = (N → X) or in a continuous manner
Res = (R+ → X), where both use a set X of messages or events or values.
Furthermore, the analysis techniques must be compositional in the sense that they
do not use input of a specific time point t to produce output of a time point t2 that
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is earlier or equal to t , i.e., t2 > t must hold. Mathematical theories for this kind of
timing behaviour are for example given in Ptolemy [Eke+03], Focus [BS01, RR11],
or Abadi/Lamport’s TLA [AL90].

4.5.4 Composition of Contexts

As one of the components of an analysis, a context can appear as parameter to the
analysis tool, or a context model C can be composed with the system model M ,
for example, to turn an open system model into a closed system model C[M] for
behavioural analysis. In the case of a composed system model M = M1 ⊗ M2, we
can consider contexts C1, C2 for the component models M1, M2, or a composite
context C = C1 ⊗c C2, and form the analysis model in two ways:

(C1 ⊗c C2)[M1 ⊗ M2]

or

C1[M1] ⊗ C2[M2].

A challenge for future research is to identify conditions under which to choose one
form over the other.

A context may only provide part of the information needed to describe operating
conditions. Thus, composition with a context can be iterated, incrementally adding
contextual information. This is illustrated in Fig. 4.2. Here, component models m1
and m2, with respective interfaces M1 and M2, are enclosed in contexts C1 and C2,
respectively, forming models represented by C1[M1] and C2[M2] (context model
composition). Then, model M = C1[M1] ⊗ C2[M2] is formed by composing
the resulting models (model–model composition). M may still have undetermined
contextual elements. These can be provided by further composition with context C

to obtain

C[(C1[M1] ⊗ C2[M2])].

C1[M1]

m1

M1

C2[M2]

m2

M2

M = C1[M1]     C2[M2]

C[M]

Fig. 4.2 Context composition
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4.5.5 Compositionality of Property Satisfaction

A challenging question about all of these compositions is understanding conditions
under which properties are preserved. A related challenge is designing an analysis
technique in such a way that no potential forms of use of a model, i.e., no forms of
composition with other models, invalidate the analysis result.

We can formalise that as follows: Given an analysis result r = A(m), composi-
tion with any other model m2 should retain (or even improve) the result, e.g., in a
simplified form, it holds r = A(m � m2).

This, however, is often not the case in practice. For example, for performance
models, adding additional components usually reduces the performance of the
already deployed components. To some extent this has to do with difficulties
of decomposing certain kinds of analysis techniques without pre-defining certain
additional knowledge, for example, dedicated slots of computing time attached to
each of the submodels.

It is also possible to consider an alternative direction, by using analysis tech-
niques that do not only produce results, but also clarify the necessary conditions for
the context of a modelled component in order to operate according to the desired
properties. In this case, the analysis technique is potentially also parameterised by
a property definition used as a parameter and produces as a result another property
definition for the context, which then can be fed as a necessary property for the
models of the context. Thus, for an existing property definition language PL we
have analysis techniques of the form:

A : Syn × PL → PL

successively or iteratively applied to the various models as described above
producing improved property definitions over time.

The nice thing with analysis techniques delivering property conditions about
a modelled component is that, for example, reusable library components can be
documented with this kind of usage conditions and newly defined components can
be checked for compliance.

All these general considerations may work for certain kinds of properties,
but certainly not for all. For example, security properties are usually not easily
compositional.

4.6 Examples of Formalisms, Composition Issues,
and Current Practice

To give a concrete idea of the concepts and relations discussed in the previous
sections, we give an overview of several formalisms and associated modelling
and analysis tools. The formalisms range from general purpose modelling systems
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(rewriting logic, abstract state machines), formalisms designed for modelling
specific aspects (hybrid automata, Palladio), and formalisms for coordination and
composition (BCOoL). Rewriting logic is a general purpose formalism that supports
language and model composition, and all three forms of composition introduced
in Sect. 4.4, especially for concurrent/distributed systems. Abstract state machines
is a general purpose formalism for functional behaviours, supporting black-box
(result) composition. Palladio is an approach and toolset for software architecture
modelling and analysis of quality properties, supporting model, result, and analysis
composition. Hybrid automata is a formalism composed from discrete and contin-
uous models of behaviour that can be considered as model composition. Grey-box
(analysis) composition of hybrid systems is supported by multiple tools. GEMOC
Studio is a framework for developing and composing domain-specific modelling
languages (DSMLs). Analysis composition in GEMOC Studio is provided by
coordination mechanisms specified in BCOoL.

4.6.1 Rewriting Logic and Its Realisation in the Maude
Language and System

Rewriting logic [Mes92, Mes12] is a logic for reasoning about change over time
using rewrite rules. Maude [Cla+07, Dur+19] is a rewriting logic language and
toolset providing an efficient implementation that supports executable specification
and analysis of concurrent and distributed systems.1 Similar to programming
languages, Maude is a general purpose modelling language with models that can
be used for simulation or answering the simple question “Does the model run?”.
Being based on a formal logic, many other analyses are available as well.

Rewrite theories (Maude modules) can be used for specifying many aspects. For
system models the structure/architecture is represented by terms of an equational
theory and the dynamics/behaviour is specified by local rewrite rules that specify
how a system in a given state evolves. Context models can be represented using
terms with “holes”, by adding constraints to execution states, or by adding an
explicit context component such as an environment or intruder model. Properties are
specified using equationally defined Boolean functions. Properties of state/system
structure can be specified for static analysis, or for use as state properties in linear
temporal logic (LTL) formulas for the model checker. Execution traces can be
captured using reflection or by instrumenting execution states (and augmenting
the rewrite rules to collect information). This allows properties of traces to be
equationally defined, and checked by evaluation.

The metatheory of rewriting logic gives a foundation for analysis algorithms
implemented in Maude. Static/structural analysis tools include the Church–Rosser
checker, the coherence checker [DM12], and the termination tool [DLM08]. Maude

1 Maude is available at http://maude.cs.uiuc.edu/.

http://maude.cs.uiuc.edu/
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directly supports several forms of dynamic/behaviour analysis. Prototyping/testing
is supported by executing rules (modulo strategies) using the rewrite engine. The
search command provides reachability analysis (can a state satisfying a given
property be reached, and if so how). The built-in function modelCheck allows the
user to check a system specification for satisfaction of LTL formulas where state
properties are arbitrary equationally defined Boolean functions. The Maude LTLR
model checker [BM15] is an explicit state model checker supporting analysis of
linear temporal logic of rewriting (LTLR) properties that involve both events (rule
applications) and state predicates, including mixed properties such as fairness. The
Real-Time Maude language and tool [ÖM07] supports specification and analysis of
real-time and hybrid systems. Available analysis techniques include timed rewriting
for simulation purposes, search, time-bounded and unbounded LTL model checking,
and timed computation tree logic (TCTL) model checking.

Rewriting logic supports the formalisation of many forms of composition of
models and of analyses, including the forms discussed in Sects. 4.4 and 4.5. The
following are some examples:

1. Composition of theories by inclusion, parameterised module instanti-
ation, or terms in a module algebra. Here is an example from the
Soft Agent modelling framework [Tal+16]. The parameterised module
{SOLVE-SCP{Z :: VALUATION} defines a soft constraint solver
solveSCP using a valuation function specified in modules realising the
parameter theory VALUATION. The module VAL-Y-PATROL-ENERGY
imports two VALUATION modules VAL-ENERGY and VAL-Y-PATROL and
forms a lexicographic composition of their valuation functions. A module
SCENARIO imports a module defining a model of patrolling bots and the
module SOLVE-SCP{val2ypatrolenergy} with the valuation parameter
Z instantiated to VAL-Y-PATROL-ENERGY. val2ypatrolenergy is a
view mapping elements of the theory VALUATION to their instantiation in
VAL-Y-PATROL-ENERGY. In the SCENARIO module configurations to be
tested and analysed are defined.

2. Composition of models (syntax level) by term formation. In [NT20], the operation
[app ; intruder] is used to compose an application model, app, with an
intruder model, intruder, to enable search for possible attacks. We can use
this composition to illustrate the general analysis judgement,

M,C �T Q � A

of Sect. 2.2. Here M is the application model app and C is context model
intruder. The technique T is search parameterised by the form of answer
desired. The query Q is a predicate characterising attack states. The answer A

can be either a Boolean (yes, an attack state is reachable), a witness attack state,
or an execution trace leading to an attack state. If the search space is finite, the
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answer could also be the number of (unique) attack states, the set of attack states,
or a set of execution traces containing a trace for each reachable attack state.

3. Algebraic and logical composition of properties. Assume P1(m) and P2(m) are
properties of models ranged over by m. Then, P(m) = P1(m) @ P2(m) defines
the composition of the results of evaluating the properties using operation @.

4. Composition of rule rewriting with external simulators. An example is a (co)-
simulation of a cyber-physical agent behaviour where the cyber (planning)
behaviour is simulated in Maude and the physical behaviour (drone or au-
tonomous vehicle) is simulated using a special purpose flight or vehicle simulator
[Mas+17]. Simulators are coordinated by meta-level rules and a message passing
protocol. In this composition rewriting and simulation steps are interleaved with
rewriting results passed to the simulator and simulation results passed back to
the Maude. This interleaving with exchange of information can be viewed as an
instance of the Mutually improving results composition discussed in Sect. 4.5.3.
Recall the equation to solve is

A(m) = (r, s) where (r, s) = (A1(m, s),A2(m, r)).

In our example, m is the system model, s a command, r the system state, A1
is the simulator which updates the state according to the new command, A2
is the cyber/Maude simulate that decides the next command given the current
state. So with r0 the initial state, we have s0 = A2(m, r0), r1 = A1(m, s0),
and so on. With a log in the state, this can incrementally generate a trace, or
performance measures such as average or minimum distance between vehicles,
(average) energy used per task, etc.

5. Symbolic search (narrowing) composes rewriting and unification (equation
solving). Here unification is used to match rule premises with state patterns that
represent potentially infinitely many specific states. The Mauda NPA protocol
analysis tool [EMM06] uses this composition to determine if a given attack
pattern can be realised in a system running one or more instances of given
cryptographic security protocols.

6. Rewriting modulo constraints composes rewriting with satisfiability modulo
theories (SMT) constraint solving. In this case, states are pairs consisting of a
pattern and a constraint that finitely represent all pattern instances that satisfy
the constraint. Constraints are accumulated as rewrite rules are applied. An SMT
solver is invoked to check that a constrained state is consistent. An example
use is to model timing properties of distance bounding and other protocols as
constraints rather than concrete numbers [NTU19].

In the above, 1–2 are examples of white-box composition, 3 exemplifies black-
box composition, and 4–6 are examples of grey-box composition.
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4.6.2 Abstract State Machines and the ASMETA Analysis
Toolset

Abstract state machines (ASMs) [BS03, BR18] are an extension of finite state ma-
chines (FSMs) where unstructured control states are replaced by states comprising
arbitrary complex data (i.e., domains of objects with functions defined on them), and
transitions are expressed by named parameterised transition rules (or simply rules)
describing how the data (state function values saved into locations) change from one
state to the next. ASM models can be read as “pseudocode over abstract data” with a
well-defined semantics: At each computation step, all transition rules are executed in
parallel, leading to simultaneous (consistent) updates of a number of locations. This
basic notion of ASM has been extended to synchronous/asynchronous multi-agent
ASMs for the design and analysis of distributed systems.

ASMs are primarily tailored to the formalisation and analysis of functional
system behaviour via an iterative design process based on model refinement. Tools
supporting the process are part of the ASMETA (ASM mETAmodeling) toolset2

and provide different V&V activities (such as model simulation, scenario-based
simulation, property verification by model checking and runtime verification to
name a few). Most of these tools provide analysis support for ASMs by semantic
mapping [GRS09, HR04], i.e., via model transformations that realise semantic
mappings from ASM models (edited using the textual language AsmetaL [GRS08])
to the input formalism of the target analysis tool, and then lift back the results of the
analysis to the ASM level. Thus, the type of composition commonly realised in the
ASMETA analysis toolset is black-box. More details on the specific composition
strategies adopted in the ASMETA toolset are given in Chap. 5 of this book
[Hei+21].

4.6.3 Palladio

Palladio is a tool-supported approach to modelling and analysing software archi-
tectures for various quality properties [Reu+16]. Details on Palladio’s modelling
language Palladio Component Model and toolset Palladio-Bench are given in
Chap. 11 of this book [Hei+21]. In the context of Palladio, different forms of
composition as introduced in Sect. 4.4 are applied. For example, IntBIIS [Hei+17] is
an approach for extending Palladio architectural models by business process models
to simulate the mutual performance impact of software systems and business pro-
cesses. IntBIIS therefore conforms to model composition. The Power Consumption
Analyzer (PCA) [Sti18] uses the results of Palladio’s software architecture simu-
lation (mainly utilisation of resources) to forecast power consumption of software

2 ASMeta is available at http://asmeta.sourceforge.net/ and https://asmeta.github.io/.

http://asmeta.sourceforge.net/
https://asmeta.github.io/
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systems at the architecture level. PCA therefore conforms to results composition.
OMPCM [HMR13] integrates the OMNeT++-based network simulation framework
INET with the architecture-level software performance prediction of Palladio.
OMPCM therefore conforms to analysis composition.

4.6.4 Hybrid Automata

Hybrid automata [Hen00, LSV03] are finite state machines extended with continu-
ous variables. Hybrid automata are widely used to specify cyber-physical systems
that exhibit both discrete and continuous behaviour. Such systems include auto-
motive, avionics, robotics, and medical systems. In a hybrid automaton, the discrete
part of the system is specified using a finite state machine with discrete states (called
modes) and transitions (called jumps), and the continuous part of the system is
modelled using continuous real functions or ordinary differential equations (ODEs)
over continuous state variables. The values of continuous variables can also be
changed (or reset) when jumps happen. The parallel composition of hybrid automata
is defined by synchronising jumps with common “actions” in a way similar to the
case of finite state machines.

Figure 4.3 shows a hybrid automaton modelling a simple thermostat system,
adapted from [Hen00]. Two (continuous) variables x and t represent the temperature
and the timer, respectively, and three (discrete) modes off, on, and turbo represent
the status of the heater. Initially, the mode is off, the timer t is 0, and the temperature
x is any value between 18 and 20. The values of x and t change according to the
ODEs for each mode, while satisfying the invariant conditions of the mode. For
example, in the turbo mode, x and t change according to ẋ = 8 − 0.1x and ṫ = 1 as
long as the invariant conditions x ≤ 22 and t ≤ 2 hold. A jump between two modes
can be taken if the guard condition is satisfied: e.g., a jump from on to turbo can
happen whenever x < 20 holds, and in this case the value of t is reset to 0.

The behaviour of a hybrid automaton is given by continuous trajectories of modes
and variables over time. Formally, each state of a hybrid automaton is a pair (q, �v)

of a mode q ∈ Q and a real-valued vector �v ∈ R
n, where Q denotes a finite set

of modes and �v = (v1, . . . , vn) denotes the values of the continuous variables
x1, . . . , xn. A finite trajectory of length d ≥ 0 is then a function τ : [0, d] → Q×R

n

ẋ = −0.1x

ṫ = 1
x ≥ 18

Off

ẋ = 3 − 0.1x

ṫ = 1
x ≤ 22

On

ẋ = 5 − 0.1x

ṫ = 1
x ≤ 22, t < 2

Turbo

t = 0
18 < x < 20

x < 19

x > 21

x < 20
t := 0

t := 0

Fig. 4.3 A hybrid automaton H
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0 u1 u2 d

Off On Turbo
x0

x1

x2

x3

t3

Fig. 4.4 A trajectory

x ≥ 18

Off0

x ≥ 18

Offt

x ≤ 22

On0

x ≤ 22

Ont
x ≤ 22

t < 2

Turbo0

x ≤ 22

t < 2

Turbot

t = 0

18 < x < 20

x < 19

x > 21

x < 20

t := 0

t := 0

Discrete
Model HD

Continuous
Model HC

Off 〈ẋ = −0.1x, ṫ = 1〉, where x ≥ 18

On 〈ẋ = 3 − 0.1x, ṫ = 1〉, where x ≤ 22

Turbo 〈ẋ = 5 − 0.1x, ṫ = 1〉, where x ≤ 22 and t < 2

Fig. 4.5 A composition H = HD ⊗ HC

that describes the continuous changes of the states in the time interval [0, d].
Excluding Zeno behaviour (with infinitely many jumps in a finite amount of time), a
finite trajectory only involves a finite number of discrete jumps in the interval [0, d].
For example, a trajectory τ for the thermostat system is shown in Fig. 4.4. Initially,
τ (0) = (off, (x0, 0)). It involves a jump from off to on at time u1, and a jump from
on to turbo at time u2.

A hybrid automaton can be considered as the model composition of a finite
state machine and a continuous dynamical system. Consider the thermostat hybrid
automaton H above. As shown in Fig. 4.5, the discrete part is the nondeterministic
state machine HD that abstracts from the continuous dynamics. Each mode m

in the hybrid automaton H is separated into two states m0 and mt in HD ,
where m0 and mt correspond to the beginning and the end, respectively, of a
trajectory fragment with mode m. Any trajectory of H corresponds to a path
in the state machine HD . For example, the trajectory in Fig. 4.4 corresponds
to the path: (off0, x0, 0), (offt , x1, u1), (on0, x1, u1), (ont , x2, u2), (turbo0, x2, 0),

(turbot , x3, t3). The continuous part is the continuous dynamical system HC that
abstracts from the transition structure. As expected, each trajectory fragment with
mode m for H is a valid signal of HC .

The safety verification problem is to check whether there exists an “error” trajec-
tory that violates safety requirements. As usual, there are different ways to specify
the safety requirements of hybrid automata, such as invariant properties of reachable
states [Hen00], temporal logic properties of continuous trajectories [MN04], etc.
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The safety verification problem is in general undecidable for hybrid automata
[Hen00]. Nevertheless, there exist several tools that can approximately verify the
absence of error trajectories up to given bounds for different classes of safety
properties, including SpaceEx [Fre+11], HyComp [Cim+15], Flow* [CÁS13],
dReach [Kon+15], StlMC [BL19], etc. Each of those tools provides its own
modelling language to specify hybrid automata. It is worth noting that these
modelling languages usually have different syntaxes but have the same semantics,
namely, hybrid automata.

Safety verification algorithms for hybrid automata sometimes exploit this compo-
sition relation to combine different analysis techniques for discrete and continuous
dynamical systems. Consider a hybrid automaton H = HD ⊗ HC . An error
trajectory exists in the hybrid automata H , if a corresponding path exists both in the
discrete part HD and in the continuous part HC . Based on this observation, we can
first find an erroneous sequence in HD , e.g., using an SMT-based model checking
algorithm for finite state machines, and then try to build a concrete continuous
trajectory, e.g., using linear/non-linear real arithmetic solvers or ODE solvers. For
example, SMT-based techniques for hybrid automata [Cim+15, Kon+15, BL19] can
be characterised as this analysis composition approach, where the orchestration
mechanism is the DPLL(T ) SMT framework.

4.6.5 The GEMOC Studio and BCOoL

The GEMOC Studio3 provides generic components through Eclipse technologies
for the development, integration, and use of heterogeneous executable modelling
languages [Bou+16]. This includes

• Metaprogramming approaches and associated execution engines to design and
execute the behavioural semantics of executable modelling languages,

• Efficient and domain-specific execution trace management services, model
animation services,

• Advanced debugging facilities such as forward and backward debugging and a
comprehensive timeline, and

• Coordination facilities to support concurrent and coordinated execution of
heterogeneous models.

In particular, the GEMOC studio comes with Behavioral Coordination Operator
Language (BCOoL) [Lar+15], a metalanguage to explicitly specify coordination
patterns between heterogeneous languages. It actually reifies coordination patterns
between specific domains by using coordination operators between the DSMLs
used in these domains. These patterns are captured at the language level, and then
used to derive a coordination specification automatically for models conforming to

3 GEMOC Studio is available at http://gemoc.org/studio.

http://gemoc.org/studio
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the targeted DSMLs. The coordination at the language level relies on a so-called
language behavioural interface (making the composition grey-box). This interface
exposes an abstraction of the language behavioural semantics in terms of events.
Finally, an heterogeneous execution engine, integrated to the GEMOC studio, can
be configured by the coordination specification between the models in order to
coordinate the execution of each of the dedicated execution engines.

BCOoL provides support for co-simulation. Using BCOoL, the know-how of an
integrator is made explicit, stored, and shared in libraries and amenable to analysis.

4.7 Conclusion and Outlook

In this chapter, we explored how to explicitly address the compositionality of
analysis and specific forms of composition. Analysis involves models, contexts, and
properties. These are all expressed in languages with their own semantics. We first
gave a detailed overview of these important concepts as they are fundamental and
need to be managed when composing analyses and the underlying formalisms. We
have distinguished three main forms of composition: (i) model composition (white-
box composition), (ii) result composition (black-box composition), and (iii) analysis
composition (grey-box composition). According to such classes, we then introduced
a preliminary conceptual framework that defines abstract operations for analyses
composition to be implemented explicitly and managed in modelling environments.
We have proceeded towards this goal both with a conceptual reasoning and
practical examples of their application with real-world analysis formalisms and their
supported tools.

An open research challenge is characterisation of the compositionality of the
analysis satisfaction relations and property definitions along the three forms of
composition we have proposed in this chapter. Additional challenges are: to identify
conditions under which to choose one form of composition over the other; and
to support the specification of composition by executing relations in operative
workflows that may build upon the concepts proposed in this chapter.
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Chapter 5
Integration and Orchestration
of Analysis Tools

Robert Heinrich, Erwan Bousse, Sandro Koch, Arend Rensink,
Elvinia Riccobene, Daniel Ratiu, and Marjan Sirjani

Abstract This chapter addresses the integration and orchestration of external
analysis tools into modelling environments. We first give a detailed overview
of the considered context and problem statement. Then, a solution in the form
of a reference architecture for the integration of analysis tools into modelling
environments is presented. We collect a set of requirements that analysis tools
must satisfy in order to enable (a) the integration of these analyses into modelling
environments and (b) the orchestration of these analysis tools to produce overall
results. Finally, we give an overview of different orchestration strategies for the
integration of analysis tools and show examples.

This core chapter addresses Challenge 2 introduced in Chap. 3 of this book (the
practical implications—how to integrate and orchestrate existing analysis tools).
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5.1 Introduction

Sophisticated modelling environments, often based on the principles of model-
driven engineering (MDE) and software language engineering (SLE), are becoming
increasingly ubiquitous. More and more disciplines, may it be avionics, automotive,
constructional engineering, automation engineering, or natural sciences, rely on
such tools. These tools become all the more valuable if they provide deep insights
into the correctness and fitness-for-purpose of the models1 used and apply model-
based analysis to forecast properties of the things to be built. At the same time
there is a community of analysis tool builders who distil mathematical and logic
experience into analysis tools (cf. Chap. 2 of this book [Hei+21]) that rely on for-
malisms such as satisfiability modulo theories (SMT) formulae, transition systems,
or discrete-event systems. Many of these analysis tools can be used beneficially
in the aforementioned modelling environments if they are suitably integrated. In
practice this usually means that user-facing models must be translated to the input
formalism of the analysis tool, and the result of the analysis must be lifted back
to the domain level. In addition, there are many use cases like in portfolio solvers,
model checkers, simulation coupling, model-based testing, and runtime verification
where multiple existing analysis tools must be orchestrated to deliver value in the
context of the modelling environment.

This chapter addresses the challenge of how to integrate and orchestrate external
analysis tools into modelling environments. We first give a detailed description of
the considered context and problem statement in Sect. 5.2. The state of the art of
integrating and orchestrating model-based analysis tools is discussed in Sect. 5.3.
Then, we provide a solution in the form of a reference architecture for the integration
of analysis tools into modelling environments in Sect. 5.4. Based on our professional
experience, both in academia and industry, with building and using modelling
environments and integrating analysis tools into existing modelling environments,
we collect a set of requirements in Sect. 5.5 that analysis tools must satisfy in order
to enable (a) the integration of these analyses into modelling environments and (b)
the orchestration of analysis tools to produce overall results. Tools that apply the
reference architecture may adhere to different orchestration strategies. We give an
overview of several orchestration strategies for the integration of analysis tools into
modelling environments in Sect. 5.6 and show examples of existing tools to illustrate
the application of these orchestration strategies in Sect. 5.7. The chapter concludes
with a summary and outlook in Sect. 5.8.

1 Note, while Chap. 2 of this book [Hei+21] postulates analysis input as three kinds of models—of
system, of property, and of context—we stay with the term model in this chapter since a distinction
of the kind of model is not relevant here.
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5.2 Context and Problem Statement

To give a better global understanding of the focus of this chapter, Fig. 5.1 depicts
the considered context and problem statement. First, at the top half of the figure,
the key roles and concepts of a typical modelling process are shown. We assume
that a modelling environment is used by the domain expert in order to work on one
or multiple domain-specific models. While the models are being worked on by the
domain expert, the models are stored in a workspace provided by the modelling
environment. A classical modelling environment provides one or several2 domain-
specific modelling languages (DSMLs), along with a set of tools—editor, checker,
code generator, etc.—to create, manipulate, or verify models conforming to these
DSMLs. The development and maintenance of the modelling environment and the
DSMLs it uses are taken care by one or several language engineers.

Then, at the bottom half of the figure, a common choice to gain insight3 into
the models is to rely on existing proven and powerful analysis tools, such as
model checkers, solvers, or theorem provers. Analysis tools can even be expertly
combined in order to bring more interesting, more complete, or faster results. In this
chapter, we make the assumption that the considered analysis tools are external—

2 Note that Figs. 5.1 and 5.2 only show a single DSML for better readability.
3 We may be interested in insights into models such as correctness and well-formedness of models,
or quality properties of the modelled system.
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i.e., developed by different persons and communities than the ones involved in the
modelling process shown in the top half—and black-boxes—i.e., they are taken
off-the-shelf and their internals are not known. An analysis tool typically takes
an input conforming to a specific input format, and produces a result in either a
loose (e.g., raw textual description) or a well-defined format. Some tools may also
simultaneously require multiple different sources of input (e.g., a configuration file
and a model), produce multiple different result artefacts (e.g., a counterexample and
the state space used to discover it), or may even function in an incremental fashion.
Analysis tools are developed by analysis tool engineers, which are experts in the
theories and techniques implemented in the tools.

In order to enable the use of single or combined external tools for the analysis
of models created in the modelling environment, there are at least two compelling
prerequisites that must be fulfilled. First, we call tool integration the problem of
actually being able to make use of each separate analysis tool (i.e., exchange data,
make queries, start and stop tasks, etc.) within the modelling process. For instance,
using a model checker requires at least to be able to (1) send it the model and
the property to be checked, (2) ask it to start the analysis, and (3) retrieve the
result. Second, we call tool orchestration the problem of configuring when and
how analysis tools should be used and/or combined in a considered modelling
process, which includes how these analysis tools should interact with each other. For
instance, it must be possible to drive a sequence of actions such as “give the model
in a certain format to the model checker, start the analysis, get the counterexample,
translate it to a second format, feed it to a second tool to replay the trace, translate
the replay result back to the domain expert”.

Unfortunately, both, in between a modelling environment and analysis tools, and
in between analysis tools themselves, there are semantic gaps—i.e., differences be-
tween their semantics— and technical gaps—i.e., differences between the technical
spaces where each environment and tool operates, such as runtime environments,
application programming interfaces (APIs), or frameworks—to take into account.
Consequently, there are many obstacles to overcome in order to solve the tool
integration and tool orchestration problems, such as:

1. A model created in the modelling environment conforms to a DSML that may
entirely differ from the input format expected by a given analysis tool, thus first
requiring a model transformation to make the model understandable by the tool.

2. Since a given analysis tool is not aware of the DSML and of the domain of
expertise of the modeller (i.e., the domain expert), the result it produces is likely
to be written in “words” that the domain expert cannot easily understand, thus
requiring a second model transformation to lift the low-level result back into a
format fitting the domain of interest, and thus the domain expert.

3. When combining analysis tools, the input and output formats that they use are
rarely compatible among themselves, and thus require model transformations as
well.

4. Each analysis tool may expose a specific interface (e.g., Java API, command
line interface, network socket, etc.) for programmatically interacting with it, and
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possesses its own explicit or implicit protocol to use this interface (i.e., which
sequences of actions provided by the interface are valid to achieve certain tasks).

5. The modelling environment and analysis tools may work in very different
technical spaces, such as different data representations (e.g., graphs vs. trees),
execution environments (e.g., Java vs. Python), or file formats (e.g., XMI vs.
JSON). These differences add technical complexity over the task of defining
sound transformations, both towards and from analysis tools.

All these concerns are rather well known, and have all been dealt with in the past
in an ad hoc basis in a great number of modelling environments—AF3, ASMETA,
mbeddr, or Palladio to name a few (all described in Sect. 5.3.2). However, to our
knowledge, little work has been made to provide general and systematic answers
that could help dealing with the integration and the orchestration of analysis tools.
Hence, as an exploratory attempt to address this issue, we present the following
three contributions in this chapter. First, we propose a reference architecture—
along with important concepts—that can be used to methodically integrate and
orchestrate analysis tools into a modelling process. Second, we propose a set of
requirements that qualify which analysis tools can be properly integrated in such an
architecture. Third and last, we propose and formalise a first set of strategies that
can be used to answer common integration and orchestration cases, especially when
multiple analysis tools are combined together to provide one or multiple results.
These strategies are illustrated using a selection of real-world examples of existing
ad hoc integrations and orchestrations of analysis tools.

5.3 State of the Art

This section provides a discussion of the state of the art of integrating and
orchestrating model-based analysis tools before we propose our concepts in the
sections that follow. We first give an overview of related research on integrating
and orchestrating tools and then give examples of existing modelling environments
with integrated analysis tools that may serve as inspiration and illustration for the
concepts proposed in this chapter.

5.3.1 Research on Integrating and Orchestrating Tools

A first step to systematically deal with the integration and orchestration of black-
box analysis tools is to define how to generically interact with tools. To this end,
significant work has been done in different research communities to consider tools
as first-class entities.

Two early endeavours from the late 1990s are ToolBus [BK96] and the electronic
tool integration (ETI) platform [SMB97, BMW97] (with some extensions made in
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the 2000s [MNS05, Mar05]). Both these approaches have assumptions and goals
rather similar to what we stated in the previous section: Being able to integrate ex-
isting tools into foreign processes is an important challenge, which requires proper
data exchange and communication mechanisms with said tools. These approaches
already sketch important concepts such as tool adapters, type transformers, tool
coordination, or coordination universe. However, these approaches try to tackle a
more generic problem, as they make no assumptions on the context in which tools
are integrated and combined. They notably do not discuss the problem of lifting
analysis results to the domain of interest. While we do take inspiration from these
early generic proposals, the present chapter specifically focuses on the integration
and orchestration of analysis tools into a modelling environment. Moreover, our
proposal also aims at providing a set of requirements for integrating analysis tools,
along with a set of interesting re-usable strategies for orchestrating them.

In the 2000s, a slightly similar proposal was made, called Model Bus [BGS05]. In
a pure MDE context, this approach aims at providing an environment where both a
set of metamodels and a set of services built for these metamodels—such as model
transformations and code generators—can be registered. These services can then
easily be called and chained thanks to a communication bus called the Model Bus.
This approach is mostly targeting MDE practitioners who need to organise a set of
model manipulation services, and does not discuss the case of external tools, or the
problem of lifting back analysis results.

More recently, some approaches solely focus on the problem of combining the
analysis tools. Dwyer et al. [DE10] proposed a vision where tools can be combined
using the notion of evidence as a pivotal concept. In other words, the authors
advocate for a common representation and storage of analysis results, and means
to compose these results in a meaningful way. Rather aligned with this vision, and
following a proposal from Rushby [Rus05], Cruanes et al. [Cru+13] designed the
evidential tool bus (ETB), a “distributed framework for integrating diverse tools into
coherent workflows for producing claims supported by explicit evidence”. While the
approach is very interesting, and in some ways in the steps of ETI, it mostly focuses
on the problem of storing and sharing analysis results between distributed formal
analysis tools. Questions such as the lifting of results back to the domain, or how
to soundly transform domain-specific models for analysis tools, or what common
orchestration strategies can be used, are not considered.

5.3.2 Examples of Modelling Environments with Integrated
Analysis Tools

In the following, we provide examples of modelling environments that integrate
various external analysis tools. All our examples are based on open-source and
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freely available environments. However, commercial environments (e.g., Simulink4

and SCADE5) face the same challenges when integrating external analysis tools.
These examples can be seen as existing ad hoc applications of the general concepts
presented in this chapter.

AF36 [Ara+15] is an environment for modelling and specification of embedded
systems. It offers support for modelling requirements, the logical and technical
architectures and deployment. AF3 integrates NuSMV [Cim+02] for verifying
models and Z3 [MB08] for generating optimal deployments.

ASMETA7 [Arc+11, GRS08] (ASM mETAmodeling) is a modelling environment
for the abstract state machines (ASMs) formal method. It is based on the integration
of different tools for performing validation and verification activities on ASM
models; it integrates different external analysis tools such as the NuSMV [Cim+02]
model checker for performing property verification and SMT solvers to support
correct model refinement verification [AGR16] and runtime verification [AGR14].

FASTEN8 [RGS19] is a modelling environment for the specification and design of
safety-critical systems. Regarding formal analyses, the main focus of FASTEN is to
experiment with usability of formal specification and transition between informal
to formal specifications. FASTEN integrates various external analysis tools such as
NuSMV [Cim+02], Spin [Hol03], Z3 [MB08], and PRISM [KNP11].

mbeddr9 is a modelling environment for the development of embedded systems. It
integrates various formal analysis tools that work at model level as well as those that
work on C code. Examples of model-level analyses are checking for consistency and
completeness of decision tables [Rat+12a, Rat+12b] using Z3 [MB08]; examples
of code-level analyses are checking assertions from C programs [Rat+13, MVR14]
using CBMC [CKL04] or applying the model-driven code checking method [RU19]
using Spin [Hol03].

OpenCert10 is an integrated environment for specification and certification of
cyber-physical systems (CPS). OpenCert uses modelling languages based on
SysML [Obj12] and integrates the OCRA [CDT13] and NuXmv [Cav+14] formal
verification tools for checking properties expressed using temporal logic.

Palladio is a tool-supported approach to modelling and analysing software archi-
tectures for various quality properties [Reu+16]. It integrates various analysis tools
to predict and reason about these quality properties into a modelling environment.

4 Simulink: https://www.mathworks.com/products/simulink.html.
5 SCADE: https://www.ansys.com/products/embedded-software/ansys-scade-suite.
6 AF3: https://download.fortiss.org/public/projects/af3/help/index.html.
7 ASMETA: http://asmeta.sourceforge.net/.
8 FASTEN: https://sites.google.com/site/fastenroot/home.
9 mbeddr: http://mbeddr.com.
10 OpenCert: https://www.eclipse.org/opencert/.

https://www.mathworks.com/products/simulink.html
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://download.fortiss.org/public/projects/af3/help/index.html
http://asmeta.sourceforge.net/
https://sites.google.com/site/fastenroot/home
http://mbeddr.com
https://www.eclipse.org/opencert/
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Details on the Palladio approach and the associated tooling are described in Chap. 11
of this book [Hei+21].

VCES11 [GLO11] is an Eclipse-based environment for the modelling and analysis
of software-intensive systems. It includes an implementation of a higher-level
modelling language (named SAML—system analysis and modelling language)
that is an intermediate, automata-based language between arbitrary high-level
engineering languages like SysML [Obj12] and the input languages of analysis
tools. VCES features model transformations from SAML to the input of verification
tools like NuSMV [Cim+02] and PRISM [KNP11]. Results of the verification are
lifted in the VCES integrated development environment (IDE) and presented in a
user-friendly manner.

Why312 [FP13] is a platform for deductive program verification for the WhyML
language. It integrates a wide range of both automatic and interactive external
theorem provers (more than 19 as of today), and any prover can be chosen to
perform any of the proofs. While Why3 is not a modelling environment per se—
since WhyML is a programming language mostly used as an intermediate language
to verify programs written in C, Java, or Ada—it directly deals with the problem of
integrating and orchestrating a great number of homogeneous external tools, here
using an abstraction layer dedicated to theorem provers.

TOPCASED13 [Far+06] is an environment for critical applications and systems
development, using modelling languages such as UML [Obj15], SysML [Obj12],
or AADL [FGH06]. The environment relies on the Fiacre language [Ber+08] as
an intermediary language to translate models to analysis tools—such as model
checkers—and to lift verification results back to the domain expert. While TOP-
CASED is not maintained since 2013, it was one of the first successful attempts to
bridge MDE and formal verification in a single environment.

5.4 A Reference Architecture for Integrating Analysis Tools

A reference architecture is known in software engineering as a general structure
for applications in a particular domain, which may partially or fully implement the
reference architecture [Som15]. We transferred the notion of a reference architecture
to the problem of integrating analysis tools into modelling environments. The
reference architecture for the integration of one or multiple analysis tools into a
modelling environment is depicted in Fig. 5.2. Note, in the figure we depict two

11 VCES: https://cse.cs.ovgu.de/cse/researchareas/vecs/.
12 Why3: http://why3.lri.fr/.
13 TOPCASED: http://www.topcased.org/.

https://cse.cs.ovgu.de/cse/researchareas/vecs/
http://why3.lri.fr/
http://www.topcased.org/
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Fig. 5.2 Reference architecture for the integration of analysis tools into a modelling environment

analysis tools to indicate that multiple analysis tools can be integrated, while the
number of analysis tools to be integrated is not limited.

The modelling environment is responsible for both, interacting with analysis
tools and interacting with the domain expert wishing to perform analyses based on
domain-specific models. The modelling environment comprises four components:
(a) the DSMLs, (b) a set of tools—e.g., editors, checkers and code generators—
to create, manipulate or verify models conforming to these DSMLs, (c) a set of
orchestration strategies to manage the interaction with and combination of analysis
tools, and (d) the tool drivers that are responsible for actually interacting with the
specific analysis tools.

The modelling environment, the DSMLs it uses, and the tools to work on models,
are developed and maintained by language engineers. Often, the development and
maintenance of tools to work on models is supported by tool developers which are
not depicted in the figure as they are not in the focus of this chapter. The modelling
environment follows some orchestration strategy that defines which analysis tools
should be used for a given analysis task, how these tools should be used for
a given analysis task, in which order these tools should be used, and how the
analysis results they produce should be combined or exchanged. Analysis tools
are assumed to already exist and to have been created externally by analysis tool
engineers to satisfy specific analysis tasks. The integration of analysis tools into the
modelling environment is accomplished by a set of tool drivers, each tool driver
being responsible for interacting with one external analysis tool. This includes how
to use the interfaces of the analysis tool, how to translate a domain-specific model
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used by domain experts in a valid input for the tool (T in Fig. 5.2), how to lift back
the analysis result in a form that makes sense at the abstraction level of the domain-
specific model (L in Fig. 5.2),14 as well as the protocol to exchange messages and
information with the tool. Tool drivers, along with orchestration strategies that
control them, are jointly developed by language engineers and analysis experts,
who are versed in the analysis tools that must be integrated into the modelling
environment.

The proposed reference architecture serves as a solution template and structural
overview of constituents required for integrating analysis tools into modelling
environments. It therefore addresses aforementioned obstacles for tool integration
and tool orchestration by providing a template for model transformation, result
lifting, explicit interfaces, and protocols of analysis tools as well as hiding technical
complexity of the different tools involved. We do not go into the details of soundness
of the transformations and liftings in the reminder of this chapter. The interested
reader is referred to Chap. 4, on composition of languages, models, and analyses,
as well as to Chap. 7, on exploiting tool results, of this book [Hei+21] for further
details.

5.5 Requirements for Analysis Tool Integration
and Orchestration

The reference architecture described in the previous section presumes that several
requirements are satisfied by the considered analysis tools. In this section, we
describe such a set of requirements, such that analysis tools satisfying these
requirements can be easily integrated and orchestrated into modelling environments.
We base these requirements on our experience as authors—both in academia and in
industry—with building and using modelling environments and integrating analysis
tools. We categorise these requirements along two dimensions: requirements for the
integration of analysis tools (Sect. 5.5.1), and requirements for the orchestration of
analysis tools (Sect. 5.5.2). The first set of requirements is about the integration of
individual tools, the second set is focused on orchestrating complex use cases with
one or more analysis tools.

14 Note that while Fig. 5.2 does show the analysis results lifted at the domain level by the L
transformation, the figure does not show what language such domain-level results conform to,
for the sake of brevity. Yet, an important task here is to provide domain-level concepts that are able
to represent analysis results in a domain-specific fashion, if possible through explicit relationships
with concepts of the DSMLs.
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5.5.1 Integration Requirements

The following are basic requirements to analysis tools which are essential to enable
their integration into modelling environments.

R1.1 Explicit Input Language In order to enable the integration of an analysis
tool into a modelling environment, it shall have a precisely defined input language
(both when the analysis tool consumes textual files as well as when it exposes its
functionality via APIs).

R1.2 Explicit Output Language While most analysis tools have a well-defined
input language (i.e., to specify models to analyse), much fewer have an explicitly
defined language (syntax and semantics) in which analysis results are presented.
We need the syntactic definition of the result representation (aka. “output format”)
in order to enable parsing—e.g., having XML or JSON format for the output of
the analysis tool dramatically helps in parsing the results. Besides the syntax, the
semantics of the output needs to be precise enough in order to enable interpretation
of analysis results.

R1.3 Explicit Protocol to Interact with the Analysis Tool We have identified
three scenarios when an explicit protocol is needed for the integration. (1) Many
analysis tools can be used in an interactive fashion, and in these cases the protocol
of commands accepted by the tools shall be explicitly defined—e.g., the NuSMV
model checker [Cim+02] offers an interactive mode that is superior to the automated
interaction mode by providing a finer granular interaction protocol (i.e., sequence of
NuSMV commands) that can be used to guide the analysis. (2) In the case when the
analysis tool provides an API, the order in which the API functions should be called
is essential for the integration—e.g., the Z3 solver [MB08] comes with a Java API
that specifies the order of function calls and this eases the integration into modelling
environments. (3) Many analysis tools can be called several times for performing a
certain analysis, each call using some information provided in a previous call—e.g.,
C bounded model checker (CBMC) [CKL04], a bounded model checker for C and
C++, can be called first to collect the properties to analyse and subsequently to
analyse certain properties of interest.

R1.4 Robustness in Handling Long-Running Analyses Many times the analyses
to be performed are complex and, such as the case of formal verification, they
might take hours, days, or more to complete. From a tool-integrator perspective,
an analysis tool needs to provide mechanisms to handle such situations either by,
e.g., setting timeouts, giving feedback about the analysis progress, or enabling a
“nice” cancel of analyses—e.g., the Z3 solver enables its users to specify timeouts
for managing long-running analyses.

R1.5 Witness for Certification and Assurance When an analysis tool is used for
checking properties of safety-critical systems, it shall provide an independently
checkable witness of all analysis results. In this manner, the confidence in the
correct functioning of analysis tools can be drastically increased—e.g., the software
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verification competition requires competing tools to provide both correctness and
violation witnesses.15

5.5.2 Orchestration Requirements

In the following, we present a set of requirements for analysis tools that aim to
facilitate their orchestration in modelling environments. Orchestration is often about
result exchange and coordination which brings us to these requirements.

R2.1 Reuse Partial Results Between Analyses Many uses of analysis tools via an
IDE imply the integration of the analysis tool into a modelling workflow. Modelling
happens today in an incremental and agile fashion, with continuous changes. The
interested reader is referred to Chap. 6 of this book [Hei+21]. Ideally, the efforts
required to re-analyse a model once changes are performed shall be proportional
with the size of the change and not the size of the input model—e.g., caching
partial verification results which make subsequent analyses faster or more tractable;
another example is the ordering of binary decision diagrams (BDDs) variables can
be saved by NuSMV [Cim+02].

R2.2 Provide Partial Results In case when the analysis is incomplete, partial
results about what has been successfully covered are essential for the users—e.g.,
there are tools like CPAChecker [Bey16] that support their users by providing partial
verification results for the cases when, e.g., the verification is untractable.

R2.3 Coordination of Portfolio Analysers In case of portfolio solvers, several
tools can be started simultaneously to analyse the same property. Coordinating these
tools needs to be done today at low level. Furthermore, depending on the kind of the
input models and the checked property, one or another of the integrated solvers in
a portfolio might be more efficient. Having explicit information about the strengths
of the different solvers (with respect to the model under analysis and the checked
property) could be used to increase the analysis efficiency at high-level. A notable
example of portfolio solvers is, e.g., Why3 [Bob+12], that offers a unified interface
for integrating and coordinating portfolios of SMT solvers.

5.6 Orchestration Strategies

A modelling environment may require the use of a single analysis tool or the
coordinated use of a number of analysis tools. In the reference architecture presented
earlier in this chapter, such coordination is achieved using so-called orchestration

15 SV-COMP 2020: https://sv-comp.sosy-lab.org/2020/rules.php.

https://sv-comp.sosy-lab.org/2020/rules.php
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strategies, each one responsible for controlling the different tool drivers and
exchanging data between tool drivers and the workspace of the modelling environ-
ment. In this section, we describe and define a selection of orchestration strategies
that, from our own experience, are both, common and relevant, for composing
analysis tools.

5.6.1 Orchestration Strategy Overview

An overview of the different types of strategies marked by capital letters is depicted
in Fig. 5.3 and introduced in an informal way hereafter before we give precise
definitions. Note that, when multiple analysis tools can be involved, we merely use
two tools in the figure and the text for the sake of brevity. Furthermore, in practical
settings combinations of these orchestration strategies are possible and orchestration
strategies may be nested.

Single Analysis Orchestration (A) For this orchestration strategy, in order to
perform a model-based analysis, the modelling environment uses a tool driver
to translate a domain-specific model into a valid input for an external black-box
analysis tool. Then, the modelling environment translates back (lifts) the result of
the analysis tool by using the tool driver again. An example of this strategy is to
translate a model conforming to a DSML into a model checker input, and then
translate back the response into DSML concepts.

Separate Parallel Analysis Orchestration (B) This strategy is similar to (A), but
with multiple different tools. These tools are getting the same input model, but they
can run completely separately. This way we obtain separate results (both expressed
in terms of the same DSML) which we can compare and from which we can select
the most appropriate one. Portfolio solvers are an example of strategy B where we
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can run the same analysis in different tools, and we make them compete, and we
keep the most interesting result (e.g., fastest, more precise, etc.).

Combined Analysis Orchestration (C) In this strategy, the results of different
tools that may use different input models are combined into a single output model.
This strategy can be used to obtain a more comprehensive result (by combining
results) than a single analysis could provide. Combination of qualitative and
quantitative results of analysis tools is an example for which the combined analysis
strategy can be applied.

Cooperating Analysis Orchestration (D) With this strategy the modelling envi-
ronment invokes one tool, then translates the result into an input of another tool,
and then translates the result of the second tool back into an input of the first tool to
run another analysis. This cooperation between analysis tools can be repeated until
a certain stop criteria is reached. Coupled simulations are an example of strategy
D where the combination of interacting black-box simulations can create a more
precise result.

Sequential Analysis Orchestration (E) With this strategy the modelling environ-
ment invokes one tool, then translates the result into an input of another tool, and
then translates the result of the second tool back to a domain-specific model to
provide it to the domain expert. Refining the result of one analysis tool by another
is an example of the sequential analysis orchestration strategy.

5.6.2 Orchestration Strategy Definition

After giving an overview and introduction to different orchestration strategies, we
now give a precise definition of each strategy.

Elements We identify the following primitives in order to define the orchestration
strategies from Fig. 5.3.

• Analysis Tool, AT . It has explicit (i.e., precise format and semantics) language to
express the tool input IAT and explicit language to express the tool output OAT

(by basic requirements); we can define AT = (IAT , activity(AT ),OAT );
• Input, I . It is the input given to an analysis tool and is expressed in a DSML of

the modelling environment;
• Output, O. It is the output result of an analysis tool and is expressed in a DSML

of the modelling environment;
• Transformation, T (I, IAT ). It is a mapping from the input I given in a DSML of

the modelling environment to the input IAT of the analysis tool AT ;
• Lifting, L(OAT ,O). It is a mapping from the output OAT of the analysis of the

tool AT to the output O expressed in a DSML of the modelling environment;
• Tool Driver, T D(AT ). It is a software component that defines how to make use

of a specific analysis tool, including how to translate a domain-specific model
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into a valid input for the tool, how to lift back the analysis result into a form
that makes sense at the abstraction level of a domain-specific model, as well as
the protocol to exchange messages and information with the tool; therefore, it is
defined as a tuple

T D(AT ) =< T (I, IAT ), L(OAT ,O), protocol(AT ) >

where T (I, IAT ) is the transformation to provide adequate input to the analysis
tool AT , L(OAT ,O) is the lifting to make the analysis result useful at the
abstraction level of a domain-specific model, and protocol(AT ) is the protocol
to exchange messages and information with the tool AT . Transformation T and
lifting L may be the identity mapping in case the tool AT uses/returns a model
in the same language that the modelling environment uses.

