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Chapter 1
Introduction

The discovery of non-Euclidean geometry by Lobachevsky, Bolyai and Gauss was
a revolution which might be compared with the discovery of the spherical form of
the Earth (see, e.g., [Mi1982]). It turned out that there exist other geometric worlds
with points, straight lines and circles, and they have natural geometric properties
generalizing the ones of classical Euclidean geometry. The latter is recovered in the
limit when the curvature of the space goes to zero. Almost immediately after the
invention of hyperbolic geometry Lobachevsky and Gauss posed the question about
the real geometry of our world and even tried to measure it experimentally. This
played a crucial role in the further development of geometry and physics. Indeed, in
the hyperbolic space conventional Euclidean translations and rotations are replaced
by the group of hyperbolic isometric transformations. In the three-dimensional case
this group coincides with the Lorentz group (more precisely with the subgroup of
orthochronous, i.e. time direction preserving, transformations) of our space time,
which is central in Einstein’s special theory of relativity.

FelixKlein in hisErlangen program of 1872 [Kle1893] revolutionized the point of
view on geometry by declaring the transformation group as the conceptually central
notion. The traditional view is that geometry studies the space around us. Due to
Klein, geometry is the study of invariants under a group of transformations. This was
the organizing principle which brought an order into various facts accumulated in
geometry, or rather, into different geometries that had been discovered.

Various transformation groups naturally lead to various geometries including pro-
jective, affine, spherical, hyperbolic, Möbius, Lie, Plücker, and Laguerre geometries.
Many beautiful results were obtained during the classical period of the theory. A good
presentation can be found in the books by Wilhelm Blaschke [Bla1923, Bla1929],
which is probably themost comprehensive source of knowledge of the corresponding
geometries. Unfortunately till now these books exist only in German.

Modern revival of the interest in classical geometries and their recent develop-
ment is in much extent due to the possibility of their investigation by computational
methods. Computers enable experimental and numerical investigations of geometries

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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2 1 Introduction

Fig. 1.1 Euclidean and elliptic checkerboard incircular nets as instances of Euclidean and non-
Euclidean (spherical) Laguerre geometries. Straight lines and circles are tangent and can be oriented
so that their orientations coincide at the points of tangency (oriented contact). The “straight lines”,
or geodesics, on the sphere are great circles

as well as their visualization. Classical geometries became visible! Also physics con-
tributed with more and more involved transformation groups and problems.

Last but not least are applications in computer graphics, geometry processing,
architectural geometry and even computer simulation of dynamics and other physical
processes. Möbius geometry is probably the most popular geometry in this context.
For numerous applications of classical geometries we refer in particular to [BS2008,
PW2001].

This small book is on a rather “exotic” geometry called non-Euclidean Laguerre
geometry. Euclidean Laguerre geometry, Möbius geometry and Lie geometry belong
to its close environment and also appear in this book. Before we come to precise
mathematical explanations let us give a rough idea of these geometries in the plane.
The basic geometric objects in these geometries are points, straight lines and circles.
Whereas Möbius geometry is dealing with points and circles and has no notion
of a straight line, Laguerre geometry is the geometry of circles and straight lines
and has no notion of a point. Incidences in Möbius geometry, like points lie on
circles, in Laguerre geometry correspond to the tangency condition between circles
and straight lines (more precisely, oriented circles and lines which are in oriented
contact). In the non-Euclidean case, straight lines are replaced by geodesics (see
Fig. 1.1). Generalizations of Laguerre geometry to non-Euclidean space have already
been studied by Beck [Bec1910], Graf [Gra1934, Gra1937, Gra1939] and Fladt
[Fla1956, Fla1957], mainly in dimension 2.

Classically, (Euclidean) Laguerre geometry is the geometry of oriented hyper-
planes, oriented hyperspheres, and their oriented contact in Euclidean space
[Lag1885]. It is named after Laguerre [HPR1898], and was actively studied in
dimensions 2 and 3 in the early twentieth century, see, e.g., [Bla1910, Bla1929].
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In [Ben1973] and [Yag1968] the relation between Laguerre geometry and projective
planes over commutative rings, e.g. dual numbers, is investigated.

More recently, Laguerre geometry has been employed in specific applications,
most notably in connection with offsets. These are curves or surfaces which lie at
constant normal distance to each other and have various applications in Computer-
Aided Design andManufacturing (see e.g. [Far2008]). Viewing a curve or surface as
a set of oriented tangents or tangent planes, respectively, the offsetting operation is
a special Laguerre transformation and thus Laguerre geometry is a natural geometry
for the study of offsets. Examples of its use include the determination of all fami-
lies of offsets that are rational algebraic and therefore possess exact representations
in NURBS-based 3D modeling systems [Far2008, PP1998a, PP1998b]. Discrete
versions of offset surfaces play an important role in discrete differential geometry in
connection with the definition of discrete curvatures [BPW2010] and in architectural
geometry [PL*2007].

The knowledge of Laguerre geometry as a counterpart to themore familiarMöbius
geometry is a useful tool in research. It allows one to study sphere geometric concepts
within both of these two geometries, which may open up new applications. An
example for that is furnished by circular meshes, a Möbius geometric concept, and
conical meshes, their Laguerre geometric counterparts [BS2007, BS2008, PW2008].
Both of them are discrete versions of curvature line parameterizations of surfaces, but
have different properties in view of applications. It turned out that conical meshes are
preferable for the realization of architectural freeform structures. The main reason
is an offset property which facilitates the design and fabrication of supporting beam
layouts [PL*2007]. Even more remarkable is the fact that the supporting structures
with the cleanest node geometry are based on so-called edge offset meshes and
are also of a Laguerre geometric nature [PGB2010]. Quadrilateral structures of this
type impose a shape restriction. They are discrete versions of Laguerre isothermic
surfaces [Bla1929, BS2006], a special case of which are Laguerre minimal surfaces
[Bla1929, PGM2009, PGB2010, SPG2012]. The “dual” viewpoints of Möbius and
Laguerre geometry also led to different discretizations and applications of surface
parameterizations which run symmetrically to the principal directions [PW*2020].

