Jos W. R. Twisk

Analysis of Data
from Randomized
Controlled Trials



Analysis of Data from Randomized Controlled Trials



Jos W. R. Twisk

Analysis of Data from
Randomized Controlled
Trials

A Practical Guide

@ Springer



Jos W. R. Twisk
Amsterdam UMC
Amsterdam, The Netherlands

ISBN 978-3-030-81864-7 ISBN 978-3-030-81865-4  (eBook)
https://doi.org/10.1007/978-3-030-81865-4

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://doi.org/10.1007/978-3-030-81865-4

To my family and friends



Contents

1 Imtroduction.......... ... .. .. .. .. . . .
1.1 Introduction. ............. ...
1.2 Intention-to-Treat Analysis. ... .......................
1.3 General Purpose and Prior Knowledge . . . ................
1.4 Examples and Software. . . ............ ... .. ... ...
1.5 Equations. ... .........iiii
2 Analysis of RCT Data with One Follow-Up Measurement. . . . . ...
2.1  Statistical Methods . . . ... ...
22 Example. .. ...
3 Analysis of RCT Data with More Than One Follow-Up
Measurement. . . .. ... ...
3.1 Introduction. . ........... .. ...
32 Example. . ...
3.3 GLM for Repeated Measures . . . . ........c.ouveinnneo...
3.4  Regression-Based Methods . .. ........................
34.1 Longitudinal Analysis of Covariance..............
342 Repeated Measures. . ............ouuiiinn...
343 Analysisof Changes..........................
3.5 Overview and Discussion. . . ......... ... ... ...
3.6 Recommendation.................. ... ... ... ...
3.7  Should the Analysis Be Adjusted for Time?...............
3.8  Alternative Repeated Measures for the Analysis of an RCT
with One Follow-Up Measurement. . .. ..................
4  Analysis of Data froma Cluster RCT . . .. ...................
4.1 Introduction. ......... ... ...
4.2 Example with One Follow-Up Measurement. . .............
4.3  Example with More Than One Follow-Up Measurement. . . . . .
44 Comment. . .........iiiiii e

SO Ll W W N =

vii



viii

Contents
Analysis of Data from a Cross-Over Trial. . .. ................ 61
5.1 Introduction. .............. ... 61
52 Example......... . 63
5.3  Alternative Analyses. . .. ...t 68
Analysis of Data from a Stepped Wedge Trial. . .. ............. 73
6.1 Introduction............... ... 73
6.2 Example Dataset. .............c..uuuiiinnnnn.. 75
6.3  Statistical Methods . . .. ... ... ... 75
6.3.1  Comparing Intervention and Control Measurements. . . 75
6.3.2  Comparing Different Arms. .. .................. 79
6.3.3  Comparing Groups with a Different Number of
Intervention Measurements. . . .. ................ 84
6.3.4  Comparing Transitions. . . .. ................... 87
64 ASecondExample.......... ... ... .. ... . . ... ... 91
6.4.1 Introduction............. ... .. 91
6.4.2  Comparing Intervention and Control Measurements. . . 92
6.4.3 Comparing Different Arms. .. .................. 94
6.4.4  Comparing Groups with a Different Number of

Intervention Measurements . . . . ................. 98
6.4.5 Comparing Transitions. .. ..................... 100
6.5 Comments. ...........uuniiiii 102
6.5.1 Adjustment for Time......................... 103
6.5.2  Adjustment for the Baseline Value. . ............. 104
6.5.3 Recommendation............................ 104
Analysis of Data from an N-of-1 Trial . . . . ................... 107
7.1 Introduction. .............. ... 107
72 Example........ .. 108
Dichotomous Outcomes . . . . .............................. 115
8.1 Introduction............. ... ... 115

8.2  RCT with a Dichotomous Outcome with One Follow-Up
Measurement . . . .. ...ttt 116

8.3  RCT with a Dichotomous Outcome with More Than One
Follow-Up Measurement. . .. ............ ... .. 118
83.1 Example........... ... . i 119
84  CommentS. . ........ouuii 126
84.1 MissingData.......... ... ... . ... . . ... 128
8.4.2  Hypothesis Testing Versus Effect Estimation. . . ... .. 130
8.4.3  Cluster RCT with a Dichotomous Outcome. . .. ..... 130
8.5  The Problem of Non-Collapsibility . . .................... 132
8.5.1 A Numerical Example. .................... ... 133
8.6 Other OUtCOMES . . . .« ittt e 134



Contents

9  What to Do When Only a Baseline Measurement Is Available. . . .

9.1 Introduction. .............. ...

9.2  Examples. . ... ...
9.2.1  RCT with One Follow-Up Measurement. . .. .......

9.2.2  RCT with More Than One Follow-Up Measurement. . .

9.3  ComMmMmENntS. .. ..ottt
9.3.1  Sensitivity Analysis. ... ............. .. .......

9.3.2  Selective Imputation. . . ............. ... .. ...,

9.33 OtherComments. ................oviieon....

9.4 Recommendation................... ...

10 Sample Size Calculations . . . ... ...........................
10.1 Introduction. ... ........... ...

102 Example. .. ...

103 Comments. . ...ttt e e

11 Miscellaneous. . . .. ... ... . ...
11.1 Different Designs. . .. ..... ... ..

11.2  Statistical Testing of Baseline Differences inan RCT. . . . .. ..

11.3  Analyzing Within-Group Changes inan RCT. ... ..........
113.1 Example.......... .. i
References. . ... ... ... . ... . .. .. . . ..
Index. . ... ...

ix



Chapter 1 ®)
Introduction Check or

1.1 Introduction

Randomized controlled trials (RCTs) are considered to be the gold standard for
evaluating the effect of an intervention (Rothman & Greenland, 1998). In an RCT,
the population under study is randomly divided into an intervention group and a
control group. Subjects in the intervention group are allocated to the intervention
(e.g., a new treatment, medication, vaccination program, etc.), while subjects in the
control group are allocated to the control condition (e.g., placebo, usual care, etc.). In
general, an RCT starts with a baseline measurement before the intervention is
started. Then, during or after the intervention period, one or more follow-up mea-
surement is performed. Regarding the analysis of RCT data, a distinction must be
made between studies with only one follow-up measurement and studies with more
than one follow-up measurement. When there is only one follow-up measurement,
relatively simple statistical methods can be used to estimate the effect of the
intervention, while when more than one follow-up measurement is considered, in
general, more advanced statistical methods are necessary.

In the past decade, an RCT with only one follow-up measurement has become
rare. At least one short-term follow-up measurement and one long-term follow-up
measurement “must” be performed. More than two follow-up measurements are
usually performed in order to investigate the development of the outcome variable
over time and to compare the developments of the outcome variable among the
intervention and control groups. Sometimes these more complicated experimental
designs are analyzed with simple cross-sectional methods, mostly by analyzing the
outcome at each follow-up measurement separately or sometimes even by ignoring
the information gathered from the in-between measurements, i.e., only using the last
measurement as outcome variable to estimate the effect of the intervention. Besides
this, summary statistics are sometimes used. The general idea behind a summary
statistic is to capture the longitudinal development of an outcome variable over time
into one value: the summary statistic. With a relative simple cross-sectional analysis,
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2 1 Introduction

these summary statistics can be compared between the intervention and control
groups in order to estimate the effect of the intervention (Twisk, 2013). However,
nowadays mostly more advanced statistical methods are used to analyze RCT data
with more than one follow-up measurement. In this book, the different possibilities
to analyze RCT data will be discussed by using different example datasets. Different
chapters will focus on different designs, such as RCTs with one follow-up measure-
ment (Chap. 2), RCTs with more than one follow-up measurement (Chap. 3), cluster
RCTs (Chap. 4), cross-over trials (Chap. 5), stepped wedge trials (Chap. 6), and
N-of-1 trials (Chap. 7). In the first part of this book, all methods will be illustrated
with continuous outcome variables. In Chap. 8, the differences in statistical analyses
between RCTs with a continuous and a dichotomous outcome variable will be
discussed. In the last part of the book, several other aspects regarding the analysis
of RCT data will be discussed. These aspects include the problem what to do when
only a baseline measurement is available (Chap. 9), sample size calculations
(Chap. 10), and the myths of testing for baseline differences and the analysis of
within group changes within an RCT (Chap. 11).

1.2 Intention-to-Treat Analysis

The standard method to estimate treatment effects in an RCT is an intention-to-treat
analysis. In an intention-to-treat analysis, all subjects randomized into the interven-
tion group should be analyzed as having received the intervention, regardless of
whether they received the complete intervention, only part of the intervention, or
nothing at all.

In a per protocol analysis, a comparison is made between subjects that actually
followed the protocol. A per protocol analysis is often performed when the intention-
to-treat analysis showed an intervention effect which is less strong than expected.
When a stronger intervention effect is observed in the per protocol analysis com-
pared to the intention-to-treat analysis it indicates that the intervention basically
works, but there are probably some issues with the implementation of the
intervention.

An as treated analysis is slightly different from a per protocol analysis. For
instance, subjects from the intervention group who actually received the control
condition are analyzed in the control group in an as treated analysis, while they are
removed from the analysis in the per protocol analysis.

In general, the choice for an intention-to-treat analysis, a per protocol analysis or
an as treated analysis does not influence the choice for the statistical methods that can
be used to estimate the intervention effect. It only defines the population to be
analyzed, and, therefore, a detailed discussion about these different populations
goes beyond the scope of this book.
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1.3 General Purpose and Prior Knowledge

This book will follow a practical nonmathematical approach, which will make it
easier to read and more understandable for nonmathematical readers. Therefore, in
each chapter, the statistical analyses will be explained by using relatively simple
examples, accompanied by computer output.

The book provides a practical guide about the different ways to estimate the effect
of an intervention in an RCT. It is assumed that the researchers who are going to use
the book have performed a certain kind of RCT (or are planning to perform one) and
that they know what kind of data they have (or going to have). This book offers an
answer to the question how to estimate the intervention effect in an appropriate way,
and this question will be answered for different RCT designs. In this book an attempt
has been made to keep the description of the statistical analyses as simple as
possible. However, it will be assumed that the reader has some prior knowledge
about standard statistical regression techniques, such as linear regression analysis
and logistic regression analysis.

1.4 Examples and Software

In all examples presented in this book, the statistical program STATA (version 15)
was used for performing the analyses (StataCorp, 2017). All example datasets used
in this book are available on request. The same holds for the STATA codes used for
performing the statistical analyses on the example datasets. All can be requested by
jwr.twisk@amsterdamumc.nl. It should be noted that all analyses can also be
performed with other software programs such as R, SPSS, and SAS. In general,
the syntax to be used is not that difficult.

1.5 Equations

In the different chapters, several equations are used to explain the methods used to
analyze the data. Because this book is written for the nonmathematical researcher,
these equations are printed in a relative simple way. Again, this is done to make the
book easily accessible for readers without a mathematical or statistical background.



Chapter 2 ®)
Analysis of RCT Data with One Follow-Up e
Measurement

2.1 Statistical Methods

When the effect of an intervention is estimated in an RCT with a continuous outcome
variable and only one follow-up measurement, mostly the change between the
baseline measurement and the follow-up measurement in the continuous outcome
variable is compared between the intervention group and the control group. The
effect of the intervention can then be estimated with a linear regression analysis
(Eq. 2.1) or even by an independent ¢-test. An independent -test is basically the same
as a linear regression analysis with a dichotomous independent variable, i.e., the
intervention variable:

AY, = Ytl — Y,O (2]3)
AY; = po + 51X (2.1b)

where Y;) = outcome measured at baseline, Y;; = outcome measured at follow-up,
X = intervention variable, and f; = effect estimate.

Comparing the change between the baseline measurement and the follow-up
measurement is a very popular method to analyze RCT data with one follow-up
measurement, because it greatly reduces the complexity of the statistical analysis.
However, the analysis of the change score is more problematic than is usually
realized.

One of the typical problems related to the use of the change score is the
phenomenon of regression to the mean. If the outcome variable at baseline is a
sample of random numbers and the outcome variable at the follow-up measurement
is also a sample of random numbers, then the subjects in the upper part of
the distribution at baseline are less likely to be in the upper part of the distribution
at the follow-up measurement, compared to the other subjects. In the same way, the
subjects in the lower part of the distribution at baseline are less likely to be in the
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6 2 Analysis of RCT Data with One Follow-Up Measurement

Fig. 2.1 Regression to the

mean in one population .
baseline

follow-up

lower part of the distribution at the follow-up measurement compared to the other
subjects (see Fig. 2.1).

When the change over time in a whole population is analyzed, regression to the
mean is not really a big problem, because in one population there will be subjects
with a random increase, and there will be subjects with a random decrease. So, on
average, there will be no change. However, in an RCT, when two groups are
compared to each other, regression to the mean can be a big problem, which occurs
when the average baseline values of the outcome variable differs between the two
groups.

The general idea of an RCT is that the two groups are randomly allocated to either
the intervention group or the control group. Because of this random allocation, it is
assumed that at baseline the average values of the two groups are the same.
However, that is theoretically only the case when the size of the (source) population
is infinite. In a real-life RCT, however, the two groups are of limited size, and
therefore it is highly possible that the average baseline values of the outcome
variable differ between the two groups. When the two groups are derived from
one (source) population, this difference is totally caused by chance. Suppose that the
aim of a particular intervention is to decrease the outcome variable, and suppose
further that the intervention group has a higher average baseline value compared to
the control group; when the intervention has no effect at all, due to regression to the
mean, the average value of the intervention group will go down, while the average
value of the control group will go up. A comparison between the intervention and the
control group regarding the change over time (Eq. 2.1) will then reveal a favorable
intervention effect. This is not a “real” effect but an effect caused by regression to the
mean (see Fig. 2.2).

Some researchers believe that using the relative change (Eq. 2.2) adjusts for
regression to the mean. However, that is not the case. In Fig. 2.3, this is nicely
illustrated:
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Fig. 2.3 The use of a relative change (Eq. 2.2) does not adjusts for regression to the mean

AV, — (YﬂY—tOYzo)

AY, =Py + B X (2.2b)

x 100% (2.2a)

where Y,y = outcome measured at baseline, Y;; = outcome measured at follow-up,
X = intervention variable, and S, = effect estimate.

In Fig. 2.3, two situations are illustrated. In the first situation, the first column
represents the baseline value. It can be seen that the baseline value in the intervention
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Table 2.1 Mean values for the Barthel Index at baseline and follow-up; a numerical example

Baseline Follow-up
Intervention group (N = 40) 8 16
Control group (N = 40) 6 12

group is higher than the baseline value in the control group. The next column
indicates the situation after the intervention period at the follow-up measurement.
The decrease in outcome variable in both groups is equal to 1. However, because the
intervention group has a higher baseline value compared to the control group, due to
regression to the mean, the average value of the intervention group is expected to
decrease, while the average value of the control group is expected to increase. In
other words, the decrease of 1 point in the intervention group is easier to achieve than
the 1 point decrease in the control group. When the relative change is calculated, the
intervention group decreases with 25%, while the control group decreases with 33%.
So, in this situation (when there is a decrease in the outcome variable), the use of the
relative change works well.

However, the second part of the figure shows totally the opposite. Again, the first
column represents the baseline value, and, again, there is a difference in baseline
values between the two groups where the average baseline value of the intervention
group is higher compared to the control group. In the second part of the figure,
however, the outcome variable increases over time. It can be seen that both groups
increase with 1 point, so the absolute changes do not differ between the groups.
However, because the control group has a lower value at baseline, due to regression
to the mean, the 1 point change is easier to achieve for the control group compared to
the 1 point change in the intervention group. When in this situation, the relative
change is calculated, and the intervention group increases with 33%, while the
control group increases with 50%. So, based on the difference between the two
relative changes, the control group performs better than the intervention group. This
is not true, because in fact, it is just the opposite; the intervention group performs
better than the control group. In other words, when the outcome variable decreases
over time, the use of the relative change more or less adjusts for regression to the
mean, but when the outcome variable increases over time, it goes totally wrong. To
illustrate this a bit further, let us look at the following numerical example. This
example relates to an RCT performed among patients suffering from stroke. In this
RCT the outcome was the Barthel Index, which indicates the possibility to perform
regular activities of daily living, such as standing up from a chair, taking a shower,
etc. Table 2.1 shows the data of this numerical example.

From Table 2.1 it is obvious that the baseline values differ between the two
groups. The intervention group has a higher baseline value compared to the control
group. Because there is an increase in the outcome variable over time, the increase of
8 points for the intervention group is harder to achieve than the increase of 6 points
for the control group. The control group is helped by regression to the mean, while
the intervention group is counteracted by regression to the mean. So, the difference
between the two groups of 2 points in change over time is an underestimation of the
actual effect of the intervention. When the relative change is calculated for both
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groups, there is an increase of 100% for both groups, which indicates that the
intervention does not work at all. This example shows nicely that analyzing the
relative change does not adjusts for regression to the mean. So, it can be concluded
that the method of comparing relative change scores should not be used in the
analysis of RCT data with one follow-up measurement.

Another method that claims to adjust for regression to the mean is known as
analysis of covariance (Eq. 2.3). With this method the value of the outcome variable
Y at the follow-up measurement is used as outcome in a linear regression analysis,
while the baseline value of the outcome variable Y is added to the model as a
covariate:

Yin=py+ 5 X+ BYo (2.3)

where Y;; = outcome measured at follow-up, Y,, = outcome measured at baseline,
X = intervention variable, f; = effect estimate, and f, = regression coefficient for
the baseline value.

In this model, §; indicates the effect of the intervention adjusted for possible
differences at baseline, i.e., adjusted for regression to the mean. In the analysis of
covariance, the regression coefficient for the baseline value (f,) is known as the
autoregression coefficient. The analysis is comparable to the analysis of residual
change, which was first described by Blomquist (1977). The first step in the analysis
of residual change is to perform a linear regression analysis between Y;; and Y. The
second step is to calculate the difference between the observed value of Y;; and the
predicted value of Y;; (predicted by the regression model with Y,y). This difference is
called the residual change, which is then used as outcome variable in a linear
regression analysis with the intervention variable. The regression coefficient of the
intervention variable is an estimate of the effect of the intervention adjusting for
regression to the mean. Although the general idea behind residual change analysis is
the same as for analysis of covariance, the results of both methods are not exactly the
same. From the literature it is known that analysis of residual change is not as good
as analysis of covariance (Forbes & Carlin, 2005). So, the analysis of residual
change will not be considered any further in the remaining part of this book.

Some researchers argue that the best way to define changes, adjusting for
regression to the mean, is a combination of Eqgs. (2.1) and (2.3). They suggest to
use the change between the baseline measurement and the follow-up measurement as
outcome in a linear regression analysis, adjusting for the baseline value of the
outcome (Eq. 2.4):

Yo —Yo= ﬂo +ﬁ1X +ﬁ2YtO (2-4)

where Y;; = outcome measured at follow-up, Y, = outcome measured at baseline,
X = intervention variable, ; = effect estimate, and f, = regression coefficient for
the baseline value.

However, analyzing the change, adjusting for the baseline value, is exactly the
same as the analysis of covariance described in Eq. (2.3). The only difference
between the models is that the regression coefficient for the baseline value is
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Table 2.2 Data structure

2 Analysis of RCT Data with One Follow-Up Measurement

Id |Outcome 1* |Outcome 2® |Intervention | Baseline
needed to perform an analysis ] % Y —7 1 y
of changes and an analysis of 1 1 0 10
covariance 2 Y Y = Yo 1 Yo

3 Ytl Ytl - YIO O Yt()

“Outcome used for the analysis of covariance
Qutcome used for the analysis of changes

different, i.e., the difference between the regression coefficients for the baseline
value is equal to 1. See Box 2.1 for a detailed explanation.

Boxspiepr146 2.1
Mathematical equivalence between analysis of covariance and the analysis of
changes with an adjustment for the baseline value of the outcome

Analysis of covariance
Y = Po+PiX + Yo

Analysis of changes with adjustment for the baseline value
Y — Yo =fo+piX + paYo
Y =Po+ PiX + Yo + Yo
Y = Po + fiX + (1 + f2)Yio

When the equation of analysis of changes is rewritten to define the outcome
Y,1, only the regression coefficient of Y, changes by a value of 1. The
coefficient of the intervention variable remains the same. So, whether Y;; or
Y,y — Y is being used as an outcome, the effect estimate will be exactly
the same.

Table 2.2 shows the structure of the data used to estimate the parameters for the
different analyses.

2.2 Example

The example dataset used in this chapter is derived from an RCT among 299 civil
servants working within municipal services in the Netherlands (Proper et al., 2003;
Twisk & Proper, 2004). All subjects randomized into the intervention group were
offered seven consultations, each 20 min in duration. The intervention period was
9 months, and counseling was focused primarily on the enhancement of the indi-
vidual’s level of physical activity. Subjects in the control group received no indi-
vidual counseling. Outcome variables were measured at baseline and directly after
the completion of the last consultation.

In principle, the RCT had three primary outcome variables (physical activity,
cardiorespiratory fitness, and prevalence of musculoskeletal disorders [e.g., upper
extremity complaints]) and three secondary outcomes (body composition [i.e., the
percentage of body fat and the body mass index], blood pressure, and total serum
cholesterol), but to make the example not too extensive, we selected two continuous
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Table 2.3 Mean and standard deviation (in parentheses) for the outcome variables used in the
example, i.e., total serum cholesterol and the physical activity index

Baseline Follow-up
Total serum Cholesterol (mmol/l) | Intervention group (N = 105) |5.52 (1.03) |5.35(0.99
Control group (N = 117) 5.33(0.91) |5.33(0.93)
Physical activity index Intervention group (N = 99) 5.80 (1.07) |5.94 (0.95)
Control group (N = 118) 5.44 (1.09) |5.34 (1.05)
Source | SS daf MS Number of obs = 222
————————————— e F (1, 220) = 4.68
Model | 1.80405499 1 1.80405499  Prob > F = 0.0317
Residual | 84.8837288 220 .385835131  R-squared = 0.0208
————————————— o Adj R-squared = 0.0164
Total | 86.6877838 221 .392252415  Root MSE = .62116
delchol | Coef Std. Err t P>t [95% Conf. Interval
_____________ e L
interven | -.1805568  .0835006 -2.16 0.032 -.3451203  -.0159933
_cons | .0051282  .0574259 0.09 0.929 -.1080471 .1183035

Output 2.1 Result of the linear regression analysis comparing the changes in total serum choles-
terol from baseline to follow-up between the intervention and control groups

Source | Ss df MS Number of obs = 222
————————————— Fmm e F(2, 219) = 17.12
Model | 11.7218792 2 5.86093961 Prob > F = 0.0000
Residual | 74.9659046 219 .342310067 R-squared = 0.1352
————————————— t---——— = Adj R-squared = 0.1273
Total | 86.6877838 221  .392252415 Root MSE = .58507
delchol | Coef Std. Err t P>t [95% Conf. Interval
_____________ U
interven | -.1374189 .0790573 -1.74 0.084 -.2932293 .0183915
tOchol | =-.2190814 .0407012 -5.38 0.000 -.2992975 -.1388652
_cons | 1.172008 .2234304 5.25 0.000 .7316589 1.612357

Output 2.2 Result of the linear regression analysis comparing the changes in total serum choles-
terol from baseline to follow-up between the intervention and control groups adjusted for the
baseline value

outcome variables (physical activity and total serum cholesterol), which were
selected because of differences between the groups at baseline (see Table 2.3).
Physical activity was assessed by the Baecke questionnaire. With this questionnaire,
physical activities during sport and during leisure time were measured. Both were
combined into one physical activity index.

From Table 2.3 it can be seen that for both the physical activity index and total
serum cholesterol, the baseline value for the intervention group is higher than for the
control group.

To analyze the effect of the intervention, three methods were used which were all
described in Sect. 2.1: (1) the comparison of changes (Eq. 2.1); (2) the comparison of
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Source | SS df MS Number of obs = 222
————————————— R ittt F(2, 219) = 184.09
Model | 126.028315 2 63.0141576 Prob > F = 0.0000
Residual | 74.9659046 219 .342310067 R-squared = 0.6270
————————————— o Adj R-squared N 0.6236
Total | 200.99422 221  .909476108 Root MSE = .58507

tlchol | Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ o
interven | -.1374189 .0790573 -1.74 0.084 -.2932293 .0183915
tOchol | .7809186 .0407012 19.19 0.000 .7007025 .8611348

| 1.172008 .2234304 5.25 0.000 .7316589 1.612357

Output 2.3 Result of the analysis of covariance for total serum cholesterol

changes, adjusted for the baseline value (Eq. 2.4); and (3) the analysis of covariance
(Eq. 2.3). Outputs 2.1-2.3 show the results for total serum cholesterol.

In all three analyses reported in Outputs 2.1-2.3, the regression coefficient for the
intervention variable indicates the effect of the intervention. It can be seen that the
effect of the intervention is stronger when the changes from baseline to follow-up are
analyzed without adjustment for the baseline value (—0.18 versus —0.14). The
stronger effect estimate, however, is an overestimation of the “real” intervention
effect. This overestimation is caused by the differences between the groups at
baseline. Because the intervention group starts at a higher level, and the intervention
is intending to decrease total serum cholesterol values, regression to the mean tends
the intervention group to decrease. Analysis of covariance adjusts for the differences
at baseline, and therefore this analysis showed a less strong intervention effect. As
has been explained in Box 2.1, the analysis of covariance and the analysis of changes
adjusted for the baseline value provide the same intervention effect. The only
difference between the two methods is that the autoregression coefficient (i.e., the
regression coefficient for the baseline value) differs by the value of 1. Based on these
results, it can be concluded that the “real” intervention effect equals —0.14. This
indicates that at the follow-up measurement, total serum cholesterol is 0.14 mmol/
liter lower for the intervention group compared to the control group. Besides this, it
can also be seen that the 95% confidence interval around the difference ranges
between —0.29 and 0.02, with a corresponding p-value of 0.084.

Although for both total serum cholesterol and the physical activity index the
intervention group has higher values at baseline, for the physical activity index, the
results of the three analyses show a different picture than for total serum cholesterol
(see Outputs 2.4-2.6).

From Outputs 2.4-2.6 it can be seen that the analysis of changes now underes-
timates the effect of the intervention. Again this is due to the differences at baseline
between the intervention and the control group. However, in contrast to total serum
cholesterol, the intervention intended to increase physical activity instead of to
decrease. When an increase is expected, for the group with the highest average
value at baseline (i.e., the intervention group), the increase is harder to achieve than
the increase for the group with the lower average value at baseline (i.e., the control
group). Therefore, the adjustment for the baseline value leads to a higher interven-
tion effect (0.35 versus 0.24). So, the “real” intervention effect indicates that at the
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Source

Model
Residual

3.2266743
110.703625

— = — 4 —

3.2266743
.514900582

Number of obs
F(1, 215)
Prob > F
R-squared

Adj R-squared

= 217
= 6.27
.0130
.0283
.0238
= .71757

o
ocoo

.2448211
-.1059322

.0977987
.0660573

2.50
-1.60

Root MSE
P>t [95% Conf.
0.013 .0520541
0.110 -.236135

Interval]

.4375881
.0242706

Output 2.4 Result of the linear regression analysis comparing the changes in the physical activity
index from baseline to follow-up between the intervention and control groups

Source

Model
Residual

23.9875439
89.9427556

11.993772
.420293251

interven
tlact

.3473814
-.2867148
1.454598

df

2

214

216

Std. Err
.0895552
.0407947
.229918

Number of obs = 217
F(2, 214) = 28.54
Prob > F = 0.0000
R-squared = 0.2105
Adj R-squared = 0.2032
Root MSE = .6483
P>t [95% Conf. Interval]
0.000 .1708581 .5239047
0.000 -.3671256 -.2063039
0.000 1.001404 1.907792

Output 2.5 Result of the linear regression analysis comparing the changes in the physical activity

index from baseline to follow-up between the intervention and control groups

baseline value

Source

Model
Residual

148.034779
89.9427556

74.0173895
.420293251

Number of obs
F(2, 214)
Prob > F
R-squared

Adj R-squared

adjusted for the

= 217
= 176.11
.0000
L6221
.6185
= . 6483

interven
tlact

.3473814
.7132852
1.454598

df

2

214

216

std. Err
.0895552
.0407947
.229918

Root MSE
P>|t]| [95% Conf.
0.000 .1708581
0.000 .6328744
0.000 1.001404

Interval]

.5239047
.7936961
1.907792

Output 2.6 Result of the analysis of covariance for the physical activity index

follow-up measurement, the physical activity index is 0.35 units higher in the
intervention group compared to the control group. The 95% confidence interval
around this difference ranges between 0.17 and 0.52, with a corresponding p-value

<0.001.



Chapter 3 )
Analysis of RCT Data with More Than One
Follow-Up Measurement

3.1 Introduction

In Chap. 2, the analysis of data from an RCT with only one follow-up measurement
was discussed. However, as has been mentioned before, in the past decade, an RCT
with only one follow-up measurement has become very rare. Mostly more than one
follow-up measurement is performed. In some RCTs two follow-up measurements
are performed in order to estimate the short-term and long-term effects of the
intervention, but sometimes even more follow-up measurements are performed in
order to estimate the difference in the development over time in a particular outcome
between the intervention and control groups.

Basically, for the analysis of data from an RCT with more than one follow-up
measurement, the same problems arise than for the analysis of data from an RCT
with only one follow-up measurement, i.e., an adjustment must be made for the
baseline value in order to adjust for regression to the mean. Until the start of a new
millennium, the analyses of data from an RCT with more than one follow-up
measurement were split into separate parts, i.e., the effect of the intervention was
estimated for all follow-up measurements separately. Although it is interesting to
estimate the intervention effects at the different follow-up measurements,
performing separate analyses for the different follow-up measurements ignores the
fact that the measurements were performed on the same subjects, i.e., it ignores the
fact that the repeated measurements on the same subject are dependent of each other.
Because of that, nowadays, it is necessary to take this dependency of the observa-
tions into account and estimate the effects of the intervention at different follow-up
measurements in one statistical model. The most classical way to do this is to use a
generalized linear model (GLM) for repeated measures, but that method has some
serious flaws. Therefore, regression-based methods such as mixed models or gener-
alized estimating equations (GEE analysis) are mostly used to estimate the effect of
an intervention from an RCT with more than one follow-up measurement. In the
remaining part of this chapter, several methods will be discussed that can be used
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(or are used) in the analysis of RCT data with more than one follow-up measurement.
Not all of the methods are equally appropriate for the analysis of RCT data with more
than one follow-up measurement, but it is important to discuss the pros and cons of
the different methods to finally give a solid recommendation which method
(s) should be used.

3.2 Example

To illustrate the different possible ways to analysis RCT data with more than one
follow-up measurement, a hypothetical example will be used. In this example
dataset, a new intervention is compared to a control condition regarding the outcome
variable complaints. Complaints are measured as a continuous outcome variable,
and beside a baseline measurement, three follow-up measurements were performed.
Table 3.1 shows descriptive information for both the intervention and control groups
at all four measurements.

3.3 GLM for Repeated Measures

The basic idea behind GLM for repeated measures (which is also known as (mul-
tivariate) analysis of variance (IM)ANOVA) for repeated measures) is the same as
for the well-known paired #-test. Within a GLM for repeated measures, the statistical
testing is carried out for the 7 — 1 absolute differences between subsequent mea-
surements. In fact, GLM for repeated measures is a multivariate analysis of these
T — 1 absolute differences. Multivariate refers to the fact that 7 — 1 differences are
used simultaneously as outcome variable. Besides the multivariate approach, the
same research question can also be answered with a univariate approach. This
univariate procedure is comparable to the procedures carried out in an analysis of
variance (ANOVA) and is based on the sum of squares, i.e., squared differences
between observed values and average values. From a GLM for repeated measures
with one dichotomous independent variable (i.e., the intervention variable), basically
three effects can be derived: an overall time effect (i.e., is there a change over time,
independent of the different groups), an overall group effect (i.e., is there a difference
between the groups on average over time) and, most important, a group-time
interaction effect (i.e., is there a difference between the groups in development

Table 3('1 Desc:liptiveding)r- Intervention group Control group

mation (mean and standar :

deviation) of the outcome Baseline 3.25 (0.40) 3.47 (0.43)

variable complaints 1t follow-up 3.03 (0.45) 3.25 (0.48)
2nd follow-up 2.89 (0.51) 3.18 (0.57)
3rd follow-up 2.83 (0.47) 3.12 (0.55)
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Table 3.2 Data structure id Outcome Time Intervention Baseline®
needed to perform a GLM for
Y, 10 0 1 Y, 10
repeated measures
1 Ytl 1 1 YtO
1 Yn 2 1 Yo
1 Y 3 1 Yo

Note: in some software packages (such as SPSS), a broad data
structure is needed to perform a GLM for repeated measures
“Because the baseline value is also used as outcome, a copy value
is needed

Number of obs = 572 R-squared = 0.7006
Root MSE = .336569 Adj R-squared = 0.5830
Source | Partial SS df MS F Prob>F
__________________ o
Model | 108.67927 161 .6750265 5.96 0.0000
|
intervent~n | 8.486801 1 8.486801 15.11 0.0002
patnr|intervent~n | 86.485301 154 .56159286
__________________ o
time | 12.84741 3 4.28247 37.80 0.0000
intervent~n#time | .20660739 3 .06886913 0.61 0.6101
|
Residual | 46.444287 410 .11327875
__________________ o
Total | 155.12355 571 .27166997

Output 3.1 Results of a GLM for repeated measures performed on the example dataset

over time). See for details, regarding GLM for repeated measures, Twisk et al.
(2013). Table 3.2 shows the structure of the data used to estimate the parameters
of a GLM for repeated measures.

Output 3.1 shows the results of a GLM for repeated measures performed on the
example dataset, while Fig. 3.1 shows the so-called estimated marginal means
resulting from the GLM for repeated measures.

Output 3.1 contains two tables with results. The first table of the results shows the
p-value for the overall intervention effect (p = 0.0002). This highly significant p-
value indicates the difference between the intervention group and the control group
on average over time. In the second table of the results, the p-values are given for the
overall time effect (p < 0.001) and for the interaction between intervention and time
(p = 0.6101). The overall time effect indicates the development over time for the
whole population, while the intervention-time interaction effect indicates the differ-
ence in development over time between the intervention and control groups. From
Fig. 3.1 and Table 3.1, however, it can be seen that the baseline values of both
groups are different. In Chap. 2 it was already discussed that the difference in
baseline values between the groups leads to regression to the mean and that,
therefore, an adjustment must be made for these baseline differences. Within the
framework of a GLM for repeated measures, also an adjustment can be made for the
baseline value. This approach is also known as a multivariate analysis of covariance
(MANCOVA) for repeated measures. Output 3.2 and Fig. 3.2 show the results of a
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Fig. 3.1 Estimated
marginal means derived
from a GLM for repeated 340 4
measures performed on the '
example dataset (continuous
line = control; dotted line = §
intervention) = 350
53
£
o
<
©
=
°
£ 3,00 .
£
=
(7]
w ..,
2,801 *
1 2 3 4
time
Number of obs = 572 R-squared = 0.7273
Root MSE = .322412 Adj R-squared = 0.6174
Source | Partial SS df MS F Prob>F
__________________ S
Model | 112.81612 164  .68790318 6.62 0.0000
|
intervent~n | 1.4798342 1 1.4798342 5.11 0.0252
baseline | .40749289 1 .40749289 1.41 0.2374
patnr|intervent~n | 44,.321113 153 .28968048
__________________ o
time | 2.6901628 3 .89672092 8.63 0.0000
baseline | .40749289 1 .40749289 3.92 0.0484
intervent~n#time | .65729745 3 .21909915 2.11 0.0987
time#baseline | 4.1368547 3 1.3789516 13.27 0.0000
|
Residual | 42.307432 407  .10394946
__________________ e
Total | 155.12355 571 .27166997

Output 3.2 Results of a GLM for repeated measures adjusted for the baseline differences
performed on the example dataset

GLM for repeated measures adjusting for the baseline value performed on the
example dataset.

From Output 3.2 it can be seen that the p-value for the interaction between
intervention and time decreases to 0.0987. The latter is a better indication of the
significance level of the intervention effect, because from Fig. 3.2 it can be seen that
the decrease in complaints over time is a bit in favor of the intervention group. It also
makes sense in light of the adjustment for regression to the mean. Because the
intervention group has a lower baseline value, the decrease in complaints is harder to
achieve. An adjustment for the baseline value provided, therefore, a lower p-value
for the interaction between intervention and time.

Although GLM for repeated measures is often used, it has a few major draw-
backs. First of all, it can only be applied to complete cases; all subjects with one or



3.4 Regression-Based Methods 19

Fig. 3.2 Estimated 3,40 i

marginal means derived
from a GLM for repeated
measures adjusted for the » 3,30
baseline differences §
performed on the example = 3,20
dataset (continuous £
¥me = cqntrol, dotted line = £ 5104
intervention) =
kel
2
© 3,004
g ‘-
@
w
2,904 “
.
2,804
1 2 3 4
time

more missing observation are not part of the analyses. Secondly, GLM for repeated
measures is mainly based on statistical testing. The parameters obtained from a GLM
for repeated measures are p-values. This is a major drawback, because there is much
more interest in effect estimates and confidence intervals around the effect estimates.
Within a GLM for repeated measures, it is hard to get a proper effect estimate.
Because of this, nowadays, GLM for repeated measures is not much used for the
analysis of RCT data with more than one follow-up measurement.

3.4 Regression-Based Methods

The two mostly used regression-based methods to analyze RCT data with more than
one follow-up measurement are mixed model analysis and GEE analysis (Twisk,
2013). The two most important advantages of the regression-based methods are that
all available data is included in the analysis and that they provide effect estimates and
confidence intervals around the effect estimates.

It has been mentioned before that when more than one follow-up measurement is
analyzed in one statistical model, an adjustment must be made for the dependency of
the repeated observations within the subject. In fact, when there is more than one
follow-up measurement, there is longitudinal data. Both mixed models and GEE
analysis can be used to analyze longitudinal data, and the difference between the two
methods is that they take into account this dependency in a different way.

The basic idea behind the adjustment for the dependency of the observations
within the subject is that in the regression model an adjustment has to be made for the
variable “subject.” The variable “subject” is mostly the id number, and although it
looks like a discrete variable, in regression modeling, it should be treated as a
categorical variable, and a categorical variable must be represented by dummy
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variables. Suppose there are 200 subjects in a particular RCT; this means that
199 dummy variables are needed to adjust for “subject.” Because this is practically
impossible, the adjustment for “subject” has to be performed in a more efficient way,
and the two regression-based methods that are mostly used to analyze longitudinal
data (mixed model analysis and GEE analysis) differ from each other in the way they
perform that adjustment (Twisk, 2013).

As has been mentioned before, the general idea behind all longitudinal statistical
methods is to adjust for “subject” in an efficient way. If the adjustment for the
“subject” variable was performed by adding dummy variables to the regression
model, basically for each subject a separate intercept is estimated. The starting
point of a mixed model analysis, which is also known as multilevel analysis
(Goldstein, 2003; Twisk, 2006), hierarchical linear modeling, or random effects
modeling (Fitzmaurice et al., 2004; Laird & Ware, 1982), is the estimation of all
these intercepts, but then the different intercepts are summarized into one coefficient:
the variance. This variance is based on a normal distribution that is drawn over all the
intercepts. So, a mixed model analysis consists of three steps: (1) estimating the
different intercepts for all subjects, (2) drawing a normal distribution over all these
intercepts, and (3) estimating the variance of that normal distribution. That variance
is known as the random intercept variance, and the random intercept variance is
added to the regression model.