A tool driver can make use of a number of different transformations and
liftings, not necessarily coupled, since the supported tool AT may require more
than one input model and may return more than one result model. Therefore,
we can extend the definitions of transformation and lifting in the aforementioned
definition of tool driver as follows while m,n ∈ N>0:

T (I, IAT ) =< T1(I, I1AT ), . . . , Tn(I, InAT ) >

L(OAT ,O) =< L1(O1AT
,O), . . . , Lm(OmAT

,O) > .

Further, the input to a given analysis tool may comprise more than one domain-
specific model. Also the output of a given analysis tool may comprise more than
one domain-specific model. In this chapter, we consider input and output each to
be a single domain-specific model to not overly complicate the explanations and
definitions given.

Orchestration Strategies We define the orchestration strategies depicted in
Fig. 5.3 as follows while i ∈ N>0, j, k,m, n ∈ N>1 and m ≤ n.

• Single analysis orchestration (A): a single tool driver T D(AT ) is used, which
provides input I to a tool AT by applying transformation T (I, IAT ) and gets the
output O by applying the lifting L(OAT ,O).

• Separate parallel analysis orchestration (B): a number n of (not necessary dif-
ferent) tool drivers T D(AT1), T D(AT2), . . . , T D(ATn) are used in parallel; each
T D(ATi ) provides input to the analysis tool ATi by applying the transformation
T (Ii , IATi

) and lifts back the output Oi to the modelling environment by applying
the lifting L(OATi

,Oi). The input Ii can be the same input I for all T D(ATi ),
or suitably customised by applying protocol(ATi ) of T D(ATi ). It is up to the
domain expert to decide about the use of the outputs O1,O2, . . . ,Om (m can be
equal to n): to keep all of them, to select one of them, etc.

• Combined analysis orchestration (C): a number n of (not necessary differ-
ent) tool drivers T D(AT1), T D(AT2), . . . , T D(ATn) are used in parallel; each
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T D(ATi ) provides input to the analysis tool ATi by applying the transformation
T (Ii , IATi

) and gets the output Oi by applying the lifting L(OATi
,Oi). The

modelling environment assembles the output O as the result of the (internal)
operation combine(O1,O2, . . . ,Om) for a number m of outputs (m can be
equal to n).

• Cooperating analysis orchestration (D): a number n of (not necessary different)
tool drivers T D(AT1), T D(AT2), . . . , T D(ATn) are used in a cooperating way.
The modelling environment provides input I to a first analysis tool AT1 by a
tool driver T D(AT1) which applies the transformation T (I, IAT1

). According to
a cooperation schema of the modelling environment, at each cooperation step,
the output of a tool ATi is then given as input to another tool ATj (even if already
used in previous steps) by applying the transformation T (L(OATi

,Oi), IATj
)

which involves also the cooperation between protocol(T D(ATi )) and pro-
tocol(T D(ATj )); upon a stop criteria (e.g., a fixed point)—defined in the
cooperation schema—is reached, the modelling environment gets the output O

by applying the lifting L(OATk
,O) of the tool driver T D(ATk ) for a given k.

• Sequential analysis orchestration (E): a number n of (not necessary differ-
ent) tool drivers T D(AT1), T D(AT2), . . . , T D(ATn) are used in sequence. By
T D(AT1) the modelling environment provides input I to a first analysis tool
AT1 (the transformation T (I, IAT1

) is applied); at each sequential step, the
output of the tool ATi is then given as input to the subsequent tool ATi+1 by
applying the transformation T (L(OATi

,Oi), IATi+1
) in a cooperation between

protocol(T D(ATi )) and protocol(T D(ATi+1)); upon end of the sequential use of
the orchestrated tools, the modelling environment gets the output O by applying
the lifting L(OATn

,O).

Combinations or nested compositions of the above orchestration strategies are
possible in order to perform complex model-based analyses that require tools
orchestrated in a more sophisticated way. Combined strategies might also require
more powerful tool drivers that can share transformations towards specific formats
and are able to combine output results. Indeed, in case different tools are used
according to a complex schema such as the orchestration strategy F in Fig. 5.3,
where a number n of (not necessary different) analysis tools AT1, AT2, . . . , ATn

are used, the unique tool driver needs a complex transformation able to transform
the input model (or suitable parts of it) into the inputs of specific tools, and
combine/aggregate (in a suitable way) all or some output results before lifting the
analysis result back to the modelling environment.

However, orchestration strategies whose transformation and lifting require to
share information and combine results are not in the focus of this chapter, and
therefore the formalisation of orchestration strategies such as the case F is an open
topic that needs to be addressed in future research.
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5.7 Examples of Orchestration Strategy Application

This section provides examples for each of the strategies defined in the previous
section to illustrate their application in existing modelling environments.

Single Analysis Orchestration (A) Model-based simulation is an example of the
application of the single analysis orchestration strategy. For example, the Palla-
dio [Reu+16] software architecture modelling and analysis approach (cf. Chap. 11 of
this book [Hei+21]) uses various analysis techniques to predict quality properties of
software systems. The Palladio-Bench corresponds to the modelling environment.
To conduct a quality analysis of a software system, an architectural model of the
system is created by domain experts in the Palladio-Bench. Several analysis tools
can be selected to be executed based on the model. One of these analysis tools is
the performance simulator SimuCom [Bec08]. The Palladio-Bench transforms the
domain-specific model (i.e., architectural model) into simulation code of SimuCom,
which is executed for performance simulation. After the simulation has been
finished, the result is lifted back to the Palladio-Bench. The Palladio-Bench in turn
displays the result to the domain experts.

Similarly, the single analysis orchestration strategy is used in the ASMETA
modelling environment [Arc+11] to perform model-based analysis of the ASM
specifications. The ASMETA modelling environment can invoke a number of tools
for model validation (e.g., interactive or random simulation by the simulator As-
metaS, animation by the animator AsmetaA, scenario construction and validation by
the validator AsmetaV) and verification (e.g., static analysis by the model reviewer
AsmetaMA, proof of temporal properties by the model checker AsmetaSMV, proof
of correct model refinement [AGR16]). All these tools are orchestrated in a similar
way: An ASM model is given as input to a given tool by means of a transformation
that translates the input model into an adequate input for the target tool; the result
of the analysis is then lifted back in a way that it is understandable by the domain
expert.

The modelling environments mbeddr [Voe+12], FASTEN [RGS19], and AF3
[Ara+15] all also use this orchestration strategy. Domain-specific models are
translated into the input language of analysis tools, let them run and subsequently
lift the results at model level so that they are understandable to domain experts.

Separate Parallel Analysis Orchestration (B) Typical examples of strategy B
are portfolio solvers which use multiple solver tools to run in parallel in order to
tackle computationally difficult problems. A well known modelling environment for
different analysis tools—e.g., SMT solvers—is Why3 [Bob+12]. Why3 takes input
models described in a high-level language which aims at maximal expressiveness
without sacrificing efficiency of automated proof search. Based on the input models,
Why3 applies transformations that will gradually translate Why3’s logic into the
logic of different provers (e.g., Z3 [MB08], CVC4 [Bar+11], Yices [Dut14]). The
transformations are controlled by a configuration file, called a driver, associated
with any prover supported by Why3. The results of the external provers are then
interpreted and (to some extent) lifted at the level of the input language.
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The ASMETA modelling environment also implements the separate parallel
analysis orchestration strategy for ASM model validation. The domain expert can
invoke the parallel execution of the simulator AsmetaS and the animator AsmetaA
on a same input model; results of these analysis tools are lifted back to the modelling
environment to show possible states where inconsistent updates (i.e., the same
location is simultaneously updated to different values) or invariant violations are
detected.

mbeddr features analyses both at model level [Rat+12a] and at code level
[MVR14]. Model-level analyses such as checking the consistency and completeness
of decision tables are faster but less precise than analyses on code level since they do
not take into account the C language semantics with respect to arithmetic, floating
points or pointers. Tools that implement these analyses can be run in parallel to
combine the advantages of analyses on both levels. Results of the analysis tools can
be collected and presented at the level of the domain-specific model.

Combined analysis orchestration (C) CoMA [AGR11] is a tool for runtime
verification of Java code with respect to its ASM specification. It observes the
behaviour of a Java object O and checks whether it conforms to the expected
behaviour captured by an ASM specification MO . CoMA works as modelling
environment having two languages: Java for specifying the structure and the
behaviour of the object O, and AsmetaL to model the ASM MO . Code annotation
in O is used for establishing a suitable link between fields and methods of O and the
state signature (i.e., a set of locations) of MO . The operation of CoMA exploits the
orchestration strategy C on two tool drivers: that of the Java virtual machine (JVM)
and that of the AsmetaS simulator. Transformations T are the identity mappings in
both cases, while lifting L of the JVM tool driver reports back the state (i.e., a set of
memory values) of a Java object and that of the AsmetaS tool driver lifts back the
state of an ASM (i.e., a set of locations’ values). At a generic step of the runtime
verification, CoMA invokes the simulation of O on the JVM. When a changing
method (i.e., a method that the domain expert wants to observe and that has been
linked to the model) of O is executed, the tool driver of JVM lifts back the current
state sO of O, and the modelling environment invokes the simulator AsmetaS on
the model MO to perform a computation step. The tool driver of AsmetaS lifts back
the current model state sMO . The modelling environment then checks whether a
conformance relation holds between current states sO and sMO . If they conform, the
simulation of the Java object can continue and the orchestration of the two tools
starts again, otherwise a lack of conformance between code and specification is
reported, so concluding the runtime monitoring. According to our formal definition
of the orchestration strategy C, the function combine is the conformance checking
predicate since its truth value is computed by combining information from the
outputs of the tool drivers of the JVM and the AsmetaS simulator.

Further, the IDE VCES [GLO11] follows the combined analysis orchestration
strategy. VCES can be used for both qualitative and quantitative analyses by using
two analysis tools, namely NuSMV [Cim+02] and PRISM [KNP11]. Results of
these analysis tools are lifted back to and can be combined in VECS.
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Cooperating Analysis Orchestration (D) An example of the cooperating analysis
orchestration strategy is simulation coupling. For instance, Maritime Simulation
(MariSim) [TO17] comprises several simulation tools that are related to Navy and
maritime scenarios. These simulation tools can interact, for example, in order to
analyse tactical formations at sea. The MariSim modelling environment is used
to model and control the interaction between the simulation tools. Simulation
parameters (e.g., time of day or wind direction) are described in a domain-
specific model in the MariSim modelling environment and transformed for the
corresponding simulation tools by tool drivers. Simulation results are lifted back to
the modelling environment and passed on to another simulation tool for interaction
purposes. Simulating tactical formations at sea requires continuous interaction
among the simulation tools, i.e., exchange of information by transformation and
lifting, until a certain stop criteria is reached.

Another example of exploiting the cooperating analysis orchestration strategy
is CoMA-SMT [AGR14], which has been developed for runtime verification of
Java code with respect to an ASM model in case of nondeterministic behaviour.
Coma-SMT is a modelling environment using, as languages, Java for specifying the
structure and the behaviour of an object, and Yices for representing (initial state and
transitions of) a nondeterministic ASM capturing the code behaviour as context
of the SMT solver. Coma-SMT orchestrates the tool driver of the JVM for the
simulation of Java code and that of the SMT solver Yices for satisfiability checking
of a context theory. Transformations T are the identity mappings in both cases, while
lifting L of the JVM tool driver reports back the state (i.e., a set of memory values)
of a Java object and that of the Yices tool driver lifts back the result of a context
satisfiability checking. At a generic step of the runtime verification, the CoMA-SMT
modelling environment invokes the Java simulation on the JVM. When a changing
method (i.e., a method that the domain expert wants to observe) is invoked, the tool
driver of the JVM lifts back the current state of the Java object, and the SMT solver
is triggered by the modelling environment: The transformation consists in extending
the (current) Yices logical context by asserting a set of formulas stating the values
of the observed elements in the current state of the Java object. Yices is then used
to check satisfiability of the logical context. If the context is unsatisfiable, then the
implementation does not conform with the model and the runtime verification stops
(failure fixed point is reached, see definition of strategy D); otherwise the modelling
environment continues the runtime verification by invoking a new computation step
of the Java program (in this case the transformation from the output model of
Yices to the input model of JVM is empty) until an end point of the computation
(successful fixed point) is reached.

Sequential Analysis Orchestration (E) The ASMETA modelling environment
also exploits this kind of strategy to orchestrate the sequential use of two different
tools to implement an approach for the automatic generation of scenarios (or abstract
test cases) for refined ASM models starting from abstract scenarios of abstract ASM
models [AR19]. This approach is extremely useful to allow reuse of artefacts in
model refinement, and is based on a classical test generation technique by exploiting
counterexample generation by model checking. In this approach, the ASMETA
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modelling environment first invokes a tool that transforms the abstract scenario SA

of the abstract ASM model A into a suitable temporal logic formula ψ; � ψ (usually
called trap property) is then model checked against the refined model R of A, and a
counterexample cex is returned to the modelling environment. The counterexample
cex represents a simulation trace of R characterised by ψ . cex is then transformed
into a scenario SR and given as input to the validator tool AsmetaV on the refined
model R. AsmetaV then reports back the result of the scenario execution to the
modelling environment.

The sequential analysis orchestration strategy is also used in ASMETA for
model-based testing of Java code [AGR18]. The modelling environment invokes
the ASM-based test generator ASM tests generation tool (ATGT) to derive a test
suite T from an ASM specification model of a piece of Java code. Tests in T are
then instrumented as JUnit tests by suitable transformation. The results of running
JUnit tests on the Java code are then lifted back to the modelling environment. A
similar orchestration strategy has been used in [BGM20] to implement an approach
that translates abstract test sequences, either generated randomly or through model
checking, and scenarios to concrete C++ unit tests using the Boost library.16 In this
case, the orchestrated tools are ATGT or AsmetaV on one side, and the platform to
run C++ test drivers on the other side.

Nested Orchestration Strategies AdaptiveFlow [Sir+19, For+20] is a modelling
environment for flow management in track-based systems. In AdaptiveFlow, we
have nested orchestration strategies; a smaller step using single analysis orches-
tration (strategy A) within a sequential analysis orchestration (strategy E), together
being executed in a loop. AdaptiveFlow can be used in different application domains
like for fleet management of collaborating heavy machines in a quarry, coordinating
robots in factory aisles, and resource management of smart transport hubs in a city.

Figure 5.4 shows AdaptiveFlow and two analysis tools, the Rebeca model
checker (RMC) and the state space analyzer (SSA). RMC [Reb19] is a customised
analysis tool for the Rebeca language and its timed extension [Sir+04, SK16].
SSA [For+20] is developed specifically for AdaptiveFlow but can be reused in other
modelling environments as well. The input to SSA is the exact same output from
RMC.

As shown in Fig. 5.4, the modelling environment invokes one analysis tool
(RMC), and then the output of RMC is fed into another analysis tool (SSA). Here no
translation between the output of RMC and the input of SSA is necessary, because
SSA is designed in a way to accept the output of RMC. The initial model is revised
iteratively and automatically, and in each iteration the revised model is fed as an
input to the first tool (RMC), and the output of RMC is fed to the second tool
(SSA). This is an instance of orchestration strategy E executed in a loop. Within each
instance of the strategy E in the loop, there is a smaller step using the orchestration
strategy A, this is debugging of Rebeca models using RMC which may come back

16 Boost library: https://www.boost.org/.

https://www.boost.org/
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by creating a counterexample and jump out of the sequential orchestration (shown
as the dashed box in Fig. 5.4).

The RMC driver is responsible for the transformation of AdaptiveFlow models
to Rebeca models (RMC format). The driver receives the AdaptiveFlow model as
input, generates the output as a Rebeca model, and feeds the Rebeca model to RMC.
The AdaptiveFlow model consists of three files including information about the
environment, points of interests, and configuration of the system and the moving
objects. There is no well-defined DSML for modelling this information, but the
specified format of the inputs can be considered as the language. The content and
the terminology are selected based on the specific domain of flow management of
track-based systems. The Rebeca model is generated by model transformation based
on these inputs. RMC receives the Rebeca model and generates the state space and
checks the correctness properties. The correctness properties include the safety (lack
of collision) and progress (guarantee of no deadlock). The lifting here is an identity
mapping, the semantic gap between the Rebeca model and the problem domain is
not large, and the domain expert can understand and use the counterexample for
debugging. When the correctness of the model is verified, the state space is fed into
the SSA tool for performance evaluation of the system. The output of this tool shows
the performance measures for different configurations that are checked in different
iterations. This output is lifted to be usable for the domain expert once a certain
stop criteria is reached. The output is checked by the domain expert, and helps the
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domain expert in decision making for adjusting the configuration and improving the
performance.

This example is explained in more detail in Chap. 13 of this book [Hei+21],
together with other similar examples representing different orchestration strategies.

5.8 Conclusion and Outlook

This chapter discussed the challenge of how to integrate and orchestrate external
analysis tools into modelling environments. We first gave a detailed overview of the
considered context and problem to be addressed. Then, we proposed a reference
architecture along with important concepts that can be used to methodically
integrate and orchestrate analysis tools into modelling environments. We specified
a set of requirements that qualify which analysis tools can properly be integrated
and orchestrated based on the reference architecture. Finally, we proposed and
formalised a first set of strategies that can be used to answer common integration
and orchestration cases and showed examples of the application of these strategies
in real-world modelling environments.

Further investigation on additional ways of tool integration and orchestration
is needed. These include strategies whose transformations and liftings require
to share information and combine results like we sketched for case F in this
chapter. The formalisation of orchestration strategies as the case F needs to be
addressed in the future. Another open topic is to support the specification of
new orchestration strategies by providing primitives, languages, and processes for
defining orchestration strategies that may build upon the concepts proposed in this
chapter. Furthermore, the soundness of the transformations and liftings proposed
in this chapter may be examined in the future. Work on language engineering is
required to precisely define the transformation of analysis inputs and the lifting of
analysis results.
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Chapter 6
Continual Model-Based Analysis

Kenneth Johnson, Marc Zeller, Arthur Vetter, and Daniel Varro

Abstract In this chapter, we describe the continual model-based analysis (CMBA)
framework as an approach for analysing a system under continual change. We give
a formal specification of the CMBA framework and apply it to case studies from
incremental verification, safety-critical systems, and business processes.

This core chapter addresses Challenge 3 introduced in Chap. 3 of this book
(continual model-based analysis).

6.1 Introduction

Model-driven engineering (MDE) facilitates the intensive use of models throughout
the entire life-cycle of systems design. Model-based analysis aims to reduce devel-
opment costs and increase the understanding of engineers by highlighting design
flaws early. For example, when developing safety-critical systems in avionics,
railway, or automotive domains, the risk to harm humans needs to be analysed.
Techniques such as Failure Mode and Effect Analysis [Int91] help engineers justify
if derived safety requirements of the system are provenly met. However, new
components are added with increasingly complex dependencies, thus interconnect-
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ing previously isolated safety-critical functions. To ensure compliance with safety
standards, the system must be analysed after each change.

This chapter introduces the continual model-based analysis (CMBA) conceptual
framework for re-establishing compliance by efficiently identifying and re-assessing
only those system components impacted by change. At the heart of our framework
is a general formulation of the system and requirements, models, and analysis
tools. The CMBA framework is applied to a model-driven engineering domain
and establishes concepts of dependency in system and requirements artefacts.
The framework uses the system’s architecture to quantify change impact and
aims to perform a minimal re-analysis after a change to re-establish requirements
compliance, reusing previous analysis results whenever possible.

We validate the CMBA conceptual framework using disparate case studies based
on the authors’ experience in safety-critical systems, service-based systems, and
business processes. The case studies in this chapter highlight a key technical
challenge for applying model-based analysis for evolving systems: Analysis results
become meaningless if changes in the system are not appropriately mirrored in
their models. Our aim is to support practitioners for integrating specific formalisms,
models, and domain-specific modelling languages into the CMBA framework.

The remainder of this chapter is structured as follows. Section 6.2 gives an
algebraic specification of the continual model-based analysis framework, building
on modelling notions described in Chap. 2 of this book [Hei+21] and outlines the
model-based analysis techniques used when applying the CMBA framework to case
studies. Section 6.3 instantiates the CMBA framework in the context of incremental
verification and is used for runtime probabilistic verification of a service-based
system. Section 6.4 instantiates the CMBA framework for a case study in safety-
critical systems and Sect. 6.5 for business processes in IT management. Section 6.6
outlines the composition of CMBA frameworks for probabilistic model checking
and satisfiability modulo theories (SMT) solving to analyse candidate deployment
configurations of service-based systems. Lastly, we give concluding remarks in
Sect. 6.7 and outline areas for future work.

6.2 Algebraic Specification of the Continual Model-Based
Analysis Framework

Model-based analysis is performed to answer questions about properties of interest
of a system under study as discussed in the Foundations chapter of this book
[Hei+21]. Continual model-based analysis repeats model-based analysis after a
change in the system under study occurs. In the event of a change, the system
models and properties used to perform an analysis may be rendered obsolete due to
changes in the structure of the system. System changes must be reflected as changes
in models and properties so that when the analysis is repeated, the results reflect
the new system. Throughout the lifecycle of the system, global changes are rare
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and therefore previous analysis results from unaffected portions of the system are
re-used whenever possible.

To give a concrete example, if the development team of a safety-critical
system decides to modify the design of a component affecting several dependent
components, then continual model-based analysis is necessary to provide safety
assurances of the updated design. Both the change to design and re-analysis results
should be documented to be used as an auditable record to promote confidence in
the system for all stakeholders such as developers and assessors. Continual model-
based analysis is also an important tool for runtime maintenance of an operational
system. In this context, changes may occur from unexpected component failures,
e.g., stemming from faulty hardware or through managerial decisions modifying
the system configuration. In both cases, system administrators may need to quickly
carry out re-analysis to prove quality-of-service (QoS) compliance of a cloud-
deployed system to customer service level agreements (SLAs).

Both scenarios feature high-level and domain-specific requirements from stake-
holders that need to be formalised into system properties. This general problem is
found across a wide range of domains.

6.2.1 Descriptive Models of the System

We suppose that each component of the system has a corresponding descriptive
model that abstractly describes the component in terms of attributes of interest. Let
S be the set of all descriptive models of the system.

The notion of system change is formalised by defining operations to be applied
to elements of S, forming an algebra. In a practical sense, the elements of S

may be objects written in a general-purpose object-oriented programming language
such as Java. The operations are methods that change values stored in instance
variables. More abstractly, description models of the system can be specified as
a term algebra in which basic description models are constant symbols, and more
complex descriptions are built up by applying operation symbols to simpler terms.

Terms have a natural tree structure to express dependencies between system
components, and this dictates the order in which analysis is performed [JCK13].
More generally, a partial ordering can be defined on S arising from component
dependencies in the system. In symbols, s < s′ ⇐⇒ s′ is dependent on s for
elements s and s′ in S.

6.2.2 Structural, Behavioural, and Quality Models

The descriptive models in S form an abstraction of the system. This model is
appropriate to analyse the system at a structural level, where the dependency
relationship over S is easily visualised as a graph. However, to analyse behaviour
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or quality properties of the system, we shall consider appropriate models of the
system; state-based models, for example. Let M denote the set of such models.
We specify a model translation α : S → M such that the equation α(s) = m

means descriptive model s ∈ S is transformed to the model m ∈ M by α. In
general, transformations are performed by hand by an expert, and the models reflect
current values of the system description. When a system description is modified by
the operation f : S → S modelling a system change, we have a corresponding
operation g : M → M on models in M , forming an algebra. We expect α enjoys
homomorphic properties such that changes in S are mirrored in M . In symbols:
α(f (s)) = g(α(s)).

6.2.3 Domain-Specific Requirements

It is often the case that system requirements are expressed by domain-experts
using natural language. This is slightly risky as the requirements can pick up
ambiguities inherent in the language making it difficult to analyse formally. Formal
requirement specification can mitigate this risk by devising restricted natural
languages using grammars giving it precise unambiguous semantics. Patterns often
express commonly occurring requirement specifications.

Let Q be the set of words accepted by grammar and P the set of properties to
analyse on models in M . We specify property translation by the function β : Q →
P is defined such that the equation β(q) = p means property p is translated from
requirement q . For probabilistic model checking, Q is a formal language defining
patterns for probabilistic requirements and P the set of probabilistic computation
tree language (PCTL) formulae [Gru08, DAC99].

6.2.4 Model-Based Analysis

The foundations chapter of this book [Hei+21] describes analysis as a judgement
of a model satisfying a property, from which we obtain an answer. When applied
to practical software engineering in a safety-critical system, analysis is rarely
automated. Model checkers, however, are software tools capable of automating
analysis of state-based models. To capture a range of analysis techniques, we
formalise model-based analysis as the mapping analysis : M × P → A such
that

analysis(m, p) = a (6.1)

performs an analysis of property p ∈ P on model m ∈ M to obtain an answer
a ∈ A. For the remainder of this section, we introduce several instantiations of (6.1).
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Model Checking

Given a p from the set P = CT L of linear and computation tree temporal
logic formulae and an m from the set M = LT S of labelled transition systems,
analysis(m, p) = a evaluates the satisfiability relationship m |� p to yield a binary
yes or no answer a ∈ B. In this case, the set of model checking answers is the set of
Booleans such that A := B.

Probabilistic Model Checking

Let P = PCT L be the set of temporal logic formulae extended to include
probabilistic computation tree logic and let M = MC be the set of discrete
and continuous Markov-chain models. Probabilistic model checking is given by
analysis : MC × PCT L → P such that analysis(m, p) = v is the probability
v that the satisfiability relationship m |� p is true. In this case, the set A contains
Boolean truth values and real number values measuring probabilities.

Model-Based Safety Analysis

Traditionally, safety analysis consists of bottom-up safety analysis approaches,
such as failure mode and effect analysis (FMEA) [Int91], and top-down ones,
such as fault tree analysis (FTA) [Ves+81, Int90, RS15], to identify failure modes,
their causes, and effects with impact on the system safety. The result of a
(quantitative) analysis is a set of failure rates for the hazardous events which are
used for the verification of the safety requirements. The use of models in safety
analysis processes has gained increasing attention in research within the last decade
[MK06, LSK10, LKN11, Sha+15]. Models used in safety analysis annotate the
system models with failure propagation models. This enables the construction of
the safety analysis model in a structured way.

Component fault trees (CFTs) is a model- and component-based methodology for
fault tree analysis [KLM03, Höf+18, Kai+18]. In CFTs, a Boolean model (the so-
called CFT element) mi ∈ M is related to a system component si ∈ S. The failure
behaviour represented by the CFTs includes the internal failures of the components
(with the failure rates) and the propagation of failures within the system. The
inter-component propagation follows the structural description of the safety-critical
system which is for instance expressed by any model-based systems engineering
(MBSE) methodology (such as SysML [Obj12], Capella [Roq16], etc.). Failures
that are visible at the outport of a component are models using Output Failure Modes
which are related to the specific outport. To model how specific failures propagate
from an import of a component to the outport, Input Failure Modes are used. The
internal failure behaviour that also influences the output failure modes is modelled
using the Boolean gates such as OR and AND as well as Basic Events.
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Let P be a set of quantitative safety requirements (e.g., in form of Tolerable
Hazard Rates, T HR) and M = CFT a set of CFT models describing the failure
behaviour and propagation of a system. The FTA is given by analysis : CFT ×
T HR → B, a binary yes or no answer, if the given safety requirements are satisfied
or not.

6.2.5 Composition Model-Based Analysis and Results Reuse

A variety of analysis compositions, including traditional assume-guarantee verifica-
tion and Hoare logic for sequential programs are described in this book [Hei+21].
This kind of composition has greatly expanded the range of systems capable of
being analysed using model-based approaches.

A key challenge in continual model-based analysis is the notion of change:
The system and therefore models change and require re-analysis. To minimise
computation time, we define the notion of a repository r : M × P → A that stores
answers for a given analysis technique. Then r(m, p) = a if, and only if analysis
of property p is performed on model m, resulting in a ∈ A using the technique. Let
R = [M × P → A]. Extending Eq. (6.1) we have analysis : M × P × R → A

such that the equation

analysis(m, p, r) = a (6.2)

means analysis of property p on model m utilising results in repository r yields
answer a.

6.2.6 Summary

To summarise our current position, we presented the theoretical underpinnings of
the conceptual continual model-based analysis framework to support the analysis
of component-based systems undergoing change during development and runtime
phases. We hinted at some analysis instantiations of the framework which we shall
develop later in this chapter. Figure 6.1 presents the key elements of the CMBA
framework and their relationships which form the tuple C = (S,Q, α, β, analysis)

comprising

• Structural system model S with component dependencies;
• High-level system requirements Q;
• Transformation α : S → M for models from the set M;
• Transformation β : Q → P for properties from the set P ; and
• An analysis technique capable of utilising previous analysis answers in A from a

repository in R, specified by the mapping analysis : M × P × R → A.
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Fig. 6.1 Elements of the CMBA framework

6.3 Incremental Verification of Service-Based Systems

Service-based systems (SBSs) operate in a dynamic environment. The likelihood of
the system failing over a specific time period may therefore vary as the system’s
operational profile changes during runtime. Formal verification techniques such as
probabilistic model checking have been used extensively for analysing the health
of a system at runtime. Requirements, formulated as temporal logic formulae, are
verified against a model of the system to provide evidence of compliance. While this
approach is compelling, there are two key challenges for verifying service-based
systems. First, most systems are simply too big to apply state-based verification
techniques. Interactions between even a handful of components results in a huge
monolithic model and causes the well-known state explosion problem. Secondly,
changes are typically localised within the system, such as a single component
failure, a hardware upgrade, or addition of new functionality. Verification therefore
should be applied selectively, and reuse previous results whenever possible to re-
establish compliance of those aspects of the system affected by a change.

To address these challenges, the key elements of the continual model-based anal-
ysis framework developed in Sect. 6.2 are instantiated with probabilistic assume-
guarantee reasoning [Kwi+10] to verify the reliability of an SBS deployed over
physical servers in a cloud data-centre and show how CMBA can identify regions of
the system affected by a runtime change. Hence, we apply the conceptual continual
model-based analysis framework to the case study original developed in [JCK13].
This chapter extends the original case study by using a directed-acyclic graph to
describe the system.
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Fig. 6.2 Cloud-deployed service-based system, taken from [JCK13]

6.3.1 Component Models

Consider the service-based system service which Fig. 6.2 depicts an architecture
diagram of a cloud-deployed service-based system. The service comprises
functionality web, app, and db, deployed across four cloud infrastructure servers
A to D. The number of instances and their deployment within the cloud determines
the service’s configuration. To improve reliability the configuration comprises four
instances of Web, two on A and two on B, four instances of app, with two on A and
two on B, and two instances of db, with one on C and one on D.

To apply the CMBA framework, we define the set

S = {A,B,C,D,waA,waB,dbC,dbD,wa,db,service} (6.3)

of descriptive models of components in Fig. 6.2. Our component models are
designed to analyse deployment reliability. For example, the server models A to D
maintain attributes disks, cpus, and mem that record the number of operational
hard disks, CPUs, and memory units, respectively. When the server component
issues a unit failure notification the appropriate attribute is decreased. The remaining
component models keep track of functionality dependencies. For example, wa is
dependent on waA and waB that model deployment of web and app on servers
A and B, respectively. The component model service represents the complete
system.

Component models in S form a dependency graph: a directed-acyclic graph
where system models are nodes and edges formalise dependencies as shown in
Fig. 6.3.
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Fig. 6.3 Dependency graph of components descriptions in S

6.3.2 Probabilistic Automatons for SBSs

To analyse probabilistic behaviour, we define the mapping α : S → M such that
α(s) is a probabilistic automaton in M modelling s ∈ S. When no ambiguities
arise, we will simply write s to denote its model α(s). Figure 6.4 presents the
probabilistic automaton of cloud server A. If multiple disk, CPU, or mem unit
failures are detected, the server issues a warn signal. However, with probability 0.1
it will fail to issue a warning. The model has a state corresponding to every possible
value of the server’s attributes. Each state is labelled with an atomic proposition
true in that state. In the initial state, all units are operational and is labelled with
propositions disk = 4, cpus = 4, and mem = 4. State transitions are probability
distributions labelled with an action. From the initial state, the action disk_op
labels the probability distribution modelling the likelihood that a disk unit operation
fails (probability 0.005) or succeeds (probability 0.995). At the end of the analysis
time period, the server model is in either one of two states as identified in Fig. 6.4:
the succ state where at least one of each kind of unit is operational or the fail
state where the server fails after successive failures of all disk or CPU or mem units.

6.3.3 Assume-Guarantee Model Checking of SBSs

Assume-guarantee model checking is a step-wise verification process to verify
local properties of components that form assumptions which are used to guarantee
properties of the complete system.
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To apply an assume-guarantee reasoning to determine the probability that system
failure will occur within a 1-month time period, we formalise an assume-guarantee
model checker by the function mc : M × P × R → V where the equation

v = mc(m, φ, r) (6.4)

means the result value v ∈ V obtained by verifying the temporal logic formula
φ ∈ P on model m ∈ M , assuming results in the repository r ∈ R. The
CMBA-framework analysis technique given by Eq. (6.2) is instantiated by mc, and
r contains the assumptions that mc uses to verify m.

We specify the store : R × [M × P → V ] operation which adds the
verification result computed in (6.4) to the repository r . In symbols, we write
store(r,m, p, v) = r ∪ {(m, p) → v}. As shown in Fig. 6.1, the model checker
mc may invoke the retrieve operation to obtain existing verification results
corresponding to a model and property analysis step.

The temporal logic formula φ verifies a probabilistic safety property: a regular
safety property as a deterministic finite automata (DFA) p and probability bound
v, written 〈p〉≥v . The alphabet of p contains actions from its component’s model.
Words accepted by p correspond to prefixes of paths that do not satisfy the safety
property. Let P be the set of all probabilistic safety properties. Probabilistic safety
properties represent a range of important component properties. For example, the
probability of the cloud server A going down without warning is at most v1 is
represented by safety property pA with alphabet {server_down,warn}. Accepting
words are defined by the regular expression server_down(warn|server_down)∗
and correspond to paths through the parallel model A ‖ pA where the property is
violated. Here, A is the probabilistic model of the physical server shown in Fig. 6.4.
We invoke

mc(A ‖ pA,P=?[F fail], 〈true〉) (6.5)

to verify formula P=?[F fail] yielding the probability 1.2326e−6 of reaching a
fail state A ‖ pA, for the vacuous assumption 〈true〉. We create a repository of
assumptions of the form r := A → 〈pA〉≥v1 to be used in subsequent verification
steps, setting v1 := 1 − 1.2326e−6.

Now, the web and application functionality modelled by a probabilistic model
waA can fail due to server A experiencing a hardware or VM failure. We formalise
these errors by the safety property 〈pwaA〉≥v2

.
Using the assumption obtained in Step (6.5) we invoke

mc(pA ‖ pwaA ‖ waA, P=?[F fail], r) (6.6)
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to compute the minimum probability of reaching the accepting fail states of pwaA

on model waA. Steps (6.5) and (6.6) compute the probabilistic assume-guarantee
rule

〈true〉 A 〈pA〉≥v1, 〈pa〉≥v1 waA 〈pwaA〉≥v2

〈true〉 A ‖ waA 〈paA〉≥v2

(6.7)

modularising verification of a large model a ‖ waA into two smaller, and separate,
verification steps.

6.3.4 Verification Tasks

Each step of assume-guarantee model checking is a verification task of the form
T = M × P such that the pair t = (m, p) in T means property p ∈ P is to be
verified against component model m ∈ M . Clearly, the order of verification tasks
plays a critical role. If we think of the edges in the dependency graph as defining a
relationship between components such that s < s′ if, and only if, s ← s′ then (S,<)

defines a partial ordering over component models in S. For example, the directed
edge wa ← service in Fig. 6.3 means wa < service. The < relationship
extends to ≤ (reflexive, antisymmetric, transitive) when we consider equality of
descriptive models. If the modelling function α : S → M is monotonic such that
s ≤ s′ �⇒ α(s) ≤ α(s′), then we can define a partial ordering on models in M .
By the linear-extension property of partial orders, we form a total ordering which
induces a verification sequence τ = m1,m2, . . . as having the property that for
any pair of models mi and mj in τ if mi < mj then i < j . This is essentially
a topological sorting of the system’s dependency graph. Lifting this ordering to
verification tasks in T , we define the set Seq of valid verification task sequences.
For example, a topological sorting of the graph in Fig. 6.3 yields the valid sequence

A,waA,B,waB,wa,C,dbC,D,dbD,db,service. (6.8)

The set Seq is formed by induction:

Base Cases
• Empty sequence () is in Seq and
• (t) is in Seq for each task t ∈ T .

Inductive Case for τ ∈ Seq and t ∈ T

• τ � (t) is in Seq

where � is the sequence concatenation operation.
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6.3.5 Incremental Verification

Compositional verification model checks tasks in a valid verification sequence in
Seq such as (6.8) and outputs a repository of verification results.

Mathematically, we define the compositional verification algorithm as a function
cv : Seq × R → R by induction over sequences in Seq:

Base Cases Let r ∈ R be a repository.

(i) For the empty verification sequence ε the algorithm leaves the repository
unchanged: cv(ε, r) = r .

(ii) For the sequence (t) containing a single verification task t = (m, p) the
equation cv((t), r) = store(r,m, p, v) stores the verification result (m, p) →
v, to r .

Inductive Step Let τ ′ ∈ Seq . For (t) � τ ′ we define cv((t) � τ ′, r) =
cv(τ ′, cv((t), r)). We write cv(τ ) when no existing verification results are required
to verify τ .

Small, localised change during runtime is commonplace in cloud-deployed
systems. New components may be added and existing ones removed or modified.
We define steps in an incremental verification algorithm that selectively applies
compositional verification on changed components:

1. Identify the change. We assume components in the service-based system contain
monitors that identify a range of change behaviours on components that are in
turn represented mathematically as operations acting on attributes in S.

2. Determine affected components. Any dependent of a component affected by a
change is also affected. To formalise this, we adopt standard order-theoretic
principles such that if s ∈ S is affected by a change, then the upset ↑s = {u ∈
S | s ≤ u} contains s and all its dependent descriptive models. For each u ∈↑s

let t = (α(u), β(u)) be its associated verification task.
3. Re-verify affected components. From the linear-extension property, we form a

sequence τ ∈ Seq from associated verification tasks of elements in ↑s. Given
the repository r ∈ R of verification results from previous steps, compositional
verification cv(τ, r) is applied.

6.3.6 Change Scenarios

We demonstrate the incremental verification framework using change scenarios on
the service-based system case study. In these scenarios, compositional verification
has been performed on Sequence (6.8) and the results stored in repository r ∈ R.
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Server Hard-Disk Failure

Suppose server A experiences a hard-disk failure. In the associated descriptive
model, the value in the disks attribute is decreased by one. To determine how this
affects the system, we re-verify the server’s associated probabilistic automaton and
models of any affected component, given by ↑A. From the linear-extension property
we form the sequence τ = (A,waA,wa,service) associated verification tasks to
re-verify and compute cv(τ, r).

Server Memory Upgrade

Suppose server B has scheduled maintenance, whereby two more memory units
are added. In the associated descriptive model, the value in the mem attribute is
increased by two. To determine how this affects the system, we re-verify the server’s
associated probabilistic automaton and models of any affected component, given by
↑B. However, after completing the verification step for B the verification result is
compared to the existing result stored in the repository and shows the probability
of cloud server B going down without a warning has decreased. Hence, we can be
certain service is still compliant to its requirements, and we can stop the re-
verification after a single step.

Adding New Functionality Components

Suppose new functionality fun is introduced to the system to extend the functionality
offered by service. The descriptive models of components to be added to S are:

• E, of a cloud server,
• funE, comprising two deployed instances of fun on E, and
• fun the descriptive model of the functionality fun.

Dependencies between these components are given by the partial order relationship
such that E < funE and funE < fun. We apply compositional verification
τ = (E,funE,fun) such that r ′ = cv(τ ). When fun is added to service, the
relation fun < service is added to S; e.g., an edge between the components is
created in the dependency graph. The results in r ′ are merged into repository r . The
service component is re-verified as it is the only affected component contained
in the strict upset of fun.

Removing Deployed Functionality

We suppose the redundant database functionality on server C is no longer required.
The set of component descriptive models to be removed from S are X = {C,dbC}.
The affected components in S are those elements in the strict upset of the maximum
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element of X, namely dbC ↑= {db,service}. Compositional verification
cv((db,service), r) updates the verification results for db and service in the
repository r .

6.3.7 Summary

We instantiated the continual model-based analysis framework with a probabilistic
model checker to support runtime verification of a cloud-deployed system. To
summarise, we specify

Ccv := (S,Q, α, β, cv) (6.9)

such that the structural system model S is a dependency graph where models
keep track of operational states and current deployment configurations. The map
α : S → M assigns elements in S to probabilistic finite-state models in M ,
and β : Q → P assigns QoS properties in Q to probabilistic temporal logic
formulae in P , forming verification tasks. Tasks are analysed by the probabilistic
assume-guarantee model checker cv. The resulting CMBA framework is extended
to perform selective, incremental verification.

6.4 Continuous Analysis of Safety-Critical Systems

Safety-critical systems (SCS) are omnipresent in many application domains of
software-intensive embedded systems, such as aerospace, railway, health care, and
automotive. SCS is a class of systems whereby a malfunction may result in the
death or serious injuries of humans. Therefore, the development of such systems
has to comply with domain-specific safety standards (such as IEC 61508 [Int98],
ISO 26262 [Int11], or ARP 4761 [Soc96]): They require stringent safety assurance
processes to justify safety compliance. The engineering of safety-critical systems
includes various aspects (or viewpoints) as described in safety standards. Figure 6.5
provides an overview of the steps needed in a generic safety engineering life-
cycle. The goal of the safety assurance process is to identify all failures that
cause hazardous situations and to provide a sound argumentation that the system
is sufficiently safe. This argumentation is based on evidence gathered during
the system engineering and assessment process (e.g., to demonstrate that the
probabilities of the hazards are sufficiently low).

The first step in the safety engineering life-cycle is the item definition, in which
the item (along with its purpose and functionality) considered by the safety engi-
neering process is defined, and dependencies between the item and its environment
are described. Based on a clear system definition, a hazard analysis and risk
assessment (HARA) is performed. This analysis tries to identify potential hazards
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that can be caused by the system and to assess the associated risks. Different safety
standards generally agree on common HARA techniques [Mac+12]. However,
the quantification of the risk differs in each domain. As the next step, a system
architecture is defined and a so-called Safety Concept is derived. The safety concept
is defined as the specification of the safety requirements, their allocation to system
elements, and their interactions necessary to achieve safety goals [Int11]. Therefore,
safety standards demand a complete and deterministic system architecture. Today,
the system architecture is often described using MBSE techniques (e.g., SyML).
Moreover, the potential causes and the cause-effect-relationships must be evaluated.
Therefore, different safety analysis techniques (such as FTA [Ves+81, Int90, RS15]
or FMEA [Int91]) are used that evaluate the risk that arises from potential failures
and other malfunctions that have been identified as causes for hazards. With
CFTs, there is a model- and component-based methodology for fault tree analysis,
which allows a modular and compositional safety analysis strategy. CFTs are
Boolean models associated with system development elements such as components
[KLM03, Adl+11].

Along with the growing system complexity, the effort needed for safety assurance
is increasing drastically in order to guarantee the high quality demands of SCS.
On the other hand, industry aims to reduce development costs and time-to-market
of new products. Therefore, iterative, incremental, or even agile development
methodologies known from software engineering are introduced in the systems
engineering domain. However, in order to speed up the development of SCS, also
the safe assurance process must be accelerated.

In industrial development projects, change requests during the development can
come from various stakeholders such as the client, certification authorities, or
development teams of the different subprojects. But changes can also be a part of a
development strategy, if an existing product can be evolved in a new system in an
incremental manner with small changes and adjustments.

To ensure compliance to safety standards (e.g., IEC 61508), the SCS must be
analysed in terms of safety after each change. In case of modifications of the
system design during the development process, the safety analysis must be adapted
accordingly to guarantee that the results of the safety analysis are still valid. Since
traceability between the artefacts in the system design and the safety assessment is
solely achieved manually in current practice, each change within the system design
results in time-consuming manual adjustment performed by the safety engineer. For
instance, after each modification all FMEA tables or fault trees of the system must
be reviewed and all parts affected by the modification must be adapted manually. In
order to decrease the time-consuming adaptation of the safety analyses, traceability
between the elements in the safety analysis and the related elements in the system
design must be established [Sch+11]. Moreover, automated synchronisation of the
safety analysis model with a changing system design in a continuous manner is
needed to achieve continual analysis of SCS [ZH16].

The use of models can help to cope with these requirements along two directions.
Firstly, it makes safety engineering as a standalone subtask of system development
more efficient. Secondly, and even more important, this is an essential step towards
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a holistic model-based development approach which closes the gap between func-
tional development and safety assurance. Reusing development models for safety
analyses and feeding back the results of safety analyses in the development models
is a key step for reaching synergies. Hence, model-based safety assurance (MBSA)
[Jos+05, LKN11, Sha+15] provides promising approaches to enable analysis of
systems in terms of safety when combined with MBSE methodologies [RFB12].

In this section, CMBA is instantiated for the development of safety-critical
systems. By using CMBA we can avoid performing safety analysis for the entire
system each time the system design is changed.

6.4.1 Instantiation of the CMBA for Safety-Critical Systems
Development

We instantiate the CMBA framework presented in Sect. 6.2 for the development of
safety-critical systems as follows:

• S = SCS consisting of a set of components {s1, s2, . . . , sn} (software, hardware,
or mechanical components) forming a component-based system.

• M = Set of safety analysis model of S describing the failure behaviour of each
of the components of the system S in form of CFTs where

∀ si ∈ S : Mi = α(si)

• α(S) = Creation of a set of safety analysis models M by a safety expert, which
describe the failure behaviour of the system S. Thereby, a safety analysis model
mi ∈ M is created for each of the components si of the safety-critical system S.

• Q = Set of safety requirements (high-level safety goals or technical safety
requirements), which must be fulfilled by the system.

• β(Q) = Refinement of the safety requirements and the allocation of the require-
ments to system components, e.g., by specific safety integrity levels (SILs) or
tolerable hazard rates (THRs) which must be fulfilled by the system.

• P = Set of (quantitative) safety properties the system must fulfil/guarantee, e.g.,
the THR of a specific function performed by S which is allocated to one or a set
of components.

• Analysis : M × P → A = the quantitative safety analysis of the failure
behaviour of the system S in form of a fault tree analysis. Since the safety
requirements are allocated on specific components of the systems, pairs of the
respective CFT models and the safety properties which need to be fulfilled are
created with analysis (mi, pi). This result is a failure rate λ or a mean time
between failure (MTBF) value a ∈ A. The result of the fault tree analysis
analysis (mi, pi) = a using the CFT model mi ∈ M is used to check if the
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property pi ∈ P is satisfied or not by the system design (e.g., by checking if
a failure rate is less or equal to a tolerable hazard rate). Moreover, the result of
each analysis can be stored in a repository R, for instance in a database.

6.4.2 Change Scenarios

Any change of the SCS (during development time or during operation) needs to
be analysed, answering the question of whether the change has influence on the
system safety or not. This change impact analysis (CIA) is defined as “identifying
the potential consequences of a change in a system, or estimating what needs to
be modified to accomplish a change” [Arn96]. Especially, safety concepts and the
safety case must be revised after each change. Therefore, the safety analyses need
to be adapted to the changed SCS and performed again to reassess the SCS in terms
of safety and to show that the probability of potential hazardous system behaviour
is sufficiently low.

In the following, we are applying the concept of the CMBA to changes during
the development of SCS.

Thereby, the change 
 within the SCS S represents a change within a component:

si

→ s′

i

This can be for instance a bug-fix related to a security issue, which does not
change the functions of the system or the exchange of a component with a different
one (e.g., use of fixed-point arithmetic to speed-up processing time of specific
calculations). After the change, the safety of the system must be re-assessed to
determine the consequences of the change on the system’s safety. Therefore, also
the safety analysis model mi ∈ M of the component si ∈ S is updated:

mi

→ m′

i

The modified CFT element m′
i of the changed component s′

i may consist of new
failures, modified failures, or updates of the failure rates of the component’s internal
failures. If new failure modes are added at the interfaces of the component, also other
CFT elements mj ∈ M , mj �= mi , may need to be adjusted.

Based on the modified safety analysis models, the respective analysis task(s) are
adapted as follows analysis

(
m′

i , pi

)
. The analysis analysis

(
m′

i , pi

) = a′ is then
executed, starting with the analysis of the modified (software) component s′

i . If the
results of the newly performed analysis a′ is different to the value stored before
(a �= a′; e.g., the resulting failure rate a′ = λ > pi = T HR), the analysis must
be done for the components, which exchange information with s′

i . Otherwise the
analysis can be stopped.
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6.5 Business Processes

This section describes the usage of continual model-based analysis for business
processes.

6.5.1 Background

Efficient business processes are a key success factor for every company and describe
the flow of work in a company in order to achieve the company’s goals. Business
process management is the discipline which seeks to design, administrate, configure,
enact, and analyse business processes [Wes12]. The foundation of business process
improvement is a model of the business process itself, which represents the actual
business process and can describe different process perspectives like function,
information, resource, and organisation (perspective names according to the ISO
standard 19439:2006 [ISO06]). Traditionally, process models were and still are
often created manually in practice, leading to several shortcomings for analysis
purposes. When creating process models from scratch, usually persons who are
involved in the business processes are interviewed and observed by the modeller
in order to understand how such a business process is executed. This procedure can
lead to some of the following errors, which hinders the usage of the process models
for deeper analysis methods:

• Humans could lie, because they are maybe afraid of losing their job if they reveal
that some tasks in a process are not performed in the way they actually should be
performed.