The most comprehensive text on Laguerre geometry is the classical book by
Blaschke [Bla1929], where however only the Euclidean case is treated. There exists
no systematic presentation of non-Euclidean Laguerre geometry in the literature. The
goal of the present book is twofold. On one hand, it is supposed to be a comprehensive
presentation of non-Euclidean Laguerre geometry, and thus has the character of a
textbook. On the other hand, Chap. 8 presents new results.We demonstrate the power
of Laguerre geometry on the example of checkerboard incircular nets introduced in
[AB2018], give a unified treatment of these nets in all space forms, and describe them
explicitly. Checkerboard incircular nets are Laguerre geometric generalizations of
incircular nets introduced by Böhm [Böh1970], which are defined as congruences
of straight lines in the plane with the combinatorics of the square grid such that each
elementary quadrilateral admits an incircle. They are closely related to (discrete)
confocal conics [BSST2016, BSST2018]. The construction and geometry of incir-
cular nets and their Laguerre geometric generalization to checkerboard incircular
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nets have been discussed in great detail. Explicit parametrizations for the Euclidean
cases were derived in [BST2018], while different higher dimensional analogues of
incircular nets were studied in [ABST2019, AB2018]. In this book we further gen-
eralize planar checkerboard incircular nets to Lie geometry, and show that these may
be classified in terms of checkerboard incircular nets in hyperbolic/elliptic/Euclidean
Laguerre geometry. We prove incidence theorems of Miquel type and show that all
lines of a checkerboard incircular net are tangent to a hypercycle. This generalizes
the results from [BST2018] and leads to a unified treatment of checkerboard incir-
cular nets in all space forms. Visualizations and geometric data for checkerboard
incircular nets can also be found at [DGDGallery].

In Chap. 2 we begin our treatment of non-Euclidean Laguerre geometry by intro-
ducing elementarymodels for Laguerre geometry in the elliptic and hyperbolic plane.
The intention here is to enable the reader to quickly get a glimpse of this geometry
without reference to the following more general discussions.

In Chap. 6 we show how Laguerre geometry can be obtained in a unified way for
an arbitrary Cayley-Klein space of any dimension. In the spirit of Klein’s Erlangen
program this is done in a purely projective setup for which we introduce the founda-
tions on quadrics (Chap. 3), Cayley-Klein spaces (Chap. 4), and central projections
(Chap. 5) [Kle1928, Bla1954, Gie1982]. For a Cayley-Klein space K ⊂ RPn the
space of hyperplanes is lifted to a quadric B ⊂ RPn+1, which we call the Laguerre
quadric. Vice versa, the projection from the Laguerre quadric yields a double cover of
the space ofK-hyperplanes which can be interpreted as carrying their orientation. In
the projection hyperplanar sections of B correspond to spheres of the Cayley-Klein
space K. The corresponding group of quadric preserving transformations, which
maps hyperplanar sections of B to hyperplanar sections of B, naturally induces the
group of transformations of oriented K-hyperplanes, which preserves the oriented
contact to Cayley-Klein spheres. We explicitly carry out this general construction in
the cases of hyperbolic and elliptic geometry, yielding hyperbolic Laguerre geom-
etry and elliptic Laguerre geometry, respectively. The (classical) Euclidean case
constitutes a degenerate case of this construction, which we treat in Appendix A.
In Appendix B we treat an invariant of two points on a quadric, which is closely
related to the Cayley-Klein distance, and of which the classical inversive distance
introduced Coxeter [Cox1971] turns out to be a special case.

In Chap. 7 we show how the different Laguerre geometries appear as subge-
ometries of Lie geometry. Lie (sphere) geometry is the geometry of oriented hyper-
spheres of the n-sphere Sn ⊂ R

n+1, and their oriented contact [Bla1929, Cec1992,
BS2008]. Laguerre geometry can be obtained by distinguishing the set of “oriented
hyperplanes” as a sphere complex among the set of oriented hyperspheres, the so
called plane complex. Classically, the plane complex is taken to be parabolic, which
leads to the notion of Euclidean Laguerre geometry, where elements of the plane
complex are interpreted as oriented hyperplanes of Euclidean space. Choosing an
elliptic or hyperbolic sphere complex, on the other hand, allows for the interpreta-
tion of the elements of the plane complex as oriented hyperplanes in hyperbolic or
elliptic space, respectively. The group of Lie transformations that preserve the set of
“oriented hyperplanes” covers the group of Laguerre transformations.



Chapter 2
Two-Dimensional Laguerre Geometry

In this section we present two-dimensional Laguerre geometry in an elementary way,
without reference to the following more general discussion, which begins in Chap. 3.
We first introduce the most basic concepts of these geometries in the Euclidean plane
and then turn to the elliptic and hyperbolic plane. The intention here is to enable the
reader to quickly get a glimpse of these geometries without diving into the details.

In Laguerre geometry in these planes, we consider oriented lines and oriented
circles as the basic objects and oriented contact (tangency) as the basic relation
between them. A point is considered as an oriented circle of radius zero, being in
contact with all oriented lines passing through it. More generally, in the hyperbolic
plane, horocycles, curves of constant distance to a hyperbolic line, and certain deSitter
circles are also considered as oriented circles.

A Laguerre transformation is bijective in the sets of oriented lines and oriented
circles, respectively, and preserves oriented contact. It is important to note that in
general Laguerre transformations do not preserve points. Points are special oriented
circles and are therefore mapped to oriented circles. In fact, the Laguerre trans-
formations that map points to points are exactly the Euclidean similarities and the
congruence transformations in the elliptic and hyperbolic plane.

A key concept in higher geometries is the use of various models. This is very
well known for Euclidean Möbius geometry. There one often uses the sphere model
S
2, connected via stereographic projection to the standard model, namely the confor-

mally closed Euclidean plane. To see the advantages of the sphere model and to com-
pare later with Laguerre geometry, let us recall the basic concepts of two-dimensional
EuclideanMöbius geometry. The basic elements are points inR2 (conformally closed
with an ideal point∞) andMöbius circles. These are theEuclidean circles and straight
lines. The latter are exactly those Möbius circles which pass through ∞. However,
∞ and straight lines do not play a special role within Möbius geometry. It appears
only in the realization of Möbius geometry in the Euclidean plane, very much like

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. I. Bobenko et al., Non-Euclidean Laguerre Geometry and Incircular Nets,
SpringerBriefs in Mathematics, https://doi.org/10.1007/978-3-030-81847-0_2

5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81847-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-81847-0_2


6 2 Two-Dimensional Laguerre Geometry

performing projective geometry in the Euclidean plane requires the projective clo-
sure by a line at infinity, which plays no special role from a projective perspective. In
the sphere model S2 of Möbius geometry, the special role of ∞ is gone. The points
of Möbius geometry are just those of S2 and the Möbius circles are the circles on
S
2 (planar sections of S2). Möbius transformations are bijective in the sets of points

and Möbius circles and preserve the point-circle incidences. In the sphere model
they appear as projective transformations which map S2 onto itself. Thus, the sphere
model is a quadric model of Möbius geometry which allows one to apply projective
geometry to study Möbius geometry.