It is also possible that not only the intercept is different for each subject but that
also the development over time is different for each subject; in other words, there is
an interaction between “subject” and time. In this situation the variance of the
regression coefficients for time can be estimated, i.e., a random slope for time. In
fact, this kind of individual interactions (i.e., random slopes) can be added to the
regression model for all independent variables that are time-dependent. In a regular
RCT, however, assuming a random slope for the intervention is not possible,
because the intervention variable is time-independent (Twisk, 2006). When a certain
subject is assigned to either the intervention or control group, that subject stays in
that group along the intervention period. An exception is the cross-over trial, in
which the subject is its own control and the intervention variable is, therefore, time-
dependent. In this situation the intervention effect can be different for each subject,
and therefore a random slope for the intervention variable can be added to the model
(see Chap. 5).

Within GEE analysis, the adjustment for the dependency of observations is done
in a slightly different way, i.e., by assuming (a priori) a certain working correlation
structure for the repeated measurements of the outcome variable (Liang & Zeger,
1986; Zeger & Liang, 1986). Depending on the software package used to estimate
the regression coefficients, different correlation structures are available. They basi-
cally vary from an exchangeable (or compound symmetry) correlation structure, i.e.,
the correlations between subsequent measurements are assumed to be the same,
irrespective of the length of the interval between the repeated measurements, to an
unstructured correlation structure. In this structure no particular structure is assumed,
which means that all possible correlations between the follow-up measurements are
estimated.
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In the literature it is assumed that GEE analysis is robust against a wrong choice
for a correlation structure, i.e., it does not matter which correlation structure is
chosen; the results of the longitudinal analysis will be more or less the same
(Liang & Zeger, 1986; Twisk, 2004). However, when the results of analyses with
different working correlation structures are compared to each other, the magnitude of
the regression coefficients can be different (Twisk, 2013). It is therefore important to
realize which correlation structure should be chosen for the analysis. Although the
unstructured working correlation structure is theoretically always the best, the
simplicity of the correlation structure also has to be taken into account. The number
of parameters (in this case correlation coefficients) which needs to be estimated
differs for the various working correlation structures. The best option is therefore to
choose the simplest structure which fits the data well. The first step in choosing a
certain correlation structure can be to investigate the observed within person corre-
lation coefficients for the outcome variable. It should be kept in mind that when
analyzing covariates, the correlation structure can change (i.e., the choice of the
correlation structure should better be based conditionally on the covariates). For a
detailed explanation of the principles behind mixed model analysis and GEE anal-
ysis, one is referred to Twisk et al. (2013).

Within the framework of the regression-based methods, several models are
available to evaluate the effect of an intervention in an RCT with more than one
follow-up measurement (Twisk et al., 2018). In the next part of this chapter, the
different models will be discussed.

3.4.1 Longitudinal Analysis of Covariance

Longitudinal analysis of covariance is an extension of the analysis of covariance
described in Chap. 2, i.e., the outcome variable measured at the different follow-up
measurements is adjusted for the baseline value of the outcome (Eq. 3.1):

Yi =B +5X+P5Yo (3.1)

where Y, = outcome measured at the follow-up measurements, X = intervention
variable, /1 = overall intervention effect, and Y,, = outcome measured at baseline.

Table 3.3 shows the structure of the data used to estimate the parameters for a
longitudinal analysis of covariance.

Output 3.3 shows the results of the longitudinal analysis of covariance (Eq. 3.1)
performed with linear mixed model analysis to estimate the overall intervention
effect over time in the example dataset which was introduced in Sect. 3.2.

Output 3.3 basically contains three parts. The first part shows some general
information regarding the analysis which is performed. It can be seen that a mixed
effects maximum likelihood (ML) regression analysis is performed and that the
group variable is the id number. This means that the mixed model analysis takes into
account the dependency of the observations within the subject. It can also be seen
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Table 3.3 Data structure Id Outcome Time Intervention Baseline
needed to perform a longitu-
. . . Y 0 1 Yo
dinal analysis of covariance
Yt2 1 1 YtO
1 Ys 2 1 Yo
Mixed-effects ML regression Number of obs = 416
Group variable: id Number of groups = 150

Obs per group:

min = 1

avg = 2.8

max = 3

Wald chi2(2) = 58.85

Log likelihood = -223.41988 Prob > chi2 = 0.0000
complaints | Coef Std. Err z P>z [95% Conf. Interval]

_____________ o .

intervention | =-.1419588 0654837 -2.17 0.030 -.2703044 -.0136132

baseline | .5243691 .0782574 6.70 0.000 .3709873 .6777509
_cons | 1.356396 .2742621 4.95 0.000 .818852 1.89394
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval

_____________________________ o

id: Identity |

var (_cons) | .1129856 .0182538 .0823197 .1550753

_____________________________ b
var (Residual) | .104595 .0091373 .0881356 .1241282

LR test vs. linear model: chibar2(01) = 92.75 Prob >= chibar2 = 0.0000

Output 3.3 Results of the longitudinal mixed model analysis of covariance

that there are 416 observations performed among 150 subjects and that the average
number of follow-up measurements is 2.8. These numbers indicate that not all
patients were measured at all follow-up measurements. It should be noted that the
regression-based methods and especially mixed model analysis are highly suitable to
deal with missing data (Twisk et al., 2013). Furthermore, this part of the output
shows some additional model fit information, such as the log likelihood. The log
likelihood is used in the likelihood ratio test, which can be used to compare models
with each other.

The second part of the output contains the fixed part of the mixed model. In this
part of the output, the regression coefficients are given. Besides that, also the
standard errors, z-values, p-values, and 95% confidence intervals around the regres-
sion coefficients are provided. The coefficient for intervention (—0.1419588) indi-
cates that on average over time, the intervention group has a 0.14 lower score on
complaints compared to the control group. The standard error of this coefficient
equals 0.0654837, and the z-value (—2.17) is derived by dividing the regression
coefficient by its standard error. Based on the z-value, the p-value (0.030) is
obtained, and the 95% confidence interval around the regression coefficient
(—0.2703044 to —0.0136132) is calculated by the regression coefficient £ 1.96
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GEE population-averaged model Number of obs = 416

Group variable: id Number of groups = 150
Link: identity Obs per group:

Family: Gaussian min = 1

Correlation: exchangeable avg = 2.8

max = 3

Wald chi2 (2) = 45.40

Scale parameter: .2142789 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on id)

| Robust
complaints | Coef. Std. Err. z P>|z| [95% Conf. Interval
_____________ o
intervention | -.1432429 .0649198 -2.21 0.027 -.2704833 -.0160025
baseline | .5243874 .0901241 5.82 0.000 .3477474 .7010275
_cons | 1.356904 .2994742 4.53 0.000 .7699457 1.943863

Output 3.4 Results of the longitudinal GEE analysis of covariance

times the standard error. It can further be seen that the difference between the groups
(i.e., the effect of the intervention) is adjusted for the differences between the groups
at baseline, i.e., the baseline value is added to the model as a covariate. The last part
of the output contains the random part of the model, which contains the random
intercept variance (0.1129856). This variance indicates the variation between the
subjects in the outcome variable or in other words, the amount of variance in the
outcome explained by the differences between the subjects.

Output 3.4 shows the results of exactly the same analysis but now performed with
a linear GEE analysis. In this GEE analysis, an exchangeable correlation structure is
used.

The output of a longitudinal GEE analysis of covariance contains two parts,
which are more or less the same as the first two parts of the output of the longitudinal
mixed model analysis of covariance. In the first part, some general information is
provided. This general information contains the group variable (id) and what kind of
regression model is performed. In this situation a linear regression model is used
(i.e., the link function is identity and the family is Gaussian). The information also
shows that an exchangeable correlation structure is used for the estimation and it
provides the scale parameter, which is a measure for the remaining unexplained
variance after the analysis is performed. In the right column of the first part of the
output, the same information is provided as has been provided in the first part of the
output of the longitudinal mixed model analysis of covariance.

The second part of the output of a longitudinal GEE analysis of covariance
provides the regression coefficients. The interpretation of the regression coefficient
for the intervention variable (—0.1432429) is exactly the same as the interpretation
of the regression coefficient of the intervention variable obtained from the longitu-
dinal mixed model analysis of covariance. It also provides the standard error of the
estimate (0.0649198), which is used in the calculation of the 95% confidence interval
around the estimate, which ranges from —0.2704833 to —0.0160025 and the
corresponding p-value (0.027). It should be noted that the effect estimate obtained
from the longitudinal GEE analysis of covariance is almost the same as the one
obtained from the longitudinal mixed model analysis of covariance (—0.1432429
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versus —0.1419588). This is always the case. In fact, when there are no missing data,
the regression coefficient obtained from a linear mixed model analysis with a random
intercept is exactly the same as the regression coefficient obtained from a linear GEE
analysis with an exchangeable correlation structure. This is caused by the fact that
estimating one variance (the random intercept variance) is exactly the same as
estimating one correlation (an exchangeable correlation structure) (Twisk, 2013).
The only difference between the two regression coefficients in the present example is
caused by missing data, and it is generally accepted that mixed model analysis deals
better with missing data then GEE analysis (Twisk et al., 2013). Because the two
methods to estimate the effect of the intervention almost give the same results and
the fact that mixed models deals better with missing data, in the remaining part of
this book, all examples with a continuous outcome variable will be analyzed with
linear mixed model analyses.

After estimating the overall effect of the intervention on average over time, in a
second step, the effects of the intervention at the (three) follow-up measurements can
be estimated. With the longitudinal analysis of covariance, this is not done with three
separate linear regression analyses, but this is done in one model. To assess the effect
of the intervention at the different follow-up measurements, time and the interaction
between the intervention variable and time are added to the model (Eq. 3.2):

Y. =Py + B X + oY + Batimes + Pytimes + PsX X timey + PeX X times (3.2)

where Y, = outcome measured at the follow-up measurements, X = intervention
variable, #; = intervention effect at the first follow-up measurement, Y,y = outcome
measured at baseline, and time,, time; = dummy variables for the second and third
follow-up measurement.

In this model, the regression coefficient for the intervention variable indicates the
intervention effect at the first follow-up measurement. The intervention effect at the
second follow-up measurement is calculated as the sum of the regression coefficient
for the intervention variable and the regression coefficient for the interaction
between the intervention variable and the time dummy variable for the second
follow-up measurement (f; + fs), while the intervention effect at the third follow-
up measurement is calculated as the sum of the regression coefficient for the
intervention variable and the regression coefficient for the interaction between the
intervention variable and the time dummy variable for the third follow-up measure-
ment (1 + fg). Output 3.5 shows the result of this analysis.

Output 3.5 also contains three parts: the upper part which contains the overall
information, the middle part which contains the fixed part of the model, and the
lower part which contains the random part of the model. Most interesting is, of
course, the middle part, because that part contains the regression coefficients. The
analysis performed leads to a regression coefficient for the intervention variable, two
regression coefficients for the time dummy variables, two regression coefficients for
the interactions between the intervention variable and the two time dummy variables,
and the regression coefficient for the baseline value. The latter indicates again that a
longitudinal analysis of covariance was performed with an adjustment for the
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Mixed-effects ML regression Number of obs = 416
Group variable: id Number of groups = 150
Obs per group:
min = 1
avg = 2.8
max = 3
Wald chi2 (6) = 79.50
Log likelihood = -213.66378 Prob > chi2 = 0.0000
complaints | Coef. Std. Err. z P>|z]| [95% Conf. Interval
_____________ o
intervention | =-.1036192 .0785095 -1.32 0.187 -.2574949 .0502566
|
time |
2 | -.0826913 .0527159 -1.57 0.117 -.1860126 .0206301
3 | -.1254292 .0530484 -2.36 0.018 -.2294022 -.0214562
|
time# |
c. |
intervention |
2 | -.040448 .0763355 -0.53 0.596 -.1900627 .1091668
3 | =-.0799769 .0760742 -1.05 0.293 -.2290796 .0691258
|
baseline | .5289271 .0778606 6.79 0.000 .3763233 .681531
_cons | 1.410858 .2746856 5.14 0.000 .8724839 1.949232
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval
_____________________________ o
id: Identity |
var (_cons) | .1138685 .0179887 .0835474 .1551939
_____________________________ o
var (Residual) | .0978093 .0085373 .0824295 .1160587
LR test vs. linear model: chibar2(01) = 100.99 Prob >= chibar2 = 0.0000

Output 3.5 Results of the longitudinal mixed model analysis of covariance including an interac-
tion between intervention and time

baseline value. The regression coefficient for the intervention variable (—0.1036192)
indicates the difference between the intervention group and the control group at the
first follow-up measurement (i.e., the reference time point). The regression coeffi-
cients for the two time dummy variables indicate the difference in complaints
between the reference time point (i.e., the first follow-up measurement) and the
other two follow-up measurements for the control group. These coefficients are,
therefore, not really interesting. The regression coefficients for the two interactions
terms indicate the difference between the first follow-up measurement and the other
two follow-up measurements in the difference between the two groups. With these
coefficients the effect estimates for the intervention at the second and third follow-up
measurement can be calculated. For the second follow-up measurement, the effect
estimate is —0.1036192 + —0.040448 = —0.1440672, while the effect estimate at
the third follow-up measurement equals —0.1036192 + —0.0799769 = —0.1835961.
The problem, however, is that although the effect estimates at the second and the
third follow-up measurement can be calculated in this way, the standard errors (and
therefore also the 95% confidence intervals and corresponding p-values) cannot be
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Mixed-effects ML regression Number of obs = 416
Group variable: id Number of groups = 150

Obs per group:

min = 1
avg = 2.8
max = 3
Wald chi2 (6) = 79.50
Log likelihood = -213.66378 Prob > chi2 = 0.0000
complaints | Coef Std. Err z P>|z]| [95% Conf. Interval
_____________ o _____
intervention | -.1440671 .0789085 -1.83 0.068 -.2987249 .0105907
|
time |
1 | .0826913 .0527159 1.57 0.117 -.0206301 .1860126
3 -.042738 .0525457 -0.81 0.416 -.1457256 .0602497
|
time# |
c. |
intervention |
1 | .040448 .0763355 0.53 0.596 -.1091668 .1900627
3 | -.0395289 .076004 -0.52 0.603 -.188494 .1094361
|
baseline | .5289271 .0778606 6.79 0.000 .3763233 .681531
cons | 1.328167 .2740424 4.85 0.000 .7910532 1.86528
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval
_____________________________ o
id: Identity |
var (_cons) | .1138685 .0179887 .0835474 .1551939
_____________________________ o
var (Residual) | .0978093 .0085373 0824295 .1160587
LR test vs. linear model: chibar2(01) = 100.99 Prob >= chibar2 = 0.0000

Output 3.6 Results of the longitudinal mixed model analysis of covariance including an interac-
tion between intervention and time, with the second follow-up measurement as reference time point

calculated. To obtain these standard errors, the performed longitudinal analysis of
covariance should be reanalyzed with a different reference category for time. Output
3.6. shows the result of the analysis with the second follow-up measurement as
reference time point, and Output 3.7 shows the result of the analysis with the third
follow-up measurement as reference time point.

From Output 3.6, it can be seen that the regression coefficient for the intervention
variable equals —0.1440672, which is equal to the number calculated based on the
two regression coefficients provided in Output 3.5. Besides the effect estimate, the
output also gives the standard error of the estimate and, therefore, also the 95%
confidence interval around the effect estimate and the corresponding p-value. In
Output 3.7, the effect estimate at the third follow-up measurement is provided
(0.1835961) with its 95% confidence interval and corresponding p-value.
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Mixed-effects ML regression Number of obs = 416
Group variable: id Number of groups = 150

Obs per group:

min = 1
avg = 2.8
max = 3
Wald chi2(6) = 79.50
Log likelihood = -213.66378 Prob > chi2 = 0.0000
complaints | Coef Std. Err z P>|z| [95% Conf. Interval]
_____________ o .
intervention | -.1835961 .0783288 -2.34 0.019 -.3371176 -.0300745
|
time |
1 | .1254292 .0530484 2.36 0.018 .0214562 .2294022
2 | .042738 .0525457 0.81 0.416 -.0602497 .1457256
|
time# |
c. |
intervention |
1 .0799769 .0760742 1.05 0.293 -.0691258 .2290796
2 .0395289 .076004 0.52 0.603 -.1094361 .188494
|
baseline | .5289271 .0778606 6.79 0.000 .3763233 . 681531
cons | 1.285429 .2749108 4.68 0.000 . 7466132 1.824244
Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]
_____________________________ o
Id: Identity |
var (_cons) | .1138685 .0179887 .0835474 .1551939
_____________________________ o
var (Residual) | .0978093 .0085373 .0824295 .1160587
LR test vs. linear model: chibar2(01) = 100.99 Prob >= chibar2 = 0.0000

Output 3.7 Results of the longitudinal mixed model analysis of covariance including an interac-
tion between intervention and time, with the third follow-up measurement as reference time point

3.4.2 Repeated Measures

In the repeated measures analysis, the values of all four measurements of the
outcome variable (i.e., the baseline value as well as the values of the three
follow-up measurements) are used as outcome in the analysis. When the overall
intervention effect is estimated, the model does not include time (Eq. 3.3), while
when the intervention effect at the different follow-up measurements is estimated,
time is represented by dummy variables (Eq. 3.4) . Because all four measurements
are used as outcome, in the latter, three dummy variables are needed to represent
time. The model includes further the interaction between intervention and time:

Yi=po+ /X (3.3)

where Y, = outcome measured at all measurements, X = intervention variable, and
p1 = overall intervention effect.
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Table 3.4 Data structure Id Outcome Time Intervention Baseline
needed to perform a repeated
. Yo 0 1 Na
measures analysis
1 Y 1 1 Na
1 Yo 2 1 Na
1 Ys 3 1 Na

Na, not applicable

Y = fo+ 51X + Potime; + Patimer + Pytimes + fsX X time + X
X timey + f,X X timezX + P,time| + Pstime, + Pytimes + s X
X time| + fcX X timey + X X times (3.4)

where Y, = outcome measured at all measurements, X = intervention variable, f; =
difference between the groups at baseline, and time,, times, time, = dummy vari-
ables for the first, second, and third follow-up measurement.

Table 3.4 shows the structure of the data used to estimate the parameters of a
repeated measures analysis.

In Eq. 3.3, the regression coefficient for the treatment variable indicates the
difference between the intervention and control groups on average over time. In
the model with the three dummy variables (Eq. 3.4), the intervention effect at the first
follow-up measurement is calculated as the sum of the regression coefficient for the
intervention variable and the regression coefficient for the interaction between the
intervention variable and the dummy variable for the first follow-up measurement
(B + Ps), while the intervention effect at the second follow-up measurement is
calculated as the sum of the regression coefficient for the intervention variable and
the regression coefficient for the interaction between the intervention variable and
the dummy variable for the second follow-up measurement (3, + ). And of course,
the intervention effect at the third follow-up measurement is calculated as the sum of
the regression coefficient for the intervention variable and the regression coefficient
for the interaction between the intervention variable and the dummy variable for the
third follow-up measurement (3, + f7).

In the repeated measures analysis, the baseline value is part of the outcome (see
Table 3.4), and therefore it is not possible to adjust for the baseline values as well.
Although some researchers try to do so, it does not make sense, because in that
situation the baseline value as outcome is adjusted for itself. So, therefore, the
analysis is relatively simple and only contains the intervention variable (Eq. 3.3).
Output 3.8 shows the result of the analysis.

In the upper part of Output 3.8, it can be seen that the maximal number of
measurements for each subject is equal to 4, which shows that in this analysis, the
baseline value is part of the outcome. As for the outputs of the longitudinal analysis
of covariance, the most interesting part of the output is the middle part which
contains the effect estimate for the intervention. The effect estimate is the regression
coefficient for the intervention variable (—0.2480394), which indicates the differ-
ence between the intervention and control groups on average over time. It should be
realized that this effect estimate includes the difference between the two groups at
baseline, which is not caused by the intervention.
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Mixed-effects ML regression Number of obs = 572

Group variable: id Number of groups = 156
Obs per group:

min = 1

avg = 3.7

max = 4

Wald chi2 (1) = 15.55

Log likelihood = -359.90801 Prob > chi2 = 0.0001

complaints | Coef. Std. Err. z P>|z| [95% Conf. Interval]

_____________ e

intervention | -.2480394 .0629007 -3.94 0.000 -.3713225 -.1247562

_cons | 3.262652 .0433469 75.27 0.000 3.177694 3.34761

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

_____________________________ o

id: Identity |

var (_cons) | L1127726 .0176065 .0830445 .1531427

_____________________________ o

var (Residual) | .1428889 .0098981 .1247483 .1636676

LR test vs. linear model: chibar2(01) = 122.69 Prob >= chibar2 = 0.0000

Output 3.8 Results of the longitudinal repeated measures mixed model analysis

With the repeated measures analysis, it is also possible to obtain the effects of the
intervention at the different time points. Therefore, three time dummy variables and
the interaction between the intervention variable and the three time dummy variables
were added to the model (Eq. 3.3). Although the default option in analyses with a
categorical variable (i.e., time) is to take the first category as reference category, in
this particular situation that makes no sense. Because the first category indicates the
first measurement (i.e., the baseline value), the estimated difference between the
groups at the first measurement is not related to the intervention and, therefore, not
an actual effect estimate of the intervention. Therefore, in the first analysis, the
second measurement (i.e., the first follow-up measurement) is used as reference
category. Output 3.9 shows the results of this analysis.

It has been mentioned before that from Output 3.9, the most interesting regression
coefficient is the coefficient for the intervention variable (—0.2212681). That coef-
ficient indicates the difference between the intervention and control groups at the
first follow-up measurement. It has also been mentioned before that the regression
coefficients given in Output 3.9 can also be used to calculate the effect estimates for
the intervention at the second and third follow-up measurement. To do so, the
regression coefficient of the intervention variable has to be added to the regression
coefficients of the interactions between the intervention variable and the
corresponding time dummy variable. So, the effect estimate for the intervention
at the second follow-up measurement equals —0.2212681 + —0.0502898 =
—0.2715579, while the effect estimate for the intervention at the third follow-up
measurement equals —0.2212681 + —0.0774314 = —0.2986995. The problem of
these calculations is (again) that there is no estimation of the standard errors of the
estimates, and therefore there is no estimation of the 95% confidence intervals and
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Mixed-effects ML regression Number of obs = 572
Group variable: id Number of groups = 156

Obs per group:

min = 1
avg = 3.7
max = 4
Wald chi2 (7) = 131.78
Log likelihood = -308.62968 Prob > chi2 = 0.0000
complaints | Coef Std. Err z P>|z| [95% Conf. Interval
_____________ o
intervention | -.2212681 .0803815 -2.75 0.006 -.378813 -.0637231
|
time |
1 .2199861 .0548916 4.01 0.000 .1124005 .3275718
3 | -.0785976 .0561745 -1.40 0.162 -.1886976 .0315024
4 | -.1314942 .0564121 -2.33 0.020 -.2420599 -.0209284
|
time# |
c. |
intervention |
1 | .006242 .078879 0.08 0.937 -.148358 .160842
3 | -.0502898 .0813001 -0.62 0.536 -.2096351 .1090554
4 | -.0774314 .0809424 -0.96 0.339 -.2360755 .0812128
|
cons | 3.249611 .0559161 58.12 0.000 3.140017 3.359204
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
id: Identity |
var (_cons) | .1211421 .0175331 .0912219 .1608759
_____________________________ o
var (Residual) | .111834 .0077539 .097624 .1281123
LR test vs. linear model: chibar2(01) = 171.28 Prob >= chibar2 = 0.0000

Output 3.9 Results of the longitudinal mixed model repeated measures analysis including an
interaction between intervention and time, with the second measurement (i.e., the first follow-up
measurement) as reference time point

the corresponding p-values. To obtain those, the repeated measures analysis with the
interaction between the intervention variable and time must be performed with
different reference categories for time. Outputs 3.10 and 3.11 show the results of
the analyses with the second follow-up measurement and the third follow-up mea-
surement as reference category.

The regression coefficient of the intervention variable provided by Output 3.10
(—0.2715579) gives the effect estimate for the intervention at the second follow-up,
while the regression coefficient of the group variable provided by Output 3.11
(—0.2986994) gives the effect estimate for the intervention at the third follow-up.
Although these effect estimates were already known from the calculation performed
on the regression coefficients provided in Output 3.6, now for both effect estimates,
also the standard errors are given, which are used in the estimation of the 95%
confidence intervals and the corresponding p-values.

Although the repeated measures analyses performed so far included the baseline
value, it should be noted again that in this analysis there is no adjustment for the
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Mixed-effects ML regression Number of obs = 572
Group variable: id Number of groups = 156

Obs per group:

min = 1
avg = 3.7
max = 4
Wald chi2(7) = 131.78
Log likelihood = -308.62968 Prob > chi2 = 0.0000
complaints | Coef std. Err z P>|z| [95% Conf. Interval
_____________ .
intervention | =-.2715579 .0808956 -3.36 0.001 -.4301104 -.1130054
I
time |
1 | .2985838 .0543956 5.49 0.000 .1919705 .4051971
2 | .0785976 .0561745 1.40 0.162 -.0315024 .1886976
4 | -.0528965 .0559115 -0.95 0.344 -.162481 .0566879
I
time# |
c. |
intervention |
1 | .0565318 .0794028 0.71 0.476 -.0990948 .2121584
2 | .0502898 .0813001 0.62 0.536 -.1090554 .2096351
4 | -.0271415 .0810235 -0.33 0.738 -.1859447 .1316617
|
cons | 3.171013 .0554291 57.21 0.000 3.062374 3.279652
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval
_____________________________ o
id: Identity |
var (_cons) | .1211421 .0175331 .0912219 .1608759
_____________________________ e
var (Residual) | .111834 .0077539 .097624 .1281123
LR test vs. linear model: chibar2(01) = 171.28 Prob >= chibar2 = 0.0000

Output 3.10 Results of the longitudinal mixed model repeated measures analysis including an
interaction between intervention and time, with the third measurement (i.e., the second follow-up
measurement) as reference time point

baseline value. This is a general misunderstanding. Many researchers do believe that
the repeated measures analysis performed does adjust for the baseline value. How-
ever, because the baseline value in these analyses is treated as an outcome instead of
a covariate, the method actually does not adjust for the baseline value. To obtain an
effect estimate of the intervention with a repeated measures analysis adjusted for the
baseline, an alternative repeated measures analysis can be used. In this alternative
repeated measures analysis, the intervention variable is not part of the model, but its
interaction with time still is (Egs. 3.5 and 3.6):

Y, = B, + Bytime + X X time (3.3)

where Y, = outcome measured at all measurements, X = intervention variable, and
> = overall intervention effect.
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Mixed-effects ML regression Number of obs = 572
Group variable: id Number of groups = 156

Obs per group:

min = 1
avg = 3.7
max = 4
Wald chi2(7) = 131.78
Log likelihood = -308.62968 Prob > chi2 = 0.0000
complaints | Coef Std. Err z P>z [95% Conf. Interval]
_____________ o
intervention | =-.2986994 .0802546 -3.72 0.000 -.4559956 -.1414033
I
time |
1 .3514803 .054366 6.47 0.000 .2449249 .4580357
2 | .1314942 .0564121 2.33 0.020 .0209284 .2420599
3 .0528965 .0559115 0.95 0.344 -.0566879 .162481
|
time# |
c. |
intervention |
1 .0836733 .0787496 1.06 0.288 -.0706731 .2380198
2 | .0774314 .0809424 0.96 0.339 -.0812128 .2360755
3 .0271415 .0810235 0.33 0.738 -.1316617 .1859447
|
cons | 3.118117 .0554001 56.28 0.000 3.009534 3.226699
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o
id: Identity |
var (_cons) | .1211421 .0175331 .0912219 .1608759
_____________________________ o
var (Residual) | .111834 .0077539 .097624 .1281123
LR test vs. linear model: chibar2(01) = 171.28 Prob >= chibar2 = 0.0000

Output 3.11 Results of the longitudinal mixed model repeated measures analysis including an
interaction between intervention and time, with the fourth measurement (i.e., the third follow-up
measurement) as reference time point

Y, = py + ptime; + Prtimes + Pstimes + By X X timey 4 fsX X time;
+ X X times (3.6)

where Y, = outcome measured at all measurements, X = intervention variable, 4 =
intervention effect at the first follow-up measurement, 5 = intervention effect at the
second follow-up measurement, /g = intervention effect at the third follow-up
measurement, and time;, time,, time; = dummy variables for the first, second, and
third follow-up measurement.

Table 3.5 shows the structure of the data used to estimate the parameters of an
alternative repeated measures analysis.

Because the intervention variable is not included in the model, the baseline values
for both groups are assumed to be equal and are reflected in the intercept of the
model (). The intervention effects can be directly obtained from the regression
coefficients for the interaction between the treatment variable and time (the overall
treatment effect over time; /5, in Eq. 3.5) or between the treatment variable and the
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Table 3.5 Data structure Id |Outcome |Timel |Time2 |Intervention | Baseline
needed to perform the alter-
: Yo 0 0 1 Na
native repeated measures
analysis 1 Y 1 1 1 Na
1 Yo 1 2 1 Na
1 |1, 1 3 1 Na

Na, not applicable; Timel = time variable needed to estimate the
overall intervention effect; Time2 = time variable needed to
estimate the intervention effects at the different follow-up
measurements

three dummy variables for time (intervention effects at the three follow-up measure-
ments: f4, Bs, and fg in Eq. 3.7).

First, the alternative repeated measures mixed model analysis is applied to
estimate the overall intervention effect on average over time. The model only
includes time (coded O for the baseline value and 1 for all follow-up measurements;
see Table 3.5) and the interaction between the intervention variable and time. Output
3.12 shows the result of this analysis.

From Output 3.12, the most important estimate is the regression coefficient for the
interaction between the intervention variable and time (—0.1503951). This coeffi-
cient indicates the difference between the intervention and control groups on average
over time. Because the intervention variable is not present in the model, the
Po (3.367597) is an estimation of the outcome (i.e., complaints) for the whole
population when the time variable equals 0, which is in this situation the baseline
value (see Table 3.5). Because it is an estimation for the whole population, it implies
that the baseline value is assumed to be equal for both groups, which implicates that
the analysis is adjusted for the baseline value.

To get effect estimates of the intervention at the three follow-up measurements,
for each follow-up measurement, a time dummy variable must be used, and for all
these three dummy variables, an interaction with the intervention variable must be
added to the model. Again, the intervention variable itself is not part of the model
(see Eq. 3.6). Output 3.13 shows the results of this analysis.

The regression coefficients of interest from Output 3.13 are the three regression
coefficients for the interactions between the intervention variable and the time
dummy variables. These regression coefficients directly provide the effect estimates
for the intervention at the three follow-up measurements. The regression coefficient
for the interaction between the intervention variable and the dummy variable for the
first follow-up measurement (—0.1077524) indicates the intervention effect at the
first follow-up measurement, and the regression coefficient for the interaction
between the intervention variable and the dummy variable for the second follow-
up measurement (—0.1579727) indicates the intervention effect at the second
follow-up measurement, while the regression coefficient for the interaction between
the intervention variable and the dummy variable for the third follow-up measure-
ment (—0.1852883) indicates the intervention effect at the third follow-up measure-
ment. All these effect estimates are adjusted for the baseline value, because (again)
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Mixed-effects ML regression Number of obs = 572
Group variable: id Number of groups = 156
Obs per group:

min = 1

avg = 3.7

max = 4

Wald chi2(2) = 100.45

Log likelihood = -321.52225 Prob > chi2 = 0.0000
complaints | Coef Std. Err z P>|z| [95% Conf. Interval

_____________ e
time | -.2415208 .0411313 -5.87 0.000 -.3221366 -.160905

inter time | -.1503951 .0528063 -2.85 0.004 -.2538936 -.0468966
_cons | 3.367597 .0393959 85.48 0.000 3.290383 3.444812
Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]
_____________________________ o

id: Identity |

var (_cons) | .1245786 .018348 .0933422 .166268
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
var (Residual) | .1175388 .0081834 .1025458 .134724

LR test vs. linear model: chibar2(01) = 162.12 Prob >= chibar2 = 0.0000

Output 3.12 Results of the alternative longitudinal mixed model repeated measures analysis

the intervention variable itself is not added to the model. A nice advantage of the
analysis performed is that for all effect estimates at the different follow-up measure-
ments, the corresponding standard errors are estimated directly, and, therefore, the
95% confidence intervals around the effect estimates and the corresponding p-values
are directly provided by Output 3.13. So, it is not necessary to reanalyze the data
with different reference categories for the different follow-up measurements.

3.4.3 Analysis of Changes

In the third method to analyze RCT data with more than one follow-up measurement,
not the observed values at the different follow-up measurements are analyzed but the
changes between the baseline measurement and the first follow-up measurement,
between the baseline measurement and the second follow-up measurement, and
between the baseline measurement and the third follow-up measurement (Eq. 3.7):

Yi—Yo=p+5X (3.7)

where Y, = outcome measured at the follow-up measurements; Y, = outcome
measured at baseline; X = intervention variable, and f; = overall intervention effect.

Although, it is sometimes suggested that the analysis of changes takes into
account the difference between the groups at baseline, this is not the case (see
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Mixed-effects ML regression Number of obs = 572
Group variable: id Number of groups = 156

Obs per group:

min = 1

avg = 3.7

max = 4

Wald chi2 (6) = 123.02

Log likelihood = -312.44411 Prob > chi2 = 0.0000

complaints | Coef. Std. Err. z P>|z| [95% Conf. Interval]

_____________ o

_Itime 2 | -.1718823 .0522051 -3.29 0.001 -.2742024 -.0695623

_Itime 3 | -.2504772 .0516792 -4.85 0.000 -.3517665 -.1491879

_Ttime_4 | -.3033201 .0516473 -5.87 0.000 -.4045469 -.2020933

int time2 | -.1077524 .0699797 -1.54 0.124 -.2449101 .0294054

int_time3 | -.1579727 .0705751 -2.24 0.025 -.2962974 -.019648

int timed4 | -.1852883 .0698331 -2.65 0.008 -.3221587 -.0484179

_cons | 3.367597 .0391056 86.12 0.000 3.290952 3.444243

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

_____________________________ o
id: Identity |

var (_cons) | .1260466 .0183463 .0947628 .1676582

_____________________________ o

var (Residual) | .1125164 .0078346 .0981626 .1289691

LR test vs. linear model: chibar2(01) = 171.33 Prob >= chibar2 = 0.0000

Output 3.13 Results of the alternative longitudinal mixed model repeated measures analysis
including an interaction between intervention and time

Sect. 2.1), and, therefore, this method can also be performed with an adjustment for
the baseline value of the outcome variable (Eq. 3.8):

Yt_ YfO :ﬂo +ﬂ1X+ﬂ2Y¢0 (38)

where Y, = outcome measured at the follow-up measurements, Y= outcome
measured at baseline, X = intervention variable, and ;= overall intervention effect.
As in all other discussed methods, the model can be extended with time and the
interaction between the intervention variable and time to estimate the effect of the
intervention at the different follow-up measurements (Egs. 3.9 and 3.10):

Y, — Y = Py + B X + prtimey + +pstimes + f,X X timey + +f5X
X times (3.9)

Yo=Y = Po+ 51X + BrYo + Bitimey + Pytimes + fsX X timey + foX
X fimes (3.10)

where Y, = outcome measured at the follow-up measurements, Y,oc=outcome mea-
sured at baseline, X = intervention variable, ;= intervention effect at the first
follow-up measurement, and time,, time; = dummy variables for the second and
third follow-up measurement.
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Tal()iled3.6 Dr?ta structurel ~ o id Outcome Time Intervention Baseline
needed to perform an analysis
of changes Yo = Yo 0 ! Yio

1 Yt2 - YIO 1 1 YtO

1 Ya-Yp 2 1 Yio

The overall intervention effect and the intervention effects at the three follow-up
measurements can be obtained in the same way as been described for the longitu-
dinal analysis of covariance (see Sect. 3.4.1). Table 3.6 shows the structure of the
data used to estimate the parameters of the analysis of changes.

Output 3.14 shows the result of the mixed model analysis performed on the
change scores in the outcome variable. The three change scores are calculated as the
difference between the baseline value and the three follow-up measurements (see
Eq. 3.7 and Table 3.6).

The output of the longitudinal mixed model analysis of changes looks similar to
the outputs of the mixed model analyses performed earlier. From the first part of
Output 3.14, it can be seen that there are a maximum number of three observations:
i.e., the three change scores between the baseline measurement and the three follow-
up measurements. In the second part of the output (the fixed part of the model), the
regression coefficients are given. The regression coefficient for the intervention
variable (—0.0522368) indicates the overall intervention effect on average over
time. This intervention effect actually is the difference between the groups in the
changes between the baseline measurement and the three follow-up measurements.
In Chap. 2 it was already argued that analyzing change scores (can) lead to bias in the
effect estimates due to regression to the mean. It was also argued that a solution to
this problem is to adjust the analysis of the change score for the baseline value. It has
been mentioned before that this solution can also be applied for the longitudinal
analysis of change scores (see Eq. 3.8). Output 3.15 shows the result of the analysis.

In the middle part of Output 3.15 (the fixed part of the model), it can be seen that
an adjustment is made for the baseline value of the outcome variable. The regression
coefficient of the intervention variable (—0.1419588) again indicates the overall
intervention effect on average over time, i.e., the difference between the groups in
the differences between the baseline value and the three follow-up measurements.
This difference, however, is now adjusted for the baseline differences between the
groups.

In the same way, it is of course also possible to obtain the effects of the
intervention at the different follow-up measurements. Therefore, the models have
to be extended with time (i.e., two time dummy variables) and the interaction
between the intervention variable and time (see Eqs. 3.9 and 3.10). Output 3.16
and 3.17 show the results of the two analyses. In the first analysis, there is no
adjustment for the baseline value, while in the second analysis, the baseline value of
the outcome is added to the model.

As has been mentioned before, in Outputs 3.16 and 3.17, the regression coeffi-
cient for the intervention variable indicates the effect of the intervention at the
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Mixed-effects ML regression Number of obs = 416
Group variable: id Number of groups = 150
Obs per group:
min = 1
avg = 2.8
max = 3
Wald chi2 (1) 0.53
Log likelihood = -239.86042 Prob > chi2 = 0.4655
change_com | Coef. Std. Err. z P>|z| [95% Conf. Interval]
______________ o
intervention | -.0522368 .07158 -0.73 0.466 -.1925311 .0880575
_cons | -.2897832 .0493003 -5.88 0.000 -.3864101 -.1931563
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o
id: Identity |
var (_cons) | .1519201 .0226676 .113399 .2035265
_____________________________ o
var (Residual) | .1041805 .0090848 0878131 .1235986
LR test vs. linear model: chibar2(01) = 125.80 Prob >= chibar2 = 0.0000
Output 3.14 Results of the longitudinal mixed model analysis of changes
Mixed-effects ML regression Number of obs = 416
Group variable: id Number of groups 150
Obs per group:
min = 1
avg = 2.8
max = 3
Wald chi2(2) 37.66
Log likelihood = -223.41988 Prob > chi2 = 0.0000
change _com | Coef. Std. Err. z P>|z]| [95% Conf. Interval
______________ o~
intervention | -.1419588 .0654837 -2.17 0.030 -.2703044 -.0136132
baseline | -.4756309 .0782574 -6.08 0.000 -.6290127 -.32224091
_cons | 1.356396 .2742621 4.95 0.000 .818852 1.89394

.1129856 .0182538 .0823197

Estimate Std. Err. [95% Conf.