• Humans could forget to mention activities, leading to erroneous omissions of
activities. This may happen when a task is so obvious that the person is not aware
of it and therefore does not mention it.

• Humans could rate things biased/Humans are not objective. When a modeller
asks about frequencies, people can make unintentionally wrong estimates.

• Humans just make errors. The modeller itself, who creates the process model
can make errors during the modelling process or during the observation leading
to wrong conclusions and faulty models.

• Modellers could abstract too much from details in the process, which leads to an
easy understandable process model for humans but leaves out a lot of potential
for automated analysis methods like process simulations.

Therefore, the outcome of a manually created model rarely reflects the real world
in such accuracy that it is useful for model-based analysis methods like simulations.
New techniques like process mining (for an overview see [Aal16]) allow the creation
of process models based on data, which is created by IT systems and reflects actions
executed automatically or manually executed actions, which are recorded by IT
systems. Models created through process mining are much more detailed and are a
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perfect basis for different model-based analysis methods like simulations [MDC16].
At the beginning of process mining research it was mainly used in an offline mode
in order to discover process models based on complete log traces, but not in an
online mode, that is used to improve currently running process instances [APS10].
If process mining is used in an online mode, parts of currently running traces can be
used to analyse business process models continuously, e.g., to react appropriately in
a currently running process instance to avoid bottlenecks, inefficiencies, etc.

After the above introduction on business processes and how process mining
builds the foundation for continuous model-based analysis, a case study of two
main processes (Order2Cash and Procure2Pay), which can be found in enterprises,
is used as an example to show the potential of continuous model-based analysis in
the domain of business processes.

6.5.2 Business Processes: Order2Cash and Procure2Pay

In this section, we describe use case documents for two processes Procure2Pay
and Order2Cash. Order2Cash describes the process from an order of a customer
to the fulfilment of the order and the payment by the customer. It is an important
business process in enterprises, because it is the main process for earning money.
Procure2Pay describes the process and the activities from creating a demand for one
or many goods, e.g., to fulfil an order by a customer, to the purchase of the order and
the payment of the order. Both processes are interconnected. In order to execute an
order of a customer (Order2Cash) goods of other companies may have to be bought
(Procure2Pay) and processed. In the following, both processes and their potential
for continuous model-based analysis are described.

Order2Cash A high-level description of the Order2Cash process is illustrated in
Fig. 6.6.

• Create order: The process starts with a customer demand and the creation of a
sales order.

• Fulfil order: As the core compound activity, the order then has to be fulfilled in
a series of activities.

– Workforce Management: This business process is responsible for assigning
a worker to handle a particular sales order.

– Schedule appointment: Depending on the company, e.g., if it is a company,
which fixes products in a shop, an appointment has to be scheduled with the
customer. This activity depends on the worker assigned to the order by the
Workforce Management business process.

– Check needed goods: A worker has to check if all necessary goods in order
to fulfil the order are available.

– Confirm goods availability: If all necessary goods are available, then the
order can be confirmed immediately.
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– Procure2Pay: If goods are missing, they have to be purchased in advance,
which triggers the execution of the Procure2Pay process (see below).

– Fulfil job: Finally, the appointment date arrives, the customer shows up in the
shop, all necessary goods were received, and the job can be fulfilled by the
worker.

• Create invoice: After the job is executed, the invoice is created for the customer.
• Pay invoice: As the final step of the business process, the customer pays the

invoice.

Procure2Pay The Procure2Pay process can be triggered, among other processes,
by the Order2Cash process and contains all activities to procure goods and services.
The process starts with the creation of a demand and the approval or rejection of the
demand. After the demand is approved, the purchase order can be created. Usually a
company has a set of chosen suppliers where employees are allowed to order goods
and services.

6.5.3 Opportunities for Continual Model-Based Analysis

Many decisions and the consequential activities could conceptually be automated in
the underlying IT systems, but automating such steps in a legacy system always
incurs substantial costs. Continual Model-Based Analysis could serve as a key
technique to reduce such costs.

Legacy and External Data Sources Continuous model-based analysis based on
the data of the underlying IT systems creates a potential to push the automation
boundaries from highly repetitive tasks further to less repetitive tasks by using
Robotic Process Automation or Robotic Process Management [Aal20]. In addition
to data from legacy systems, data of other sources could be used for continual
model-based analysis like historical customer data, forecast weather data, etc.
Model-based analysis allows to analyse consequences of an activity on a whole
business process network. Therefore, it enables a more global view on business
processes than it is possible within a single IT system, which supports only one
business process.

Workforce Management Many things can already go wrong within the Workforce
Management process even before the appointment with the customer takes place,
which shows the potential of continual business process model-based analysis:

• The customer could get sick and cancel the appointment, leading to unnecessary
costs if the ordered goods cannot be cancelled or it was forgotten to cancel the
goods.

• The execution of the Procure2Pay process could be delayed and therefore the
needed goods would not be available in time for the job fulfilment. In this case,
the customer has to be called to rearrange the appointment, already ordered goods
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have to be cancelled and so on. The Procure2Pay process is described in more
detail later on.

• The worker, who was planned for the job gets sick and it has to be decided if
the appointment with the customer has to be rescheduled, which could lead to a
cancelled order, if the customer decides to switch to a competitor. On the other
hand, a worker could be rescheduled from another shop to this one, trying to
minimise the negative effects of personal shortage.

Procurement In big companies there can be even several systems which allow to
create orders. Continual model-based analysis can be used to audit, that purchase
orders were sent to the correct supplier, otherwise discounts could not be used or
products with insufficient quality could be ordered. If purchase orders are created
correctly, the orders have to be checked regarding quality and completeness upon
receiving. Insufficient product quality can lead to return deliveries to suppliers and
can have consequently negative effects on a production line. In this case continual
model-based analysis could help to analyse the overall effects and help to decide if
a change in the production line could help to reduce negative effects.

User Monitoring Continual model-based analysis could also be used, e.g., to
monitor every task, which is performed by the worker and check it for conformance
to the to-be process model for the fulfilment of the job. If a deviation is detected
in the model-based analysis, the worker can be warned and get a notification about
the next step in order to align again with the to-be process model. A big challenge
in this scenario would be to detect the task a worker is performing. If the task is a
digital one, e.g., to write source code in order to fix the broken product this would
be quite easy, because the written source code could be analysed. However, if the
fulfilment task is an analogue one it is harder to get the necessary data for continual
model-based analysis. In this case, augmented reality in conjunction with machine
learning could be a potential use case to get analysable data.

6.5.4 Instantiation of the CMBA for Business Processes

We instantiate the CMBA framework presented in Sect. 6.2 for the analysis of
business processes as follows:

• S = Set of system model components used to describe a business process com-
prising roles, employees, activities, objects, IT components, etc. It is assumed
components are recorded in an IT system and can be extracted automatically.
Additionally, the system model consists of components describing business
process records like it is done, e.g., by the IEEE Standard for eXtensible Event
Stream (XES) [IEE16].

• M is the set of business process models of S. There is a wide range of
modelling formalisms to describe control flow, data flow, organisational view,
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and previously executed activities of S. For example, the control flow can be
modelled through high-level Petri nets [Sch+16].

• α(S) is the creation of a set of business process models M which represent the
current state of the business process S. The business process model can be created
by a domain-expert experienced with modelling or automatically through process
mining like described in 6.5.1

• Q = Set of business requirements, which must be fulfilled by the business process
S, e.g., service level agreements, compliance requirements, etc.

• β(Q) = is the modelling process of business requirements expressed over the
set of meta-model components. For service level agreements that could be, e.g.,
throughput times, response times, solution times, waiting times. For compliance
requirements that could be specific organisational requirements, e.g., separation
of duties.

• P = Set of properties the business process must fulfil.
• analysis : M × P → A is the analysis of the business process model.

Analysis techniques for business process models can be mainly divided in
verification approaches and performance approaches. Verification approaches are
concerned with the correctness of a business process. Performance approaches
are concerned with the performance of a business process mainly in terms
of quality, time, and cost [Aal13]. Usually simulations are used to analyse
performance properties.

• A is the execution of the business process model-based analysis leading to a
result value v ∈ V . The result value can be, e.g., a simulated average throughput
time or a detected deviation of a running business process instance from the to-be
business process model.

6.5.5 Change Scenarios

A business process can change during its lifetime because of different reasons. It can
be changed from top down in a way that the business process model M is changed
in order to improve the business process. The change is first implemented in the
business process model in order to analyse if the proposed change has a positive
outcome regarding time, quality, or costs of the business process. In this case, the
business process model is updated:

mi

→ m′

i

Such a planned change is than propagated to the actual business process S leading
to:

si

→ s′

i
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Such changes are easy manageable changes for a process modeller, because he is
aware of the change.

However, bottom-up changes are harder manageable, because they have to be
detected in S first and then they have to be reflected accordingly in M . Therefore,
M has to be adapted in order to represent S accordingly again. Such changes can be
concept drifts [Gam+14]. Situations like this occur easily in organisations, when
the business process was there first and the business process model second. In
this case, the business process model is created to describe the already existing
business process and not used to design the business process from scratch and
use the business process model as governance tool. Bottom-up changes can be,
e.g., seasonal patterns, which are not reflected in M . However, changes can also
occur during the execution of a business process and therefore influence a currently
running model-based analysis A, which is used, e.g., to predict the next process step.

6.6 Composition of CMBA Frameworks

When software as a service (SaaS) solutions are to be deployed on cloud infras-
tructure, engineers must consider trade-offs on a range of deployment requirements
such as having functional redundancies across servers, combining functionalities
with high interdependency, and excluding some kinds of functionality from specific
servers. Candidate deployment configurations satisfying these requirements can be
analysed further to determine compliance to QoS requirements, such as reliability.

In this section, we compose two CMBA frameworks Csmt for SMT solving
[MB08] with probabilistic assume-guarantee model checking Ccv developed in
Sect. 6.3 to realise these complex analysis scenarios. These ideas originate from
earlier papers [JCK13] and [JC14] and are combined here for the first time.

6.6.1 Logical Deployment Configuration Models

A deployment configuration of a Service-Based System associates instances of
the service’s functionality with one or more physical servers within a cloud data-
centre. For example, Fig. 6.2 of the service case study depicts a deployment
configuration such that four instances of web and app are deployed across server’s
A and B, and two instances of db are deployed on servers C and D.

We formalise deployment configurations as an assignment function a : Z → Z

of integer values in Z representing the amount of functionality instances to variable
symbols in the countable set Z. For example, the assignment zwebA := 2 for
zwebA ∈ Z means there are two instances of web on server A. The deployment
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configuration for Fig. 6.2 is given by the assignment such that

zwebA := 2 zappA := 2 zdbC := 1
zwebB := 2 zappB := 2 zdbD := 1

All other variables are assigned the value 0 and are omitted.
Variables in subsets

Zweb = {zwebA, zwebB, zwebC, zwebD}
Zapp = {zappA, zappB, zappC, zappD}
Zdb = {zdbA, zdbB, zdbC, zdbD}

of Z model the deployment configuration of web, app, and db, respectively, across
servers A to D. Variables in the set ZS = Zweb ∪ Zapp ∪ Zdb is a model for the
deployment configuration of service.

Suppose we have requirements for deploying service as follows:

R1 between two and four instances of each functionality must be deployed,
R2 web and app functionalities have the same number of deployed instances per

server, and
R3 db cannot be deployed on server D.

Requirements are formalised as first-order logic formulae that constrain the val-
ues assigned to variables in ZS . Table 6.1 gives the translation of each requirement
as a logical formula over the variables in Z, using the following abbreviations:

Web := zwebA + zwebB + zwebC + zwebD

App := zappA + zappB + zappC + zappD

Db := zdbA + zdbB + zdbC + zdbD.

Let P be a subset of first-order formulae over variables in Z. Given the logical
formulae we form the constraint φ ≡ φ1 ∧ φ2 ∧ φ3 in P which acts as input to an
SMT solver [MB08] that automatically calculates a satisfiable assignment. An SMT
solver is specified in the CMBA framework by the function smt : P → [Z → Z]

Table 6.1 Mapping β translating requirements to logical formulae

Requirement Logical formula

R1 φ1 ≡ (Web ≥ 2 ∧ Web ≤ 4) ∧ (App ≥ 2 ∧ App ≤ 4) ∧ (Db ≥ 2 ∧ Db ≤ 4)

R2 φ2 ≡ (zwebA = zappA) ∧ (zwebB = zappB)∧
(zwebC = zappC) ∧ (zwebD = zappD)

R3 φ3 ≡ (zdbD = 0)
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where a = smt(φ) is an assignment of values in Z to variables occurring in φ such
that the formula is satisfied. In symbols: [[φ]](a) = true.

To summarise, we list the elements of the CMBA framework tuple Csmt =
(S,Q, α, β, smt) instantiated with SMT solving:

• S := {web,app,db,service}, of component descriptions
• M := P(Z) where models are finite subsets of variables in Z,
• α : S → M assigns α(web) := Zweb, α(app) := Zapp, α(db) := Zdb and

α(service) := ZS

• Q := {R1, R2, R3} is the set of deployment requirements for service
• P is a subset of first-order logic formulae over Z

• β : Q → P is specified by the entries in Table 6.1
• An SMT solving analysis technique smt : P → [Z → Z]

6.6.2 Reliability Analysis of Satisfiable Deployment
Configurations

Using the CMBA Framework Csmt , suppose the assignment

zwebA := 3, zappA := 3, zdbA := 2, zdbC := 2 (6.10)

is computed by smt analysis satisfying φ1 ∧ φ2 ∧ φ3. What is the reliability of
this configuration? To answer this question, we compose the analysis results from
Csmt with the CMBA framework Ccv defined in (6.9). This composition requires an
appropriate system description S of the cloud deployment output by Csmt . To this
end, we

1. Define component models for servers A, C (omitting B and D)
2. Define component models that keep track of dependencies corresponding to

functional deployment:

• wadA, for web, app and db deployed on server A
• dbC, for db, deployed on server C
• wad and db collecting dependencies for deployment of service

We assume α and β are parameterised to handle model generation for Markov
models in M . This typically varies according to the functionality name and
dependencies within S. Once the mappings to the models and temporal logics have
been defined, compositional verification of the cloud deployment is performed on
the verification task sequence (A,C,wadA,dbC,db,wad,service) yielding a
probability measuring the service’s reliability. This composition can be extended
to consider a set of deployment configurations obtained by smt to be analysed
by cv and ranked according to reliability. These kinds of analysis are particularly
useful to determine deployment configurations after a system change or change in
requirements.
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6.7 Conclusion

In this chapter, we gave an algebraic specification of the CMBA framework as a
means to continually analyse a system during its design and runtime development
phases. Our approach was applied to a range of case studies from formal verification,
model-based engineering, and IT process management. We outline a case study
involving the compositional of CMBA frameworks to provide complex analysis of
candidate cloud deployments.

The CMBA framework can be developed in a number of directions. On the
more theoretical side, we may provide a full treatment using the algebraic theory
of data types to study homomorphisms between algebras representing the system
and domain-specific operations and model transformations. Practically speaking,
there is a plethora of model-driven engineering case studies, modelling paradigms,
and implemented tools in the chapters of this book to which the CMBA framework
can be readily applied.
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Chapter 7
Exploiting Results of Model-Based
Analysis Tools

Francisco Durán, Martin Gogolla, Esther Guerra, Juan de Lara,
Houari Sahraoui, and Steffen Zschaler

Abstract Any analysis produces results to be used by analysis users to understand
and improve the system being analysed. But what are the ways in which analysis
results can be exploited? And how is exploitation of analysis results related to
analysis composition? In this chapter, we provide a conceptual model of analysis-
result exploitation and a model of the variability and commonalities between
different analysis approaches, leading to a feature-based description of results ex-
ploitation. We demonstrate different instantiations of our feature model in nine case
studies of specific analysis techniques. Through this discussion, we also showcase
different forms of analysis composition, leading to different forms of exploitation
of analysis results for refined analysis, improving analysis mechanisms, exploring
results, etc. We, thus, present the fundamental terminology for researchers to discuss
exploitation of analysis results, including under composition, and highlight some of
the challenges and opportunities for future research.

This core chapter addresses Challenge 4 introduced in Chap. 3 of this book
(exploiting analysis results).
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7.1 Introduction

As we have seen in other chapters of this book [Hei+21], the number of situations in
which tools may be used in different contexts, for different purposes, is enormous.
However, these tools have one thing in common: They produce results that may be
directly provided to users or fed into other tools, which may make different uses of
them. Indeed, for any analysis to be deemed successful, its results must be able to
have an impact on the next steps, in whatever process they are involved.

When we come to tool composition, the situation is not different. Previous
chapters of this book [Hei+21] have shown that we may be composing tools in
parallel or sequentially (see Chap. 5 on tool integration and orchestration), we
may be composing models on which tools operate (see Chap. 4 on composition
of languages, models, and analyses), or decomposing them to also decompose the
analyses they perform, we may deal on views of a bigger system, or construct them
from pieces. There is however one aspect common to all forms of composition: No
matter how you compose/decompose your inputs or produce your outputs, you have
such inputs and outputs, and the main purpose of the tool composition is to add
value in the form of results of the analysis.

Two words come as key notions into this process: purpose and interpretation.
Depending on the goals of a tool, its inputs will take one form or another. Depending
on what is going to be done with them, its outputs will be ones or others, and
produced in one way or another. Hence, the purpose of a tool will condition its
inputs, its outputs, and the process to generate the latter from the former. If we see
the results of a tool as inputs to other tools, or as information to provide to final
users, the question might then be reduced to how this communication happens. But
this is of course a giant beast. From an engineering point of view, we need to care
about the representation of results as much as on their potential interpretation. As
inputs, data are interpreted and then turned into some other format so that the final
user or target tool may make use of such results as expected. Notice that this is a key
assumption. We may be expecting a specific result interpretation, but the final user
or subsequent tool getting these results as inputs might interpret them differently.
When your favourite weather prediction tool tells you that the probability of rain in
your town tomorrow is 70%, how do you interpret it? Is it a confidence measure? Do
I need my umbrella? Even if you know what this number means, as a user, you might
be providing an alternative meaning: Your experience tells you that in most cases it
means that there is a good chance of getting rain in the nearby mountains, but that
it will most probably not rain down in the coast. See Chap. 8 of this book [Hei+21]
for more on uncertainty.

The way engineers have come to tackle both purpose and interpretation is the
use of precise and unambiguous models with clear and formal semantics. The
interchange of such models between tools may be considered as a formal problem
where interpretations may be fixed and solved. The results however may be subject
to interpretation by a user. For obvious reasons, tools will try to present their results
in a way that is comprehensible to their users. However, what is being presented to
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the users may not be simple. Hence, tools may require lifting the analysis results
from their internal representation to a suitable format to be presented to the user.
Next, we analyse some factors that characterise/differentiate the difficulty of lifting
between one representation and another.

One first differentiating factor in this lifting might be the structural/semantic
distance between the representation being manipulated/conceptualised by the user
and the representation used for analysis. Using this criterion, we may differentiate
three levels: static syntactic/type-level analysis, semantic analysis for functional
correctness properties, and system-level analysis of quality properties (typical -
ilities). The lifting faces fundamentally different challenges at each of these three
levels.

At the level of static syntactic/type-level analysis, the representation that is
manipulated/conceptualised by the user is near identical to that being analysed. As
a result, lifting is not actually needed. However, the lack of a separate specification
implies that we can only analyse the extension of what has been represented, but
not the intention behind it. For example, as we will see for the case of a tool
to help novice programmers in Sect. 7.4.4, an additional analysis tries to “guess”
the intention and then suggests possible actions to bring the extension closer to
that intention. Challenges are, hence, that several possible changes can lead to the
correction of an error.

At the level of semantic analysis for functional correctness properties, lifting
becomes harder: The representation that we analyse (e.g., a set of traces) is markedly
different from the representation the user is manipulating/conceptualising (program
source code, a model diagram, etc.). As a result, we need to translate from one
representation to the other [Heg+10]. This translation needs to identify the source
of any semantic concepts, errors, etc. This source can be in several places: The
requirements/tests can be wrong, the implementation can be wrong, or the language
execution semantics could be wrong. However, it is normally possible to identify
which of these parts is to “blame”, so that the issue can be narrowed down to a
localised part. The challenge lies in the translation of the analysis results into the
formalism of the model under manipulation.

At the level of system-level analysis of quality properties (-ilities), the gap
between model and analysis format is even bigger [CMI07]. For example, an
architecture model largely differs from the Markov chain used for reliability
analysis [RRU05]. Lifting a problem identified in a Markov-chain model back
to an architecture model is very difficult. Moreover, these properties are system
properties: They depend on the software structure as well as on a range of other
factors, including the execution environment and usage platform. As a result,
normally it is not possible to identify the specific part of the overall model that
is to “blame”, and even when this is possible, the root cause is rarely narrowly
located. Hence, a fix cannot be made just by the consideration of the model under
manipulation.

In the rest of the chapter, we will first introduce a general model of the uses that
we may have of the analysis tools’ results. In Sect. 7.2, we will present the main
pathways where this impact could manifest. Section 7.3 then provides a feature
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model of results-exploitation approaches. Several sample cases are presented in
Sect. 7.4 to illustrate the alternative uses of outputs we may find in existing tools.
Although the instantiation of the feature model is discussed for each tool in its
corresponding section, the coverage of the feature model is discussed as a whole
in Sect. 7.4.10. Finally, Sect. 7.5 summarises the discussion and highlights an open
challenge.

7.2 A General Model of Results Exploitation

Figure 7.1 depicts the different pathways we have identified in which existing
tools use their results. This general model has been built based on the expertise
of the authors in building analysis tools (e.g., see USE in Sect. 7.4.3, ANATLYZER

in Sect. 7.4.8 and Chap. 12 of this book [Hei+21], and GTSMorpher in Chap. 9),
as well as in their experience as users of a wide range of existing tools for
model-based analysis in different domains (e.g., process modelling in Sect. 7.4.1
or counterexample-guided abstraction refinement techniques in Sect. 7.4.9). Each
pathway brings its own challenges:

1. In its simplest form, analysis results may be presented to the users (e.g.,
developers, domain experts) to help them explore and interpret the system
model or the model itself further—for example, to identify the root cause of
a problem or to better understand a scientific hypothesis. Challenges in this
pathway include:

• Lifting low-level analysis results back up to the domain level so that they can
be understood by domain stakeholders.

Fig. 7.1 How to use analysis results
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• Selecting which analysis results are most important/useful to present in a
given situation—this is closely connected to the original purpose for which
the analysis was undertaken.

• Enabling users to drill down, possibly interactively, into the analysis results—
for example, to enable root-cause analysis.

2. Analysis results can also be exploited to improve systems or their specifica-
tions/models. Examples of this include model/program repair, refactoring, or
refinement. The changes made to a system or its specification, in response to
some analysis, can be done automatically as well as manually. Challenges in this
pathway include:

• How far can this be automated for different properties of interest?
• Is there a generic automatic mechanism or does each property require its own

mechanism?
• Can we learn automated exploitation mechanisms by observing how expert

domain users respond to different types of analysis results?
• Is it possible to undertake repair or similar in relation to multiple properties

of interest at the same time (i.e., can repair be composed)?

3. Finally, analysis results may be used to refine the analysis process itself. For
example, by asking the analysis to focus on a particular aspect of the system
model in more detail, by tuning some parameters, or by learning an analysis from
a set of expert-provided examples of inputs and expected results. Challenges in
this pathway include:

• How to enable users to understand the analysis results and provide suitable
feedback to the learning algorithm.

• How to model this feedback so that it can be effectively used for improving
the analysis. Relevant examples include the classical counterexample-
guided abstraction refinement (CEGAR) methodology [Cla+00] (see
Sect. 7.4.9), from the model-checking area, or approaches to search-based
refactoring [Oun+16].

• How to automate the learning process, and to which extent this is even
possible.

Overarching these pathways, there is a challenge of how to choose properties,
analysis pathways, and combinations thereof to form an overall argument of fitness-
for-purpose of the system as a whole. Goal-Question-Metric, safety cases, goal-
oriented modelling (e.g., the NFR framework [Chu+00]) appear to have building
blocks for answering this challenge, but as far as we are aware, there is currently no
integrated approach for this purpose.

From this analysis of the conceptual space, we derive a feature model of
techniques for using and composing analysis results in Sect. 7.3, which is then
exemplified and validated across a large range of case studies in Sect. 7.4. The
coverage of the feature model by these case studies is discussed in Sect. 7.4.10.
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7.3 A Feature Model of Results-Exploitation Approaches

Figure 7.2 shows a feature model breaking down the three pathways of results
presentation, improvement, and analysis refinement from Fig. 7.1 into more specific
options. In Sect. 7.4, we will briefly discuss several examples showcasing different
configurations of this feature model. Here, we describe the different options more
generally.

Analysis results

Present

Level of interaction
Interactive exploration

Automated result presentation

Level of processing
Direct 1-to-1 view of results

Transformation of results prior to presentation

Format of presentation

Textual

Graphical

Tabular

Other

Improve

Level of automation

Manual

Recommender system
Human implemented

Automatic implementation
Fully automated

Target of change
System specification

System

Refine

Level of automation

Manual

Interpretation of user feedback

Fully automatedUse of result history

Subject of refinement
Analysis technique

Analysis instance

Target of refinement

Parameters
Tuning

Calibration
Focus

Making information explicitly accessible

Knowledge base

Method

Legend:

Abstract Feature
Concrete Feature
Mandatory

Optional

Or Group

Alternative Group

Fig. 7.2 Feature model expressed in FeatureIDE
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As we described in Fig. 7.1, analysis results can be used along three different
pathways, each corresponding to a top-level feature in our feature model.

1. Results must be presented to users in some form to enable exploration and
interpretation. We differentiate exploration and interpretation: The former refers
to the process by which a user looks at analysis results over time; it is a process
largely controlled by the analysis tool. Interpretation, on the other hand, is
what happens in an analysis user’s brain to transform the results shown into
understanding and, possibly, actionable plans. Analysis tools will aim to support
this by carefully presenting results in ways that make useful interpretation easier
and avoid misinterpretation, but, ultimately, results interpretation is out of the
control of the analysis tool developer. In our feature model, we differentiate three
aspects of how results presentation can support exploration and interpretation:

(a) Level of interaction. Analysis tools may provide an automated, static presen-
tation of the results—in effect making a static determination what will be the
best data to show and how to best show it to the user. On the other end of the
spectrum, analysis tools may enable users to interactively explore the analy-
sis results, including options for zoom-in/zoom-out, filtering, searching, etc.

(b) Level of processing. Analysis tools may simply present the results directly as
given by the analysis. However, in many cases, it may be more appropriate
to pre-transform the results to make them easier to interpret for the user.
For example, analysis may have required the system specification to be
transformed into a representation that can be processed by the analysis
results, in which case the results will need back-translating into the original
domain [Fri+08, Gue+09]. Alternatively, it may be useful to compose the
original analysis with a further, secondary analysis of the results (see, e.g.,
Sect. 7.4.4). This transformation may also include aggregation of results
into higher-level summary presentations in support of interactive exploration
with zoom-in/zoom-out.

(c) Format of presentation. Results can be presented as text, in graphical form,
as a table, or in other forms (e.g., as document annotations).

2. Results may be used to improve the system being analysed. We differentiate two
aspects of improvement:

(a) Level of automation. In the simplest case, analysis tools simply present the
analysis results and leave it to the human user to figure out how these results
might be used to improve the system. This requires in-depth domain under-
standing and, often, some understanding of the analysis method itself for
users to be able to make meaningful decisions about system improvement.
At the other end of the scale, the analysis tool might directly implement
improvement in a fully automated manner, without consultation with the
user. System adaptation in the context of models@runtime [BGS19] is a
good example here. In between these two extremes, there are improvement
mechanisms that are partially automated; we label these as recommender
systems and differentiate two types: human-implemented recommender sys-
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tems present actionable suggestions to users but rely on users to implement
these manually, while systems with automated implementation—for exam-
ple, quick-fix systems in IDEs—provide a choice of options to the user
and automatically implement the improvement once the user has made a
selection [Fur+17, SGL18].

(b) Target of change. System improvement may happen in two ways: by
changing the system directly or by changing the system specification and
relying on other processes to eventually change the system. The latter is,
for example, a suitable approach where the actual system does not yet exist
and we are analysing a (prescriptive [AZW06, Sei03]) design model of
the system. Equally, in a models@runtime approach, improvement would
typically change the specification and rely on reflection mechanisms for
these changes to be effected in the actual underlying system.

3. Results may be used to refine the analysis itself, establishing a feedback process
by which the analysis tool learns over time. Refinement can also be interpreted as
a form of analysis composition: We can think of the analysis that is being refined
as the system, and the results from that analysis as the system specification,
for a secondary analysis (a “meta-analysis”) which leads to improvements of
the original analysis (so we could think of refinement as “meta-improvement”).
Consequently, the level of automation is also an important classification aspect
for refinement. The target of change is always the system, as there is no
meaningful “system specification” of the analysis. Below, we use the category
“target of refinement” to further break down the different aspects of an analysis
that can be refined by composing a meta-analysis. In addition, there are two
further aspects of interest:

(a) Level of automation. The simplest form of analysis refinement is manual;
that is, where a human analyses results from one analysis run or across runs
and implements a refinement of the original analysis. For example, in the
ANATLYZER tool [SGL17] for the static analysis of model transformations
(see Sect. 7.4.8 and Chap. 12 of this book [Hei+21]), the developer may
manually disable certain types of checks, for example, if many false positives
are reported in the current analysis. On the other end of the spectrum
there is full automation, where the analysis self-adapts fully automatically.
Again, in ANATLYZER, some static analysis results need to be confirmed
by a more costly analysis based on model finding. This extra analysis can
be run automatically, or required to be explicitly triggered by the user.
Recommender systems (as in improvement) are less relevant for analysis
refinement. However, there is an intermediary automation level, where
analysis is refined based on explicitly given user feedback on previous
analysis results. CEGAR [Cla+00] is an example that has seen a lot of
research interest for model-checking-based analyses (see Sect. 7.4.9).

(b) Use of result history. Analysis refinement may build on information about
previous analysis results. Such refinement is typically based on multiple
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sets of previous results (e.g., the trace of results inspected in an interactive
exploration session).

(c) Subject of refinement. We distinguish two subjects of refinement: refinement
may apply to a single analysis instance only, implying any refinements
do not transfer (and in fact may not even be conceptually transferable)
to other runs of the same analysis technique applied to other system
specifications. For example, this is the case with CEGAR, where refinements
are made based on counterexamples derived from the current analysis run.
Refinements of the analysis technique on the other hand do transfer to all
future analysis runs and often entail a change to the analysis algorithm.

(d) Target of refinement. The most invasive refinement changes the overall
analysis method, while the least invasive refinement may only adjust analysis
parameters for purposes of tuning or calibration. Other refinement targets
include making information explicit so that it becomes more directly acces-
sible to the analysis (again, CEGAR is an example) or to change the focus
of the analysis—for example, by analysing different parts of a large search
space.

We, next, describe several examples of analyses, paying particular attention
to how they fit into the classification scheme provided by our feature model.
The feature model and the configurations for each example are also available in
FEATUREIDE [Mei+17] format on Github.1

7.4 Example Cases

This section presents nine sample cases to illustrate the different alternative uses of
outputs we may find in analysis tools. We instantiate our feature model for each case
in its corresponding section, and then, we discuss the coverage of the feature model
as a whole in Sect. 7.4.10.

The presentation of each case is divided into four parts: (a) “Objective” dis-
cussing the goals of the performed analysis, (b) “Analysis description” presenting
some details about which technical steps in the applied tool have been taken during
the analysis, (c) “Results exploitation” explaining how the analysis results are
presented and can be employed in the development process for improvement, and
(d) “Instantiation of feature model” considering how the developed feature model
for result exploitation is instantiated and which parts of it are used. The different
selected tools for analysis cover a wide range of tasks in the development process,
are based on a wide spectrum of underlying analysis technologies, and yield a broad
collection of results for improving the development. The range is demonstrated in
the spectrum of options in the established feature model.

1 The feature model and the configurations for each example are available at https://github.com/
szschaler/dagstuhl19418.analysis_results.

https://github.com/szschaler/dagstuhl19418.analysis_results
https://github.com/szschaler/dagstuhl19418.analysis_results
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7.4.1 Soundness and Safeness of Business Processes

When modelling a business process, many crucial questions arise from a correctness
and optimisation point of view. For example, is the workflow precisely modelling
what is intended? Is the workflow free of errors and bugs? Are certain properties of
interest preserved? Are there bottlenecks and, if so, where? Formal verification and
optimisation of business processes aim at, respectively, ensuring correct behaviour
and improving these processes, by effectively answering the above questions,
with the final goal to reduce costs and augment efficiency. Nonetheless, process
correctness and optimisation are far from being simple questions to answer,
particularly when modelling complex combinations of tasks, nesting of gateways,
cyclic behaviour, and quantitative aspects.

The business process model and notation (BPMN 2.0) [OMG11] is a widely
accepted language for modelling business processes. Several properties have been
introduced in the literature to guarantee process correctness (see, e.g., [Dum+13]).
In this section, we focus on tools for the verification of properties such as soundness
and safeness of BPMN models.

Objective A model is said to be sound if (i) any process instance always completes
once started, (ii) when a process ends there is no activity still running, and (iii) a
process does not contain activities that will never be executed. A process model is
said to be safe if none of its activities will ever be executed in more than one instance
concurrently.

Analysis Description Tools such as Woflan [VA00], ProM [Don+05], or WoPeD
[Fre+17] provide different forms of verification of business processes based on
mappings into a transition based formalism (e.g., Petri nets), where the analysis
is performed. Other tools perform the analysis using other formalisms. For instance,
BProVe [Cor+17] and [DRS18] map BPMN processes into rewriting logic, and
use tools in the Maude [Cla+07] formal environment to perform the analyses.
Specifically, both of these two tools perform their analysis using Maude’s linear
temporal logic (LTL) model checker. Correctness properties encoded in LTL
formulae are evaluated and the result is then presented to the user. Figure 7.3 depicts
the process.

Results Exploitation BProVe takes results from the analysis back to the original
model, so that diagnostic information is reported on the model in a way that is
understandable by process stakeholders (who then explore the presented results).
The integration of BProVe into Apromore allows model designers to use the
Apromore [Ros+11] BPMN editor to design models and to interact with BProVe to
verify properties of the designed model. The results are shown graphically on top of
the process model, so as to highlight behavioural paths that violate the correctness
properties. Designers can then easily identify the violation and repair their model
accordingly.
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Fig. 7.3 Soundness and safeness of business processes

Instantiation of Feature Model The tool presents the result directly on the original
business process so that the user can explore it interactively, but there is no prior
elaboration of the results other than gathering the counterexample information back
onto the user process (Direct 1-to-1 view of results). Improvement is totally manual
by the user, who may gather information from the presented data to modify the
business process accordingly (system specification as target of change).

7.4.2 Analysis of API Usage

In modern software development, achieving any meaningful task of non-trivial
complexity requires developers to reuse software from APIs, libraries, and services.
Such libraries usually require that client applications obey assumed constraints
and usage patterns. Unfortunately, usage patterns are rarely well documented.
Identifying them automatically is a good way to address this lack of documentation.

The detection of usage patterns depends on the nature of these patterns. In
the case of unordered patterns, the identification consists in finding subsets of
API methods that are frequently called together by client methods (see, for
example, [Zho+09, Sai+15]). Identifying temporal patterns, i.e., latent temporal
properties of APIs, is more complex. It consists in deriving temporal formulas as
in [Sai+20].

Objective The goal of this analysis is to identify temporal usage patterns of an API
from execution traces of clients using this API.

Analysis Description This analysis consists in using genetic programming, an
evolutionary method, to mine temporal patterns from execution traces [Sai+20].
The search process builds gradually LTL formulas, representing candidate usage
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Fig. 7.4 Analysis of API usage

patterns, by combining API method calls with logical and temporal operators.
The search-space exploration is guided by the conformance of candidate patterns
with execution traces of client programs using the targeted API. The process of
identifying and using temporal usage patterns is shown in Fig. 7.4.

Results Exploitation The usage patterns mined can serve different purposes. They
can help library developers better document their code. They can also be used as an
input for the analysis of a client code to assist developers to correctly integrate the
API in their code. Finally, the mined patterns can serve to refine the analysis itself
in different ways. For example, if mined patterns are too complex to be humanly
understandable, the parameters, involved in the identification, can be tuned to reduce
the pattern complexity.

Instantiation of Feature Model Results are presented for interactive exploration
with no elaborate processing (direct 1-to-1 view of results). Results are presented
textually with possibly a table that shows some metrics about the patterns such as the
frequency in the traces and the confidence score. The system recommends changes,
which can automatically implement, but user interaction is required (recommender
system with automatic implementation). The target of change is the client code and
its documentation (system specification). The system may analyse the information
provided by users (interpretation of user feedback) to refine its analysis technique
by improving its knowledge base.

7.4.3 Diversity-Aware Model Finding with USE

The context for this example are validation and verification in general class
models in the Unified Modeling Language (UML) [Obj15] utilising attributes,
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associations, and generalisation relationships, together with object constraint lan-
guage (OCL) [Obj14] constraints. In order to give feedback to the developer on
the class model properties, typical satisfying or violating object models can be
checked against the implicit UML class model requirements and the explicit OCL
constraints. For example, validation aims at showing automatically constructed
object models for giving feedback about the possible interplay of constraints.
Verification, e.g., of satisfiability, can be achieved by constructing a satisfying, non-
empty object model.

Objective The overall process for exploiting results in this example is displayed
in Fig. 7.5. Specifically, here class models are made precise with OCL invariants,
and so-called classifying OCL terms (CTs) are used for the result construction. The
purpose of the analysis is to build a collection of diverse UML object models that are
instantiations (object models) of the given UML and OCL class model. The process
is realised in the tool UML-based specification environment (USE) [GHD18].

Analysis Description The UML and OCL model including the OCL invariants
is handed over to an analysis tool based on Kodkod [TJ07]. The analysis tool
returns an object model satisfying the OCL invariants. The object model is chosen
from a previously specified finite search space limiting the number of objects
in a class, the attribute values, and the link values. A diverse object model
collection is achieved when each two distinct object models show substantially
different characteristics, e.g., in the object or link structure or in the attribute
value combinations or in both. Criteria for diversity are directed by the developer
through specifying so-called classifying terms [Gog+15, Hil+18], i.e., a collection
of closed, general Boolean or Integer valued OCL terms that describe formal
properties of the desired object models. For example, in a class model with classes
A and B, the two classifying terms ctA = A.allInstances()->size() and

Fig. 7.5 Diversity-aware model finding with USE
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ctB = B.allInstances()->isEmpty() could deliver a collection of six
object models, each showing a different combination for the values of the two
classifying terms (ctA in {1,2,3}, ctB in {false,true}), provided a
finite search space is given limiting the number of A objects to be in the interval
1..3 and the number of B objects to be in 0..4. In order to achieve diversity,
the analysis is refined in an iterative way by providing additional constraints to the
analysis tool.

Results Exploitation After a single solution in the form of an object model has
been found, the classifying terms are evaluated in the last found object model,
and a constraint excluding the particular found combination of the classifying term
values is added. In the next iteration, the analysis tool will either construct a new
solution with a new combination of values for classifying terms or stop in the case no
further solution is possible. The process of adding new object models will always
terminate, because the finite search space guarantees that only a finite number of
solutions exists. Summarising, one can say that the intermediately found analysis
results are exploited in order to find further new results and to assess whether the
model describes only results that the developer is considering as valid.

Instantiation of Feature Model The presentation of results uses interactive
exploration for the resulting object model collection, because each single object
model can be accessed together with the values of the classifying terms. Results
are presented as UML object models that can be presented with an automatic
layout. Improvement is by manual changes of the system specification (the UML
and OCL class model). Refinement of the original analysis is fully automated:
The new constraints arising from the classifying terms in the found solutions are
automatically added to the internal set of Kodkod constraints and respected in the
following steps. Multiple prior states are used in the analysis refinement, as the
collection of constraints is extended in every step. The level of refinement is the
analysis instance: By adding the constraints, only the current analysis run will be
affected. The target of refinement is the focus, i.e., further analysis steps are directed
to the part of the search space where no solutions with satisfying classifying terms
are present.

7.4.4 Novice Programmer Errors

While this is not immediately a “modelling” example in the strict sense, it is applica-
ble to modelling as well: With a domain-specificmodelling language (DSML) many
users will be novices, so need additional guidance in using the language, identifying
errors, and correcting them effectively. This becomes particularly challenging as
the DSML grows larger and more complex. Lessons can be learned from the area
of programming education and automated assessment. Here, one of the challenges
for novice programmers is getting their own code to compile and interpreting the
error messages produced by the compiler to “fix” their code. Typically, a compiler
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analyses the source code and reports errors where it finds an inconsistency. A
problem for novice programmers is that the compiler can produce many error
messages as a result of a single error (e.g., a missing semicolon or a mistyped
variable name) and that these error messages may be associated with many different
locations in the source code. Finding the root cause of these errors and fixing it
can be challenging when programmers are still struggling to understand the core
concepts of the language itself. This creates a challenge for automated assessment
systems: How to best report compiler error messages to enable novice programmers
to find effective solutions efficiently while learning to use compiler errors directly
without additional help from the assessment system.

Objective The purpose of this analysis is to enable novice programmers to
effectively identify and fix errors in their programs.

Analysis Description The Nexus system [Zsc+18] has experimented with compos-
ing the analysis provided by the compiler with a secondary automated analysis of
the error messages to give more directive support to students. For example, where
the compiler reports that it does not know a name used in an expression, the Nexus
system identifies similarly named objects (variables, methods, etc.) in the program
code using Levenshtein editing distance and suggests to students that they may wish
to use one of those names instead. The analysis process is depicted in Fig. 7.6.

Fig. 7.6 Novice programmer errors
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Results Exploitation The error messages reported in this way are meant to help
novice programmers get better at understanding and fixing compiler errors. While,
in principle, it may be possible to provide automated fixes for at least a subset of the
errors (improve), this is not desirable here: Automated improvement of the original
code would prevent learning by the novice programmer, effectively tying them to
the scaffolding provided by the automated platform. Instead, Nexus chooses how to
present the results to enable novice programmers to better interpret them and then
manually improve their program and fix the errors, based on actionable proposals
generated by the secondary analysis. This is an example of how a basic analysis
can be refined by composing it sequentially with an analysis of the original analysis
results. Many studies have been undertaken trying to understand typical mistakes
made by novice programmers; most recently, McCall and Kölling [MK19] have
undertaken a large-scale analysis of BlueJ data to classify errors by frequency and
severity (how difficult the error is for a novice programmer to correct). Such data
can then be used to identify which error messages are particularly useful to focus
on in a post-analysis as well as providing a good data set of example occurrences of
the error to support the development of useful secondary analysis.

Instantiation of Feature Model The presentation of results uses automated result
presentation without any interactivity using transformation of results prior to
presentation via the secondary analysis. Results are presented as text. Improvement
is by human-implemented recommender system requiring the novice programmer
to interpret the actionable recommendations produced by the secondary analysis. It
changes the system. Refinement of the original analysis is manual: a human anal-
ysed the database of typical programmer errors and produced a secondary analysis
to provide better guidance. Results history is used in the analysis refinement, as
all errors in the database are considered. The level of refinement is the analysis
technique: By adding a secondary analysis, all future analysis runs will be refined.
The target of refinement is the method itself: The analysis is refined by composing
it with a secondary analysis.

7.4.5 Design Smells Detection

Code smells, also called anti-patterns, anomalies, design flaws, or bad smells, are
problematic code fragments resulting from bad design practices [Fow18]. They
can also happen from accumulations of changes that increase code complexity and
deviate the code from the original design. Most of them are unlikely to cause failures
directly, but they make a system difficult to understand and to change, which may
in turn lead to the introduction of bugs. This is, for example, the case of large
classes. Others may be direct causes of bugs, as in refused bequest where part of
the behaviour is unnecessarily inherited. It is then important to detect and correct
them.
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Fig. 7.7 Smells detection

Detecting such smells automatically is not obvious because their manifestation
involves many factors that are difficult to quantify or explicit. The detection tech-
niques are generally based on smell definitions that involve quantitative, structural,
architectural, and linguistic aspects. For example, a Blob smell is a large class that
monopolises most of the processing and uses other classes, mainly as data structures.
Some techniques use thresholds of design metrics as in [Mar04]—for example, class
size larger than some value α. Others combine these metric thresholds with linguis-
tic search—for example, the class name should also include terms like “controller”
or “manager” [Moh+10]. Alternative techniques use visualisation features to semi-
automatically detect smells [DSP08], rely on change histories [Pal+13], or exploit
search-based techniques [KVS10]. The latter uses the analysis process depicted in
Fig. 7.7.

Objective The goal of this analysis is to detect design smells in the code using the
artificial immune system metaphor [KVS10].

Analysis Description The detection process is based on the assumption that the
more code deviates from good practices, the more likely it contains code smells.
This process has two main steps: detector generation and risk estimation. The
generation of detectors is done using a genetic algorithm. Starting from a set of
reputedly well-designed systems, the algorithm evolves a population of artificial
code fragments, i.e., potential detectors, with the aim of maximising their difference
with the good code, using a distance measure.

The second step of the detection process consists of comparing the code to
evaluate with the detectors. A code fragment that exhibits a similarity with a detector
is considered as likely to contain a code smell. The higher the similarity according
to the distance measure, the more a code fragment is considered risky. Only code
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fragments with a detector similarity higher than a given threshold are kept. Note that
the detectors are generated once and used to evaluate many systems.

Results Exploitation The code fragments identified as potential code smells are
presented to the maintainers in descending order of risk score. Maintainers inspect
each of the flagged code fragments to decide if a refactoring is suitable to improve
the code quality. The results can also be used to refine the smell detection process
in many ways. For example, if false positives are produced from the same detector,
the latter can be ignored for future analyses. Conversely, in the case of many false
negatives, a larger set of detectors can be regenerated from new good code. In
addition to the number of detectors to generate, other parameters can be refined. In
particular, the similarity threshold can be calibrated according to the global quality
of a program measured by some quality metrics.

Instantiation of Feature Model Results are transformed prior their presentation
to the user for interactive exploration. Both risky code fragments and their
corresponding detectors are presented textually. Each flagged code is also presented
in a table with its risk score. The tool recommends the fragments to change, but
to automatically implement the changes, the analysis should be composed with a
refactoring analysis (recommender system with automatic implementation).

7.4.6 Visual-Based Identification of Object-Churn Sources

Object churn is a common performance problem in framework-intensive applica-
tions. It consists of an excessive use of temporary objects. Temporaries can impose a
significant overhead during the execution, not only because of the increased pressure
on the garbage collector, but mostly due to increased initialisation costs.

Objective The goal of this analysis is to identify and understand the sources of
churn in the code.

Analysis Description In [DDS12], the authors combine automated static and dy-
namic analysis with interactive visualisation to identifying the methods responsible
for temporary object creations. Automated analysis helps derive calling context
trees (CCTs), a concise representation of call trees. The CCTs are completed, in
each node, with object creation metrics. The metrics are obtained using an escape
analysis which determines the bounds on created object dynamic lifetimes. Objects
with short lifetimes are considered as potential temporaries. A CCT is then mapped
to a sunburst-like visualisation. The final analysis step is the interaction with the
visual representation to locate the most significant source of churn. Interactions
involve navigation and filtering actions to local interesting regions as well as access
to contextual information and view switch (to explore different metrics) to deepen
the understanding. The analysis process is depicted in Fig. 7.8.
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Fig. 7.8 Identification of object-churn sources

Results Exploitation The identification of object-churn sources is an interactive
visualisation task. Consequently, the visualisation environment is used to present
intermediate as well as final results. It is also used to progressively refine the analysis
by applying filters and modifying the mapping functions between the metrics and the
graphical attributes. The boundaries between the analysis itself and its refinement
are then not as clear as for fully automated analysis tasks. Finally, when the sources
of churn are identified, the corresponding program fragments can be analysed in
order to optimise the code.

Instantiation of Feature Model Results are presented to the user for interactive
exploration with various transformations such as aggregations (Transformation
of results prior to presentation). Additionally, results are mapped to graphical
representation using a visual metaphor. The system points out potential problems,
which may be used by the user to improve the code. The results are used to refine
the analysis instance thanks to, among others, the application of new filters.

7.4.7 Change Impact Analysis

When a change on a program is requested, it is important to understand its
implications to make informed business and technical decisions. One of the most
crucial aspects to analyse is the impact at the code level. In this context, a common
practice is to predict the set of program elements (the impact set) that should be
modified in order to accommodate the change request, and hence assist maintainers
in estimating the consequences and cost of a given change [RCR06].
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Various techniques have been proposed to predict the change impact set [Li+13].
Some of these techniques exploit dependencies between elements, extracted from
the current version of the program to change by static or dynamic analysis. Others
rely on elements’ co-changes in the program change history. For both families
of techniques, change impact analysis remains a complex and uncertain activity.
Indeed, in the first family, the accuracy of the impact prediction is restricted by
the limitations of static and dynamic analysis, whereas in the second family, the
limitation comes from the availability of a representative change history.

