
Chapter 4
Cayley-Klein Spaces

In Klein’s Erlangen program Euclidean and non-Euclidean geometries are consid-
ered as subgeometries of projective geometry. Projectivemodels for, e.g., hyperbolic,
deSitter, and elliptic space can be obtained by using a quadric to induce the corre-
sponding metric [Kle1928]. In this section we introduce the corresponding general
notion of Cayley-Klein spaces and their groups of isometries, see, e.g., [Kle1928,
Bla1954, Gie1982]. We put a particular emphasis on the description of hyperplanes,
hyperspheres, and their mutual relations.

4.1 Cayley-Klein Distance

A quadric within a projective space induces an invariant for pairs of points.

Definition 4.1 Let Q ⊂ RPn be a quadric with corresponding bilinear form 〈·, ·〉.
Then we denote by

KQ (x, y) := 〈x, y〉2
〈x, x〉 〈y, y〉

the Cayley-Klein distance of any two points x, y ∈ RPn \ Q that are not on the
quadric. We further set KQ (x, y) = ∞, if 〈x, x〉 〈y, y〉 = 0 and 〈x, y〉 �= 0. In the
presence of a Cayley-Klein distance the quadric Q is called the absolute quadric.

Remark 4.1 The name Cayley-Klein distance, or Cayley-Klein metric, is usually
assigned to an actual metric derived from the above quantity as, for example, the
hyperbolic metric (cf. Sect. 4.4). Nevertheless, we prefer to assign it to this basic
quantity associated with an arbitrary quadric.

TheCayley-Klein distance is projectivelywell-defined, in the sense that it depends
neither on the choice of the bilinear form corresponding to the quadricQ nor on the
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28 4 Cayley-Klein Spaces

Fig. 4.1 Concentric Cayley-Klein circles in the hyperbolic/deSitter plane. Left: Concentric circles
with hyperbolic center.Middle: Concentric circleswith deSitter center.Right: Concentric horocycles
with center on the absolute conic

choice of homogeneous coordinate vectors for the points x and y. Furthermore, it is
invariant under the group of projective transformations that preserve the quadric Q,
which we call the corresponding group of isometries.

The Cayley-Klein distance can be positive or negative depending on the relative
location of the two points with respect to the quadric, cf. (3.2).

Proposition 4.1 For two points x, y ∈ RPn \ Q with 〈x, y〉 �= 0:

• KQ (x, y) > 0 if x and y are on the same side of Q,
• KQ (x, y) < 0 if x and y are on opposite sides of Q.

A Cayley-Klein space is usually considered to be one side of the quadric, i.e.Q+
or Q−, together with a (pseudo-)metric derived from the Cayley-Klein distance, or
equivalently, together with the transformation group of isometries.

4.2 Cayley-Klein Spheres

Having a notion of “distance” allows for the definition of corresponding spheres (see
Fig. 4.1).

Definition 4.2 Let Q ⊂ RPn be a quadric, x ∈ RPn \ Q, and μ ∈ R ∪ {∞}. Then
we call the quadric

Sμ(x) := {
y ∈ RPn

∣∣ KQ (x, y) = μ
}

the Cayley-Klein hypersphere with center x and Cayley-Klein radius μ with respect
to the absolute quadric Q.

Remark 4.2

(i) Due to the fact that the Cayley-Klein sphere equation can be written as

〈x, y〉2 − μ 〈x, x〉 〈y, y〉 = 0, (4.1)
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we may include into the set Sμ(x) points y ∈ Q on the absolute quadric.
(ii) Given the center x of a Cayley-Klein sphere one can further rewrite the Cayley-

Klein sphere equation (4.1) as

〈x, y〉2 − μ̃ 〈y, y〉 = 0, (4.2)

where μ̃ := μ 〈x, x〉. While μ̃ is not projectively invariant anymore, the solu-
tion set of this equation still invariantly describes a Cayley-Klein sphere. We
may now allow for centers on the absolute quadric x ∈ Q which gives rise to
Cayley-Klein horospheres, i.e., quadrics given by (4.2) for any fixed μ̃ ∈ R.
(see Fig. 4.1, right).

Proposition 4.2 For a Cayley-Klein sphere with center x ∈ RPn \ Q and Cayley-
Klein radius μ ∈ R ∪ {∞} one has:
• If μ < 0 the center and the points of a Cayley-Klein sphere are on opposite sides
of the quadric.

• If μ > 0 the center and the points of a Cayley-Klein sphere are on the same side
of the quadric.

• Ifμ = 0 theCayley-Klein sphere is given by the (doubly counted)polar hyperplane
x⊥.

• If μ = 1 the Cayley-Klein sphere is the cone of contact CQ(x) touchingQ, which
is also called the null-sphere with center x.

• If μ = ∞ the Cayley-Klein sphere is the absolute quadric Q.