.1550753

LR test vs. linear model: chibar2(01) = 92.75 Prob >= chibar2

37

Output 3.15 Results of the longitudinal mixed model analysis of changes adjusted for the baseline

value
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Mixed-effects ML regression Number of obs = 416
Group variable: id Number of groups = 150
Obs per group:
min = 1
avg = 2.8
max = 3
Wald chi2(5) = 20.92
Log likelihood = -229.97356 Prob > chi2 = 0.0008
change_com | Coef Std. Err z P>|z| [95% Conf. Interval
,,,,,,,,,,,,,,, o
intervention | -.0139447 .0834508 -0.17 0.867 -.1775052 .1496158
|
time |
2 | -.0811427 .0526752 -1.54 0.123 -.1843843 .0220988
3 | -.1248979 .0530481 -2.35 0.019 -.2288703 -.0209256
|
time# |
c. |
intervention |
2 | -.041143 .0762928 -0.54 0.590 -.1906742 .1083881
3 | -.0830853 .0760637 -1.09 0.275 -.2321674 .0659969
|
cons | -.2200715 .0579953 -3.79 0.000 -.3337402 -.1064028
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
id: Identity |
var (_cons) | .1519348 .0223081 .1139405 .2025987
_____________________________ o
var (Residual) | .0974508 .0084917 .0821511 .1155999
LR test vs. linear model: chibar2(01) = 134.92 Prob >= chibar2 = 0.0000

Output 3.16 Results of the longitudinal mixed model analysis of changes including an interaction
between intervention and time

reference time point, which is the first follow-up measurement. Without an adjust-
ment for the baseline value, the intervention effect at the first follow-up measurement
equals —0.0139447, while with an adjustment for the baseline value, the effect
estimate equals —0.1036192. The difference illustrates nicely the importance of
the adjustment for the baseline value, i.e., the adjustment for the baseline differences
between the two groups.

As for all analyses with an interaction term, based on the analyses performed, it is
possible to calculate the effect estimates at the other two follow-up measurements.
Therefore, the regression coefficient for the interaction between the particular time
dummy variable and the intervention variable has to be added to the regression
coefficient for the intervention variable itself. For instance, the intervention effect at
the second follow-up measurement based on the analysis of changes with an
adjustment for the baseline value (Output 3.17) equals
—0.1036192 + —0.040448 = —0.1440672. Although Outputs 3.16 and 3.17 can
be used to calculate the effect estimates at the different time points, they cannot be
used to calculate the standard errors of these estimates, and therefore they can also
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Mixed-effects ML regression Number of obs = 416
Group variable: id Number of groups = 150
Obs per group:
min = 1
avg = 2.8
max = 3
Wald chi2 (6) = 58.18
Log likelihood = -213.66378 Prob > chi2 = 0.0000
change_com | Coef. Std. Err. z P>|z| [95% Conf. Intervall]
_______________ o
intervention | -.1036192 .0785095 -1.32 0.187 -.2574949 .0502566
|
time |
2 | -.0826913 .0527159 -1.57 0.117 -.1860126 .0206301
3 | -.1254292 .0530484 -2.36 0.018 -.2294022 -.0214562
|
time# |
c. |
intervention |
2 | -.040448 .0763355 -0.53 0.596 -.1900627 .1091668
3 | -.0799769 .0760742 -1.05 0.293 -.2290796 .0691258
|
baseline | -.4710729 .0778606 -6.05 0.000 -.6236767 -.318469
_cons | 1.410858 .2746856 5.14 0.000 .8724839 1.949232
Random-effects Parameters | Estimate Std. Err [95% Conf. Interval
_____________________________ e
id: Identity |
var (_cons) | .1138685 .0179887 .0835474 .1551939
_____________________________ o
var (Residual) | .0978093 .0085373 .0824295 .1160587
LR test vs. linear model: chibar2(01) = 100.99 Prob >= chibar2 = 0.0000

Output 3.17 Results of the longitudinal mixed model analysis of changes including an interaction
between intervention and time, adjusted for the baseline value

not be used to calculate the 95% confidence intervals around the effect estimates and
the corresponding p-values. To obtain the 95% confidence intervals and p-values,
the analyses have to be redone with different reference categories for the time
dummy variables. Outputs 3.18-3.21 show the results of these analyses, both
without and with an adjustment for the baseline value.

3.5 Overview and Discussion

Table 3.7 shows an overview of the results obtained from the different analyses in
order to estimate the overall intervention effect on average over time, while Table 3.8
shows an overview of the results obtained from the different analyses in order to
estimate the effect of the intervention at the different follow-up measurements.
From Tables 3.7 and 3.8, it is obvious that the effect estimates differ remarkably
between the different methods used to estimate the effect of an RCT with more than
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Mixed-effects ML regression Number of obs = 416
Group variable: id Number of groups = 150
Obs per group:
min = 1
avg = 2.8
max = 3
Wald chi2(5) = 20.92
Log likelihood = -229.97356 Prob > chi2 = 0.0008
change_com | Coef Std. Err z P>|z| [95% Conf. Interval
,,,,,,,,,,,,,,, o
intervention | =-.0550877 .0839889 -0.66 0.512 -.2197029 .1095274
|
time |
1 ] .0811427 .0526752 1.54 0.123 -.0220988 .1843843
3 | -.0437552 .052527 -0.83 0.405 -.1467062 .0591958
|
time# |
c. |
intervention |
1 .041143 .0762928 0.54 0.590 -.1083881 .1906742
3 | -.0419422 .0759417 -0.55 0.581 -.1907853 .1069008
|
cons | -.3012142 .0575453 -5.23 0.000 -.414001 -.1884275
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
id: Identity |
var (_cons) | .1519348 .0223081 .1139405 .2025987
_____________________________ o
var (Residual) | .0974508 .0084917 .0821511 .1155999
LR test vs. linear model: chibar2(01) = 134.92 Prob >= chibar2 = 0.0000

Output 3.18 Results of the longitudinal mixed model analysis of changes including an interaction
between intervention and time with the second follow-up measurement as reference time point

one follow-up measurement. This is partly caused by the observed differences at
baseline between the groups. In Table 3.1 it could be seen that the baseline value for
the intervention group was lower than the baseline value for the control group (3.25
for the intervention group and 3.47 for the control group). Because of that, the
decrease over time in the intervention group is (much) harder to achieve than the
decrease over time in the control group. The control group tends to decrease over
time due to regression to the mean, while the intervention group tends to increase
over time due to regression to the mean. Because of that the analysis of changes
without adjustment for the baseline leads to an underestimation of the intervention
effects. The repeated measure analyses on the other hand lead to an overestimation of
the effect estimates. In these analyses the differences between the groups at baseline
are part of the estimated differences between the groups, i.e., are part of the effect
estimates. Because the baseline differences between the groups are in favor of the
intervention group (the intervention group has a lower complaint score at baseline
than the control group), the effect estimates, which include the baseline difference,
are (highly) overestimated.
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Mixed-effects ML regression Number of obs = 416
Group variable: id Number of groups = 150
Obs per group:
min = 1
avg = 2.8
max = 3
Wald chi2(5) = 20.92
Log likelihood = -229.97356 Prob > chi2 = 0.0008
change_com | Coef Std. Err z P>|z]| [95% Conf. Interval]
_______________ o
intervention | -.09703 .083358 -1.16 0.244 -.2604086 .0663487
|
time |
1 | .1248979 .0530481 2.35 0.019 .0209256 .2288703
2 | .0437552 .052527 0.83 0.405 -.0591958 .1467062
|
time# |
c. |
intervention |
1 .0830853 .0760637 1.09 0.275 -.0659969 .2321674
2 | .0419422 .0759417 0.55 0.581 -.1069008 .1907853
|
cons | -.3449694 .0574813 -6.00 0.000 -.4576307 -.2323082
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
id: Identity |
var (_cons) | .1519348 .0223081 .1139405 .2025987
_____________________________ o
var (Residual) | .0974508 .0084917 .0821511 .1155999
LR test vs. linear model: chibar2(01) = 134.92 Prob >= chibar2 = 0.0000

Output 3.19 Results of the longitudinal mixed model analysis of changes including an interaction
between intervention and time with the third follow-up measurement as reference time point

It was already mentioned in Chap. 2 that regarding the adjustment for the baseline
value, it does not matter whether the outcome variable is the observed value at the
different follow-up measurements (i.e., longitudinal analysis of covariance) or the
changes between the baseline measurement and the follow-up measurements (i.e.,
analysis of changes); the effect estimates are exactly the same in both methods. The
mathematical equivalence between the two methods leading to the same estimation
of the treatment effect was already explained in Chap. 2 (see Box 2.1).

Although the general idea is the same, the results of the alternative repeated
measures analysis without the treatment variable in the model (Egs. 3.4 and 3.5)
slightly differed from the results of the longitudinal analysis of covariance. The
advantage of the alternative repeated measures analysis is that also subjects with
only a baseline measurement are included in the analysis. So, in the present example,
the two analyses are based on a slightly different population. However, also when
the method is used in a dataset without any missing data, the results of the alternative
repeated measures analysis are not exactly the same as the results obtained from a
longitudinal analysis of covariance. This is caused by the adjustment for the
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Mixed-effects ML regression Number of obs = 416
Group variable: id Number of groups = 150
Obs per group:
min = 1
avg = 2.8
max = 3
Wald chi2 (6) = 58.18
Log likelihood = -213.66378 Prob > chi2 = 0.0000
change_com | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_______________ o
intervention | -.1440671 .0789085 -1.83 0.068 -.2987249 .0105907
I
time |
1 .0826913 .0527159 1.57 0.117 -.0206301 .1860126
3 | -.042738 .0525457 -0.81 0.416 -.1457256 .0602497
I
time# |
c. |
intervention |
1 | .040448 .0763355 0.53 0.596 -.1091668 .1900627
3 | -.0395289 .076004 -0.52 0.603 -.188494 .1094361
I
baseline | -.4710729 .0778606 -6.05 0.000 -.6236767 -.318469
_cons | 1.328167 .2740424 4.85 0.000 .7910532 1.86528
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval
_____________________________ o
id: Identity |
var (_cons) | .1138685 .0179887 .0835474 .1551939
_____________________________ o
var (Residual) | .0978093 .0085373 .0824295 .1160587
LR test vs. linear model: chibar2(01) = 100.99 Prob >= chibar2 = 0.0000

Output 3.20 Results of the longitudinal mixed model analysis of changes including an interaction
between intervention and time with the second follow-up measurement as reference time point,
adjusted for the baseline value

dependency of the repeated observations within the subject by adding a random
intercept to the model. In the repeated measures analysis using all measurements as
outcome, this random intercept variance is mostly a bit higher than in the longitu-
dinal analysis of covariance. In the latter, part of the random intercept variance is
explained by the baseline value of the outcome which is included in the model.
However, in the present example, this is not the case. Another difference between the
alternative repeated measures analysis and the longitudinal analysis of covariance is
that the standard errors of the effect estimates are a bit lower in the alternative
repeated measures analysis. This has to do with the fact that the alternative repeated
measures analysis includes more observations in the analysis. In the alternative
repeated measures analysis, all four measurements are used as outcome, while in
the longitudinal analysis of covariance, only the three follow-up measurements are
used as outcome. The lower standard error in the alternative repeated measures
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Mixed-effects ML regression Number of obs = 416
150

Group variable: id Number of groups

Obs per group:

min = 1
avg = 2.8
max = 3
Wald chi2 (6) = 58.18
Log likelihood = -213.66378 Prob > chi2 = 0.0000
change com | Coef Std. Err z P>|z| [95% Conf.
_______________ o
intervention | -.1835961 .0783288 -2.34 0.019 -.3371176 -.0300745
|
time |
1 .1254292 .0530484 2.36 0.018 .0214562 .2294022
2 | .042738 .0525457 0.81 0.416 -.0602497 .1457256
|
time# |
c. |
intervention |
1 .0799769 .0760742 1.05 0.293 -.0691258 .2290796
2 | .0395289 .076004 0.52 0.603 -.1094361 .188494
|
baseline | -.4710729 .0778606 -6.05 0.000 -.6236767 -.318469
_cons | 1.285429 .2749108 4.68 0.000 . 7466132 1.824244
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval
_____________________________ o
id: Identity |
var (_cons) | .1138685 .0179887 .0835474 .1551939
_____________________________ e
var (Residual) | .0978093 .0085373 .0824295 .1160587
LR test vs. linear model: chibar2(01) = 100.99 Prob >= chibar2 = 0.0000

Output 3.21 Results of the longitudinal mixed model analysis of changes including an interaction
between intervention and time with the third follow-up measurement as reference time point,
adjusted for the baseline value

Table 3.7 Overview of overall effect estimates on average over time, 95% confidence intervals
(CI), and p-values obtained from the different analyses

Effect 95% C1 p-value
Longitudinal analysis of covariance —0.14 —0.27 to —0.01 0.03
Repeated measures —0.25 —0.37 to —0.12 <0.001
Alternative repeated measures —0.15 —0.25 to —0.05 0.004
Analysis of changes
Without adjustment for baseline —0.05 —0.19 to 0.09 0.47
With adjustment for baseline —0.14 —0.27 to —0.01 0.03
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Table 3.8 Overview of effect estimates at the different follow-up measurements, 95% confidence
intervals (CI), and p-values obtained from the different analyses

Effect 95% CI p-value
Longitudinal analysis of covariance
First follow-up —0.10 —0.26 to 0.05 0.19
Second follow-up —0.14 —0.30 to 0.01 0.07
Third follow-up —0.18 —0.34 to —0.03 0.02
Repeated measures
First follow-up —0.22 —0.38 to —0.06 0.006
Second follow-up —-0.27 —0.43 to —0.11 0.001
Third follow-up —0.30 —0.46 to —0.14 <0.001
Alternative repeated measures
First follow-up —0.11 —0.24 t0 0.03 0.12
Second follow-up —0.16 —0.30 to —0.02 0.03
Third follow-up —0.19 —0.32 to —0.05 0.008
Analysis of changes
Without adjustment for baseline
First follow-up —0.01 —0.18 to 0.15 0.87
Second follow-up —0.06 —0.22 t0 0.11 0.51
Third follow-up —0.10 —0.26 to 0.07 0.24
With adjustment for baseline
First follow-up —0.10 —0.26 to 0.05 0.19
Second follow-up —0.14 —0.30 to 0.01 0.07
Third follow-up —0.18 —0.34 to —0.03 0.02

analysis is, however, maybe invalid, because the observations at baseline are not
related to the intervention. And although the inclusion of too many observations is
counteracted by the correlation between the repeated measurements (Twisk, 2013,
2018), it still leads to a slight underestimation of the standard error.

3.6 Recommendation

To estimate an intervention effect in an RCT with more than one follow-up mea-
surement, the analysis has to be adjusted for the baseline value of the outcome
variable. A proper adjustment is not achieved by performing a standard repeated
measures analysis with the baseline value as part of the outcome variable or by the
analysis of changes without adjusting for the baseline value. It is advised to use
either a longitudinal analysis of covariance (or its mathematical equivalent, analysis
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of changes with an adjustment for the baseline value) or an alternative repeated
measures analysis.

3.7 Should the Analysis Be Adjusted for Time?

In the literature there is some discussion whether the analysis to obtain the overall
effect of the intervention on average over time should be adjusted for the time
variable. Some researchers believe that the time variable should always be part of
the model. The main argument for this is that there is always a development over
time in the outcome variable. So, time is related to the outcome, and, therefore, the
analysis should be adjusted for the time variable. Although the first part of this
argument is true, mostly there is a development over time in the outcome variable,
and it should be realized that adding a variable to a regression model can have an
influence on the regression coefficient of interest only when the variable is related to
both the outcome and the independent variable. In this case, the time variable is
related to the outcome, but not to the independent variable. In a regular RCT, the
intervention and control groups are measured at the same time points, so there is no
relationship between the intervention variable and time. Therefore, the adjustment
for the time variable in the analysis to obtain the overall effect of the intervention on
average over time does not make sense.

3.8 Alternative Repeated Measures for the Analysis of an
RCT with One Follow-Up Measurement

The alternative repeated measures analysis (i.e., the mixed model analysis with both
the baseline and the follow-up measurements as outcome and without the interven-
tion variable as independent variable) can also be used in the example with only one
follow-up measurement (see Table 2.2). Output 3.22 shows the results of this
analysis performed on the example with only one follow-up measurement for total
serum cholesterol (Output 3.22a) and the physical activity index (Output 3.22b).
The two effect estimates can be directly derived from the outputs of the alterna-
tive repeated measures analyses. For total serum cholesterol, the effect estimate
equals —0.141 with a 95% confidence interval ranging from —0.296 to 0.014 and
with a corresponding p-value = 0.07. For the physical activity index, the effect
estimate equals 0.308 with a 95% confidence interval ranging from 0.130 to 0.486
and a corresponding p-value <0.001. In Chap. 2, the effect estimates of this example
were based on an analysis of covariance, and they were respectively —0.137 and



46 3 Analysis of RCT Data with More Than One Follow-Up Measurement

Mixed-effects ML regression Number of obs = 521
Group variable: id Number of groups = 299

Obs per group:

min = 1

avg = 1.7

max = 2

Wald chi2 (2) = 7.83

Log likelihood = -615.61809 Prob > chi2 = 0.0200
chol | Coef. Std. Err. z P>|z]| [95% Conf. Interval]
______________ o
interven_time | -.1411914 .0790782 -1.79 0.074 -.2961817 .013799
time | -.0217071 .0555536 -0.39 0.696 -.1305903 .087176
cons | 5.460468 .0567095 96.29 0.000 5.34932 5.571617

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval
_____________________________ o
id: Identity |

var (_cons) | .7693342 .0738162 .6374467 .9285092
_____________________________ o
var (Residual) | .1922402 .0183182 1594905 .2317146

LR test vs. linear model: chibar2(01) = 218.98 Prob >= chibar2 = 0.0000

Output 3.22a Results of the alternative repeated measures mixed model analysis for total serum
cholesterol in the example with only one follow-up measurement

Mixed-effects ML regression Number of obs = 514
Group variable: id Number of groups = 297

Obs per group:

min = 1
avg = 1.7
max = 2
Wald chi2 (2) = 11.51
Log likelihood -655.82605 Prob > chi2 = 0.0032
act | Coef. Std. Err. z P>|z| [95% Conf. Intervall]
______________ o
interven_time | .3077802 .0908019 3.39 0.001 .1298117 .4857486
time | -.1350004 .0632529 -2.13 0.033 -.2589738 -.011027
cons | 5.587473 .0609397 91.69 0.000 5.468033 5.706912
Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]
_____________________________ e
id: Identity |
var (_cons) | .837105 .082907 .6894088 1.016443
+
|

LR test vs. linear model: chibar2(01) = 192.35 Prob >= chibar2 = 0.0000

Output 3.22b Results of the alternative repeated measures mixed model analysis for the physical
activity index in the example with only one follow-up measurement
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0.347. The (small) differences are due to the fact that in the alternative repeated
measures analysis, subjects with only a baseline value are included in the analysis,
while in the analysis of covariance, they are not. Therefore, the number of observa-
tions analyzed with the two methods is different. From Output 3.22 it can be seen
that the number of subjects included in the two alternative repeated measures
analyses were respectively 299 and 297, while in Chap. 2 (Outputs 2.1 and 2.2) it
could be seen that the number of subjects analyzed in the longitudinal analysis of
covariance was equal to 222 and 217, respectively.



Chapter 4 )
Analysis of Data from a Cluster RCT e

4.1 Introduction

The most efficient way to perform the randomization within an RCT is on the subject
level. Each subject is randomized into either the intervention group or the control
group. However, in some situations it is not possible to randomize the individual
subjects, but the randomization has to be performed on a higher level. For instance,
the randomization can be performed on the hospital level (i.e., intervention hospitals
versus control hospitals), nursery home level, or medical doctor level. Also in a
nonmedical setting, it is possible to perform randomization on a higher level than the
subject. When an intervention is applied on school children, the randomization can
be performed on school level. Another example is when an intervention is applied to
whole families, the randomization should be performed on family level. The reason
for performing a cluster randomization is mostly a logistic one but sometimes also to
prevent contamination. When the randomization is performed on a higher level, the
RCT becomes a cluster RCT (see Fig. 4.1).

When the data of a cluster RCT is analyzed, the statistical methods are slightly
more complicated than the methods used for analyzing the data from an RCT with
individual randomization. The problem with the analysis of data from a cluster RCT
is the fact that the observations of subjects belonging to the same cluster (e.g.,
hospital, nursery home, medical doctor, school, or family) are not independent of
each other. Independency of observations is one of the key assumptions in regular
statistical analysis. So, when data of a cluster RCT is analyzed, the dependency of
the observations within the cluster must be taken into account. The most simple way
of dealing with that dependency is to adjust for the cluster variable, i.e., adjust for the
hospital, the nursery home, medical doctor, school, or family. That adjustment works
well when the number of clusters is relatively low in comparison to the total number
of subjects. When the number of clusters becomes large, the standard adjustment for
the cluster variable is not possible anymore. It should be realized that in regular
regression analysis, the adjustment for a cluster variable is performed by adding
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Fig. 4.1 Individual randomization versus cluster randomization

dummy variables to the regression model. Because the number of dummy variables
equals the number of clusters minus 1, it is obvious that the more clusters there are,
the less efficient the estimates of the regression model will be. More or less the same
situation has already been discussed in Chap. 3 when the analysis of an RCT with
more than one follow-up measurement was discussed. In that situation, there were
dependent observations of the different follow-up measurements within a subject.
Therefore, mixed model analyses were used as a very efficient way to deal with this
dependency. The same holds for a cluster RCT. The general idea behind a mixed
model analysis in a cluster RCT is that the adjustment for the cluster variable is
performed by estimating only one parameter irrespective of the number of clusters.
To understand the basic principles of a mixed model analysis in a cluster RCT,
assume an RCT with only one follow-up measurement using analysis of covariance
to estimate the intervention effect. That regression model includes an intercept, the
intervention variable, and the baseline variable of the outcome. Suppose this model
has to be adjusted for sex. This adjustment is performed by adding the variable sex to
the model, but it actually means that for males and females, two different intercepts
are estimated. The adjustment for the cluster variable in a cluster RCT is basically the
same, i.e., for each cluster a separate intercept is estimated. Again, when the number
of clusters is large in comparison to the number of subjects, the regular adjustment
with the dummy variables is not efficient and therefore not possible. How is this
adjustment performed in a mixed model analysis? Well, basically the efficient
adjustment for the clusters is the same as the efficient adjustment for the subjects
as has been described in Chap. 3 and contains three steps: (1) for each cluster a
separate intercept is estimated (as in a regular adjustment), (2) a normal distribution
is drawn over all the intercepts, and (3) from that normal distribution, the variance is
estimated, and that variance is added to the regression model to adjust for the
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clustering. This variance is known as the random intercept variance on the cluster
level. See for further details Twisk et al. (2018).

4.2 Example with One Follow-Up Measurement

The first example is a cluster RCT performed among 20 general practitioners (GPs)
in order to evaluate the effectiveness of a new intervention to reduce pain. Pain was
measured on a scale from 0 to 10, and unfortunately no baseline measurement was
performed, so the analysis can only be performed on pain at the follow-up measure-
ment without an adjustment for the baseline differences in pain between the groups.
The randomization was done on GP level, meaning that the patients from 10 GPs
were allocated to the new intervention, while the patients of the other 10 GPs were
allocated to the control condition (i.e., usual care). Table 4.1 shows descriptive
information for the example cluster RCT.

To illustrate the influence of the clustering on the results of the analysis, first an
analysis is performed in which the dependency of the observations within the GP is
ignored. Output 4.1 shows the results of the linear regression analysis.

It should be noted that the linear regression analysis is performed within a mixed
model framework, without the adjustment for GP. This is basically the same as a
regular linear regression analysis with pain at follow-up as outcome and the group
variable as independent variable. The analysis without taking into account the
dependency of the observations within the cluster is also known as a naive analysis.
From Output 4.1 it can be seen that the intervention effect is —0.2424444. This effect

Table 4.1 Descriptive information (mean and standard deviation) regarding the cluster RCT with
only one follow-up measurement

N Pain at the follow-up measurement
Intervention group 90 6.51 (0.86)
Control group 90 6.75 (0.89)
Mixed-effects ML regression Number of obs = 180
Wald chi2 (1) = 3.52
Log likelihood = -229.79376 Prob > chi2 = 0.0608
pain | Coef. Std. Err z P>|z]| [95% Conf. Interval]
_____________ o
intervention | -.2424444 .1292977 -1.88 0.061 -.4958633 .0109744
_cons | 6.749778 .0914273 73.83 0.000 6.570584 6.928972
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ b
var (Residual) | .7523053 .0792999 .6118847 .9249508

Output 4.1 Results of the linear regression analysis ignoring the dependency of the observations
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Mixed-effects ML regression Number of obs = 180

Group variable: gp Number of groups = 20
Obs per group:

min = 8

avg = 9.0

max = 10

Wald chi2 (1) = 1.43

Log likelihood = -220.09704 Prob > chi2 = 0.2314

pain | Coef. Std. Err z P>|z| [95% Conf. Interval]

_____________ o

intervention | -.2574604 .2151456 -1.20 0.231 -.679138 .1642171

_cons | 6.783696 .1521309 44.59 0.000 6.485525 7.081867

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o

gp: Identity |

var (_cons) | .1656118 .073509 .0693863 .3952834

_____________________________ o

var (Residual) | .5871894 .0656448 .4716482 .7310352

LR test vs. linear model: chibar2(01) = 19.39 Prob >= chibar2 = 0.0000

Output 4.2 Results of the mixed model analysis taking into account the dependency of the
observations within the GP

estimate is (of course) exactly the same as the difference between the two average
pain values at the follow-up measurement between the two groups (see Table 4.1).

Second, a mixed model analysis is performed in which the dependency of the
observations is taken into account by adding a random intercept on GP level to the
model. Output 4.2 shows the result of this mixed model analysis.

In Chap. 3, it was already mentioned that the output of a mixed model analysis
contains three parts. In the first part, some general information of the model is
provided. It can be seen that there are 180 observations in 20 GPs and that on
average there are 9 patients for each GP. Note that in this example the group variable
is GP, while in Chap. 3 the group variable was id (the subject). In Chap. 3, follow-up
measurements were clustered within the subject, while in this example, patients are
clustered within the GP. In the first part of the output, also the log likelihood is given.
The log likelihood is used for the likelihood ratio test, which can be used to compare
models with each other.

The second part of Output 4.2 shows the fixed part of the model. It can be seen
that the effect estimate (—0.2574604) is slightly different from the effect estimate
obtained from the naive analysis. A more interesting finding is the fact that the
standard error of the estimate is much higher in the mixed model analysis with a
random intercept on GP level compared to the naive analysis (0.1292977 versus
0.2151456). The fact that the standard error is higher in a mixed model analysis with
a random intercept on GP level is a general finding and has to do with the fact that
part of the data is correlated. In a naive analysis, each individual patient provides
100% new information. In a mixed model analysis, on the other hand, the first patient
of a GP provides 100% new information, but the second patient of that GP provides
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less information. Part of the information provided by the second patient was already
provided by the first patient. The same holds for the third patient of the same GP, etc.
Therefore, the total amount of information used in a mixed model analysis is less
than the total amount of information used in a naive analysis. This leads to higher
standard errors in the mixed model analysis with a random intercept on GP level.
How much bigger the standard error will be depends on the magnitude of the
correlation of the patient observations within the GP. This correlation is known as
the intraclass correlation coefficient (ICC) and can be estimated by dividing the
between group variance by the total variance. The variances are provided in the third
part of the output of the mixed model analysis, the random part of the model. From
Output 4.2 it can be seen that the between group variance equals 0.1656118. The
total variance can be calculated by adding the between group variance to the residual
variance (0.1656118 + 0.5871894 = (.7528012). Dividing the between group
variance by the total variance (0.1656118/0.7528012 = 0.22) gives an ICC of 22%.

It should be realized that in some situations the ICC can be very low and it is not
necessary to take the correlation of the observations within the cluster into account.
The necessity of taking the correlation into account can be evaluated by the likeli-
hood ratio test. With the likelihood ratio test, two models are compared with each
other. The test contains the difference between the —2 log likelihoods of the two
models. This difference follows a chi-square distribution and the number of degrees
of freedom of this chi-square distribution is equal to the difference in the number of
parameters estimated by the two models. In the present example, the —2 log
likelihood of the naive model equals —2 x — 229.79376 = 459.58752, while the
—2 log likelihood of the mixed model analysis with a random intercept on GP level
equals —2 x — 220.09704 = 440.19408. The difference between the two —2 log
likelihoods equals 19.4. In a chi-square distribution with one degree of freedom
(only the random intercept variance is additionally estimated in the mixed model
analysis with a random intercept on GP level compared to the naive analysis), this
19.4 gives a highly significant p-value (p < 0.001). Note that the critical value of a
chi-square distribution with one degree of freedom equals 3.84. So in this example it
is necessary to take the correlation, (i.e., the clustering of the observations within the
GP) into account. In the last line of Output 4.2, the result of this likelihood ratio test
is also given. This is a typical feature of STATA. In the last line of the output of a
mixed model analysis, the result of the likelihood ratio test comparing the particular
model with the naive model (i.e., the model without any random coefficients) is
provided.

4.3 Example with More Than One Follow-Up Measurement

The second example regarding the analysis of data from a cluster RCT is a cluster
RCT performed in schools in order to improve the performance of students. In this
particular study, schools were randomized into 24 intervention schools and 24 con-
trol schools. The number of students in the 24 control schools was 387, and the
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Table 4.2 Descriptive information (mean and standard deviation) regarding the school example

Baseline First follow-up Second follow-up
Intervention 25.2 (5.8) 30.9 (6.7) 31.8 (6.0)
Control 25.5(5.8) 28.1 (6.6) 29.9 (6.2)
school .
student student siv

/N /N

follow-up 1 ‘ follow-up 2 .

follow-up 1 follow-up 2

Fig. 4.2 Illustration of a three-level structure. The two follow-up measurements are clustered
within the students, and the students are clustered within the schools

Table 4.3 Data structure id |Outcome |Cluster |Time |Intervention |Baseline
needed to perform a longitu-
. . . . Y 1 1 1 Yo
dinal analysis of covariance in
a cluster RCT 1 Y 1 2 1 Yo
1 |y, 1 3 1 Yo

number of students in the intervention schools was 500. In this cluster RCT, first a
baseline measurement was performed. After one school year, the first follow-up
measurement was performed, and after two school years, the second follow-up
measurement was performed. The performance of the students was quantified with
an overall test result, which score theoretically ranges between 0 and 50. Table 4.2
shows the descriptive information regarding this example.

In this example there are basically two different levels of correlated data. Firstly,
the two follow-up measurements within the same student are correlated (see
Chap. 3), and, secondly, there are correlated observations of the students within
the school. Therefore, the data has a three-level structure; follow-up measurements
are clustered within the students and the students are clustered within the schools
(see Fig. 4.2).

In this example, there was a baseline measurement, so the analyses were adjusted
for the baseline value of the outcome, i.e., a longitudinal analysis of covariance was
used (see Chap. 3). Table 4.3 shows the structure of the data used to estimate the
parameters for the longitudinal analysis of covariance in a cluster RCT.
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Mixed-effects ML regression Number of obs = 1,747
Group variable: student Number of groups = 887
Obs per group:

min = 1

avg = 2.0

max = 2

Wald chi2(2) = 388.16

Log likelihood = -4829.0365 Prob > chi2 = 0.0000

performance | Coef Std. Err z P>z [95% Conf. Interval

_____________ o ____

baseline | .5690345 0308448 18.45 0.000 .5085797 .6294893

group | 2.631033 .3597586 7.31 0.000 1.925919 3.336147

cons | 14.36098 .8317136 17.27 0.000 12.73086 15.99111

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

_____________________________ o
student: Identity |

var (_cons) | 26.26482 1.342667 23.76079 29.03275

_____________________________ o

var (Residual) | 3.773119 .181966 3.432809 4.147165

LR test vs. linear model: chibar2(01) = 1242.16 Prob >= chibar2 = 0.0000

Output 4.3 Results of the longitudinal mixed model analysis of covariance

The first step in the analysis is a longitudinal mixed model analysis of covariance
to obtain an overall intervention effect on average over time. In this first analysis, no
adjustment is made for the clustering on school level. Output 4.3 shows the result of
this analysis.

From the first part of Output 4.3, it can be seen that there are 1747 observations on
887 students, so for almost all students, there are two follow-up measurements. In
the second part of the output, the regression coefficient for the group variable
provides the overall intervention effect on average over time. So, the intervention
group has (on average over time) a performance score which is 2.631033 points
higher than the control group. This difference is adjusted for the baseline value, so
the estimated difference is not influenced by regression to the mean (see Chaps. 2
and 3). Besides the effect estimate, the output also provides the standard error of the
effect estimate, the 95% confidence interval around the effect estimate (which can be
calculated by the effect estimate +1.96 x standard error), and the corresponding p-
value. The latter is based on the z-value which is calculated by dividing the effect
estimate by its standard error.

The last part of the output shows the random part of the model. In this part the
random intercept variance on the student level is given. From this variance the ICC
for the two follow-up measurements within the student can be calculated. From the
estimated model, the ICC is equal to 26.26482/ (26.26482 + 3.773119) = 0.87. This
indicates that there is an average correlation of 87% between the two follow-up
measurements within the student. Although this correlation seems to be very high, it
is often observed in longitudinal studies.
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Mixed-effects ML regression Number of obs = 1,747
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ b ___
school | 48 10 36.4 124
student | 887 1 2.0 2
Wald chi2 (2) = 358.73
Log likelihood = -4796.2925 Prob > chi2 = 0.0000
performance | Coef Std. Err z P>|z| [95% Conf. Interval]
_____________ o
baseline | .5684545 .0304715 18.66 0.000 .5087314 .6281775
group | 2.346147 .6661906 3.52 0.000 1.040438 3.651857
cons | 14.6978 .9126499 16.10 0.000 12.90904 16.48656
Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]
_____________________________ o
school: Identity |
var (_cons) | 3.73768 1.077773 2.124004 6.57732
_____________________________ o
student: Identity |
var (_cons) | 22.53644 1.196804 20.3087 25.00856
_____________________________ o
var (Residual) | 3.769866 .1816596 3.430117 4.143268
LR test vs. linear model: chi2(2) = 1307.65 Prob > chi2 = 0.0000

Output 4.4 Results of the longitudinal mixed model analysis of covariance taking into account the
dependency of the observations within schools

In the next step of the analysis, also an adjustment is made for the correlated
observations within the schools. Output 4.4 shows the result of this analysis with
both a random intercept on student level and a random intercept on school level.

In Output 4.4 it can be seen that a model with a three-level structure is analyzed. It
can be seen that there are 48 schools involved in the study and that on average there
are 36.4 students in each school. The second part of the output shows the fixed part
of the model, and the regression coefficient for the group variable indicates (again)
the overall effect estimate on average over time. The effect estimate (2.346147) is
slightly different from the one obtained from the analysis without an adjustment for
the correlated observations within the school. More striking is the difference in the
estimated standard error of the effect estimates, 0.3597586 obtained from the
analysis without the adjustment for the correlated observations within the schools
and 0.6661906 obtained from the analysis with the adjustment for the correlated
observations within the schools. In Sect. 4.2 it was already explained why the
standard errors become bigger when an adjustment is made for the correlated
observations within a cluster variable. The total amount of information used in the
analysis is less when the correlations are taken into account and less information
leads to higher standard errors. Also in this three-level model, the necessity of
adjusting for (in this example) the school can be evaluated by the likelihood ratio
test (see Sect. 4.2). In this case the —2 log likelihood of the model with only an
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adjustment for the correlated follow-up measurements within the student must be
compared with the —2 log likelihood of the model with both an adjustment for the
correlated follow-up measurements and the correlated observations of the students
within the schools. The —2 log likelihood of the first model equals —2 x
— 4829.0365 = 9658.073, while the —2 log likelihood of the second model equals
—2x —4796.2925 = 9592.585. The difference between the two —2 log likelihoods
is 65.488. This difference must be evaluated on a chi-square distribution with one
degree of freedom and is therefore highly significant (note again that the critical
value of a chi-square distribution with one degree of freedom is 3.84). Because of
this highly significant p-value, it can be concluded that the effect estimate must be
derived from the model with both a random intercept on the student level and a
random intercept on the school level.

In Chap. 3, it was already discussed that in an RCT with more than one follow-up
measurement, the next step in the analysis is to estimate the effects of the interven-
tion at the different follow-up measurements. Therefore, time and the interaction
between the group variable and time must be added to the longitudinal analysis of
covariance. Because the model with a random intercept on student level and a
random intercept on school level was the best way to estimate the effect of the
intervention, the effects of the intervention at the two follow-up measurements were
also estimated with this three-level model. Output 4.5 shows the results of the
analysis with the first follow-up measurement as reference time point, and Output
4.6 shows the result of the analysis with the second follow-up measurement as
reference time point.

It was already discussed in Chap. 3, that the effect estimate for the first follow-up
measurement is provided by the regression coefficient for the group variable from
the analysis with the first follow-up measurement as reference time point (Output
4.5). This regression coefficient equals 2.674009, with a 95% confidence interval
ranging from 1.379141 to 3.968877 and a corresponding p-value <0.001. The effect
estimate for the second follow-up measurement is slightly lower and is provided by
the regression coefficient for the group variable from the analysis with the second
follow-up measurement as reference time point (Output 4.6). This regression coef-
ficient equals 1.956215, with a 95% confidence interval ranging from 0.6601865 to
3.252243 and a corresponding p-value of 0.003.

4.4 Comment

In the examples of this chapter, the likelihood ratio rest was used to evaluate the
necessity of adding a random intercept on the cluster level to the model. It should be
noted that in the examples the likelihood ratio test was not used to evaluate the
necessity of adding a random intercept on the student level. This was done on
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Mixed-effects ML regression Number of obs = 1,747
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ O
school | 48 10 36.4 124
student | 887 1 2.0 2
Wald chi2 (4) = 578.75
Log likelihood = -4698.4977 Prob > chi2 = 0.0000
performance | Coef. Std. Err. z P>|z| [95% Conf. Interval
_____________ o
baseline | .5688543 .0304574 18.68 0.000 .509159 .6285497
group | 2.674009 .6606592 4.05 0.000 1.379141 3.968877
2.time | 1.603794 .1291838 12.41 0.000 1.350599 1.85699
I
time#c.group |
2 | -.7177943 .1694578 -4.24 0.000 -1.049925 -.3856631
I
cons | 13.91834 .9105831 15.29 0.000 12.13363 15.70305

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval
_____________________________ o
school: Identity |

var (_cons) | 3.570421 1.045435 2.011333 6.33804
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
student: Identity |

var (_cons) | 22.94109 1.196509 20.71186 25.41026
_____________________________ o

var (Residual) | 3.00687 .1449154 2.735843 3.304746
LR test vs. linear model: chi2(2) = 1475.51 Prob > chi2 = 0.0000

Output 4.5 Results of the longitudinal mixed model analysis of covariance including an interac-
tion between the group variable and time with the first follow-up as reference time point

purpose because a longitudinal data analysis which ignores the dependency of the
follow-up measurements within the subject is theoretically wrong. So, when there is
more than one follow-up measurement analyzed in one model, a random intercept on
subject level is always added to the model.
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Mixed-effects ML regression Number of obs = 1,747
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ e
school | 48 10 36.4 124
student | 887 1 2.0 2
Wald chi2 (4) = 578.75
Log likelihood = -4698.4977 Prob > chi2 = 0.0000
performance | Coef. Std. Err. z P>|z| [95% Conf. Interval
_____________ o
baseline | .5688543 .0304574 18.68 0.000 .509159 .6285497
group | 1.956215 .6612511 2.96 0.003 .6601865 3.252243
l.time | -1.603794 .1291838 -12.41 0.000 -1.85699 -1.350599
|
time#c.group |
1 | .7177943 .1694578 4.24 0.000 .3856631 1.049925
|
cons | 15.52214 .9108684 17.04 0.000 13.73687 17.30741

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval
_____________________________ o
school: Identity |

var (_cons) | 3.570421 1.045435 2.011333 6.33804
_____________________________ o
student: Identity |

var (_cons) | 22.94109 1.196509 20.71186 25.41026
_____________________________ e

var (Residual) | 3.00687 .1449154 2.735843 3.304746
LR test vs. linear model: chi2(2) = 1475.51 Prob > chi2 = 0.0000
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Output 4.6 Results of the longitudinal mixed model analysis of covariance including an interac-
tion between the group variable and time with the second follow-up as reference time point



Chapter 5 )
Analysis of Data from a Cross-Over Trial e

5.1 Introduction

A cross-over trial is characterized by the situation that the subject receives both the
intervention and the control condition (see Fig. 5.1). Basically this means that the
subject acts as its own control. The randomization in a cross-over trial is related to
the sequence in which the intervention and control condition are delivered.