Objective An ideal change impact analysis technique should predict for each
program element the probability to be modified to accommodate a given change
request.

Analysis Description In [Abd+15], Abdeen et al. propose a machine learning-
based approach that predicts change impact sets. The approach consists in two steps:
learning and prediction. First, it learns a set of Bayesian classifiers to predict the
impact of atomic change types. These classifiers are trained with a mix of program
dependencies and change dependencies extracted from the histories of a sample
of programs. Each classifier estimates the probability that a program element will
be impacted by a specific type of atomic change performed on another element,
knowing the dependencies between the two.

For the prediction step, when a change is requested, it is decomposed into
atomic changes to perform on the program. The trained classifiers are then used
to predict the probability of each element in the program to be impacted by each
atomic change. Then the atomic change probabilities are combined using different
integration strategies to derive the probabilities of each element to be impacted
by the whole change request. The elements with probabilities higher than a given
threshold form the impact set. The analysis process is depicted in Fig. 7.9.

Results Exploitation The presentation of the impact set with the impact probabil-
ities allows the maintainer to estimate the cost of implementing the change. Such
an estimation can be used for different purposes—for example, revise the change
request or implement the change. When the decision to implement the change is
made, the impact results are further used for pricing, resource allocation, and test
plan, among others. The analysis results can also be used to refine the analysis itself.
This can be done by retraining the classifiers with new feedback, choosing the right
integration strategy, or deciding for an appropriate impact probability threshold.

Instantiation of Feature Model Results are presented to the user for interactive
exploration with no elaborate transformation (direct 1-to-1 view of results). Results,
which are presented textually, can be used for both manual and automatic improve-
ment of both the system and its specification. The analysis technique can be refined
fully automatically using previous results for the tuning of probability thresholds.
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Fig. 7.9 Change impact analysis

7.4.8 ATL Transformations

Model transformations are a key component in any model-based or model-driven
solution, as they permit automating the manipulation of models for a wide range of
purposes such as model refactoring, model simulation, or model refinement. Given
their importance, many model transformation languages have been proposed for
transformation development. Among them, ATL [Jou+08] stands out for being one
of the most widely used [Bru+20]. It has a hybrid style whereby transformation
specifications consist of declarative rules which can include imperative constructs.
However, ATL is prone to errors, likely because it is dynamically typed [SGL17].

Objective This analysis scenario encompasses two goals and respective analysis
techniques: uncovering errors in ATL model transformations via static analysis, and
providing a ranked list of fixes for the detected errors via speculative analysis.

Analysis Description ANATLYZER [SGL17] is a static analysis tool for ATL trans-
formations which covers the above-mentioned objectives. Next, we briefly report
on its analysis and reporting capabilities in relation to the feature model of results-
exploitation approaches (cf. Fig. 7.2), and refer to Chap. 12 of this book [Hei+21]
for a detailed presentation of the tool.

ANATLYZER comprises the steps and produces the results in Fig. 7.10. To uncover
errors in transformations, ANATLYZER annotates the nodes of the transformation
abstract syntax tree (AST) with their type, and then, it builds a so-called dependency
graph that makes explicit the transformation data flow and rule dependencies. This
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Fig. 7.10 Analysis of ATL transformations

dependency graph is analysed to detect errors (e.g., unresolved bindings or rule
conflicts). However, some of the identified errors may not happen in practice—for
example, if the transformation logic prevents the error. In those cases, using model
finding, the analysis tool tries to find an input model which forces the execution
of the problematic statement when fed to the transformation. For this purpose, it
builds an OCL expression which characterises such a class of input models, and
relies on USE [KG12] (cf. Sect. 7.4.3) to find a witness model that confirms the
error (or falsifies the error if no model is found). Hence, the analysis based on the
dependency graph is refined by a more costly analysis based on model finding.

In addition, ANATLYZER provides a list of quick fixes for each detected error,
ranked using speculative analysis [SGL18]. Speculative analysis [Bru+10] performs
an analysis of the possible future states of the evolution of a program (an ATL
transformation in our case) in order to gather information about the resolution or
introduction of errors when applying a quick fix. This way, the quick fixes that
repair more errors without introducing new ones appear in the first positions of the
ranking.

Results Exploitation The detected errors are presented in the ATL editor, under-
lined with error markers (present and explore). This way, developers can locate the
errors within their context and proceed to correct them (improve). The results of
the speculative analysis help developers select the most appropriate fix by creating
a dynamic ranking of fixes (present), reporting on the consequences of applying a



7 Exploiting Results of Model-Based Analysis Tools 151

quick fix (present and explore), and providing a previsualisation of each quick fix
application (explore).

Instantiation of Feature Model The quick fix previsualisation options provide
some degree of interactive exploration of results. There is transformation of results
prior to presentation. Results are presented in different formats, including graphical
(e.g., rule dependencies can be visualised as a graph), tabular (e.g., errors and quick
fixes are displayed in a table), and other (e.g., errors are shown underlined in the
transformation code). Exploitation of results is by an automatic implementation
recommender system which automatically applies the selected quick fix upon user
selection. The target of change is the system. There is room for the manual
improvement of an analysis instance by tuning its parameters (e.g., disable classes
of errors or adjusting the model finder search scope). Moreover, the analysis results
based on the dependency graph may need to be refined using model finding, which
is fully automated.

7.4.9 Counterexample-Guided Abstraction Refinement

Abstraction is considered to be the most general and flexible technique for handling
the state explosion problem in model checking. Intuitively, abstraction amounts to
removing details of the original specification that are irrelevant to prove or disprove
the property under consideration.

Objective CEGAR [Cla+00, Cla+03] is a technique that iteratively refines an
abstract model using counterexamples. The technique is based on the idea that by
simplifying the model too much we may be obtaining wrong results, which are
provided in the form of counterexamples that witness a property violation.

Analysis Description The technique is described in Fig. 7.11. In software verifica-
tion, counterexamples are paths that violate properties. With CEGAR, we start with
the most abstract model and check if an error path can be found. If the analysis of
the abstract model does not find an error path, the analysis terminates, reporting that
no violation exists. However, if the analysis finds an error path, then it is checked
whether the path is executable according to the concrete program semantics, that is,
its feasibility is checked. If the error path is infeasible, the violation is due to a too
coarse abstract model. In this case, the infeasible error path is used to automatically
refine the current abstraction, and the analysis proceeds. However, if the error path
is feasible, the analysis terminates. An error path in the program has been identified,
and is reported as a violation of the property, together with the error path that works
as a witness of the problem.

Results Exploitation Error paths are used to either refine the abstraction or
to report a problem. If there is a problem in the program, it is reported as a
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Fig. 7.11 Counterexample-guided abstraction refinement

counterexample, which the user may use to identify and correct it. It might also
happen that the problem is in the property being verified.

Instantiation of Feature Model The technique refines the analysis instance fully
automatically. The process terminates either succeeding or presenting a counterex-
ample to the user. In case of the provision of a counterexample, the user may interact
with it to get enough understanding to improve either the model or the property. In
the core technique, the improvement is manual.

7.4.10 Summary of Example Cases

Table 7.1 summarises the examples that we have discussed in relation to the feature
model presented in Fig. 7.2. These examples provide good coverage of the features.

Regarding the Present task, most tools do not offer interactive exploration of
results, but do offer automated result presentation. In this case, results are often 1-
to-1 translations of analysis results, while the most commonly found format is text.

The Improve task is mostly done manually, or with recommendations automati-
cally suggested, but manually implemented. This means that human intervention is
most of the time advisable. Since we have revised model-based analysis tools, the
improvement normally leads to a modification of a specification of the system, and
not to the system itself. We have not shown an example of analysis that provides
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fully automated improvement, as we have been focusing on design-time analyses.
Here, even analyses that could improve the system fully automatically, normally
include an interaction with a human designer, so that we have classified these as
automatically implemented recommender systems. Fully automated improvement
based on analysis results can typically be found in adaptive systems (e.g., based
on the models@runtime paradigm [BGS19]), where analysis of the system state
(represented in model form) leads to automated improvement allowing the system
to adapt to changing environment conditions. Chapter 6 of this book [Hei+21] dis-
cusses some of the issues in runtime analysis in more detail. Compiler optimisations
are another example where analysis leads to automated improvement. Here, the
compiler analyses the program source code and identifies, for example, dead code
which it then automatically removes to improve the final machine-code program.

Finally, most tools support some mechanism to Refine the analysis given the
results, by some kind of feedback loop. However, in the majority of the cases it is
not fully automated and the subject of change is the analysis instance.

Overall, we have seen that mechanisms for improving the system and refining
the analysis are generally required by analysis tools, while requiring from interac-
tivity to support human intervention. Interactive exploration of results presentation
improves the user experience, but currently remains as a challenge for tool builders,
since many times results are presented textually with no further processing.

7.5 Conclusions

Previous chapters discussed how analysis formalisms and tools can be composed.
Instead, in this chapter, we have considered the important question of what happens
after an analysis has been performed. Hence, we identified how analysis composi-
tion can be used to provide better (i.e., more actionable, more easily interpretable)
analysis results to analysis users.

To understand this, we have first introduced a generic model of the post-analysis
pathways that analysis results can take. We noticed that results can be presented to
analysis users for their interpretation and exploration. Analysis results can also be
used to improve the system under study. Finally, analysis results may be used to
refine the analysis itself, so that better analysis results can be produced in the future.

As a next step, we broke down these three pathways further, classifying the
different options into a feature model. We then briefly described nine examples to
show how different choices of analysis features lead to different forms of analysis.
In Table 7.1, we have briefly summarised how these examples cover the feature
model.

The examples also show different ways in which analyses are composed to
provide better results to analysis users: Parallel composition of analyses led to richer
results in ANATLYZER (Sect. 7.4.8 and Chap. 12 of this book [Hei+21]), sequential
analyses composition was used for producing increasingly better focused results
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(e.g., in USE, Sect. 7.4.3) or for improving the analysis technique as a whole (e.g.,
Sect. 7.4.4).

In this chapter, we have explored the framework of exploitation pathways for
analysis results by discussing specific examples. A question that remains open
is how these pathways mesh in general with the different forms of analysis
composition and tool orchestration for the provision of efficient and effective model-
based system analysis.
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Chapter 8
Living with Uncertainty in Model-Based
Development

Simona Bernardi, Michalis Famelis, Jean-Marc Jézéquel, Raffaela Mirandola,
Diego Perez Palacin, Fiona A. C. Polack, and Catia Trubiani

Abstract Uncertainty is present in model-based developments in many different
ways. In the context of composing model-based analysis tools, this chapter discusses
how the combination of different models can increase or decrease the overall
uncertainty. It explores how such uncertainty could be more explicitly addressed and
systematically managed, with the goal of defining a conceptual framework to deal
with and manage it. We proceed towards this goal both with a theoretical reasoning
and a practical application through an example of designing a peer-to-peer file-
sharing protocol. We distinguish two main steps: (i) software system modelling and
(ii) model-based performance analysis by highlighting the challenges related to the
awareness that model-based development in software engineering needs to coexist
with uncertainty. This core chapter addresses Challenge 5 introduced in Chap. 3 of
this book (living with uncertainty).
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8.1 Introduction

The identification and handling of uncertainties is an important concern for the
composition of models and for the combination of model-based analysis results.
Engineers who work with different models and use results from different analyses
need to be able to ask and understand whether composed analysis results are more
or less trustworthy than those achieved from independent models.

Engineering can then be seen as the science of containing both complexity
and uncertainty, creating systems that are predictable, within the limits of the
engineering. This is easy to see in mechanical and civil engineering: the system
is created so that if the real world (the materials it is made of and the context in
which it operates) behaves in the way the engineers expect, the system will do what
it is supposed to do. However, real-world situations that are outside the envisaged
“operational envelope” cause failures: buildings do not withstand all earthquakes;
machines suffer from metal fatigue, etc.

What is outside a known operational envelope is infinite and, to a large extent
unknowable. That is quite often not a problem in practice: the classic example
is that Newtonian physics works fine so long as your level of abstraction is at a
scale somewhere between small creatures and solar systems. It is a different story at
very small scales, where currently unpredictable quantum effects dominate, or at the
very large scales, e.g., cosmology. But every now or then, something unpredicted or
unpredictable from a practically irrelevant scale impinges on an engineered system.
The biggest source of real-world uncertainty in software is humans (software and
system designers, intended and unintended users, etc.).

Another view of an engineered system that helps to distinguish between engi-
neered (complicated systems) and other (complex) systems defines an engineered
system as a system that can be taken apart and put back together, and will then work
as originally intended. If you dismantle a bridge and reconstruct it, or put the classes
of a Java file into separate files and then recombine them, the system does what the
original did.

Software systems are engineered systems. The platforms they run on are
engineered systems. We are well aware that we can create complexity by linking
together computers (e.g., the global internet), but we often overlook complexity
when engineering software. In short, software systems are full of uncertainties
because (1) they interact with the real world, including humans and sensors and (2)
they run on computers, which are themselves physical artefacts subject to failures
and nondeterministic behaviour.
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In order to start to understand uncertainties in software systems, we can consider
where uncertainties come from. One approach is as follows:

• Above: The software design and realisation make assumptions about the world
that the software interacts with, including rules and human behaviour. In
software engineering, recording of ever changing requirements and assumptions
is typically quite rough, usually implicit, and thus does not adequately address
corner cases.

• Inside: Beyond rare cases of software (and compilers/hardware) proven correct
with respect to some specific properties, it is difficult, or even undecidable, to
know whether a given implementation fulfils its requirements.

• Below: Our questionable software, with its approximate implementation (possi-
bly meeting not-so-well-defined requirements), has to run on a physical platform,
which itself is subject to uncertainties and failures. Examples of uncertainties
from below include issues with hardware, operating systems, and compilers
and the unforeseen side effects of running alongside other software on general-
purpose/high-performance computers and (complex) networks.

• Outside: Software typically operates on externally provided data, whose fidelity,
availability, and quality can vary. Some outside interaction is initiated mali-
ciously or accidentally: sabotage, cyber attacks, or external interfaces accepting
something that the software allows but does not handle appropriately.

Engineers typically deal with these uncertainties by first trying to reduce
them as much as possible and then most often just ignoring them (unless they
work in safety-critical domains). Recognising the presence of uncertainties can
contribute to reducing their influence and increasing the level of trust in a given
software. Within the software modelling community, researchers have started to
focus on identification and modelling of uncertainties, and recognised that not all
uncertainties can be traced to their origin, eliminated, or accounted for.

In this chapter, we explore how uncertainty could be more explicitly addressed
and systematically managed in modelling. In the context of composing model-based
analysis tools, we discuss how the combination of different models can increase or
decrease the overall uncertainty.

We proceed towards this goal both with a theoretical reasoning and a practical
application through an example of designing a peer-to-peer file-sharing protocol. We
distinguish two main steps and highlight the challenges related to the uncertainty:
(i) software system modelling and (ii) model-based analysis.

A wide range of models have been proposed and used to support software
engineering. They vary according to the level of formality and precision, the aspects
they intend to describe, and the kind of reasoning they support. Often they are
used in combination to show how different aspects of a system can interact. As
illustration, our example consists of six heterogeneous model types, which span
different lifecycle phases.

Model-based analysis is challenging due to the complexity of keeping control
of the possible uncertainties and their propagation to analysis results. A possible
way of classifying existing methods is based on how uncertainty is described, e.g.,
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probabilistic, i.e., the probability density functions of the uncertain parameters are
assumed to be known; and possibilistic, i.e., uncertain parameters are described
with fuzzy boundaries. Other approaches involve the use of model averaging, model
discrepancy, sensitivity analysis, and so on. Sometimes, it is enough to acknowledge
that uncertainty is known to exist, without quantification or mitigation.

The next section motivates and illustrates, using simple examples, the existence
and importance of the uncertainty when part of the development process requires
a composition of models. To make things more concrete, Sect. 8.3 details the
modelling of a peer-to-peer file-sharing case study and discusses the various
places where uncertainty creeps in. Based on this example, Sect. 8.4 covers model-
based performance analysis, and Sect. 8.5 discusses some of its main challenges,
i.e., reducing the uncertainty while analysing the models. We note that, if the
combination of models and analysis is not seamless, inconsistencies in the system
can appear. This boosts the effect of uncertainties and reduces trust in the obtained
results. Section 8.6 discusses related work, and Sect. 8.7 concludes this chapter.

8.2 Uncertainty and Composition of Models

Like other engineers, software engineers who work with different models and use
results from different analyses need to be able to ask and understand whether
composed analysis results are more or less trustworthy than those achieved from
independent models.

The question does not have an unequivocal answer, although a part of the
trustworthiness of the results is related to the existence of uncertainty in the steps
that achieve them. When model-based analysis is used, there is a relation between
the trust in results and the uncertainty surrounding its inputs and assumptions.
Trustworthiness is affected by the amount, types, and severity of uncertainty
introduced by the utilisation of multiple models, by the process of analysing
multiple models together, and by the process of combination of results.

Composition of models and analysis can reduce the uncertainty. This occurs, for
instance, if the multi-model design or its analysis allows generation of more accurate
input parameter values than would be possible using information from only one
model. Mitigation of uncertainty can also come from the utilisation of alternative
analyses, as described in the strategy portfolio in Chap. 5 of this book [Hei+21].

Example 1 (Replacement of Guesses) The engineer’s original analysis typically
includes some guessed parameter values, which are thus considered uncertain. The
engineer can reduce the inherent uncertainty of the results by replacing guessed
parameters with more informed values from a different analysis. Here, the reduced
uncertainty of the analysis derives from the implicit or established trustworthiness
(and appropriateness) of the replacement values.

Example 2 (Use of Alternative Analysis) When the engineer is not confident of
the adequacy of the model and the analysis method, a multiple analysis approach
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can be used to shed light on the trustworthiness of results. Each analysis method
executes its own implementation, under its own assumptions. The different results
can establish bounds or intervals of values for a known unknown. Moreover, even if
the results from the different analyses vary or suggest a wide interval, the engineer
may be able to identify that some of the assumptions underpinning the model or
analysis have a strong influence on the results—which could, in turn, become a
further uncertainty challenge. This case also applies to the aforementioned portfolio
strategy.

Composition of models and analyses can also increase the uncertainty in the
results. This can happen when different aspects of the system are analysed in
specific tools, and then the results are aggregated. One such approach is described by
the strategy combined analysis orchestration in Chap. 5. Increased uncertainty also
arises when an analysis develops a chain of results—for instance when one analysis
takes as input some parameters calculated in a previous analysis, as described in the
strategies cooperating analysis orchestration and sequential analysis orchestration,
described in Chap. 5. A similar situation arises when a parameter that is not accurate
but is bounded is replaced as an input to a model-based analysis with an input
generated in an earlier analysis, of which the trustworthiness is reduced or unknown.

Example 3 (Replacement of Bounded-Error Parameters) The engineer’s original
analysis takes into account that only part of the reality was used to produce
results, and this uncertainty is reflected in the confidence of the obtained results.
For example, the current obtained point estimate may have low reliability, but the
accompanying error interval gives precise bounds about the location of the actual
result. This allows the engineer to manage a “known unknown”. Again, some
guessed parameters are replaced by values from a different analysis. Even though
the point estimate provided by a new analysis may, in fact, be closer to the real
value, the information on the accuracy and trustworthiness of the new results is not
available. Therefore, the error is no longer bounded, the previous “known unknown”
is no longer there, and the engineer cannot assess the effect on the uncertainty of the
results. This causes an increase in the overall uncertainty.

This case could be handled by performing both the original and new analyses
using the combined analysis orchestration strategy— the engineer can use the
new analysis to provide the point estimate and the original analysis to provide the
bounds.

Despite the possibility to capture the rationale underpinning the trustworthiness
of models, parameters, analysis, and results, there is no existing general guidance
on how to combine uncertainties during model or analysis composition.

Example 4 (Composition of Results) The engineer needs to take design decisions
and wants to have as much information as possible to support decision-making. A
range of analysis tools are used, each with its own results, accuracy, and bias. In
this case, the engineer follows the separate parallel analysis orchestration strategy
described in Chap. 5, manually aggregating the results to take an informed decision.
However, the manner in which the engineer weights and aggregates the results of
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the different analyses may add uncertainty to the decision-making process. The
utilisation of multiple sources of information does not automatically lead to more
certain results. For example, incorporating more information sources that share a
common bias into the decision-making process may increase the likelihood of a
wrong decision.

Example 5 (Results Originate from a Chain of Analysis) In this example, the
engineer applies the sequential analysis orchestration strategy described in Chap. 5.
The final result comes from a sequence of black-box analyses, where the output
of one analysis is an input to a subsequent analysis tool. The black-box view of
analysis tool composition focuses on the connections that are possible between
tools, not on the realisation. Even assuming a perfect separation of concerns in each
analysis tool, the abstracted chaining of analyses propagates uncertainty. In practice,
however, analyses are not independent. In the black-box view of sequential analysis,
concepts such as the model of network delays are typically required in more than
one analysis in the chain. The final results may thus over-represent the effect of
the concept on the system, increasing the uncertainty of the chained analysis result.
A white-box analysis, which looks more carefully at the structure and content of
models and the generation of results, may at least identify where concepts are over-
or under-represented in the analysis chain, and should be able to establish better
confidence in results than a black-box approach. However, such an approach also
identifies more potentially uncertain elements and exacerbates the problem of how
to combine uncertainties or derive trustworthiness.

8.3 Software System Modelling

To perform a quantitative evaluation of, for instance, performance or dependability,
a software engineer needs both structural and behavioural views of the software
design. Such views, or models, provide useful information for the construction of
formal models on which analysis tools run, such as queuing networks (QNs) or
stochastic Petri nets [CDI11, BMP13].

In the following, we analyse the types of uncertainties that arise in different
model views, and, as elsewhere in the book, we use the Unified Modeling Language
(UML) [OMGb] as the modelling language. In principle, other structural and
behavioural models could be used. The UML supports many model notations;
within a model-based development setting, the UML specification of a software
system is done as a composition of complementary views. The set of these views
can also be viewed and managed as a multi-model. UML structural views focus
on classes, objects, components or nodes, and their relationships, whereas the
behavioural views convey the permitted or required behaviours of the system. Such
views are created and used in various stages of software lifecycle. For example,
they can help developers explore system design in the early phases of the system’s
development.
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Fig. 8.1 PtP domain model. Coloured elements indicate the presence of uncertainty

Here, we particularly focus on the views that are typically used as input artefacts
for the construction of a formal performance model (discussed in Sect. 8.4).

To better illustrate our ideas, we use an example first developed in [FSC12] of
a company developing a peer-to-peer document-sharing protocol, called PtP. At
the start of our scenario, the company has developed some incomplete structural
and behavioural models. In the diagrams that follow, elements with black borders
indicate aspects of the system for which the developers are already certain at the
start of our scenario. Coloured elements indicate aspects about which the developers
are uncertain and whose ultimate role in the system is contingent on some design
decision.

The class diagram in Fig. 8.1 shows the protocol that allows peers that are
members of an organisation to share files, by establishing direct communication
channels with each other on the organisation’s network. The files are shared by
chunks. The diagram also contains the class DataCollector that is responsible
for logging. However, its ultimate inclusion in the model is the subject of a design
decision, as described later in the section.

The company has also created a preliminary version of the behavioural view
of the protocol for each peer, shown in Fig. 8.2 based on certain assumptions, as
follows:

• Peers are initially in the Idle state, in which no documents are being shared.
• Peers that are in the Leeching state are trying to download but do not have a

complete version of the SharedFile. They are connected with other peers and
trying to download the chunks of the document that they are missing. They can
also share the chunks they already have.

• Peers that are in the Seeding state possess complete copies of the
SharedFile. Other peers can download chunks that they lack from a
Seeding peer.

The developers of PtP could face uncertainty in any number of features across
the multi-model. Here, we focus on uncertainty in the required behaviours. When
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Fig. 8.2 Overview of the initial, incomplete behaviour of the PtP example. Important information
(e.g., event triggers) is missing and some design decisions remain to be made

developing Fig. 8.2, the developer is uncertain about some important design deci-
sions:

D1 Should peers be allowed to start Seeding without first Leeching?
D2 Should peers be allowed to re-download an already-complete SharedFile?
D3 What should happen when a peer completes downloading a SharedFile?

There are three possible scenarios under consideration:

D3.1 “Selfish” scenario: Peers disconnect as soon as they have finished down-
loading.

D3.2 “Benevolent” scenario: Peers that finish a download become seeds.
D3.3 “Compromise” scenario: Any peer already connected can complete a

download, but no new connection is allowed.

The alternative scenarios can be expressed using additions to the state diagrams.
We assume that the developers decide not to permit re-download of an already-

complete SharedFile (D2), and permit all three alternatives for D3; Fig. 8.3b
elaborates the required logging behaviour. The revised models are shown in Fig. 8.3.
The models support two alternative scenarios for D1: the original option (Fig. 8.2)
that does not allow seeding without previous leeching, and the revised option that
allows seeding before leeching, supported by adding a transition Share from Idle
to Seeding.

Figure 8.1 is a UML class diagram that specifies the domain model—a visual
representation of conceptual classes or real-world objects in a domain of inter-
est [MO97] (a structural view). Such a domain model is typically constructed during
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Finishing

Leeching

/exit: log
Idle

Seeding

/completed

/friendsDone

/completed
/start

/share

cancel

cancel

Logging

Idle

log/

(a) (b)

/completed

Fig. 8.3 PtP state machines. (a) State machines of the peers. Blue dotted line supports the
alternative decision for D1; green dashed portion represents the three scenarios of D3. (b) State
machine of the DataCollector class. The existence of this state machine is contingent upon a
design decision

the requirement and business modelling activities and sets a common vocabulary
among the system stakeholders. The abstraction level of the domain model leads to
several uncertainties.

Some uncertainties can be directly expressed in the UML notation, by giving a
context-dependent interpretation [Sal+18] to multiplicity constraints of association
ends. Multiplicity constraints allow specifying that an association end can have an
allowed number (an exact value, a range, or a set of disjoint values) of target class
instances (i.e., objects) that may be associated with a source instance. Uncertain
bounds are denoted as * either alone or in a range that identifies an exact lower
bound (e.g., 1..*). Most association ends in Fig. 8.1 are uncertain: for example,
the * number of peers within an organisation gives rise to an input parameter of
the performance model and needs to be resolved to a specific value or range to allow
performance analysis.

Other uncertainty cannot be expressed in the notations. Consider the types
specified for class attributes, which also give rise to input parameters for perfor-
mance analysis. A primitive type—such as integer or real—does not convey the
information needed for quantitative analysis of software systems; the type alone says
nothing about the unit of measurement or any statistical qualifier—minimum, mean,
maximum, stochastic distribution, etc. For example, in Fig. 8.1, it is not resolved
whether the network bandwidth and the peer speed have the same units of
measurement.

The modelling notations can be extended to elaborate types with such informa-
tion, using notes, comments, profiles, etc. Indeed, there are several extensions or
proposals to extend the UML to support the specification of non-functional require-
ments (e.g., the OMG standard UML profile MARTE (Modeling and Analysis of
Real-Time Embedded system) [OMGa]) that could be applied to reduce some of
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the uncertainties affecting performance and dependability analysis. Nevertheless,
from our experience in performance and dependability modelling, we argue that the
necessary information is usually not available during domain modelling, postponed
to later stages when the analyst has to decide the type of formal model to build.

Finally, variability is a form of uncertainty that arises in many forms of software
development, and thus software models, notably in development of software product
lines. For example, in Fig. 8.1, the class DataCollector represents a variation
point: the logging capability of the PtP example can be considered as an additional
feature of the basic software product. In our example, it is unclear to developers
whether this functionality should be added by default to the system, or whether it
should remain as an optional configuration option. The role of this variability point
is thus contingent on a design decision that the developers must take and is subject
to design uncertainty [FC19].

Turning to state diagrams—behavioural models are used to express the permit-
ted behaviours of objects over their lifetimes—Fig. 8.3 illustrates a way to model
two main forms of uncertainty: (in)completeness of the design specification and
alternative design choices.

To understand better the forms of uncertainty (not) expressible in a state diagram,
we need to consider state diagram semantics. A state represents a situation during
the life of the object in which it either satisfies some condition, or it performs some
action, or it waits for some event to occur (e.g., the Idle state of the peer). A
transition is a response to an event that triggers specific actions, provided that the
relevant condition is satisfied. In general, a transition is labelled as an event-name [
guard-condition ]/action expression. A transition is triggered by at most one event,
such as a signal or a request to invoke a specific operation. A transition with no
explicit trigger event is called a completion transition and fires only after all the
events and actions (e.g., do-activities) present in the current state are completed. A
guard is a Boolean expression that provides control over the firing of a transition.
When the transition fires, an action may be performed.

Incompleteness may cause nondeterminism in the state machine model due to the
use of completion transitions, outgoing from the same state, without guards, or due
to several transitions from the same state with the same trigger event. Indeed, the
UML state machine execution semantics for making the selection of the transition
to execute is undefined [OMGb]. Typical examples, in Fig. 8.3a, are the transitions
labelled share and start, from the state Idle.

To resolve nondeterministic, guards could be used. However, accurate specifi-
cation of guards typically requires more detailed knowledge of the design than is
available at this stage.

Nondeterminism is also introduced in Fig. 8.3 by representing alternative design
choices. These can be resolved by establishing a single design, but again, it may
not be possible to resolve the design at this point—indeed the performance analysis
may be needed to make that design decision.

Incompleteness also arises from the absence of information about the environ-
ment and how the environment interacts with the state machine. For example, what
is going to trigger the cancel transitions in the Seeding/Leeching states?
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Finally, when considering performance evaluation, the workload aspect needs to
be considered. For instance, in the PtP example, are seeding/leeching requests sent
in batch? Is there a fixed number of users that periodically ask for leeching? Clearly,
also a model of the environment could help in reducing this type of uncertainty.

We can start to address environmental uncertainty using a view such as a
UML deployment model, a structural view that specifies the physical hardware
configurations at runtime and the allocation of software to hardware.

Figure 8.4 shows a runtime configuration of the PtP example. Nodes represent
the physical structure of a system, modelling execution environments, or devices
(processors on which software executes, disks, or I/O devices). Artefacts represent
files containing the code of subsystems and/or components that are deployed on
nodes.

Here again, uncertainties are apparent. The forms of uncertainty in this model
view are related to the abstraction level, the node characteristics, and variability.

The precise network topology is a design decision that has impact on the system’s
overall performance. However, deployment diagrams can be used either to capture
a specific deployment or to show a generic network that connects different nodes,
focusing on the mapping of the software components on the execution platform.
In Fig. 8.4, a new uncertainty is introduced: does the system consist of exactly
three peers (and corresponding nodes) or is Fig. 8.4 simply an example runtime
configuration? It is obviously possible to refine the network nodes to represent

Network

«artifact»
DataCollector

Node2

«artifact»
Peer1

«artifact»
Peer3

Node3Node1

«artifact»
Peer2

Node4

Fig. 8.4 PtP deployment model
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a specific topology if the number of network nodes is relatively small. However,
the refinement does not reduce the uncertainty about whether the model view is the
required configuration or an illustrative example.

Deployment diagrams are also prone to the forms of uncertainty noted for class
attributes in the domain model view, above. In particular, a deployment model needs
to resolve input parameters that have an impact on communication delays [CM00],
such as network bandwidth. As for class diagrams, this form of uncertainty can be
addressed by annotating the deployment diagram or by applying suitable profiles,
such as UML MARTE [OMGa].

Variability has also been discussed in relation to the domain model view.
In the deployment view, there is variability uncertainty concerning any of the
variation points in the runtime configuration of the software components, such as
the DataCollector.

Finally, we can consider using an object model—a structural view that represents
a specific configuration, or instance, of a class diagram. For example, Fig. 8.5 is an
instance of the domain model in Fig. 8.1, expressing a specific topology of three
peers communicating through specified channels.

This model view is often used to explore the meaning of the modelled rela-
tionships between class instances. For example, modelling scenarios using object
models can be used in resolving uncertainty over (*) multiplicities in the domain
model.

The object diagram supports modelling at a lower level of abstraction than class
or deployment diagrams. However, we can observe a similar kind of uncertainty
introduced by object diagrams—is a particular object model a required configuration
instance or an illustrative example? Figure 8.5 shows a concrete number of links
between instances that represent a possible realisation (not unique) of the class
associations in the domain model of Fig. 8.1, according to the association-end
multiplicities: is this realisation the final network topology of the system under

na:Network

c23:Channel

c13:Channel

c12 :Channel

p2:Peerp3:Peer

p1:Peer

nb:Network

nc:Network

isOn

isOn

isOn

Fig. 8.5 PtP object model
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analysis or is this a possible network configuration during the operational life of
the PtP?

The discussion in this section is by no means a comprehensive review of the
forms of models or the forms of uncertainty that arise in software specification:
we do not, for instance, consider sequence diagrams, widely used in the design of
system components “interactions”.

Table 8.1 summarises the forms of uncertainties discussed for each model
view (first column) that the developers need to consider while developing the PtP
system. Each form of uncertainty (second column) is also classified according to its
origin (third column), and specific examples from the PtP system are given (fourth
column).

The classification by origin uses the terms introduced in Sect. 8.1, specifically,
in this example the Above and Below origins. For example, the variability in the
domain and deployment models is related to assumptions made by the designers, so
its origin can be placed in the Above class, while the association multiplicities in the
domain model and the abstraction level in the deployment model are related to the
platform characteristics, so their origin belongs to the Below class. We do not have,
at this level, uncertainties whose origin belongs to the Inside or Outside classes,
because we are not referring to specific implementations or specific workload.

These are the kinds of uncertainties encountered by the developer up to this
point in the scenario. In a typical development, later iterations elaborate models
through more thorough requirements analysis, resolution of options, and the results

Table 8.1 Example uncertainties captured in different model views

Model view Uncertainty Origin Examples from P2P

Domain model Association
multiplicities

Below How many peers within the organisation?

Attribute
values

Below Do speeds of the peers and network bandwidth
have the same unit?

Variability Above Is a DataCollector concept needed?

State machine Incompleteness
(design
specifications)

Above share and start transitions: which one is
going to fire?

Design
alternatives

Above completed transitions: which one is
eventually considered?

Incompleteness
(interacting
environment)

Below What triggers the cancel transition (e.g.,
input from a user or another system, or a time
trigger)?

Deployment
model

Abstraction
level

Below Network topology, number of peers/nodes.

Node
characteristics

Below Network bandwidth.

Variability Above DataCollector and Node4.

Object model Abstraction
level (low)

Below Is this the actual network topology or an
example?



172 S. Bernardi et al.

of analysis. While further analysis resolves some uncertainties using newly acquired
information, it also exposes new uncertainties (e.g., about how to deal with errors
such as peer crashes).

8.4 Model-Based Performance Analysis

The challenges of model-based performance analysis under uncertainty can be
considered under three headings: (i) the choice of the model formalism, (ii) the
definition of the model structure, and (iii) the values of parameters and their
propagation to the analysis results.

We can classify uncertainty due to choice of model formalism, using the
classification in Sect. 8.1, in two ways. If we see the choice of model formalism
as part of the development process, the origin of uncertainty belongs to the Above
class; on the other hand, if we look at choice of model formalism as pertaining to
implementation, then the origin of uncertainties is in the Inside class.

Again, uncertainties related to the model structure can belong to either the
Above and Below classes since both design and deployment assumptions are made
at this level to be able to build a model. Model parameters express uncertainties
related both to external data and to the platform characteristics so their origin
can be placed in the Outside or in the Below classes. An ideal solution is to be
able to record uncertainty systematically when modelling software systems and
embed uncertainty analysis in development. Research in this area typically explores
uncertainty classification and analysis [PM14b].

Here, we select a specific formalism, QNs, and explore uncertainty in perfor-
mance modelling and analysis of the PtP case study described in Sect. 8.3. We
discuss how challenges concerning (ii) the definition of the model structure and
(iii) the values of parameters and their propagation to the analysis results impact the
performance evaluation, and propose ways to mitigate uncertainty in performance
analysis. QNs have been widely applied to represent and analyse resource-sharing
systems [Kle75]. A QN represents a collection of interacting service centres (i.e.,
system resources) and a set of jobs (i.e., the requests). Each service centre is
composed of a server and, except in the special case of a delay centre, a queue;
service centres are connected through links that represent the network topology.
Each server picks a job from its queue (if not empty), processes it, and selects one
link that routes the processed request to another service centre. The time spent in
every server by each request is modelled by an exponential distribution. Jobs are
generated by source nodes regulating the rate of arrival requests. A QN is thus a
directed graph whose nodes are service centres and edges are connections between
centres. Jobs follow the graph’s edge set to model the behaviour of customers’
service requests. A QN thus models an instance of a state machine, in the way that
an object model is an instance of a class diagram.
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Source

Idle

start/share

Seeding

friendsDone/end

Finishing

Leeching

cancel/completed

Sink

Fig. 8.6 PtP example: QN model, derived from the state machine, Fig. 8.3a

Figure 8.6 depicts the QN model built for the case study example. With respect to
the uncertainties in the model structure (see Table 8.1), in this QN model, we have
the following assumptions:

• The model refers to the behaviour of a single peer and includes the three
alternative completion scenarios (regulated by probability values) discussed in
Sect. 8.3.

• The network delay is not represented for sake of simplicity.
• The data collector is not included for sake of clarity.

The source node regulates the arrival requests. The request activity starts in the
idle state. Requests are then routed (via the start/share routing station) to either the
seeding or the leeching queues. After leeching, there is a cancel/completed routing
station that determines whether requests go back to idle (due to cancel/completed
events) or are routed to the seeding or finishing queues. The friendsDone event
causes a request to either go back to the seeding queue or terminate in the sink
node.

The uncertain parameters for this QN model are as follows:

• Source arrival rate: inter-arrival time distribution among multiple requests gener-
ated by the source node

• Idle, seeding, leeching, and finishing service time distributions: duration of
actions related to the corresponding operations

• (Start/share, cancel/completed, friendsDone/end) Routing probabilities: how
often requests are routed to the different queues, and what is the probability that
requests terminate
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Table 8.2 Examples of pa-
rameters in the QN model. Re-
sults are illustrated for varia-
tion of parameters marked (*)

Parameter Value

Source(*) λ = 0.5

Idle λ = 10

Seeding(*) λ = 10

Leeching λ = 10

Finishing λ = 10

Start/share π = 0.5

Cancel/completed π = 0.25

FriendsDone/end π = 0.5

To run a model performance analysis, we first set parameter values for the QN.
Table 8.2 shows example settings for generating parameter values. The service
centres are associated with parameters drawn from exponential distributions with
average λ. For example, if the source node is assigned λ = 0.5, the inter-arrival
time drawn from the distribution averages one request every two time units. The
QN centres (idle, seeding, leeching, and finishing) all have λ = 10, so timings are
drawn from an exponential distribution with average λ = 10. By varying λ, we can
run QN analysis with parameters representing a range of different timings.

For the QN analysis, all routings have equal probability, defined by π . Thus,
start/share has two connections (seeding and leeching) giving a probability of π =
0.5, whereas cancel/completed has four options, so it is set to π = 0.25. Note that
from leeching requests are routed back to idle either with cancel or completed, so
the probabilities are summed and set to π = 0.5.

Figures 8.7 and 8.8 show the impact of the uncertainty in the parameters on the
overall system quality.

Figure 8.7 presents preliminary simulation results for the timing analysis, varying
the source parameter for the request-arrival rate, on the x-axis, between λ = 0.05
and λ = 0.5. As expected, the system response time, on the y-axis, increases as the
request-arrival rate increases; more specifically, the system response rises from 3.9
to 12.1 time units. The detailed analysis is shown in the bottom part of Fig. 8.7: the
header row shows the request-arrival rate (λ) setting, while the table shows values of
mean, maximum system response time, determined by the confidence intervals from
the corresponding simulation. For example, a request-arrival rate λ = 0.5 results in
a mean response time of 11.8 time units and max and min values estimated to be
12.1 and 11.4, respectively.

Figure 8.8 shows the result of varying the service rate for the seeding node
from λ = 5 (0.2 s in average) to λ = 10 (0.1 s in average), modelling the system
response time variation as the seeding operation takes longer while increasing the
corresponding rate of the queueing centre. The plot shows that a service time 0.17
or higher (service rate 1/0.17 or lower) results in a steep rise in the response time,
indicating a software bottleneck.

A second QN model has been derived to explore some of the uncertainties in the
model structure summarised in Table 8.1. In particular, we consider:
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start/dataCollector
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networkDataCollector

dataCollector

cancel/completed

Leeching

Finishing

start/share
Seeding

friendsDone/end

Sink

Fig. 8.9 QN model for the PtP example considering two peers and the data collector

• Two peers communicating through a network.
• The network delay is represented.
• The data collector is included.

The derived QN model is shown in Fig. 8.9. The uncertainties related to parameters
follow the same assumptions as for the earlier QN, Fig. 8.6, as summarised in
Table 8.2. The source node collects all incoming requests and dispatches them
among the peers, which initially are all in the idle state. Each peer may decide
to interact with the data collector or proceed with internal computations. This is
modelled through the start/dataCollector routing node, by which peers either (i)
communicate with the data collector with the network modelled as a delay node
(there is no queue, but a waiting time expresses the network-related latency) or
(ii) proceed with internal computations regulated by the routing centre start/share
node (similarly to the previous QN model, see Fig. 8.6). There are further queueing
centre nodes (i.e., networkPeers, networkDataCollector, dataCollector) to represent
the communication among peers and the interaction with the data collector.

Figure 8.10 summarises the system response time analysis for the QN including
two peers and a data collector. As for the first QN analysis, the peer(s) arrival rate λ

ranges from 0.05 to 0.5 jobs/time unit (x-axis). The resulting system response times
(y-axis) reflect the increased complexity of the system, rising from 9.6 up to 18.3 s,
and these values may not meet the end-user requirements.

Summarising, these model-based performance results show the advantage of
providing an understanding of the software behaviour, thus to support a quantitative
evaluation of system uncertainties.
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8.5 Discussion of Challenges

Model-based developments need to take into account the uncertainties that arise
in the process, from system elicitation to the software delivery, analysis, and
presentation of results.

The running PtP example has explored and illustrated several challenges in the
analysis and development of software systems that arise from the existence of
uncertainties. The challenges reflect the developers’ level of understanding and
concern: the moment at which uncertainties are recognised (represented) in the
system description; the way that uncertain concepts can be represented or recorded;
the propagation of uncertainty across models, model composition, and analysis;
how using a multi-model representation of the system affects uncertainty and its
handling; how to select suitable values for uncertain parameters during performance
analysis; the type of each uncertainty and how much it can be mitigated by applying
appropriate methods; and, from a research perspective, some agreement on the
semantics of uncertainty terminology.

The moment at which uncertainties are recognised is addressed in Sect. 8.3.
The PtP example illustrates uncertainties about behaviour from the initial stages
of system development and modelling (e.g., D1 and D2), and uncertainties about
the behaviour of users. We have shown some ways in which the former affects
the decisions that have to be taken during the first system analysis. Many of these
early uncertainties would be mitigated in later phases of development, as the product
owner provides more detail, allowing engineers to produce a more detailed design.
However, our analysis results suggest that an early exploration of performance
and response time can help to inform developers and the product owner of the
consequences of different resolutions of uncertainty.

Uncertainties about the users also affect decisions that have to be taken during
the system development, but these uncertainties are hard to mitigate before the first
release of the system, because they concern future user behaviour. The development
team has to live with these uncertainties during the whole development.

Section 8.3 also illustrates that uncertainties can be generated by the modelling
language. For instance, UML accommodates uncertainty in representations (multi-
plicities, types), and the model semantics do not give a unique interpretation of what
the domain model (or any other model) represents. Therefore, already in the initial
requirement elicitation and business modelling activities, engineers must be aware
that:

• They may not have completely understood how the system is expected to be
developed (known unknowns).

• As development proceeds, or even once software is deployed, there may appear
new concepts that are not understood (current unknown unknowns).

• For the part of the system that the developers have understood, what they have
represented in their models may not be fully or accurately captured by the
modelling language.
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Management of uncertainties, whether arising at elicitation stage or later in the
development, can only be achieved if there is explicit recognition and representation
of uncertainty, which requires training and procedures for software development
that force consideration of uncertainties. In software development, uncertainties
should be explicitly represented and documented—it is not useful to have important
information about uncertainty residing only in the mind of an engineer. There
is ongoing research on the challenge of representing uncertainty in modelling,
e.g., [Ber+18, Zha+19] propose uncertainty models and language extensions for
representing uncertainty using UML.

Having made uncertainty explicit, processes and procedures need adjusting to
take them into account, for instance in design decisions and other decision-making
activities of different people. Software engineering needs to adopt uncertainties
as first class citizen in models and to accept that the use of modelling languages
generate per se new uncertainties.

There is an inherent contradiction between representing uncertainty in models
and models that are themselves uncertain representations of the reality or developer
intentions. As so often in engineering, there is a trade-off and a balance to be struck,
with more research needed.

The specification of a software system can be seen as multi-model consisting
of a group of complementary—but potentially overlapping—views. The challenges
related to the multi-model representation of systems reside in: (a) inconsistencies
in or different granularities of overlapping models and (b) for the non-overlapping
parts, different assumptions made in each model about the characteristics of the
other models. Section 8.2 delves into the evolution of uncertainties when composing
models and model-based analyses.

In model-based software development, the model-based system analysis phase
also introduces uncertainty-related challenges. Analysis requires an analysable
model, which may differ from the models used to communicate the system design—
such as the QN used for analysis of the PtP example. Model-driven engineering
provides the foundations for automatic transformation from source to target models,
and it is commonly used for transforming design models into analysable models
(e.g., [Per+19]). However, unless the information in the target model is a subset of
the information in the source model, there is an information gap that requires the
making of assumptions; the assumptions are then captured in the transformation
model, which, in practice, can hide the assumptions from the engineers. For the
PtP case study, the challenges of uncertainty in the definition of a model structure
are elaborated in Sect. 8.4. As noted above, uncertainties, and thus the information
gap, can be mitigated as more data becomes available; model calibration to reduce
uncertainty by eliminating poor choices of parameter and bad modelling decisions
can also reduce the risks inherent in embedding assumptions in transformation rules.

In transformation, the target model needs to be able to represent information in
the source model that is uncertain: the parts of the system that are not completely
understood (system behaviour, known unknowns); the parts of the models in the
source where the modelling language results in uncertainty of representation, even
where the design or reality is fully understood by developers; and the parts of the
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development that depend on the future user behaviour (known unknowns about the
user). The transformation should also avoid semantics mismatch, i.e., the translated
model still needs to capture the original modeller intentions. Section 8.4 exemplifies
some of these challenges, through the analysis of the system considering parameters
with unknown specific values.

Although in specific cases uncertainty can be studied and mitigated, in the
general case this is not guaranteed. Most commonly, when an engineer identifies a
known unknown, it is not straightforward to act upon it. The proposal of a systematic
methodology to handle identified uncertainties remains an open challenge. Such
methodology could assist engineers in handling uncertainties once they have been
identified and modelled. For instance, processes and techniques could be provided
to support mitigation of different forms or occurrences of uncertainty.

Some uncertainty, notably uncertainties relating to (currently) unknowable fea-
tures of the domain or eventual system context and usage, cannot be mitigated
by design methodology. In these cases, it may be possible to qualify, or even
quantify, the uncertainty importance or the potential effect of uncertainty (e.g.,
studying the associated risks). Even if nothing can be done to resolve uncertainty,
it is important to document its existence. In the PtP example, for instance, it is
important to record that the object, deployment, and QN models are intended only
as indicative instances and do not represent anything about the eventual deployment
and operation of the system. More generally, research in a variety of uncertain
domains proposes taxonomies of uncertainties to support association of handling
techniques to different classes of uncertainty [PM14a, PM14b].

The area of model-based analysis under uncertainty encounters additional chal-
lenges. For example, other open challenges in this area are: (i) usage of machine
learning techniques to save computational effort in the analysis; (ii) visualisation
of analysis-based issues to track the most critical input parameters; (iii) proactive
reconfiguration of systems when uncertainties lead to overloaded resources/failures.

8.6 Related Work

There is a lot of general research on types of uncertainty. Jousselme et al. [JMB03]
review many existing hierarchies and ontologies and propose definitions from a
situational analysis perspective such as ignorance (a state of mind) and uncertainty
(a consequence of limitations in observation). Padulo and Guenov [PG12] also
review existing research, deriving a summary that sees the design problem as
separable into uncertainty about and uncertainty within the problem.

A useful classification of the different types of uncertainty is given by Esfahani
and Malek [EM13]. They describe it in terms of two axes: (a) reducible versus
irreducible and (b) aleatory versus epistemic. The authors clarify that “aleatory
and epistemic represent the essence of uncertainty, while irreducible and reducible
represent the managerial aspect of uncertainty”. They add that the distinction
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between epistemic and aleatory uncertainty “is motivated by the location of the
uncertainty—in the decision-maker or in the physical system”. We further clarify
these concepts below.