Proof Follows from Proposition 4.1 and Lemma 3.3. �

Fixing the center and varying the radius of a Cayley-Klein sphere results in a
family of concentric spheres (see Fig. 4.1).

Definition 4.3 Given an absolute quadric Q ⊂ RPn and a point x ∈ RPn \ Q we
call the family (

Sμ(x)
)
μ∈R∪{∞}

concentric Cayley-Klein spheres with center x.

Proposition 4.3 LetQ ⊂ RPn be the absolute quadric. Then the family of concentric
Cayley-Klein spheres with center x ∈ RPn \ Q is the pencil of quadricsQ ∧ CQ(x)

spanned by the absolute quadric Q and the cone of contact CQ(x), or equivalently,
by Q and the (doubly counted) polar hyperplane x⊥ (cf. Example 3.2).

Proof Writing the Cayley-Klein sphere equation as (4.1) we find that it is a linear
equation in μ describing a pencil of quadrics. As observed in Proposition 4.2 it
contains, in particular, the quadric Q, the cone CQ(x), and the hyperplane x⊥. �

This leads to a further characterization of Cayley-Klein spheres among all
quadrics.
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Fig. 4.2 Left: Polarity with respect to a Cayley-Klein sphere Sμ(x) and the absolute quadric Q.
Right: A Cayley-Klein sphere Sμ(x) and its (concentric) polar Cayley-Klein sphere Sμ̃(x)

Corollary 4.1 Let Q ⊂ RPn be a non-degenerate absolute quadric. Then a second
quadric is a Cayley-Klein sphere if and only if it is tangent to Q in the (possibly
imaginary) intersection with a hyperplane (not tangent to Q).

Proof Follows from Proposition 4.3 and Example 3.2. Indeed, by Proposition 4.3,
concentric Cayley-Klein spheres are exactly the pencils of the formQ ∧ CQ(x). On
the other hand, Example 3.2 states that a pencil of the form Q ∧ CQ(x) consists
exactly of the quadrics tangent in the intersection with the polar hyperplane of x. �

Remark 4.3 Apencil of concentric Cayley-Klein horosphereswith center x ∈ Q is
spanned by the absolute quadricQ and the (doubly counted) tangent hyperplane x⊥,
which yields third order contact between each horosphere and the absolute quadric.

4.3 Polarity of Cayley-Klein Spheres

To describe spheres in terms of their tangent planes we turn our attention towards
polarity in Cayley-Klein spheres. A quadratic form of a Cayley-Klein sphere Sμ(x)

with center x ∈ RPn \ Q and Cayley-Klein radius μ ∈ R is given by (4.1):

�(y) := 〈x, y〉2 − μ 〈x, x〉 〈y, y〉 .

The corresponding symmetric bilinear form is obtained by the polarization identity:

b(y, ỹ) = 1

2
(�(y + ỹ) − �(y) − �(ỹ)) = 〈x, y〉 〈x, ỹ〉 − μ 〈x, x〉 〈y, ỹ〉 ,
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for y, ỹ ∈ R
n+1.

Lemma 4.1 LetY be the polar hyperplane of a point y ∈ RPn with respect to Sμ(x).
Then the pole z of Y with respect to the absolute quadricQ is given by (see Fig.4.2,
left)

z = 〈x, y〉 x − μ 〈x, x〉 y. (4.3)

Proof The polar hyperplane of y with respect to Sμ(x) is given by

Y = {
ỹ ∈ RPn

∣∣ b(y, ỹ) = 〈z, ỹ〉 = 0
}
.

�

For every point on a Cayley-Klein sphere the tangent hyperplane in that point
is given by polarity in the Cayley-Klein sphere. Now the tangent hyperplanes of
a Cayley-Klein sphere, in turn, may equivalently be described by their poles with
respect to the absolute quadric Q.

Proposition 4.4 Let x ∈ RPn \ Q and μ ∈ R \ {0, 1}. Then the poles (with respect
to the absolute quadric Q) of the tangent hyperplanes of the Cayley-Klein sphere
Sμ(x) are the points of a concentric Cayley-Klein sphere Sμ̃(x) with

μ + μ̃ = 1,

and vice versa.

Proof Let y ∈ Sμ(x) be a point on the Cayley-Klein sphere. Then the tangent plane
to Sμ(x) at the point y is the polar plane of y with respect to Sμ(x). According to
Lemma 4.1 the pole z of that tangent hyperplane with respect toQ is given by (4.3).
Computing the Cayley-Klein distance of this point to the center x we obtain

KQ (x, z) = 〈x, z〉2
〈x, x〉 〈z, z〉 = 〈x, y〉2 (1 − μ)2

〈x, y〉2 (1 − 2μ) + μ2 〈x, x〉 〈y, y〉 = 1 − μ,

where we used 〈x, y〉2 = μ 〈x, x〉 〈y, y〉. �

Definition 4.4 For a Cayley-Klein sphere Sμ(x) we call the Cayley-Klein sphere
S1−μ(x), consisting of all poles (with respect to the absolute quadric Q) of tangent
hyperplanes of Sμ(x), its polar Cayley-Klein sphere (see Fig. 4.2, right).