Because of the fact that in a cross-over trial the subject receives both conditions,
the analysis is slightly more complicated than the analysis of a regular RCT.
Table 5.1 shows the data structure needed to analyze the data from a cross-over trial.

An important issue in cross-over trials is the wash-out period. The wash-out
period is the period between the ending of the first phase of the sequence and the start
of the second phase. It is obvious that the wash-out period must be long enough to let
the subjects return to their baseline situation. Because of this, cross-over trials are
especially suitable for analyzing interventions that has a short-term effect only.
Another important issue in cross-over trials is the possibility for a carry-over effect.
A carry-over effect indicates that the effect of the intervention in the intervention
phase is carried over to the next phase in which the subject will receive the control
condition. It is obvious that the possibility of a carry-over effect should be part of the
analysis, because the existence of a carry-over effect can highly bias the final effect
estimate of the intervention.

Because each subject receives both the intervention and the control condition, the
estimated intervention effect has a different interpretation than in a regular RCT. Due
to the fact that each subject acts as its own control, the interpretation of the
intervention effect is within subjects, while the interpretation of the intervention
effect in a regular RCT is between subjects (Twisk, 2013, 2018).

In Chap. 3, it was mentioned that with a linear mixed model analysis, an
adjustment is made for the dependency of the observations within the subject. In a
cross-over this is basically the same; a random intercept on the subject level has to be
added to the model to adjust for this dependency. However, it is also possible that the
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intervention control

population

control intervention

—_—

Fig. 5.1 Design of a cross-over trial

Table 5.1 Datastructure i [Qutcome |Time |Intervention |Baseline | Sequence®
needed to perform an analysis v 0 | v |
of data from a cross-over trial L 01
Yo 1 0 Yoo 1
2 |y, 0 0 Yor 0
2 v, 1 1 7 0

4Sequence 1 indicates that a subject started with the intervention
condition followed by the control condition

effect of the intervention is different for the different subjects. In a cross-over trial, it
is possible to include this difference in intervention effect between subjects to the
model. Basically, there is a sort of interaction between the intervention variable and
the subject. In Chap. 3, it was discussed that a random intercept has to be added to
the model to adjust for the dependency of the (follow-up) observations within the
subject. Adding a random intercept to the model was a very efficient way to adjust
for the correlated observations within the subject. This efficient method was needed
because an adjustment for the subject by, for instance, adding a dummy variable for
each subject is not possible. Basically, the same holds for the interaction between the
intervention and the subject. It is also not possible to add an interaction term between
the intervention variable and the dummy variable for each subject to the model.
Comparable to the three-step approach to adjust for the subject described in Chap. 3,
also regarding the interaction between the intervention and the subject a three-step
approach is used. First, for each subject a regression coefficient for the intervention
is estimated. Second, a normal distribution is drawn over all the regression coeffi-
cients, and, third, the variance of this normal distribution is calculated. This variance
is known as the random slope variance. In Sect. 3.4, the random slope was already
introduced. In that section it was mentioned that a random slope for the intervention
was only possible in a situation where the intervention variable is time-dependent. In
a cross-over trial this is the case, so, therefore, in a cross-over trial, a random slope
for the intervention variable can be added to the model.
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5.2 Example

The example contains a cross-over trial to evaluate the effectiveness of a new
treatment to reduce pain in 54 patients with chronic pain. The sequence of receiving
the treatment or control condition was randomized. Table 5.2 shows the descriptive
information of the example dataset.

From the descriptive information provided in Table 5.2, it can be seen that the
decrease in pain is stronger after the treatment condition than after the control
condition. Output 5.1 shows the result of the longitudinal mixed model analysis in
which the treatment and control condition are compared to each other regarding pain
after treatment or control.

Output 5.1 looks similar to the outputs shown in the foregoing chapters. Again,
the output contains three parts. The first part shows some overall model information
including the log likelihood, the number of subjects, and the number of measure-
ments. From this part it can be seen that not all patients received both the treatment
and control condition. This is not really a problem, because mixed model analysis is

Table 5.2 Descriptive information (mean and standard deviation) of the example cross-over trial

Pain before Pain after
Control condition 2.49 (0.76) 2.14 (0.69)
Treatment condition 2.43 (0.73) 1.80 (0.70)
Mixed-effects ML regression Number of obs = 101
Group variable: patient Number of groups = 54

Obs per group:

min = 1

avg = 1.9

max = 2

Wald chi2 (1) = 14.22

Log likelihood = -95.665568 Prob > chi2 = 0.0002

pain | Coef Std. Err z P>|z| [95% Conf. Interval]

,,,,,,,,,,,,, o o o

treatment | -.3391977 .0899588 -3.77 0.000 -.5155137 -.1628817

_cons | 2.1217172 .0954243 22.24 0.000 1.934743 2.3088

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

_____________________________ o
patient: Identity

var (_cons) | .2773686 .0766366 .161388 .476698

_____________________________ o

var (Residual) | .1960275 .0401051 .1312714 .2927276

LR test vs. linear model: chibar2(01) = 20.24 Prob >= chibar2 = 0.0000

Output 5.1 Results of a longitudinal mixed model analysis to estimate the treatment effect in the
example cross-over trial
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a method that can handle missing data in a very efficient way (Twisk, 2013; Twisk
et al., 2013).

The second part of the output shows the fixed part of the model with the
regression coefficients. The coefficient for treatment (—0.3391977) indicates the
difference in pain between the treatment and the control condition. The output also
gives the 95% confidence interval around the treatment effect (ranging from
—0.5155137 to —0.1628817) and the corresponding p-value (<0.001). In the third
part of the output, the random part of the model is shown. This part includes the
random intercept variance (0.2773686) and the remaining residual variance
(0.1960275).

As has been mentioned before, it should be realized that the analysis of data from
a cross-over trial is slightly different from the analysis of a regular RCT, which was
described in the foregoing chapters. Because in a cross-over trial the patient acts as
its own control, the treatment variable is a time-dependent variable, which is not the
case in a regular RCT. The fact that the treatment variable is time-dependent has a
few implications. The first implication is the interpretation of the treatment effect. It
has already been mentioned that the treatment effect interpretation is a within patient
interpretation, i.e., it indicates the difference between the treatment and control
condition within the patient. In a regular RCT, the interpretation of the treatment
effect is a between patient interpretation, i.e., it indicates the difference between the
treatment condition and the control condition on average between the patients. It
should be realized that when some of the patients have a missing value for one of the
two conditions, the estimated treatment effect does not have a 100% within patient
interpretation anymore. However, assuming that the number of missing observations
is not that high, this difference is ignorable.

The second implication is that it is possible to model a random slope for
treatment, which means that possible different treatment effects for patients can be
modeled (see Sect. 5.1). Output 5.2 shows the result of the analysis including a
random slope for treatment.

The difference between Outputs 5.1 and 5.2 can be found in the random part of
the model. In Output 5.1 the results of a model with only a random intercept were
provided, while in Output 5.2 the results of a model with both a random intercept and
a random slope for treatment are given. Besides the random slope variance (var
(treatm~t)), also the covariance between the random intercept and the random slope
for treatment is given (cov(treatm~t,_cons). This covariance indicates the relation-
ship between the average value of pain for a particular patient and the treatment
effect for that patient. It makes a lot of sense to model that covariance in combination
with the random slope for treatment, because it is highly plausible that the effect of
the treatment for a particular patient depends on the average pain value for that
particular patient. When a random slope is added to the model, the likelihood ratio
test can be used to evaluate whether or not this random slope was necessary.
Therefore, the —2 log likelihood of the model with only a random intercept must
be compared with the —2 log likelihood of the model with a random intercept, a
random slope, and the covariance between the random intercept and the random
slope. The difference between the two —2 log likelihoods follows then a chi-square
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Mixed-effects ML regression Number of obs = 101
Group variable: patient Number of groups = 54

Obs per group:

min = 1

avg = 1.9

max = 2

Wald chi2 (1) = 14.23

Log likelihood = -95.664179 Prob > chi2 = 0.0002

pain | Coef. Std. Err. z P>|z| [95% Conf. Interval]

,,,,,,,,,,,,, oo o

treatment | -.3394054 .0899669 -3.717 0.000 -.5157374 -.1630735

_cons | 2.121869 .0951368 22.30 0.000 1.935404 2.308334

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

_____________________________ o
patient: Unstructured |

var (treatm~t) | .265158 32.23002 9.1e-105 7.7e+102

var (_cons) | .4070813 16.11539 8.18e-35 2.03e+33

cov (treatm~t,_cons) | -.1297106 16.1152 -31.71491 31.45549

_____________________________ o o

var (Residual) | .0634666 16.11501 4.7e-218 8.6e+214

LR test vs. linear model: chi2(3) = 20.24 Prob > chi2 = 0.0002

Output 5.2 Results of a longitudinal mixed model analysis to estimate the treatment effect in the
example cross-over trial including a random slope for treatment

distribution with two degrees of freedom (because besides the random slope vari-
ance, also the covariance between random intercept and random slope is estimated),
and the critical value of this chi-square distribution with two degrees of freedom is
5.99. If the —2 log likelihoods of the two models are compared to each other, it can
be seen that they are almost the same; the difference between the two is 0.003. This is
far from significant, so in this particular situation, it is not necessary to add a random
slope for treatment to the model.

Continuing with a model with only a random intercept, several additional ana-
lyses can be performed. It has been mentioned before that one of the key issues in a
cross-over trial is a possible carry-over effect. To get some insight in a possible
carry-over effect, the descriptive information shown in Table 5.2 is stratified for the
two randomized sequences (see Table 5.3).

From Table 5.3 it can be seen that the average pain before the measurement for
the treatment condition was much higher for the patients who started the cross-over
trial with the control condition compared to the patients who started the cross-over
trial with the treatment condition. This suggest a carry-over effect, because part of
the intervention effect in the first phase seems to be carried over to the second phase
in which these patients received the control condition. In general, to evaluate the
influence of the sequence on the estimated intervention effect, sequence can be
added to the model as a possible effect modifier. Analyzing sequence as a possible
confounder makes no sense, because treatment and sequence are not related to each
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Table 5.3 Descriptive infor- Pain before Pain after
mation (mean and standard .
.. Control condition

deviation) of the example

cross-over trial stratified for Sequence = 0 2.48 (0.90) 2.13 (0.81)

sequence” Sequence = 1 2.5 (0.64) 2.14 (0.59)
Treatment condition
Sequence = 0 2.31 (0.79) 1.8 (0.65)
Sequence = 1 2.56 (0.65) 1.8 (0.76)

iSequence = 0 indicates that a patient started with the control
condition followed by the treatment condition; sequence = 1 indi-
cates that a patient started with the treatment condition followed
by the control condition

Mixed-effects ML regression Number of obs = 101
Group variable: patient Number of groups = 54

Obs per group:

min = 1

avg = 1.9

Wald chi2(2) 14.26

Log likelihood = -95.648795 Prob > chi2 = 0.0008

pain | Coef sStd. Err z P>|z]| [95% Conf. Interval]

_____________ o

treatment | -.3385413 .0900034 -3.76 0.000 -.5149448 -.1621379

sequence | .0310145 .1693117 0.18 0.855 -.3008304 .3628593

_cons | 2.105285 .1311482 16.05 0.000 1.848239 2.362331

Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
id: Identity |

var (_cons) | .2773998 .0765876 .161472 .4765575

_____________________________ o

var (Residual) | .1959079 .0400661 .1312105 .2925065

LR test vs. linear model: chibar2(01) = 20.27 Prob >= chibar2 = 0.0000

Output 5.3 Results of a longitudinal mixed model analysis to estimate the treatment effect in the
example cross-over trial with an adjustment for sequence

other, and, therefore, sequence cannot be a confounder. To illustrate this (i.e., to
analyze the possible confounding effect of the sequence), sequence is added to the
model as a covariate. Output 5.3 shows the results of this analysis.

Whether or not the adjustment for sequence is necessary can be evaluated by
comparing the treatment effect estimate from the model without the adjustment with
the treatment effect estimate from the model with the adjustment. As expected, the
two estimated treatment effects are almost the same (—0.3391977 versus
—0.3385413). The fact that the two effects estimated are not exactly the same is
caused by the fact that not all patients received both conditions.



5.2 Example 67

Mixed-effects ML regression Number of obs = 101
Group variable: patient Number of groups = 54

Obs per group:

min = 1
avg = 1.9
max = 2
Wald chi2 (3) = 14.30
Log likelihood = -95.634505 Prob > chi2 = 0.0025
pain | Coef Std. Err z P>|z]| [95% Conf. Interval]
_____________ o
treatment | -.3224315 .1310258 -2.46 0.014 -.5792373 -.0656258
sequence | .0461549 .1914969 0.24 0.810 -.3291721 .4214819

I

treatment# |
sequence | -.0304802 .180218 -0.17 0.866 -.3837009 .3227406

I
cons | 2.096702 .1405916 14.91 0.000 1.821148 2.372257
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o

patient: Identity

var (_cons) | .2776214 .0766168 .1616375 .4768304
_____________________________ o
var (Residual) | .1957202 .0400325 .1310785 .2922401
LR test vs. linear model: chibar2(01) = 20.30 Prob >= chibar2 = 0.0000

Output 5.4 Results of a longitudinal mixed model analysis to estimate the treatment effect in the
example cross-over trial including the interaction between treatment and sequence

To analyze the possible effect modifying effect of the sequence, sequence and the
interaction between sequence and treatment are added to the model. Output 5.4
shows the results of this analysis.

The most interesting part of Output 5.4 is the interaction between treatment and
sequence. The regression coefficient of the interaction reflects the difference in
treatment effect between the two sequences. The regression coefficient is very low
(—0.0304802), so the difference in treatment between the two sequences is ignor-
able. This conclusion is also supported by the p-value of the interaction (0.866),
which is far from significance.

The conclusion of the analysis including sequence as an effect modifier is,
however, not surprising. From Table 5.3 it can be seen that the pain values after
the second phase of the trial were not different for both sequences. So the higher
starting point for the patients of the intervention group who started the cross-over
trial with the treatment condition did not result in a different pain level after the
second phase of the cross-over trial.

In the example cross-over trial, a baseline measurement is performed for each of
the conditions (see Table 5.1). Therefore, it is possible to add the baseline value to
the model. It is, however, questionable whether an adjustment for the baseline value
is necessary in a cross-over trial. Because each patient receives both the intervention
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and control condition, the estimated treatment effect cannot be biased by differences
in the baseline value between the intervention and control condition. Besides that,
the differences in the measurement before the second phase are not totally caused by
chance. In the example cross-over trial, for instance, part of the difference is
probably caused by the fact that part of the population received the intervention in
the first phase of the trial.

5.3 Alternative Analyses

Although an adjustment for the baseline value is not necessary in a cross-over trial,
in the example trial for each phase (both the control and treatment phase), a baseline
measurement was performed. Therefore, another possibility to estimate the treatment
effect is to analyze the differences in the changes in the outcome from baseline to
follow-up between the treatment and the control phase. Table 5.4 shows the data
structure needed to perform this analysis.

Output 5.5 shows the result of the analysis of changes performed on the example
dataset.

In the first part of Output 5.5, it can be seen that there are 101 changes analyzed in
54 patients. This is exactly the same as the number of observations analyzed in the
earlier analysis reported in Sect. 5.2. In the second part of the output, the regression
coefficient for the treatment variable (—0.2869975) indicates the difference in
outcome between the treatment phase and the control phase for each patient. The
outcome variable in this analysis is the change score from baseline to follow-up.
Because in a cross-over trial each patient receives both the treatment and the control
condition, the change scores within one patient can be correlated. Therefore, a
random intercept on patient level was added to the model. In the last part of Output
5.5, the random intercept variance is reported and also (in the lowest line of the
output) the result of the likelihood ratio test with which the model without a random
intercept is compared to the model with a random intercept. The p-value of this
likelihood ratio test equals 0.4822 and is therefore not statistically significant.
Basically this means that the correlations between the change scores within the
patient are relatively low, and, therefore, it is not really necessary to add a random
intercept to the model. This is different from the analyses performed in Sect. 5.2,
where the likelihood ratio test comparing the model with a random intercept and the

Table 5.4 Data structure id Change Time Intervention Sequence®
needed to perform an analysis
. . Y, _ Yo 0 1 1
of changes in cross-over trials
Yo Yo 0 1
2 Yin - Yo 0 0 0
2 Yo - Yo 1 1 0

“Sequence 1 indicates that a subject started with the intervention
condition followed by the control condition
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Mixed-effects ML regression Number of obs = 101

Group variable: patient Number of groups = 54
Obs per group:

min = 1

avg = 1.9

max = 2

Wald chi2 (1) = 4.48

Log likelihood = -104.85985 Prob > chi?2 = 0.0343

change | Coef. Std. Err. b4 P>|z| [95% Conf. Intervall]

_____________ o

treatment | -.2869975 .135607 -2.12 0.034 -.5527824 -.0212127

_cons | -.352951 .0956914 -3.69 0.000 -.5405027 -.1653993

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o

patient: Identity

var (_cons) | .0029177 .0654232 2.3%e-22 3.56e+16

_____________________________ o

var (Residual) | .4640822 .092174 .3144364 .684947

LR test vs. linear model: chibar2 (01) = 2.0e-03 Prob >= chibar2 = 0.4822

Output 5.5 Results of the comparison of changes from baseline to follow-up in the example cross-
over trial

model without a random intercept was highly significant (see Output 5.1). This
seems a bit strange, because basically the analyses are based on the same data.
However, it is often the case that in a dataset where the observed values are highly
correlated, the change scores are not correlated at all. It should be noted that although
statistically it is not necessary to add a random intercept for patient to the model, in
practice this random intercept mostly stays in the model. This has more or less a
theoretical reason, because not taking into account the fact that the different mea-
surements are performed on the same subject/patient is theoretically wrong (see also
Sect. 4.4). Because of this low correlation, it is also not necessary to evaluate the
necessity of adding a random slope for treatment to the model, although, theoreti-
cally, in a cross-over trial, it is possible to add a random slope to the model, because
the treatment variable is time-dependent. The estimated treatment effect based on the
change scores (—0.287) was slightly lower than the estimated treatment effect based
on the analysis performed on the observed values (—0.339). The standard error of the
estimate, however, was much lower in the analysis performed on the observed values
(0.136 versus 0.090), which indicates that the effect estimation performed on the
observed values is more efficient than the effect estimation based on the individual
change scores.

Comparable to the analysis performed in Sect. 5.2, also when the change scores
are analyzed, the next step in the analysis can (must) be the analyses of the possible
effect modifying effect of sequence. This has to be done in order to detect a possible
carry-over effect.
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Mixed-effects ML regression Number of obs = 101
Group variable: patient Number of groups = 54
Obs per group:

min = 1
avg = 1.9
max = 2
Wald chi2(3) = 6.09
Log likelihood = -104.08283 Prob > chi?2 = 0.1072
change | Coef. Std. Err Z P>|z| [95% Conf. Interval]
_____________ o
treatment | -.1721739 .1959296 -0.88 0.380 -.5561888 .211841
sequence | -.0093168 .1908339 -0.05 0.961 -.3833443 .3647107

I

treatment# |
sequence | =-.2306832 .2705669 -0.85 0.394 -.7609846 .2996181

I
_cons | -.3478261 L1414 -2.46 0.014 -.624965 -.0706872
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o

patient: Identity

var (_cons) | 3.5%9e-10 1.86e-09 1.43e-14 9.03e-06
_____________________________ o
var (Residual) | .459861 .0647114 .3490165 .6059088
LR test vs. linear model: chibar2(01) = 0.00 Prob >= chibar2 = 1.0000

Output 5.6 Results of the comparison of changes between baseline and follow-up in the example
cross-over trial including the interaction between treatment and sequence

To analyze the possible effect modifying effect of the sequence, sequence and the
interaction between treatment and sequence are added to the model. Output 5.6
shows the results of this analysis.

The most interesting part of Output 5.6 is the interaction between treatment and
sequence. The regression coefficient of the interaction reflects the difference in
treatment effect between the two sequences. In contrast to the analysis of the
observed values after treatment or control including the interaction between treat-
ment and sequence, the regression coefficient for the interaction is quite high
(—0.2306832). It should be realized that the regression coefficient for treatment in
Output 5.7 reflects the treatment effect for patients with sequence equals zero. So, for
the patients who receive first the control condition and then the treatment condition,
the treatment effect equals —0.1721739. For the patients who receive first the
treatment condition and then the control condition, the treatment effect can be
calculated by adding up the regression coefficient for treatment and the regression
coefficient for the interaction between treatment and  sequence
(—0,1,721,739 + —0.2306832). The treatment for these patients is, therefore, much
higher (—0.40285710), which indicates a carry-over effect. It should be noted that
although the treatment effects for the different sequences are highly different, the p-
value of the interaction between treatment and sequence is far from significance
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Mixed-effects ML regression Number of obs = 47

Wald chi2(0) =

Log likelihood = -44.846725 Prob > chi?2 =
difference | Coef. std. Err. z P>|z| [95% Conf. Interval]
_____________ o
_cons | -.3404255 .0916456 -3.71 0.000 -.5200475 -.1608035
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o
var (Residual) | .3947488 .0814305 .2634701 .5914394

Output 5.7 Result of the analysis comparing differences between the treatment and control phase
in the example cross-over trial

Table 5.5 Data structure needed to perform an analysis of the difference between intervention and
control phase in a cross-over trial

id Difference Sequence®
1 Yfl - Yf2 1
2 Yp — Yy 0

“Sequence 1 indicates that a subject started with the intervention condition followed by the control
condition

(0.394), which indicates that the difference between the treatment effects for the
different sequences is not statistically significant. That this relative big difference
between the two treatment effects is not significant has to do with the relatively small
sample size in this example cross-over trial.

A second alternative way to estimate the treatment effect in a cross-over trial is to
analyze the differences between the outcome measurement after the treatment phase
and the outcome measurement after the control phase. Table 5.5 shows the data
structure needed to perform this analysis.

In this analysis, the longitudinal nature of the data (i.e., two measurements for
each patient) is reduced to cross-sectional, i.e., only one difference score for each
patient. Because there is only one outcome for each patient, there is no need to adjust
for the correlated observations within the patient, i.e., there is no need to add a
random intercept to the mixed model analysis. Furthermore, it should be noted that
an intercept only model should be used to estimate the effect of the treatment. Output
5.7 shows the result of this analysis.

From the first part of Output 5.7, it can be seen that there are 47 difference scores
analyzed. Because the outcome is the difference between the treatment and the
control phase, only the patients with a measurement after both the treatment and
control phase are included in the analysis. Furthermore, from the random part of the
model, it can be seen that there is only residual variance and no random intercept
variance. Again, that is because there is only one outcome for each patient, so there
are no correlated observations within the patient. From the fixed part of the model,
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the effect estimate can be derived. In this particular situation, the intercept value
(—0.3404255) indicates the average difference in pain between the intervention
phase and the control phase. The 95% confidence interval around this difference
ranges between —0.5200475 and — 0.1608035 and the corresponding p-value
<0.001.

In the analysis comparing individual differences between the treatment and
control phase, it is not possible to add the interaction between treatment and
sequence to the model. The only possibility to estimate the different treatment effects
for the different sequences is to perform two stratified analyses.

Comparing the results reported in Output 5.7 with the other results, it can be seen
that the effect estimates obtained from the analysis of the individual differences
between the treatment and control phase are almost the same as the ones reported in
the analysis with the observed values. The small differences between the effect
estimates are due to the few patients with either only a measurement after the
intervention phase or only a measurement after the control phase. These patients
were not included in the analysis of the differences between treatment and control
phase but are included in the analysis with the observed values.



Chapter 6 )
Analysis of Data from a Stepped Wedge e
Trial

6.1 Introduction

The stepped wedge trial design is a one-way cross-over trial in which several arms
start with the intervention at different time points (see Fig. 6.1). The starting point of
the intervention is randomized, and although this randomization can be on the
subject level, it is mostly on a cluster level, such as hospitals, nursery homes, or
schools. Although there is some debate about the usefulness of a stepped wedge trial
(Kotz et al., 2012), it is increasingly popular as an alternative for the regular RCT.

Besides the discussion about the usefulness of a stepped wedge trial design
(a discussion which will not be covered in this book), there is also much confusion
about the way data from a stepped wedged trial should be analyzed. In a systematic
review, Brown and Lilford (2006) mentioned that “no two studies use the same
method in analyzing data”, while Mdege et al. (2011) concluded that there was a
huge variation in statistical methods used, varying from simple cross-sectional
statistical methods, such as t-tests or Mann-Whitney U tests to more complicated
methods, such as mixed models. It is clear that there is no consensus regarding the
way the data from stepped wedge trials should be analyzed.

Most stepped wedge trial designs are longitudinal in nature. This means that the
same group of subjects is followed over time and the different clusters receive the
intervention at different points in time. There are also stepped wedge trial designs
that are cross-sectional regarding the subjects. In those stepped wedge trial designs at
each interval, new subjects are included, and depending on the timing and the cluster
in which they are randomized, they receive either the intervention or the control
condition. It is also possible that the stepped wedge trial design is a combination of
both. The focus of this chapter is on stepped wedge trial designs that are longitudinal
in nature.

The most important issue to be considered in the analysis of data from a
longitudinal stepped wedge trial is the one-way cross-over nature of the design.
Because of that, the effect of the intervention can be measured partly within the
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time
arm baseline 2 3 4
1 0 X X X
2 0 0 X X
3 0 0 0 X

0 = control; X = intervention

Fig. 6.1 Schematic illustration of a stepped wedge trial design with three arms and four repeated
measurements

subject (each subject moves at a certain point in time from the control condition to
the intervention condition) and partly between the subjects (at a certain point in time,
the intervention group can be compared to the control group). Ideally, these two
aspects of the intervention effect should be combined in one analysis. Because of
this, it is necessary that data from a stepped wedge trial are analyzed with a method
that is capable to combine these effects, i.e., a mixed model analysis. Because of this,
in the next part of the chapter, only variations of mixed model analysis will be
considered as appropriate ways to analyze data from stepped wedge trials.

Besides the combination of the within and between-subject effects, in the analysis
of data from a stepped wedge trial, also the time variable can play an important role.
In a regular RCT, adjusting for the time variable is not interesting, because the
control and the intervention group are measured at the same time points, i.e., the
intervention variable is time-independent (see Sect. 3.7), and, therefore, adjustment
for time cannot influence the estimated intervention effect. In a stepped wedge trial,
this is different, because all (clusters of) subjects start with the intervention at
different time points and the effects of the intervention are also measured at different
time points. Therefore, the intervention variable becomes time-dependent, and,
therefore, time can influence the estimated intervention effect. Finally, it should be
evaluated whether or not an adjustment for baseline differences in the outcome
variable should be made. In Chaps. 2 and 3, it was already discussed that an
adjustment for the baseline value is necessary in order to adjust for regression to
the mean. It is, however, questionable, whether an adjustment for the baseline values
is also necessary in a stepped wedge trial. Especially, because part of the stepped
wedge trial is basically a cross-over trial and in Chap. 5, it was already explained
why an adjustment for the baseline value in a cross-over trial is not really necessary
(see Sect. 5.2). In the remaining part of this chapter, several methods will be
discussed that can be used to analyze data from a stepped wedge trial.
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6.2 Example Dataset

The first example dataset is based on data from the ACT trial (Muntinga et al., 2012)
in which primary care practices in the intervention group delivered care according to
a new method, whereas practices in the control group delivered usual care. The
cluster stepped wedge trial was conducted among 35 primary care practices in the
Netherlands, and outcome measurements were administered at baseline and at 6, 12,
18, and 24 months. The primary outcome of the study was quality of life as measured
by the 12-item Short Form questionnaire (SF-12). Figure 6.2 shows the schematic
illustration of the stepped wedge example trial, and Table 6.1 shows the descriptive
information.

The descriptive information clearly shows that there is a slight increase in quality
of life over time, which seems to be irrespective whether the arm receives the
intervention or not.

6.3 Statistical Methods

6.3.1 Comparing Intervention and Control Measurements

The most simple way to analyze the data from a stepped wedge trial is to compare all
intervention measurements with all control measurements (see Fig. 6.3 and Eq. 6.1).

time
arm baseline 2 3 4 5
1 0 X X X X
2 0 0 X X X
3 0 0 0 X X
4 0 0 0 0 X

0 = control; X = intervention

Fig. 6.2 Schematic illustration of the ACT trial

Table 6.1 Mean quality of life and standard deviation (between brackets) for the different arms at
the different time points

Time
Arm Baseline 2 3 4 5
1 49.1 (11.5) 50.7 (10.9) 50.6 (10.4) 52.1 (10.4) 52.8 (10.2)
2 50.2 (9.4) 49.7 (11.2) 529 (9.1) 52.4 (9.4) 52.9 (9.8)
3 50.3 9.7) 49.5 (10.6) 52.509.2) 51.4 (10.7) 53.1 (10.0)
4 50.8 (10.6) 51.9 (9.8) 53.7 (10.0) 53.8 (10.2) 54.5 (9.0)
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time
arm baseline
1 0
2 0
3 0
4 0

0 = control; X = intervention

Fig. 6.3 Illustration of method 1; all intervention measurements are compared with all control
measurements

Y, =py+ /X (6.1)

where Y, = outcome measured at all measurements, X = intervention variable, and
p1 = overall intervention effect.

With this approach the intervention variable is a time-dependent dichotomous
variable. The estimated effect of the intervention reveals the difference between all
the measurements after an intervention period and all the measurements after a
control period. Because the intervention effect is reflected in one number, this
method does not provide an answer to the question whether a long-term exposure
to the intervention is different from a short-term exposure. The possibility to make
that distinction is basically one of the key features of using a stepped wedge design.

In the example stepped wedge trial, the use of a mixed model analysis is not only
necessary to adjust for the correlated observations of the repeated measures within
the subject but also to adjust for the correlated observations of the subjects within the
primary care practice. The data has, therefore, three levels; repeated observations are
clustered within the subject, and subjects are clustered within the primary care
practices. Output 6.1 shows the result of the analysis comparing all intervention
measurements with all control measurements.

Like any other mixed model analysis, Output 6.1 contains three parts. In the first
part it can be seen that a three-level structure is used. There are 1 to 5 repeated
measures clustered within 1126 subjects which are clustered within 35 practices. The
second part contains the fixed part of the model in which the regression coefficient
for the intervention variable is given. This coefficient (1.776702) indicates the
overall difference in quality of life on average over time between all intervention
measurements and all control measurements. This difference has a 95% confidence
interval ranging from 1.2792 to 2.274204 and a corresponding p-value <0.001. The
last part of the output shows the random part of the model, which contains the
random intercept variance on the subject level (54.31918) and the random intercept
variance on the practice level (1.534278). These numbers indicate that the correla-
tion between the repeated observations within the subject is much higher than the
correlation between the subject observations within the practice. This is, of course,
as expected. It should be noted that in this example a priori a random intercept for
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Mixed-effects ML regression Number of obs 4,273
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
,,,,,,,,,,,,,,,, o
practice | 35 11 122.1 328
id | 1,126 1 3.8 5
Wald chi2 (1) 48.99
Log likelihood = -15385.204 Prob > chi?2 0.0000
Qol | Coef std. Err z P>|z| [95% Conf. Interval]
_____________ .
intervention | 1.776702 .2538322 7.00 0.000 1.2792 2.274204
_cons | 50.27717 .3587895 140.13 0.000 49.57396 50.98039
Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
practice: Identity |
var (_cons) | 1.534278 .8994289 .486307 4.840585
_____________________________ o
id: Identity
var (_cons) | 54.31918 3.050589 48.65746 60.63971
_____________________________ .
var (Residual) | 52.27385 1.314673 49.75961 54.91512
LR test vs. linear model: chi2 (2) = 1333.42 Prob > chi2 = 0.0000

Output 6.1 Results of the mixed model analysis to compare all intervention measurements with all
control measurements

practice level is modeled. A random intercept on the subject level is always neces-
sary because otherwise the longitudinal nature of the data is ignored, which is
theoretically wrong (see also Sect. 4.4). For the random intercept on practice level,
the situation is slightly different, because it is not obligatory to add a random
intercept on practice level to the model. Basically the necessity of a random intercept
on practice level could be evaluated with likelihood ratio test (see Chap. 4). How-
ever, in the present example, it was decided to add a random intercept on practice
level a priori to the model.

The highly significant positive regression coefficient suggests a relatively strong
intervention effect. However, in the descriptive information (Table 6.1), it was seen
that there was a gradual increase in quality of life over time irrespective of the
intervention. Because the number of intervention observations in a stepped wedge
trial increases over time (see Figs. 6.1 and 6.2), the estimated intervention effect can
be highly biased by the effect of time. Therefore, in the next step of the analysis, time
is added to the model as a covariate (Eq. 6.2):

Yt = ﬂo + ﬂlX + ﬁzti?ﬂ@] + /)'3timez + ﬂ4time3 + /)'5time4 (62)
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Mixed-effects ML regression Number of obs = 4,273
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
,,,,,,,,,,,,,,,, o
practice | 35 11 122.1 328
id | 1,126 1 3.8 5
Wald chi2(5) = 85.88
Log likelihood = -15366.821 Prob > chi?2 = 0.0000
Qol | Coef Std. Err z P>|z]| [95% Conf. Interval]
_____________ o
intervention | .0539694 .3975063 0.14 0.892 -.7251287 .8330675
I
time |
2 | .3389319 .3685123 0.92 0.358 -.383339 1.061203
3 1.69668 . 4184155 4.06 0.000 .8766002 2.516759
4 2.019246 .4752602 4.25 0.000 1.087754 2.950739
5 | 2.782769 .5395577 5.16 0.000 1.725256 3.840283
I
cons | 49.92907 .3591174 139.03 0.000 49.22522 50.63293
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o
practice: Identity |
var (_cons) | .9050629 .7364453 .1836793 4.459614
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
id: Identity
var (_cons) | 54.13491 3.035528 48.50066 60.42368
_____________________________ o
var (Residual) | 51.84829 1.304312 49.35388 54.46876
LR test vs. linear model: chi2(2) = 1319.60 Prob > chi2 = 0.0000

Output 6.2 Results of the mixed model analysis to compare all intervention measurements with all
control measurements adjusted for time

where Y, = outcome measured at all measurements, X = intervention variable, f; =
overall intervention effect, and time, time,, times, and time4, = dummy variables for
the different time points.

Output 6.2 shows the result of this analysis.

From the fixed part of Output 6.2, it can be seen that time is added to the model.
The four regression coefficients for the time dummy variables indicate the difference
in the outcome quality of life between that particular time point and the reference
time point, which is the first measurement (i.e., the baseline measurement). Based on
the regression coefficients of the time dummy variables, it can be seen that there is an
increase in quality of life over time. It can be concluded that the estimated develop-
ment over time is independent of the intervention, because the intervention variable
is part of the model. The most striking difference in the results shown in Output 6.1
and in Output 6.2 is the regression coefficient for the intervention variable. Adjusting
for time, the regression coefficient for the intervention variable reduced from
1.776702 to 0.0539694, with a 95% confidence interval ranging from —0.7251287
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to 0.8330675, and a corresponding p-value of 0.892. So, the conclusion based on the
results reported in Output 6.2 are totally different from the ones reported in Output
6.1. Compared to the descriptive information depicted in Table 6.1, the results
reported in Output 6.2 are a much better reflection of what is happening in the
data. So, based on the analysis performed so far, it can be concluded that there is an
increase in quality of life over time, irrespective of the intervention. This indicates
that there is no actual effect of the intervention.

6.3.2 Comparing Different Arms

As has been mentioned before, with the method comparing all intervention mea-
surements with all control measurements, no distinction can be made between
possible short-term and long-term effects of the intervention. There are other
methods available to analysis data from a stepped wedge trial, in which that
distinction can be made. In one of those methods, the intervention variable is a
time-independent categorical variable comparing the different arms with each other.
Each arm is a different combination of intervention and control measurements (see
Fig. 6.4 and Eq. 6.3). The general idea behind this analysis is that each arm has a
different number of intervention measurements. Arm 1 has four intervention mea-
surements, while arm 4 only has one intervention measurement:

Y, = By + prarmy + Prarmy + Prarms (6.3)

where Y, = outcome measured at all measurements; arm;, arm,, and arm; = dummy
variables for the different arms; and f;, f», and f3; = differences in outcome between
the particular arm and the reference arm.

Output 6.3 shows the results of the analysis. In this analysis arm 4 is taken as the
reference category because arm 4 has the least amount of intervention
measurements.

time

arm baseline 2 3 4 5

3 0 0 0 X X

4 0 0 0 0 X

0 = control; X = intervention

Fig. 6.4 Tllustration of method 2; the four arms are compared with each other
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Mixed-effects ML regression Number of obs = 4,273
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
,,,,,,,,,,,,,,,, o
practice | 35 11 122.1 328
id | 1,126 1 3.8 5
Wald chi2(3) = 6.21
Log likelihood = -15406.562 Prob > chi?2 = 0.1018
Qol | Coef Std. Err z P>|z| [95% Conf. Interval]
_____________ o
arm |
1 | -1.896517 .772904 -2.45 0.014 -3.411381 -.3816531
2 | -1.083137 .8805944 -1.23 0.219 -2.80907 . 6427965
3 | -1.456784 .8728086 -1.67 0.095 -3.167458 .2538894
I
cons | 52.28932 .6219055 84.08 0.000 51.0704 53.50823

Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]
_____________________________ o
practice: Identity |

var (_cons) | .4316443 .6004566 .0282506 6.595154
_____________________________ o
id: Identity

var (_cons) | 54.67099 3.077813 48.95949 61.04879
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o

var (Residual) | 53.02363 1.334445 50.47163 55.70467
LR test vs. linear model: chi2(2) = 1286.58 Prob > chi2 = 0.0000

Output 6.3 Results of the mixed model analysis comparing the different arms

The first part of Output 6.3 is the same as shown in the earlier outputs. The same
holds for the random part of the model. The difference is found in the fixed part of
the model, which now shows the regression coefficients of the dummy variables for
the different arms. The regression coefficient for arm 1 (—1.896517) indicates the
difference in quality of life on average over time between the subjects in arm
1 compared to the subjects in arm 4. This basically indicates that the quality of life
on average over time is 1.9 points lower in the group with the most intervention
measurements compared to the group with the least amount of intervention mea-
surements. This difference has a 95% confidence interval ranging from —3.411381
to —0.3816531 and a corresponding p-value of the 0.014. The regression coefficients
for the other two dummy variables indicate the differences in quality of life on
average over time between arm 2 and arm 4 and between arm 3 and arm
4, respectively.