Irreducible uncertainty refers to cases where uncertainty persists even in the
presence of complete information. Such phenomena are inherently unknowable.
Reducible uncertainty, on the other hand, refers to cases where more knowledge
can be gathered, ultimately eliminating all uncertainty. An example of irreducible
uncertainty in software engineering occurs when a developer is restricted to a
high level of abstraction but is uncertain about what takes place at a low level of
abstraction. Consider an Enterprise Java developer who is interested in the use of
individual CPU registers. Even with complete information available at her level of
abstraction (the Java runtime, etc.), there is no way to access information about
machine code execution since that is hidden by the operating system. This can be
mitigated by lifting the restriction to a specific level of abstraction, in which case
uncertainty becomes reducible. However, lifting the restriction may not be feasible
or desirable.

Aleatory uncertainty is “caused by randomness and is typically modelled with
probabilities” [EM13]. Epistemic uncertainty in contrast is the result of insufficient
knowledge. Statistical prediction models typically contain aleatory uncertainty, e.g.,
predicting the network load of a server. In contrast, if a developer is uncertain about
a concept, e.g., which XML library is more reliable, that uncertainty is epistemic: it
can be resolved by learning more about the available options.

The literature on model-based analysis under uncertainty includes several
approaches defined to measure the impact of uncertain input parameters on the
system output. The Object Management Group initiative on uncertainty modelling
brings together a range of industrial and academic experts; the publications include a
metamodel of uncertainty in cyber-physical systems [Zha+19] that aims to capture
the (un)certainty of the modeller, by expressing beliefs about information. More
generally, a possible way to classify existing methods is based on how uncertainty
is described. The main categories are: (i) probabilistic, e.g., the probability den-
sity functions of the uncertain parameters are assumed to be known [Mee+11,
Tru+13]; (ii) possibilistic, e.g., uncertain parameters are described with fuzzy
boundaries [ACT15, Jam+16]; and (iii) interval analysis, i.e., the limits of variation
are investigated to deduce best/worst cases [Etx+14, Car+18]. More recently, some
approaches have been defined to reduce the uncertainty [TM17, Cám+18]; this way
the complexity in handling variations is also smoothed.

Traditional approaches of handling uncertain input parameter values of a model
are uncertainty quantification and sensitivity analysis. Both approaches typically
rely on executing the model many times, varying input parameter values. Uncer-
tainty quantification determines the likelihood of different model outputs given
the uncertainty in the values of the input variables and can be carried out using
Monte Carlo methods [Cun+14]. Sensitivity analysis is aimed at determining the
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degree to which an input parameter influences the output, and there are a number
of different techniques that can be used to perform sensitivity analysis, e.g., the
Sobol sensitivity analysis [Sob01], the Morris method [CCS07], and the Feature
Importance method [RXZ17]. Such techniques can be used to rank the input
parameters and to determine the most and least sensitive input parameters. The
methods consider different metrics to rank the input parameters.

8.7 Conclusion

In this chapter, we have explored how uncertainty could be more explicitly
addressed and systematically managed, with the goal of defining a conceptual
framework to deal with and manage uncertainty. We have presented how uncer-
tainty exists in model-based developments and that the composition of models
during the system development can affect the uncertainty in both directions: the
composition can reduce or increase the uncertainty. We have also shown that the
complete elimination of uncertainty during the development of a software system
is unrealistic. Instead, engineers need to live with uncertainty during model-based
system development. We have proceeded towards these goals both with theoretical
reasoning and a practical application through an example of designing a peer-to-peer
file-sharing protocol. We have distinguished two main steps: (i) software system
modelling and (ii) model-based performance analysis by highlighting the challenges
related to the awareness that model-based development in software engineering
needs to coexist with uncertainty. Although the exemplified model-based analysis
dealt only with performance, other kinds of analysis would also have their issues
with uncertainty.

Further research on this area can explore the capture of uncertainty aspects in
the system design, which includes leaving options open as far as possible and
incorporating belief values into the design. Another relevant research direction is
the dynamic handling of uncertainties of data-driven models, such as deep learning,
in safety-critical context, in particular in the autonomous driving domain. Research
attention on the field of complex systems and deep uncertainty is also increasing, for
instance, on appropriately interpreting results and understanding system behaviours.
In Part II of this book [Hei+21], a range of case studies are presented that address
some of the challenges in Part I. The challenges posed by uncertainty are not
considered directly, though many of the case studies would be amenable to the sort
of analysis presented in this chapter. Indeed, reasoning about operational semantics
(GTS, Chap. 9) and the modular syntax approach of MontiCore (Chap. 10) offer
many potential sources of uncertainty. Also potential sources of uncertainty need to
be considered in modelling and analysing software architectures (Chap. 11).
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Chapter 9
GTSMorpher: Safely Composing
Behavioural Analyses Using Structured
Operational Semantics

Steffen Zschaler and Francisco Durán

Abstract We are seeing an increase in the number of different languages and
design tools used for designing and implementing such systems, fuelled by research
in domain-specific modelling languages leading to increasingly more reliable and
production-ready environments for language-oriented programming (LOP). While
LOP has undeniable benefits for the efficiency and effectiveness of software
development, it creates new problems for software analysis: most existing analysis
tools are tied to a specific representation of the software to be analysed. LOP is
predicated on developing bespoke representations for each type of problem. This
requires analysis tools to be, at least partially, reimplemented and adapted for each
new such language.

One approach is to build transformations that compile a model in a given lan-
guage into a representation that can be handled by a given analysis tool (cf. Chap. 5
of this book). A key challenge here is to ensure that these transformations
correctly reflect the semantics of the original language in the analysis-tool-specific
representation. This is non-trivial and becomes even more challenging when more
than one analysis tool is to be applied to a given system design.

In this chapter, we present a different approach, where analyses are directly
represented as executable domain-specific modelling languages (xDSMLs), making
their operational semantics explicit as graph-transformation rules. Powerful compo-
sition operations provide support for the independent and reusable development of
analysis tools and languages, which can then be woven at will. In previous work,
we have developed the formal foundations for this approach and have shown the
conditions under which such composition is safe, even when combining multiple
different analyses. In this chapter, we introduce GTSMorpher, a software tool
that allows xDSMLs and their compositions to be expressed in the context of the
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Eclipse Modelling Framework. We demonstrate the use of GTSMorpher through
case studies.

This case-study chapter illustrates concepts introduced in Chap. 4 and addresses
Challenge 1 in Chap. 3 of this book.

9.1 Introduction

Quality properties of software-intensive systems are increasingly important. At
the same time, we are seeing an increase in the number of different languages
and design tools used for designing and implementing such systems, fuelled by
research in domain-specific modelling languages (DSMLs) leading to increasingly
more reliable and production-ready environments for language-oriented program-
ming (LOP) [War94]. LOP takes Naur’s insight that all programming is theory
building [Nau86] and follows it to its natural consequence, contending that software
should be developed in problem-specific languages rather than general-purpose
programming languages. While LOP has undeniable benefits for the efficiency
and effectiveness of software development, it creates new problems for software
analysis: most existing analysis tools are tied to a specific representation of the
software to be analysed. LOP, on the other hand, is predicated on developing
bespoke representations for each type of problem. This requires analysis tools to
be, at least partially, reimplemented and adapted for each new such language.

One approach is to build transformations that compile a model in a given lan-
guage into a representation that can be handled by a given analysis tool (cf. Chap. 5
of this book [Hei+21], [GM04]). A key challenge here is to ensure that these
transformations correctly reflect the semantics of the original language in the
analysis-tool-specific representation. This is non-trivial and becomes even more
challenging when more than one analysis tool is to be applied to a given system
design.

In this chapter, we present an alternative approach, predicated on the idea that
modelling a language’s semantics explicitly—producing an executable domain-
specific modelling language (xDSML)—makes it possible to reason about these
semantics when developing analysis tools. We introduce GTSMorpher, a tool, and
DSML for specifying graph-transformation systems and their algebraic composi-
tion. We use graph transformations [Cor+97] to capture a language’s operational
semantics and then combine and reuse them with semantic guarantees. The ap-
proach indeed enables a modular approach to analysis (see Chaps. 4 and 5 of this
book [Hei+21]), in which different analyses can be combined into one modelling
language, so that different analyses can be enabled depending on what a project
requires.

Graph-transformation systems (GTSs) were proposed in the late seventies as
a formal technique for the rule-based specification of the dynamic behaviour of
systems [Ehr79]. Recent uses of GTSs in the context of model-driven engineer-
ing (MDE) have proposed more practical uses of different forms of parametric GTSs
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for reusing model transformations, and reusing and composing DSML definitions.
For example, in [LG13], de Lara and Guerra propose the use of transformation
templates expressed over metamodel concepts that can then be instantiated. A
metamodel concept defines structural requirements on a metamodel that allow a
transformation to be executed. Metamodel semantics are not captured by metamodel
concepts. In [DZT13, Dur+17], Durán et al. propose a more general form of
parametrised GTSs where the parameter is not just a type graph, but a complete
GTS, and where composition of GTSs is based on a GTS amalgamation construc-
tion. In the same way metamodel concepts gather the structural requirements, the
set of rules of parameter GTSs are behavioural requirements over the concrete GTSs
used in their instantiation. Thus, parametrised GTSs extend the metamodel concept
notion to include the behavioural semantics of the metamodels.

GTS morphisms (see, e.g., [Eng+97, Ehr+06, GPS98b, EHC05]) are a key ingre-
dient of GTSs and GTS compositions. The use of GTS morphisms enables useful
syntactic and semantic guarantees. For example, morphisms are used in [LG13]
so that transformations can be guaranteed to be syntactically reusable. In the
case of [Dur+17], the use of suitable morphisms enables guarantees on behaviour
protection of amalgamated GTSs. However, graph morphisms and GTS morphisms
require a strong structural similarity between source and target graphs and GTSs,
which hinders their applicability.

The need for powerful and flexible mechanisms for relating GTSs, to broaden op-
portunities for GTS reuse, has been attempted to solve in different ways. In the case
of models, represented as graphs, this has been resolved more or less pragmatically
by supporting a specific, fixed set of adaptations to be applied prior to applying the
morphism (see, e.g., [LG13, Lar+07, DMC12, LG14]). To support complete GTSs,
rules must also be related in a flexible manner. In [GPS98a, GPS98b], Große-Rhode
et al. introduce temporal and spatial refinement relations, in which rules are refined
into either sequences or amalgamations of rules. However, despite the introduction
of derived attributes and links as in [DMC12] or [LG14], and the behavioural
relations provided for GTS morphisms as in [Dur+17], we do not find a satisfactory
solution until the proposal of GTS families in [ZD17].

Often, even where there is an intuitive match, no morphism can be established,
due to structural mismatches. In [ZD17], Zschaler and Durán propose the use ofGTS
transformers to refactor GTSs with the goal of resolving these mismatches between
source and target GTSs so that GTS morphisms can be defined. GTS transformers
are basically functions and can successively be applied to our source GTS to find the
one on which the morphism can be defined. This basic idea is systematised with the
notion of GTS families. Given a set of transformers T , the T -family of a GTS GTS0
is the set of GTSs reachable from GTS0 using the transformers in T . The problem
of defining a mapping morphism between a GTS GTS0 and a target GTS GTS1 then
amounts to finding a GTS in the family of GTS0 from which the morphism can be
defined. This way, the problem becomes a model-based search problem [Joh+19].
In this chapter, however, instead of blindly searching for such matches, we use the
capabilities of the GTSMorpher tool to specify the explicit transformation steps to
be applied.
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This approach offers a powerful reuse opportunity for model-based analysis tools
when systems are developed using xDSML-based specifications. The possibilities
for the modularisation of analyses as a parametrised GTS have been previously
shown in, e.g., [Dur+17]. In [Mor+14], Moreno-Delgado et al. showed how the
approach can be applied to reimplement the analysis provided by the Palladio simu-
lator (see [Reu+16] and Chap. 11 of this book [Hei+21]). However, while the theory
has been developed, for this approach to become practically viable, tool support
is required. In this chapter, we introduce GTSMorpher, a tool, and DSML for
specifying graph-transformation systems and their algebraic composition. We show
how GTSMorpher can be used to specify weavings of simple graph-transformation
systems as per [Dur+17] as well as of GTS families [ZD17]. A new case study in
Sect. 9.4 shows a reimplementation of the Karlsruhe Architectural Maintainability
Prediction (KAMP) approach [Ros+15] using the GTSMorpher tool. The tool
ensures the correctness of weaving specifications and outputs GTSs in the Henshin
format [Str+17] that can be executed or analysed further.

We have shown in previous work [Dur+17] that the same composition mech-
anism can also be used to combine multiple analyses on top of one xDSML.
For example, [DZT13] shows an example of capturing performance analysis in
this form. Generally, we encode analyses using the idea of history-determined
variables [AL94]—variables whose current value can be inferred from the current
and past values of other variables. In an MDE context, we encode these as observer
objects in our models, using additional Observer metaclasses or metaassociations
in the metamodel as suggested by Troya in [Tro+13]. This is combined with an
operational semantics expressed using graph-transformation rules specifying how
model state changes over time (which is similar to Abadi/Lamport’s temporal
logic of actions (TLA) [Lam94] approach). As in TLA, updates to the observers
(history-determined variables) are simply included in the update parts of the
graph-transformation rules giving the xDSML’s operational semantics. This way,
properties such as performance, reliability, efficiency, etc. of a modelled system can
easily be read off at any point by inspecting the values captured by observer objects
and links.

In the remainder, Sect. 9.2 gives a motivating example, which we will use in
Sect. 9.3 to introduce the GTSMorpher tool. In Sect. 9.4 we walk through a more
complex case study before concluding in Sect. 9.5.

9.2 Motivating Example

In this section, we present a simplified example of how a model-based analysis can
be modelled using an xDSML in a way where this can be safely composed into
different xDSMLs and, thus, easily reused.

Consider the example of a simple xDSML specifying production-line systems.
Figure 9.1 gives an overview of the language’s metamodel. It can be seen that in
the language we can specify production-line systems by connecting various types
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Fig. 9.1 Metamodel for the PLS xDSML

of machines via different kinds of containers. Different kinds of parts are produced
and manipulated by the machines and transported via the containers. The operational
semantics of this xDSML can be captured using several graph-transformation rules.
Figure 9.2 shows such rules, specifying operational semantics of the production-
line system (PLS) language. In particular, the behaviour of the Polisher machine is
specified by the Polish rule (in the bottom right corner of Fig. 9.2). From these rules,
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Fig. 9.2 PLS’s rules expressed in Henshin [Str+17]. Henshin uses colour coding and textual labels
to compactly present all parts of a graph-transformation rule. Elements represented in grey (and
labelled preserve) are matched by the rule, but not changed. Elements in green (and labelled
create) are added, while elements in red (and labelled delete) are removed

we can, for example, generate a simulation of a given production-line system for
further analysis.

Let us now consider specifying an analysis of production-line systems. As a very
simplistic example, we will specify an analysis that allows to keep track of parts
manipulated by a specific machine. This can, for example, be used to track reliability
or performance of any given machine. Rather than changing the PLS xDSML to
introduce the relevant observer objects and associations directly, we want to specify
our analysis in a reusable format that can be woven into the PLS xDSML, but also
into other xDSMLs. Figure 9.3 shows how we might capture this in a metamodel.
Note the green association (made) indicating the new observer association we need
to add to the metamodel to capture elements manipulated by a given server. In the
following, we will consider everything in the metamodel not coloured in green
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Fig. 9.3 Analysis metamodel

Fig. 9.4 Rule specifying the analysis based on the abstract server metamodel

the interface of our analysis xDSML (and, technically, will annotate it with the
@Interface annotation). To compose our analysis into the PLS xDSML, we will
need to establish a mapping instantiating every interface concept with a concept
in the PLS metamodel. Figure 9.4 shows a rule specifying the semantics of our
analysis: whenever a Server produces a part on its out Queue, it will record this fact
by establishing a made link.

In Sect. 9.3, we introduce our GTSMorpher tool and show how it can be used to
specify these xDSMLs and their composition so that the analysis is included in the
result. After that, we will walk through a more complex analysis composition and
reuse case study.

9.3 The GTSMorpher Tool

In this section, we give a brief walk-through ofGTSMorpher using the example from
Sect. 9.2, before we apply GTSMorpher to a new example of analysis composition
in the next section.
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GTSMorpher supports the formal specification and analysis of GTSs and mor-
phisms between them (GTS morphisms) as well as the automated composition
of GTSs based on GTS morphisms. This enables the existing theory on GTS
morphisms and GTS amalgamation to be applied to real-world GTSs, which would
otherwise be impractical as the size and complexity of even simple GTS specifi-
cations quickly make it difficult for a human to validate correctness or compute
amalgamations manually. In addition to this, GTSMorpher provides a number of
features to simplify the specification of GTS morphisms and amalgamations: Code-
completion support makes it easier to correctly reference various constituent parts
of a GTS, while morphism auto-completion, interface morphisms, and GTS-family
support [ZD17] allow very compact specifications of complex morphisms and
amalgamations. Where analyses are specified as GTSs (or xDSMLs), GTSMorpher
supports the automated weaving of analyses into arbitrary xDSMLs, enabling
analysis reuse across DSMLs.

To support the specification of GTSs and GTS morphisms, GTSMorpher pro-
vides a textual DSML for specifying algebraic manipulations of GTSs. A GTS
is encoded as a type graph (an Ecore metamodel [Ste+09]) and, optionally, a
module of Henshin graph-transformation rules [Str+17]. GTSMorpher supports
the specification of plain GTSs as well as GTS families [ZD17], as well as the
expression of GTS morphisms and GTS amalgamations [Dur+17], which can
be reused as inputs for further morphism and amalgamation definitions. GTSs
produced from any GTSMorpher specification can be exported as Ecore metamodels
and Henshin modules for use in further analysis and execution. GTSMorpher has
been developed in the Xtext language workbench and can be obtained from its
Github repository.1

The foundation of safe composition of GTSs lies in the notion of GTS
morphisms—mappings between the elements of two GTSs that ensure the structure
of the GTSs is preserved. We, therefore, start by showing how a GTS morphism is
expressed in the GTSMorpher DSML. On top of GTS morphisms, we can weave
GTSs by computing the pushout of a suitable span of GTSs and GTS morphisms.
In this section, we show how this can be expressed and controlled in GTSMorpher.

9.3.1 Specifying GTS Morphisms

GTSs and GTS morphisms are expressed in .gts files. These are text files using the
syntax below (syntax completion is available throughout the Eclipse editor).

1 GTSMorpher is available at https://github.com/gts-morpher/gts_morpher.

https://github.com/gts-morpher/gts_morpher
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Basic GTS Syntax

The easiest way to specify a GTS is through a GTS literal as below:

g t s PLS {
metamodel : " p l s "
behaviour : " p l s R u l e s "

}

Here, PLS can be an arbitrary, optional name for the GTS that may later be used
to reference the GTS. The metamodel clause references an Ecore package defining
the metamodel of the GTS. The behaviour clause references a Henshin module the
rules of which are considered to be the rules of the GTS. It is acceptable to leave
out the behaviour clause. Some alternative forms of specifying GTSs exist; these all
differ primarily by what is specified between the curly braces: we will discuss GTS
families and GTS amalgamation later.

Any GTS specification may be annotated with two modifiers:

1. export: This annotation indicates that the .ecore (and optionally the .henshin) file
of the GTS should be generated into the src-gen/ folder of the containing Eclipse
project.

2. interface_of : These GTSs are formed from the original metamodel and rules by
only considering a sub-GTS typable over the metamodel elements explicitly
annotated with @Interface. This is particularly useful for GTS amalgamation as
described below.

Finally, a GTS specification can reference another named GTS. This is particu-
larly useful when referencing a pre-defined GTS from a mapping specification.

Basic Morphism Syntax

A GTS morphism is specified as a mapping between two GTSs, using a map clause
as shown in Listing 9.1.

Here, from and to each specify a GTS. The block in curly braces after from and
to is actually a GTS specification (see above) with the gts keyword left out.

The mandatory type_mapping section describes the type-graph morphism part
of the GTS morphism by providing a clan morphism between the two metamod-
els [Lar+07]. This is achieved through a list of mapping statements that map a class,
reference, or attribute.2

Similarly, the optional behaviour_mapping section describes rule mappings. If the
GTSs do not have rules, the behaviour_mapping clause should also be left out and the
file only specifies a clan morphism between the metamodels. Each rule mapping is
started using the keyword rule followed by the name of the rule in the source GTS,

2 The careful reader will have noticed the metaclasses InputQueue and OutputQueue being
referenced here. These will be explained later, when we introduce the definition of GTS families.
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map {
from i n t e r f a c e _ o f {

S e r v e r
}

to {
metamodel : " p l s "
behaviour : " p l s R u l e s "

}

type_mapping {
c l a s s s e r v e r . S e r v e r => p l s . P o l i s h e r
c l a s s s e r v e r . InputQueue => p l s . Tray
c l a s s s e r v e r . OutputQueue => p l s . Conveyor
/ / r e f e r e n c e YYY => XXX
/ / a t t r i b u t e YYY => XXX
/ / . . .

}

behaviour_mapping {
r u l e p r o c e s s to p o l i s h {

o b j e c t i q => t
o b j e c t o => p t 2
o b j e c t s => p
o b j e c t oq => c
l i n k [ s−> i q : i n ] => [p−> t : i n ]
l i n k [ oq−>o : e l t s ] => [ c−> p t 2 : p a r t s ]
l i n k [ iq−> i : e l t s ] => [ t−> p t : p a r t s ]
l i n k [ s−>oq : ou t ] => [p−>c : ou t ]
o b j e c t i => p t

}
}

}

Listing 9.1 Syntax for specifying GTS morphisms

the keyword to, and the name of the rule in the target GTS. Each rule mapping again
contains a list of mappings for objects, links, and slots (attribute constraints) in the
rule as well as for rule parameters.

Extensive validation is performed for any mapping specification, including
to check whether it represents a (potential) GTS morphism. Eclipse error and
warning markers provide information and hint about the results of these checks.
Slot mappings are considered valid if the associated expressions are syntactically
identical, subject to parameter renaming.
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Morphism Auto-Completion and Unique Auto-Completion

The system will create error markers if type or behaviour mappings are not
complete. As it can be quite tedious to type out all parts of the mapping, it is
possible to ask the system to automatically complete a partial mapping by adding
the keyword auto−complete at the start of the specification:

auto−complete map { . . . }

As long as the mappings specified do not break the conditions for a GTS mor-
phism, the system will attempt to complete the morphism automatically. The user
can request for the completed morphisms to be exported as .gts files for inspection.
Auto-completion uses a backtracking algorithm tentatively adding mappings and
checking if morphism properties are still maintained. Mappings are not selected
randomly: the structure of the metamodel and rules and existing mappings are taken
into account to identify mappings that are likely to maintain morphism properties.

Users can claim that only a unique auto-completion to a morphism exists by
adding the unique keyword:

auto−complete unique map { . . . }

Checking whether a unique auto-completion exists is expensive as it may require
searching the complete space of possible mappings (as opposed to checking if a
completion is possible, where we can stop once one completion has been found). To
avoid interfering with the editing experience, GTSMorpher will initially only add a
warning marker to the unique keyword to show that this claim has not been checked
yet. To check unique completability, users must explicitly request a validation.
If auto-completion is not unique, an error marker will be added to the file. This
provides quick-fix suggestions for mappings to add to sufficiently constrain the
possible auto-completions. Suggestions are provided in order of potential impact;
the top suggestion should offer the quickest path to unique auto-completion.

Mapping with Virtual Rules

When a rule in the source GTS cannot be mapped to any rule in the target GTS, it
can be mapped to a virtual rule, automatically generated by GTSMorpher. This is
useful, for example, where we want to produce amalgamations that introduce new
rules into an existing GTS. In such a case, there is no rule that can be mapped
to, but the amalgamation still requires a complete morphism. Mapping a rule to a
virtual rule is indicated using a rule mapping of the following form (we will call
such mappings “to-virtual mappings”):

r u l e i n i t to v i r t u a l

Note that virtual is a language keyword, rules named “virtual” are not supported.
From such a rule mapping, GTSMorpher will generate a virtual rule with the same
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structure as the source rule and use that in the mapping. Note that to-virtual rule
mappings cannot specify any element mappings; these are all implicit, because the
rule is dynamically generated only when needed. At the same time, there is only one
valid mapping between source rule and virtual rule, so there is no need to specify
any explicit element mappings.

Mapping to arbitrary virtual rules may affect behaviour-preservation properties
of the morphism [Dur+17]. To ensure behaviour in the target GTS is preserved, it
is possible to constrain virtual rules to be identity rules; that is their left- and right-
hand sides must be identical. Adding an identity rule to a GTS does not change the
behaviours modelled apart from adding stuttering steps. Only identity rules can be
mapped to virtual identity rules, of course, and the tool will check this. To specify a
rule mapping to a virtual identity rule (a “to-identity rule mapping”) the following
form of rule mappings should be used (where init is the name of a rule in the source
GTS):

r u l e i n i t to v i r t u a l i d e n t i t y

Note that the word identity is a keyword in the morphism language. It is therefore
not possible to map rules named “identity”.

Where possible, auto-completion will consider completing by introducing to-
virtual or even to-identity rule mappings. This behaviour can be restricted by
claiming auto-completion is possible using only to-identity rule mappings or
without using to-virtual mappings at all, to ensure behaviour preservation:

• auto−complete to−identity−only map { ... } claims that only to-identity mappings
might need to be introduced.

• auto−complete without−to−virtual map { ... } claims that no to-virtual mappings
will need to be introduced to complete the morphism.

Conversely, rule mappings can be established from virtual empty source rules.
This is useful where the target GTS contains rules that cannot be matched by
any of the source rules—for example where the target GTS contains more rules
than the source GTS, as is the case when reusing the specifications of non-
functional properties as described in [DZT13]. There is no need to consider identity
source rules or any other more complex source rules: For empty source rules rule
morphisms trivially exist.

A rule mapping from an empty source rule (a “from-empty rule mapping”) is
defined as follows:

r u l e empty to do

where do is the name of a rule in the target GTS. empty is a keyword in the language
and cannot be the name of a rule.

Auto-completion can consider introducing from-empty rule mappings automat-
ically. Note that this is very likely to reduce the chances of producing unique
auto-completions as from-empty mappings can be trivially introduced and can be
trivially complemented with to-virtual mappings to ensure all rules in both GTSs
have a mapping. In order to produce more intuitive behaviour, GTSMorpher will
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g t s _ f a m i l y S e r v e r F a m i l y {
{

metamodel : " s e r v e r "
behaviour : " s e r v e r R u l e s "

}

t rans form ers : " t r a n s f o r m e r R u l e s "
}

Listing 9.2 Syntax for specifying GTS families

(1) not try to introduce from-empty mappings if a mapping with an actual source
rule can be found, and (2) only try to introduce from-empty rule mappings if
explicitly instructed to do so. The following syntax allows from-empty mappings
to be included:

auto−complete allow−from−empty map { . . . }

9.3.2 GTS Families

You can specify that the source or target of a GTS morphism should be taken
from a GTS family by providing the definition of the family and the sequence
of transformers to apply to the family’s root GTS when picking the GTS you
actually want. GTS families are described in more detail in [ZD17]. Intuitively, the
T-GTS family of a GTS GTS0 is the set of GTSs reachable from GTS0 using the
transformers in T.

To specify a GTS family, replace the GTS specification with one that follows
the format shown in Listing 9.2. In it, metamodel and behaviour describe the root
GTS of the family as usual. Although the transformers introduced in [ZD17] can be
specified in different ways, here we restrict ourselves to transformers specified using
Henshin rules. transformers references a Henshin module (typed over Ecore and
Henshin) with the transformer rules of the GTS family. GTS family specifications
can be used anywhere a GTS is expected.

We can then specify a specific GTS in this family by specifying the sequence
of transformers to be applied on the root GTS of the family. Listing 9.3 shows this
in an example. AdaptedServer picks a specific variant of our Server GTS that can be
mapped cleanly onto the PLS xDSML. The using clause indicates the sequence of
transformer applications, including their actual parameters, to be used in deriving
the correct GTS from inside the family. Specifically, it introduces the separate
InputQueue and OutputQueue subclasses of Queue that are needed for mapping to
Tray and Conveyor. We do not show the transformers used in this example here. These
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g t s A dap t edSe rve r {
fam i l y : S e r v e r F a m i l y

using [
addSubClass ( s e r v e r . Queue , " InputQueue " ) ,
addSubClass ( s e r v e r . Queue , " OutputQueue " ) ,
reTypeToSubClass ( s e r v e r R u l e s . p roces s , s e r v e r . Queue ,

s e r v e r . InputQueue , " i q " ) ,
reTypeToSubClass ( s e r v e r R u l e s . p roces s , s e r v e r . Queue ,

s e r v e r . OutputQueue , " oq " ) ,
mvAssocDown ( s e r v e r . S e r v e r . in , s e r v e r . InputQueue ) ,
mvAssocDown ( s e r v e r . S e r v e r . out , s e r v e r . OutputQueue )

]
}

Listing 9.3 AdaptedServer is a GTS in the ServerFamily GTS family

g t s ServerPLS {
weave ( dontLabelNonKernelElements , preferMap2TargetNames ) : {

map1 : i n t e r f a c e _ o f ( A dap t edSe rve r )
map2 : Server2PLS

}
}

Listing 9.4 Syntax for GTS amalgamation

can be found on the GTSMorpher repository. Examples of some other transformers
will be shown later.

9.3.3 GTS Amalgamation

Once a valid morphism has been described (either as a complete map or by using
unique auto-completion), GTS amalgamation can be performed (as per [Dur+17]).
Where the source GTS is declared using interface_of , amalgamation will assume an
inclusion to be defined by the @Interface annotations.

GTS amalgamation is specified in a special form of GTS specification shown
in Listing 9.4. map1 and map2 are expected to, together, define a span; that is both
mappings must have the same source GTS. No further checks of the morphisms
are undertaken, and no guarantees are given w.r.t. semantics preservation of the
amalgamation step (although we are working on supporting this in future versions of
GTSMorpher). Both map1 and map2 can be defined either by referencing an existing
named mapping or by using the interface_of keyword.

The weave clause can be extended with parameters specifying the rules to use
when generating names for the amalgamated model elements. By default, weaving



9 GTSMorpher: Composing Behavioural Analyses 203

will preserve the names of all model elements that contributed to a given woven
element. If these names are all identical, the new model element will have the
same name. Otherwise, all names will be joined together using underscores as the
separator. Names of model elements that are not mapped from the kernel GTS will
be prefixed with left__ (for map1) or right__ (for map2), respectively, to indicate
their provenance. Through parameters, weave can be instructed to give preference
to names defined in one of the GTSs involved. If any naming option leads to names
that are not unique within their scope, the weaver will fall back to the default naming
strategy for these elements. The choices we have made in the example above will
result in the woven xDSML to use the PLS names wherever possible.

9.4 An Application Example

This section shows how the mechanisms introduced in the previous sections may be
useful in the development of generic tools with minimal effort. Specifically, we il-
lustrate how to exploit the capabilities of GTSMorpher by developing an alternative
implementation of the Karlsruhe Architectural Maintainability Prediction (KAMP)
approach [Ros+15]. KAMP evaluates the maintainability of IT systems based
on the metamodel of their architectures. More precisely, assuming a component-
based architecture, and given an initial request for change, it predicts the change
propagation in the software architecture model. In the KAMP approach, components
are considered black boxes. Although no knowledge about component internals is
required, the model of the software architecture is supposed to include information
on both technical and organisational tasks—including source code files, test cases,
build configurations, etc.—and contain explicit interface specifications that bind
them in the software process. This information and change propagation rules are
then used by KAMP to calculate the change propagation in the software architecture
automatically. As a result of the process, KAMP gives a list with all the structural
and organisational tasks to execute the change request.

A complete implementation of the approach requires a detailed distinction of
elements and tasks, so that specific and friendly information is provided to the final
user. However, the core of the tool is quite simple; it just “taints” those elements
affected by a given change. By using the propagation rules, this “tainting” of
elements leads to the identification of all elements affected by an initial change
request. However, given a DSML description, possibly including both a metamodel
and transformation rules describing its behaviour, the application of the approach
would require the modification of the model on which the propagation is to be
performed. This is, for example, the approach followed to implement the technique
on the Palladio system (cf. [Ros+15]).

To define the KAMP approach generically, so that we can apply it to any DSML
description, we just need the possibility of tainting elements and propagating such
tainting. In other words, the KAMP approach is defined just by the DSML defined
by the metamodel in Fig. 9.5 and the propagation rule in Fig. 9.6. To be able to
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Fig. 9.5 KAMP’s metamodel (kamp)

Fig. 9.6 KAMP’s rules (kampRules)

propagate the tainting on any specific system, we just need to be able to instantiate
the KAMP DSML on the specific places on which change is propagated in the
system. The good news is that we only need to indicate the specific propagation
points, since the propagation will happen always in the same way. Even more, we
can assure that the modified system thus obtained behaves in exactly the same as the
original system.

9.4.1 Making PLS Taintable

Instead of using a complex system, we show in the rest of the section how to apply
the KAMP approach to the PLS language introduced in Sect. 9.2. To do it, we
need to first extend the PLS language so that elements may be tainted, and then
introduce the propagation rules on any specific propagation point. Notice that if
the attribute was introduced together with the propagation rules, we would get a
different attribute on each instantiation. Instead, we first introduce the attribute, a
boolean attribute tainted, and then each propagation rule operating on such same
attribute. With the machinery provided by GTSMorpher this is very simple. We just
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Fig. 9.7 Taintable’s metamodel (taintable)

auto−complete unique allow−from−empty map I T a i n t a b l e 2 P L S {
from i n t e r f a c e _ o f { T a i n t a b l e }
to PLS
type_mapping {

c l a s s t a i n t a b l e . Element => p l s . NamedElement
}

}

Listing 9.5 GTS morphism to enable PLS to become taintable

need a GTS with the metamodel depicted in Fig. 9.7 and no rules. In this metamodel,
the only element not annotated with @Interface is precisely the tainted attribute.

g t s T a i n t a b l e {
metamodel : " t a i n t a b l e "

}

To be able to taint any element of the PLS language we just need to instantiate the
generic Taintable GTS with the PLS, and specifically by mapping the Element class
to the NamedElement class, thus giving the tainted attribute to all named elements of
the PLS. Given the PLS GTS defined as

g t s PLS {
metamodel : " p l s "
behaviour : " p l s R u l e s "

}

we can instantiate the Taintable generic GTS just by providing the GTS morphism
ITaintable2PLS from the GTS interface_of {Taintable} to the PLS GTS that maps the
class Element to the class NamedElement as shown in Listing 9.5. Notice the use
of the allow-from-empty directive. GTS morphisms require injective and surjective
mappings between the two rule sets. That is, for each rule in the target GTS—the
PLS in this case—we need a rule in the source GTS. Since there are no rules in
the interface of the Taintable GTS, empty rules are used instead. To simplify the
exhaustive definition of these mappings, the combined use of the allow-from-empty
and auto-complete directives automatically generates all these required mappings.

Given the ITaintable2PLS morphism and the inclusion of the interface of Taintable
into itself, the amalgamation GTS TaintablePLS is constructed as shown in List-
ing 9.6.
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export g t s T a i n t ab l ePL S {
weave ( dontLabelNonKernelElements , preferMap2TargetNames ) : {

map1 : i n t e r f a c e _ o f ( T a i n t a b l e )
map2 : I T a i n t a b l e 2 P L S

}
}

Listing 9.6 Constructing TaintablePLS

The TaintablePLS GTS is as the PLS GTS but with an additional attribute tainted
in the NamedElement class, which is inherited by all its subclasses, which can now
be “tainted”.

9.4.2 Adding Taint Propagation

The following step is to instantiate the KAMP GTS with the PLS using different
mapping morphisms specifying the different links on which we want to propagate
the tainting. Notice that now the tainted attribute is part of the interface, and
therefore, it will be mapped into the homonymous attribute in the TaintedPLS GTS.
In what follows we are going to carry on several instantiations to illustrate different
cases.

The KAMP GTS Family

Assume we are interested in specifying change propagation due to the parts being
generated. If a machine changes, the tray on which the parts generated by it are
placed requires change. The transformers taking parts from such trays, as well as
operators, will also need to adjust to change. This change needs to be propagated
along the structure of specific instance models, since the change required by a
machine implies the change on a subsequent tray, which changes transformers and
operators taking parts from them. In turn, change in these transformers, which are
themselves machines, will require change in subsequent trays, transformers, and
operators. Notice however that the conveyors between machines and trays do not
require change, since they are just moving bands to transport objects. Given the
nature of the KAMP approach, tainting may be propagated as required using the
relations between these elements. First, we need to define the KAMP GTS:

g t s kampGTS {
metamodel : " kamp"
behaviour : " kampRules "

}
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However, these relations are not always direct, nor mimic the pattern provided by
the KAMP rules. In other words, no morphism can directly be defined for any of
these links, and therefore all these instantiations require the introduction of GTS
transformers through appropriate GTS families.

Consider for example the in association of the Machine class. In the KAMP’s
propagation rule, the tainting goes from Source to Target, whilst we are interested in
the opposite direction for the in association of the Transformer class, since we want
it to propagate from the tray objects to the subsequent transformers taking pieces
from them. The same situation is found for the tray association of the Operator class.
Moreover, the multiplicity of this association is 0..*, whilst the target association
of the Source class in KAMP’s metamodel (see Fig. 9.5) has multiplicity 0..1.
Finally, the relation between a machine and its subsequent tray is not direct, since
it happens through an intermediate conveyor. Of course, we could define a more
general metamodel with alternative cases and corresponding alternative rules, but
we do not need to. This is precisely the reason for transformers and families, to be
able to specify the nature of an abstraction as the one provided by KAMP, manage
the variability of situations through transformers, and then adjust the source GTS so
that the instantiation may take place.

Figures 9.8, 9.9, and 9.10 define several transformer rules. The addPathElement
transformer allows us to introduce an intermediary class between the source and
target classes; the reverseReference transformer allows us to reverse a link; and
adjustMultiplicity allows us to change the multiplicity of a link. Although some famil-
iarity with Henshin’s metamodel and with its way of specifying transformation rules
is required to understand them, these rules just define changes on the metamodels
and rules of the GTSs on which they are applied. For example, the adjustMultiplicity
rule just specifies a change in the multiplicities of the reference specified as
parameter. The most complex one of these three transformers is the addPathElement
one. Given an EReference instance srcRef, between a source class srcClass and a
target class tgtClass, it introduces a new class newClass as target of srcRef, and a new
reference newRef from this newClass to tgtClass. Correspondingly, all those rules in
which the reference appears are modified introducing new intermediate nodes of
class newClass appropriately linked.

The KAMP family is then defined as the family of GTSs reachable from the
KAMP GTS using the transformer rules. In general, one would want to provide a
set of general transformers and expect the GTSMorpher tool to search for the right
version of the source GTS so that the instantiation may take place. Instead, here, we
explicitly control the application of transformers as pointed out above.

g t s _ f a m i l y KAMPFamily {
kampGTS
t rans form ers : " t r a n s f o r m e r R u l e s "

}
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Fig. 9.8 addPathElement transformer (transformerRules)
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Fig. 9.9 reverseReference transformer (transformerRules)

Fig. 9.10 adjustMultiplicity transformer (transformerRules)

Instantiating the Propagation Rules

To propagate the tainting from a machine to its subsequent tray, we can use the
addPathElement transformer. Basically, this transformer modifies the source GTS
by introducing a new class between two classes linked by some association and
updates any rules referencing this association. This transformer takes as arguments
the name of the association to operate on, plus identifiers for the new class, reference
and node, together with the multiplicity for the additional association. The following
GTS PatternMachineOutTray (cf. Listing 9.7) is the result of applying this transformer
on the target association of the Source class using the addPathElement transformer
of the KAMPFamily family.

export g t s Pa t t e rnM ach i neO u t Tr ay {
fam i l y : KAMPFamily

using [
addPa t hE l em en t ( kamp . Source . t a r g e t , " newClass " , " newRef " ,
" newNode " , 0 , 1 )

]
}

Listing 9.7 Constructing PatternMachineOutTray
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auto−complete unique allow−from−empty
map I P a t t e r n M a c h i n e O u t T r a y 2 T a i n t a b l e P L S {
from i n t e r f a c e _ o f { Pa t t e rnM ach i neO u t Tr ay }
to T a i n t ab l ePL S

type_mapping {
c l a s s kamp . Source => p l s . Machine
c l a s s kamp . T a r g e t => p l s . Tray

}
}

Listing 9.8 A morphism from PatternMachineOutTray to the taintable PLS, ready for weaving
tainting

export g t s TaintedPLSMachineOutTray {
weave ( dontLabelNonKernelElements , preferMap2TargetNames ) : {

map1 : i n t e r f a c e _ o f ( Pa t t e rnM ach i neO u t Tr ay )
map2 : I P a t t e r n M a c h i n e O u t T r a y 2 T a i n t a b l e P L S

}
}

Listing 9.9 Constructing TaintedPLSMachineOutTray

All elements in KAMPS’s metamodel are annotated as interface. New elements
introduced by transformers are also annotated as interfaces. To construct new GTSs
as a result of the amalgamation of previously defined GTSs, we need to define mor-
phisms from a kernel interface to the system on which we wish to act, in this case the
TaintablePLS GTS that resulted from the previous amalgamation. The instantiating
morphism can now be defined from the interface of the PatternMachineOutTray GTS
to the TaintablePLS GTS as shown in Listing 9.8.
Notice the use of the auto-complete directive, with which the mapping for other
elements in the interface sub-GTS is automatically calculated. In particular, notice
that we do not need to provide an explicit mapping for the new path element
introduced. Notice also the use of the allow-from-empty directive as above.

We can now amalgamate this morphism and the inclusion of the interface of
the PatternMachineOutTray GTS into itself to generate the TaintedPLSMachineOutTray
GTS as shown in Listing 9.9.

The in link of the Transformer class goes from Transformer into Tray. However,
we want the tainting to propagate following the inverse direction. We can get
the required instantiation of the propagation rule by using the reverseReference
transformer rule to reverse the link in the source rule. As before, once the source
GTS is obtained we can define the morphism and then the amalgamation GTS (cf.
Listing 9.10).

The tray link of the Operator class presents a new challenge. So far, we just needed
to apply one transformer to be able to build the required morphism, but in this
case, we need to both reverse the link and change its multiplicity. We just need
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export g t s P a t t e r n T r a n s f o r m e r I n {
fam i l y : KAMPFamily
using [

r e v e r s e R e f e r e n c e ( kamp . Source . t a r g e t )
]

}

auto−complete unique allow−from−empty
map Pa t t e rnTrans fo rm er I n2 PLS M ach i neO u t Tray {
from i n t e r f a c e _ o f { P a t t e r n T r a n s f o r m e r I n }
to TaintedPLSMachineOutTray
type_mapping {

c l a s s kamp . T a r g e t => p l s . T rans fo rm e r
c l a s s kamp . Source => p l s . Tray

}
}

export g t s T a i n t ed P L S T ra n s fo r m e r I n {
weave ( dontLabelNonKernelElements , preferMap2TargetNames ) : {

map1 : i n t e r f a c e _ o f ( P a t t e r n T r a n s f o r m e r I n )
map2 : Pa t t e rnTrans fo rm er In 2PL SM ac h i neO u t T ra y

}
}

Listing 9.10 Construction of the TaintedPLSTransformerIn GTS

to specify the sequence of transformers that lead to the intended target as shown in
Listing 9.11.

9.4.3 The Final Taint-Propagating PLS

After the consecutive instantiation of the Taintable GTS and of the KAMP GTS
on the specific links specified in the morphisms, we get an extended PLS GTS in
which the metamodel includes a tainted attribute in the NamedElement class and
propagation rules propagating the tainting along the links between named elements.
The extended PLS protects the semantics of the original PLS language, but in
addition it now provides this additional functionality to identify the part of the
model affected by any potential change as specified. In addition to the original
rules in Fig. 9.2, the extended PLS GTS now also includes the rules depicted in
Fig. 9.11. The application of these rules on an instance model in which some element
is tainted, specifying a change, would result in an instance model in which all
elements affected by the change are tainted, in accordance to the specified tainting
propagation rules.
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export g t s P a t t e r n C o n v e y o r T r a y {
fam i l y : KAMPFamily
using [

a d j u s t M u l t i p l i c i t y ( kamp . Source . t a r g e t , 0 , −1) ,
r e v e r s e R e f e r e n c e ( kamp . Source . t a r g e t )

]
}

auto−complete unique allow−from−empty
map P a t t e r n O p e r a t o r T r a y 2 T a i n t e d P L S C o nv e y o r T r a y {
from i n t e r f a c e _ o f { P a t t e r n C o n v e y o r T r a y }
to T a i n t ed P L S T ra n s fo r m e r I n
type_mapping {

c l a s s kamp . Source => p l s . Tray
c l a s s kamp . T a r g e t => p l s . O p e r a t o r

}
}

export g t s Ta i n t edPLSOpera t o rT ra y {
weave ( dontLabelNonKernelElements , preferMap2TargetNames ) : {

map1 : i n t e r f a c e _ o f ( P a t t e r n C o n v e y o r T r a y )
map2 : P a t t e r n O p e r a t o r T r a y 2 T a i n t ed P L S C o n v ey o r T r a y

}
}

Listing 9.11 Constructing TaintedPLSOperatorTray

Fig. 9.11 The amalgamation adds these four rules to the behaviour of the PLS
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9.5 Conclusions and Outlook

In this chapter, we have shown a tool and case study showing how the explicit speci-
fication of a language’s operational semantics with graph transformations can make
it possible to reuse analysis techniques for different domain-specific modelling
languages. This approach allows the reuse of analysis techniques across different
domain-specific languages reducing the effort required for different domains to
benefit from particular analysis expertise. Because it enables a modular approach
to analysis (as discussed also in Chaps. 4 and 5 of this book [Hei+21]), different
analyses can be combined into one modelling language, so that different analyses
can be enabled depending on what a project requires.

References

[AL94] Martin Abadi and Leslie Lamport. “An Old-Fashioned Recipe for Real Time”. In: ACM
Transactions on Programming Languages and Systems 16.5 (Sept. 1994), pp. 1543–
1571.

[Cor+97] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel,
and Michael Löwe. “Algebraic approaches to graph transformation I: Basic concepts
and double pushout approach”. In: Handbook of Graph Grammars and Computing by
Graph Transformation, Volume 1: Foundations. 1997. Chap. 3.

[DMC12] Zinovy Diskin, Tom Maibaum, and Krzysztof Czarnecki. “Intermodeling, Queries, and
Kleisli Categories”. In: Conf. Fundamental Approaches to Software Engineering. 2012,
pp. 163–177. https://doi.org/10.1007/978-3-642-28872-2_12.

[Dur+17] Francisco Durán, Antonio Moreno-Delgado, Fernando Orejas, and Steffen Zschaler.
“Amalgamation of Domain Specific Languages with Behaviour”. In: Journal of Logical
and Algebraic Methods in Programming 86 (1 2017), pp. 208–235. https://doi.org/10.
1016/j.jlamp.2015.09.005.

[DZT13] Francisco Durán, Steffen Zschaler, and Javier Troya. “On the Reusable Specification
of Non-functional Properties in DSLs”. In: 5th Int’l Conf. on Software Language
Engineering, SLE. 2013, pp. 332–351. https://doi.org/10.1007/978-3-642-36089-3_19.

[EHC05] Gregor Engels, Reiko Heckel, and Alexey Cherchago. “Flexible Interconnection
of Graph Transformation Modules”. In: Formal Methods in Software and Systems
Modeling. 2005, pp. 38–63. https://doi.org/10.1007/978-3-540-31847-7_3.

[Ehr+06] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamentals
of Algebraic Graph Transformation. Springer, 2006. https://doi.org/10.1007/3-540-
31188-2.

[Ehr79] Hartmut Ehrig. “Introduction to the algebraic theory of graph grammars”. In: 1st Graph
Grammar Workshop. 1979, pp. 1–69. https://doi.org/10.1007/BFb0025714.

[Eng+97] Gregor Engels, Reiko Heckel, Gabriele Taentzer, and Hartmut Ehrig. “A Combined
Reference Model- and View-Based Approach to System Specification”. In: Interna-
tional Journal of Software Engineering and Knowledge Engineering 7.4 (1997), pp.
457–477. https://doi.org/10.1142/S0218194097000266.

[GM04] Vincenzo Grassi and Raffaela Mirandola. “A Model-driven Approach to Predictive Non
Functional Analysis of Component-based Systems”. In: Proc. Workshop on Models for
Non-Functional Aspects of Component-Based Software. 2004.

https://doi.org/10.1007/978-3-642-28872-2_12
https://doi.org/10.1016/j.jlamp.2015.09.005
https://doi.org/10.1016/j.jlamp.2015.09.005
https://doi.org/10.1007/978-3-642-36089-3_19
https://doi.org/10.1007/978-3-540-31847-7_3
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/BFb0025714
https://doi.org/10.1142/S0218194097000266


214 S. Zschaler, F. Durán

[GPS98a] Martin Große-Rhode, Francesco Parisi-Presicce, and Marta Simeoni. “Refinements of
Graph Transformation Systems via Rule Expressions”. In: 6th Int’l Workshop Theory
and Application of Graph Transformations. 1998, pp. 368–382. https://doi.org/10.1007/
978-3-540-46464-8_26.