We will now present elementary quadric models of Laguerre geometry in the
Euclidean, elliptic and hyperbolic plane, in which oriented lines are represented by
points of a quadric in projective 3-space and oriented circles appear as the planar
sections of that quadric. In these quadric models, Laguerre transformations are seen
as projective transformations which map the quadric onto itself.

First, in Sect. 2.1, we start with Euclidean Laguerre geometry, which in a sense
is slightly more complicated than the non-Euclidean cases. This is so because the
most insightful path from the standard realization in the Euclidean plane towards the
quadric model requires an intermediate step, the so-called cyclographic model. From
the viewpoint of projective geometry, this model is a dual quadric model: oriented
lines appear as planes, and those planes form a singular quadric in dual projective
space (tangent planes of a conic). Applying projective duality, one obtains a quadric
model in which oriented lines appear as points of a cylinder, the so-called Blaschke
cylinder.

Then, in Sect. 2.2, we turn to elliptic Laguerre geometry, where the quadric model
is also S

2, but there the points of S2 represent oriented lines of elliptic Laguerre
geometry. Finally, Sect. 2.3 deals with Laguerre geometry in the hyperbolic plane,
whose quadric model is based on a ruled quadric. Hence, the quadric models of
the three types of Laguerre geometries are based on the basic projective types of
quadrics in projective 3-space: a quadratic cone for Euclidean Laguerre geometry,
an oval quadric for elliptic Laguerre geometry, and a ruled quadric for hyperbolic
Laguerre geometry.

2.1 Two-Dimensional Euclidean Laguerre Geometry

We use Cartesian coordinates (x1, x2) in the Euclidean plane R
2 and discuss rep-

resentations of oriented circles, oriented lines, and oriented circle-line contact (see
Fig. 2.1).

An oriented circle c is given by its center m = (m1,m2) ∈ R
2 and signed radius

r ∈ R. For r > 0, we imagine the circle to be traversed counter-clockwise, with unit
normals pointing to the left of that traversal direction, i.e. towards the inside. For
r < 0, this is the other way round. For r = 0 the oriented circle is just the pointm. In
this way, oriented circles are completely represented by the triples (m1,m2, r) ∈ R

3.
For an oriented straight line �, we consider the unit normal vector
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Fig. 2.1 An oriented circle
and an oriented line in
oriented contact in the
Euclidean plane

n = (n1, n2) = (cosϕ, sin ϕ) ∈ S
1, ϕ ∈ [0, 2π),

pointing to the positive side, which is again the left side of the one in which we
may imagine the line to be traversed. Then, the equation (Hesse normal form) of the
straight line � is

x1 cosϕ + x2 sin ϕ + h = 0, or 〈n, x〉 + h = 0,

where 〈·, ·〉 denotes the standard Euclidean scalar product. Note that the left hand
side expresses the signed distance of a point (x1, x2) to the oriented line � and thus
h is the signed distance of the origin to �. We may represent an oriented line by the
pair (n, h) ∈ S

1 × R.
Oriented contact between an oriented circle c = (m1,m2, r) and an oriented line

� = (n, h) occurs exactly if the center (m1,m2) of c has oriented distance r to �,

m1 cosϕ + m2 sin ϕ + h = r, or 〈n,m〉 + h = r. (2.1)

Better insight into Laguerre geometry is obtained if one of the two types of basic
elements (oriented circles, oriented lines) appear as points. In the first model we are
going to discuss, the cyclographic model, oriented circles appear as points. In the
second model, the Blaschke cylinder, oriented lines appear as points.

The cyclographic model It is natural to view the triple (m1,m2, r) characterizing
an oriented circle c as a pointC ∈ R

3 (see Fig. 2.2). In descriptive geometry, the map
ζ : C �→ c is known as cyclographic mapping. It interprets the top view (c1, c2) of
a point C = (c1, c2, c3) ∈ R

3 as center and c3 = r as signed radius of an oriented
circle in the plane

� : x3 = 0.

We may imagine the plane � as horizontal. The cone with vertex C and base circle
c is a right circular cone with a vertical axis, inclined against � under the constant
angle γ = π

4 . All these cones are related by translations and can be used to perform a
projection C �→ c in the sense of descriptive geometry: Take the γ -cone �(C) with
vertexC and intersect it with the image plane�. Of course, one has to add the correct
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Fig. 2.2 The cyclographic model of Euclidean Laguerre geometry can be viewed as Minkowski
space R

3. The Euclidean plane is identified with the plane � ⊂ R
3. An oriented line � in the

Euclidean plane is represented by an isotropic plane L ⊂ R
3. An oriented circle c in the Euclidean

plane is represented by a pointC ∈ R
3. The circle is given by the intersection of�with the isotropic

cone�(C)with vertexC . Its orientation is determined bywhether the pointC lies above or below�.
A line G ⊂ R

3 corresponds to a linear family of oriented circles

orientation to the resulting circle. A detailed discussion of the cyclographic mapping
from a constructive perspective and with numerous relations to classical geometry
is found in [MK1929] (see also [PW2001], pp. 366–384).

To transfer an oriented straight line � into the cyclographic model, we view it as
the set of all oriented circles which are in oriented contact with it. As expressed by
Eq. (2.1) this yields a plane

L : x1 cosφ + x2 sin φ + h = x3. (2.2)

It is inclined against � under the angle γ = π
4 and thus called a γ -plane. By con-

struction, oriented contact between an oriented line � and an oriented circle c is given
by the incidence of the plane L and the point C . All tangent planes of a γ -cone �(C)

are γ -planes and correspond to the oriented lines in � which are in oriented contact
with c = ζ(C). Moreover, all oriented circles which are tangent to c appear in the
cyclographic model as points of the γ -cone �(C).

The cyclographic mapping transforms straight lines G ⊂ R
3 to linear families

of oriented circles. Since any two points of G can be mapped into each other by a
uniform scaling (central similarity) with center G0 = G ∩ �, the resulting circles
are also related by uniform scaling with centerG0.We have to distinguish three types
of lines, depending on their inclination angle α ∈ [0, π

2 ] against �:

(i) For α = γ , we obtain a γ -line G. Under ζ , its points are mapped to oriented
circles through G0, where they are tangent to the same oriented straight line �.
Of course, the cyclographic preimage of � is the single γ -plane through G. We
may say that γ -lines in R3 determine oriented contact elements in �.