Because in this method, the intervention variable (i.e., the dummy variables
representing the different arms) is a time-independent categorical variable, the
analysis is comparable to the analysis of a regular RCT with a categorical interven-
tion variable. This means, for instance, that an adjustment for time is not really
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Mixed-effects ML regression Number of obs = 3,044
Group variable: id Number of groups = 907

Obs per group:

min = 1
avg = 3.4
max = 4
Wald chi2 (4) = 484.10
Log likelihood = -10780.84 Prob > chi2 = 0.0000
Qol | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ o .
arm |
1 | -.859166 .6303599 -1.36 0.173 -2.094649 .3763167
2 | -1.054442 .721021 -1.46 0.144 -2.467617 .3587335
3 | -1.355319 .7128403 -1.90 0.057 -2.752461 .0418219
|

baseline_Qol | .4776011 .0218764 21.83 0.000 .434724 .5204781
_cons | 28.55637 1.232674 23.17 0.000 26.14037 30.97237
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o

id: Identity |
var (_cons) | 30.90482 2.25667 26.78376 35.65997
_____________________________ o
var (Residual) | 50.39718 1.537181 47.47265 53.50187
LR test vs. linear model: chibar2(01) = 456.05 Prob >= chibar2 = 0.0000

Output 6.4 Results of the mixed model analysis comparing the different arms with each other
adjusted for the baseline value

necessary, because all arms are measured at the same time points. On the other hand,
because the intervention variable is time-independent (i.e., there is no within-subject
comparison), an adjustment for the baseline value can be performed. Because the
subjects are randomized into the different arms from one (source) population, the
differences in quality of life observed between the arms at baseline are due to chance
and can therefore cause regression to the mean (see Sect. 2.1). From Table 6.1, it can
be seen that there is a difference in baseline values between the arms, so an
adjustment for the baseline quality of life can be of influence. Output 6.4 shows
the result of this analysis.

First of all, it should be realized that the number of observations used in the
analysis adjusted for the baseline value is much lower than the number of observa-
tions used in the analysis without adjusting for the baseline value. That has to do
with the fact that in the analysis without the baseline value, the baseline value was
analyzed as part of the outcome variable. In the analysis adjusted for the baseline,
this is (of course) not the case. This means that the regression coefficients reported in
Outputs 6.3 and 6.4 cannot be directly compared to each other. Secondly, from the
output it can be seen that there is no random intercept on practice level. Due to the
less number of observations used as outcome and the adjustment for the baseline
value, the random intercept variance on practice level could not be estimated, and,



82 6 Analysis of Data from a Stepped Wedge Trial

therefore, in the analysis only an adjustment was made for the correlated repeated
observations within the subject.

From the regression coefficient shown in the fixed part of the output, it can be
seen that the estimated differences between the arms are still in favor of arm 4, i.e.,
the arm with the least amount of intervention measurements.

Because the intervention variable is a time-independent variable, which is com-
parable to a regular RCT, the next step in the analysis can be an analysis including
time and the interaction between arm and time (Eq. 6.4):

Y, = By + prarmy + Prarmy + Pyarms + Pytime; + Pstime, + Potimes
+ Brarm; X time; + fgarm; X time, + foarm; X timez + fyarm;
X timey + f,army X timey + f,arms X times + fzarms X time;
+ praarmz X timey + fsarms X times (6.4)

where Y, = outcome measured at all measurements, arm,, arm,, and arm; = dummy
variables for the different arms; time,, time,, times, and time, = dummy variables for
the different time points; and f,, f», and p; = differences in outcome between the
particular arm and the reference arm at the reference time point.

In this model, the regression coefficients of the dummy variables for the different
arms indicate the difference between the arms at the first measurement. In this
analysis the first measurement is time point 2, because the baseline value is not
used as outcome but as covariate. In Chap. 3 it was already explained that analyzing
the data with different reference categories for time provide the differences between
the arms at the other time points. Output 6.5 shows the results of the analysis
including time and the interaction between arm and time, using the first time point
as reference.

Although Output 6.5 looks a bit complicated because it contains a lot of regres-
sion coefficients, the interpretation of the output is not that difficult. The most
important regression coefficients are the ones of the dummy variables for the
different arms. They indicate the differences between the first three arms and arm
4 at the second time point. It can be seen that all three arms have a lower quality of
life than arm 4, which is most pronounced for arm 2 and arm 3. This is rather strange
because at the second time point, arm 2, arm 3, and arm 4 all received only the
control condition. The difference between arm 1 (the only arm that received the
intervention) and arm 4 is less pronounced (—0.3915612), but the difference is still
in favor of arm 4, which is basically the control condition.

Besides reanalyzing the data with a different reference time point (which makes it
possible to compare the different arms with each other at the different time points), it
is also possible to reanalyze the data with a different reference category for the arms.
Output 6.6 shows for instance the same results as has been reported in Output 6.5 but
now with arm 3 as reference arm.

The regression coefficient for arm 1 shown in Output 6.6 (1.59631) now indicates
the difference in quality of life between arm 1 and arm 3 at the second time point.
Because at this time point arm 1 received the intervention and arm 3 received the
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Mixed-effects ML regression Number of obs = 3,044
Group variable: id Number of groups = 907

Obs per group:

min = 1
avg = 3.4
max = 4
Wald chi2(16) = 559.85
Log likelihood = -10745.323 Prob > chi2 = 0.0000
Qol | Coef. Std. Err. Z P>|z]| [95% Conf. Interval]
_____________ o
arm |
1 | -.3915612 .8381972 -0.47 0.640 -2.034398 1.251275
2 | -1.768241 .959555 -1.84 0.065 -3.648934 .1124522
3 | -1.987872 .9475685 -2.10 0.036 -3.845072 -.1306716
|
time |
2 | 1.456071 .794816 1.83 0.067 -.1017396 3.013882
3 1.725608 .796937 2.17 0.030 .1636399 3.287576
4 2.209616 .8056842 2.74 0.006 .6305044 3.788728
|
arm#time |
1#2 | -1.457721 .9737942 -1.50 0.134 -3.366323 .4508803
1#3 | -.2791876 .9852202 -0.28 0.777 -2.210184 1.651809
1#4 | -.0342082 1.00356 -0.03 0.973 -2.001149 1.932732
2#2 | 1.297795 1.11753 1.16 0.246 -.8925232 3.488114
2#3 | .7897539 1.134273 0.70 0.486 -1.43338 3.012887
2#4 | .9556261 1.143079 0.84 0.403 -1.284767 3.196019
3#2 | 1.460865 1.103698 1.32 0.186 -.7023434 3.624073
3#3 | .0060439 1.112347 0.01 0.996 -2.174116 2.186204
3#4 | 1.428965 1.144591 1.25 0.212 -.8143921 3.672323
|
baseline Qol | .4750456 .0217993 21.79 0.000 . 4323197 .5177715
_cons | 27.43689 1.306098 21.01 0.000 24.87698 29.99679
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o
id: Identity
var (_cons) | 31.02035 2.235569 26.9341 35.72654
_____________________________ o
var (Residual) | 48.91135 1.491296 46.07409 51.92334
LR test vs. linear model: chibar2(01) = 476.99 Prob >= chibar2 = 0.0000

Output 6.5 Results of the mixed model analysis comparing the different arms with each other
including time and the interaction between arm and time and adjusted for the baseline value

control condition, the positive difference between the two arms can be interpreted as
a positive intervention effect. However, in the analysis reported earlier, it was
obvious that there is no evidence of a positive intervention effect, so the results of
the analysis should not be interpreted as a single result but should always be
interpreted in light of the total picture.
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Mixed-effects ML regression Number of obs = 3,044
Group variable: id Number of groups = 907

Obs per group:

min = 1
avg = 3.4
max = 4
Wald chi2(16) = 559.85
Log likelihood = -10745.323 Prob > chi2 = 0.0000
Qol | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ o
arm |
1 | 1.59631 .8215013 1.94 0.052 -.0138025 3.206423
2 | .2196305 .945331 0.23 0.816 -1.633184 2.072445
4 | 1.987872 .9475685 2.10 0.036 .1306716 3.845072
|
time |
2 | 2.916936 .7658105 3.81 0.000 1.415975 4.417897
3 1.731652 .7760363 2.23 0.026 .2106484 3.252655
4 | 3.638582 .813027 4.48 0.000 2.045078 5.232085
|
armftime |
1#2 | -2.918586 .9502565 -3.07 0.002 -4.781055 -1.056118
1#3 | -.2852314 .9683868 -0.29 0.768 -2.183235 1.612772
1#4 | -1.463173 1.009441 -1.45 0.147 -3.441641 .5152939
2#2 | -.1630697 1.097083 -0.15 0.882 -2.313313 1.987174
2#3 | .78371 1.119686 0.70 0.484 -1.410833 2.978253
2#4 |  -.4733391 1.148274 -0.41 0.680 -2.723915 1.777236
4#2 | -1.460865 1.103698 -1.32 0.186 -3.624073 .7023434
443 | -.0060439 1.112347 -0.01 0.996 -2.186204 2.174116
444 | -1.428965 1.144591 -1.25 0.212 -3.672323 .8143921
|
baseline_Qol | .4750456 .0217993 21.79 0.000 .4323197 .5177715
_cons | 25.44902 1.286175 19.79 0.000 22.92816 27.96987
Random-effects Parameters | Estimate Std. Err. [95% Conf. Intervall]
_____________________________ o~
id: Identity
var (_cons) | 31.02035 2.235569 26.9341 35.72654
_____________________________ o
var (Residual) | 48.91135 1.491296 46.07409 51.92334
LR test vs. linear model: chibar2(01) = 476.99 Prob >= chibar2 = 0.0000

Output 6.6 Results of the mixed model analysis comparing the different arms with each other
including time and the interaction between arm and time and adjusted for the baseline value and
with arm 3 as reference arm

6.3.3 Comparing Groups with a Different Number
of Intervention Measurements

In the second method that is capable to make a distinction between short-term and
long-term effects of the intervention, the intervention variable is a time-dependent
categorical variable comparing groups with different number of intervention mea-
surements with a group containing all the control measurements. This method is



6.3 Statistical Methods 85

time
arm baseline
1 0
2 0
3 0
4 0

0 = control condition; X = intervention

Fig. 6.5 TIllustration of method 3; groups with a different number of intervention measurements are
compared with each other

basically an extension of the first method, in which the intervention group from the
first method (i.e., all intervention measurements) is divided into subgroups defined
according to the number of intervention measurements (see Fig. 6.5 and Eq. 6.5).
The different number of intervention measurements reflects the amount of time a
particular subject receives the intervention; it actually represents the length of the
received intervention. The more intervention measurements, the longer the length of
the received intervention:

Y; = By + Bymonth| + pymonthy + fymonths + fymonthy (6.5)

where Y, = outcome measured at all measurements; month,, month,, months, and
month, = dummy variables for the groups with a different number of intervention
measurement (i.e., the amount on months the group received the intervention); and
B, Pa, P3, and p, = differences in outcome between the particular group and the
group containing all control measurements.

In the example trial, the measurements are performed after 6, 12, 18, and
24 months. So, for instance, the first dummy variable equals 6 months and indicates
one intervention measurement. This group includes the second measurement for the
subjects randomized in arm 1, the third measurement for the subjects randomized in
arm 2, the fourth measurement for the subjects randomized in arm 3, and the fifth and
last measurement for the subjects randomized in arm 4. It should be noted that in this
example the length (in months) of the received intervention corresponds totally with
the number of intervention measurements. This has to do with the fact that in this
example the repeated measurements are performed with equally spaced time inter-
vals. When the time intervals between the repeated measurements were not equal,
the number of intervention measurements will not correspond totally with the length
of the received intervention. Output 6.7 shows the results of the analysis.

From Output 6.7 it can be seen that again a three-level structure is used. The
repeated observations are clustered within subjects, and the subjects are clustered
within practices. In the random part of the model, the random intercept variances of
both levels are shown. In the fixed part of the model, there are four regression
coefficients for the four dummy variables representing the different number of
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Mixed-effects ML regression Number of obs = 4,273
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ o
practice | 35 11 122.1 328
id | 1,126 1 3.8 5
Wald chi2(4) = 63.44
Log likelihood = -15378.243 Prob > chi?2 = 0.0000
Qol | Coef Std. Err z P>|z| [95% Conf. Interval]
_____________ o
months
6 | 1.42575 .3090841 4.61 0.000 .8199557 2.031543
12| 1.568444 .3578261 4.38 0.000 .8671177 2.26977
18 | 2.532432 .4189374 6.04 0.000 1.711329 3.353534
24 | 3.119227 .522857 5.97 0.000 2.094446 4.144008
I
cons | 50.24086 .3669065 136.93 0.000 49.52173 50.95998

Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]
_____________________________ o
practice: Identity |

var (_cons) | 1.717695 .9506425 .5805724 5.082013
_____________________________ .
id: Identity

var (_cons) | 54.3509 3.049103 48.6916 60.66796
_____________________________ o

var (Residual) | 52.02991 1.308495 49.52749 54.65877
LR test vs. linear model: chi2 (2) = 1344.24 Prob > chi2 = 0.0000

Output 6.7 Results of mixed model analysis comparing groups with a different number of
intervention measurements

intervention measurements. The regression coefficient for 6 months (1.42575)
indicates the difference between all measurements after 6 months of intervention
and all control measurements. The regression coefficient for 12 months (1.568444)
indicates the difference between all measurements after 12 months of intervention
and all control measurements, etc. Based on the results shown in Output 6.7, it can be
concluded that the longer the intervention is applied, the higher the quality of life of
the subjects, which indicates a positive intervention effect. However, also in this
analysis, the differences between the groups with a different number of intervention
measurements are probably biased by time. This is because the measurements with a
longer intervention time are also the measurements at the end of the study, and
because there is gradual increase in quality of life over time (irrespective of the
intervention), the estimated effects can be biased. Therefore, the model is extended
with time and the interaction between months and time (see Eq. 6.6):
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Y, = py + pymonth; + pymonthy + fzmonths + fymonths + Pstime;
+ Potime, + Ptimes + Pgtimey (6.6)

where Y, = outcome measured at all measurements; month;, month,, monthsz, and
month, = dummy variables for the groups with a different number of intervention
measurement (i.e., the amount on months the group received the intervention); time;,
time,, times, and time, = dummy variables for the different time points; and £, f,,
3, and p, = differences in outcome between the particular group and the group
containing all control measurements.

Output 6.8 shows the result of this analysis.

In the fixed part of Output 6.8, it is obvious that the regression coefficients for the
groups representing the number of intervention measurements were highly reduced
when time was added to the model. Basically, the same happened in the first analysis
in which all intervention measurements were compared with all control measure-
ments (method 1). Only the regression coefficient for 6 months of intervention
remained positive (0.2151271), but the difference with the group containing all
control measurements is rather small and far from significant (p = 0.613). The
regression coefficients for 12, 18, and 24 months in intervention even became
negative after the adjustment for time. So, based on the analysis performed with
this third method, the conclusion is the same. There is an increase in quality of life
over time, which is independent of the intervention.

6.3.4 Comparing Transitions

The last method to analyze data from a stepped wedge trial is slightly different from
the first three methods, in such a way that instead of the observed values of the
outcome variables at the different time points, the changes in the outcome variable
between subsequent measurements are analyzed. These transitions are then com-
pared between three transition groups: (1) subjects moving from control condition to
control condition, (2) subjects moving from control condition to intervention con-
dition, and (3) subjects moving from intervention condition to intervention condition
(see Fig. 6.6 and Eq. 6.7):

Y= Y1 = Py + Bigroup, + prgroup, (6.7)

where Y, = outcome measured at all measurements after the baseline measurement,
Y;_| = outcome measured at all measurements besides at the last time point, group,
and group, = dummy variables for the transition groups, and #; and f3, = differences
in outcome between the transition groups.



88

Mixed-effects ML regression
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Number of obs

Observations per Group

Average Maximum
122.1 328
3.8 5

Wald chi2 (8)
Prob > chi2

4,273

89.70
0.0000

No. of
Group Variable Groups
practice 35
id 1,126
Log likelihood = -15364.958
Qol | Coef S
_____________ +
months
6 | .2151271
12 | -.5992817
18 | -.0387032
24 | -.2266728
|
time |
2 | .2779046
3 | 1.921638
4 2.151057
5 | 3.00574
|
cons | 49.92417

Interval]

1.047879
.4871819
1.374531

1.65352

1.008915
2.792659
3.242991
4.440101

practice: Identity

Interval]

4.572199

60.40089

z P>|z| [95% Conf.
.51 0.613 -.6176246
08 0.280 -1.685745
.05 0.957 -1.451937
24 0.813 -2.106866
75 0.456 -.4531055
32 0.000 1.050617
86 0.000 1.059123
11 0.000 1.57138
46 0.000 49.22751
std. Err [95% Conf.
.7217963 .1498752
3.034186 48.48315
1.30355 49.31606

LR test vs. linear model: chi

Minimum
11
1
td. Err
.4248811 0
.5543283 -1
.7210509 -0
.9592996 -0.
.3729712 0.
.4444068 4.
.5571196 3.
.73183 4.
.3554418 140
Estimate
.8278039
54.11493
51.809
2(2) = 1316.45

Prob > chi2

= 0.0000

Output 6.8 Results of the mixed model analysis comparing groups with a different number of
intervention measurements adjusted for time

time

baseline

2
3
4

0

0 = control; X = intervention

Fig. 6.6 Illustration of method 4; groups with a different transition are compared with each other
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Mixed-effects ML regression Number of obs = 3,009
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ o
practice | 35 7 86.0 227
id | 936 1 3.2 4
Wald chi2(2) = 1.09
Log likelihood = -11130.634 Prob > chi?2 = 0.5805
Qol_change | Coef Std. Err z P>|z| [95% Conf. Interval]
,,,,,,,,,,,,, o
group |
1 .4825637 .4683142 1.03 0.303 -.4353153 1.400443
2 | .156589 .4177686 0.37 0.708 -.6622225 .9754004
I
cons | .3290253 .3125189 1.05 0.292 -.2835004 . 9415511

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o
practice: Identity |

var (_cons) | 1.34e-15 1.12e-14 1.06e-22 1.70e-08

_____________________________ .
id: Identity

var (_cons) | 7.91e-18 1.2%9e-17 3.27e-19 1.91e-16

_____________________________ o

var (Residual) | 95.61703 3.135745 89.66444 101.9648

LR test vs. linear model: chi2(2) = 0.00 Prob > chi2 = 1.0000

Output 6.9 Results of the mixed model analysis comparing the different transition groups
regarding the change in quality of life

The general idea of this analysis is that when there is a short-term effect of the
intervention, the transition from the control condition to the intervention condition
directly has an effect on the outcome, while a transition from the intervention
condition to the intervention condition would not has an effect on the outcome.
When there is a short-term and long-term effect of the intervention, both transitions
would lead to an effect on the outcome, and when there is only a long-term effect of
the intervention, the biggest effect will be observed after a transition from the
intervention condition to the intervention condition.

Output 6.9 shows the results of the analysis with the group who moved from the
control condition to the control condition as the reference group.

Output 6.9 looks similar to the other three-level mixed model analyses performed
so far. The most interesting part is the fixed part of the model which contains the
regression coefficients. The regression coefficient for group 1 (0.4825637) indicates
the difference in the change in quality of life between the transition from control to
intervention compared to the transition from control to control. The positive sign of
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the regression coefficient indicates that there is a stronger increase in quality of life
when a subject goes from the control to the intervention condition than when a
subject stays in the control condition. The regression coefficient for group
2 (0.156589) indicates the difference in change in quality of life for the transition
from intervention to intervention compared to the transition from control to control.
So, both regression coefficients are positive, but the corresponding p-values are far
above the significance level.

It should also be noted that the random intercept variances shown in the random
part of the model are very low. This holds for the random intercept variance on the
subject level as well as for the random intercept variance on the practice level. This
may look strange, because in the earlier analyses, the random intercept variances
(especially the one on the subject level) were quite high. However, the analysis
performed in this method uses the change in quality of life as outcome, while all
other analyses used the observed quality of life as outcome. It is important to realize
that changes between subsequent measurements are often not correlated within the
same subject even though the observed values themselves are highly correlated
within the same subject (see also Sect. 5.3). Because the change scores between
subsequent measurements are not correlated to each other, the random intercept
variances reduce to almost zero. When there is no random intercept variance on both
levels, the three-level mixed model analysis could also been analyzed with a regular
linear regression analysis. The results would have been exactly the same.

Also for the comparison of the transition groups, it should be noted that the
transitions to the intervention condition for subjects in different arms occur at
different time points. So, when there is an increase or decrease in the outcome
over time irrespective of the intervention, also the effect estimates of the transition
analysis are biased. Therefore, in the next step in the analysis, time is added to the
model (see Eq. 6.8).

Y, — Y,y = By + Ppigroup, + Prgroup, + Patime, + Pytimey + Pytimes  (6.8)

where Y; = outcome measured at all measurements after the baseline; Y;.; = outcome
measured at all measurements besides at the last time point; group,; and
group, = dummy variables for the transition groups; time,, time,, and
time; = dummy variables for the time point where the particular change in the
outcome is calculated; and f, and f3, = differences in outcome between the transition
groups.

Because the changes between two subsequent measurements are used as out-
come, there are four time point represented by three dummy variables. Output 6.10
shows the result of the analysis.

From Output 6.10 it can be seen that the regression coefficients for the transition
groups are not much different from the regression coefficients shown in Output 6.9.
This indicates that the increase in quality of life over time independent of the
intervention does not bias the effect estimates of the transition groups. The



6.4 A Second Example 91

Mixed-effects ML regression Number of obs = 3,009
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ o
practice | 35 7 86.0 227
id | 936 1 3.2 4
Wald chi2(5) = 8.49
Log likelihood = -11126.938 Prob > chi2 = 0.1311
Qol_change | Coef. std. Err. z P>|z| [95% Conf. Interval]
_____________ o
group |
1 .4635782 .4809831 0.96 0.335 -.4791314 1.406288
2 | -.1984712 .5253161 -0.38 0.706 -1.228072 .8311295
|
time |
2 | 1.360418 .5172283 2.63 0.009 .3466691 2.374167
3 .5012802 .5649396 0.89 0.375 -.605981 1.608542
4 | .8623655 .6287426 1.37 0.170 -.3699473 2.094678
|
cons | =-.1777504 .3824041 -0.46 0.642 -.9272488 .5717479

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o
practice: Identity |

var (_cons) | 5.75e-14 5.28e-13 8.78e-22 3.76e-06

_____________________________ o
id: Identity |

var (_cons) | 2.38e-17 4.07e-17 8.23e-19 6.85e-16

_____________________________ o

var (Residual) | 95.3824 2.745905 90.14954 100.919

LR test vs. linear model: chi2(2) = 0.00 Prob > chi2 = 1.0000

Output 6.10 Results of the mixed model analysis comparing the different transition groups
regarding the change in quality of life adjusted for time

conclusion of the transition analysis is, however, the same as the other analysis, i.e.,
there is no actual effect of the intervention.

6.4 A Second Example

6.4.1 Introduction

Because of the complexity of the analysis of a stepped wedge trial, in this section, a
second example will be discussed. In the second example a cluster stepped wedge
RCT is performed within pain clinics of 17 hospitals which were randomly divided
over five arms. Six measurements took place: one baseline measurement and a
measurement every 4 weeks during a period of twenty weeks. After each
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time
arm baseline 2 3 4 5 6
1 0 X X X X X
2 0 0 X X X X
3 0 0 0 X X X
4 0 0 0 0 X X
5 0 0 0 0 0 X

0 = control; X = intervention

Fig. 6.7 Schematic illustration of the second example cluster stepped wedge RCT

Table 6.2 Mean pain scores and standard deviation (between brackets) for the different arms at the
different time points

Time

Arm Baseline 2 3 4 5 6

3.8 (0.4) 3.7(0.3) 3.70.4) 3.6 (04) 3.6 (0.3) 3.5(0.3)
3.8 (0.3) 3.9(0.3) 3.8(0.3) 3.7 (0.3) 3.7(0.3) 3.6 (0.3)
3.9 (0.3) 3.9(0.3) 3.9(0.3) 3.8 (0.3) 3.8(0.3) 3.6 (0.3)
3.9(0.4) 3.9(0.3) 3.8(0.3) 4.0 (0.3) 4.0 (0.3) 3.8(0.3)
3.9(0.4) 4.1 (0.4) 4.0 (0.4) 4.0 (0.4) 4.1 (0.4) 4.2 (0.4)

DB [N~

measurement cycle, a new arm started the intervention. The aim of the intervention
was to reduce pain for patients suffering from chronic pain. The outcome variable
pain was continuous and ranged between 1 and 5, where 5 indicates the most pain.
Figure 6.7 shows the schematic illustration of the stepped wedge example RCT and
Table 6.2 shows the descriptive information.

From the descriptive information shown in Table 6.2, it can be seen that there
seems to be a small decrease in pain over time and that this decrease is partly caused
by the intervention. For this example, the same analyses were performed as for the
first example dataset.

6.4.2 Comparing Intervention and Control Measurements

In the first method, all intervention measurements were compared with all control
measurements. The intervention variable is therefore a time-dependent dichotomous
variable (see Sect. 6.3.1). Output 6.11 shows the result of the analysis.

From Output 6.11 it can be seen that the regression coefficient for the intervention
is —0.0969672. This number indicates the difference in pain between all intervention
measurements and all control measurements on average over time. The 95%
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Mixed-effects ML regression Number of obs = 2,284
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
,,,,,,,,,,,,,,,, o e
hospital | 17 92 134.4 174
patient | 655 1 3.5 6
Wald chi2 (1) = 63.71
Log likelihood = -380.50452 Prob > chi?2 = 0.0000
pain | Coef. Std. Err b4 P>|z| [95% Conf. Interval]
_____________ .
intervention | -.0969672 .0121489 -7.98 0.000 -.1207786 -.0731558
_cons | 3.873502 .0357191 108.44 0.000 3.803493 3.94351
Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
hospital: Identity |
var (_cons) | .018894 .0073033 .0088573 .040304
_____________________________ o
patient: Identity
var (_cons) | .0630357 .0046555 .0545409 .0728537
_____________________________ o
var (Residual) | .0515109 .0017997 .0481017 .0551618
LR test vs. linear model: chi2(2) = 1002.23 Prob > chi2 = 0.0000

Output 6.11 Results of the mixed model analysis to compare all intervention measurements with
all control measurements

confidence interval around this difference ranges from —0.1207786 to —0.0731558,
and the corresponding p-value is <0.001.

In the first part of Output 6.11, it can be seen that a three-level mixed model
analysis is performed in which the repeated measurements are clustered within
patients, and the patients are clustered within hospitals. In the third part of het
output, the random intercept variances are given. As in the first example, it can be
seen that the random intercept variance on the patient level is much higher than the
random intercept variance on the hospital level, indicating that the correlation
between the repeated observations within the patient is stronger than the correlation
between the patient observations within the hospital.

As in the first example, the next step in the analysis is an adjustment for time.
Therefore, five time dummy variables are added to the model (see Sect. 6.3.1).
Output 6.12 shows the result of this analysis.

In Output 6.12 it can be seen that the adjustment for time attenuated the regression
coefficient for the intervention variable. The difference between the intervention
measurements and control measurements was —0.0969672 without adjustment for
time and — 0.0433674 with adjustment for time. The 95% confidence interval
around this difference ranges from —0.0786624 to —0.0080723, and the
corresponding p-value is 0.016. So, the estimated intervention effect is partly caused
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Mixed-effects ML regression Number of obs = 2,284
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ o
hospital | 17 92 134.4 174
patient | 655 1 3.5 6
Wald chi2 (6) = 107.91
Log likelihood = -359.09313 Prob > chi2 = 0.0000
pain | Coef Std. Err Z P>|z| [95% Conf. Interval]
_____________ o
intervention | -.0433674 .018008 -2.41 0.016 -.0786624 -.0080723
I
time |
2 .0295252 .0168384 1.75 0.080 -.0034775 .0625279
3 | -.0053885 .0186689 -0.29 0.773 -.0419788 .0312018
4 | -.0201423 .0209057 -0.96 0.335 -.0611168 .0208322
5 | -.0178463 .0227192 -0.79 0.432 -.062375 .0266824
6 | -.1068593 .0252082 -4.24 0.000 -.1562664 -.0574522
I
cons | 3.866999 .0390327 99.07 0.000 3.790496 3.943501

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o
hospital: Identity |

var (_cons) | .0217089 .0082969 .010264 .0459154
_____________________________ e
patient: Identity |

var (_cons) | .0627926 .0046138 .0543707 .0725191
_____________________________ o

var (Residual) | 0502808 .0017562 .0469538 .0538436
LR test vs. linear model: chi2(2) = 1025.87 Prob > chi2 = 0.0000

Output 6.12 Results of the mixed model analysis to compare all intervention measurements with
all control measurements adjusted for time

by a regular decrease in pain over time, but even in an analysis adjusting for time,
there is still a significant intervention effect.

6.4.3 Comparing Different Arms

In the second method, the different arms are compared with each other. In this
method the intervention variable is a categorical time-independent variable (see Sect.
6.3.2). Note that in this analysis, arm 1 is used as reference arm. In arm 1, the patients
receive the most intervention measurements (see Fig. 6.7). Output 6.13 shows the
results of the analysis.

From Output 6.13 it can be seen that the regression coefficients for the different
arms are increasing with the number of control measurements that were performed
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Mixed-effects ML regression Number of obs = 2,284
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
,,,,,,,,,,,,,,,, o
hospital | 17 92 134.4 174
patient | 655 1 3.5 6
Wald chi2(4) = 48.81
Log likelihood = -400.19401 Prob > chi2 = 0.0000
pain | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ o
arm |
2 | .1132414 .0625588 1.81 0.070 -.0093717 .2358544
3 .1629385 .0631854 2.58 0.010 .0390974 .2867796
4 | .2825011 .0679791 4.16 0.000 .1492645 .4157377
5 | . 4341882 .0681326 6.37 0.000 .3006507 .5677257
|
cons | 3.634641 .0478109 76.02 0.000 3.540934 3.728349
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
hospital: Identity |
var (_cons) | .0045976 .0023868 .0016621 .0127181
_____________________________ o
patient: Identity
var (_cons) | .0639661 .0047409 .0553175 .0739669
_____________________________ o
var (Residual) | .0530188 .0018508 .0495125 0567732
LR test vs. linear model: chi2(2) = 861.58 Prob > chi2 = 0.0000

Output 6.13 Results of the mixed model analysis comparing the different arms

within a particular arm. The regression coefficient for arm 2 (0.1132414) indicates
the difference in pain on average over time between arm 2 (for which the interven-
tion started at the third measurement) and arm 1 (for which the intervention started at
the second measurement). In the same way, the regression coefficient for arm
5 (0.4341882) indicates the difference in pain on average over time between arm
5 (for which the intervention started at the last measurement) and arm 1. So, in
general, less intervention measurements lead to a higher average pain score indicat-
ing a possible intervention effect. Because the intervention variable is a time-
independent variable, there is no need to adjust the analysis for time. Again, this
has to do with the fact that all arms were measured at the same time points. To
illustrate that time does not influence the effect estimates, Output 6.14 shows the
results of the analysis comparing different arms with each other adjusted for time.
As expected, adding time to the model has no influence on the estimated
regression coefficients for the different arms. There is only a very small difference
which is caused by a different amount of missing data in the different arms. When
there were no missing observations (i.e., when a complete case analysis was
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Mixed-effects ML regression Number of obs = 2,284
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
,,,,,,,,,,,,,,,, o
hospital | 17 92 134.4 174
patient | 655 1 3.5 6
Wald chi2(9) = 152.31
Log likelihood = -350.33496 Prob > chi2 = 0.0000
pain | Coef Std. Err z P>|z| [95% Conf. Intervall]
_____________ o
arm |
2 | .1141864 .0617175 1.85 0.064 -.0067777 .2351506
3 .1666091 .0623411 2.67 0.008 .0444228 .2887954
4 .2739778 .0670735 4.08 0.000 .1425161 .4054394
5 | .4362146 .0672252 6.49 0.000 .3044556 .5679735
|
time |
2 | .0218232 .0165462 1.32 0.187 -.0106067 .0542532
3 | -.0240369 .0170076 -1.41 0.158 -.0573711 .0092973
4 | -.0489568 .0171699 -2.85 0.004 -.0826092 -.0153044
5 | -.051918 .0178049 -2.92 0.004 -.086815 -.017021
6 | -.1488141 .01827 -8.15 0.000 -.1846227 -.1130055
|
cons | 3.675178 .0484137 75.91 0.000 3.580289 3.770067
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o
hospital: Identity |
var (_cons) | .0044692 .0023249 .0016122 .012389
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o o
patient: Identity
var (_cons) | .0628882 .0046213 .0544527 .0726306
_____________________________ o
var (Residual) | .0503792 .0017582 .0470484 .0539458
LR test vs. linear model: chi2(2) = 896.32 Prob > chi2 = 0.0000

Output 6.14 Results of the mixed model analysis comparing the different arms with each other
adjusted for time

performed), the regression coefficients (i.e., effect estimates) would have been
exactly the same in analyses with and without adjusting for time.

More interesting than the adjustment for time is the adjustment for the baseline
value of the outcome variable. It has been mentioned before that, at baseline, the
arms are randomized from the same (source) population and that, therefore, the
differences at baseline between the arms are due to chance (similar to a regular
RCT). Therefore, the analysis comparing the different arms with each other can be
adjusted for the baseline value of the outcome variable. Output 6.15 shows the
results of this analysis.

In Output 6.15 it can be seen that the adjustment for the baseline value of the
outcome variable pain does not have a huge influence on the effect estimates.
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Mixed-effects ML regression Number of obs = 1,242
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ o
hospital | 17 50 73.1 99
patient | 338 1 3.7 5
Wald chi2(5) = 295.97
Log likelihood = -97.920511 Prob > chi2 = 0.0000
pain | Coef. Std. Err. z P>|z| [95% Conf. Interval]
______________ o
arm |
2 | .1587935 .0557077 2.85 0.004 .0496083 .2679787
3 .214467 .0561238 3.82 0.000 .1044665 .3244676
4 | .2492776 .0611588 4.08 0.000 .1294086 .3691465
5 | .3960308 .0596372 6.64 0.000 .279144 .5129176
|
baseline pain | .5701048 .0367985 15.49 0.000 .497981 .6422286
_cons | 1.433223 .1479601 9.69 0.000 1.143226 1.723219
Random-effects Parameters | Estimate std. Err [95% Conf. Interval]
_____________________________ o
hospital: Identity |
var (_cons) | 0029684 .001887 .0008539 0103186
_____________________________ o
patient: Identity |
var (_cons) | .031498 .0036839 .0250455 0396128
_____________________________ o
var (Residual) | .049553 .002305 .0452351 .054283
LR test vs. linear model: chi2(2) = 257.41 Prob > chi2 = 0.0000

Output 6.15 Results of the mixed model analysis comparing the different arms adjusted for the
baseline value

However, the comparison between the effect estimates reported in Output 6.13
cannot be compared directly with the effect estimates reported in Output 6.15,
because the population used in both analyses is different. In Output 6.13, all
measurements are used as outcome, while with the adjustment for baseline, the
baseline value itself is not used as outcome anymore but only as covariate. There-
fore, the number of observations reduces from 2284 to 1242. Nevertheless, based on
the descriptive information shown in Table 6.2, it could be seen that there is not
much difference between the baseline values of the different arms, so it is expected
that an adjustment for these differences would not make a big difference.
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Mixed-effects ML regression Number of obs = 2,284
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
,,,,,,,,,,,,,,,, o e
hospital | 17 92 134.4 174
patient | 655 1 3.5 6
Wald chi2(5) = 217.14
Log likelihood = -309.12794 Prob > chi?2 = 0.0000
pain | Coef. Std. Err. b4 P>|z| [95% Conf. Interval]
_____________ o
time_in_in~n |
4 | -.0193173 .0144921 -1.33 0.183 -.0477213 .0090868
8 | -.1043944 .0161749 -6.45 0.000 -.1360965 -.0726923
12| -.180519 .0177033 -10.20 0.000 -.2152168 -.1458212
16 | -.2336987 .022192 -10.53 0.000 -.2771942 -.1902031
20 | -.3268278 .0333784 -9.79 0.000 -.3922483 -.2614074
|
cons | 3.887455 .0314771 123.50 0.000 3.825761 3.949149

Random-effects Parameters | Estimate Std. Err [95% Conf. Intervall]
_____________________________ o
hospital: Identity |

var (_cons) | .0141339 .005649 .0064574 .0309361
_____________________________ o
patient: Identity

var (_cons) | .0617757 .0044916 .0535708 .0712373
_____________________________ o

var (Residual) | .0479233 .0016723 .0447552 0513156
LR test vs. linear model: chi2(2) = 1008.10 Prob > chi2 = 0.0000

Output 6.16 Results of the mixed model analysis comparing groups with a different number of
intervention measurements

6.4.4 Comparing Groups with a Different Number
of Intervention Measurements

As has been mentioned before, the method comparing groups with a different
number of intervention measurements, i.e., comparing patients which received the
intervention for a different amount of time, is basically an extension of the method in
which all intervention measurements were compared with all control measurements.
The extension indicates that the population who received the intervention is divided
into subgroups with a different number of intervention measurements (i.e., in sub-
groups with a different length of the received intervention). These subgroups are
compared with all control measurements (see Sect. 6.3.3). Output 6.16 shows the
result of this analysis.

From Output 6.16 it can be seen that the regression coefficients for the groups
who received the intervention for a longer period of time are negative, so these
groups have lower average pain values. For instance, the group of patients who
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Mixed-effects ML regression Number of obs = 2,284
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ .
hospital | 17 92 134.4 174
patient | 655 1 3.5 6
Wald chi2 (10) = 285.86
Log likelihood = -281.36078 Prob > chi2 = 0.0000
pain | Coef. std. Err. z P>|z| [95% Conf. Interval]
_____________ o
time_in_in~n |
4 | -.0906178 .0186635 -4.86 0.000 -.1271976 -.0540381
8 | -.2177845 .0238673 -9.12 0.000 -.2645635 -.1710056
12 | -.3483987 .0305074 -11.42 0.000 -.4081922 -.2886052
16 | -.4542614 .0393044 -11.56 0.000 -.5312965 -.3772263
20 | -.5790237 .0531956 -10.88 0.000 -.6832852 -.4747622
|
time |
2 | .036623 .0162624 2.25 0.024 .0047493 .0684966
3 .0372376 .0182671 2.04 0.041 .0014346 .0730405
4 .0872006 .0216369 4.03 0.000 .044793 .1296082
5 | .1880473 .0268359 7.01 0.000 .1354499 .2406447
6 | .2057461 .0343515 5.99 0.000 .1384184 .2730737
|
cons | 3.863957 .0271897 142.11 0.000 3.810667 3.917248
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o
hospital: Identity |
var (_cons) | .0085787 .003764 .0036303 .0202721
_____________________________ .
patient: Identity
var ( cons) | .0620688 .0044772 .0538858 .0714945
_____________________________ o
var (Residual) | .0465729 .0016249 .0434945 0498691
LR test vs. linear model: chi2(2) = 982.33 Prob > chi2 = 0.0000

Output 6.17 Result of the mixed model analysis comparing groups with a different number of
intervention measurements adjusted for time

received the intervention for 20 weeks (i.e., the patients with five intervention
measurements) has a 0.3268278 lower average pain score compared with all control
measurements. It can also be seen that this difference is highly significant
(p < 0.001). For the group of patients who received the intervention for only
4 weeks (i.e., the patients with only one intervention measurement) on the other
hand, a regression coefficient of —0.0193173 was found, which indicates that this
group of patients has on average a 0.019 lower pain score than all control measure-
ments. The 95% confidence interval around this difference ranges from —0.0477213
to 0.00908680 and the corresponding p-value = 0.183. As has been mentioned
before, the measurements taken on the patients who received the intervention for the
longest time are also the measurements taken in the last part of the study. It is,
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therefore, possible that the effect estimates reported in Output 6.15 are biased by
time. Therefore, in the next step of the analysis, time is added to the model (see Sect.
6.3.3). Output 6.17 shows the result of this analysis.