Remark 4.4 The two degenerate Cayley-Klein spheres x⊥ and CQ(x) correspond-
ing to the values μ = 0 and μ = 1 respectively, may be treated as being mutually
polar. Then polarity defines a projective involution on a pencil of concentric Cayley-
Klein spheres with fixed points at μ = 1

2 and μ = ∞.
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4.4 Hyperbolic Geometry

Let 〈·, ·〉 be the standard non-degenerate bilinear form of signature (n, 1), i.e.

〈x, y〉 := x1y1 + . . . + xn yn − xn+1yn+1

for x, y ∈ R
n+1, and denote by S ⊂ RPn the corresponding quadric. We identify the

“inside” of S, cf. (3.2), with the n-dimensional hyperbolic space

H := S−.

For two points x, y ∈ H one has KS (x, y) ≥ 1, and the quantity d(x, y) given by

KS (x, y) = cosh2 d(x, y)

defines a metric on H of constant negative sectional curvature. The corresponding
group of isometries is given by PO(n, 1) and called the group of hyperbolic motions.
The absolute quadric S consists of the points at (metric) infinity, i.e., at infinite
distance from any given point in S−. We call the union

H := H ∪ S

the compactified hyperbolic space.
In this projective model of hyperbolic geometry geodesics are given by intersec-

tions of projective lines in RPn withH, while, more generally, hyperbolic subspaces
(totally geodesic submanifolds) are given by intersections of projective subspaces in
RPn with H. Thus, by polarity, every point m ∈ dS in the “outside” of hyperbolic
space,

dS := S+,

which is called deSitter space, corresponds to a hyperbolic hyperplane m⊥ ∩ H.
Consider two hyperbolic hyperplanes with poles k,m ∈ dS.

• If KS (k,m) < 1, the two hyperplanes intersect in H, and their hyperbolic inter-
section angle α(k⊥,m⊥), or equivalently its conjugate angle π − α is given by

KS (k,m) = cos2 α(k⊥,m⊥).

• If KS (k,m) > 1, the two hyperplanes do not intersect inH, and their hyperbolic
distance d(k⊥,m⊥) is given by

KS (k,m) = cosh2 d(k⊥,m⊥).

The corresponding projective hyperplanes intersect in (k ∧ m)⊥ ⊂ dS.



4.4 Hyperbolic Geometry 33

• If KS (k,m) = 1, the two hyperplanes are parallel, i.e., they do not intersect inH
but do intersect inH.

Finally, the hyperbolic distance d(x,m⊥) of a point x ∈ H and a hyperbolic hyper-
plane with pole m ∈ dS is given by

KS (x,m) = − sinh2 d(x,m⊥).

It is occasionally useful to employ a certain normalization of the homogeneous
coordinate vectors:

H
n := {

x = (x1, . . . , xn+1) ∈ R
n,1

∣∣ 〈x, x〉 = −1, xn+1 ≥ 0
}
,

dS
n := {

m = (m1, . . . ,mn+1) ∈ R
n,1

∣∣ 〈m,m〉 = 1
}
.

Then P(Hn) = H is an embedding and P(dS
n) = dS is a double cover. For x, y ∈ H

n

and k,m ∈ dS
n above distance formulas become

〈x, y〉 = − cosh d(x, y),

|〈k,m〉| = cosα(k⊥,m⊥), if |〈k,m〉| ≤ 1,

|〈k,m〉| = cosh d(k⊥,m⊥), if |〈k,m〉| ≥ 1,

|〈x,m〉| = sinh d(x,m⊥).

Remark 4.5 The double cover P(dS
n) = dS of deSitter space can be used to encode

the orientation of the corresponding polar hyperplanes, e.g., by endowing the hyper-
bolic hyperplane corresponding to m ∈ dS

n with a normal vector in the direction of
the hyperbolic halfspace on which the bilinear form with points x ∈ H

n is positive:
〈x,m〉 > 0. Using the double cover to encode orientation one may omit the abso-
lute value in 〈x,m〉 = cos d to obtain an oriented hyperbolic distance d between a
point and an hyperbolic hyperplane. Similarly, one may omit the absolute value in
〈k,m〉 = cosα which allows to distinguish the intersection angle α and its conjugate
angle π − α.