(ii) For 0 ≤ α < π/4, there are two real γ -planes L1, L2 through G and thus the
cyclographic image of G consists of all oriented circles which are tangent to
two oriented lines �1, �2 ⊃ G0.
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Fig. 2.3 The Blaschke
cylinder model of Euclidean
Laguerre geometry is
obtained by projective
dualization of the
cyclographic model. An
oriented line � is represented
by a point L� on the
Blaschke cylinder Beuc. An
oriented circle c is
represented by a plane
C� = Pc. The oriented lines
in oriented contact with c are
given by the intersection
Pc ∩ Beuc. Linear families of
oriented circles correspond
to lines G�

(iii) For π/4 < α ≤ π/2, one may use the two conjugate complex γ -planes through
G, which lead to two conjugate complex lines through G0 which are tangent to
all oriented circles corresponding to the points of G. Of course, these oriented
circles are obtained by uniform scaling of one oriented circle c from a center
G0 inside c.

The three types of lines indicate already that R3 should be viewed as Minkowski
space or pseudo-Euclidean space, based on the Minkowski scalar product of vectors
x, y ∈ R

3,
〈x, y〉m := x1y1 + x2y2 − x3y3.

There, the γ -lines are isotropic (light-like), i.e., their direction vectors g satisfy
〈g, g〉m = 0. A γ -cone with vertex C = (c1, c2, c3),

�(C) : (x1 − c1)
2 + (x2 − c2)

2 − (x3 − c3)
2 = 0,

is an isotropic cone (Minkowski sphere of radius 0). The other two types of linesG ⊂
R

3 are space-like (0 ≤ α < π
4 , 〈g, g〉m > 0) and time-like (π

4 < α ≤ π
2 , 〈g, g〉m <

0).Wewill return to this interpretation in our discussion of Laguerre transformations.

The Blaschke cylinder In the cyclographic model, oriented lines appear as (special)
planes. We are interested in a model where they appear as points (see Fig. 2.3).
For that, we perform the projective extension of R3 and introduce homogeneous
coordinates (X1, . . . , X4) with

x1 = X1

X4
, x2 = X2

X4
, x3 = X3

X4
.
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A γ -plane (2.2) has equation

L : X1 cosϕ + X2 sin ϕ − X3 + hX4 = 0,

and thus plane coordinates

(U1,U2,U3,U4) = (cosϕ, sin ϕ,−1, h).

The set of such planes is formed by pencils of (parallel) planes whose axes are the
tangents of the common conic at infinity of the γ -cones, i.e., the absolute conic

B�
euc : X2

1 + X2
2 − X2

3 = 0, X4 = 0

of Minkowski space (where “euc” refers to “Euclidean Laguerre geometry” and the
� indicates that we consider the cyclographic model as the dual model). To obtain
a point model for the oriented lines, we apply projective duality �, i.e., exchange
the meaning of point and plane coordinates. Under duality this set is mapped to a
singular quadric as a point set, i.e., the γ -planes form a quadratic cone

Beuc : U 2
1 +U 2

2 −U 2
3 = 0

in the space of planes. In affine coordinates (U3 = −1) a γ -plane has coordinates

(cosϕ, sin ϕ, h). (2.3)

and thus all image points L� of oriented lines � lie on the rotational cylinder

Beuc : x21 + x22 = 1,

which is known as the Blaschke cylinder, and constitutes a point model for the set of
oriented lines. We could have written down this simple map from the standard model
to this quadric model without the cyclographic model. But this way, the projective
geometric context is much clearer.

On the Blaschke cylinder, oriented circles (as sets of their oriented tangents)
appear as planar sections of Beuc. The plane Pc of that section is given by the image
of the point C under duality, but also follows immediately from the contact relation
(2.1) and (2.3) as

Pc : m1x1 + m2x2 + x3 = r.

Note that planes parallel to the rulings of Beuc do not arise as images of oriented
circles. Points on the same ruling (ϕ = const) of Beuc correspond to parallel oriented
lines.

As illustration, let us also transform the three types of linear families of oriented
circles to Beuc: If the corresponding line G ⊂ R

3 is space-like, we obtain all sections
with planes through a line G� which intersects Beuc in two points. Those points
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represent the two common oriented tangents. In the light-like case, the line G� is
tangent to Beuc and in the time-like case it does not intersect Beuc in real points.

Laguerre transformations A Laguerre transformation is bijective in the sets of
oriented lines and oriented circles and preserves oriented contact. In the Blaschke
model, this means that it must be a transformation of Beuc onto itself which maps
planar sections to planar sections. From that, one concludes that it is the restriction
to Beuc of a projective transformation that maps Beuc to itself. Since Beuc is singular,
the group of these transformations is 7-dimensional.

Returning to the cyclographic model, a Laguerre transformation must be seen as
a projective map which maps the absolute conic B�

euc onto itself. In R
3, this is an

affine map which maps γ -lines to γ -lines, known as a Minkowski similarity. It is the
product of a uniform scaling with factor λ and a Minkowski congruence

x �→ λAx + a,

where a ∈ R
3 and AᵀDA = D with D = diag(1, 1,−1), i.e. the matrix A is

Minkowski orthogonal and preserves the Minkowski scalar product 〈·, ·〉m.
Minkowski congruences form a 6-dimensional group. They preserve the squared
Minkowski distance

d(C,C ′)2 := 〈C − C ′,C − C ′〉m = (m1 − m ′
1)

2 + (m2 − m ′
2)

2 − (r − r ′)2,

whereC = (m1,m2, r),C ′ = (m ′
1,m

′
2, r

′) ∈ R
3. If the points span a space-like line,

they determine two oriented circles c, c′ with two common oriented tangents. The
distance of the contact points on each of the two tangents equals the Minkowski dis-
tanced(C1,C2). Summarizing,we see that Laguerre transformations in theEuclidean
plane form a 7-dimensional group whose elements multiply all tangent distances of
oriented circles with a common factor λ, while those Laguerre transformations that
preserve tangent distances form a 6-dimensional subgroup of special Laguerre trans-
formations.