Comparing the effect estimates based on a model without the adjustment for time
with the effect estimates based on a model with the adjustment for time, it can be
seen that the effect estimates for the latter are stronger. So, not taking time into
account leads to underestimated effect estimates. This is a bit unexpected, because in
the first method, where all intervention measurements were compared with all
control measurements, an adjustment for time resulted in a lower effect estimate.
From Output 6.17 it can further be seen that in the model including the intervention
variable comparing different number of the intervention measurements and time, the
regression coefficients for time are all positive, which indicates that there is increase
in pain over time when the intervention variable comparing the different number of
intervention measurements is taken into account. In Output 6.12, where all inter-
vention measurements were compared with all control measurements, the regression
coefficients for time were mostly negative, which indicates a decreasing trend in pain
when the overall intervention variable is taken into account. In Table 6.2 it can be
seen that there is an increase in pain over time for the control measurements, while
there is a decrease in pain over time for the intervention measurements, trends that
are better captured with the analyses comparing the groups with a different number
of intervention measurements. It should further be noted that the results of
the analysis adjusted for time must be interpreted with some caution, because the
intervention variable and the time variable are highly correlated. Especially the much
higher standard errors of the effect estimates in the analysis adjusted for time are a
result of this high correlation. Furthermore, the high correlation can also lead to
slightly overestimated effect estimates.

6.4.5 Comparing Transitions

The last method used to estimate treatment effects in a stepped wedge trial was the
transition method (method 4). In this method the changes in pain were compared
between three transition groups: patients moving from the control condition to the
control condition, patients moving from the control condition to the intervention
condition, and patients moving from the intervention condition to the intervention
condition (see Sect. 6.3.4). Output 6.18 shows the result of the analysis with the
group who moved from the control condition to the control condition as the
reference group.

From Output 6.18 it can be seen that the regression coefficient for the transition
groups are both negative, which indicates that there is a decrease in pain for the
transition from control to intervention as well as the transition from intervention to
intervention (compared to the transition from control to control). It can, furthermore,
be seen that the regression coefficient for the intervention to intervention transition is
bigger than the regression coefficient for the control to intervention transition. So,
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Mixed-effects ML regression Number of obs = 1,615
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ o .
hospital | 17 58 95.0 119
patient | 512 1 3.2 5
Wald chi2(2) = 51.20
Log likelihood = -274.6862 Prob > chi?2 = 0.0000
change pain | Coef Std. Err 4 P>|z| [95% Conf. Intervall]
_____________ .
group |
1 | -.0966816 .0202765 -4.77 0.000 -.1364229 -.0569403
2 | -.1099994 .0160826 -6.84 0.000 -.1415208 -.0784781
I
cons | .0372727 .0117521 3.17 0.002 .014239 .0603065
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o
hospital: Identity |
var (_cons) | .0000789 .0003519 1.26e-08 .4933406
_____________________________ o
patient: Identity
var (_cons) | 2.75e-20 5.78e-20 4.46e-22 1.70e-18
_____________________________ o
var (Residual) | .0821979 .0029105 .0766868 .0881049
LR test vs. linear model: chi2(2) = 0.06 Prob > chi2 = 0.9722

Output 6.18 Results of the mixed model analysis comparing the different transition groups
regarding the change in pain

the decrease in pain is more pronounced for the transition from intervention to
intervention than for the transition from control to intervention. This finding leads
more or less to the same conclusion as the finding of stronger effect estimates for
patients who received the intervention for a longer period of time.

Because the different transitions take place at different time points for the
different patients, it makes sense to adjust the transition analysis for time (see
Sect. 6.3.4). Output 6.19 shows the result of this analysis.

From Output 6.19 it can be seen that the adjustment for time did not have a strong
influence on the regression coefficients for the two transition groups. Both remain
negative, with a slightly stronger effect for the intervention to intervention transition
than for the control to intervention transition. Both effect estimates also remain
highly significant.

Overall, based on the results of the different analyses, it can be concluded that
(1) the intervention has a positive effect on pain and (2) the longer the intervention is
applied, the stronger the effect.
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Mixed-effects ML regression Number of obs = 1,615
| No. of Observations per Group
Group Variable | Groups Minimum Average Maximum
________________ o .
hospital | 17 58 95.0 119
id | 512 1 3.2 5
Wald chi2 (6) = 72.20
Log likelihood = -264.92693 Prob > chi?2 = 0.0000
change pain | Coef Std. Err 4 P>|z| [95% Conf. Intervall]
_____________ .
group |
1 | -.0948282 .0211855 -4.48 0.000 -.1363511 -.0533054
2 | -.1212356 .0215042 -5.64 0.000 -.163383 -.0790881
I
time |
2 | -.0318211 .0227036 -1.40 0.161 -.0763194 .0126773
3 .0154293 .0243615 0.63 0.527 -.0323185 .063177
4 | .0568136 .0268563 2.12 0.034 .0041762 .109451
5 | -.0268648 .0286009 -0.94 0.348 -.0829216 .029192
I
cons | .0391941 .0160865 2.44 0.015 .0076651 .0707231

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o
hospital: Identity |

var (_cons) | .0000472 .0003377 3.80e-11 58.58411
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
id: Identity

var (_cons) | 2.28e-20 4.92e-20 3.35e-22 1.55e-18
_____________________________ o

var (Residual) | .0812391 .0028767 .075792 .0870776
LR test vs. linear model: chi2(2) = 0.02 Prob > chi2 = 0.9896

Output 6.19 Results of the mixed model analysis comparing the different transition groups
regarding the change in pain adjusted for time

6.5 Comments

It should be realized that the different methods used in this chapter analyze different
aspects of the intervention effect in a (cluster) stepped wedge trial. With the first
method in which all intervention measurements were compared with all control
measurements, information about the length of the intervention is not taken into
account. The methods comparing the different arms and comparing the different
number of intervention measurements on the other hand try to estimate the effect of
the length of the intervention. Although the purpose of the two methods is compa-
rable, the results were quite different. The results obtained from the analysis com-
paring different arms can be interpreted as the average difference between the arms
with different intervention durations. In fact these differences indicate the between-
subject part of the intervention effect. The results obtained from the method
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comparing groups with a different number of intervention measurements reveal a
more direct effect of the different intervention durations and indicate both the
between and within-subject part of the intervention effect. Although this is an
advantage, this method has also a (small) disadvantage, i.e., the reduction of the
number of subjects with a longer duration of the intervention. This reduces the power
of the analysis and makes the method more vulnerable for random fluctuations. The
method, in which the changes between subsequent measurements were compared
between the different transition groups, captures mostly the within-subject part of the
intervention effect (Twisk, 2013; Twisk et al., 2016).

6.5.1 Adjustment for Time

Hussey and Hughes (2007) claim that effect estimates derived from a stepped wedge
trial are biased when time is not included in the model. This makes sense when there
is either an increase or a decrease over time in the outcome variable independent of
the intervention. This is different from a regular RCT in which an adjustment for
time is not necessary. Because in a regular RCT the intervention and control groups
are measured at the same time points, time is not related to the intervention variable.
Based on the definition of confounding (i.e., a possible confounder must be related to
both the outcome variable and the independent variable), time cannot be a con-
founder in a regular RCT. In a stepped wedge trial design, the situation is different
because the intervention variable is related to time. When time increases, the number
of patients receiving the intervention increases. So when time is also associated with
the outcome variable (i.e., when there is either a decrease or increase over time), time
can be a confounder. The influence of time on the estimation of the effect of the
intervention was nicely illustrated in the first example. The descriptive information
(see Table 6.1) showed an increase over time in the whole population, irrespective of
the fact whether the patient receives the intervention or not. Because at the end of the
study there are more subjects in the intervention group (due to the stepped wedge
trial design), this increase over time is wrongly allocated to the intervention when
time is not taken into account. Adjusting for time led to a huge decrease in the
estimated intervention effect. However, when the randomization arms are compared
with each other, an adjustment for time is not necessary. This is due to the fact that
belonging to a particular arm is not related to time, and therefore time cannot be a
confounder (comparable to a regular RCT). The small differences observed in the
second example dataset between the analysis of the arms with or without an
adjustment for time are due to an increase in missing values over time and the
selectiveness of the missing data. In a full dataset (i.e., without any missing data), the
results of the analysis comparing the different arms with each other would be exactly
the same with or without an adjustment for time. Also in the transition method, an
adjustment for time makes sense, because in this method the independent variable
(i.e., the transition group) is also related to time.
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Although the adjustment for time makes sense in the methods in which the
intervention variable is related to time, one should be careful with the interpretation
of the results. In the method comparing all intervention measurements with all
control measurements, for instance, at the first measurement, all subjects receive
the control condition, while at the last measurement, all subjects receive the inter-
vention. When an adjustment for time is performed in the analysis, basically the first
and last measurement are ignored, and the intervention effect is only estimated over
the in-between measurements, which is not correct. Basically the same holds for the
method in which subjects with different lengths of the intervention are compared
with each other. In this method, especially the estimation of the intervention effect
for the group with the longest length of the intervention is slightly unreliable. This is
because this group is only measured at the last follow-up measurement, while there
is no control condition at the last measurement. In the analysis adjusted for time, this
leads to a sort of “empty cell” problem, which leads to a less reliable result. This was
also reflected in the higher standard errors of the effect estimates when the analyses
were adjusted for time (see Sects. 6.3.3 and 6.4.4).

6.5.2 Adjustment for the Baseline Value

In a regular RCT, an adjustment for baseline differences is performed to adjust for
possible regression to the mean. This is necessary because the two groups to be
compared are taken from the same (source) population, and the differences observed
at baseline are due to chance. When the differences at baseline are not taken into
account, it can lead to either an over- or underestimation of the intervention effect
(see Chaps. 2 and 3). Within a stepped wedge trial, basically the same arguments can
be used. It should, therefore, be considered whether or not the intervention variable
is analyzed as a time-dependent or time-independent variable. In method 2 in which
the arms were compared with each other, the intervention variable (i.e., the different
arms) is analyzed as time-independent. Then, basically the same rules can be applied
as for a regular RCT. In fact, the arms are randomized, and the differences between
the arms at baseline are due to chance. Therefore, in the method comparing different
arms, an adjustment for the baseline value of the outcome variable makes sense. In
the other three methods, the intervention variable is analyzed as a time-dependent
variable. So, in general by using these methods, an adjustment for the baseline value
of the outcome is not really necessary (Twisk et al., 2016).

6.5.3 Recommendation

It is important to realize that the analyses of data from a stepped wedge trial are not
as straightforward as for the analysis of data from a regular RCT. Different methods
reveal different aspects of a possible intervention effect, and therefore the choice of a
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Table 6.3 Considerations for the different methods used to analyze data from a stepped wedge trial

Pros and cons Method 1 Method 2 Method 3 Method 4
Between-subject and/or within- Both Only Both Mostly
subject effects between within

Is it necessary to adjust for time? Yes No Yes Yes
Possibility to analyze influence of | No Yes Yes No

length of intervention

Is it necessary to adjust for the
baseline value?

Asinareg- |Asinareg- |Asinareg- |Asinareg-
ular RCT ular RCT ular RCT ular RCT

Possibility to detect delay in treat- | No Yes Yes Yes (partly)
ment effect

Method 1 = comparing all intervention measurements with all control measurements; method
2 = comparing different arms; method 3 = comparing groups with a different number of interven-
tion measurements; method 4 = comparing transitions

method partly depends on the specific research question. So, unfortunately, it is not
possible to give a straightforward advice which of the methods should be used.
Table 6.3 summarizes the pros and cons of the different methods discussed in this
chapter. In general, the results obtained from the method comparing groups with a
different number of intervention measurements probably provide the best estimation
of the intervention effect, because this method combines the between-subject and
within-subject effect of the intervention. The most stable results are obtained from
the method comparing the different arms, especially because the results are not
influenced by time. The disadvantage, however, is that with this method, only the
between-subject part of the intervention effect is estimated.



Chapter 7 ®)
Analysis of Data from an N-of-1 Trial s

7.1 Introduction

Basically, an n-of-1 trial can be seen as a series of cross-over trials performed in the
same subject. And although n-of-1 trials can be performed in different settings, they
are mostly applied in the medical field. The general idea behind an n-of-1 trial
(which is also known as an individual patient trial or a single case RCT) is to find the
best treatment or intervention for an individual patient. This idea fits perfectly within
the framework of personalized medicine, which is a popular novel approach in the
treatment and care of individual patients. The series of cross-over trials can be done
with the same treatment, but it is more common to perform the n-of-1 trial with
different treatments or different dose of medicine, etc. (see Fig. 7.1).

Probably the best way to analyze data of an n-of-1 trial is to visualize the data
without doing any statistical analysis at all. When the number of repeated measures
within the individual patient is relatively high, it is possible to use time series
analysis. With this method, the development over time in a particular outcome is
analyzed taking into account the correlation of the repeated measures within the
patient. This correlation is known as the autocorrelation. One of the advantages of
using time series analysis is to build forecast models. With these models the
unobserved development over time in an outcome variable for a particular patient
can be predicted from the observed development over time and the magnitude of the
autocorrelation. Furthermore, several covariates can be added to the time series
analysis in order to investigate the influence of these covariates on the development
and on the forecast. The detailed description of the use of time series analysis in n-of-
1 trials and forecast models go beyond the scope of this book. For more information
one is referred to McCleary and Hay (1980), Box and Jenkins (1994), Wei (2013),
and Peixeiro (2019). Although, they have some potential, it should be realized that
time series analysis and forecast models are not much used in the analysis of n-of-1
trials.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 107
J. W. R. Twisk, Analysis of Data from Randomized Controlled Trials,
https://doi.org/10.1007/978-3-030-81865-4_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81865-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-81865-4_7#DOI

108 7 Analysis of Data from an N-of-1 Trial

subject A B A B B A B A

A =treatment 1
B = treatment 2

subject dose 1 dose2 | | dose3 dose 4

subject EEEEE I AEEE e

before treatment during treatment after treatment

Fig. 7.1 Illustration of different n-of-1 trials

It should further be realized that a classical n-of-1 trial design is not much used in
practice. Although many authors claim to perform such a study, in real life, most of
the studies are multiple n-of-1 trials performed in multiple patients. These series of n-
of-1 trials are basically not really n-of-1 trials. In fact these studies are comparable to
aregular RCT with only a few patients. Why these studies are often mentioned n-of-
1 trials is because in many situations the intervention or treatment under study is
developed for the individual patient.

7.2 Example

A nice example of a series of n-of-1 trials is a study performed by de Raaij et al.
(unpublished data). In this study a few patients, who received a highly personalized
physiotherapy treatment were followed for a period of time.

The example dataset includes a series of 7 n-of-1 trials. The seven patients
received a personalized physiotherapy treatment in order to decrease pain intensity.
There were on average 6 measurements (either 5 or 6) for each patient before
treatment, on average 7 measurements (ranging between 5 and 10) during treatment,
and on average 11 measurements (ranging between 8 and 13) after treatment. The
goal of the analysis was to estimate the effect of the personalized physiotherapy
treatment. Table 7.1 shows the descriptive information regarding pain intensity at the
three periods for the seven patients.

From Table 7.1 it can be seen that for most patients the personalized treatment is
highly effective to reduce pain, although for patient 4, there is no decrease in pain
both in the treatment period as well as in the after treatment period. Furthermore, it
can be seen that for some of the patients (patient 1 and 3), the personalized
intervention reduces pain only in the treatment period, while for other patients
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Table 7.1 Mean and standard deviation (between brackets) of pain intensity for the seven patients
at the three periods

Before treatment During treatment After treatment
Pain intensity:
Patient 1 7.5(1.4) 3.4 (1.8) 4.2 (1.5)
Patient 2 6.8 (1.9) 4.1 (2.1) 1.8 (2.2)
Patient 3 3.8(1.3) 1.2 (1.1) 14 (1.4)
Patient 4 7.7 (0.8) 7.7 (0.8) 8.2 (0.6)
Patient 5 8.5 (0.5) 52 @3.0) 1.5 (0.5)
Patient 6 6.2 (0.4) 4.8 (1.5) 1.5(1.2)
Patient 7 2.3 (0.5) 1.3 (0.8) 0.7 (0.6)
Table 7.2 Data structure d Outcome Period Time
needed tc? analyze a series of | v ] ]
N-of-1 trials 1
1 Yn 1 2
1 Ys 1 3
1 Y 2 6
1 Yy 2 7
1 Y 2 8
1 Y 3 11
1 Yo 3 12
1 Y3 3 13

(patient 2, 5, 6, and 7), the decrease in the treatment period is followed by a decrease
in the after treatment period as well. Besides this, it is also clear that the before
treatment pain level is highly different between the patients.

Although just the description of the data provides a lot of information, when a
series of 1-of-n trials is performed, it also possible to analyze the data with a mixed
model analysis in order to estimate the treatment effect including a 95% confidence
interval and corresponding p-value. A mixed model analysis is of course necessary
to take into account the dependency of the observations within the patient. In this
mixed model analysis, in the present example, the period (i.e., before treatment,
during treatment, and after treatment) is used as independent variable, because the
aim of the analysis was to investigate the difference in average pain between the
three periods (Eq. 7.1):

Y, = By + B, x period, + B, X period, (7.1)
where Y, = outcome measured at the different measurements, period; = dummy

variable for period 1, #; = overall intervention effect in period 1; period, = dummy
variable for period 2, and 3, = overall intervention effect in period 2.
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Mixed-effects ML regression Number of obs = 169
Group variable: patient Number of groups = 7
Obs per group:
min = 22
avg = 24.1
max = 27
Wald chi2(2) = 103.58
Log likelihood = -340.82253 Prob > chi2 = 0.0000
pain | Coef Std. Err z P>|z]| [95% Conf. Interval
_____________ e
period |
during | -2.050147 .359916 -5.70 0.000 -2.755569 -1.344725
after | -3.312681 .3257602 -10.17 0.000 -3.951159 -2.674202
|

cons | 6.09317 .7808287 7.80 0.000 4.562774 7.623566
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o

Patient: Identity |
var (_cons) | 3.779058 2.083825 1.282388 11.13648
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
var (Residual) | 2.86033 .3178153 2.300584 3.556267
LR test vs. linear model: chibar2(01) = 117.35 Prob >= chibar2 = 0.0000

Output 7.1 Results of the mixed model analysis to obtain an overall treatment effect in the series
of n-of-1 trials

Table 7.2 shows the structure of the data used to estimate the parameters for the
example dataset.

In the analysis, the before treatment period was used as reference category.
Output 7.1 shows the result of this analysis.

Like all other mixed model analyses, Output 7.1 contains three parts. In the upper
part, it can be seen that seven patients are included in the analysis. In total 169 obser-
vations were made, and it can be seen that on average there were 24.1 observations
per patient. In the second part of the output (i.e., the fixed part of the model), the
regression coefficients for the two dummy variables for the during treatment period
and the after treatment period are given. The regression coefficient for the dummy
variable for the during treatment period (—2.050147) indicates the difference in
average pain between the during treatment period and the before treatment period.
The regression coefficient for the dummy variable for the after treatment period
(—3.312681) indicates the difference in average pain between the after treatment
period and the before treatment period. For both differences also the 95% confidence
intervals are given and the corresponding p-values, which show that both differences
are highly significant. From the last part of the output (the random part of the model),
it can be seen that the variance in pain between the patients is relatively high
compared to the residual variance. In Sect. 4.2 it was already explained that the
two variances can be used to calculate the intraclass correlation coefficient (ICC).
The ICC can be calculated by dividing the between patient variance (3.799) by the
total variance (3.799 + 2.860). In the present example, the ICC equals 57%.
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Mixed-effects ML regression Number of obs = 169
Group variable: patient Number of groups = 7
Obs per group:
min = 22
avg = 24.1
max = 27
Wald chi2 (2) = 103.58
Log likelihood = -340.82253 Prob > chi2 = 0.0000
pain | Coef. Std. Err z P>|z]| [95% Conf. Interval]
_____________ o
period |
before | 2.050147 .359916 5.70 0.000 1.344725 2.755569
after | -1.262534 .3108614 -4.06 0.000 -1.871811 -.6532566
|

cons | 4.043023 . 774153 5.22 0.000 2.525711 5.560335
Random-effects Parameters | Estimate Std. Err. [95% Conf. Intervall]
_____________________________ o

patient: Identity |
var (_cons) | 3.779058 2.083825 1.282388 11.13648
_____________________________ o
var (Residual) | 2.86033 .3178153 2.300584 3.556267
LR test vs. linear model: chibar2(01) = 117.35 Prob >= chibar2 = 0.0000

Output 7.2 Results of the mixed model analysis to obtain an overall treatment effect in the series
of n-of-1 trials with the during treatment period as reference category

To obtain the average pain difference between the after treatment period and the
during treatment period, the two regression coefficients for the two dummy variables
reported in Output 7.1 can be subtracted from each other. In this case this difference
is equal to —3.312681 minus —2.050147 = —1.262534. To obtain the 95% confi-
dence interval around this difference and the corresponding p-value, the same
analysis can be redone, with the during treatment period (or the after treatment
period) as reference category. Output 7.2 shows the result of the analysis with the
during treatment period as reference category.

In Output 7.2 it can be seen that indeed the difference in average pain between the
after treatment period and the during treatment period equals —1.262534. The 95%
confidence interval ranges between —1.871811 and — 0.6532566, and the
corresponding p-value is <0.001.

The results reported in Outputs 7.1 and 7.2 are based on a series of 1-of-n trials
and report the overall effect of the personalized treatment. However, in Table 7.1 it
could be seen that the treatment response is quite different for some of the patients.
So, the next step in the analysis is trying to find characteristics of the patients with a
certain treatment response. One of the possibilities is to add interaction terms with
the particular characteristics to the model. In the example dataset, for instance,
anxiety is measured during the study. Anxiety is measured as a time-dependent
continuous variable (i.e., at all repeated measures anxiety is measured) on a scale
from 1 to 10. Output 7.3 shows the result of the analysis including the interaction
with anxiety.
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Mixed-effects ML regression Number of obs = 169
Group variable: patient Number of groups = 7
Obs per group:
min = 22
avg = 24.1
max = 27
Wald chi2(5) = 186.11
Log likelihood = -318.15545 Prob > chi2 = 0.0000
pain | Coef Std. Err z P>|z]| [95% Conf. Interval]
_____________ o
period
during | =-2.955427 .5047852 -5.85 0.000 -3.944788 -1.966066
after | -3.53871 .4315614 -8.20 0.000 -4.384555 -2.692865
|
anxiety | .2371204 .1009303 2.35 0.019 .0393007 .4349402
|
period#|
c.anxiety
during | .4353413 .1476739 2.95 0.003 .1459058 .7247769
after | .5336566 .1629122 3.28 0.001 .2143547 .8529586
|
_cons | 5.385839 .6096682 8.83 0.000 4.190911 6.580767
Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]
_____________________________ o
patient: Identity |
var (_cons) | 1.600728 .9419898 .5051336 5.072582
_____________________________ o
var (Residual) | 2.241414 .249485 1.802093 2.787832
LR test vs. linear model: chibar2(01) = 45.91 Prob >= chibar2 = 0.0000

Output 7.3 Results of the mixed model analysis to obtain an overall treatment effect in the series
of n-of-1 trials including the interaction with anxiety

The most important result from Output 7.3 can be found in the fixed part of the
model, i.e., the interaction between period and anxiety. It can be seen that both
interaction terms are statistically significant (p = 0.003 and p = 0.001, respectively)
and both regression coefficients are positive (0.4353413 and 0.5336566, respec-
tively). The positive regression coefficients indicate that the higher the anxiety score
of the patient, the less effective the individualized treatment is. The regression
coefficients themselves indicate that for a one unit higher anxiety, the difference in
average pain between the during treatment period and the before treatment period is
0.4353413 less big, while the difference between the after treatment period and the
before treatment period is 0.5336566 less big. Based on these results, it is not
surprising that patient 4 has the highest average anxiety score in the dataset (see
Table 7.3).

Assuming that not many patients are included in a series of n-of-1 trials, it should
be realized that the reliability of results obtained from the analysis of a series of n-of-
1 trials highly depends on the number of repeated measurements within the patient.
When there are only a few repeated measurements for each patient, adding interac-
tion terms to the mixed model analysis, for instance, will be hardly possible due to a
lack of power.
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Table 7.3 Mean and standard deviation (between brackets) of anxiety for the seven patients at the

three periods

Pain intensity

Before treatment

During treatment

After treatment

Patient | 2.8 3.1) 1.0 (0.0) 1.1 (0.3)
Patient 2 1227 3.7(2.8) 1.5(00.8)
Patient 3 0.2 (0.4) 0.0 (0.0) 0.0 (0.0)
Patient 4 43(0.5) 4.0 (0.0) 4.6 (0.8)
Patient 5 5.8 (1.3) 2.2(1.3) 1.2 (0.4)
Patient 6 4.5 (2.1) 3.5(1.8) 0.0 (0.0)
Patient 7 1.5 (0.8) 1.3 (0.5) 0.1 (0.3)

Although the use of n-of-1 trials has gained popularity in the last decade, in the
literature not much information is available regarding the analysis of data from n-of-
1 trials. However, some further reading can, for instance, be found in Lillie et al.
(2011) and Chen and Chen (2014).
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Dichotomous Outcomes Check or

8.1 Introduction

In the foregoing chapters, all examples had a continuous outcome variable. It is, of
course also possible that the outcome variable in an RCT is not continuous. The
theory behind the analysis of RCT data with other outcomes is comparable to what
has been discussed for continuous outcomes. Only a different regression method
must be used. When, for instance, the outcome variable in an RCT is dichotomous,
logistic regression has to be used to estimate treatment effects. When there is only
one follow-up measurement, regular logistic regression analysis can be used, while
in an RCT with more than one follow-up measurement, longitudinal logistic regres-
sion analysis can be used. With dichotomous outcomes, mostly an adjustment for
baseline differences in the outcome between the intervention group and the control
group is not necessary, because at baseline mostly all subjects are either scoring 1 or
0 (depending on the coding of the particular outcome variable). Suppose that the aim
of an RCT is to estimate the effect of a new treatment against hypertension; in the
(source) population all subjects must have hypertension. In other words, they all
have the same value of the outcome at baseline. When this is not the case, i.e., when
there is a difference in the baseline dichotomous outcome between the intervention
and the control group, the situation is slightly more complicated than described for
continuous outcomes. This has to do with a phenomenon which is called
non-collapsibility (see Sect. 8.5).
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8.2 RCT with a Dichotomous Outcome with One Follow-Up
Measurement

To illustrate the analysis of RCT data with a dichotomous outcome variable and only
one follow-up measurement, an example dataset is derived from an RCT aimed to
assess the effectiveness of a classification-based treatment approach compared to
usual physiotherapy care in patients with subacute or chronic low back pain
(Apeldoorn et al., 2012). The outcome variable of interest was functional status,
which was measured with the ten-item Oswestry Disability Index (ODI), with higher
scores indicating lower functional status. The maximum score on the ODI is 50, and
in the present study, a cutoff value of 12 was used to distinguish between good (<12)
and bad (>12) functional status. The outcome variable was assessed 52 weeks after
the start of treatment. Table 8.1 shows descriptive information, and Output 8.1
shows the results of the logistic regression analysis to estimate the intervention
effect. It should be noted that in this example bad functional status is coded 1 and
that all patients in the RCT had a bad functional status at baseline.

The output of the logistic regression analysis contains two parts. The first part
shows some general information including the number of observations (140), the log
likelihood, and the overall p-value for the model. The second part contains the
regression coefficients from which the regression coefficient for the group variable
(—0.5362828) is of course the most interesting. The coefficient indicates the differ-
ence in the outcome at week 52 between the intervention and control groups. The
problem with logistic regression is that the outcome is not easy to interpret. The
outcome is the natural log of the odds to have a bad functional status. Because of this
difficult interpretation, the regression coefficient obtained from a logistic regression
analysis is mostly transformed into an odds ratio. The odds ratio can be calculated by
taking the e-power of the regression coefficient. Output 8.2 shows the result of the

Table 8.1 Descriptive information (number and percentage of subjects) regarding the functional
status trial

Good functional status Bad functional status
Intervention group 46 (68.7%) 21 (31.3%)
Control group 41 (56.2%) 32 (43.8%)
Logistic regression Number of obs = 140
LR chi2 (1) = 2.33
Prob > chi2 = 0.1269
Log likelihood = -91.705466 Pseudo R2 = 0.0125
status | Coef. Std. Err. z P>|z]| [95% Conf. Interval]
_____________ R
group | -.5362828  .3535512 -1.52  0.129 -1.22923 .1566647
_cons | -.2478362 .2358818 -1.05 0.293 -.7101561 .2144838

Output 8.1 Results of a logistic regression analysis in order to obtain an intervention effect in the
functional status trial
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Logistic regression Number of obs = 140

LR chi2 (1) = 2.33

Prob > chi2 = 0.1269

Log likelihood = -91.705466 Pseudo R2 = 0.0125
status | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval

_____________ o

group | .5849185 .2067986 -1.52 0.129 .2925176 1.169603

_cons | .7804878 .1841029 -1.05 0.293 .4915675 1.239222

Output 8.2 Results of a logistic regression analysis in order to obtain an intervention effect in the
functional status trial showing the odds ratio

Source | SSs df MS Number of obs = 140
————————————— o F(1l, 138) = 2.32
Model | .545201098 1 .545201098 Prob > F = 0.1298
Residual | 32.3905132 138 .234713864 R-squared = 0.0166
————————————— ittt Adj R-squared = 0.0094
Total | 32.9357143 139 .236947585 Root MSE = .48447

status | Coef. Std. Err. t P>t [95% Conf. Interval
_____________ o
group | -.1249233 .0819662 -1.52 0.130 -.2869953 .0371486

cons | .4383562 .0567032 7.73 0.000 .3262366 .5504757

Output 8.3 Results of a linear regression analysis in order to obtain the risk difference in the
functional status trial

logistic regression analysis to obtain the effect of the intervention showing the odds
ratio instead of the regression coefficient.

From Output 8.2 it can be seen that the odds ratio equals 0.5849185. This means
that the odds for having a bad functional status in the intervention group is 0.58 times
as high as the odds for having a bad functional status in the control group. The 95%
confidence interval around this odds ratio ranges from 0.2925176 to 1.169603, and
the corresponding p-value equals 0.129.

It is sometimes argued that an odds ratio is not the best effect estimate to report
when an RCT is performed with a dichotomous outcome. This has to do with the fact
that an RCT is a prospective study and that, therefore, better a risk difference or
relative risk can be reported. The risk difference can be easily obtained by
performing a linear regression analysis with the dichotomous outcome. This method
is highly controversial because the assumptions of a linear regression analysis do not
hold for dichotomous outcomes. The outcome is not continuous and is totally not
normally distributed. However, when a linear regression analysis is performed with
the dichotomous outcome, the regression coefficient nicely indicates the risk differ-
ence (see Output 8.3).

The regression coefficient for the group variable (—0.1249233) indicates the
difference in the outcome (the dichotomous variable good functional status versus
bad functional status) between the intervention and control groups, which is basi-
cally the risk difference between the two groups. Linear regression analysis can be
used for dichotomous outcomes, but because of its controversial use, this chapter
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will continue with logistic regression analysis for the dichotomous outcomes and,
therefore, with odds ratios as effect estimates.

8.3 RCT with a Dichotomous Qutcome with More Than
One Follow-Up Measurement

It has already been mentioned (see Chap. 3) that the two most frequently used
regression-based methods to analyze data from an RCT with more than one
follow-up measurement are mixed model analysis and generalized estimating equa-
tions (GEE analysis). In Chap. 3, it was explained that the general idea of both
methods is that an adjustment is made for the dependency of the repeated observa-
tions within the subject. In mixed model analysis, this adjustment is performed by
modeling the difference between the subjects (i.e., the between-subject variance)
(Goldstein, 2003; Laird & Ware, 1982), while in GEE analysis this adjustment is
performed by modeling directly the within-subject correlation (Liang & Zeger,
1986; Zeger & Liang, 1986). Because the correlation within the subject is essentially
the same as the difference between the subjects, the estimated regression coefficients
may be expected to be the same in both methods. It was mentioned that the only
difference between the two methods was the way missing data was handled. Because
mixed model analysis is slightly better than GEE analysis in dealing with missing
data, all analyses of RCT data with a continuous outcome and more than one follow-
up measurement were performed with linear mixed model analyses.

However, there is also another difference between the two methods. GEE analysis
is known as a population average approach, while mixed model analysis is known as
a subject-specific approach (Twisk, 2013; Twisk et al., 2017). This does not influ-
ence the values of the estimated regression coefficients obtained from a linear GEE
analysis and a linear mixed model analysis, but it does influence the values of the
estimated regression coefficients obtained from a logistic GEE analysis and a logistic
mixed model analysis. The difference in regression coefficients is a theoretical one,
which is always in favor of a mixed model analysis, meaning that the regression
coefficients obtained from a logistic mixed model analysis will always be “higher”
(i.e., further away from zero) compared to the regression coefficients obtained from a
logistic GEE analysis. This difference is based on a mathematical relationship and
depends on the magnitude of the between-subject variance (see Eq. 8.1a, Eq. 8.1b)
(Heo & Leon, 2005; ten Have et al., 2004). When there is more between-subject
variance, the difference between the regression coefficients will be larger:

, 1-172
) — [(_‘165\;5) ggl ) (8.1a)
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16v/3
s, = 0.588 (8.1b)

where ¥ = population average regression coefficient obtained from a logistic
GEE analysis, ai = between-subject variance, and ) = subject-specific regression
coefficient obtained from a logistic mixed model analysis.

Both GEE analysis and mixed model analysis are used for the analysis of
longitudinal data with a dichotomous outcome variable, but from the literature it is
not clear which of the two methods should be used and which regression coefficients
should be reported (Heo & Leon, 2005; Hu et al., 1998; Hubbard et al., 2010). As for
continuous outcomes, it is sometimes argued that mixed model analysis should be
preferred above GEE analysis because mixed model analysis is more suitable to deal
with missing data (Albert, 1999; Omar et al., 1999; Twisk, 2013). However, in the
next sections, it will be shown that it is the other way round, i.e., it is better to use a
logistic GEE analysis to obtain effect estimates in an RCT with a dichotomous
outcome variable and more than one follow-up measurement.

8.3.1 Example

The example dataset is derived from a three-arm RCT regarding an Internet-based
treatment for adults with depressive symptoms (Warmerdam et al., 2008). Besides a
waiting list (WL) group, two interventions were evaluated, i.e., an Internet-based
problem-solving therapy (PST) and an Internet-based cognitive behavioral therapy
(CBT). As outcome variable, self-reported depression (measured with the Center for
Epidemiological Studies Depression scale (CES-D)) was measured at 5, 8, and
12 weeks. The CES-D is widely used for identifying subjects with depression, and
a score of 16 or higher is considered to represent clinical depression (Table 8.2).

Because at baseline all subjects suffered from clinical depression, an adjustment
for the baseline value is not necessary. Therefore, a longitudinal logistic regression
analysis can be performed to estimate the treatment effects (see Eq. 8.2):

In(odds(Y, = 1)) = By + X1 + X (8.2)

where Y, = dichotomous outcome measured at the three follow-up measurements,
X; = dummy variable for treatment variable 1, X, = dummy variable for treatment

Table 8.2 The number and percentage (between brackets) of subjects with clinical depression for
the three groups at the three follow-up measurements regarding the Internet RCT

5 weeks 8 weeks 12 weeks
Waiting list 60 (84.5%) 54 (76.1%) 52 (82.5%)
Problem-solving therapy 47 (77.1%) 28 (54.9%) 26 (56.2%)
Cognitive behavioral therapy 30 (57.7%) 30 (58.8%) 23 (54.8%)
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Mixed-effects logistic regression Number of obs = 508
Group variable: id Number of groups = 205
Obs per group:
min = 1
avg = 2.5
max = 3
Integration method: mvaghermite Integration pts. = 7
Wald chi2(2) = 12.34
Log likelihood = -275.23898 Prob > chi2 = 0.0021
clindep | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____________ e
intervention |
PST | -1.415105 .5170469 -2.74 0.006 -2.428498 -.4017113
CBT | -1.753144 .5313925 -3.30 0.001 -2.794655 -.7116343
|
cons | 2.447067 .4226946 5.79 0.000 1.618601 3.275533
_____________ o
id |
var (_cons) | 4.714806 1.524432 2.501763 8.885495
LR test vs. logistic model: chibar2(01) = 53.60 Prob >= chibar2 = 0.0000

Output 8.4 Results of the logistic mixed model analysis to estimate the overall intervention effect
on average over time in the Internet RCT (PST = problem-solving therapy, CBT = cognitive
behavioral therapy)

variable 2, #; = overall treatment effect for X;, and f, = overall treatment effect for
X&.

The first analysis is an analysis to estimate the overall treatment effect on average
over time. Because the results of the logistic mixed model analysis are different from
the logistic GEE analysis, both results will be reported. Output 8.4 shows the results
of the logistic mixed model analysis, while Output 8.5 shows the results of the
logistic GEE analysis.

The output of a logistic mixed model analysis is similar to the output of a linear
mixed model analysis. It also includes three parts. The first part gives some general
information of the model and the data used for the analysis. It can be seen that a
logistic mixed model analysis is performed and that the cluster variable is the subject
(id). This indicates that an adjustment is made for the correlated (repeated) obser-
vations within the subject. Furthermore, it can be seen that 508 observations are
made within 205 subjects and that the average number of observations within a
patient is 2.5. The output also shows the log likelihood and the integration method
(mvaghermite). The latter stands for mean-variance adaptive Gauss-Hermite quad-
rature, which is the relatively complicated mathematical method to calculate the log
likelihood in a logistic mixed model analysis. A detailed explanation about this
method goes beyond the scope of this book; see for mathematical details, for
instance, Liu and Pierce (1994), Lesaffre and Spiessens (2001), or Rabe-Hesketh
and Skrondal (2001). The second part of the output (the fixed part of the model)
shows the regression coefficients. The coefficient for PST indicates the difference in
the outcome on average over time between the group who received problem-solving
therapy and the waiting list group. The coefficient for CBT indicates the difference in
the outcome on average over time between the group who received cognitive
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Mixed-effects logistic regression Number of obs = 508
Group variable: id Number of groups = 205
Obs per group:
min = 1
avg = 2.5
max = 3
Integration method: mvaghermite Integration pts. = 7
Wald chi2 (2) = 12.34
Log likelihood = -275.23898 Prob > chi2 = 0.0021
clindep | exp (b) Std. Err 4 P>|z]| [95% Conf. Interval
,,,,,,,,,,,,, o
intervention |
PST | .2429002 .1255908 -2.74 0.006 .0881692 .6691739
CBT | .1732284 .0920523 -3.30 0.001 .061136 .4908414
|
cons | 11.55441 4.883986 5.79 0.000 5.046025 26.45733
_____________ o~
id |
var (_cons) | 4.714806 1.524432 2.501763 8.885495
LR test vs. logistic model: chibar2(01) = 53.60 Prob >= chibar2 = 0.0000

Output 8.5 Results of the logistic mixed model analysis to estimate the overall intervention effect
on average over time in the Internet RCT reporting odds ratios (PST = problem-solving therapy,
CBT = cognitive behavioral therapy)

behavioral therapy and the waiting list group. As has been mentioned before, the
outcome in a logistic model is the natural log of the odds of being clinically
depressed. Because of the complicated interpretation, the regression coefficients
are transformed into odds ratios, which are normally reported as effect estimates.
Output 8.5 shows the same results as has been shown in Output 8.4 but now
reporting odds ratios.