[GPS98b] Martin Große-Rhode, Francesco Parisi-Presicce, and Marta Simeoni. “Spatial and Tem-
poral Refinement of Typed Graph Transformation Systems”. In: 23rd Int’l Symposium
Mathematical Foundations of Computer Science. 1998, pp. 553–561. https://doi.org/
10.1007/BFb0055805.

[Hei+21] Robert Heinrich, Francisco Durán, Carolyn L. Talcott, and Steffen Zschaler (eds.)
Composing Model-Based Analysis Tools. Springer, 2021. https://doi.org/10.1007/978-
3-030-81915-6.

[Joh+19] Stefan John, Alexandru Burdusel, Robert Bill, Daniel Strüber, Gabriele Taentzer,
Steffen Zschaler, and Manuel Wimmer. “Searching for Optimal Models: Comparing
Two Encoding Approaches”. In: Journal of Object Technology 18.3 (2019), 6:1–22.
https://doi.org/10.5381/jot.2019.18.3.a6.

[Lam94] Leslie Lamport. “A Temporal Logic of Actions”. In: ACM Transactions on Program-
ming Languages and Systems 16.3 (1994), pp. 872–923.

[Lar+07] Juan de Lara, Roswitha Bardohl, Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and
Gabriele Taentzer. “Attributed Graph Transformation with Node Type Inheritance”. In:
Theoretical Computer Science 376 (2007), pp. 139–163. https://doi.org/10.1016/j.tcs.
2007.02.001.

[LG13] Juan de Lara and Esther Guerra. “From Types to Type Requirements: Genericity for
Model-Driven Engineering”. In: Software and Systems Modelling 12.3 (2013), pp. 453–
474. https://doi.org/10.1007/s10270-011-0221-0.

[LG14] Juan de Lara and Esther Guerra. “Towards the flexible reuse of model transformations:
A formal approach based on graph transformation”. In: Journal of Logical and Alge-
braic Methods in Programming 83.5–6 (2014). 24th Nordic Workshop on Programming
Theory (NWPT 2012), pp. 427–458. issn: 2352-2208. https://doi.org/10.1016/j.jlamp.
2014.08.005.

[Mor+14] Antonio Moreno-Delgado, Francisco Durán, Steffen Zschaler, and Javier Troya. “Mod-
ular DSLs for Flexible Analysis: An e-Motions Reimplementation of Palladio”. In:
Proc. 10th European Conf. on Modelling Foundations and Applications). 2014, pp.
132–147. https://doi.org/10.1007/978-3-319-09195-2_9.

[Nau86] Peter Naur. “Programming as Theory Building”. In: Microprocessing and Micropro-
gramming 15 (1986), pp. 253–261. https://doi.org/10.1016/0165-6074(85)90032-8.

[Reu+16] Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek, Heiko
Koziolek, Max Kramer, and Klaus Krogmann. Modeling and Simulating Software
Architectures: The Palladio Approach. MIT Press, 2016.

[Ros+15] Kiana Rostami, Johannes Stammel, Robert Heinrich, and Ralf H. Reussner.
“Architecture-based Assessment and Planning of Change Requests”. In: 11th Inter-
national ACM SIGSOFT Conference on Quality of Software Architectures. 2015, pp.
21–30. https://doi.org/10.1145/2737182.2737198.

[Ste+09] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse
Modeling Framework. Addison-Wesley Professional, 2009.

[Str+17] Daniel Strüber, Kristopher Born, Kanwal Daud Gill, Raffaela Groner, Timo Kehrer,
Manuel Ohrndorf, and Matthias Tichy. “Henshin: A Usability-Focused Framework for
EMF Model Transformation Development”. In: 10th Int’l Conf on Graph Transforma-
tions. 2017, pp. 196–208.

[Tro+13] Javier Troya, Antonio Vallecillo, Francisco Durán, and Steffen Zschaler. “Model-
Driven Performance Analysis of Rule-Based Domain Specific Visual Models”. In:
Information and Software Technology 55.1 (2013), pp. 88–110. https://doi.org/10.1016/
j.infsof.2012.07.009.

https://doi.org/10.1007/978-3-540-46464-8_26
https://doi.org/10.1007/978-3-540-46464-8_26
https://doi.org/10.1007/BFb0055805
https://doi.org/10.1007/BFb0055805
https://doi.org/10.1007/978-3-030-81915-6
https://doi.org/10.1007/978-3-030-81915-6
https://doi.org/10.5381/jot.2019.18.3.a6
https://doi.org/10.1016/j.tcs.2007.02.001
https://doi.org/10.1016/j.tcs.2007.02.001
https://doi.org/10.1007/s10270-011-0221-0
https://doi.org/10.1016/j.jlamp.2014.08.005
https://doi.org/10.1016/j.jlamp.2014.08.005
https://doi.org/10.1007/978-3-319-09195-2_9
https://doi.org/10.1016/0165-6074(85)90032-8
https://doi.org/10.1145/2737182.2737198
https://doi.org/10.1016/j.infsof.2012.07.009
https://doi.org/10.1016/j.infsof.2012.07.009


9 GTSMorpher: Composing Behavioural Analyses 215

[War94] Martin P.Ward. “Language-oriented programming”. In: Software-Concepts and Tools
15.4 (1994), pp. 147–161. URL: http://www.gkc.org.uk/martin/papers/middle-out-t.
pdf.

[ZD17] Steffen Zschaler and Francisco Durán. “GTS Families for the Flexible Composition
of Graph Transformation Systems”. In: 20th Int’l Conf. Fundamental Approaches to
Software Engineering. 2017, pp. 208–225. https://doi.org/10.1007/978-3-662-54494-
5_12.

http://www.gkc.org.uk/martin/papers/middle-out-t.pdf
http://www.gkc.org.uk/martin/papers/middle-out-t.pdf
https://doi.org/10.1007/978-3-662-54494-5_12
https://doi.org/10.1007/978-3-662-54494-5_12


Chapter 10
Compositional Modelling Languages
with Analytics and Construction
Infrastructures Based
on Object-Oriented
Techniques—The MontiCore Approach

Arvid Butting, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann

Abstract Composing modelling languages and analysis tools still require sig-
nificant efforts to properly consider syntax and semantics as well as related
analyses and syntheses. This composition ideally should be defined on individual
language components that can be composed when needed. Only when model-based
analysis infrastructures can be composed in accordance to their related language
definitions and can be reused in a black-box fashion without modification, can
we foster automation in language engineering and integration. In this chapter, we
demonstrate object-oriented language engineering concepts that enable composing
models of heterogeneous languages using the language workbench MontiCore.
This composition includes the concrete syntax and abstract syntax as well as
analysis infrastructures and analyses. We demonstrate in detail how the MontiCore
infrastructure enables (de)composing languages and related model-based analysis
techniques such that the analyses can be reused with other languages with minimal
effort. Several of the provided techniques are based on adaptations of the well-
known concepts of object-oriented development, such as inheritance and the
extension and the visitor patterns. This can reduce the effort of engineering truly
domain-specific modelling languages significantly.

This case-study chapter illustrates concepts introduced in Chap. 4 and addresses
Challenge 1 in Chap. 3 of this book.
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10.1 Introduction

Many engineering domains moved to use explicit modelling languages to enable
domain experts to contribute to the engineering of systems. Ideally, these modelling
languages and their parts can be reused in and tailored to different contexts, such
that deploying precise domain-specific modelling languages (DSMLs) becomes less
challenging. Despite efforts in software language engineering [Kle08, HRW18],
the composition of modelling languages, especially their analyses and syntheses,
is far from solved in general (cf. Chap. 3 of this book [Hei+21]) and still requires
significant manual efforts. This hinders the deployment of the most suitable domain-
specific modelling languages for experts, who instead have to cope with overly
generic modelling languages, such as the unifiedmodeling language (UML) [Obj15]
or the systems modeling language (SysML) [Obj12], and tailor these through
profiles or modelling guidelines. Both introduce a conceptual gap [FR07] between
the experts’ problem domain of discourse (e.g., material science, kinematics,
geometry) and the solution domain of software engineering through which the
domain experts need to work around the limitations of these languages.

The efforts for efficiently engineering DSMLs can be reduced if the languages
support modularity and their infrastructure follows this modularity. When the
infrastructure for analyses is derived in ways that foster modularity, composition
of this infrastructure can be automated as well. This eases reusing DSML (parts)
and their analysis in the context of other languages and can foster the application
of DSMLs in general. In this chapter, we therefore demonstrate core concepts
to compose models from heterogeneous sublanguages. This includes the syntax
(concrete and abstract) as well as the infrastructures to define the syntax and the
analyses to operate on these composed languages. We demonstrate in detail how
the MontiCore infrastructure allows to decompose a number of analysis techniques,
both for functional and for extra-functional properties.

The contributions of this chapter, hence, are:

• A method for engineering modelling languages based on modular syntax defini-
tions

• Generation of a visitor-based framework for modular model-based analyses
• Families of modular languages for expressions and literals

In the remainder, Sect. 10.2 introduces MontiCore, before Sect. 10.3 applies it to
engineering modular languages and analysis infrastructures. Section 10.4 highlights
related work, and Sect. 10.5 discusses our approach. Section 10.6 concludes.
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10.2 Preliminaries

This section introduces the MontiCore [HR17] language workbench [Erd+15]
and its features used for engineering compositional languages as explained in
subsequent sections.

MontiCore is a language workbench that provides an EBNF-like grammar format
to define languages from which it generates much of the infrastructure necessary
to efficiently engineer modular languages. It has been applied to the engineering
of modelling languages for a variety of domains, including automotive [Dra+19],
cloud services [Eik+17], robotics [Ada+17b], systems engineering [Dal+19], and
more.

For a given grammar, MontiCore generates infrastructure for the language. This
includes parser and lexer, Java classes for the abstract syntax tree (AST), an
infrastructure to implement context conditions (language well-formedness rules),
visitors [Hei+16] to develop and compose analyses, and symbol tables [HMR15,
MRR15, MRR16] to combine models of different languages. The general procedure
to process a model is depicted in Fig. 10.1. First, the model is transferred to its
internal representation, i.e., the AST, by the parser and lexer. Next, the AST is
processed by functions, which can include well-formedness checks, analyses, or
transformations. The resulting AST as well as the analysis results are used to
produce the output, which can be generated code, models, or analysis reports.

A MontiCore grammar defines the abstract and concrete syntax of a language.
It consists of productions that define nonterminals. A production consists of a left-
hand side (LHS) and a right-hand side (RHS) separated by an = sign. The LHS is
the nonterminal that the production defines, while the RHS is the production’s body
and defines both the abstract and concrete syntax. Figure 10.2 depicts a MontiCore
grammar of a compact language for finite automata, while Fig. 10.3 shows a cor-
responding automaton model. This grammar consists of three productions defining
the nonterminals Automaton, State, and Transition. MontiCore generates one AST
class for each production. Its attributes are defined by the production body. Stored
terminals map to attributes, while nonterminal usages map to compositions.

Fig. 10.1 MontiCore’s tool chain for processing models comprises fully generated components
(parser, lexer, etc.) and modular infrastructures for tools that are handcrafted (well-formedness
rules, model transformations)
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grammar Automata extends ExpressionsBasis,
CommonLiterals {

Automaton = "automaton" Name "{"
(State | Transition)* "}" ;

State = ["initial"]? ["final"]? "state" Name ";";

Transition = from:Name "-" ("[" guard:Expression "]")?
input:Name ">" to:Name ";";

}

Fig. 10.2 Exemplary grammar of an automata language

1
2
3
4
5
6
7

automata PingPong {
initial state Ping;
state Pong;

Ping - [ballHit] returnBall > Pong;
Pong - returnBall > Ping;

}

Fig. 10.3 Exemplary automaton for the language of Fig. 10.2

The body of a production consists of terminals and nonterminals. Terminals are
surrounded by quotation marks, e.g., "automaton" in line 3 of Fig. 10.2. Both
terminals and nonterminals can have different multiplicities, i.e., by appending a
question mark ? it becomes optional, while * allows arbitrarily many (including
zero) occurrences and + enforces at least one occurrence. Alternatives are separated
by |, and grouping can be achieved by parenthesising parts using round brackets.
Terminals whose presence is relevant for the abstract syntax can be parenthesised
in square brackets, yielding a Boolean attribute in the abstract syntax. Optionals are
mapped to Java optionals and multiple occurrences to Java lists.

Besides “normal” nonterminals, MontiCore provides interface, abstract, and
external nonterminals. Abstract and external nonterminals are not detailed here,
but detailed information on these is available in [HR17]. Interface nonterminals
are marked using the keyword interface (cf. Fig. 10.4, line 3). They do not specify
concrete syntax themselves. Instead, interface nonterminals are implemented by
other nonterminals (cf. Fig. 10.4, line 5). For interface nonterminals, a production
body can be used to restrict possible implementing nonterminals [HR17]. Concep-
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8

component grammar ExpressionsBasis extends LiteralsBasis {

interface Expression;

NameExpression implements Expression<350> = Name;

LiteralExpression implements Expression<340> = Literal;
}

Fig. 10.4 Component grammar providing basic syntax elements for expressions



10 Compositional Languages—The MontiCore Approach 221

tually, interface nonterminals are an extension of alternatives. Whenever interface
nonterminals are used in a production body, every interface implementation is
possible. Thus, instead of A = B | C; one can use interface nonterminals to define
interface A; B implements A; C implements A;. The concrete syntax for these two
examples does not differ. However, for interface nonterminals, an AST interface
instead of a class is generated and the relation between A and B and A and C is
mapped to inheritance instead of composition in the abstract syntax.

Using MontiCore, languages can be developed efficiently by reusing the modular
(parts of) other languages. To this end, MontiCore provides grammar extension
mechanisms. As depicted in Fig. 10.2 line 1, the grammar of the automata language
already uses this concept. By using the keyword extends followed by one or
multiple comma-separated grammars, a grammar can extend other grammars. As
a consequence, all nonterminals defined by productions of the inherited grammars
(also referred to as super grammars) are available in the current grammar. In
the automata language, this is used for the transition production as it uses the
nonterminals Expression that is not defined locally but defined in the super grammar
ExpressionsBasis. If a grammar is designed for reuse only and does not define a
language itself, it can and should be marked as a component grammar by adding the
keyword component (cf. Fig. 10.4, line 1).

The start nonterminal of a grammar is by default the first nonterminal in the
grammar [HR17]. However, there are situations in which this is not feasible, e.g.,
when extending an existing grammar and one of its nonterminals should be the start
nonterminal of the currently developed language. To address this, it is possible to
configure the start nonterminal explicitly as follows: start State. In this case, State is
used as the start nonterminal.

When extending a grammar, it is possible to extend productions of the super
grammars. This is possible for normal as well as for interface productions. In both
cases, conceptually a new alternative to the existing body resp. implementations is
created. Thus, all nonterminals and especially interface nonterminals can serve as
extension points. To further control the priority of the newly added alternative, it
is possible to add a priority in angle brackets (cf. Fig. 10.4, line 5). The higher the
number within the brackets, the higher is the alternative’s priority in the generated
parser.

10.3 Compositional Language Engineering

MontiCore provides means to support modular definition of languages and means to
realise language composition [HR17]. Modularisation fosters language reusability
and reduces co-evolution, as the commonalities in different languages can be
extracted to individual language modules that multiple languages rely on.

Grammar inheritance can be leveraged to decompose the syntax of a lan-
guage into modules (cf. Sect. 10.2). Further, MontiCore supports the definition
of component grammars to indicate that a grammar contains a reusable col-
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lection of pieces of syntax rather than a complete language. For instance, the
automata grammar presented in Fig. 10.2 uses grammar inheritance to decouple
the definitions of the automata language syntax in terms of states and transitions
from the syntax of expressions and of literals. This is realised by extending the
grammars ExpressionsBasis and CommonLiterals. A language module,
also referred to as language component, is defined by its grammar but also contains
all artefacts generated from the grammar, all handwritten extensions to the generated
artefacts, and handwritten language tooling such as, e.g., model-based analyses.
Therefore, modularisation has to be carried out for all these constituents as well.

As describing modular analyses on languages requires modular language syntax,
the following first introduces some of MontiCore’s means for modular grammar
definitions, before introducing the modular visitor infrastructure. Afterwards, the
application of this infrastructure for modular analyses is demonstrated by example.

10.3.1 Modular Syntax Definition

Expressions, types, literals, and statements are typical elements in modelling or
programming languages. However, every language requires a well-suited variant of
these concepts. Thus, these concepts are natural candidates for being encapsulated
into individual language components that can be reused by any language.

To facilitate this, MontiCore offers a multitude of modular base grammars each
of which contributes syntax to define expressions, literals statements, or types.
Figs. 10.4, 10.5, 10.6, and 10.7 demonstrate this concept. The ExpressionsBasis
(Fig. 10.4) and CommonExpressions (Fig. 10.5) grammars provide syntax for expres-
sions.

1
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5
6
7
8
9

10
11

component grammar CommonExpressions extends ExpressionsBasis {

LogicalNotExpression implements Expression <190> =
"!" Expression;

PlusExpression implements Expression <170> =
left:Expression operator:"+" right:Expression;

EqualsExpression implements Expression <130> =
left:Expression operator:"==" right:Expression;

}

Fig. 10.5 Component grammar describing the syntax of basic expressions

1
2
3

component grammar LiteralsBasis {
interface Literal;

}

Fig. 10.6 Grammar providing a syntax extension point for literals
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component grammar CommonLiterals extends LiteralsBasis {

BooleanLiteral implements Literal =
source:["true" | "false"];

SignedNatLiteral implements Literal =
(negative:["-"])? Digits;

}

Fig. 10.7 Basic Boolean and integer literals

The ExpressionsBasis grammar is a component grammar providing building
blocks for the syntax of expressions. At its core, it contains an interface nonterminal
Expression acting as extension point for different syntactical constructs that realise
expressions. ExpressionsBasis only provides the syntax for names (cf. NameEx-
pression) and values (cf. LiteralsExpression). Name (not depicted) is a token for
Java-like identifiers, such as Java method names. Literal is an inherited interface
nonterminal provided by LiteralsBasis (cf. Fig. 10.6), which only provides this
interface nonterminal but no implementations. Thus, the decision what kind of
literals are used and how these are defined is delayed to further grammars extending
the ExpressionsBasis grammar.

CommonExpressions extends ExpressionsBasis and adds three novel implemen-
tations to the Expression nonterminal providing syntax for some basic expres-
sions. While the LogicalNotExpression and EqualsExpression are commonly used for
Boolean expressions, the PlusExpression is commonly used for number expressions.
However, it can also be used to represent, e.g., String concatenation. These
grammars define only the syntax of the expression; their evaluation is performed
at a later stage in language processing.

All three grammar productions in the grammar for common expressions intro-
duce potential left recursion through inheritance with the interface nonterminal
Expression. MontiCore can handle the ambiguity introduced by this left recursion,
inter alia, through the parser priorities (cf. Sect. 10.2). The grammar CommonLiterals
(cf. Fig. 10.7) extends the LiteralsBasis and introduces Boolean literals (ll. 3–4) and
integer literals (ll.6–7).

An example of how to use ExpressionsBasis and add pre-built Literal imple-
mentations is presented in Fig. 10.2. The automata grammar extends both the
ExpressionBasis grammar and the CommonLiterals. Through this multiple inheri-
tance, the Literal nonterminal in the ExpressionsBasis grammar is implemented by
the nonterminals introduced in CommonLiterals. An excerpt of the AST data structure
that MontiCore produces from the grammar Automata is depicted in Fig. 10.8. As a
result of this extension, true and false as well as integer numbers can be used in
guards of an automaton through the LiteralExpression.

Other possible extensions are to either add further implementations of interface
nonterminals Expression or Literal in the automata grammar or use further pre-
built grammars that provide additional implementation such as CommonExpressions.
Figure 10.9 gives an overview of MontiCore’s pre-built grammars for expressions,
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Fig. 10.8 Excerpt from the AST generated from the Automata grammar

Fig. 10.9 Structure of base grammars for expressions, literals, and types

literals, and types. Types and literals grammars each are in a linear inheritance
relationship, where each grammar extends the syntax provided by their parent
grammar conservatively [HR17]. To this end, if a language uses types (or literals),
it can be post hoc extended with more syntax for types (or literals) by additionally
inheriting from a grammar that (transitively) extends the type (or literal) grammar
that was originally used.

The various application purposes for expressions prevent a linear inheritance
hierarchy for expression grammars: For example, it should be possible for a
language to use only the syntax for assignment expressions without bit expressions
(which include, e.g., shift operators). At the same time, other languages should
be able to use only bit expressions without assignment expressions. However, all
expression grammars extend the basis grammar for expressions, and all syntax these
add is available by implementing the Expression interface. Therefore, through mul-
tiple inheritance with different expression grammars, a combination of expression
syntaxes can be made available as well.
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In summary, the essence for modular syntax definitions as suggested in this
approach is to provide a grammar that only provides an interface nonterminal (in
the following called interface grammar). An interface grammar can be extended by
other grammars. Hereby, two kinds of extensions are conceivable: (1) Grammars
extending the interface grammar can provide further pre-built syntax options that
other languages can use. (2) Through inheriting from the interface grammar, a
language can delay the decision, which implementations should be used. Languages
engineers, thus, can design grammars that extend those interface grammars and by
this, specify that some sort of literals, statements, or types are used within their
developed language and where they are used. Later, this is resolved through multiple
inheritance from this language and the grammar(s) that extend(s) the interface
grammars for, e.g., literals, statements, or types. For example, the ExpressionsBasis
extends the LiteralsBasis, but through multiple inheritance in the Automata grammar
(cf. Fig. 10.2), expressions used in automata can use literals provided by Common-
Literals.

Figure 10.10 provides two example language components that utilise the lan-
guage components shown in Fig. 10.9. RoboJAction is a domain-specific lan-
guage for modelling actions in the context of service robotics applications similar
to this approach [Ada+17a]. The language lends notation elements from Java
but only supports basic types, literals of reduced complexity as well as a subset
of possible expression implementations. These notation elements are reused by
inheriting from several language components. The language further introduces novel
syntax elements for realising domain-specific concepts.

The second example is the object constraint language (OCL) that com-
bines the language components CommonLiterals, BitExpressions,

Fig. 10.10 Combining base grammars
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AssignmentExpressions, CommonExpression, OCLExpressions,
and CollectionTypes. JavaLight and an OCL are considered as complete
modelling languages. However, in case more complex types, literals, or
expressions are needed, it is possible to extend those languages and combine
them with additional language components such as SimpleGenericTypes or
JavaLiterals.

10.3.2 Modular Analysis Infrastructure

The modularity for syntax presented in the previous section would be of limited
use without modularity in analyses, transformations, and further operations im-
plemented against the syntax. For this purpose, MontiCore generates composable
visitors [Hei+16]. From each grammar, a Visitor interface prefixed with the name
of the grammar is generated. This interface provides four methods handle, visit,
traverse, and endVisit for each nonterminal of the given grammar. A depth-first
traversal of the AST of the grammar is already included via default implementations
of the handle and traverse methods. The handle methods encapsulate the handling
of the nonterminals and call the corresponding visit, traverse, and endVisit methods
for the nonterminals. The traverse method is responsible for traversing child nodes
of the nonterminal. To implement an analysis for models of a given language,
language engineers can focus on implementing the analysis using the visit and
endVisit methods. By default, visit and endVisit methods have an empty default
implementation and only have to be implemented if it is intended to use these for
the implementation of the analysis. The visitor interfaces provide methods for the
current grammar only. However, they extend the corresponding visitor interfaces
of all extended grammars, and through this, all visitor methods for inherited
nonterminals are available as well.

In addition to visitor interfaces, MontiCore generates delegator visitors that are
composed of other visitors. These visitors only handle the traversal themselves but
delegate the visit and endVisit to registered visitors. By default, one visitor per
super grammar can be registered. Figure 10.11 depicts the visitor interface and the
delegator visitor that MontiCore generated for the automata grammar in Fig. 10.2.

10.3.3 Composed Analyses

With the modular analysis infrastructure, MontiCore enables language engineers
both (1) to describe monolithic analyses across different syntax modules and (2)
to reuse analyses as part of reusing a language component. A monolithic analysis
across modular syntax can be realised by implementing a visitor interface and
using the visitor methods of all (including inherited) nonterminals. This kind
of analysis, thus, enables to optionally reuse all visitor infrastructure parts from
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Fig. 10.11 Visitors generated for the example in Fig. 10.2

inherited language components while being able to override and customise parts
of it whenever this is required or desired. A monolithical analysis is specifically
suitable in situations in which the kind of analysis that is required from inherited
language parts has a low potential for being reused in different contexts. If analysis
parts that operate on inherited language parts are intended to be reused in a different
context, we recommend to realise such parts as individual, modular analyses.

An example for a monolithic analysis on the automata language presented
in Sect. 10.2 is to calculate the effective degree of all states of an automaton
model. By effective degree, we denote the number of incoming and outgoing
transitions of a state, which have a satisfiable guard condition, i.e., a guard condition
that does not always evaluate to f alse. This analysis can be realised as a class
EffectiveStateDegrees implementing the interface AutomataVisitor (cf. Fig. 10.11) as
depicted in Fig. 10.12. Through transitive inheritance, the visitor methods, e.g., for
ASTExpressions, are reused without modification. Only visitor methods that perform
parts of the analysis’ calculations are overridden. The traverse method for automata
is overridden to first handle the traversion of all states of the automaton, before
handling all transitions. The purpose of this is that the degree of each state can
be initialised with 0 in the visit method of the ASTState. The visit method of
ASTTransition is overridden as well. It initialises a Boolean variable isTraversable
with true. By this, each transition is initially regarded as traversable. If a transition
in the model has a guard condition, the AST nodes of this condition are visited by
the traversal strategy before invoking the endVisit method of the transition. Thus,
by overriding visit methods of expressions and literals, the isTraversable variable
can be adjusted specific to each guard. As the automata language in this example
uses the ExpressionsBasis language, a guard can only comprise either a single
name or a Boolean or integer literal. For this example, we consider expressions
comprising either the Boolean value f alse or negative integers as unsatisfiable.
This is realised by overriding the visit methods of the respective AST classes in the
EffectiveStateDegrees. The overridden endVisit method for transitions increments
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Fig. 10.12 Example for a monolithic analysis across several language components

the degree of source and target states if isTraversable is true. As the employed
evaluation for expressions has a low potential of being reused in other language
components than for automata, the developers decided to realise this as monolithical
analysis.

Using delegator visitors enables reusing visitors for the individual language parts
involved and, thus, to develop analyses and other operations on the AST modularly.
As depicted in Fig. 10.11, a delegator visitor has a setter method for visitors of
each (transitive) parent grammar as well as traversal and visit methods for all
nonterminals of all grammars. An example for a modular operation on the example
automata language is a model complexity analysis as depicted in Fig. 10.13. This
analysis counts all instances of abstract syntax elements of a model that introduce

Fig. 10.13 Example for composing modular analyses via delegation visitor
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concrete syntax. For each language component in the example that introduces
concrete syntax, a class realising the model complexity analysis (suffixed MoCoA)
is implemented. These classes implement the visitor interfaces and override their
methods to count the syntax elements. The ExpressionsBasisMoCoA, for instance, is
capable of counting model elements of expressions only. The CommonLiteralsMoCoA
counts boolean and integer values only. The AutomataMoCoA counts all syntax
elements of an automaton model except the expressions in the guards.

We distinguish different forms of composing analyses as explained in Chap. 4
of this book [Hei+21]. Combining these modular analyses can be achieved by
employing a delegator visitor. In the example, the class ModelComplexityAnalysis
extends the delegator visitor for automata and manages delegates for each analysis
module. The effect of this is that the delegator visitor delegates the execution of the
handle method for an AST node to the delegate, which is responsible for this node.
Through this, the model complexity analysis takes into account all automaton model
elements including those of the guard condition. Instead of this modular analysis,
the ModelComplexityAnalysis could be realised as monolithical analysis as well. But
as stated above, this would prevent reusing the analysis modules for literals and
expressions for model complexity analyses in other contexts. Furthermore, modular
analyses enable reusing foreign analysis parts conveniently. If, for example, the
engineers of the automata language decide to use the CommonExpression language
component with an individual analysis module instead of ExpressionBasis, the only
adjustment in the analysis is to exchange the delegate object.

Conducting analyses can be orchestrated based on different strategies as de-
scribed in Chap. 5 of this book [Hei+21]. If a composed analysis yields analysis
results, these are typically contained in the analysis modules after execution of
the analysis. Such results can be exploited in different forms, e.g., to calculate
aggregated results or to serve as input for other analyses (cf. Chap. 7 of this
book [Hei+21]). In our example, the results are collected from the modules
and unified. Each above-mentioned analysis module can yield an integer number
representing the number of syntax elements counted during analysis execution. A
suitable technique for unifying the partial results in this analysis is to calculate the
sum. Sometimes it is useful to exchange information between analysis modules,
while the analysis is executed or to collect the analysis results in a common place.
This can be realised by sharing a data structure between the analysis modules,
e.g., by passing it to the analyses as argument. For instance, the model complexity
analysis could store the syntax element counts by their abstract syntax type in a
common map. The map could be passed to the analysis modules as argument.

Monolithic analyses can be reused for other analyses by means of delegator
visitors as well. For instance, a new complexity analysis can use the analysis
results both of the EffectiveStateDegrees analysis and of the ModelComplexityAnalysis.
This new analysis can be realised as delegator visitor pointing to both analyses
and combine their result. Sometimes, such analyses do not have to be composed
at all: If the analyses do not depend on another, it is possible to execute these
independently in sequence or parallel and combine their result (cf. Chaps. 4 and 7
of this book [Hei+21]).
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10.4 Related Work

Research in software language engineering has produced a wealth of formalisms to
define abstract and concrete syntaxes, well-formedness rules, and model transfor-
mations [Kle08, HRW18]. These include: (1) The grammar-based integrated syntax
formalisms of Neverlang [VC15], Whole Platform [Erd+15], and Xtext [Bet16], as
well as the abstract data types Spoofax [KV10] and the metamodels of GEMOC
Studio [CBW17] and MPS [Voe11]. (2) Formalisms for the specification of well-
formedness, such as OCL [Hei+10] or the Name-Binding Language [WKV14]
of Spoofax. (3) Model transformation formalisms, such as ATL [Jou+06], the
epsilon transformation language [KPP08], FreeMarker [HR17], or Xtend [Bet16].
Model transformations with ATL are explained in Chap. 12 of this book [Hei+21].
Language workbenches [Erd+15] combine multiple of such formalism to facilitate
engineering the constituents of software languages. Yet, the compositionality of
the related analyses is limited and rarely directly follows the composition of the
syntaxes without severe manual implementation efforts.

For instance, in Neverlang [VC15], DSMLs are defined through language
modules comprising grammars describing concrete and abstract syntax as well as
through evaluation phases that realise well-formedness checking and syntheses.
Extension points of grammars are used, but undefined, production names. While
this enables to compose language modules along such extension points, there is no
support for automatically composing the languages’ analyses accordingly.

SugarJ [Erd+11] serves to specify syntactic extensions for Java that are contained
in syntactic sugar libraries. By “desugaring”, the extended syntax is transformed
into the base syntax. SugarJ uses parsers that are capable of detecting ambiguities,
for which they report an error. While it supports importing language modules into
another, it does not automatically derive combined analyses from this integration.

The core of the ableC [Kam+17] language framework is an extensible variant
of the C language. It uses attribute grammars to describe the syntax of independent
language components and provides a composition mechanism for these that guaran-
tees correct composition of the attribute grammars and, therefore, also of the related
analyses. As the base language C, however, cannot be exchanged, this, of course,
limits the application of ableC. The same holds for mbeddr [Voe+12], a projectional
language workbench on top of a C base language.

SDF+FeatureHouse [LDA13] employs superimposition, weaving, and inheri-
tance to compose language modules. While this supports powerful integration of
syntaxes, the composition of the related analyses still demands significant effort.

10.5 Discussion

This chapter focuses on modularity in languages foreseen by language engineers;
therefore, language components are built as individual units of reuse. In practice,
however, this is rarely feasible and requires premature optimisation in identifying
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such units of reuse. Instead, it occurs that parts of a language component’s syntax
are identified as units of reuse only once these parts are of use for another language,
or if a similarity analysis between language components reveals a potential to extract
a common part to a separate component. However, it is possible to modularise
an existing MontiCore language with little effort by extracting the nonterminals
that should be reused to a separate grammar. The original grammar then extends
the new grammar, similar to the “pull-up attribute” refactoring in object-oriented
programming.

MontiCore’s support for engineering modular languages can be used to build
product lines of languages [But+19] in which each feature uses a language
component. These foster the reusability of language components for scenarios with
a high complexity induced by the number and interrelations of available language
components. Through the modular analysis infrastructure, analyses can be defined
per feature and then are available for all products of the product line.

Reusing analyses as described in Sect. 10.3 has to be handled with care: If an
analysis defined for a language is directly reused in a language that extends the
original language, it might yield unintended results. Consider, for example, the
automata language presented in Sect. 10.2 and a new HierarchicalAutomata language
that extends this language and introduces decomposed states that themselves
contain states and transitions. The model complexity analysis for the original
automata language, as described in Sect. 10.3, can be applied to the language for
hierarchical automata without modification. However, it depends on the realisation
of hierarchical states whether these are taken into account or not.

If hierarchical states are introduced through overriding the production for states
as depicted in Fig. 10.14a, neither hierarchical nor non-hierarchical states are visited
by the visitor as the parser translates both into instances of the new ASTState
class. Thus, both are not counted in the analysis. If, however, the hierarchical states
are introduced by extending the state production (cf. Fig. 10.14b), non-hierarchical
states are visited by the visitor and, thus, taken into account in the analysis.

The techniques described in this chapter can be used to realise both qualita-
tive and quantitative, automated, static analyses as described in Chap. 4 of this
book [Hei+21]. Given an AST of the input language as depicted in Fig. 10.1
enables realising analysis on the model/system structure, while the output AST,
together with an understanding of the semantic domain, forms a basis for realising
behavioural analyses.

MontiCore internally uses the modular analysis framework for each language:
Context conditions are realised as Java classes and are checked against the AST
using a visitor. Therefore, context conditions can be reused as part of reusing

Fig. 10.14 Adding hierarchical states via (a) overriding or (b) extending a grammar production
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a language component. Similarly, the instantiation of the symbol table of a
language [HR17] is performed by a symbol table creator realised as visitor.

10.6 Conclusion

We have presented an approach for compositional language engineering based
on modular syntax definitions from which a modular, visitor-based infrastructure
for model-based analyses and syntheses is derived. The presented approach relies
on language extension and interface productions that can be extended in the
extending languages. From this information, visitors for the participating languages
are generated that automatically take care of model traversal. Hence, model-based
analyses implemented through these visitors can be reused in other language
combinations without modification.

The visitor-based infrastructure traverses the abstract syntax and can support
realising a language’s semantics. The applicability of the infrastructure for conceiv-
ing novel forms of generator compositions, however, has yet to be evaluated. This
fosters not only the reuse of modelling languages and analysis tools but facilitates
engineering truly domain-specific modelling languages to integrate experts of the
different systems engineering domains more efficiently.
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Chapter 11
Challenges in the Evolution
of Palladio—Refactoring Design Smells
in a Historically-Grown Approach
to Software Architecture Analysis

Robert Heinrich, Jörg Henss, Sandro Koch, and Ralf Reussner

Abstract In this chapter, we provide insights into Palladio—a tool-supported
approach to modelling and analysing software architectures. Palladio serves as
a case study for the evolution of historically-grown approaches to model-based
analysis. We report about design smells in Palladio’s metamodel and simulators
caused by evolution and growth over several years. Design smells are structures that
require refactoring. Decomposition is key for refactoring these design smells. We
discuss how techniques for decomposition and purpose-oriented composition can
help refactoring design smells in Palladio’s metamodel and simulators.

This case-study chapter illustrates concepts introduced in Chaps. 4 and 5; it
addresses Challenge 1 and Challenge 2 in Chap. 3 of this book.

11.1 Introduction and Problem Statement

Palladio is a tool-supported approach to modelling and analysing software ar-
chitectures for various quality properties [Reu+16]. It is named after the Italian
Renaissance architect Andrea Palladio. Initially, Palladio was focused on per-
formance and then has been extended for several quality properties, such as
reliability [Bro+12], scalability and elasticity [Leh14], energy consumption [Sti18],
security [TH16], confidentiality [SHR19], and maintainability [Ros+15]. With
Palladio, costly changes to software after it has been implemented can be avoided
by analysing the quality of a software system of a given architecture early in devel-
opment. Decisions in software design are typically made on the basis of experience

R. Heinrich (�) · S. Koch · R. Reussner
Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: robert.heinrich@kit.edu; sandro.koch@kit.edu; ralf.reussner@kit.edu

J. Henß
FZI Research Center for Information Technology, Karlsruhe, Germany
e-mail: henss@fzi.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
R. Heinrich et al. (eds.), Composing Model-Based Analysis Tools,
https://doi.org/10.1007/978-3-030-81915-6_11

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81915-6_11&domain=pdf
mailto:robert.heinrich@kit.edu
mailto:sandro.koch@kit.edu
mailto:ralf.reussner@kit.edu
mailto:henss@fzi.de
https://doi.org/10.1007/978-3-030-81915-6_11


236 R. Heinrich et al.

or, when lacking those, by making an educated guess. The information provided
by the Palladio approach enables to choose the best-suited design alternative and to
make trade-off decisions [Hei+18].

The Palladio approach consists of three essential parts that are designed to
work hand in hand [Reu+16]. First, the Palladio Component Model (PCM) as
a domain-specific modelling language defined in the form of a metamodel is
targeted at specifying and documenting software architectural knowledge. Second,
various analysis techniques ranging from queuing network analysis to discrete-
event simulation can be applied to predict the quality of a system modelled based
on the PCM. Third, the Palladio approach is aligned with a development process
that comprises several developer roles and activities tailored to component-based
software design.

In this chapter, we focus on the evolution of the PCM and the associated
simulators. We understand the term simulator to be a software tool that implements
one or more techniques of simulative analysis for approximating the quality
properties of a system under study. We understand the term simulation to be the
execution of a stimulative technique using a simulator. Simulation is therefore an
example of automated analysis (cf. Chap. 2 of this book [Hei+21]). The PCM is an
established and widely used metamodel. The PCM and the associated simulators
provide various useful features for quality modelling and analysis of component-
based software architectures.

We use the term feature to specify what a modelling language should express and
what a simulator should analyse on a conceptual level. A feature of a metamodel
(or a modelling language in general) is an abstraction of a thing to be modelled
[HSR19]. Examples of language features in Palladio are amongst others those for
modelling the component structure, component-internal behaviour, system usage,
and performance-related annotation [SHR18]. A feature of a simulator is an
abstraction of a property to be analysed by simulation. Examples of simulator
features in Palladio are amongst others those for analysing user behaviour, system
behaviour, resource usage, and for eliciting performance-related measurements.

The PCM consists of 203 classes dispersed amongst 24 packages [HSR19]. It
is organised into five partial metamodels. Since its inception in August 2006, the
PCM has a long history of evolution. There are at least 12 documented extensions
to the PCM publicly available. However, many more extensions exist that are not
publicly available (e.g., student theses, experimental, incubation). Owing to its
historically-grown structure, the PCM exhibits some shortcomings such as package
structure erosion, uncontrolled growth of dependencies, instance incompatibility,
and incompatible extensions. The simulators for reasoning about model instances
of the PCM show similar size and complexity. For example, the original simulator
SimuCom [Bec08] consists of 231 classes in 50 packages. Due to historical
growth, also the simulators show shortcomings such as package structure erosion,
uncontrolled growth of dependencies, underdefined semantics, and incompatible
extensions.
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This chapter provides insights into the evolution of Palladio to serve as a case
study for decomposition and composition of model-based analysis. We report
about design smells in the metamodel and simulators caused by evolution and
growth over several years. Design smells are structures that indicate the violation
of fundamental design principles and therefore negatively affect the quality of the
metamodel and simulators. Thus, design smells require refactoring. Decomposition
is key for refactoring design smells in Palladio’s metamodel and simulators. Due
to the rigorous quality assurance process of Palladio, most of the design smells
have already been addressed. Nevertheless, the design smells reported may provide
food for thought for others evolving historically-grown metamodels and simulators
and motivate the usage of techniques for decomposition and composition. We
discuss how techniques for decomposition and purpose-oriented composition can
help refactor design smells in the metamodel and simulators. This chapter, therefore,
illustrates concepts discussed in Chaps. 4 and 5 of this book [Hei+21].

The remainder of this chapter is structured as follows. Section 11.2 gives an
overview of Palladio’s modelling environment—the Palladio-Bench. We report
about design smells in the PCM in Sect. 11.3 and in the simulators in Sect. 11.4.
The application of techniques for decomposition and composition to resolve design
smells is described in Sect. 11.5. This chapter concludes in Sect. 11.6.

11.2 Overview of the Palladio-Bench

Before discussing design smells in the evolution of Palladio, this section gives a
detailed overview of the three essential parts of the Palladio approach [Reu+16]—
the domain-specific modelling language PCM, the various analysis techniques, and
the development process comprising several developer roles. These three parts of
the Palladio approach are implemented in the Palladio-Bench that is based on the
Eclipse integrated development environment (IDE) [Hei+18].

The PCM consists of the partial metamodels shown on the left-hand side in
Fig. 11.1 to reflect different architectural views on a software system. The several
developer roles use graphical editors provided by the Palladio-Bench [Hei+18]
to specify the partial models of the Palladio approach. The component developer
designs the software component specifications. The component repository model
is created by the component developer to design the software components and
their required and provided interfaces stored in a repository. Moreover, the com-
ponent developer specifies the components’ inner behaviour in the form of the
so-called Service Effect Specification (SEFF). A SEFF expresses internal actions
of a component’s services typically annotated with quality-specific information
depending on its context and external service calls. The software architect designs
the software architecture in the system model by assembling components from
the repository. Thus, the quality of a system can be estimated with respect to
the component assembly described in the system model. The system deployer
specifies the execution containers (i.e., servers) including their processing resources
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(i.e., CPU, hard disk, and network) in the resource environment model. For each
execution container, quality-relevant properties like processing rate of the CPU are
part of the resource environment model. Moreover, the system deployer describes
the deployment of the components to the execution containers in the allocation
model. The domain expert specifies the workload of the system in terms of user
behaviour and usage intensity in the usage model.

The Palladio-Bench offers several analysis tools for reasoning about quality
depicted on the right-hand side in Fig. 11.1. Note, although the focus of this chapter
is on simulators, we deliberately depict other tools of the Palladio-Bench in Fig. 11.1
to give a comprehensive overview. We therefore introduce the broader term analysis
tool here (cf. Chap. 2 of this book [Hei+21]). An analysis tool in the context of the
Palladio-Bench is a software tool that implements one or more analysis techniques
for approximating the quality properties of a system under study. Analysis tools
for estimating the performance of a software system are central to the Palladio-
Bench, and a wide range of tools are available. These performance tools are
highlighted in the grey box in Fig. 11.1 and differ mainly in their range of functions,
result accuracy, and analysis speed. The Palladio-Bench also offers tools for the
analysis of reliability [Bro+12] and prediction of costs [Mar+10] as well as various
extensions, e.g., for the analysis of energy consumption [Sti18], security [TH16],
confidentiality [SHR19], and maintainability [Ros+15], not depicted in the figure.

Palladio’s original simulator SimuCom [Bec08] is a discrete-event performance
simulator that estimates response times of both, system-level and component-
level services, as well as utilisation of processing resources specified in the
resource environment. The performance simulator SimuLizar [BLB13] is focused
on analysing self-adaptations in cloud computing environments, e.g., when scaling
out components by replication. EventSim [MH11] is a discrete-event performance
simulator that complements SimuCom in that it primarily addresses highly complex
models in simulation by applying event-scheduling simulation techniques. Besides
the simulators, the Palladio-Bench offers tools for transforming model instances
of the PCM to the formalisms queuing Petri net (QPN) and layered queuing
network (LQN). These are established formalisms and commonly used for software
performance prediction independent of the Palladio approach. ProtoCom [Bec08]
is a tool provided by the Palladio-Bench to create performance prototypes in the
form of Java code that mimic demands to different types of processing resources to
evaluate the system performance in a realistic environment.

The reliability analysis tool of the Palladio-Bench estimates software and
hardware failure potentials using discrete-time Markov chain (DTMC) [Bro+12].
The simple cost analysis provided by the Palladio-Bench allows to assign costs
to software components and hardware that is then used to estimate the initial and
operating costs of the system [Mar+10].

Referring to the analysis orchestration strategies introduced in Chap. 5 of this
book [Hei+21], the Palladio-Bench applies the single analysis orchestration strategy.
The aforementioned developer roles use the Palladio-Bench to create a domain-
specific model of the system to conduct quality analyses based on one of the
aforementioned analysis tools. The Palladio-Bench transforms the domain-specific
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model into an analysis model specific to the given analysis tool for quality analysis.
After the analysis has been finished, the results are lifted back to the Palladio-
Bench. The Palladio-Bench in turn displays the results to the developers. There is
no interaction between the individual monolithic analysis tools.

11.3 Design Smells in the Palladio Component Model

In this section, we give examples of design smells that occurred in the PCM while
it evolved over the course of several years. These design smells serve as motivation
for the decomposition and purpose-oriented composition of the PCM to refactor the
design smells as described in the following sections.

In object-oriented design, the term design smell is commonly understood as
a structure that indicates the violation of fundamental design principles and
therefore negatively affects quality properties of the system like maintainability and
evolvability. Design smells in object-oriented design are classified as creational,
structural, and behavioural smells [GS13].

Design smells not only occur in the object-oriented design of software systems
but also in the design of metamodels. Strittmatter [Str19] investigated design smells
in metamodels and identified that many structural design smells known in object-
oriented design can also be found in metamodel design. This is reasonable as there
are many commonalities in object-oriented design and metamodel design from a
structural point of view. Both, object-oriented design and metamodel design, specify
classes and their attributes, package structures, as well as dependencies between
classes [Str19]. Creational and behavioural smells from object orientation cannot be
found in metamodels as with respect to these categories object-oriented design and
metamodel design differ [Str19].

In the following, we discuss some examples of design smells that refer to the
modularity of metamodels and explain their occurrence in the PCM to demonstrate
the need for refactoring by decomposition and purpose-oriented composition of the
PCM. We thereby focus on design smells on the level of the package structure of the
metamodel or on the level of metamodel files. A complete overview of metamodel
design smells is given in [Str19].

Language Feature Scattering The content of a metamodel is logically partitioned
by its package structure. A language feature is implemented by one or several
classes in the metamodel. Language features are hard to grasp, if they are not
adequately reflected in the package structure. If classes that constitute a language
feature are spread over multiple packages that do not share a meaningful parent,
it is defined as Language Feature Scattering [Str+16]. When a language feature
is scattered over multiple packages, it is hard to understand the purpose of such a
package without considering all other dependent packages. Consequently, this smell
hampers the comprehensibility of the metamodel. Also the maintainability of the
metamodel may be negatively affected. Language Feature Scattering occurs in the
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PCM. For example, the language features for modelling the software repository,
resource interfaces, middleware infrastructure, events, performance, and reliability
(cf. [SHR18]) are all scattered over multiple packages.

Package Blob A package that contains classes of multiple language features is
defined as Package Blob design smell [Str+16]. The Package Blob smell reduces
understandability of the package as one needs to identify and understand all the
contained language features and their respective classes in order to understand the
package. Furthermore, it unnecessarily increases complexity and negatively affects
reusability of the package as it is not possible to selectively depend only on the
necessary language features. Examples for the Package Blob smell in the PCM are
data types and the abstract component-type hierarchy, which both are located in a
single package, namely the repository package.

Metamodel Monolith The Metamodel Monolith design smell is defined as a
metamodel file that implements multiple language features. This is the analogy
of the Package Blob on the level of metamodel files. The Metamodel Monolith
smell negatively affects the reusability of the metamodel file as it is not possible
to selectively depend only on the necessary language features. The complexity of
the metamodel files is unnecessarily increased, and the understandability is reduced
due to lack of modularity [Str19]. The Metamodel Monolith smell occurs in the
PCM as the entire PCM with all its packages is contained in a single metamodel
file.

11.4 Design Smells in the Simulators

In this section, design smells in the Palladio simulators are discussed. These design
smells serve as motivation for the decomposition and purpose-oriented composition
of the simulators to refactor the design smells as described in the following sections.

Stepney [Ste12] collected smells in scientific simulation. Some of these smells
refer to simulator design and can also be found in similar form in the simulators
of Palladio. Moreover, we identified additional smells in the Palladio simulators
that we could not yet find in the literature. These additional smells result from our
professional experience in using the simulators of Palladio both, in academic and
industrial projects. In the following discussion, design smells inspired by Stepney
are marked by the reference [Ste12].

Amateur Science [Ste12] The Amateur Science smell denotes simulator devel-
opment without the involvement of domain experts, e.g., because the simulator
developers assume to be familiar with a given domain, and thus making simplifying
assumptions. This smell is represented by modelling languages and simulators that
are oversimplified for the given analysis task. This may result in neglected domain
knowledge and thus negatively affect the accuracy of the simulation results. In the
simulators of Palladio, the simulation of the network resources is implemented in



242 R. Heinrich et al.

a very simplistic way. The assumption was made that the impact of the network
resources on the accuracy of the simulation results would not be of significance.
However, with this assumption, we underestimated the impact of network resources
on the distortion of service response times [KBH07, Ver+07]. Especially for modern
distributed systems, network latency and throughput may have significant impact on
the overall system performance. Therefore, network resources need to be adequately
considered in simulation to achieve accurate results.