A practically important example of a Laguerre transformation is the offsetting
operation. Applied to oriented circles, it adds a constant value d to the signed radius.
Hence, it also maps an oriented line to a parallel line at signed distance d. Offsetting
appears in the cyclographic model as translation parallel to the x3-axis and on the
Blaschke cylinder as translation parallel to the rulings. While being so simple in
these models, shape changes in the Euclidean plane may be significant: Viewing a
curve as set of its oriented tangents, it maps the curve to its offset curve at distance d.
Clearly, the two possible orientations lead to the two offsets on both sides. Already
for a very simple curve such as an ellipse, the changes in shape are remarkable (see
Fig. 2.4). General Laguerre transforms of conics are called hypercycles and will play
an important role in the study of incircular nets (see Sect. 8.3).
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Fig. 2.4 A conic under Laguerre transformations. Left: An ellipse (with both orientations).Middle:
Offset curves of the ellipse. emphRight: A more general Laguerre transform of the ellipse

2.2 Two-Dimensional Elliptic Laguerre Geometry

We use the sphere model of the elliptic plane E . Points of E are seen as pairs of
antipodal points of the unit sphere S2 ⊂ R

3. Oriented lines of E appear as oriented
great circles in S

2 and oriented circles in E correspond to oriented circles (different
from great circles) in S2 (see Fig. 2.5).

Oriented linesAnoriented great circle � ⊂ S
2 defines two half-spheres, one ofwhich

lies on the positive side, which shall be the left side when running on � in terms of
the orientation. We now represent an oriented great circle � by its spherical center x.
This is the intersection point of the circle’s rotational axis with S2 which lies on the
positive side of �.

Oriented circles Let us now consider all oriented lines � of E which are tangent to
an oriented circle. In the sphere model, this yields all oriented great circles of S2

which are tangent to an oriented circle c ⊂ S
2. By rotational symmetry, their centers

x form a circle G(c). The set of centers G(c) does not degenerate to a point as c is
not a great circle, while it is a great circle if c is a point. Thus, we have obtained a
quadric model of elliptic Laguerre geometry, in which points on the oval quadric

Fig. 2.5 The unit sphere
Bell = S

2 as a model of
elliptic Laguerre geometry.
An oriented line � is
represented by the spherical
center x of a great circle. An
oriented circle c is
represented by a planar
section G(c), which is
composed of the spherical
centers of the great circles in
oriented contact with the
circle
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Bell = S
2

correspond to oriented lines and planar sections of S2 correspond to oriented circles.

Laguerre transformations It now becomes clear how to realize Laguerre transfor-
mations of the elliptic plane in the sphere model: These are projective transforma-
tions that map the sphere S

2 to itself. Planar sections G(c) ⊂ S
2 (oriented circles)

are mapped to planar sections, but in general great circles are not mapped to great
circles. This expresses the fact that Laguerre transformations map oriented circles to
oriented circles, but do in general not preserve points.

In Möbius geometry these projective automorphisms of S2 also appear as Möbius
transformations, but the meaning of points is different. Summarizing, we can say
that the elliptic Laguerre group is isomorphic to the (Euclidean) Möbius group. Both
appear as projective automorphisms of the sphere, but in elliptic Laguerre geometry,
points of the sphere have themeaning of centers of great circles, representing oriented
straight lines of E .

2.3 Two-Dimensional Hyperbolic Laguerre Geometry

We employ the projective model of the hyperbolic planeHwith an absolute circle S.
Recall that points ofH are points inside the circle S, with the points of S playing the
role of points at infinity (ideal points). Straight lines � ⊂ H are seen as straight line
segments bounded by two ideal points m− and m+. The line obtains an orientation
by traversing it from m− to m+ (see Fig. 2.6).

Fig. 2.6 A rotational hyperboloid Bhyp as a model of hyperbolic Laguerre geometry. It contains
the absolute circle S of the projective model of the hyperbolic planeH at z = 0. An oriented line �

is represented by the intersection x of two rulings of Bhyp through the two ideal points m− and m+.
The tangent plane of Bhyp at the point x intersects the hyperbolic plane in the line �. A different
choice of rulings yields the point x′ which represents the same line with opposite orientation



14 2 Two-Dimensional Laguerre Geometry

To obtain a quadric model for Laguerre geometry in H, we view the absolute
circle

S : x21 + x22 = 1

as the smallest circle on the rotational hyperboloid

Bhyp : x21 + x22 − x23 = 1,

which lies in its symmetry plane x3 = 0. This hyperboloid carries two families of
straight lines (rulings). Two rulings are obtained by intersectingBhyp with the tangent
plane x1 = 1, yielding x3 = ±x2. By rotation about the x3-axis, the line x1 = 1,
x3 = x2 generates the family of rulings R+, and likewise x1 = 1, x3 = −x2 generates
the rulings R−. Through each point of Bhyp there passes exactly one line of R+ and
one line of R−.

Oriented linesWe now lift an oriented straight line � ofH to a point on the quadric
Bhyp as follows (see Fig. 2.6): We intersect the ruling of R+ through m− with the
ruling of R− through m+, yielding a point x ∈ Bhyp. The plane spanned by R− and
R+ is the tangent plane of Bhyp at x and this tangent plane intersects the base plane
x3 = 0 in the line �. Changing the orientation of � to �′ yields a point x′ which is the
reflection of x in the base plane x3 = 0. The connecting line x ∧ x′ is the polar line
of �with respect to the quadric Bhyp, and the orthogonal projection of x, respectively
x′, onto the base plane x3 = 0 is the pole of � with respect to the absolute circle S.

Parallel oriented straight lines share an ideal point and thus correspond to points
which lie on the same ruling of Bhyp.

Oriented circles For the oriented circles of H the situation is slightly more com-
plicated since different types of circles come into play (see Figs. 2.7 and 2.8). The
first three types (see Fig. 2.7a–c) arise from generalized hyperbolic circles. Those
appear as special conics c in the projective model. We start with an informal dis-
cussion and then summarize it in the form of a precise definition. For visualization,
it is probably easiest to employ the sphere model of hyperbolic geometry and view
the conic c as the orthogonal projection of a circle on the sphere x21 + x22 + x23 = 1
onto the plane x3 = 0. Such a conic c together with the absolute circle S spans a
pencil which contains a doubly counted line L . The conic c and the absolute circle
S touch in two points on the line L . These may be two different real points as in
Fig. 2.7c, in which case c is a curve of constant distance to the hyperbolic line given
by L . But they can also be two complex conjugate points as in Fig. 2.7a, in which
case c is a hyperbolic circle with its center being the pole of the line L with respect
to the absolute circle S. Lastly, the two points may coincide as in Fig. 2.7b, which
corresponds to the case of a horocycle, represented by the conic c which has third
order contact with S. Hyperbolic Laguerre geometry, however, also considers circles
as in Fig. 2.7d, whose tangent lines correspond to real straight lines in H, but the
envelope lies in the deSitter space (outsite S).