From the fixed part in Output 8.5, it can be seen that the odds ratio for problem-
solving therapy versus waiting list is 0.2429002, which indicates that the odds of
being clinically depressed on average over time for the subjects in the problem-
solving therapy group is 0.24 times as high as the odds of being clinically depressed
for the subjects in the waiting list group. For cognitive behavioral therapy versus
waiting list, the odds ratio is 0.1732284. The output also gives the 95% confidence
intervals around the odds ratios and the corresponding p-values.

The last part of the outputs (Outputs 8.4 and 8.5) contain the random part of the
model. The random part of a logistic mixed model analysis only contains the random
intercept variance (4.714806) which indicates the difference in the outcome between
the subjects. The output does not give a residual variance. This is different from the
output of linear mixed model analysis and due to the fact that a logistic regression
model does not have a residual variance. Basically the model estimates the proba-
bility of having the outcome (i.e., clinical depression) and that probability is esti-
mated without error. In fact, the error is outside the model when the probability is
compared to the observed value. The observed value is either zero (for no clinical
depression) or one (for yes clinical depression), while the probability is a value
somewhere between zero and one.
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GEE population-averaged model Number of obs = 508

Group variable: id Number of groups = 205
Link: logit Obs per group:

Family: binomial min = 1

Correlation: exchangeable avg = 2.5

max = 3

Wald chi2 (2) = 12.09

Scale parameter: 1 Prob > chi2 = 0.0024

(Std. Err. adjusted for clustering on id)

| Robust

clindep | Coef. Std. Err. 4 P>|z| [95% Conf. Intervall]
_____________ o
intervention
PST | -.8435477 .308191 -2.74 0.006 -1.447591 -.2395044
CBT | -1.062383 .3227646 -3.29 0.001 -1.69499 -.4297759
|
cons | 1.442273 .2329943 6.19 0.000 .9856124 1.898933

Output 8.6 Results of the logistic GEE analysis to estimate the overall intervention effect on
average over time in the Internet RCT (PST = problem-solving therapy, CBT = cognitive behav-
ioral therapy)

The same analysis can also be performed with a logistic GEE analysis. As has
been mentioned before, GEE analysis adjusts for the correlated observations within
the subject by assuming a certain correlation structure (see Sect. 3.4). For logistic
GEE analysis, mostly an exchangeable correlation structure is chosen. Firstly
because this structure is the most efficient due to the fact that only one parameter
has to be estimated and, secondly, because logistic GEE analysis is quite robust
against a wrong choice for the correlation structure (Twisk, 2013). Output 8.6 shows
the result of the logistic GEE analysis.

The output of a logistic GEE analysis is similar to the output of a linear GEE
analysis (see Chap. 3). The only difference is the link function and the family. The
logit link and the binomial family indicate that a logistic regression analysis is
performed. In Chap. 3 (see Output 3.4), it was seen that a linear regression analysis
was indicated by an identity link and a Gaussian family. Furthermore, the scale
parameter which was an indication of the unexplained variance in the output of the
linear GEE analysis is now set to 1. This is because, as has been mentioned before,
there is no residual variance in the logistic model. The regression coefficients shown
in the second part of the output have exactly the same interpretation as the ones
obtained from a logistic mixed model analysis. The regression coefficient for
problem-solving therapy (—0.8435477) indicates the difference in the outcome on
average over time between the group who received problem-solving therapy and the
waiting list group. The coefficient for cognitive behavioral therapy (—1.062383)
indicates the difference in the outcome on average over time between the group who
received cognitive behavioral therapy and the waiting list group. Also here, the
outcome is the natural log of the odds of being clinically depressed, and, again,
because of the complicated interpretation, the regression coefficients are transformed
into odds ratios, which are normally reported as effect estimates. Output 8.7 shows
the same results as has been shown in Output 8.6 but now reporting odds ratios.
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GEE population-averaged model Number of obs = 508

Group variable: id Number of groups = 205
Link: logit Obs per group:

Family: binomial min = 1

Correlation: exchangeable avg = 2.5

max = 3

Wald chi2 (2) = 12.09

Scale parameter: 1 Prob > chi2 = 0.0024

(Std. Err. adjusted for clustering on id)

| Robust

clindep | Odds Ratio Std. Err. z P>|z]| [95% Conf. Interval]
,,,,,,,,,,,,, o

intervention |
PST | .4301817 .1325781 -2.74 0.006 .235136 .7870178
CBT | .3456312 .1115575 -3.29 0.001 .1836011 .6506549

|
cons | 4.230299 .9856354 6.19 0.000 2.679452 6.678765

Output 8.7 Results of the logistic GEE analysis to estimate the overall intervention effect on
average over time in the Internet RCT reporting odds ratios (PST = problem-solving therapy,
CBT = cognitive behavioral therapy)

From Output 8.7 it can be seen that the odds ratio for problem-solving therapy
versus waiting list is 0.4301817, and for cognitive behavioral therapy versus waiting
list the odds ratio is 0.3456312. The interpretation of the odds ratios is (of course)
exactly the same as the interpretation of the odds ratios provided by the logistic
mixed model analysis. Again, the output also gives the 95% confidence interval
around the odds ratios and the corresponding p-values.

As expected, the regression coefficients and therefore also the odds ratios show
stronger effects when they are estimated with the logistic mixed model analysis than
with the logistic GEE analysis.

The next step in the analysis is to estimate the effect of the interventions at the
different follow-up measurements. To obtain those effect estimates, time
(represented with two dummy variables) and the interaction between the intervention
variables and time were added to the model (Eq. 8.3):

In(odds(Y, = 1)) = By + 1 X1 + BrXo + Pstimer + Ptimes + fsX,
X timey + P X1 X times + ;X2 X timey + PgXo
X times (8.3)

where Y, = dichotomous outcome measured at the three follow-up measurements;
X; = dummy variable for treatment variable 1; X, = dummy variable for treatment
variable 2; f#; = treatment effect for X, at the first follow-up measurement; 5, =
treatment effect for X, at the first follow-up measurement; and time, and
time; = dummy variables for the second and third follow-up measurement.

Output 8.8 shows the result of the logistic mixed model analysis with the first
follow-up measurement as reference category.

The odds ratios for the two intervention conditions reported in Output 8.8 are the
odds ratios estimated at the first follow-up measurement. So, the odds ratio for
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Mixed-effects logistic regression Number of obs = 508
Group variable: id Number of groups = 205
Obs per group:
min = 1
avg = 2.5
max = 3
Integration method: mvaghermite Integration pts. = 7
Wald chi2(8) = 23.29
Log likelihood = -266.46199 Prob > chi2 = 0.0030
clindep | exp (b) Std. Err. z P>|z| [95% Conf. Interval]
_____________ o
|
intervention |
PST | .4249087 .321936 -1.13 0.259 .0962442 1.875929
CBT | .0925714 .0718584 -3.07 0.002 .0202178 .4238586
|
time |
2 .3841377 .2229583 -1.65 0.099 .1231513 1.198215
3 .5538669 .3434857 -0.95 0.341 .1642574 1.867609
|
intervention#|
time |
PST#2 | .3602031 .2993099 -1.23 0.219 .0706714 1.83591
PST#3 | .2620149 .2288382 -1.53 0.125 .0473048 1.451266
CBT#2 | 2.552884 2.069003 1.16 0.248 .5213976 12.49952
CBT#3 | 1.621419 1.395443 0.56 0.574 .3001405 8.759226
|
cons | 24.49095 15.53652 5.04 0.000 7.063531 84.91596
_____________ o
id |
var (_cons) | 6.217744 2.077234 3.230443 11.96751
LR test vs. logistic model: chibar2(01) = 61.53 Prob >= chibar2 = 0.0000

Output 8.8 Results of the logistic mixed model analysis including an interaction between inter-
vention and time in the Internet RCT reporting odds ratios (PST = problem-solving therapy,
CBT = cognitive behavioral therapy)

problem-solving therapy compared to waiting list equals 0.4249087, while the odds
ratio for cognitive behavioral therapy compared to waiting list equals 0.0925714. To
obtain the odds ratios for both interventions compared to waiting list at the other two
follow-up measurements, the same analysis has to be done with a different reference
category for time. Output 8.9 and Output 8.10 show the output of these analyses.

The same three analyses can also be performed with a logistic GEE analysis.
Outputs 8.11, 8.12, and 8.13 show the results of these analyses.

To illustrate the differences between the results obtained from the logistic mixed
model analyses and the logistic GEE analyses, Table 8.3 summarizes the results.

From Table 8.3 it is obvious that all odds ratios obtained from the logistic mixed
model analyses provide stronger effects than the ones obtained from the logistic
GEE analysis. The question then arises, which of the two results should be reported?
To answer that question, for all logistic models, the predicted probabilities were
calculated (see Eq. 8.4):
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Mixed-effects logistic regression Number of obs = 508
Group variable: id Number of groups = 205
Obs per group:
min = 1
avg = 2.5
max = 3
Integration method: mvaghermite Integration pts. = 7
Wald chi2(8) = 23.29
Log likelihood = -266.46199 Prob > chi2 = 0.0030
clindep | exp (b) Std. Err. z P>|z| [95% Conf. Intervall]
_____________ o
intervention |
PST | .1530534 .1112796 -2.58 0.010 .03681 .6363863
CBT | .2363242 .1710586 -1.99 0.046 .0571983 .9764131
|
time |
1 2.603233 1.510949 1.65 0.099 .8345745 8.120092
3 1.441845 .8261522 0.64 0.523 .4690235 4.432435
|
intervention# |
time |
PST#1 | 2.776211 2.306886 1.23 0.219 .544689 14.15
PST#3 | .7274089 .5886132 -0.39 0.694 .1489338 3.552743
CBT#1 | .3917138 .3174671 -1.16 0.248 .0800031 1.917922
CBT#3 | .635132 .5257142 -0.55 0.583 .1254018 3.216801
|
cons | 9.407897 5.104916 4.13 0.000 3.247979 27.25033
,,,,,,,,,,,,, o
id |
var (_cons) | 6.217744 2.077234 3.230443 11.96751
LR test vs. logistic model: chibar2(01) = 61.53 Prob >= chibar2 = 0.0000

Output 8.9 Results of the logistic mixed model analysis including the interaction between
intervention and time with the second follow-up measurement as reference time point in the Internet
RCT reporting odds ratios (PST = problem-solving therapy, CBT = cognitive behavioral therapy)

P(y = 1) = 1/1 + e—/fg+/f,X1+<.. (84)

where P(y = 1) = predicted probability and fy + #1X; + ... = logistic regression
model.

The predicted probabilities obtained from the different analyses can then be
compared to the observed percentages shown in Table 8.2. Table 8.4 shows the
predicted probabilities of having clinical depression at the different follow-up
measurements.

Figure 8.1 shows the predicted probabilities from the two analyses and the
observed percentages for the three groups at the three follow-up measurements.

Figure 8.1 shows clearly that the predicted probabilities based on the regression
coefficients of the logistic GEE analyses are much closer to the observed percentages
than the predicted probabilities based on the regression coefficients of the logistic
mixed model analyses. This indicates that the effect estimates obtained from the
logistic mixed model analyses are overestimations of the “real” effects. The differ-
ence between the observed percentages and the predicted probabilities by the logistic
GEE analyses are caused by the missing observations in the dataset. When the same
comparison would have been made in a dataset without missing data, the observed
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Mixed-effects logistic regression Number of obs = 508
Group variable: id Number of groups = 205
Obs per group:
min = 1
avg = 2.5
max = 3
Integration method: mvaghermite Integration pts. = 7
Wald chi2(8) = 23.29
Log likelihood = -266.46199 Prob > chi2 = 0.0030
clindep | exp (b) Std. Err z P>z [95% Conf. Interval]
,,,,,,,,,,,,, o .
intervention |
PST | .1113324 .0866056 -2.82 0.005 .0242366 .5114131
CBT | .1500971 .1171346 -2.43 0.015 .0325163 .6928564
|
time |
1 1.805488 1.11969 0.95 0.341 .5354439 6.088006
2 | .693556 .3973957 -0.64 0.523 .2256096 2.132089
|
interventioni |
time |
PST#1 | 3.816576 3.333315 1.53 0.125 .6890536 21.13951
PST#2 | 1.374743 1.11243 0.39 0.694 .2814726 6.714391
CBT#1 | .6167439 .530789 -0.56 0.574 .1141653 3.331773
CBT#2 | 1.574476 1.303232 0.55 0.583 .3108678 7.974368
|
cons | 13.56473 7.951404 4.45 0.000 4.299834 42.79277
_____________ o .
id |
var (_cons) | 6.217744 2.077234 3.230443 11.96751
LR test vs. logistic model: chibar2(01) = 61.53 Prob >= chibar2 = 0.0000

Output 8.10 Results of the logistic mixed model analysis including the interaction between
intervention and time with the third follow-up measurement as reference time point in the Internet
RCT reporting odds ratios (PST = problem-solving therapy, CBT = cognitive behavioral therapy)

percentages would have been exactly the same as the predicted probabilities
obtained from the logistic GEE analyses (Twisk et al., 2017). Therefore, it is strongly
advised to use logistic GEE analysis instead of logistic mixed model analysis to
obtain effect estimates in RCTs with dichotomous outcome variables and with more
than one follow-up measurement.

8.4 Comments

There are several papers in which a logistic GEE analysis (a population average
approach) is compared to a logistic mixed model analysis (a subject-specific
approach). Most of these comparisons were made on cross-sectional data with
clustering of data on, for instance, neighborhood level, school level, etc. Although
the directions of the differences were comparable to the ones observed in the Internet
RCT example, the magnitude of the differences were, in general, much lower
(Bellamy et al., 2009; Kim et al., 2006). This is due to the fact that the between-
cluster differences in these cross-sectional studies were much lower than the
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GEE population-averaged model Number of obs = 508

Group variable: id Number of groups = 205
Link: logit Obs per group:

Family: binomial min = 1

Correlation: exchangeable avg = 2.5

max = 3

Wald chi2(8) = 25.06

Scale parameter: 1 Prob > chi2 = 0.0015

(Std. Err. adjusted for clustering on id)

I Robust
clindep | Odds Ratio Std. Err. Z P>|z| [95% Conf. Interval]
_____________ o
intervention |
PST | .6176652 .2849051 -1.04 0.296 .2501075 1.525385
CBT | .2592947 .1137991 -3.08 0.002 .1097031 .6128701
|
time |
2 .5728581 .1719119 -1.86 0.063 .3181308 1.031546
3 .7114194 .2910829 -0.83 0.405 .3190435 1.586359
|
intervention#|
time |
PST#2 | .5785234 .279993 -1.13 0.258 .2240565 1.493772
PST#3 | .4856061 .2656687 -1.32 0.187 .1661892 1.418944
CBT#2 | 1.735226 .7216842 1.33 0.185 .7679612 3.920781
CBT#3 | 1.314181 .7077188 0.51 0.612 .4573643 3.776141
|
cons | 5.772432 1.947254 5.20 0.000 2.980006 11.18151

Output 8.11 Results of the logistic GEE analysis including the interaction between intervention
and time in the Internet RCT reporting odds ratios (PST = problem-solving therapy, CBT = cogni-
tive behavioral therapy)

between-cluster (subject) differences within a longitudinal study. It was already
mentioned that the magnitude of the differences between the results of the two
methods depend on the magnitude of the between-cluster/between-subject variance
(see Eq. 8.1). Surprisingly, in none of the papers comparing logistic GEE analysis
with logistic mixed model analysis, a recommendation is provided which of the two
methods should be used. It is sometimes argued that preferring one method above the
other depends on the research question to be answered (Hu et al, 1998;
Subramanian, 2004). In general, if one is interested in the regression coefficient,
i.e., the effect estimate, a population average approach should be used, and when one
is interested in estimating the heterogeneity between subjects in a longitudinal study
or between clusters in a cross-sectional study, a subject-specific approach should be
used. In RCTs, one is not interested in the heterogeneity between subjects, but one is
interested in the effect estimates, taking into account the dependency of the obser-
vations within the subjects. For this purpose, logistic GEE analysis provides a valid
estimate of the coefficient, while logistic mixed model analysis does not.



128 8 Dichotomous Outcomes
GEE population-averaged model Number of obs = 508
Group variable: id Number of groups = 205
Link: logit Obs per group:

Family: binomial min = 1
Correlation: exchangeable avg = 2.5
max = 3
Wald chi2(8) = 25.06
Scale parameter: 1 Prob > chi2 = 0.0015
(Std. Err. adjusted for clustering on id)
| Robust
clindep | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
_____________ o
intervention |
PST | .3573338 .1417012 -2.60 0.009 .1642589 . 7773545
CBT | .4499347 .1780122 -2.02 0.044 .2071954 .9770548
|
time |
1 | 1.745633 .5238557 1.86 0.063 .9694191 3.143361
3 1.241877 .4098609 0.66 0.512 .6503597 2.371393
|
intervention#|
time |
PST#1 | 1.728538 .8365756 1.13 0.258 .6694462 4.463159
PST#3 | .8393888 .3635414 -0.40 0.686 .3591746 1.961646
CBT#1 | .576294 .239682 -1.33 0.185 .2550512 1.302149
CBT#3 | .7573547 .3415324 -0.62 0.538 .3129293 1.832957
|
cons | 3.306785 .9255162 4.27 0.000 1.910593 5.723262

Output 8.12 Results of the logistic GEE analysis including the interaction between intervention
and time with the second follow-up measurement as reference time point in the Internet RCT
reporting odds ratios (PST = problem-solving therapy, CBT = cognitive behavioral therapy)

8.4.1 Missing Data

One of the arguments against the use of a logistic GEE analysis is that the results of a
logistic GEE analysis are biased when there is missing data, especially when the
missing data is not completely at random (Little, 1995; Twisk, 2013). In most
longitudinal RCTs, there is missing data, and in most longitudinal RCTs, the missing
data is not completely at random. So, it is a common belief that a logistic GEE
analysis should not be used in those situations. Although this argument is theoret-
ically true, it should be realized that the percentage of missing data must be very high
to have a detrimental influence on the validity of the results of a (logistic) GEE
analysis (Twisk, 2013). In the analyses performed on the example dataset, it is not
clear what the impact of the missing data is on the estimation of the intervention
effect(s). However, looking at the predicted probabilities from both the logistic GEE
analyses and the logistic mixed model analyses, the influence of missing data is
probably not very big. In all analyses the comparison between the predicted prob-
abilities and the observed percentages was in favor of the logistic GEE analyses.
This is despite the fact that the missing data in the example dataset was not
completely at random and that the percentage of missing data was around 17%
which is relatively high for an RCT.
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GEE population-averaged model

id
it
al
le

Number of obs

Number of groups

Obs per group:

Wald chi2(8)
Prob > chi2

129
= 508
= 205
min = 1
avg = 2.5
max = 3
= 25.06
= 0.0015

. adjusted for clustering on id)

Group variable:
Link: log
Family: binomi
Correlation: exchangeab
Scale parameter:
(st
| Robust
clindep | Odds Ratio Std. Err.
_____________ +
intervention |
PST | .299942 .1270838
CBT | .3407602 .1483046
|
time |
1 1.405641 .575129
2 | .8052327 .2657537
|
intervention#|
time |
PST#1 | 2.059282 1.126606
PST#2 | 1.191343 .5159737
CBT#1 | .7609301 .4097796
CBT#2 | 1.320385 .5954336
|
cons | 4.10662 1.27683

P>|z]| [95% Conf. Interval]
0.004 .1307338 .6881557
0.013 .1452083 .7996614
0.405 .6303742 3.134369
0.512 .421693 1.537611
0.187 .7047493 6.017236
0.686 .5097759 2.784161
0.612 .2648206 2.186441
0.538 .5455664 3.19561
0.000 2.232693 7.553358

Output 8.13 Results of the logistic GEE analysis including the interaction between intervention
and time with the third follow-up measurement as reference time point in the Internet RCT reporting
odds ratios (PST = problem-solving therapy, CBT = cognitive behavioral therapy)

Table 8.3 Summary of the odds ratios and 95% confidence intervals (between brackets) obtained
from the logistic mixed model analyses and the logistic GEE analyses to obtain treatment effects in

the Internet RCT

| Logistic mixed model analysis |

Logistic GEE analysis

Overall on average over time

PST

0.24 (0.09 to 0.67)

0.43 (0.24 t0 0.79)

CBT 0.17 (0.06 to 0.49) 0.35 (0.18 to 0.65)
First follow-up

PST 0.42 (0.10 to 1.88) 0.62 (0.25 to 1.53)
CBT 0.09 (0.02 to 0.42) 0.26 (0.11 t0 0.61)
Second follow-up

PST 0.15 (0.04 to 0.64) 0.36 (0.16 to 0.78)
CBT 0.24 (0.06 to 0.98) 0.45 (0.25 to 0.98)
Third follow-up

PST 0.11 (0.02 to 0.51) 0.30 (0.13 to 0.69)
CBT 0.15 (0.03 to 0.69) 0.34 (0.15 to 0.80)

PST = problem-solving therapy, CBT = cognitive behavioral therapy
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Table 8.4 Predicted proba- Waiting list PST CBT
bilities of having clinical
depression from the logistic

First follow-up

mixed model analysis and the Logistic mixed model 96% 91% 69%
logistic GEE analysis regard- Logistic GEE analysis 85% T8% 60%
ing the Internet RCT Second fol]ow-up
Logistic mixed model 90% 59% 69%
Logistic GEE analysis 77% 54% 60%
Third follow-up
Logistic mixed model 93% 60% 67%
Logistic GEE analysis 80% 55% 58%
PST = problem-solving therapy, CBT = cognitive behavioral
therapy

8.4.2 Hpypothesis Testing Versus Effect Estimation

It is sometimes argued that logistic GEE analysis and logistic mixed model analysis
can be used interchangeably, because both the regression coefficients and the
standard errors are ‘“higher” (i.e., further away from zero) in a more or less
systematical manner when they are derived from a logistic mixed model analysis
compared to a logistic GEE analysis. Consequently, the p-values and the answer to
the question whether there is a significant difference between the intervention(s) and
the control group are similar between the two statistical methods. When one is only
interested in hypothesis testing, this is a valid argument, but nowadays, the major
interest of analyzing data from an RCT is the magnitude of the effect estimate rather
than hypothesis testing. And because the effect estimates are highly different
between the two methods, it is important to make the right choice.

8.4.3 Cluster RCT with a Dichotomous Outcome

In Chap. 4, the analysis of data from a cluster RCT was discussed. It was mentioned
that mixed model analysis can be used to take into account the correlated observa-
tions within the cluster. When a cluster RCT has a dichotomous outcome, the same
problems with the use of mixed model analysis occur as has been mentioned earlier
in this chapter. However, when there is only one follow-up measurement, the
differences between the results obtained from a logistic GEE analysis and a logistic
mixed model analysis will be less pronounced. This is because the between-cluster
variance is much lower than the between-subject variance obtained in an RCT with
more than one follow-up measurement. Therefore, the difference between the
regression coefficients will be relatively small (see Eq. 8.1). When a cluster RCT
is performed with more than one follow-up measurement, besides the correlated
observations of the repeated measurements within the subject, there are also corre-
lated observations within the cluster, i.e., the data has a three-level structure. When



131

8.4 Comments

uorssaxdop [eorurd s sjuanjed jo sedejusored paaIssqo pue
1DY 1oy oy Surpredar sisA[eue g0 onsIS0[ Ay} pue SisA[eue [9pow paxIul ousi3o] ) woiy uoissaidop [esturd Suiaey Jo sanijiqeqoid pajorpald '8 “S1q

339 pajoipaid = [epow pexiw pajolpeid O paAIesqo m 339 pejoipaid = jepow pexiw pejoipeid O paAIesqo m
dn-mojjo4 payy dn-moj|o} puooss dn-moj|o} 1S4} ov dn-mojjo paiyy dn-moj|o} puooas dn-moj|o4 is11} o
1111 iN NN !
09 09
0L 0L
08 08
06 L 06
ook 00k
Adesayy jesoineyaq anpiubo)d Adeiayy Buinjos wajqoud

339 pejoipaid = [9pow paxiw pajoipaid o paAIesqom
dn-mojjo} paiy} dn-moj|o} puooas dn-moj|o} 111}

oy
0s
09

0L

08

00l
1s1| Buem



132 8 Dichotomous Outcomes

the number of clusters is relatively large, i.e., when an adjustment for the cluster
variable by adding dummy variables to the model is not possible, a logistic GEE
analysis cannot be used anymore because within a (logistic) GEE analysis, it is not
possible to take into account clustering on more than one level. In Chap. 4 it was
shown that mixed model analysis is capable of dealing with clustering on more than
one level, so when also the correlation on the cluster level must be taken into
account, a (logistic) mixed model analysis should be used with the same “problems”
as has been shown earlier in this chapter. The simplest solution to this “problem” is
to ignore the correlation on the cluster level and to use a logistic GEE analysis only
taking into account the correlated observations of the repeated measurements within
the subject. The effect of ignoring this approach depends, of course, on the magni-
tude of the between-cluster variance. When the between-cluster variance is relatively
small, ignoring this variance will not have a big influence on the estimation of the
regression coefficients and corresponding standard errors. An alternative solution is
to use a logistic mixed model analysis taking into account the correlation both on the
subject level and on the cluster level and to transform the obtained subject-specific
regression coefficients into population average regression coefficients by using
Eqg. 8.1. However, this solution is not much used in practice.

8.5 The Problem of Non-Collapsibility

It has already been mentioned that in an RCT with a dichotomous outcome, an
adjustment for the baseline value is mostly not necessary because in most RCTs with
a dichotomous outcome, all subjects have the same value at baseline (see Sect. 8.1).
When this is not the case, i.e., when there is a difference in the baseline dichotomous
outcome between the intervention and the control group, the situation is slightly
more complicated than described for continuous outcomes. This has to do with the
problem of non-collapsibility. Non-collapsibility deals with the fact that in (longi-
tudinal) logistic regression analysis, the regression coefficients change when a
variable is added to the model which is highly related to the outcome. This change
in regression coefficient is irrespective of the difference in this variable between the
two groups. So when the baseline values of the two groups are exactly the same and
the baseline value is (highly) related to the outcome, the result of the unadjusted
(longitudinal) logistic regression analysis will differ from the result of the adjusted
(longitudinal) logistic regression analysis. This is different from a (longitudinal)
linear regression analysis. When the groups at baseline are exactly the same, adding
the baseline variable to the linear model will not influence the regression coefficient,
even when the particular variable is highly related to the outcome. That was also the
reason why an adjustment for time did not make sense in an RCT with more than one
follow-up measurement (see Sect. 3.7). It was mentioned that time was not related to
the intervention variable (i.e., the intervention and control groups are measured at the
same time points), and, therefore, time could not influence the magnitude of the
regression coefficients. Theoretically, this non-collapsibility phenomenon arises
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from differences in the total variances between a logistic regression analysis with
and a logistic regression analysis without the adjustment for the particular variable.
In a linear model, the total variance is the summation of explained and unexplained
variance. When a covariate is added to a linear regression model, the unexplained
variance decreases, while the explained variance increases with the same amount.
However, in a logistic model, the unexplained variance is a fixed number. So when a
covariate that is related to the outcome is added to a logistic model which only
contains the intervention variable, the total variance will increase. Because of this
increased variance, it is often said that, adding a variable to the logistic model that is
related to the outcome changes the scale on which the regression coefficients must be
interpreted (Greenland & Robins, 2009; Hernan et al., 2011; Newman, 2004).

8.5.1 A Numerical Example

The non-collapsibility phenomenon, which is not known by most researchers, is
illustrated with the numerical example shown in Table 8.5.

The numerical example includes 240 subjects equally divided into an intervention
group and a control group. In this illustration, it can be seen that there is no
difference in baseline values between the intervention and control groups. For
both groups half of the subjects have 0, and half of the subjects have 1 at baseline.
Because in the intervention group, 100 subjects have 1, and 20 subjects have O at the
follow-up measurement, while in the control group, half of the subjects have 1 and
half of the subjects have O at the follow-up measurement, the crude intervention
effect (i.e., without adjusting for the baseline value) gives an odds ratio of 5. It can
further be seen that the baseline value is highly related to the outcome variable. For
the subjects with a baseline value of 1, 100 subjects have 1, and 20 subjects have 0 at
the follow-up measurement. For the subjects with a baseline value of 0, half of the
subjects have 0 and half of the subjects have 1 at the follow-up measurement. The
corresponding odds ratio, therefore, also equals 5. Because the baseline value is
exactly the same for both the intervention and control groups, an adjustment for the
baseline value should not change the estimation of the treatment effect. However,

Table 8.5 Dataset used to illustrate the problem of non-collapsibility

Intervention Outcome at baseline Outcome at follow-up Number of subjects
0 0 0 45
0 0 1 15
0 1 0 15
0 1 1 45
1 0 0 15
1 0 1 45
1 1 0 5
1 1 1 55
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Logistic regression Number of obs = 240
LR chi2(2) = 67.07

Prob > chi2 = 0.0000

Log likelihood = -119.22613 Pseudo R2 = 0.2195
outcome | Odds Ratio Std. Err. z P>|z]| [95% Conf. Interval]
_____________ o
intervention | 6.694644 2.296889 5.54 0.000 3.417321 13.11503
baseline | 6.694644 2.296889 5.54 0.000 3.417321 13.11503
_cons | .3864882 .102894 -3.57 0.000 .2293626 .6512534

Output 8.14 Result of the logistic regression analysis based on the data of the numerical example
adjusted for baseline

when a logistic regression analysis is performed adjusting for the baseline value, the
adjusted odds ratio is around 6.7, which is much higher than the expected odds ratio
of 5 (see Output 8.14).

In the situation described in the numerical example, there is no difference in the
outcome variable at baseline between the intervention group and the control group. If
this situation is observed in a real-life RCT, an adjustment for the baseline value is
not necessary and will, therefore, not be applied and the effect estimates will be
valid. However, when there is a difference in the baseline value of the outcome
between the two groups, an adjustment for the baseline differences will be applied to
take into account regression to the mean. The adjusted effect estimate can then be
biased by this non-collapsibility phenomenon. In this situation, the change in
regression coefficient which occurs when the baseline value is added to the model
is partly caused by regression to the mean and partly by non-collapsibility. So, in that
case the results of the logistic regression analysis adjusted for the baseline should be
interpreted with great caution.

However, although the non-collapsibility phenomenon can lead to biased effect
estimates, it should be realized that in most RCTs with a dichotomous outcome all
subjects will have the same value at baseline. So, in most RCTs with a dichotomous
outcome, an adjustment for the baseline value will not be necessary.

8.6 Other Outcomes

It is of course also possible that the outcome variable of an RCT is not continuous or
dichotomous. In the beginning of this chapter it was already mentioned that the
theory behind the analysis of RCT data with other outcomes is comparable to what
has been discussed for continuous outcomes. Only a different regression method
must be used. When, for instance, the outcome variable in an RCT is a count (e.g.,
the number of complaints, the number of injuries, etc.), Poisson regression analysis
can be used to estimate treatment effects, and when there is more than one follow-up
measurement, Poisson mixed model analysis can be used. When the outcome
variable in an RCT has a floor or ceiling effect, Tobit regression analysis can be
used to estimate treatment effects, and when there is more than one follow-up
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measurement, Tobit mixed model analysis can be used. When the outcome variable
in an RCT is a survival outcome (i.e., a dichotomous event and the time to that
event), Cox regression can be used to estimate treatment effects, etc. Although it
should be noted that when the outcome variable is a survival outcome, there is only
one outcome for each subject. Because of that, in the analysis an adjustment for the
correlated observations within the subject is not necessary. It is beyond the scope of
this book to discuss all the analyses of RCT data with different outcomes in great
detail, but it is important to realize that all the principles discussed in this book also
hold for the analysis of RCT data with other outcomes.



Chapter 9 )
What to Do When Only a Baseline e
Measurement Is Available

9.1 Introduction

In Chaps. 2 and 3, it has been discussed that in the analyses of RCT data, it is
recommended to use an analysis of covariance in which the follow-up measurement
(s) are used as the outcome, whereas the baseline value is used as a covariate.
Therefore, a problem arises when a baseline measurement is available for a particular
subject, while all follow-up measurements are missing. The intention-to-treat prin-
ciple states that these subjects should be analyzed according to their assigned
condition (see Sect. 1.2). Yet, in an analysis adjusted for the baseline value, the
data of these subjects cannot be included in the analysis. There is a lot of discussion
going on about how to deal with these subjects. Some researchers argue that data of
these subjects should not be taken into account in the analysis, as no data is available
on the follow-up measurements after treatment initiation. Others argue that not
including data of these subjects in the analysis drives against the principle of
intention-to-treat and leads to bias in the effect estimates. In other words, how to
deal with subjects with only a baseline value in the analysis of RCT data remains
unclear (Gravel et al., 2007; Hollis & Campbell, 1999; Mukaka et al., 2016; White
et al., 2012; Wright & Sim, 2003).

Several suggestions are provided in the literature on analyzing RCT data to deal
with the above mentioned problem. The most classical solution is to impute the
follow-up measurement(s) with the baseline value carried forward (European Med-
icines Agency, 2010). Although highly criticized, this method is still widely used.
Multiple imputations using more complicated imputation methods (such as predic-
tive mean matching) are suggested as a better alternative (Morris et al., 2014; van
Buuren, 2007). The advantage of predictive mean matching, when compared to
other multiple imputation methods, is that it imputes values that are observed in the
dataset and are therefore much alike real values. And although it is not an issue in
this chapter, this makes the method suitable for normally distributed outcome vari-
ables as well as non-normally distributed outcome variables. The general idea
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behind predictive mean matching is that first predictive values are generated for all
subjects (including the subjects with no missing data). Secondly, based on the
predictive values, a group of subjects without missing data (in the examples of this
chapter a group of five subjects is used) is selected that are close to the predictive
values of a subject with missing data. From this group of subjects, one subject is
randomly selected, and the observed value of this particular subject is used for the
imputation. This procedure is then repeated several times to create multiple imputed
datasets.

In Chap. 3 it was discussed that when there is more than one follow-up measure-
ment available, a mixed model analysis can be performed to estimate treatment
effects. In such as mixed model analysis, data of subjects with a baseline measure-
ment but missing follow-up measurements are mostly ignored (i.e., are not part of
the analysis). This is based on the idea that the use of a mixed model analysis
(adjusting for the baseline value) is enough to deal with the missing data. However,
although it is true that a mixed model analysis is suitable for the analysis of
longitudinal data with outcome missingness, the subjects with only a baseline
value are not included in the analysis, because no follow-up outcome measurements
are available. To deal with this phenomenon, the alternative repeated measures
analysis can be used (see Sect. 3.4.2). In this alternative repeated measures analysis
the baseline value is part of the longitudinal outcome, and the model is estimated
without the inclusion of the intervention variable but with time and the interaction
between intervention and time. Due to the fact that the intervention variable is not
part of the model, the intercept of such an analysis reflects the combined baseline
value for both the intervention and control groups. In this alternative repeated
measures analysis, the regression coefficient for the interaction between intervention
and time indicates the treatment effect (see Sect. 3.4.2).

Because there remains heterogeneity in applied methods to deal with the problem
of missing data on all follow-up measurements while the baseline value is available,
the purpose of this chapter is to illustrate the different methods used to deal this
problem.

9.2 Examples
9.2.1 RCT with One Follow-Up Measurement

The example is taken from an intervention study in which the effectiveness of a long-
term homocysteine-lowering treatment with folic acid plus pyridoxine in reducing
systolic blood pressure was evaluated (van Dijk et al., 2001). In this example a
baseline measurement and one follow-up measurement were performed. Table 9.1
shows the descriptive information regarding the baseline values for the patients with
and without follow-up measurements.

From Table 9.1 it can be seen that around 6% of the patients only had a baseline
measurement and that the patients with only a baseline measurement have a much
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Table 9.1 Mean and standard deviation (between brackets) of the baseline systolic blood pressure

Baseline systolic blood pressure (mmHg)

Subjects with follow-up (N = 130) 128.4 (15.4)

Subjects with only baseline (N = 9) 132.2 (15.1)
Mixed-effects ML regression Number of obs = 130
Wald chi2(2) = 133.09
Log likelihood = -490.07319 Prob > chi2 = 0.0000
systolic | Coef sStd. Err z P>|z]| [95% Conf. Interval
,,,,,,,,,,,,, o .
sys_base | .654648 .0606359 10.80 0.000 .5358039 . 7734922
treatment | -4.379276 1.864113 -2.35 0.019 -8.032871 -.7256818
_cons | 44.49622 8.028237 5.54 0.000 28.76117 60.23128
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval
_____________________________ o
var (Residual) | 110.1354 13.66061 86.36711 140.4447

Output 9.1 Results of the analysis of covariance on the complete cases to estimate the treatment
effect

higher baseline systolic blood pressure compared to the patients for whom a follow-
up measurement is available. As has been mentioned before, there are several
methods available to estimate the effect of the treatment in this particular situation.
The mostly used method is to perform an analysis of covariance on the complete
cases, i.e., the 130 patients with both a baseline measurement and a follow-up
measurement. Output 9.1 shows the result of this analysis of covariance.

From Output 9.1 it can be seen that the analysis is performed on 130 patients. The
effect estimate (i.e., the regression coefficient) for the treatment variable
(—4.379276) indicates the difference in systolic blood pressure between the treat-
ment group and the control group at the follow-up measurement, adjusted for the
baseline value of systolic blood pressure. Note that the analysis is performed within a
mixed model framework. This is of course not necessary, because there is only one
systolic blood pressure for each patient used as outcome. However, the results are the
same as the results from a regular linear regression analysis.

The reason for using the mixed model framework is that the second possibility to
estimate the treatment effect uses both the baseline and the follow-up measurement
as outcome. As has been mentioned before, this method is known as the alternative
repeated measures analysis (see Sects. 3.4.2 and 9.1). The advantage of this method
is that all patients are included in the analysis. Due to the fact that both the baseline
and the follow-up measurement for each patient are used as outcome, the analysis
has to be performed with a mixed model analysis to take into account the correlated
observations within the patient. Output 9.2 shows the result of this analysis.

From the first part of Output 9.2, it can be seen that all 139 patients are used in the
analysis. In the second part of the output, the fixed part of the model, it can be seen
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Mixed-effects ML regression Number of obs = 269
Group variable: patient Number of groups = 139
Obs per group:

min = 1

avg = 1.9

max = 2

Wald chi2(2) = 8.90

Log likelihood = -1067.0493 Prob > chi2 = 0.0117

systolic | Coef. std. Err. z P>|z| [95% Conf. Interval

,,,,,,,,,,,,, o

time | -.0070504 1.377082 -0.01 0.996 -2.706081 2.69198

int_time_t~r | -4.206756 1.896396 -2.22 0.027 -7.923624 -.4898875

_cons | 128.6475 1.267921 101.46 0.000 126.1624 131.1326

Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
id: Identity |

var (_cons) | 154.4051 23.40379 114.7207 207.8172

_____________________________ o

var (Residual) | 69.05465 8.584891 54.12169 88.10783

LR test vs. linear model: chibar2(01) = 82.94 Prob >= chibar2 = 0.0000

Output 9.2 Result of the alternative repeated measures analysis to estimate the treatment effect

that the adjustment for the baseline value is performed by adding time and the
interaction between treatment and time to the model. The estimated intercept
(128.6475) indicates the overall baseline value averaged over the treatment and
control group. Because the same baseline value is estimated for the two groups, the
effect estimate is adjusted for the observed differences at baseline between the two
groups. The effect estimate is given by the regression coefficient for the interaction
between treatment and time (—4.206756). The interpretation is, of course, the same
as the interpretation of the effect estimate derived from the analysis of covariance
(see Output 9.1). Output 9.2 also contains a random part with a random intercept
variance. As has been mentioned before, adding a random intercept on patient level
to the model is necessary to adjust for the dependent observations within the patient.