Analysis Paralysis [Ste12] Simulator developers may spend too much time
analysing and modelling the domain, trying to get everything perfect, and not
getting to the simulation. This is defined as the Analysis Paralysis smell. This
smell is represented by modelling languages and simulators that are unnecessarily
complex or detailed for the given analysis task. As a consequence, developing and
maintaining the modelling languages and simulators is more time-consuming and
error-prone than actually necessary. The PCM allows the modelling of a component-
type hierarchy to provide support for an iterative specification of components.
Components can be specified at different levels of abstraction based on the amount
of knowledge currently available for these components [Reu+16]. However, for the
goal of performance analysis, the structure of the component-type hierarchy has no
effects on the simulation. Thus, the PCM is unnecessarily detailed for the task of
performance analysis with respect to the component-type hierarchy as it is not used
for analysing the performance of the software system in the simulators of Palladio.

Everything but the Kitchen Sink [Ste12] Simulator developers may add irrele-
vant features not related to the actual analysis task to a modelling language and
simulator. This is denoted as the Everything but the Kitchen Sink smell. In contrast
to the Analysis Paralysis smell, the modelling language and simulator do not show
unnecessarily complex or detailed features but features that are not relevant to the
analysis task at all, e.g., adding a reliability-related feature to a pure performance
simulation. The Everything but the Kitchen Sink smell is represented by convoluted
and monolithic modelling languages and simulators with unclear focus and purpose
and seldom used or even unused features. As a consequence, developing and
maintaining the modelling languages and simulators is more time-consuming and
error-prone than actually necessary. The main purpose of Palladio’s simulators
is software architecture-based performance analysis. However, features like the
Accuracy Influence Analysis [Gro13] and the Sensitivity Analysis [Bro+12] are part
of SimuCom. Although these features are seldom used, each change in Palladio
(e.g., updating the Java version or changes to the PCM) potentially requires effort
to keep them functional. Moreover, the strong interconnection of these features to
other features of the simulator may result in negative side effects.

Living Flatland [Ste12] When simulator developers use a wrong level of abstrac-
tion like simulating a 2D space and then naively translating the results in a 3D
space, it is defined as the Living Flatland smell. This smell may negatively affect the
accuracy of simulation results. In Palladio, for example, a simple processor-sharing
scheduler was implemented in the simulator SimuCom, with the assumption made,
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that this kind of scheduler is sufficient to approximate all kinds of CPU-scheduling
policies. This resulted in inaccurate simulation results and, as a consequence,
development overhead, because the Linux Exact Scheduler [Hap08] had to be
implemented in order to fix shortcomings caused by the initial assumption.

Underdefined Semantics The semantics of the input model of a simulator may
not exactly correspond to the semantics actually implemented in the simulator as
the simulator’s semantics is underspecified. This is denoted as the Underdefined
Semantics smell. This smell results in gaps in semantics definition of model and
simulator, and thus ad hoc definition of semantics during simulator development.
Moreover, there is a high risk that the simulation will provide faulty results due to
underdefined semantics. Furthermore, underdefined semantics can lead to semantic
shifts, rendering older models invalid as they were created with a different under-
standing of model elements in mind. This can also interfere with the reproducibility
of simulation experiments. In the early years of Palladio development, several
extensions were made to the PCM without defining a clear semantic mapping to
the simulator SimuCom. Examples are the output parameters and the fork join
actions. This led to the problem that semantics were defined in an ad hoc way
during simulator development and had to be adjusted in several iterations or are
still not well defined up to now. The interested reader is referred to Chap. 9 of this
book [Hei+21] where further discussion on the topic is given.

Excessive Events/Event Flooding A simulator utilising an unnecessarily large
number of events is defined as the Excessive Events or Event Flooding smell. The
massive creation of unnecessary events in simulation largely impacts the execution
efficiency. Therefore, simulator developers should try to minimise the number of
events to be managed in simulation. In Palladio, we discovered several shortcomings
in the realisation of the resource schedulers in SimuCom. Requests created excessive
numbers of events when running in fair-share mode in overload scenarios leading to
starvation and crashes in simulation.

Simulator Feature Scattering A simulator is logically partitioned by its compo-
nent structure. A simulator feature is implemented by one or several classes of the
simulator. Simulator features are hard to grasp, if they are not adequately reflected
in the component structure. Classes that implement a feature of a simulator may be
spread over multiple components of the simulator that do not share a meaningful
parent. This is defined as the Simulator Feature Scattering smell. When a feature
of a simulator is scattered over multiple components, it is hard to understand the
purpose of such a component without considering all other dependent components.
Consequently, this smell hampers the comprehensibility of the simulator. Also, the
maintainability of the simulator may be negatively affected. In Palladio’s simulator
SimuLizar, for example, the simulator feature to handle the language feature
Usage [SHR18] that contains amongst others the usage model is implemented in
18 classes scattered over three components.

Simulator Component Blob A simulator component that contains classes of
multiple simulator features is defined as Simulator Component Blob smell. The
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Simulator Component Blob smell reduces understandability of the simulator com-
ponent as one needs to identify and understand all the contained simulator features
and their respective classes in order to understand the component. Furthermore,
it unnecessarily increases complexity and negatively affects reusability of the
simulator component as it is not possible to selectively depend only on the necessary
language features. In EventSim, for example, the different features of the simulator
like simulation of users, resources, and network are heavily interwoven in the core
simulator component [MH11].

Simulator Monolith If there is no decomposition of the simulator at all, we
denote this design smell as Simulator Monolith. The Simulator Monolith smell
negatively affects the reusability of the simulator as it is not possible to selectively
depend only on the necessary simulator features. The complexity of the simulator
is unnecessarily increased, and the understandability is reduced due to lack of
modularity. There is no example of a Simulator Monolith in the Palladio context
as all simulators are at least partially decomposed.

Global State Object and God Parameter The state of an entire simulation may
be stored in a single object. This is defined as the Global State Object smell.
A global state object is an object that encapsulates large parts of the world
model of a simulator. Thus, it is an instance of a god class [LM06]. Every entity
in the simulation has access to this object. Entities in the simulation usually
access the global state object directly to query and manipulate the global state of
the simulation similar to the blackboard pattern [Bus+96]. When extending the
simulator, developers usually add more and more fields to the global state object.
This introduces large maintainability problems when changing fields as no clear
interfaces and access restrictions exist. This design smell can be accompanied by the
God Parameter smell, a field in the global state object that can be used to manipulate
the behaviour of entities ignoring any existing encapsulation. In SimuLizar, for
example, the simulation control information is passed through the whole simulation,
if it is required or not.

Intrusive Extension A simulator may have extensions that are tightly coupled
into the code base. This is defined as the Intrusive Extensions smell. The intrusive
extensions can clutter the codebase and introduce technical debts. Furthermore,
they may cause dead code in the long term if not used anymore. In SimuCom, the
reliability extension [Bro+12] is an example of this design smell. Though being used
rarely, it could not be disabled in the generation of SimuCom code and led to several
problems and bugs.
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11.5 Application of Decomposition and Composition
Techniques to Palladio

This section provides insights into the application of decomposition and com-
position techniques to Palladio. Applying these techniques enables to fix many
of the aforementioned design smells in the metamodel and simulators. First, we
discuss techniques for the decomposition and composition of the PCM. This serves
as a preparatory step for the decomposition and composition of the associated
simulators. Then, we discuss the decomposition and composition of the simulators.

11.5.1 Decomposition and Composition of the Palladio
Component Model

One way to address the aforementioned design smells in the PCM is the application
of techniques for decomposition and composition as known from object-oriented
design to metamodels in combination with a reference architecture to structure
metamodels and support the decomposition and purpose-oriented composition of
metamodels for quality modelling and analysis [HSR19].

Many commonalities in object-oriented design and metamodel design exist from
a structural point of view. Both, object-oriented design and metamodel design,
specify classes and their attributes, package structures as well as dependencies be-
tween classes, may it be for example association or inheritance [Str19]. Encouraged
by these commonalities, we transferred established concepts from object-oriented
design, such as decomposition and composition, acyclic dependencies, dependency
inversion, extension, and layering to metamodels [HSR19].

Also transferring the idea of a reference architecture to metamodels seems
reasonable. In our work, we focus on metamodels for quality modelling and analysis
of software-intensive systems in different domains like information systems, pro-
duction automation, and automotive. When comparing metamodels for modelling
and analysing different quality properties in these domains, substantial parts of the
metamodels exhibit quite similar language features [HSR19].

A Layered Reference Architecture for Metamodels

In [HSR19], we proposed a layered reference architecture for metamodels for
quality modelling and analysis of software-intensive systems to address short-
comings in the evolution of metamodels. The reference architecture leverages
reoccurring patterns in various domains. We studied different metamodels used for
quality modelling and analysis in various domains as well as their extensions and
identified that these metamodels reflect in most cases language features from distinct
categories—structure, behaviour, and quality. This observation led to the separation
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of parts of a metamodel into different layers in the reference architecture. A layer is
a set of metamodel components. A metamodel component is defined as a container
of packages and classifiers that has explicit dependencies. Metamodel components
can be extended by lower-level layers and reused in different metamodels [HSR19].
The layers of the reference architecture are dedicated to structure/behaviour, quality,
and the corresponding analysis. We further separated the structure/behaviour layer
into paradigm and domain to distinguish domain-spanning fundamental concepts
from domain-specific concepts. Metamodel components are assigned to one specific
layer depending on the features they offer to the language. Based on concepts
taken from object-oriented design and detailed application guidelines of these
concepts described in [HSR19], the reference architecture supports (a) the top-
level decomposition of metamodels for quality modelling and analysis into the four
layers—paradigm, domain, quality, and analysis, (b) the decomposition of partial
metamodels assigned to one of the layers into reusable metamodel components, and
(c) the reuse of metamodel components in different contexts and thus the purpose-
oriented composition of metamodels.

In the following, we give more detailed definitions of the single layers of the
reference architecture taken from [HSR19] before we describe the application of
the reference architecture to the PCM. The paradigm (π) layer is the most basic
and most abstract layer. The foundation of the language is defined on the π layer
by specifying language features for reoccurring patterns of structure and behaviour
but without dynamic semantics. Furthermore, π does not carry any domain-specific
semantics as this layer is not intended to be used without any additional layer. The
domain (
) layer builds upon the π layer and assigns domain-specific semantics to
the abstract first-class language features of π . Therefore, the 
 layer builds upon
structural as well as on behavioural language features of π . The quality (�) layer
defines quality-related properties of language features located on previous layers.
The analysis layer () builds upon the previous layers and specifies language
features used by analyses.  comprises language features to define configuration
data, runtime state, output data, and input data that do not belong to 
 language
features.

The result of the application of the reference architecture to the PCM is depicted
as an excerpt in Fig. 11.2. The figure and the explaining text come from [HSR19].
We split the largest metamodel component of the original PCM into 23 smaller
components to separate features properly. The other four metamodel components
of the original PCM were already sufficiently modular. The number of classes in
the decomposed PCM grew from 203 to 229. This is because during refactoring we
split classes and created new containers for extensions. The number of references
in the decomposed PCM reduced from 198 to 174. This is because we removed
or remodelled redundant dependencies that violated the reference architecture. The
decomposed PCM populates the layers π , 
, and �. The  layer is populated by
analysis-specific extensions of the PCM.

The most important metamodel components of the decomposed PCM are
depicted in Fig. 11.2. On the π layer, these are repository, composition, control
flow, and annotations. Repository specifies abstract components, interfaces, and
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Fig. 11.2 Excerpt of the decomposed PCM. ©2021 IEEE. Reprinted, with permission, from
[HSR19]

roles. Composition introduces component composition and therefore extends the
repository metamodel component.Control flow defines a structure similar to activity
diagrams. Annotations contains quality-independent annotations as an extension
of the repository metamodel component. The domain (
) layer comprises the
composition and software repository metamodel components, which extend their
counterpart from the π layer and carry additional domain-specific content. This
means the specialisation of abstract components to software components is happen-
ing in these two metamodel components. The environment metamodel component
specifies execution containers and network links between the execution contain-
ers. The resources metamodel component extends the environment metamodel
component to add hardware resource specifications to the execution containers
and the network links. The allocation metamodel component enables software
component instances (from the composition metamodel component) to be deployed
on the execution containers of the environment metamodel component. The usage
metamodel component specifies system usage profiles, which can be applied to
interfaces from the software repository metamodel component. It therefore reuses
the control flow metamodel component of π , which is also reused by the seff
metamodel component to define the control flow between component-internal
actions and component-external services. The quality (�) layer comprises the
performance metamodel component, which extends the resources extension of
the environment metamodel component by performance-relevant properties. It also
extends the seff metamodel component by resource demand specifications. The
dependencies of the reliability metamodel component are analogous. Finally, there
are two metamodel components that enable the annotation of both quality properties
in a component-based architecture by reusing the abstract definition of annotations
on the π layer.
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For the purpose-oriented composition of metamodel components, different meta-
model extension mechanisms are proposed in [HSR19], which serve as composition
operators. The concept of extension is well known and established in object-oriented
design, for example, by means of stereotyping. However, EMOF on which the PCM
is based does not support an extend relation. For this reason, several ways of how to
enable the creation of extensions with EMF’s Ecore are identified and discussed
in [HSR19]. These include EMF Profiles [Lan+11] that enable the support for
stereotypes, different kinds of plain referencing in combination with the introduction
of new containers or inheritance relations, and cross-module inheritance.

The interested reader may refer to Chap. 2 for foundations of model and analysis
composition, to Chap. 4 for general discussion on compositional semantics and to
Chap. 9 of this book [Hei+21] for its application in the context of GTSMorpher.

Refactoring Metamodel Design Smells

Based on metamodel decomposition techniques and the reference architecture,
detailed guidelines for metamodel refactoring have been proposed in [HSR19].
These guidelines comprise refactorings on metaclass level as well as on metamodel
component level. In the following, we describe how the design smells in the PCM
discussed in Sect. 11.3 can be refactored.

The Language Feature Scattering smell can be refactored by decomposing
metamodel packages and locating all classifiers that implement a specific language
feature into a single metamodel package [HSR19]. Classifiers within a metamodel
package that are more closely related should be placed into their own subpackage.
Details on refactoring metaclass and packages are described in [Str19]. The
reference architecture proposed in this chapter helps to distinguish classifiers of
fundamental (abstract) language features (π), domain-specific features (
), quality-
specific features (�), and features specific to analyses (). In the decomposed PCM
(see Fig. 11.2), all classes for representing the resources feature, for example, have
been located in a metamodel package on the 
 layer called resources. All classes
for implementing the performance feature and reliability feature, respectively, have
been placed into the metamodel packages performance and reliability on the � layer
and extend the resource-specific classes on the 
 layer.

For resolving the Package Blob smell, the metamodel package must be split so
that each package only contains classifiers of a single language feature [HSR19].
Subpackaging may be applied to further decompose metamodel packages. Details
on refactoring metaclass and packages are described in [Str19]. The refactored
metamodel packages may be located on different layers of the reference architecture
depending on the purpose they satisfy. In the decomposed PCM (see Fig. 11.2), the
repository package is split to distinguish the various features implemented in this
package. A package repository is located on the π layer to implement a domain-
independent repository feature that is further subdivided into packages to implement
features for component composition and annotation. On the 
 layer, the repository
package is extended by domain-specific classes to represent software components.
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Representing components of other domains, like electrics/electronics or mechanics,
as extension of the domain-independent repository feature is possible on the 
 layer
but out of the scope of the original PCM. Extensions to represent performance and
reliability are located on the � layer.

The Metamodel Monolith smell can be refactored by splitting the metamodel
files according to their language features following the metamodel decomposition
techniques proposed in this chapter. Each metamodel file then contains a single
metamodel component. Based on the language features they provide, the metamodel
components can be composed to form a language specific to a given purpose.

11.5.2 Decomposition and Composition of the Simulators

The layered reference architecture for quality modelling and analysis introduced in
the previous section cannot only be applied to metamodels but also to simulators
working on instances of the metamodels. Simulators may be decomposed into
simulator components along the features they provide. We define a simulator
component as a container of packages and classes that has explicit interfaces to other
simulator components. The individual simulator components may be composed
to satisfy a specific purpose for which a system is to be analysed. This requires
composition operators for simulators.

Three forms of composition of analyses in general—model composition (white-
box composition), result composition (black-box composition), and analysis com-
position (grey-box composition)—have been introduced in Chap. 4 of this book
[Hei+21]. In this chapter, we give concrete examples of how to implement these
forms of composition by discussing specific composition operators for simulators
in the context of Palladio.

First attempts at composition operators for simulators in the context of Palladio
have been described in [Hei+17]. These composition operators are:

• Composition by result exchange between isolated simulators
• Composition by co-simulation
• Composition by transformation into a joint formalism
• Composition by extension of one simulator by another

Composition by result exchange between isolated simulators conforms to the
form result composition (black-box composition) in Chap. 4 of this book [Hei+21].
It is the most simple way of simulator composition. This way of composition can
only be applied if one simulator requires the results of another simulator, but there is
no interaction between the simulators required during simulation. Both simulators
are executed in isolation, and information is exchanged ex-post by inserting the
results of one simulator as input into another simulator.

Composition by co-simulation conforms to the form analysis composition (grey-
box composition) in Chap. 4 of this book [Hei+21]. It enables information exchange
during simulation. Simulators are interlinked in order to exchange information dur-
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ing simulation. Co-simulation commonly requires additional efforts, for example, a
coordinator for time management, model synchronisation, and connectivity in order
to enable coherent simulation.

Composition by transformation into a joint formalism conforms to the form
model composition (white-box composition) in Chap. 4 of this book [Hei+21].
It uses model transformations for creating a homogeneous simulation model. A
characteristic of this approach is that a single formalism model is used as input
to the simulation. Commonly, general-purpose simulation formalisms like Petri
nets or queuing networks are used as the target formalism. This way of simulator
composition can only be applied if there is a joint formalism to integrate the models
of all the simulators (or if such an integrated formalism can be constructed). For
Palladio, for instance, transformations to layered queuing networks [KR08] and
queuing coloured Petri nets [MKK11] have been developed so far.

Composition by extension is another way to implement the form model com-
position (white-box composition) in Chap. 4 of this book [Hei+21]. This way of
simulator composition is about extending the metamodel and simulation routines
of one simulator by the metamodel and simulation routines of another simulator to
form an integrated and unified simulator. Composition by extension is applicable
if all the simulators build upon the same (or compatible) modelling paradigm and
simulation formalism.

In the following, we give examples of the application of the composition
operators in the context of Palladio.

IntBIIS

The approach Integrated Business IT Impact Simulation (IntBIIS) [Hei+17] is
an example of composition by extension. IntBIIS is a composition of Palladio’s
simulator EventSim [MH11] and a business process simulator by extending the
metamodel and simulation routines of Palladio by entities, scheduling policies,
and simulation routines specific to business processes. Applying composition by
extension in IntBIIS is possible as both simulators, Palladio’s EventSim and the
business process simulator, adhere to the same modelling paradigm and simulation
formalism. IntBIIS extends the usage specification of the PCM by business process
constructs. Both, the usage model and the business process model, rely on an activity
diagram like modelling paradigm. They specify a certain workload to be processed
by resources in the form of sequences of actions (possibly hierarchically nested) and
intensity of action execution. Both, Palladio’s EventSim and the business process
simulator, build upon queuing theory concepts to simulate resources processing
aforementioned workload.

An overview of the composed simulators of IntBIIS is given in Fig. 11.3. Blue
elements with a stickman symbol indicate modelling constructs and simulation rou-
tines introduced as an extension of the original EventSim simulator. The remaining
grey elements are those of the original EventSim simulator. A run of the composed
simulators starts at the topmost layer with simulating workloads that originate
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Fig. 11.3 Composition by extension in IntBIIS, after [Hei+17]

from the business process model. For each workload specification, a workload
generator spawns a new business process instance in the simulation whenever a
certain inter-arrival time has been passed [Hei+17]. A business process instance is
the representation of a single enactment of the business process model [Hei+17].
Each business process instance is then simulated individually by traversing the
corresponding sequence of actions specified in the business process model (layer
2). When the traversal procedure arrives at an action, basically two cases can
be distinguished [Hei+17]: (i) the simulation encounters an actor step or (ii) it
encounters a system step (i.e., system entry call).

In case (i), a suitable resource that represents a human actor is requested (layer
5, left) in simulation. If the selected actor is already busy, the actor step is enqueued
in its waiting queue. This induces a waiting period not only for the actor step but
also for the enclosing business process instance. Based on these concepts taken
from queuing theory, we can simulate execution times of actor steps and the entire
business process instance as well as utilisation of actor resources depending on a
given workload. Simulation results can be visualised in the form of histograms and
pie charts for engineers.

In case (ii), resource demands are not issued directly by the business process
instance but emerge as the system request propagates through components (layer
3), their service effect specifications (layer 4), down to hardware resources (layer 5,
right) [Hei+17]. Similar to actor resources, hardware resources may be busy and
therefore block a request. This causes waiting time for the system step and the
enclosing business process instance. Based on these concepts taken from queuing
theory, we can simulate execution times of system steps and the entire business
process instance as well as utilisation of hardware resources depending on a given
workload. Simulation results can be visualised again in the form of histograms and
pie charts for engineers.

PCA

Composition by result exchange between isolated simulators has been applied in the
Palladio context to use Palladio simulator results in other analysis tools as a basis
to reason about additional quality properties. The Power Consumption Analyzer
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(PCA) [Sti18] uses the results of Palladio’s simulator SimuLizar to forecast power
consumption of software systems. The Power Consumption metamodel proposed in
[Sti18] is used to specify consumption characteristics of servers, their components,
and connected power distribution infrastructure. The performance simulation results
of SimuLizar—utilisation of CPU and hard disk resources of servers—combined
with the characteristics specified in instances of the Power Consumption metamodel
are used to reason about the power consumption of software systems on architecture
level. The analysis in [Sti18] supports the architecture-level examination of both,
static and self-adaptive software systems. As shown in Fig. 11.4, the PCA uses
measurements from the Palladio Runtime Measurement Model that have been
produced by SimuLizar and calculates the power consumption based on its Power
State Model. A Power State Model is a stateful power model in the form of a state
machine that describes, for example, which servers are in on or off state. The results
of the PCA are then accessible in the Palladio Runtime Measurement Model and
can be used to trigger self-adaptations in SimuLizar.

OMPCM

An example of composition by co-simulation in the Palladio context is the OM-
PCM [HMR13] approach. Modelling and simulation of network communication
are limited in Palladio. This weakens not only the prediction accuracy for network-
intensive systems [KBH07, Ver+07] but also misses the opportunity to simulate
different network configurations and topologies before implementing them. Ex-
tensive network communication arises especially within distributed systems, where
software components deployed on different hardware nodes work together towards
a common goal. OMPCM integrates the OMNeT++-based network simulation
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Fig. 11.4 Composition by result exchange in PCA, after [Sti18]
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Fig. 11.5 Composition by co-simulation in OMPCM

framework INET with the Palladio architecture-level software performance pre-
diction implemented in the OMPCM-Core and ExtQueuing components to enrich
Palladio by more detailed network simulation. OMPCM applies composition by
co-simulation by having a dedicated bridge (OMPCM-Net) to manage the trans-
lation of events between the OMPCM and the INET simulators. As shown in
Fig. 11.5, the OMPCM-Net bridge component accepts events corresponding to the
IComponentCall interface. The IComponentCall interface describes the sending
and reception of requests and responses on software component level. The bridge
component then translates the component-level events to network-level events by
resolving remote software components to network nodes and requests/responses to
TCP transfers. Implementing the ITCPApp interface of the INET-Framework, the
bridge component then sends and receives network-level events to and from the
network simulation.

Refactoring Simulator Design Smells

Next, we discuss how aforementioned design smells in the simulators can be
resolved.

The Amateur Science smell can be refactored by the proposed simulator
composition techniques. The individual simulator components can be developed
independently by domain experts for the specific simulator components. The
simulator components can then be composed to satisfy a certain analysis goal. In
the Palladio context, for example, composition of OMPCM and the OMNeT++-
based network simulator INET by co-simulation [HMR13] allows for including
detailed network simulation in Palladio, while the INET network simulator has been
developed by domain experts independent of Palladio.

The smell Analysis Paralysis can be addressed by decomposing unnecessarily
complex or detailed metamodels and simulators and composing the metamodel
components and simulator components, respectively, as described in this chapter
on an appropriate level of complexity or detail.

The Everything but the Kitchen Sink smell can be addressed by decomposing
metamodels and simulators by distinguishing relevant from irrelevant features
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and composing only relevant metamodel components and simulator components,
respectively, as described in this chapter.

The Living Flatland smell can be refactored by enabling the replacement and/or
composition of simulator components to consider other and/or additional levels
of abstraction in simulation. In Palladio, the simulator component responsible for
processor scheduling needs to be replaced so that a new simulator component can
provide the scheduling policies needed. Alternatively, the composition of additional
simulator components that provide the needed scheduling policies with the existing
simulator components is a solution in Palladio.

The Underdefined Semantics smell can be addressed by clearly defining the
semantics of metamodel and simulator components and by purpose-oriented com-
position of only semantically compatible simulator components to satisfy a certain
analysis goal. Compositionality of analyses and specific conditions of composition
are discussed in Chap. 4 of this book [Hei+21].

The Excessive Events/Event Flooding smell can be refactored by avoiding
unnecessary communication via events and using as little events as possible. This
can be achieved by aggregating events that happen at the same time instead of
sending each event individually. In addition, only time-dependent communication
should happen via events, and the temporal resolution can be communicated before
starting the simulation to reduce time synchronisation effort via events. Note, the
Excessive Events/Event Flooding smell can be caused by simulator composition as
each simulator component may have its own event management that needs to be
synchronised with others. This synchronisation causes large event communication
overhead. This communication overhead needs to be considered in simulator design
and avoided as described before or by using a centralised event management like in
[IEE10].

The Simulator Feature Scattering, Simulator Component Blob, and Simulator
Monolith smells can be refactored by decomposing the simulator into simulator
components along the features provided by the simulator following the decompo-
sition techniques proposed in this chapter. The composition techniques described
in this chapter enable the interaction between the different simulator components.
Adequate decomposition of simulators allows for exchanging and purpose-oriented
composition of simulator components.

The Global State Object and God Parameter smells can be resolved by decompos-
ing the simulator into simulator components and following object-oriented design
principles [Mar00] to reduce coupling between the simulator components.

The Intrusive Extension smell can be resolved by adequately decomposing the
simulator into simulator components along the features it provides. This will lead to
an extraction of intrusive simulator extensions into separate simulator components.
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11.6 Conclusion and Outlook

This chapter gave insights into Palladio as a case study for evolution of a
historically-grown approach to model-based analysis. We provided an overview of
the Palladio approach and the associated tooling. We reported about design smells
in the metamodel and simulators caused by evolution and growth over several years.
We discussed how techniques for decomposition and purpose-oriented composition
can help refactoring the metamodel and simulators to avoid these design smells and
thus ease the evolution of the Palladio approach in the future.

Techniques for decomposition and composition of modelling languages and
analysis tools need to be further investigated in the future to make the concepts
discussed in this chapter applicable in a more general way. The application
of the decomposition and composition techniques for grammar-based modelling
languages would be interesting to investigate in the future. While in this chapter
the techniques for decomposition and composition have been discussed in the light
of the Palladio approach, we expect these techniques are independent of quality
modelling and analysis and can be applied to modelling languages and analysis tools
in general. Further, the dependencies between modelling languages and analysis
tools on the level of their features and components need to be investigated in the
future. Tool support is required for visualising dependencies between modelling
languages and analysis tools on feature and component level to simplify working
with and configuring large modelling languages and analysis tools.
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Chapter 12
AnATLyzer: Static Analysis of ATL
Model Transformations

Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara

Abstract This chapter presents ANATLYZER—a tool for the static analysis of the
ATL model transformation language. ANATLYZER is able to statically detect more
than 50 types of problems in ATL transformation programs using different analysis
techniques, some of them used in combination as per Challenge 2 (integrating
and orchestrating analysis tools, cf. Chap. 5 of this book). The tool also provides
a catalogue of more than 100 quick fixes (including quick fix recommendation
via speculative analysis), visualisations and explanations to help understand the
errors, and a synthesiser of witness models that permit reproducing the errors found.
Altogether, this chapter focuses on how transformation developers can exploit
ANATLYZER’s output results to understand and fix transformation problems and
achieve higher quality transformations.

This case-study chapter illustrates concepts introduced in Chap. 7 and addresses
Challenge 4 in Chap. 3 of this book.

12.1 Introduction and Problem Statement

Model-to-model transformations are programs that translate models of one language
(e.g., statecharts in the Unified Modeling Language (UML) [Obj15]) into models
of the same or a different language (e.g., Petri nets). Model transformations are the
enablers of automation in model-driven engineering processes, and their correctness
is crucial to ensure the quality of model-driven solutions since transformations are
typically used many times on many different input models [SK03].

Model transformations are generally built using specialised languages called
model transformation languages. A prominent example is the ATLAS transforma-
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tion language (ATL) [Jou+08], as it has a large community of users [Bru+20].
However, despite the importance of model transformations, many widely used
transformation languages lack user-friendly tools and techniques to help ensuring
transformations’ correctness, as reported for example in [Kah+19]. In particular,
ATL is dynamically typed, which makes its static analysis challenging, and there-
fore, ATL developers typically rely just on ad hoc, manual testing to validate their
transformations. However, exhaustive transformation testing is time-consuming as
it entails creating a suitable set of test models that is effective in detecting bugs,
executing the transformation under test with the (likely large) test model set, and
checking the correctness of the output models produced by the transformation either
manually or automatically using an oracle function (e.g., by means of a contract).
Moreover, there is a lack of tools for testing transformations [Kah+19, GSL19]. This
complexity and effort in transformation testing may be the reason why many ATL
transformations found in public repositories contain errors [SGL17].

To alleviate this problem, the ANATLYZER tool for the static analysis of ATL
transformations was developed [SGL17, SGL18b]. The tool is integrated within
the ATL Eclipse development environment and is able to statically detect more
than 50 types of problems, and recommend quick fixes for them using speculative
analysis [SGL18b]. Moreover, ANATLYZER provides different visualisations and
explanations to help developers understand and fix the errors, including a synthesiser
of test models that can be used to reproduce the error, and a high-level visualisation
of the transformation rules and their dependencies.

In the rest of this chapter, first, Sect. 12.2 introduces the main features of ATL
using a running example. Next, Sect. 12.3 overviews the static analysis and quick fix
capabilities of ANATLYZER. Section 12.4 walks through the features of the supporting
tool, with a special emphasis on the different kinds of outputs produced and their
usefulness for ATL developers. Then, Sect. 12.5 showcases the use of ANATLYZER to
find, reason, and fix bugs on the running example. Finally, Sect. 12.6 compares with
related works, and Sect. 12.7 concludes the chapter discussing some open challenges
in the development of static analysis tools for model transformations.

12.2 Background on ATL

ATL is a rule-based language to define model-to-model transformation programs.
These programs receive one or more source models and produce one or more target
models, all conformant to their respective metamodels. To illustrate the usage of
ATL, we will use as a running example an ATL transformation to reverse engineer
Java applications into UML class diagrams. The source code of the Java application
is converted into a model using the facilities of the Modisco project [Bru+14], which
provides a Java metamodel. Figure 12.1 shows an excerpt of the latter metamodel,
while Fig. 12.2 shows a fragment of the UML metamodel relevant for the example.
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Package AbstractType
Declaration

ownedElements *

ownedPackages *

ClassDeclaration

Type

TypeAccess

superclass 0..1

1  typeBody
Declaration

Field
Declaration

type 1

Modifier

inheritance:InhKind
visibility: VisKind modifier

0..1

Fig. 12.1 Excerpt of the Java metamodel, as provided by MoDisco [Bru+14]
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Classifier

Package

specific  1

* packagedElements

NamedElement

PackageableElement

name : String

isAbstract : BooleanGeneralization

general  1

0..*
generalization

Fig. 12.2 Excerpt of the UML metamodel [OMG17]

Listing 12.1 shows an excerpt of this transformation, which contains some errors
that we introduced on purpose to illustrate ANATLYZER. The example is based on the
Java2UML benchmark used in [Sán+20].

An ATL program is structured into rules. Rules have a section from specifying
the type of source objects that the rule will match; an optional filter imposing
conditions on the matched source objects; a section to declaring the objects that
the rule application will create; and bindings that assign a value to the attributes
and references of the created objects. As an example, Lines 21–30 in Listing 12.1
contain the rule Package2Package which, given an object src of type Java Package
(Line 22), generates an object tgt of type UML Package. The rule includes a filter to
make the rule match only objects which are not proxies, as MoDisco generates extra
elements to represent library classes and marks them with proxy = true. The type
of the objects is prefixed by the metamodel names (JAVA and UML, declared in Line
4). The reference to the metamodels is defined in Lines 1–2. Lines 24–28 contain
several bindings that assign a value to the features of the created tgt object.



1 −− @nsURI UML=http://www.eclipse.org/uml2/3.0.0/UML
2 −− @nsURI JAVA=http://www.eclipse.org/MoDisco/Java/0.2.incubation/java
3 module java2uml;
4 create OUT : UML from IN : JAVA;
5

6 helper context JAVA!Package def : allNonProxyClassesInPackage : Set(JAVA!ClassDeclaration) =
7 self.ownedElements → select(e | e.proxy = false) → select(e | e.oclIsTypeOf(JAVA!ClassDeclaration));
8

9 helper context JAVA!MethodDeclaration def: isAttribute() : Boolean =
10

��
self.

�������
returnType.

���������
isPrimitiveType

�
() and

11
��

self.
���
name

�
.
������
startsWith

�
(’

��
get

�
’) and

��
self.

���
name

�
.
��
size

�
()
�
>
�
4;

12

13 rule Model2Model {
14 from s : JAVA!Model
15 to t : UML!Model (
16 name ← s.name,
17 packagedElement ← s.ownedElements→select(e | not e.proxy)
18 )
19 }
20

21 rule Package2Package {
22 from src : JAVA!Package (not s1.proxy)
23 to tgt : UML!Package(
24 name ← s1.name,
25 packagedElement ← src.ownedPackages→
26 select(e | e.oclIsTypeOf(JAVA!Package)),
27 packagedElement ← src.allNonProxyClassesInPackage,
28 packagedElement ← self.ownedElements
29 )
30 }
31

32 rule Class2Class {
33 from s1 : JAVA!ClassDeclaration(s1.proxy = false)
34 to

�
t1
�
:
����
UML!

���
Class (

35 generalization ← if not s1.getSuperClass.oclIsUndefined() then
36 thisModule.createGeneralization(s1)
37 else
38 OclUndefined
39 endif,
40

���������
ownedAttribute

��
←
��

s1
�
.
����������

bodyDeclarations
��
→

���
select

�
(d
�

|
����������

41
���

d.
��������
oclIsKindOf(

����
JAVA!

������������
MethodDeclaration

�
))
��
→

���
select(

��
m |

��
m.

�������
isAttribute(

�
s1
�
)),

42 isAbstract ← if s1.modifier.oclIsUndefined() then
43 OclUndefined
44 else
45 s1.modifier.inheritance = ’abstract’
46 endif
47 )
48 }
49

50 lazy rule createGeneralization {
51 from c : JAVA!ClassDeclaration
52 to g : UML!Generalization (
53 ...
54 )
55 }

Listing 12.1 Excerpt of Java to UML transformation. Issues are underlined according to their
severity (

����
Error, Warning)
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In general, the right-hand side of bindings are object constraint language (OCL)
expressions that may refer to objects read or created by the rule. Bindings for
references (e.g., Lines 25–28) can assign objects of the source model to references
in the target model. In such cases, an implicit binding resolution mechanism
determines the target objects that were created from the given source objects, and
assigns those target objects to the reference. For example, the binding in Line 25
contains objects of type Package in its right-hand side, and so, the Package2Package
rule resolves this binding; whereas the binding in Line 27 is resolved by rule
Class2Class. In contrast, bindings for attributes (e.g., name ← s1.name in Line 24)
are directly assigned.

Rules Model2Model, Package2Package, and Class2Class in the listing are matched
rules. A matched rule is applied to each match of its from pattern. However, each
object in the source model should be translated by one matched rule at most, as
otherwise, we obtain a runtime error. ATL also supports other types of rules, like
lazy rules (Line 50) which are executed only when explicitly called from other rules
(e.g., from Line 36). Finally, ATL transformations can include helpers to define
auxiliary operations written in OCL. For example, helper isAttribute in Lines 9–11 is
defined on the context of class MethodDeclaration.

Expressing a model transformation using a dedicated language like ATL has
benefits, like the availability of transformation primitives (rules), the integration
with navigation and expression languages (OCL) and with an underlying modelling
framework (EMF), and a better analysability. However, transformation programs
can become large and complex, which make them error-prone without additional
support. In the next section, we introduce our approach to tackle these issues.

12.3 Analysing and Fixing Model Transformations

The goal of ANATLYZER is to help developers in the task of building correct ATL
model transformations. To this end, ANATLYZER performs a static analysis of a given
model transformation and reports information regarding three main questions:

• Q1: Is the transformation correctly typed with respect to the source metamodels?
• Q2: Do the generated models conform to the target metamodel?
• Q3: Do the transformation rules cover all cases?

Answering the first question involves a type checker, whereas answering the
second and third questions requires the analysis of the transformation rules using
the typing information gathered by the type checker. When a problem is found, it
has to be reported to the user in a manner that is comprehensible and helps identify
the root cause of the problem. Moreover, ANATLYZER recommends quick fixes that
facilitate solving each detected type of problem.

In this section, we first describe our method for the analysis of transformations
(Sect. 4.3) and then overview our support for quick fixes (Sect. 12.3.2).
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12.3.1 Transformation Analysis

Figure 12.3 depicts ANATLYZER’s analysis process [SGL18a]. In a first step—to
obtain a more accurate typing—ANATLYZER type-checks the transformation based
on a custom, built-in type inference engine for OCL. This process is needed since
ATL is a dynamically typed language, and the standard ATL type checker provides
scarce typing information. The process annotates each node of the abstract syntax
tree of the transformation with the inferred type.

Based on this information, ANATLYZER builds a transformation dependence graph
(TDG). This is similar to a program dependence graph [FOW87], but it also includes
dependency links between each rule binding and all possible rules that can resolve
the binding. At this stage, the method produces two types of output: (i) real errors
and warnings, which are reported to the user (e.g., the problem in Line 10 of
Listing 12.1 signals that MethodDeclaration.returnType might be undefined, in which
case calling method isPrimitiveType() would cause a null-pointer exception); and (ii)
“potential problems” or smells that cannot be confirmed statically to be real errors
(e.g., there might be a problem in Line 28 of Listing 12.1 if the available rules do not
transform all possible objects that may appear in the binding’s right-hand side) but
that can be verified using a model finder (a constraint solver over models). To handle
this latter case, for each potential problem, its OCL path condition is computed. This
is an OCL expression containing the requirements for an input model to make the
model transformation fail at the problem’s location. Then, this condition is used as
input of the model finder. If a model is found, then the problem is confirmed and
reported to the user; otherwise, the problem is discarded. A similar approach is used
to refine the TDG by removing impossible binding-rule links, which improves the
accuracy of the visualisations and program navigation actions (cf. Sect. 12.4).

ANATLYZER detects more than 50 types of errors. Table 12.1 shows some
representative ones. The table’s columns contain the following information: a
description of the error; the kind of error, either typing error, navigation error,

ATL
transf.

meta-
models

1: type
checking TDG

4:model
finding

potential
problems

errors,
warnings

3: transformation
analysis

2:create
TDG

annot.
ATL

model

Yes! Confirm error

witness
found?

No! Discard error

Fig. 12.3 Overview of ANATLYZER’s analysis process [SGL18a]
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Table 12.1 Some of the problems detected by ANATLYZER

# Error description Kind Time Solver Question

1 Feature or operation not found Typing Live No Q1

2 Incoherent variable declaration Typing Live No Q1

3 Access over undefined receptor Navigation Live Maybe Q1

4 No binding for compulsory target feature Target Integrity Live No Q2

5 Binding resolved by rule with invalid target Target Integrity Live Maybe Q2

6 Unresolved binding Rules Live Maybe Q3

7 Rule conflict Rules Batch Maybe Q3

violation of target metamodel integrity constraint, or rule error; the moment when
the error is analysed, either live or batch; whether confirming the error requires
using the solver (relevant, as the use of the solver typically incurs in a performance
penalty); and the question (Q1–Q3) that the analysis addresses.

The first error in the table is concerned with the usage of features or operations
that do not actually exist, and the second one is used to report inconsistencies
between the type of a variable and the type of the objects assigned to the variable.
Both errors can be checked live—while the transformation is being developed—
and do not require the use of the constraint solver. The third error reports whether
a navigation expression may contain a null reference that produces a null-pointer
exception at runtime. This error is also detected live, but in some cases, the solver is
needed to confirm that a valid model able to hit the problematic expression exists.
Executing the transformation with such a model would make the transformation fail.

Errors 4 and 5 are directed to identify code excerpts that may produce invalid
target models (i.e., non-conformant to the target metamodel) when the transforma-
tion is executed. Error 4 is reported when a rule does not provide a value for every
mandatory slot in a target object. Error 5 occurs when a binding is resolved by a
rule that may produce objects with the wrong type (i.e., the rule creates an object
whose type is not consistent with the binding left-hand side). If the error is not fixed,
then the transformation may yield ill-formed models. Confirming this kind of errors
requires the solver.

Errors 6 and 7 are related to well-formedness aspects of the rules. Both are
directed to answer Q3 and may need to use the solver. Error 6 is reported when
there is no rule to resolve a reference binding. For instance, the binding in Line 25
will be unresolved for Package elements where proxy = true. This is actually reported
as warning, since it is only a smell of incompleteness (i.e., a missing rule or the
binding needs additional filtering). Error 7 detects if two rules might be applicable
to the same source object, which is not allowed in ATL. Since this analysis involves
checking conflicts between each pair of rules, it is executed in batch mode when
explicitly invoked by the developer. For instance, let us assume that we write a rule
to map Java “internal” packages to private UML packages, such as the following:
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1 rule InternalPackage2Package {
2 from s : JAVA!Package (s.name = ’internal’)
3 to t : UML!Package ( ... )

In this case, ANATLYZER will report a rule conflict because a Java package may sat-
isfy the filter expressions of both the Package2Package and InternalPackage2Package
rules.

12.3.2 Quick-Fixing ATL Transformations

ANATLYZER also offers an extensible catalogue of quick fixes directed to correct
each error type [SGL18b]. Fixes may involve modifying the metamodel, creating or
modifying an OCL transformation pre-condition, or modifying the transformation
itself. In the latter case, fixes may generate new expressions, adapt an existing
expression to a new context, restrict the applicability of expressions, or change
operation/feature calls. Rule-related problems are typically fixed by creating or
removing rules, modifying rule filters, creating or removing bindings, or modifying
the right part of a binding. Other fixes may involve the creation of new helpers or
rules, or changing a reference to a different type.

Our fixes can be categorised in three types: repair, heuristic, and template. Repair
fixes eliminate the given problem, typically by adding or modifying expressions in
certain locations without any additional input from the developer. For example, a
fix that corrects the declared type of a variable to match the type of the assigned
value is a repair. Heuristic fixes are suggestions, e.g., proposing a valid name for
an erroneous collection operation based on string similarity. These fixes choose
one among several options based on a heuristic strategy, and may not match
the developer expectations. Finally, template fixes generate code that solves the
problem, but normally need to be refined by the developer. For example, a fix that
creates a new rule typically needs to be completed with appropriate filters and values
for the bindings.

Table 12.2 shows some representative quick fixes for the errors described in
Table 12.1. For feature or operation not found, the table shows 3 possible fixes, even
though ANATLYZER actually provides 5 fixes [SGL18b]. The first one heuristically
suggests an existing feature or operation based on a suite of string distance metrics.
The second fix automatically creates a skeleton for the non-existing operation.
Specifically, it creates a new context helper whose context is the class inferred for
the receptor object of the call, and its formal arguments are created according to the
types of the actual parameters in the call. The last fix modifies the metamodel by
adding the required feature to the receptor’s object class.

Other quick fixes are repairs. For example, the one suggested for error incoherent
variable declaration infers the type of the expression assigned to a variable, and
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Table 12.2 Some of the quick fixes provided by ANATLYZER

Error description Quick fixes Type

Feature or operation not found Suggest existing feature/operation Heuristic

Create context/module helper Template

Create feature in metamodel Template

Incoherent variable declaration Assign type of variable value to variable Repair

Access over undefined receptor Change feature lower bound to 1 Repair

No binding for compulsory target
feature

Assign default value (e.g., empty string) Repair

Copy and adapt existing expression Heuristic

Suggest mapping to similar source feature Heuristic

Binding resolved by rule with
invalid target

Remove guilty rule Repair

Choose a different target feature Heuristic

Unresolved binding Create new rule Template

Rule conflict Modify filter of guilty rules Repair

Remove one guilty rule Repair

assigns this type to the variable. The fix for error access over undefined receptor is
a repair as well. This changes the metamodel, increasing the lower cardinality of the
reference being navigated to 1 to disable undefined values. Detailed information on
the other quick fixes of the catalogue is available at [SGL18b].

The application of a quick fix may have side effects, as it may introduce new
problems in other locations, and some existing problems may become automatically
fixed. Understanding these side effects is important both from the tool perspective
(e.g., to provide a rank of quick fixes) and from the developer perspective who would
like to make an informed decision when determining the best quick fix to apply.
To this aim, ANATLYZER uses speculative analysis to help developers understand
the impact of applying a quick fix. Speculative analysis is a general technique
to explore the consequences of modifying a code excerpt before the change
actually happens [Bru+10]. In particular, ANATLYZER automatically detects the fixed
problems and the newly generated ones after applying a quick fix without modifying
the transformation program or its metamodels. ANATLYZER uses this information for
two purposes: to provide impact information that helps the developer understand
the consequences of applying a quick fix, and to rank the applicable quick fixes by
positioning the ones that remove more errors first.

12.4 Tool Support

ANATLYZER is available as an Eclipse plug-in that extends the regular ATL inte-
grated development environment (IDE) with features to enhance developer pro-
ductivity [SGL18a]. The installation details, source code and some demonstration
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screencasts are available at http://anatlyzer.github.io. In this section, we focus on
the outputs produced by the tool based on the results of the presented analyses.
Developers can exploit this output to improve their transformations. In Sect. 7.4.8
of this book [Hei+21], we provide a summary of these reporting capabilities with
respect to the landscape of the existing results-exploitation approaches.

Analysis Information A core feature of ANATLYZER is its ability to perform
accurate type checking of ATL transformations and to analyse rule relationships.
This information is gathered in the ATL abstract syntax tree by means of additional
classes and features that represent type information and the TDG. The output is a
formal model which can be consumed by other tools, as ANATLYZER can also be used
in standalone batch mode (i.e., without editing support).

Error Reporting As explained in the previous section, ANATLYZER identifies more
than 50 problem types based on the result of the type checking phase and the analysis
of the TDG. Figure 12.4 shows a screenshot of the IDE for the running example.
Code errors are signalled as in any regular programming environment (Label 1):
the problematic code is shown underlined in the ATL editor, and a marker indicates
whether the problem is either an error that should be fixed or a warning. Warnings
typically signal style issues with no impact in the transformation behaviour, or
statements that might be optimised.

In addition, ANATLYZER provides a dedicated view to inspect the analysis results,
the Analysis View (Label 2). Given that the verification of some types of problems
require performing model finding, a concrete problem can be in one of the following
four states: Confirmed, meaning that a witness model demonstrating the problem
has been found; Discarded, meaning that no witness model has been found and
therefore the problem cannot happen at runtime; Running, meaning that the problem
is currently being analysed in the background; and Unknown, meaning that the
problem cannot be evaluated, typically because of limitations in the model finder
(e.g., use of non-supported string operations).

The IDE also provides an explanation of the error that novice developers can
find useful to learn. Figure 12.5 shows the dialog that gives information about
the problem in Line 28 of the running example. Here, developers can inspect a
graphical representation of the generated witness models in order to understand the
model elements causing a specific problem (Label 2). In this example, the displayed
witness model would help the developer understand that the problem is caused by
the lack of a rule that considers the cases in which ClassDeclaration.proxy = true.
The witness model can be exported into XMI format, which allows executing the
transformation with the model to reproduce the error.

ANATLYZER is able to efficiently validate most error types whenever the trans-
formation file is saved. However, there are four error types whose analysis heavily
relies on model finding, and therefore, they may take more than a few milliseconds
to complete. To avoid interrupting the developer work and improve his/her expe-
rience with the IDE, these four analyses are only triggered on demand from the
Analysis View, and executed in the background. These four batch analyses are the

http://anatlyzer.github.io
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following: rule conflict analysis, which checks whether two different transformation
rules can be applied on the same objects, since ATL disallows it; target invariant
analysis, which checks that the transformation cannot yield output models that
violate the target metamodel invariants or the transformation post-conditions; child
stealing analysis, which verifies that no object changes its container at runtime; and
unconnected components analysis to check whether the transformation may yield
disconnected graphs, as this may be caused by a buggy rule.