To transform these oriented hyperbolic circles c to the quadric model we apply
polarity with respect to Bhyp. The tangents of c are polar to the lines of a quadratic
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Fig. 2.7 Oriented circles in hyperbolic Laguerre geometry. On the Laguerre quadric Bhyp oriented
circles are represented by planar sections, or, by polarity, the pole of the corresponding plane with
respect toBhyp. The first three types arise from generalized hyperbolic circles: a ordinary hyperbolic
circle, b horocycle, c curve of constant distance to a hyperbolic line. The fourth type is a deSitter
circle with hyperbolic tangent lines (d). Their envelope lies outside H (in the deSitter plane)
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Fig. 2.7 (continued)

cylinder� (parallel to the x3-axis, see Fig. 2.9). Its intersectionwithBhyp is composed
of two conics (in planes symmetric to x3 = 0). This follows from the tangency of �

andBhyp in the (possibly complex) ideal points c ∩ S = L ∩ S. One of the two planar
sections, G(c), represents the oriented circle c in its given orientation; the other,
symmetric section corresponds to the reverse orientation. The orthogonal projection
c⊥ of such a planar section is polar to c with respect to S and thus a conic which
touches S in the same points as c does. However, this conic c⊥ is not a hyperbolic
circle, but a deSitter circle (outside S).

Let us now turn to points which also define Laguerre circles and are presented in
Fig. 2.8. In the quadric model these circles correspond to sections ofBhyp with planes
parallel to the z-axis (passing through the polar line of the point c with respect to
S). Note that beside hyperbolic points (Fig. 2.8a) there is a further type of point-like
circles, shown in Fig. 2.8c, where the common point of tangents lies in the deSitter
space, outside S. Figure2.8b illustrates the case of an ideal point x ∈ S viewed as set
of lines. This set can be oriented in two ways and such defines two pencils of parallel
oriented lines. They are not considered as oriented Laguerre circles and correspond
to the intersection of Bhyp with its tangent plane at x, which decomposes into two
rulings. Each of the two pencils corresponds to a ruling of Bhyp.

Having discussed all these cases we can state that oriented Laguerre circles of
the hyperbolic plane H correspond precisely to the planar sections of Bhyp different
from rulings.

Laguerre transformations Finally, having the quadric model at our disposal, we
turn to Laguerre transformations. Laguerre transformations of the hyperbolic plane
appear as projective transformations that map the hyperboloid Bhyp to itself. Those
are exactly the maps that act bijectively on the set of points and planar sections of
the projectively extended quadric Bhyp.

Againwe see that Laguerre transformations do not preserve points, i.e., the special
circles of radius zero. Those belong to planar sections of Bhyp in x3-parallel planes
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Fig. 2.8 Points in hyperbolic Laguerre geometry. In Laguerre geometry, points are oriented circles
as well. Their images in the quadric model Bhyp are sections with planes that are orthogonal to
the base plane of H. Every tangent line appears with both orientations. a An ordinary point in the
hyperbolic plane H. b An ideal point on the absolute circle S. It defines two pencils of “parallel”
oriented lines. In the quadric model these pencils correspond to the rulings of Bhyp. c A deSitter
point. Only part of the lines through this point define hyperbolic lines
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Fig. 2.9 Lifting an oriented hyperbolic circle c to the Laguerre quadric Bhyp. The polar conic c⊥ of
c with respect to S is a deSitter circle. The quadratic cylinder � over c⊥ intersects the hyperboloid
Bhyp in two conics. The planar section G(c) represents the circle c in its given orientation

and this special property of a plane is in general not preserved under a projective
automorphism of Bhyp.

A projective automorphism of Bhyp maps rulings to rulings. Thus, hyperbolic
Laguerre transformations preserve parallelity of oriented straight lines. The same is
true in Euclidean Laguerre geometry but does not apply in the elliptic plane where
there is no parallelism of straight lines.



Chapter 3
Quadrics in Projective Space

We begin our general discussions with the introduction of quadrics in projective
space, see, e.g., [Kle1928, Bla1954, Gie1982].

3.1 Projective Geometry

Consider the n-dimensional real projective space

RPn := P(Rn+1) :=
(
R

n+1 \ {0})
�∼

as it is generated via projectivization from its homogeneous coordinate space
R

n+1 \ {0} using the equivalence relation

x ∼ y ⇔ x = λy for some λ ∈ R.

We denote points in RPn and its homogeneous coordinates by

x = [x] = [x1, . . . , xn+1].

Affine coordinates are given by normalizing one homogeneous coordinate to be equal
to one and then dropping this coordinate, e.g.,

(
x1
xn+1

, . . . ,
xn
xn+1

)
.

Points with xn+1 = 0, for which this normalization is not possible, are said to lie on
the hyperplane at infinity.
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The projectivization operator P acts on any subset of the homogeneous coordinate
space. In particular, a projective subspace U ⊂ RPn is given by the projectivization
of a linear subspace U ⊂ R

n+1,

U = P(U ), dimU = dimU − 1.

To denote projective subspaces spanned by a given set of points a1, . . . , ak with
linearly independent homogeneous coordinate vectors we use the exterior product
notation

a1 ∧ · · · ∧ ak := [a1 ∧ · · · ∧ ak] = P(span{a1, . . . , ak}).

The group of projective transformations is induced by the group of linear trans-
formations of R

n+1 and denoted by PGL(n + 1). A projective transformation maps
projective subspaces to projective subspaces, while preserving their dimension and
incidences. The fundamental theorem of real projective geometry states that this
property characterizes projective transformations.

Theorem 3.1 Let n ≥ 2, and W ⊂ RPn be a non-empty open subset. Let f : W →
RPn be an injective map that maps intersections of k-dimensional projective sub-
spaces with W to intersections of k-dimensional projective subspaces with f (W ) for
some 1 ≤ k ≤ n − 1. Then f is the restriction of a unique projective transformation
of RPn.