Besides the analysis of covariance on the complete cases or the alternative
repeated measures analysis, it is also possible to impute the missing follow-up
data. The classical way to impute the missing follow-up data is a single imputation
based on the last value carried forward. With this method, the baseline value is
carried forward to the follow-up measurement. The general idea of this method is
that there is no change over time. After the last values carried forward imputation, an
analysis of covariance is performed to estimate the treatment effect. Output 9.3
shows the result of this analysis.

The difference between the analysis of covariance performed on the complete
cases and the analysis of covariance performed on the last value carried forward
imputed dataset is the fact that the latter is performed on 139 patients instead of
130 patients. The estimated treatment effect is again given by the regression
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Mixed-effects ML regression Number of obs = 139
Wald chi2 (2) = 155.27

Log likelihood = -521.09886 Prob > chi2 = 0.0000
systolic | Coef. Std. Err. z P>|z]| [95% Conf. Interval]
,,,,,,,,,,,,, o
systolic_b~e | .6809099 .0574194 11.86 0.000 .5683699 .7934499
therap | -3.849872 1.760067 -2.19 0.029 -7.299541 -.4002036
_cons | 41.0918 7.601838 5.41 0.000 26.19247 55.99113
Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
var (Residual) | 105.6306 12.67061 83.5 133.6267

Output 9.3 Results of the analysis of covariance on the last value carried forward imputed dataset
to estimate the treatment effect

coefficient for the treatment variable. In the last value carried forward imputed
dataset, the treatment effect is equal to —3.849872.

Slightly more sophisticated is the use of multiple imputation. In this example
predictive mean matching is used for the multiple imputation (see Sect. 9.1), and the
imputation model included the baseline value of the outcome and the treatment
variable. Although the rule of thumb is that the number of imputations is more or less
equal to the percentage of missing data, in this example 20 imputed datasets were
generated. Also in this situation an analysis of covariance is performed to estimate
the treatment effect. To obtain one effect estimate after the multiple imputation, first
an analysis of covariance is performed on the 20 imputed datasets. Then, the average
value of the 20 effect estimates is calculated. This average value is known as the
pooled effect estimate. Slightly more complicated is the estimation of the pooled
standard error of the effect estimate. This pooled standard error contains two
components. The first component is the average of the standard errors of the
20 analyses performed. The second component is based on the differences between
the effect estimates obtained from the 20 analyses. This second component indicates
the uncertainty of the imputations. Output 9.4 shows the result of the pooled analysis
of covariance performed on the multiple imputed datasets.

The first part of Output 9.4 shows some general information of the dataset used
and the imputations. It can, for instance, be seen that 20 imputations were performed
and that the analysis is performed on 139 subjects. Because the focus of this book is
not on imputation methods, the general information regarding the imputation will
not be discussed in detail. More interesting is the part of the output that contains the
pooled regression coefficients. The regression coefficient for the treatment variable
(—4.143669) indicates the effect estimate. The interpretation is of course exactly the
same as the effect estimates derived from the other methods.

Table 9.2 gives an overview of the results derived from the four analyses
performed.

From Table 9.2 it can be seen that the alternative repeated measures analysis and
the multiple imputation provided more or less the same effect estimate. The complete
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Multiple-imputation estimates Imputations = 20
Mixed-effects ML regression Number of obs = 139
Average RVI = 0.0926
Largest FMI = 0.1113
DF adjustment: Large sample DF: min = 1,565.19
avg = 2,333.51

max = 3,261.52

Model F test: Equal FMI F( 2, 3987.7) = 64.12
Prob > F = 0.0000

systolic_ | Coef Std. Err t P>t [95% Conf. Interval
_____________ o
systolic_b~e | .6636646 .0615467 10.78 0.000 .5429905 .7843387
treatment | -4.143669 1.922132 -2.16 0.031 -7.913894 -.3734443
_cons | 43.32352 8.171624 5.30 0.000 27.30063 59.3464
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
_____________________________ o
var (Residual) | 112.01005 14.39522 87.32116 143.67953

Output 9.4 Results of the analysis of covariance on the multiple imputed datasets to estimate the
treatment effect

Table 9.2 Overview of the results derived from the different methods

Effect Estimate 95% CI p-value
Complete case analysis —4.38 —8.03 to —0.73 0.019
Alternative repeated measures —4.21 —7.92 to —0.49 0.027
Last value carried forward —3.85 —7.30 to —0.40 0.029
Multiple imputation —4.14 —7.91 to —0.37 0.031

case analysis provided a slightly higher effect estimate, while the last value carried
forward imputation provided a slightly lower effect estimate.

9.2.2 RCT with More Than One Follow-Up Measurement

The second example dataset is derived from a three-arm RCT regarding an Internet-
based treatment for adults with depressive symptoms (Warmerdam et al., 2008).
Besides a waiting list (WL) group, two interventions were evaluated, i.e., an
Internet-based problem-solving therapy (PST) and an Internet-based cognitive
behavioral therapy (CBT). The same example was also used in Chap. 8, where the
analysis of an RCT with a dichotomous outcome was discussed. In the present
example self-reported depression (measured with the Center for Epidemiological
Studies Depression scale (CES-D)) was used as continuous outcome. Depression
was measured at baseline and after 5, 8, and 12 weeks. Table 9.3 shows the
descriptive information regarding the baseline values for the subjects with and
without follow-up measurements.
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Table 9.3 Mean and standard deviation (between brackets) of baseline depression

Baseline depression

Subjects with at least one follow-up (N = 205) 31.3(7.4)
Subjects with only baseline (N = 58) 33.0(7.9)
Mixed-effects ML regression Number of obs = 508
Group variable: id Number of groups = 205
Obs per group:
min = 1
avg = 2.5
max = 3
Wald chi2(3) = 69.00
Log likelihood = -1764.5387 Prob > chi2 = 0.0000
depression | Coef. Std. Err. z P>|z| [95% Conf. Interval
______________ o
intervention |
PST | -4.528607 1.429431 -3.17 0.002 -7.330241 -1.726974
CBT | =5.209772 1.46398 -3.56 0.000 -8.07912 -2.340424
|
dep_basel~e | .5766133 .0818199 7.05 0.000 .4162493 .7369773
_cons | 7.112022 2.777835 2.56 0.010 1.667565 12.55648
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval
_____________________________ o
id: Identity |
var (_cons) | 59.14884 7.33685 46.38343 75.4275
_____________________________ e
var (Residual) | 30.47558 2.481812 25.97966 35.74954
LR test vs. linear model: chibar2(01) = 188.50 Prob >= chibar2 = 0.0000

Output 9.5 Results of the longitudinal analysis of covariance on the non-imputed dataset to
estimate the overall intervention effect on average over time in the Internet RCT (PST = prob-
lem-solving therapy, CBT = cognitive behavioral therapy)

From Table 9.3 it can be seen that in this example around 22% of the subjects
only had a baseline value and that baseline depression was slightly higher for the
subjects with only a baseline value compared to the subjects with at least one follow-
up measurement.

Basically, for an RCT with more than one follow-up measurement, the same
methods can be used to deal with the problem of availability of a baseline value but
missing follow-up measurement. So, the first analysis that is performed is a longi-
tudinal analysis of covariance on the available data. One must realize that this
analysis is not a complete case analysis, because subjects only need one follow-up
measurement to be included in the analysis. The reason why this is possible has to do
with the fact that using a mixed model analysis is one of the recommended methods
to deal with missing outcomes in a longitudinal study (Twisk et al., 2013). When
there is more than one follow-up measurement, the data to be analyzed is longitu-
dinal, so therefore, all subjects with at least one follow-up measurement are part of
the analysis. Output 9.5 shows the result of the longitudinal analysis of covariance.
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Mixed-effects ML regression Number of obs = 771

Group variable: id Number of groups = 263

Obs per group:

min = 1

avg = 2.9

max = 4

Wald chi2(3) = 367.14

Log likelihood = -2708.3236 Prob > chi2 = 0.0000

depression | Coef Std. Err z P>|z]| [95% Conf. Interval]

,,,,,,,,,,,,, o

time | -6.350396 .7504495 -8.46 0.000 -7.82125 -4.879542

time PST | -4.663613 1.048333 -4.45 0.000 -6.718308 -2.608918

time CBT | -5.460471 1.073139 -5.09 0.000 -7.563785 -3.357157

_cons | 31.69962 .5768601 54.95 0.000 30.56899 32.83024

Random-effects Parameters | Estimate Std. Err [95% Conf. Interval]

_____________________________ o
id: Identity |

var (_cons) | 46.75738 5.492011 37.14241 58.86136

,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o

var (Residual) | 40.76049 2.527975 36.09506 46.02896

LR test vs. linear model: chibar2(01) = 225.72 Prob >= chibar2 = 0.0000

Output 9.6 Results of the alternative repeated measures analysis to estimate the overall interven-
tion effect on average over time in the Internet RCT (PST = problem-solving therapy, CBT = cog-
nitive behavioral therapy)

From the first part of Output 9.5, it can be seen that data from 205 subjects is used
in the analysis and that the average number of follow-up measurements is 2.5. In the
second part of the output (the fixed part of the model), it can be seen that the
regression coefficient for problem-solving therapy (—4.528607) reveals a slightly
less strong effect on depression compared to cognitive behavioral therapy
(—=5.209772). The interpretation of the effect estimates is the difference on average
over time in depression between the particular intervention and the waiting list
group. These effect estimates are adjusted for the differences at baseline between
the groups.

In the alternative repeated measures analysis, the baseline value is not used as
covariate, but it is used as outcome. In the model, time and the interaction between
the dummy variables for the two interventions and time are added to the model (see
Sect. 3.4.2). In this analysis, time is coded 1 for all three follow-up measurements, to
obtain an overall treatment effect over time (see Table 3.5). Output 9.6 shows the
result of the analysis.

From the first part of Output 9.6, it can be seen that there are 263 subjects
included in this analysis instead of the 205 subjects that were included in the
longitudinal analysis of covariance reported in Output 9.5. It can further be seen
that the maximum number of observations per subject equals 4. This includes the
three follow-up measurements and the baseline measurement, because the baseline
measurement is part of the output in the alternative repeated measures analysis.



9.2 Examples 145

Mixed-effects ML regression Number of obs = 682
Group variable: id Number of groups = 263
Obs per group:
min = 1
avg = 2.6
max = 3
Wald chi2 (3) = 110.08
Log likelihood = -2305.4537 Prob > chi2 = 0.0000
depression | Coef Std. Err z P>z [95% Conf. Interval
______________ .
intervention |
PST | -2.465139 1.335626 -1.85 0.065 -5.082918 .152639:
CBT | -2.098322 1.332211 -1.58 0.115 -4.709408 .512763°
|

dep_basel~e | . 7430345 .07274 10.21 0.000 .6004666 .885602:
_cons | 2.623011 2.514247 1.04 0.297 -2.304824 7.55084!
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o

id: Identity |
var (_cons) | 68.41501 6.834143 56.25003 83.21086
_____________________________ o
var (Residual) | 21.9512 1.517297 19.16999 25.1359
LR test vs. linear model: chibar2(01) = 390.47 Prob >= chibar2 = 0.0000

Output 9.7 Results of the analysis of covariance on the last value carried forward imputed dataset
to estimate the overall intervention effect on average over time in the Internet RCT (PST = prob-
lem-solving therapy, CBT = cognitive behavioral therapy)

From the second part of Output 9.6, the effect estimates can be obtained. As has
been mentioned before, the regression coefficients of the interaction between the two
dummy variables for the two interventions and time indicate the effect estimates for
the two interventions. So, based on the alternative repeated measures analysis, the
effect estimate for problem-solving therapy equals —4.663613 and for cognitive
behavioral therapy —5.460471. The interpretation of these effect estimates is the
same as for the longitudinal analysis of covariance: the difference in depression on
average over time between the particular intervention and the waiting list group.

The alternative repeated measures analysis is a method to include the subjects
with only a baseline measurement in the analysis. As has been mentioned before,
another option is to impute the missing follow-up measurements. The most simple
way to do that is the last value carried forward method. In this case, the available
baseline measurement is carried forward to all three follow-up measurements, again
assuming no change over time. It should be noted that missing observations in
subjects with a baseline measurement but with one or two missing follow-up
measurements are not imputed. This is not necessary because (again) mixed model
analysis is highly capable of dealing with missing data in the follow-up measure-
ments. Output 9.7 shows the result of the longitudinal analysis of covariance
performed on the last value carried forward imputed dataset.

From the first part of Output 9.7, it can be seen that not all missing data is
imputed, i.e., not all patients have three follow-up measurements. Only for the
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Multiple-imputation estimates Imputations = 20
Mixed-effects ML regression Number of obs = 789
Group variable: id Number of groups = 263
Obs per group:
min = 3
avg = 3.0
max = 3
Average RVI = 0.4530
Largest FMI = 0.5149
DF adjustment: Large sample DF: min = 75.34
avg = 246.73
max = 445.62
Model F test: Equal FMI F( 3, 662.9) = 21.72
Prob > F = 0.0000
depression | Coef. Std. Err. t P>t [95% Conf. Interval
,,,,,,,,,,,,, o .
condition |
PST | -4.635601 1.428676 -3.24 0.001 -7.443381 -1.827821
CBT | -5.045399 1.53039 -3.30 0.001 -8.063378 -2.027419
|
dep basel~e | .5696981 .0803754 7.09 0.000 .411467 .7279291
_cons | 7.138994 2.788243 2.56 0.011 1.649431 12.62856
Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, o
id: Identity |
var (_cons) | 60.059834 8.220828 47.151844 76.50149
_____________________________ o
var (Residual) | 31.48487 2.993536 26.454389 37.471942

Output 9.8 Results of the analysis of covariance on the multiple imputed datasets to estimate the
intervention effect on average over time in the Internet RCT (PST = problem-solving therapy,
CBT = cognitive behavioral therapy)

58 patients without any follow-up measurement, the missing data are imputed with
the last value carried forward imputation method. In the second part of the output,
the effect estimates of the two interventions can be obtained. For the problem-
solving therapy group, the regression coefficient equals —2.465139, while for the
cognitive behavioral therapy group, the regression coefficient equals —2.098322.

As for the situation with one follow-up measurement, also for the situation with
more than one follow-up measurement, multiple imputation can be performed to
replace the missing data of the follow-up measurements. Also, in this example,
predictive mean matching (see Sect. 9.1) was used for the multiple imputation, and
also in this example 20 imputed datasets were created, and the imputation model
included the baseline value of the outcome and the intervention variable. Output 9.8
shows the result of the pooled longitudinal analysis of covariance performed on the
20 multiple imputed datasets.

From Output 9.8 it can be seen that 20 imputed datasets are used in the analysis. It
can also be seen that with the predictive mean matching imputation, all missing
values are imputed. So, also the missing observations for the patients with a baseline
value but without one or two missing follow-up measurements are imputed. There-
fore, all patients have three measurements in the outcome variable. The most
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Table 9.4 Overview of the results derived from the different methods

Effect estimate 95% C1 p-value
Problem-solving therapy
No imputation —4.53 —7.33t0 —1.73 0.002
Alternative repeated measures —4.66 —6.72 to —2.61 <0.001
last value carried forward —2.47 —5.08 to —0.15 0.065
Multiple imputation —4.64 —7.44 t0 —1.83 0.001
Cognitive behavioral therapy
No imputation —5.21 —8.08 to —2.34 <0.001
Alternative repeated measures —5.46 —7.56 to —3.36 <0.001
Last value carried forward —2.10 —4.71 to —0.51 0.115
Multiple imputation —-5.05 —8.06 to —2.03 0.001

interesting part of the output is the second part of the output, which contains the
regression coefficients for the two interventions, i.e., the effect estimates. For the
problem-solving therapy group, the pooled effect estimate equals —4.635601, while
for the cognitive behavioral therapy group, the pooled effect estimate equals
—5.045399.

Table 9.4 gives an overview of the results derived from the four analyses
performed.

The conclusion of the comparison between the different methods to deal with the
problem of missing all follow-up measurements when the baseline value is available
is more or less the same in RCTs with one follow-up measurement as in RCTs with
more than one follow-up measurement. Although the results obtained from the
longitudinal analysis of covariance in this situation are comparable to the ones
obtained from the alternative repeated measures analysis and the multiple imputa-
tion, the effect estimates obtained from the analysis of covariance performed on the
last value carried forward imputation method were again remarkably lower than the
effect estimates obtained from the other three methods. From the baseline value
carried forward method, it is often suggested that it leads to a conservative estimation
of the intervention effect (which is the case in the examples used in this chapter) and
is therefore an acceptable method to analyze RCT data. That the last value carried
forward imputation method leads to an underestimation of the intervention effect is,
however, not always true but depends highly on the setting of the study. Suppose, an
intervention is performed to reduce the decline in physical functioning in elderly
people; the baseline value carried forward assumes no decline, which is actually a
positive result. When, on the other hand, an intervention is performed to reduce
blood pressure, as in the first example, the baseline value carried forward assuming
no reduction can be classified as a negative result.

From Table 9.4 it can also be seen that the 95% confidence interval around the
effect estimates for the alternative repeated measures analysis is a bit smaller than the
ones obtained from the longitudinal analysis of covariance on the non-imputed data
and on the multiple imputed data. This smaller 95% confidence interval is caused by
the fact that the alternative repeated measures analysis uses more observations in the
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outcome variable, which leads to slightly smaller standard errors (see Sect. 3.5). The
multiple imputed datasets are also full datasets, but because the standard error of the
pooled effect estimates also contain the uncertainty of the imputations, the standard
error is increased. This leads to broader (more valid) 95% confidence intervals.

9.3 Comments

9.3.1 Sensitivity Analysis

In this chapter, different methods to deal with the problem of missing all follow-up
measurements in an RCT while the baseline value of the outcome is available were
compared with each other. In the examples the missing follow-up data was (highly)
related to the baseline value. Nevertheless, the effect estimates of the (longitudinal)
analysis of covariance on the non-imputed data, the alternative mixed model ana-
lyses, and the (longitudinal) analysis of covariance on the multiple imputed data
were only slightly different. Because it is not clear which of the effect estimates
indicates the real intervention effect, it is suggested that sensitivity analyses should
be included in the analysis of RCT data in order to obtain a more robust effect
estimate (European Medicines Agency, 2010). Surprisingly, the results of sensitivity
analyses on RCT data are almost never reported in the scientific literature, and when
they are reported, they are mostly performed to show the robustness of the analysis
against different assumptions underlying the statistical analysis. However, sensitiv-
ity analyses can also be performed with different statistical methods. Based on the
examples in this chapter, it seems to be appropriate to report the results of different
statistical methods as sensitivity analyses, especially in situations where the number
of subjects with a baseline value but without follow-up measurements is
relatively high.

9.3.2 Selective Imputation

It is sometimes argued that a selective imputation method should be applied in the
situation when a baseline value is available but all follow-up measurements are
missing (European Medicines Agency, 2010). To use a selective imputation method,
however, some additional information must be available. This additional informa-
tion includes whether a subject who is randomized into the intervention group, with a
baseline value but without follow-up measurements, actually received the interven-
tion. The general idea is that when these subjects did not receive the intervention,
selective imputation can be used in which data of these subjects were imputed as if
they belong to the control condition. It should be realized that selective imputation
can only be applied in situations where it is known whether the subjects actually
received the intervention or not. When this information is available, this selective
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imputation seems to be an acceptable approach (European Medicines Agency,
2010). However, it is questionable whether or not the analysis with selective
imputation can be classified as intention-to-treat. In the selective imputation method,
the subjects in the intervention group with missing data were imputed as if they were
allocated to the control condition. And although the analysis is on an intention-to-
treat basis, the imputation is not. On the other hand, when it is ignored that the
subjects with missing data at the follow-up measurements did not receive the
intervention, the effect estimates were highly overestimated (Twisk et al., 2020).
An overestimation of the effect estimate is not what you may expect from an
intention-to-treat analysis. It should also be realized that a potential limitation of
selective imputation is the fact that the subjects who did not receive the intervention
were imputed as they belong to the control condition. It is however questionable
whether that is correct, because in the literature there are some examples showing
that not adhering the intervention is different from belonging to the control condition
(Murray et al., 2020; Wilson, 2010). So therefore, the results of the analyses with a
selective imputation method can be slightly invalid and should be interpreted with
caution.

9.3.3 Other Comments

In this chapter, different methods were used to analyze RCT data in which subjects
had a baseline value but missed all follow-up measurements. Although less com-
mon, it is also possible that subjects were not measured at baseline but do have
follow-up measurements. In an analysis adjusted for the baseline value, these sub-
jects are (of course) also excluded from the analysis. It is expected that the proba-
bility of having a missing baseline value is not related to the follow-up
measurements, so this situation can be considered as missing completely at random
(MCAR). When this is the case, regular mixed model analysis, alternative mixed
model analysis, and multiple imputation will not lead to very different effect
estimates. Also because the percentage of subjects without a baseline value but
with follow-up measurements, in general, will be relatively low.

It should be noted that the assumption of using either mixed model analysis or
multiple imputation is that the missing data is at random (MAR). In real-life data,
MCAR and MAR are probably the most common; however, missing data can also be
not at random (MNAR). Although it is not possible to evaluate whether missing data
is MNAR or MAR, there are methods available that claim to appropriately take into
account missing data which is MNAR. These methods, such as pattern mixture
models, selection models, and shared parameter models (Fiero et al., 2017; Little,
1993, 1994; Molenberghs & Kenward, 2007; Tsonaka et al., 2009), are complicated
and difficult to interpret and, therefore, not often used in practice. It should also be
noted that in the examples used in this chapter, only the baseline value and the
intervention variable were used for the imputation models. Although it is possible
that missingness is related to other variables, the baseline value of the outcome is
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(mostly) by far the best predictor of the missing outcomes at the follow-up mea-
surements. So, adding other variables to the imputation models would not add much
information to the imputation models and would therefore probably not change the
results of the examples discussed in this chapter.

9.4 Recommendation

When, in an RCT, the baseline value is available and all follow-up measurements are
missing, it is not necessary to use (multiple) imputation. Using an analysis of
covariance on the available data or the alternative repeated measures analysis will
provide more than acceptable effect estimates.



Chapter 10 )
Sample Size Calculations e

10.1 Introduction

Before performing an RCT, most researchers believe that it is necessary to calculate
the number of subjects that are needed in the RCT to make sure that a predefined
effect will be statistically significant. It is necessary because sample size calculations
are a prerequisite for research grants and must be submitted to (medical) ethics
committees. Furthermore, for medical studies, sample size calculations are part of
the so-called CONSORT statement. This means that, without a sample size calcu-
lation, a paper reporting the results of a medical RCT will not be published in any of
the major (medical) journals. It should be realized that the importance of sample size
calculations is highly questionable. First, sample size calculations are based on many
assumptions, which can easily be changed, and in which case the number of subjects
needed will be totally different. Second, sample size calculations are based on testing
theory (i.e., statistical testing and statistical significance). This is rather strange,
because recently the importance of testing theory is becoming more and more
questionable. Nevertheless, many people believe in the importance of sample size
calculations.

Basically sample size calculation formulas are developed to calculate the number
of subjects needed in an RCT to get a certain difference between the intervention and
control groups statistically significant. In the standard sample size calculation
formula, this difference is the difference at one follow-up measurement. For contin-
uous outcome variables, the standard sample size calculation formula (Eq. 10.1) can
be used:

2
(Z(l—%) +Z(1,ﬂ)> X 62 X (r+ ])

VvEXr

Ny = (10.1)

where N; = sample size for the intervention group, a = significance level, Z(;_,,
2y = (1 — a/2) percentile point of the standard normal distribution, (1 — ) = power,
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Zu_p = (1 — p) percentile point of the standard normal distribution, ¢ = standard
deviation of the outcome variable, and r = ratio of the number of subjects in the
groups to be compared, i.e., No/N, where Ny = sample size for the control group and
v = difference in mean value of the outcome variable between the groups.

For dichotomous outcome variables, a comparable sample size calculation for-
mula can be used (Eqs. 10.2a, 10.2b):

(Z(l_%) +Z(17/z))2 xp(l—p) x (r+1)

Ny = (10.22)
(py —po) % r
_ pi+(rxp)
=t e r) (10.2b)

where N; = sample size for the intervention group, a = significance level, Z(;_,,
2y = (1—a/2) percentile point of the standard normal distribution, (1 — ) = power,
Z — gy= (1 — p) percentile point of the standard normal distribution, p = average of
Po, and py, r = ratio of the number of subjects in the groups to be compared, i.e., N/
N; where N, = sample size for the control group, p; = proportion of cases in the
intervention group, and p, = proportion of cases in the control group.

When a cluster RCT is performed (see Chap. 4), the sample size needs to be
adjusted to take into account the dependency of the observations within the cluster.
Because of that dependency, more subjects are needed than calculated with a
standard sample size calculation formula (Twisk, 2018). There are different ways
to calculate the adjusted sample size. Equation (10.3) shows the first correction
factor, which is known as the conservative correction factor:

mxn=Nx[l+(n—1)p] (10.3)

where N = number of subjects calculated with the standard sample size calculation
formula, m = number of clusters (e.g., number of hospitals, nursery homes, medical
doctors, schools, families, etc.), » = number of observations within each cluster, and
p = intraclass correlation coefficient (ICC).

It is also possible to calculate the relative effectiveness of a certain sample size,
when that sample size is applied in a cluster RCT (Eq. 10.4):

N
Neffecllve [1 ¥ (n — 1)/7] (104)
where Negreciive = effective sample size by a given standard sample size (based on
m times n observations).

Equation (10.5) shows the second correction factor that can be used to calculate
the required sample size for a cluster RCT. This correction factor is known as the
liberal correction factor. Equation (10.6) shows the corresponding equation to
calculate the effective sample size:
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. N
RECEDE)

m (10.5)

where N = number of subjects calculated with the standard sample size calculation
formula, m = number of clusters (e.g., number of hospitals, nursery homes, medical
doctors, schools, families, etc.), n = number of observations for each cluster, and
p = intraclass correlation coefficient (ICC):

Nefective = M X [1 + (11 - 1)p] (106)

where Negreciive = effective sample size by a given standard sample size (based on
m times n observations).

In many situations, however, a more simple adjustment formula is used. In this
simple adjustment, the sample size calculated with the standard sample size calcu-
lation formula is multiplied by the 100 + intraclass correlation coefficient (ICC)
percentage. So, when the ICC is assumed to be 0.10, the standard sample size (i.e.,
the one calculated with the standard sample size calculation formula) is multiplied by
110%, etc.

When more than one follow-up measurement is performed, the sample size needs
to be further adjusted to take into account the dependency of the repeated observa-
tions within the subject. Because of that dependency, less subjects are needed than
calculated with a standard sample size calculation formula (Twisk, 2013). Equation
(10.7) shows the multiplication factor for an RCT with more than one follow-up
measurement:

{1+(T;1)><p} (10

where T = number of follow-up measurements and p = correlation coefficient
between the repeated measurements.

When a cluster RCT with more than one follow-up measurement is performed,
the situation is slightly more complex. In that situation, there are two dependencies
to take into account: (1) the dependency of the observations within in a cluster,
which requires a bigger sample size, and (2) the dependency of the repeated
observations within the subject, which requires a smaller sample size. Both should
be taken into account to calculate the required sample size. The same situation more
or less occurs in a stepped wedge trial (see Chap. 6). When a sample size must be
calculated for a stepped wedge trial, also both dependencies must be taken into
account (Baio et al., 2015; Hemming & Taljaard, 2016; Woertman et al., 2013).
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10.2 Example

As has been mentioned before, the calculation of the required sample size is based on
many assumptions. Table 10.1 shows the assumptions of a cluster RCT with more
than one follow-up measurement performed within general practitioner (GPs) with
the aim to reduce systolic blood pressure.

The first step in the sample size calculation is to apply the standard sample size
calculation formula (see Eq. 10.1):

2
_185% ;O x 2 — 628

N

So, with 62.8 subjects, a difference of 5 mmHg will be statistically significant
with a significance level of 0.05 and a power of 80%, assuming a standard deviation
of 15 mmHg. When this number is calculated, it is a sort of common practice to take
into account the fact that some of the subjects will drop out during the study, and
because of that, the required sample size is slightly increased. In this case the sample
size per group can be increased to 70 subjects, assuming a drop out percentage of
around 10%.

In the next step, the clustering of the observations within the GP must be taken
into account, and it is assumed that this correlation equals 0.1 (see Table 10.1). To do
this, for instance, Eq. (10.3) can be applied. Because there is a fixed number of
20 GPs available, the number of subjects within a GP will be 7:

mxn=70x[1+(7—1)x0.1] =112

So, instead of 70 subjects per group, when taking into account the clustering of
the subject observations within the GP, 112 subjects per group are needed.

In the next step, it must be taken into account that there are two follow-up
measurements and that there is an assumed correlation of 0.6 between the two
follow-up measurements within the subject (see Table 10.1). To do that, Eq. (10.7)
can be applied to obtain the multiplication factor:

Table 10.1 Assumptions for the sample size calculation of a cluster RCT

Number of follow-up measurements 2
Average difference to be detected 5 mmHg
Assumed standard deviation 10 mmHg
Assumed correlation between repeated measures 0.6
Assumed correlation between gps 0.1
Number of GPs 20

Power 80%
Significance 0.05
Ratio of the number of observations in the groups to be compared 1
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{1+(2-1)x06}
- -

0.8 x 112 =289.6

0.8

So, taken into account the fact that there are two follow-up measurements with a
correlation within the subject of 0.6, the number of subjects needed in this cluster
RCT reduces to around 90 subjects per group. So for each GP around nine subjects
should be included in this cluster RCT with two follow-up measurements.

10.3 Comments

It is obvious that the number of subjects needed in a trial like this highly depends on
the assumptions made. A slightly higher correlation between the subjects within the
GP will increase the required sample size considerably. The same holds for a higher
correlation between the two follow-up measurements within the subject, a higher
standard deviation, and a lower expected difference between the intervention group
and the control group. Also when a power of 90% is used, the required sample size
will increase. In fact, changing the assumptions only a bit can have a huge influence
on the results of the sample size calculation.

The problem with sample size calculations is that nobody knows what the
numbers will be in the study to be performed. So, basically, each sample size
calculation will be a (wild) guess and should, therefore, be interpreted with great
caution. Or even better, sample size calculations should not be done at all. Other
arguments, such as logistic, financial, and ethical considerations can better be used to
define the required sample size for an RCT.



Chapter 11 ®)
Miscellaneous Check for

11.1 Different Designs

In the foregoing chapters, several RCT designs were discussed: a regular RCT with
one follow-up measurement (Chap. 2), a regular RCT with more than one follow-up
measurement (Chap. 3), a cluster RCT (Chap. 4), a cross-over trial (Chap. 5), a
stepped wedge trial (Chap. 6), and (a series of) n-of-1 trials (Chap. 7). In most of
these designs, a baseline measurement is performed to obtain an estimation of the
outcome variable before the start of the intervention. This baseline measurement
provides the possibility to adjust for the differences in the outcome variable at
baseline between the groups. It is, however, also possible that the baseline measure-
ment itself has an influence on the outcome variable. This is known as a test or
learning effect. In a Solomon four-group design, two groups are allocated to the
intervention in which for one group a baseline measurement is performed, and for
the other group not. The same procedure is applied to the control group. By
comparing the effect estimates of the four groups, test or learning effects can be
detected.

In some RCTs, multiple baseline measurements are performed. The general idea
behind these multiple baseline measurements is to obtain a more robust estimation of
the baseline value. In that situation, mostly the average value of the multiple baseline
measurements is calculated, and this average is used as baseline measurement in the
analysis. However, looking at the stepped wedge trial (see Chap. 6) and the example
in the series of n-of-trials (see Chap. 7), there are also multiple baseline measure-
ments for some or all of the randomized subjects. In the analyses, however, not the
average value of the baseline measurements was used for the analysis, but all
measurements were used in the mixed model analysis taken into account the
correlation between the repeated observations within the subject. Although this is
of course also possible in regular RCTs with more than one baseline measurement, it
is not much used in practice.
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11.2 Statistical Testing of Baseline Differences in an RCT

It is often argued that an adjustment for the baseline difference in the outcome
variable in an RCT is only necessary when the difference between the groups is
statistically significant. This is, however, a huge misunderstanding. Basically, the
baseline value of the outcome variable can be seen as a confounder in the estimation
of the intervention effect. A variable is considered to be a confounder when it is
related to both the independent and the dependent variable in the statistical model.
Because in an RCT, the baseline value of the outcome is highly related to the
outcome at the follow-up measurement(s), even a small difference in the baseline
value of the outcome between the two groups can have a (strong) confounding effect.
It is, therefore, advised always to adjust for the baseline value of the outcome
variable irrespective whether the difference is significant or not. Furthermore, it
should be realized that statistical significance does not say anything about the
magnitude of a particular difference and also not about the influence of the differ-
ences between the baseline values on the estimated intervention effect.

The issue of testing for statistical significance also holds for the adjustment for
other covariates. Although the adjustment for other covariates is less important than
the adjustment for the baseline value of the outcome, it can still be important to
consider adjustment for other covariates (Kahan, 2014). When a covariate is related
to the outcome and when that covariate differs between the two groups, the particular
covariate is considered to be a confounder in the estimation of the intervention effect.
Again, note that it is not necessary that the covariate is significantly related to the
outcome or that the covariate is significantly different between the two groups.
Significance does not play an important role in the amount of confounding the
particular covariate has. Although many researchers believe that it has to be done,
it is, therefore, of no use to statistically test for baseline differences between the
intervention and the control group. Luckily, this testing nonsense has been noticed
by other authors as well (de Boer et al., 2015; Petterson et al., 2017).

11.3 Analyzing Within-Group Changes in an RCT

When data from an RCT is analyzed, the effect of the intervention can be estimated
by comparing the outcome variable between the intervention group and the control
group. In many publications, however, there is also an estimation of the within-
group changes over time. This is especially the case when there is no significant
intervention effect. Although it is not wrong to estimate the within-group changes
over time, the interpretation of the within-group changes can lead to wrong conclu-
sions about the effectiveness of an intervention.
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11.3.1 Example

The example dataset is an RCT with one follow-up measurement aiming to reduce
systolic blood pressure. Table 11.1 shows the descriptive information of this study.

In Table 11.1 it can be seen that in the intervention group there is a decrease in
systolic blood pressure over time and that there is also a decrease in systolic blood
pressure in the control group. However, the decrease in systolic blood pressure in the
intervention group is more pronounced than the decrease in systolic blood pressure
in the control group. So, the intervention group is performing slightly better than the
control group. Furthermore, it can be seen that there is only a small difference in the
baseline systolic blood pressure values between the two groups.

Output 11.1 shows the results of the analysis of covariance performed to estimate
the effect of the intervention. As has been mentioned before (see Chap. 2), in the
analysis of covariance, blood pressure measured at the follow-up measurement is
used as the outcome variable. The intervention variable is used as independent
variable, while the baseline measure of systolic blood pressure is added to the
model as covariate.

From Output 11.1 it can be seen that the regression coefficient for the intervention
variable equals —1.2744, which indicates that in the intervention group, the systolic
blood pressure at the follow-up measurement is 1.2744 mmHg lower than in the
control group. This difference between the groups is adjusted for the (small) baseline
differences between the groups. Besides the intervention effect, the output also
shows the 95% confidence interval around the intervention effect (ranging from
—4.746889 to 1.198089) and the corresponding p-value, which is 0.469. This
p-value indicates that the effect of the intervention is not statistically significant.

Table 11.1 Mean and standard deviation (between brackets) of systolic blood pressure regarding
the example RCT

Baseline Follow-up measurement
Intervention (N = 59) 130.8 (11.8) 127.2 (12.0)
Control (N = 60) 130.4 (17.1) 128.2 (13.6)
Source | SS df MS Number of obs = 119
————————————— = F(2, 116) = 47.68
Model | 8716.41006 2 4358.20503 Prob > F = 0.0000
Residual | 10603.4387 116 91.4089541 R-squared = 0.4512
————————————— e Adj R-squared = 0.4417
Total | 19319.8487 118 163.727532 Root MSE = 9.5608
systl | Coef. Std. Err. t P>|t]| [95% Conf. Interval]
_____________ o
intervention | -1.2744 1.753228 -0.73 0.469 -4.746889 2.198089
baseline | .5865899 .0601656 9.75 0.000 .4674244 .7057553
_cons | 51.73801 7.939117 6.52 0.000 36.01359 67.46243

Output 11.1 Results of the analysis of covariance to estimate the effect of the intervention
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Source | SS df MS Number of obs = 59
————————————— Fom F(0, 58) = 0.00
Model | 0 0 . Prob > F = .
Residual | 7773.52542 58 134.0263 R-squared = 0.0000
————————————— R ittt Adj R-squared = 0.0000
Total | 7773.52542 58 134.0263 Root MSE = 11.577

change | Coef. Std. Err. t P>t [95% Conf. Interval
_____________ o o~
cons | -3.644068 1.507193 =-2.42 0.019 -6.661043 -.6270922

Output 11.2 Result of the intercept-only linear regression analysis to obtain the within-group
change for the intervention group

Source | SS af MS Number of obs = 60
————————————— B ittt F(0, 59) = 0.00
Model | 0 0 . Prob > F = .
Residual | 7145.65 59 121.112712 R-squared = 0.0000
————————————— o Adj R-squared = 0.0000
Total | 7145.65 59 121.112712 Root MSE = 11.005

change | Coef. Std. Err. t P>t [95% Conf. Interval]
_____________ o
_cons | -2.15 1.420755 -1.51 0.136 -4.992924 .6929245

Output 11.3 Result of the intercept-only linear regression analysis to obtain the within-group
change for the control group

To analyze the within-group change, first, the change scores have to be calcu-
lated, and, second, the change scores have to be analyzed for each group separately.
To get an estimate of the within-group change for both the intervention and the
control group, two intercept-only linear regression analyses must be performed. The
estimate of the intercept in an intercept-only model is the estimate of the within-
group change.

Outputs 11.2 and 11.3 show the results of the two intercept-only linear regression
analyses for the intervention group and the control group, respectively.

In Output 11.2 it can be seen that the intercept value for the intervention group
equals —3.644068, which indicates that the systolic blood pressure at the follow-up
measurement is 3.644 mmHg lower compared to the baseline measurement. It can
further be seen that the corresponding p-value equals 0.019, which indicates that
there is a significant change over time in the intervention group. In Output 11.3 it can
be seen that the intercept value for the control group equals —2.15, which indicates
that for the control group the systolic blood pressure at the follow-up measurement is
2.15 mmHg lower at the follow-up measurement compared to the baseline measure-
ment. The key issue here is that the change over time in the control group is not
statistically significant (the p-value = 0.136).

Although the analyses are not wrong, many researchers combine the two results
of the analyses regarding the within-group changes into a wrong conclusion. They
argue that there is a significant intervention effect because there is a significant
change in the intervention group, while there is nonsignificant change in the control
group. From the results of the analysis of covariance reported in Output 11.1,
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however, it was already concluded that there was no significant difference between
the groups. So, although the analysis of the within-group changes is not wrong per
se, it is important to realize that it is not correct to draw conclusions regarding
intervention effects based on the significance or non-significance of the within-group
changes.
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