Ranking and Previsualisation of Quick Fixes ANATLYZER incorporates a cata-
logue of quick fixes to help developers correct the detected problems. Quick fixes are
available through the standard facilities provided by Eclipse. This way, developers
can ask ANATLYZER to show the available fixes for a reported problem by pressing
CTRL+1. Then, selecting a fix applies the fix to solve the problem. A problem
may have several possible fixes. Figure 12.6 shows the possible quick fixes for the
problem in Line 11. The first solution (illustrated in the figure) is to add a conditional
to avoid accessing self.name if it is OclUndefined. Another possibility would be to
modify the metamodel to make the feature MethodDeclaration.name mandatory, but
this is not appropriate in this case because the MoDisco/Java metamodel is a third-
party metamodel. Another possible fix is generating a pre-condition to indicate that
the transformation assumes that all method declarations have a name. When looking
for witness models, ANATLYZER includes the defined pre-conditions in the model
finding process to rule out models not handled by the transformation, which avoids
reporting spurious problems.

Another facility of ANATLYZER is speculative analysis [SGL18b], which is used
to provide a ranked list of quick fixes (see Fig. 12.6). Quick fixes resolving more
problems are ranked first. Moreover, for each quick fix, a previsualisation of the
piece of modified code and the status of the transformation (in terms of which
problems are fixed and which new problems are introduced) are provided. This
helps developers compare the consequences of different quick fixes without actually
having to modify the transformation and undo the undesired changes.

High-Level View of Transformation In addition to error detection, the static
analysis performed by ANATLYZER is also exploited to produce a high-level graphical
representation of the transformation. In this representation, rules are displayed
as nodes, bindings are depicted as edges, and rule dependencies due to binding
resolutions are shown explicitly. By selecting a rule (i.e., a node in the visualisation)
and pressing CTRL+B, it is possible to navigate to the rule’s resolving rules. Note
that this navigation information is not explicit in the transformation, but ANATLYZER

has to discover it by using constraint solving on the TDG. Figure 12.4 illustrates
this feature (Label 4).

Tuning of Analysis Parameters There are several configurable parameters in
ANATLYZER. First, developers can configure the search scope used in the witness
model finding. This is the maximum number of objects and links of each kind a
witness model is allowed to have. Smaller search scopes result in more efficient
model searches, at the risk of missing witness models that fall outside the selected
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scope. In addition, ANATLYZER permits configuring the error/warning types to
analyse whenever the transformation file is saved, specifying the problems to verify
in batch mode from the Analysis View, or disabling the analysis of some kinds of
errors. For instance, the problem “Binding possibly unresolved” (Line 28) may be
frequent depending on the type of transformation and the coding style. Hence, the
developer may choose to detect it only in batch mode to avoid distractions.

Tool Integration ANATLYZER offers a Java API that allows invoking the static
analysis programmatically, inspecting the results, and obtaining and manipulating
an extended version of the syntax tree of ATL transformations enriched with typing
information. This simplifies the integration of the analysis output (errors, typing,
rule analysis, output of quick fixes) in other tools, and enables the implementation
of new kinds of analysis for ATL.

In addition, some parts of ANATLYZER can be extended externally by other
developers. First, the static analysis tool is extensible with new kinds of analyses,
which can be configured both in standalone mode or using an Eclipse extension
point. For instance, in [SGL17], this extension point was implemented to analyse
and report errors in ATL transformations related to UML profiles (e.g., incorrect
use of stereotypes). The catalogue of quick fixes is also extensible by means of an
extension point, which moreover provides several pre-defined abstract quick fixes
that simplify the creation of new ones.

As an example of the integration of ANATLYZER with other tools, we can mention
the case of WodelTest [Góm+20]. This is a framework to create mutation testing
environments for modelling and programming languages. Mutation testing permits
estimating the quality of a test set by creating mutants of the tested program, and
applying the test set to the mutants. In [Góm+20], WodelTest was used to develop
a mutation testing environment for ATL. This environment generates numerous
mutants of a given ATL program, and the authors used the API of ANATLYZER

programmatically to statically analyse the created mutants and discard the erroneous
ones.

Also in the area of mutation testing, in [GSL19], the implementation of ATL
mutation operators gets simplified by the integration of ANATLYZER, which permits
obtaining typing information of the mutated ATL transformation (e.g., which rules
resolve a binding).

12.5 Building Transformations with ANATLYZER in Practice

Next, we showcase the use of ANATLYZER to create and fix the transformation in the
running example. We will decompose the three main building blocks to illustrate
how the analysis results are made available to developers to assist them in the
transformation development process.
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12.5.1 Models and Packages

We start building the transformation by identifying the type of the root object in the
source models. This is the class Model in the Java metamodel. The natural mapping
for this class is UML Model. We specify this mapping by means of the rule in the
following listing.

ANATLYZER reports a warning in Line 5 because the transformation has no rule to
handle objects of the type in the binding right-hand side. The easiest way to explore
the problem is to press CTRL+1 to show the quick fix pop-up dialog. Figure 12.7
shows the process to fix the error. The quick fix dialog includes a brief description
of the problem (first line), in this case, that the transformation does not handle
objects of type Package. From the list of fixes, we select “Add new rule” since
we are interested on mapping Java packages to some UML element. We need to
select a concrete UML class, thus a dialog with all UML classes is shown, and we
select UML Package. From this information, ANATLYZER generates a new rule called
Package2Package and analyses the transformation, which is now free of errors.

12.5.2 Packages and Classes

The next logical step is to complete the Package2Package rule, creating bindings to
populate the UML package with the UML classes it contains. Thus, we need a rule
to convert Java classes into UML classes. But instead of creating this rule, we may
write the binding in Line 6 of Listing 12.3, and use the quick fix facility to generate
the Class2Class rule, as before. Listing 12.3 shows a simple, and erroneous, first
version of the rule.

The first problem is that we are trying to access a potentially undefined value
(s.modifier can be undefined in Line 13). An advantage of ANATLYZER is that it
eliminates the burden to continuously inspect the metamodel to check the cardinality
of features, which is particularly cumbersome with large metamodels. Instead, we
can just write the code in the easiest way, let ANATLYZER pinpoint the cardinality
issues, and use quick fixes to automatically generate correct code. Also in Line

1 rule Model2Model {
2 from s : JAVA!Model
3 to t : UML!Model (
4 name ← s.name,
5 packagedElement ← s.ownedElements

Unresolved binding

6 )
7 }

Listing 12.2 Rule for mapping Java to UML models (
���
Error, Warning)
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1 rule Package2Package {
2 from s : JAVA!Package
3 to t : UML!Package (
4 name ← s1.name,
5 packagedElement ← s.ownedPackages,
6 packagedElement ← s.ownedElements→select(e | e.oclIsKindOf(JAVA!ClassDeclaration))
7 )
8 }
9 rule Class2Class {

10 from s : JAVA!ClassDeclaration
11 to t : UML!Class (
12 name ← s.name,
13 isAbstract ←

�
s.
�����
modifier

�
.
�������
inheritance

Access to OclUndefined

= ’abstract’,

Invalid comparison: enumeration and string

14
���������
generalization

��
←

�
s
�
.
�������
superClass.

���
type

Invalid target assignment
15 )
16 }

Listing 12.3 Rule for mapping Java to UML classes (
���
Error, Warning)

13, the second issue is that we are using a string (i.e., “abstract”) instead of an
enumeration literal (#abstract).

The third problem in Line 14 is more subtle: the left-hand side of the binding has
type Generalization, but the right-hand side has type ClassDeclaration. This latter class
is resolved by the Class2Class rule, whose target is Class, which is incompatible with
Generalization. We solve this problem by introducing a lazy rule to explicitly create
the desired target element. This can be done using a quick fix. Listing 12.4 shows a
first version of this lazy rule, called createGeneralization.

The createGeneralization rule in the previous listing has a problem, since it needs
to initialise the general compulsory feature. Thus, we introduce a new binding, as
the next listing shows.

To create the transformation, we have followed the strategy of starting from
the root class of the metamodel (i.e., Model) and iteratively derive new mappings,
relying on ANATLYZER to discover relevant metamodel elements and using the quick
fix facility to automatically generate pieces of code to make the transformation
correct. Moreover, the use of quick fixes improves the developer performance since
it allows writing incorrect code on purpose (e.g., calling a missing rule) and rely on
the quick fix to get a template version of the rule.

12.5.3 Fixing and Evolving the Transformation

Let us assume that, after testing the transformation with a Java model, we realise
that we need to discard Java elements that belong to external Java libraries by
checking their proxy attribute. Thus, we modify the filters of the Class2Class and
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1 rule Class2Class {
2 from s : JAVA!ClassDeclaration
3 to t : UML!Class (
4 name ← s.name,
5 isAbstract ← if s.modifier.oclIsUndefined() then
6 false
7 else
8 s.modifier.inheritance = #"abstract"
9 endif

10 generalization ← if not s.superClass.oclIsUndefined() then
11 thisModule.createGeneralization(s)
12 else
13 OclUndefined
14 endif
15 )
16 }
17 lazy rule createGeneralization {
18 from c : JAVA!ClassDeclaration
19 to g :

���
UML

�
!
�����������
Generalization

Missing compulsory feature: general

(
20 )
21 }

Listing 12.4 Rule for mapping Java to UML classes, considering inheritance (
����
Error, Warning)

1 lazy rule createGeneralization {
2 from c : JAVA!ClassDeclaration
3 to g :

���
UML

�
!
�����������
Generalization (

4 general ← c.superClass.type
5 )
6 }

Listing 12.5 Rule to create Generalization elements (
����
Error, Warning)

Package2Package rules with not s.isProxy. This will produce several unresolved
binding problems, which we can easily fix by applying quick fixes as shown before.

This example shows that using a static analysis tool like ANATLYZER makes
evolving a transformation easier. A simple change may affect several parts of a
transformation, and without assistance, it can be difficult to identify the impacted
parts.

12.6 Related Work

There are some other approaches to the static analysis of rule-base model transfor-
mations [RW15]. Next, we analyse the most representative ones with emphasis on
how the developers can exploit the analysis results to fix errors.
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In graph transformation, critical pair analysis checks pairs of rules to find
dependencies (the application of one rule enables another one) and conflicts
(applying one rule may disable another one) [Ehr+06]. While this analysis might
produce complicated results for the users (pairs of rules may have an extremely high
number conflict reasons), in [Lam+18] the authors propose different granularity
levels for presenting the conflicts.

Model finders have been extensively used to analyse model transforma-
tions [Büt+12, Cab+10b]. Many times, this analysis is based on constructing
so-called transformation models, made by merging the source and target
metamodels, and expressing the transformation rules as declarative (OCL)
invariants [Béz+06]. The result of the analysis is typically a model (a witness)
that proves the satisfaction (or not) of a property. This method is semi-decidable,
since the search is bounded: not finding a model may mean that it does not exist, or
that it is outside the search bounds.

In [CT17] the authors use natural deduction and program slicing to analyse
ATL model transformations against transformation contracts. The approach was
implemented in the VeriATL tool. Different from the model-finding approaches, the
outputs of this method are a transformation slice containing the relevant rules for the
fault and some debugging clues. The authors aim at improving the method usability
by automatically generating counterexamples. Contracts are also used in [Oak+18]
to analyse ATL model transformations. The technique is based on the translation
into the DSLTrans language, and performing model checking. Compared to our
approach, the covered subset of the ATL language in these two approaches is smaller
(e.g., lazy rules are not covered). Moreover, in our case, we can precisely point to
the line of the error (when the analysis based on the dependency graph is enough), or
if the model finder is used, we can provide a counterexample model (cf. Fig. 12.5).

Some works combine static analysis with dynamic execution and testing. For
example, in [Mot+12] the authors extract a static footprint of the transformation (a
reduced input metamodel considering only the elements touched by the transforma-
tion). Such footprint is then used to generate input models for testing via the Alloy
model finder. In [Tro+18] the authors analyse the testing spectrum (i.e., the rules
executed by failing test cases) to locate transformation faults.

With respect to quick fixes, even though many works can be found in the
programming community to propose and rank quick fixes [Jef+09, Mus+12], they
have been applied seldomly to domain-specific modelling languages [Heg+11], and
even more scarcely to model transformations. The closest work are those that derive
pre-conditions for graph transformation rules, to limit their applicability (e.g., to
avoid violating metamodel integrity constraints) [KLT07, Cab+10a]. In our case,
the catalogue of quick fixes is much richer, while the problem is more challenging
since ATL is dynamically typed and more expressive.

Overall, the approach of ANATLYZER is unique in that it combines static analysis
based on the rule dependency graph with model finding, and provides a catalogue
of quick fixes with the possibility of speculative analysis.
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12.7 Conclusion and Outlook

In this chapter, we have reviewed the main concepts behind ANATLYZER, a tool for
the static analysis and fix of ATL model transformations. The tool is based on the
calculation of the transformation dependency graph and on the use of model finders
to refine some types of analysis. The tool supports a catalogue of quick fixes and
speculative analysis to help the developer choose the most appropriate quick fix.

There are still some open challenges to improve the scope of static analysis tools
for model transformations. Techniques to analyse potential errors across transforma-
tion chains have been barely developed so far. There are also opportunities to exploit
static analysis to optimise the performance of model transformations [Sán+20].
Facilities to integrate ANATLYZER and other similar tools in continuous integration
tool chains are needed to make them practical to address industrial projects.
Finally, usability studies to assess whether specialised transformation IDEs improve
developer performance are also needed [Heb+18].
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Chapter 13
Using Afra in Different Domains by Tool
Orchestration

Ehsan Khamespanah, Pavle Mrvaljevic, Anas Fattouh, and Marjan Sirjani

Abstract The formal modelling and verification of distributed systems represents
a complex process in which multiple tools are involved. Rebeca is a language
which is developed to make modelling and verification of distributed systems
with asynchronous message passing easier. This chapter shows how different tool
orchestration methods are used for developing different verification engines for
Rebeca models. As the first step, the way of enabling performance evaluation for
Rebeca models is shown. To this end, state spaces which are generated for Rebeca
models are transformed to the input of a third party tool and the result of the
verification is given to the modeller. The second one is developing a search-based
optimisation for wireless sensors and actuators applications. Running the model
checker in a loop with different input parameters helps in finding the optimum
values for parameters with respect to a given optimisation goal. The third one
is for safety verification and performance evaluation of collaborative autonomous
machines of Volvo car. The verification is done through developing and evaluating
models by the model checking tool and Volvo car simulator (VCE Simulator).

This case-study chapter illustrates concepts introduced in Chap. 5 and addresses
Challenge 2 in Chap. 3 of this book.

13.1 Introduction

Rebeca is a modelling language which is developed based on Hewitt and Agha’s
actors [AH87]. The actor model is a well-known model for the development of
highly available and high-performance concurrent applications. It benefits from the
universal primitives of concurrent computation, called actors. Hewitt introduced the
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actor model as an agent-based language [Hew72] and is later developed by Agha
as a mathematical model of concurrent computation [Agh]. Actors in Rebeca are
independent units of concurrently running programs that communicate with each
other through message passing. The message passing is an asynchronous non-
blocking call to the actor’s corresponding message server. Message servers are
methods of the actor that specify the reaction of the actor to its corresponding
received message. In the Java-like syntax of Rebeca, actors are instantiated from
reactive class definitions that are similar to the concept of classes in Java. Actors in
this sense can be assumed as objects in Java. Each reactive class declares a set of
state variables and the messages to which it can respond.

Rebeca is usable for software engineers and programmers. They are famil-
iar with the Java-like syntax of Rebeca, and with the object-oriented style of
programming. For concurrent programming, programmers are mostly using thread-
based programming, and the event-based model of computation may not be as
widely used by all the programmers. Usually it would be enough to tell them
that each actor is one thread of execution, and message servers run atomically
with no preemption. Different extensions for Rebeca are proposed to make it more
usable for different domains and types of analysis. Timed Rebeca [Rey+14] is an
extension on Rebeca with time features which supports modelling and verification
of time-critical systems [KKS18, Kha+15, SK16]. Probabilistic Rebeca is another
extension of Rebeca which is developed to consider the probabilistic behaviour of
actor systems [VK12]. Probabilistic Timed Rebeca (PTRebeca) is an extension of
Rebeca which benefits from modelling features of Timed Rebeca and Probabilistic
Rebeca, combining the syntax of both languages [Jaf+14]. Inheritance for Rebeca
is introduced in [You+20] to make modelling easier and enable modellers to define
custom communication mechanisms.

Afra is a toolset which is developed for the purpose of providing modelling
and verification facilities for Rebeca models and its extensions. Similar to many
other Eclipse plugins, Afra contains a set of Eclipse views and editors together
with a set of Java components for implementing models and analysing them.
Considering the tool orchestration strategies which are presented in Chap. 5 of
this book [Hei+21], this chapter shows how Afra is used together with other tools
and libraries for the analysis of Rebeca models. We explain how orchestration of
Afra with other tools is used in various domains for different purposes like model
checking, performance evaluation, or search-based optimisation. Chapter 5 of this
book [Hei+21] proposed a reference architecture along with important concepts
that can be used to orchestrate analysis tools. Among six different strategies, single
analysis orchestration (strategy A), cooperating analysis orchestration (strategy D),
and sequential analysis orchestration (strategy E) are used in analysis tools of
Rebeca. Single analysis orchestration uses a tool driver to translate the model into a
valid input for an external black-box analysis tool. Then the modelling environment
translates back the result of the analysis tool by using the tool driver again. Using
sequential analysis orchestration the modelling environment invokes one tool, then
translates the result into an input to another tool, and then translates the results of the
second tool back to the domain-specific model to provide it to the domain expert.
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In cooperating analysis orchestration the modelling environment invokes one tool,
then translates the result into an input to another tool, and then translates the results
of the second tool back into an input of the first tool to run another analysis.

In the rest of this chapter, first, Sect. 13.2 introduces Rebeca modelling language
and how correctness properties are defined for Rebeca models using a running
example. The main features of Afra are presented in Sect. 13.3. The next four
sections show how orchestration of Afra with other tools is used to develop new
analysis tools, i.e., Sect. 13.4 for performance evaluation, Sect. 13.5 for schedula-
bility analysis, and Sects. 13.6 and 13.7 for flow management. Finally, Sect. 13.8
concludes the chapter.

13.2 Reactive Object Language (Rebeca)

We illustrate the Rebeca language with the example of a simple ticket service
system. The actor model of this system is presented in Fig. 13.1. The model consists
of three actors: Customer, Agent, and Ticket Service System. Customer asks Agent
for issuing a ticket. The Agent actor forwards the request to Ticket Service System
and it replies to Agent by sending a ticket is issued response. Agent responds to
Customer by sending the issued ticket information. A Rebeca model has reactive
objects with no shared variables, asynchronous message passing with no blocking
send and no explicit receive, and unbounded buffers for messages. Objects in Rebeca
are reactive and self-contained. Communication takes place by message passing
among actors. The unbounded buffer of actors, called message queue, is used to
store its arriving messages. Actor takes a message—that can be considered as an
event—from the top of its message queue and executes its corresponding message
server (also called a method). The execution of a message server is atomic which
means that there is no way to preempt the execution of a message server of an actor
and start executing another message server of that actor.

Fig. 13.1 The actor model of Ticket Service System
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1 reactiveclass TicketService (3) {

2 knownrebecs {Agent a;}

3 statevars {

4 int nextId;

5 }

6 TicketService() {

7 nextId = 0;

8 }

9 msgsrv requestTicket() {

10 delay(?(0.4:2, 0.6:3));

11 a.ticketIssued(nextId);

12 nextId = nextId + 1;

13 }

14 }

15 reactiveclass Agent (2) {

16 knownrebecs {

17 TicketService ts;

18 Customer c;

19 }

20 msgsrv requestTicket() {

21 delay(1);

22 ts.requestTicket() deadline(5);

23 }

24 msgsrv ticketIssued(byte id) {

25 c.ticketIssued(id);

26 }

27 }

28 reactiveclass Customer (2) {

29 knownrebecs {Agent a;}

30 statevars {

31 boolean waiting;

32 }

33 Customer() {

34 self.try();

35 waiting = false;

36 }

37 msgsrv try() {

38 waiting = true;

39 a.requestTicket();

40 }

41 msgsrv ticketIssued(byte id) {

42 waiting = false;

43 self.try() after(30);

44 }

45 }

46 main {

47 Agent a(ts, c):();

48 TicketService ts(a):();

49 Customer c(a):();

50 }

Listing 13.1 The Rebeca model of ticket service system

Listing 13.1 shows the Rebeca model of the ticket service system of Fig. 13.1. A
Rebeca model consists of a set of reactive classes (i.e., actor types) and the main
block. In the main block, actors which are instances of the reactive classes are
declared (lines 47–49). The body of the reactive class includes the declaration of
its known actors, state variables, and message servers. For the case of Customer
reactive class, its only known actor is an Agent which is accessible by variable
a (line 29). As declared in line 31, Customer has one state variable which
shows that and actor is sent a request and waits for the response. It also has two
message servers try and ticketIssued and one constructor (line 33). Message
servers consist of the declaration of formal parameters (e.g., id in line 41) and
the body of the message server. The statements in the body can be assignments
(line 38), conditional statements, enumerated loops, nondeterministic assignment,
and method calls (line 39). Method calls are sending asynchronous messages to
other actors (or to itself).

A reactive class has an argument of type integer denoting the maximum size of
its message queue (e.g., 2 for Customer as depicted in line 28). Although message
queues are unbounded in the semantics of Rebeca, to ensure that the state space is
finite, we need a user-specified upper bound for the queue size. The operational
semantics of Rebeca has been introduced in [Sir+04] in more detail. In comparison
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1 property {
2 define {
3 waiting = c.waiting == true;
4 }
5 LTL {
6 NoStarvation : G(waiting -> F(!waiting));
7 }
8 }

Listing 13.2 The property file for the Rebeca code in Listing 13.1 stating the safety property as
an LTL formula

with the standard actor model, dynamic creation and dynamic topology are not
supported by Rebeca. Also, actors in Rebeca are single-threaded.

A Rebeca code can be model checked against a given set of linear temporal
logic (LTL) properties. These properties specify the correct behaviours/states of the
model. For example, in the case of Ticket Service System, one correctness property
is that there is no starvation in issuing tickets for customers. This property can be
specified in LTL using �(waiting → ♦(¬waiting)) formula which means that
now and forever in the future, waiting for a ticket results in not waiting for a ticket
(having ticket) eventually in the future.

Listing 13.2 shows how the mentioned LTL property is specified in the Rebeca
property file. At the first step, the atomic propositions of the formula are defined
in the define section of a Rebeca property file, considering the state variables of
the actors (line 3). The name of the atomic propositions is set to waiting and its
corresponding formula is put after the equal sign. In the LTL section, the correctness
property is specified (line 5). In this example, only one property with the name
NoStarvation is defined. Textual presentation of LTL modality � (now and
forever in the future) is G and ♦ (eventually in the future) is F in Rebeca property
files.

Timed Rebeca [Rey+14] is an extension on Rebeca with time features for
modelling and verification of time-critical systems. To this end, three primitives
are added to Rebeca to address computation time, message delivery time, message
expiration, and period of occurrence of events. In a Timed Rebeca model, each
actor has its own local clock and the local clocks evolve uniformly. Methods are
still executed atomically, however passing time while executing a method can be
modelled. In addition, instead of a queue for messages, there is a bag of messages
for each actor.

The timing primitives that are added to the syntax of Rebeca are delay, deadline,
and after. The delay statement models the passing of time for an actor during
execution of a message server. The keywords after and deadline can only be used
in conjunction with a method call. The value of the argument of after shows how
long it takes for the message to be delivered to its receiver. The deadline shows the
timeout for the message, i.e., how long it will stay valid.
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As shown in line 21 of the model of Listing 13.1, processing time of a request
in the agent is one time unit. At line 22 the actor instantiated from Agent sends
a message requestTicket to actor ts instantiated from TicketService, and gives a
deadline of five to the receiver to take this message and start serving it. The periodic
task of retrying for a new ticket is modelled in line 39 by the customer sending a try
message to itself and letting the receiver to take it from its bag only after 30 units
of time (by stating after(30)). Model checker of Timed Rebeca models considers
schedulability of message servers. It means schedulability is preserved if none of
the specified deadlines of messages is missed.

PTRebeca language supports modelling and verification of real-time systems
with probabilistic behaviours [Jaf+16]. PTRebeca introduced probabilistic assign-
ment which is similar to nondeterministic assignment but associate a probability
with each value option. In the probabilistic assignment, probabilities are real values
between 0 and 1, and sum up to 1. Notably, by using probabilistic assignments,
the values of the timing constructs (delay, after, and deadline) can also become
probabilistic.

Different probabilistic behaviours can be modelled using the PTRebeca lan-
guage, depending on the system under study. In the Rebeca code of Listing 13.1,
issue time of a ticket in the ticket service system is set to two with the probability of
0.4 and three with the probability of 0.6 (line 10). Finding the expected value of the
waiting time for issuing a ticket or computing the probability of deadline misses are
two examples of probabilistic analysis which can be done using PTRebeca.

13.3 Afra

Afra is the integrated development environment (IDE) for model checking Rebeca
and Timed Rebeca models.1 It is developed as an Eclipse plugin and released as a
standalone Eclipse product. It contains a set of Eclipse views and editors together
with four Java components for implementing models and analysing them. Afra
plugin contains a compiler component for compiling its given models and the
Rebeca model checker (RMC) component for generating model checking codes
for models. Using Afra, syntactically and semantically correct Rebeca models are
transformed into a set of C++ source codes which generate the transition system
of the model and perform property checking. In other words, running the generated
C++ codes provides the model checking result. The working environment of Afra
is shown in Fig. 13.2 which contains project explorer, Rebeca code editor, analysis
result viewer, and counterexample viewer.

In addition to using Afra for the analysis of Rebeca models, its internal
components (i.e., shown in Fig. 13.3) can be orchestrated in collaboration with other
components to provide more comprehensive analysis solutions. Having an explicit

1 Afra can be downloaded from http://rebeca-lang.org/alltools/Afra.

http://rebeca-lang.org/alltools/Afra
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Fig. 13.3 Afra tool architecture

output language in the form of a standard abstract syntax tree (AST), the result of
the Compiler component can be consumed by other components and tools. Using
sequential orchestration of the components, the RMC component transforms this
AST to C++ codes and the Model Transformer component transforms it to Real-
Time Maude [ÖM07] (for bounded model checking), ROS [Qui+09] (for deploying
in autonomous robots), and Akka [Akk09] (for running on Java Virtual Machine).
Real-Time Maude is a rewriting-logic-based language which supports the formal
specification and analysis of real-time systems. Robotic Operating System (ROS) is
a robot middleware which has been widely used as an open source framework for
the development of robotic applications and has become a standard in academic and
industrial environments. Akka is a toolkit for building distributed, highly concurrent
and event driven implementation of Hewitt’s Actor Model on JVM.

As we will show in the following sections, the majority of analysis orchestrations
for Rebeca models are realised by the analysis of the state space of models. By
running the C++ codes which are generated by RMC, the state space of the model
is generated together with applying model checking algorithms. This state space is
presented in the XML format and can be used for further analysis, including third
party applications or the Rebeca State Space Transformer and Model Transformer
components. How the State Space Analysis tool is used is explained further in this
section.

13.4 PTRebeca Model Checking: Sequential Analysis
Orchestration

In the model checking of PTRebeca we have Sequential Analysis Orchestration
strategy of RMC and IMCA (strategy E), shown in Fig. 13.4. interactive Markov
chain analyzer (IMCA) is a tool for the quantitative analysis of interactive Markov
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models using IMCA tool

chains. In particular, it supports the verification of interactive Markov chains against
reachability objectives, timed reachability objectives, expected time objectives,
expected step objectives, and long-run average objectives. Figure 13.4 is developed
based on the reference architecture for the integration of analysis tools in Chap. 5
of this book [Hei+21]. In this figure, Afra modelling environment is responsible
for both, interacting with analysis tools and interacting with the domain expert.
The modelling environment comprises four components: (a) the domain-specific
modelling languages (DSMLs), (b) a set of tools to create, manipulate, or verify
models conforming to these DSMLs, (c) a set of orchestration strategies to manage
the interaction with and combination of analysis tools, and (d) the tool drivers that
are responsible for actually interacting with the specific analysis tools.

As shown in Fig. 13.4, the modelling environment invokes RMC analysis tool
then translates the result into the IMCA [Guc+12] input for performing additional
performance analysis. In this case, the modelling DSML is the PTRebeca language
and the input PTRebeca model is directly fed to RMC, and running the resulting
C++ file, generates the state space of the given model in time-dependent Markov
decision process (TMDP) format. The IMCA driver tool is developed using State
Space Transformer component to convert the XML file of the TMDP of the model
to the input language of IMCA model checker. It also uses the specification of the
goal states of the model to generate one Markov automaton as the input of the IMCA
model checking tool.
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Note that the output of this tool as the malfunctioning which is detected in
the model checking phase (i.e., RMC counterexample) and property violation in
performance evaluation are lifted to Afra IDE viewer format to be usable for the
domain expert.

13.5 Schedulability Analysis and Optimisation: Cooperating
Analysis Orchestration

Orchestrating Afra components with some searching scripts for performing search-
based optimisation is used in the analysis of wireless sensor and actuator networks
(WSANs) applications. WSANs provide low-cost continuous monitoring but re-
quire dealing with the complexity of concurrent and distributed programming,
networking, real-time requirements, and power constraints. So, it is hard to find
a configuration that satisfies these constraints while optimising resource use. In
[Kha+18] we build a script for search-based optimisation using schedulability
analysis of Afra. This script computes the maximum sampling rate that nodes of
WSAN can collect data from the environment without saturating the communication
network and missing deadlines of their internal tasks.

The characteristics of real-time variants of the actor model make them appro-
priate for using as the DSML of WSAN applications: many concurrent processes
with interdependent real-time deadlines. Considering the specification of the WSAN
applications, there are many nodes which have the role of data acquisition and data
transmission. For data acquisition, nodes have different sensors which periodically
acquire data from the environment and send the data to the processing unit of
the node. The processing unit validates the data and sends it to a central node
using a wireless communication device, which is another actor of the model. As
shown in [Kha+18], the node-level Timed Rebeca [Rey+14, KKS18] model of a
WSAN application is developed to check for the possibility of deadline violations.
Specifically, by changing the timing parameters of the model, the maximum safe
sampling rate in the presence of other (miscellaneous) tasks in the node is found.
Composing the models of standalone nodes to have a multi-node model requires
that the wireless communication protocol is implemented for radio communication
devices. Changing the configuration of the network and timing parameters of the
model, the new maximum safe sampling rate is found. This optimisation of the
sampling rate is implemented by the search-based optimisation technique.

Assigning different values for the parameters of the model, different maximum
sampling rates are achieved as the result of the optimisation problem, shown by 3D
surfaces in [Kha+18]. This requires running the model checker of Rebeca multiple
times and integrating the result. To this end, we developed a script which runs the
given model using different configurations to solve the optimisation problem. The
script assigns different values for the maximum transmission time of the network,
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delay of sensors, the number of nodes in the system, the network packet size, etc.
The orchestration of the tools for this problem is shown in Fig. 13.5.

The strategy of orchestration between the optimiser script and RMC component
is Cooperating Analysis Orchestration (strategy D) as the result of the model
checking part (RMC) is lifted to be given as the feedback to the optimiser. The result
of model checking has to be lifted and transformed to the input of the Optimiser
and the values which are generated by the Optimiser have to be transformed to the
input of RMC, which are done by the Optimiser and RMC drivers, using simple
text processing shell scripts. Note that in this tool, Timed Rebeca is the DSML for
specifying input models.

13.6 Flow Management: Nested Analysis Orchestrations

AdaptiveFlow [Sir+19, For+20] is an actor-based framework which is used for track-
based flow management. There are different track-based flow management systems
such as warehouse management systems and transportation systems which play a
crucial role in our daily life. All of these systems include a set of moving objects
which travel on predefined tracks, e.g., trains on rails, cars on roads, automated
vehicles in aisles of a warehouse, and airplanes in predefined airspace-tracks. In this
view, the flowing entities move around some environments to transport some assets
between some points of interest. AdaptiveFlow as a formal framework provides a
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common abstraction for movement scenarios in these systems, and utilises model
checking for safety checking and performance evaluation of models. Additionally,
AdaptiveFlow allows the designer to specify policies for adapting the system
behaviour with respect to possible changes in the environment. Sudden changes
like blocking of a track, or change of a point of interest like a charging station being
out of order can be modelled, too [For+20].

In the AdaptiveFlow framework, the DSML that is used for the specifica-
tion of the model is in XML format and is given in three different files. The
environment.xml file defines the base layer of the environment of the system,
as a matrix. The layer is split into segments, each is surrounded by neighbouring
segments and each neighbouring segment is labelled based on the location relative
to the current one (i.e., NE-northeast, SW-southwest, E-east, etc.). The location
of point of interests (PoIs) in the environment is defined in the topology.xml
file. The PoIs can be perceived as key spots on which tasks are executed and are
specified by unique identifiers, x and y coordinates, type of the point, and operating
time. As the third input of AdaptiveFlow, the system configuration is specified in
the configuration.xml file which includes information such as the number
of moving objects, re-sending periods for requests, safe distance between moving
objects, etc. The specification of moving objects and their properties are given to
AdaptiveFlow using configuration.xml. Each moving object has a list of
tasks IDs that are assigned to it, together with its attributes: unique identifiers,
machine type, leaving time from parking station, fuel capacity, CO2 emission, etc.

One round of AdaptiveFlow workflow is split into three phases, shown in
Fig. 13.6. The initial phase is the pre-processing phase in which different Timed
Rebeca models are generated based on the XML input files (using a Python script)
by running the model generator script. The second phase consists of formal verifica-
tion of the generated model by generating the state space [Sir+19]. This verification
is performed with model checking tools such as Afra or RMC [Sir+19]. These
tools convert Rebeca models to C++ files which are afterwards compiled to an
executable file [Sir+19]. Aside from checking regular properties such as deadlock-
freedom and safety, AdaptiveFlow also verifies properties like fuel consumption of

Fig. 13.6 AdaptiveFlow workflow, after [Sir+19]
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Fig. 13.7 Orchestration of tools and components for AdaptiveFlow (Presented in Fig. 5.4)

machines, correct machine movement, absence of machine collision with obstacles,
and no-starvation property [For+20]. Reviewing counterexamples and fixing model
errors iteratively, a modeller can develop functionally correct models. As mentioned
before, model checking tools also generate state space of models used for the
final, post-processing phase. In this phase, a state space which is generated from
a functionally correct model goes through the Python script that analyses each state.
The state space file, generated by RMC, is analysed with a Python script that extracts
the evaluation of performance properties. The performance evaluation includes total
CO2 emissions of machines, the amount of consumed fuel, moved material, and
operating time of the collaborative system.

The orchestration of components for AdaptiveFlow is presented in Fig. 13.7
(Note that this figure is the same as Fig. 5.4 in Sect. 5.7 with some minor modi-
fications). As shown in this figure, the orchestration strategy in AdaptiveFlow is
nested orchestration strategies; a smaller cycle with Single Analysis Orchestration
(strategy A) within a larger cycle of Sequential Analysis Orchestration (strategy
E). The pre-processing python script of AdaptiveFlow works as the transformer
component of RMC driver. The lifting component L of RMC driver translates
counterexamples from XML format to Afra counterexample viewer format and
L’ only performs no modification to the state space file. On the other hand, state
space analyser (SSA) driver components only feed and retrieve data to/from SSA
components.
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13.7 Safe Scenarios for Volvo CE Simulator: Sequential
Analysis Orchestration

AdaptiveFlow can be used for the analysis of any track-based flow management
system. In VMap project, AdaptiveFlow is extended to make it appropriate for
the analysis of the behaviour of Volvo construction equipment, as an example of
track-based flow management systems [Mrv20]. The Volvo Construction Equipment
Simulator2 (VCE Simulator) is a high-fidelity platform for simulating and testing
Volvo construction equipment in a virtual environment. The simulator’s core system
is a distributed component-based system that is made up of several tasks. Each
task has a single well-defined purpose and can communicate with other tasks by
passing messages. The simulator is equipped with an editor that permits to create
new scenarios. A scenario is a sequence of actions that are organised in tracks where
tracks are executed in parallel and actions inside each track is executed in sequence.
Scenarios are built manually for testing some properties of construction machines
working on the desired environment or to measure the productivity of a working
plan in a construction environment for example.

The orchestration of tools and components for VMap is shown in Fig. 13.8. In
VMap, the iterative development of AdaptiveFlow is used to develop a correct model
with an acceptable level of performance. Then, XMLs of AdaptiveFlow models
are transformed to the VCE simulator input format for the simulation purpose.
Finally, the results of the VCE simulator are given as feedback to the designer to
improve the model. The scenario in the VCE simulator is described by an XML
file, namely dynamic.content. The dynamic.content file contains a list
of the objects inside the scenario, the components of each object with its properties,
and the communication between the objects. It could also include links to objects
defined in other files.

As a result, the orchestration strategy of AdaptiveFlow and VMap is Sequential
Analysis Orchestration (strategy E). The transformer of VCE driver is responsible
for transforming AdaptiveFlow specifications and other simulation-specific files to
the dynamic.content format. The lifting component of VCE driver makes the
simulation results human readable.

2 VCE Simulator: https://www.volvoce.com/europe/en/services/volvo-services/productivity-
services/volvo-simulators.

https://www.volvoce.com/europe/en/services/volvo-services/productivity-services/volvo-simulators
https://www.volvoce.com/europe/en/services/volvo-services/productivity-services/volvo-simulators
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13.8 Conclusion

Different verification engines are developed for Rebeca models using orchestrations
of a set of analysis tools. In Chap. 5 of this book [Hei+21], a catalogue of strategies
for tools orchestration is proposed. For each of them, strategies name, explanation,
and examples are proposed in a systematic way. We studied a few Rebeca analysis
tools and classified them as one of the orchestration strategies presented in this
catalogue.

Using the proposed patterns makes it easier to reuse the existing tools and put
them together in different ways. This way, the future analysis tools of Rebeca
will be developed easier and faster. Orchestration strategies also improved the
documentation and maintenance of the existing verification engines by furnishing
an explicit specification of tools interactions.
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Chapter 14
Conclusion

Francisco Durán, Robert Heinrich, Carolyn Talcott, and Steffen Zschaler

Abstract The final chapter of this book summarises the key challenges in the
research area and highlights perspectives for research and practice, including a
roadmap of upcoming research challenges.

14.1 Summary

Modelling is a key activity in software development. It enables software engineers
to consider in isolation specific aspects of the systems they are developing and,
by providing appropriate abstractions, allows engineers to focus on core problems
without having to get immersed in every low-level detail. As a result, modelling
is a necessary instrument for conquering the complexity and heterogeneity of
modern software-intensive systems. Because of the abstraction offered, modelling
also enables effective and efficient analysis of properties of the system. This can be
done even before the system has been developed (by analysis based on a predictive
model), but can also relate to a model representation of an existing system (a
descriptive model, cf. also the current discussions around the notion of a “digital
twin” [Gri12, p. 133]).
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For several reasons, analysis of models of real-world systems can rarely be
achieved using a single analysis technique. On the one hand, different stakeholders
require different perspectives on a system—leading to different models and different
analysis needs for each stakeholder. On the other hand, models and properties
quickly grow too complex to be efficiently analysed in a single analysis-tool run.
This is exacerbated as models change continually. In such a situation, efficient
analysis techniques should really only touch those parts of the model that have
changed rather than requiring a complete re-analysis of the entire model.

Therefore, to obtain a complete analysis of a system, it is necessary to com-
pose different analyses of (potentially different) models of the system. This
book [Hei+21] has provided an overview of the challenges and opportunities related
to the composition of model-based analyses and analysis tools. Specifically, we have
explored the following challenges:

1. Chapter 4 (Composition of Languages, Models, and Analyses) has focused on
the foundational challenges of how to compose different models, modelling
languages (formalisms), and their semantics, and analyses in ways that ensure
meaningful results are produced.

2. Chapter 5 (Integration and Orchestration of Analysis Tools) has built on the
composition of models, formalisms, and analyses and explored the engineering
challenges involved in composing actual analysis tools in efficient and effective
ways. We have explored basic concepts to integrate analysis tools and a spectrum
of strategies to orchestrate analysis tools, and relevant application contexts.

3. Chapter 6 (Continual Model-Based Analysis) has explored how composition of
analyses can enable incremental continual analysis, but also how the need for
continual analysis poses additional challenges for analysis composition.

4. Chapter 7 (Exploiting Results of Model-Based Analysis Tools) has explored how
analysis composition can improve analysis results, but also how composition of
analyses can make it more challenging to efficiently exploit analysis results.

5. Finally, Chap. 8 (Living with Uncertainty in Model-Based Development) has
explored the impact of uncertainty on analysis results, especially where models
and analyses are composed in different ways.

The chapters in the second part of this book have shown some examples of how
these challenges have been addressed for specific types of analyses. We have seen
examples of modelling-language composition in Chaps. 9 and 10 with an application
in the context of a specific modelling environment and specific analysis tools in
Chap. 11. Chapter 12 has shown an example of composing multiple analysis tools to
enrich analysis results in the context of ATL transformations. Chapter 13 has shown
different examples of tool orchestration in the context of actor-based modelling.
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14.2 Research Roadmap

Substantial challenges remain, however, before the topic of the book can be
considered addressed sufficiently. We collect these challenges in form of a research
roadmap in the following. Figure 14.1 shows an overview of how we categorise
the challenges on the research roadmap for the composition of model-based
analysis tools. We differentiate two orthogonal dimensions: On the one hand, we
categorise challenges based on whether they relate to the conceptual foundations,
the development of novel tool concepts, or the efficient implementation of analysis-
composition support. On the other hand, we categorise challenges based on the
thematic area they relate to. Thematically, challenges can relate to composition—
which subsumes the composition of models, analyses, or results—to incrementality
of analysis, or to uncertainty.

In Fig. 14.1, we have labelled each of the locations in the research-roadmap
matrix with a Roman number. Below, we discuss challenges at each of these
locations:

I Foundations of Composition. Chapter 4 has introduced a foundational under-
standing of the compositionality of analyses. However, this must be instantiated
for specific properties, requiring further research to understand the compo-
sitionality of specific properties and analyses. For some properties research
has already advanced well in this area, but many important properties remain
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Fig. 14.1 Overview of a research roadmap in the composition of model-based analysis tools. The
Roman numbers correlate with the numbers used in the text
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for which compositionality is still not well understood. For example, research
advances on compositionality of performance properties have been achieved
in the last decade (compare also Chap. 11) while compositionality of security
properties is still not well understood.
Chapter 4 has also introduced three different forms of analysis composition
(black-, white-, and grey-box). Understanding the conditions under which each
of them should be used remains an important topic for future research. Again,
this will require a detailed understanding of individual properties before a more
generalised theory can be hoped to be achieved.
While Chap. 7 has provided the terminology to discuss different ways of ex-
ploiting analysis results and how these are affected by analysis composition, this
framework has, to date, only been explored through specific examples making
specific choices on the spectrum of possible configurations. A systematic
understanding of the relationships between the different exploitation pathways
and the different forms of analysis composition introduced in Chap. 4 and the
orchestration strategies from Chap. 5 would enable more principled choices to
be made by analysis users.

II Tool Concepts for Composition. While Chap. 5 has introduced general concepts
for analysis-tool integration and orchestration, mapping out six different types
of orchestration strategies, this list of strategies is by no means complete. A
more extensive study of orchestration strategies and the contexts in which these
are most appropriate remains for future research. To support this, a further
challenge is to create a language providing appropriate primitives for specifying
and operationalising new orchestration strategies building on the foundational
principles introduced in Chap. 5. Formalisation of the transformations proposed
for orchestration strategy F in Chap. 5 remains an important open research
challenge.
The systematic understanding of exploitation pathways and results composition
called for above, could potentially form the basis for tools that automatically
propose suitable combinations of analyses from a pre-defined catalogue given a
description of a user’s analysis needs. More research is required to understand
how analysis needs could be described and how they would be translated into
analysis-composition plans.
Modelling languages and analysis tools must be configurable to tailor them to
a specific application case and, thus, avoid unnecessarily large and complex
modelling languages and analysis tools. The dependencies between modelling
languages and analysis tools need to be investigated further. Adapting tech-
niques known from feature modelling and language product lines [Men+16]
can be a starting point to identify features of modelling languages and analysis
tools. Furthermore, adapting these techniques can be a starting point to identify
the relationships between the features of a given modelling language and
analysis tool, and between these features and the components of the modelling
language or analysis tool implementing the features. Language configuration
requires language and analysis artefacts that are ready to be reused in different
configurations. A component-based approach to the definition of languages can
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be a key contribution here. One example of syntactic components is role-based
language composition [WTZ10]. An example of semantic components has been
discussed in Chap. 9. Moreover, further research on analysis components and
their configuration is required. First attempts have been shown in Chap. 11.
However, there is still a long way to go to come to the semantically sound
configuration and composition of analysis tools.
Tool support is an important means to manage large and complex modelling
languages and analysis tools in practical settings. Functionality known from
computer-aided software engineering (CASE) tools can be adapted for mod-
elling languages and analysis tools, e.g., for detecting and solving design smells,
collecting metrics, configuring and managing variants and versions, etc.

III Implementation of Composition. Implementing the orchestration strategies
proposed in Chap. 5 efficiently requires substantial future research. Some initial
progress is currently being made with protocols for language editing1 or
debugging,2 and the increasing trend towards web-based modelling tools, but
substantial challenges remain. For example, modular language development
across concrete and abstract syntax as well as semantics can be achieved for
specific cases, but a safe general approach is still missing. This becomes even
more challenging when model transformations need to be composed, too. An
integration of analysis-tool composition into mega-modelling systems (e.g.,
MMINT [San+15]) will be an important step towards supporting reasoning
about analysis configurations. Future progress requires research in language
engineering and tool support.

IV Foundations of Incrementality. The CBMA framework proposed in Chap. 6
offers a first pragmatic classification of the various components and processes
involved in continual analysis under composition. However, a full theory of
composition of continual model-based analysis remains an open goal: What are
the formal operators involved and how do they interact to form a system of
continually updating, composed domain-specific analyses? Invariably, this will
require establishing closer links to the formal foundations of analysis and for-
malism composition as well as to the orchestration of analysis tools. However,
the need to support continual and incremental analysis substantially changes
the conceptual framework required as we have demonstrated in Chap. 6.

V Tool Concepts for Incrementality. Once we have a clearer understanding of
what incremental analysis means in the context of analysis composition, we
need to develop tool concepts that allow practitioners to compose incremental
analysis tools. For example, designing a tool platform where software designers
can indicate a number of orthogonal analysis tools and ask the platform to
generate a composed and incremental analysis tool can be an important step.
This includes investigating what languages are needed for describing software

1 See the language server protocol, https://microsoft.github.io/language-server-protocol/.
2 For example, through the debug adapter protocol, https://microsoft.github.io/debug-adapter-
protocol/, and the GEMOC Studio [CBW17].

https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/debug-adapter-protocol/
https://microsoft.github.io/debug-adapter-protocol/
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designers’ analysis needs. Further research is needed on how we can support
incremental analysis while continuing to allow flexible composition of model-
based analyses, which may require different types of information to be included
in a model.

VI Implementation of Incrementality. We need to develop efficient algorithms for
composed incremental analysis. This includes answering the question of how to
efficiently track changes and their analysis implications for large-scale models
that are stored in a distributed environment and are manipulated by multiple
modellers concurrently. Further, we need to develop appropriate caching and
consistency-preservation algorithms in such a setting.

VII Foundations of Uncertainty. As we have seen in the example-driven discussion
in Chap. 8, uncertainty is an important consideration in any model-based analy-
sis. Composition of model-based analysis can both decrease overall uncertainty
and create an additional source of uncertainty. A systematic conceptual frame-
work of the precise relationship between analysis composition and uncertainty
remains an open research ambition. Identifying these relationships—whether
generally or for specific properties or composition approaches—would be
invaluable to software engineers aiming to make informed decisions about the
design of complex and heterogeneous software-intensive systems.
We need to further explore the capture of uncertainty aspects in the system
design, which includes leaving options open as far as possible and incorporating
belief values into the design. Other relevant research directions comprise the
dynamic handling of uncertainties of data-driven models, such as deep learning,
in safety-critical contexts, e.g., in autonomous driving, and in security-critical
contexts, e.g., in production automation and energy supply.

VIII Tool Concepts for Uncertainty. We need to get a better understanding of what
tools that support uncertainty-awareness for modellers look like in the context
of analysis composition. Designing generic tools that can enhance existing
model-based analysis tools with an analysis of how uncertainty propagates
through the analysis chain can be a step in this direction. We need to investigate
what information about uncertainty and about the analysis tools such generic
tools would require and how such information would best be captured. Further,
we need to investigate effective ways of communicating uncertainty and
uncertainty propagation to modellers.

IX Implementation for Uncertainty. If generic tools for uncertainty-enhancement
of analysis tools and compositions of analysis tools can be designed, we
need to investigate what algorithms that efficiently implement the underlying
uncertainty propagation can look like. We also need to figure out how these
tools can be implemented to cater for large-scale distributed models developed
concurrently by multiple developers.
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