For a projective subgroup G ⊂ PGL(n + 1) we denote the stabilizer of a finite
number of points v1, . . . , vm ∈ RPn by

Gv1,...,vm := {g ∈ G | g(vi ) = vi , for i = 1, . . . ,m} . (3.1)

3.2 Quadrics

Let 〈·, ·〉 be a non-zero symmetric bilinear form onR
n+1. A vector x ∈ R

n+1 is called

• spacelike if 〈x, x〉 > 0,
• timelike if 〈x, x〉 < 0,
• lightlike, or isotropic, if 〈x, x〉 = 0.

There always exists an orthogonal basiswith respect to 〈·, ·〉, i.e. a basis (ei )i=1,...,n+1

satisfying
〈
ei , e j

〉 = 0 if i �= j . The triple (r, s, t), consisting of the numbers of space-
like (r ), timelike (s), and lightlike (t) vectors in (ei )i=1,...,n+1 is called the signature
of 〈·, ·〉. It is invariant under linear transformations. If t = 0, the bilinear form 〈·, ·〉
is called non-degenerate, in which case we might omit its value in the signature. We
alternatively write the signature in the form

(+ · · · +︸ ︷︷ ︸
r

− · · · −︸ ︷︷ ︸
s

0 · · · 0︸ ︷︷ ︸
t

).
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The space R
n+1 together with a bilinear form of signature (r, s, t) is denoted by

R
r,s,t . The zero set of the quadratic form corresponding to 〈·, ·〉

L
r,s,t := {

x ∈ R
n+1

∣∣ 〈x, x〉 = 0
}

is called the light cone, or isotropic cone. Its projectivization

Q := P(Lr,s,t ) = {
x ∈ RPn

∣∣ 〈x, x〉 = 0
} ⊂ RPn

defines a quadric in RPn (quadrics in RP2 are called conics).
While we are concerned with quadrics in a real projective space, it is sometimes

convenient to consider the complexification

QC := {
x ∈ CPn

∣∣ 〈x, x〉 = 0
} ⊂ CPn .

When referring to imaginary points of a quadricQ ⊂ RPn , we always mean non-real
points on its complexification QC.

A point x ∈ Q contained in the kernel of the corresponding bilinear form 〈·, ·〉,
i.e.

〈x, y〉 = 0 for all y ∈ R
n+1

is called a vertex ofQ. A quadric is called non-degenerate if it contains no vertices,
or equivalently if t = 0. IfQ is degenerate, i.e. t > 0, its set of vertices is a projective
subspace of dimension t − 1.

A non-zero scalar multiple of 〈·, ·〉 defines the same quadric Q. Vice versa, if
Q is non-empty and does not solely consist of vertices it uniquely determines its
corresponding symmetric bilinear form up to a non-zero scalar multiple. Upon con-
sidering the complexification QC of the real quadric Q this correspondence holds
for all quadrics, and it is thus convenient to generally identify the term quadrics and
symmetric bilinear forms up to non-zero scalar multiples.

The signature of a quadric is well-defined up to interchanging r and s. The sig-
nature of a projective subspace U = P(U ) is defined by the signature of the bilinear
form restricted to U . After a choice of the sign for the bilinear form of Q the signs
for the signature of U are fixed.

A quadric Q naturally defines two regions in the projective space RPn ,

Q+ := {
x ∈ RPn

∣
∣ 〈x, x〉 > 0

}
,

Q− := {
x ∈ RPn

∣∣ 〈x, x〉 < 0
}
,

(3.2)

which we call the two sides of the quadric. Which side is “+” and which side is “-”
is only determined after choosing the sign for the bilinear form of Q.

A projective subspace entirely contained in the quadric Q is called an isotropic
subspace. A quadricwith signature (r, s, t) contains isotropic subspaces of dimension
min{r, s} + t − 1 through every point.
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Consider the following examples of quadrics in RPn with different signatures.

Example 3.1

(i) A quadric with signature (n + 1, 0) is empty in RPn . By either identifying the
quadric with its bilinear form up to non-zero scalar multiples or by complexifi-
cationQC ⊂ CPn , we consider this to be an admissible non-degenerate quadric,
which only happens to have an empty real part. Note that one side of the quadric
Q+ = RPn is the whole space, while the other side Q− = ∅ is empty.

(ii) A quadric with signature (n, 1) is an “oval quadric”. It is projectively equivalent
to the (n − 1)-dimensional sphere S

n−1.
(iii) Aquadricwith signature (n − 1, 2) is a higher dimensional analogue of a doubly

ruled quadric in RP3. It contains lines as isotropic subspaces through every
point, but no planes.

(iv) A quadric with signature (r, s, 1) is a cone. It consists of all lines connecting its
vertex to a non-degenerate quadric of signature (r, s), given by its intersection
with a hyperplane not containing the vertex. Note that if r = 0 or s = 0 (the
real part of) the cone only consists of the vertex. The remaining part of the cone
can be considered as imaginary (cf. Example (i)).

(v) A quadric with signature (1, 0, n) is a “doubly counted hyperplane”. Formally,
this means the same as just “hyperplane”. The words “doubly counted” indicate
that the hyperplane is given by a quadratic equation.

For non-neutral signature, i.e. r �= s, and rs �= 0, the subgroup of projective trans-
formations preserving the quadric Q is exactly the projective orthogonal group
PO(r, s, t), i.e. the projectivization of all linear transformations that preserve the
bilinear form 〈·, ·〉. For simplicity, we call PO(r, s, t) the “group of transformations
that preserve the quadric Q” for all signatures.

Remark 3.1 In the case r = s the statement remains true if we exclude projective
transformations that interchange the two sides (3.2) of the quadric. In the case rs = 0
the statement remains true upon complexification.

The fundamental theorem of real projective geometry (see Theorem 3.1) may be
specialized to quadrics.

Theorem 3.2 Let n ≥ 3,Q ⊂ RPn be a non-degenerate non-empty quadric in RPn,
and W ⊂ Q be a non-empty open subset of the quadric. Let f : W → Q be an
injective map that maps intersections of k-dimensional projective subspaces with W
to intersections of k-dimensional projective subspaces with f (W ) for some 2 ≤ k ≤
n − 1. Then f is the restriction of a unique projective transformation of RPn that
preserves the quadric Q.

For a non-degenerate quadric every such transformation can be decomposed into
a finite number of reflections in hyperplanes by the theorem of Cartan andDieudonné
(see, e.g., [Ar1957]).

Theorem 3.3 Let Q ⊂ RPn be a non-degenerate quadric of signature (r, s). Then
each element of the corresponding projective orthogonal group PO(r, s) is the com-
position of at most n + 1 reflections in hyperplanes, i.e. transformations of the form
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σq : RPn → RPn, [x] →
[
x − 2

〈x, q〉
〈q, q〉q

]

for some q ∈ RPn \ Q.