We now turn our attention to the Cayley-Klein spheres of hyperbolic/deSitter
geometry. First, consider a pencil of concentric Cayley-Klein spheres Sμ(x) with
center inside hyperbolic space x ∈ H, x ∈ H

n . Depending on the value of μ ∈ R ∪
{∞} we obtain the following types of hyperbolic/deSitter spheres (see Fig. 4.1, left):
• μ < 0: A deSitter sphere with hyperbolic center.
• 0 < μ < 1: Sμ(x) is empty.
• 1 < μ < ∞: A hyperbolic sphere with center x ∈ H and hyperbolic radius r =
arcosh

√
μ > 0:

Sμ(x) = {
y ∈ H ∣∣ KS (x, y) = cosh2 r

} = P
({
y ∈ H

n
∣∣ 〈x, y〉 = − cosh r

})
.
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Second, consider a pencil of concentric Cayley-Klein spheres Sμ(m) with center
outside hyperbolic space m ∈ dS, m ∈ dS

n (see Fig. 4.1, middle):

• μ < 0: A hypersurface of constant hyperbolic distance r = arsinh
√

μ > 0 to the
hyperbolic plane m⊥ ∩ H:

Sμ(m) = {
y ∈ H ∣∣ KS (m, y) = − sinh2 r

} = P
({
y ∈ H

n
∣∣ |〈m, y〉| = sinh r

})
.

• 0 < μ < 1: A deSitter sphere tangent to S. All its tangent hyperplanes are hyper-
bolic hyperplanes.

• 1 < μ < ∞: A deSitter sphere tangent to S with no hyperbolic tangent hyper-
planes.

Third, a pencil of concentric Cayley-Klein horospheres with center on the absolute
quadric x ∈ S, x ∈ L

n,1 consists of hyperbolic horospheres and deSitter horospheres
(see Fig. 4.1, right).

4.5 Elliptic Geometry

For x, y ∈ R
n+1 we denote by

x · y := x1y1 + . . . xn yn + xn+1yn+1

the standard (positive definite) scalar product on R
n+1, i.e. the standard non-

degenerate bilinear form of signature (n + 1, 0). The corresponding quadric O ⊂
RPn is empty (or “purely imaginary”, cf. Example 3.1 (i)), as well as the setO− = ∅,
while

E := O+ = RPn

is thewhole projective space,whichwe identifywith then-dimensional elliptic space.
For two points x, y ∈ E one always has 0 ≤ KO (x, y) ≤ 1 and the quantity d(x, y)
given by

KO (x, y) = cos2 d(x, y)

defines a metric on E of constant positive sectional curvature. The corresponding
group of isometries is given by PO(n + 1) and called the group of elliptic motions.

In this projective model of elliptic geometry geodesics are given by projective
lines, while, more generally, elliptic subspaces are given by projective subspaces.
By polarity, there is a one-to-one correspondence of points x ∈ E in elliptic space
and elliptic hyperplanes x⊥.

Two hyperplanes in elliptic space always intersect. If x, y ∈ E are the poles of
two elliptic hyperplanes, then their intersection angle α(x⊥, y⊥), or equivalently its
conjugate angle π − α is given by
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Fig. 4.3 Concentric
Cayley-Klein circles in the
elliptic plane

KO (x, y) = cos2 α(x⊥, y⊥).

The distance d(x, y⊥) of a point x ∈ RPn and an elliptic hyperplane with pole
y ∈ RPn is given by

KO (x, y) = sin2 d(x, y⊥).

Onemay normalize the homogeneous coordinate vectors of points in elliptic space
to lie on a sphere:

S
n := {

x ∈ R
n+1

∣∣ x · x = 1
}
.

Then P(Sn) = E is a double cover, where antipodal points of the sphere are identified.
In this normalization elliptic planes correspond to great spheres of S

n , and it turns out
that elliptic geometry is a double cover of spherical geometry. For x, y ∈ S

n above
distance formulas become

|x · y| = cos d(x, y),

|x · y| = cosα(x⊥, y⊥),

|x · y| = sin d(x, y⊥),

Remark 4.6 The pole x ∈ E of an elliptic hyperplane x⊥ has two lifts to the sphere,
x,−x ∈ S

n , which may be used to encode the orientation of the hyperplane (cf.
Remark 4.5). This allows for omitting the absolute values in above distance formulas,
while taking distances to be signed and distinguishing between intersection angles
and their conjugate angles.
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A Cayley-Klein sphere in elliptic space Sμ(x) with center x ∈ E , x ∈ S
n , is not

empty if and only if 0 ≤ μ ≤ 1 (see Fig. 4.3). In this case it corresponds to an elliptic
sphere with center x ∈ E and elliptic radius 0 ≤ r = arccos

√
μ ≤ π

2 :

Sμ(x) = {
y ∈ E ∣∣ KO (x, y) = cos2 r

} = P
({
y ∈ S

n
∣∣ |x · y| = cos r

})
.
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