3.3 Polarity

A quadric induces the notion of polarity between projective subspaces (see Fig. 3.1).
For a projective subspace U = P(U ) ⊂ RPn , where U ⊂ R

n+1 is a linear subspace,
the polar subspace of U is defined as

U⊥ := {
x ∈ RPn

∣
∣ 〈x, y〉 = 0 for all y ∈ U

}
.

IfQ is non-degenerate, the dimensions of two polar subspaces satisfy the following
relation:

dimU + dimU⊥ = n − 1.

A refinement of this statement, which includes the signatures of the two polar sub-
spaces, is captured in the following lemma.

Lemma 3.1 LetQ ⊂ RPn be a non-degenerate quadric of signature (r, s). Then the
signature (r̃ , s̃, t̃) of a subspace U ⊂ RPn and the signature (r̃⊥, s̃⊥, t̃⊥) of its polar
subspace U⊥ with respect to Q satisfy

Fig. 3.1 Polarity with respect to a conic Q with signature (+ + −) in RP2 (left) and a quadric of
signature (+ + +−) in RP3 (right). The point x and its polar hyperplane x⊥ are shown as well
as the cone of contact from the point x. Lines through x that are “inside” (signature (+−)), “on”
(signature (+0)), and “outside” (signature (++)) the cone intersect the quadric in 2, 1, or 0 points
respectively
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r = r̃ + r̃⊥ + t̃, s = s̃ + s̃⊥ + t̃, t̃ = t̃⊥.

In particular, t̃ ≤ min{r, s}.
For a point x ∈ Q on a quadric, which is not a vertex, the tangent hyperplane ofQ

at x is given by its polar hyperplane x⊥. If Q has signature (r, s, t) then the tangent
plane has signature (r − 1, s − 1, t + 1). Furthermore, for a non-degenerate quadric
a projective subspace is tangent to Q if and only if its signature is degenerate.

A projective line not contained in a quadric can intersect the quadric in either
zero, one, or two points (see Fig. 3.1).

Lemma 3.2 Let Q ⊂ RPn be a quadric, x, y ∈ RPn, x �= y be two points, and
define

� := 〈x, y〉2 − 〈x, x〉 〈y, y〉 .

• If � > 0, then the line x ∧ y has signature (+−) and intersects Q in two points

x± =
[
〈y, y〉 x +

(
−〈x, y〉 ± √

�
)
y
]
.

• If � < 0, then the line x ∧ y has signature (++) or (−−) and intersectsQ in no
real points, but in two complex conjugate points

x± =
[
〈y, y〉 x +

(
−〈x, y〉 ± i

√−�
)
y
]
.

• If � = 0, then the line x ∧ y has signature (+0) or (−0) and it is tangent toQ in
the point

x̃ = [〈y, y〉 x − 〈x, y〉 y] ,

or it has signature (00) and is contained in Q (isotropic line).

The last point of the preceding lemma gives rise to the following definition of the
cone of contact (see Fig. 3.1).

Definition 3.1 Let Q ⊂ RPn be a quadric with corresponding bilinear form 〈·, ·〉,
and x ∈ RPn \ Q. Define the quadratic form

�x (y) := 〈x, y〉2 − 〈x, x〉 〈y, y〉 .

Then the corresponding quadric

CQ(x) := {
y ∈ RPn

∣∣ �x (y) = 0
}

is called the cone of contact, or tangent cone, to Q from the point x.

The points of tangency of the cone of contact lie in the polar hyperplane of its
vertex.
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Lemma 3.3 LetQ ⊂ RPn be a quadric. For a point x ∈ RPn \ Q the cone of contact
to Q from x is given by

CQ(x) =
⋃

y∈x⊥∩Q
x ∧ y.

Remark 3.2 For a non-degenerate quadric Q the intersection x⊥ ∩ Q always
results in a non-degenerate quadric in x⊥. If the restriction of the correspond-
ing bilinear form has signature (n, 0) or (0, n) the intersection can be considered
as imaginary. The real part of the cone only consists of the vertex in this case
(cf. Example 3.1 (iv)).

3.4 Pencils of Quadrics

Let Q1,Q2 ⊂ RPn be two distinct quadrics with corresponding bilinear forms
〈·, ·〉1 , 〈·, ·〉2 respectively. Every linear combination of these twobilinear formsyields
a quadric. The family of quadrics obtained by all linear combinations of the two bilin-
ear forms is called a pencil of quadrics (see Fig. 4.1):

Q1 ∧ Q2 := (Q[λ1,λ2]
)
[λ1,λ2]∈RP1 , Q[λ1,λ2] := {

x ∈ RPn
∣
∣ λ1 〈x, x〉1 + λ2 〈x, x〉2 = 0

}
.

This is a line in the projective space of quadrics of RPn .
A pencil of quadrics is called non-degenerate if it does not consist exclusively of

degenerate quadrics. It contains at most n + 1 degenerate quadrics.
A point contained in the intersection of two quadrics from a pencil of quadrics is

called a base point. It is then contained in every quadric of the pencil. The variety of
base points has (at least) codimension 2.

Example 3.2 The pencil of quadrics Q ∧ CQ(x) spanned by a non-degenerate
quadric Q and the cone of contact CQ(x) from a point x ∈ RPn \ Q contains as
degenerate quadrics only the cone CQ(x) and the polar hyperplane x⊥. It is com-
prised of exactly the quadrics that are tangent toQ inQ ∩ x⊥. Tomake this statement
hold in all cases one has to extend the notion of tangency slightly. If Q ∩ x⊥ = ∅

in RPn one should consider the complexificationQC ⊂ CPn . Secondly, any Cayley-
Klein sphere which is a (doubly counted) hypersphere should be considered tangent
to Q in its (possibly imaginary) intersection. Finally, note that the absolute quadric
Q is tangent to itself in all points, in particular in a hyperplane.



Chapter 4
Cayley-Klein Spaces

In Klein’s Erlangen program Euclidean and non-Euclidean geometries are consid-
ered as subgeometries of projective geometry. Projectivemodels for, e.g., hyperbolic,
deSitter, and elliptic space can be obtained by using a quadric to induce the corre-
sponding metric [Kle1928]. In this section we introduce the corresponding general
notion of Cayley-Klein spaces and their groups of isometries, see, e.g., [Kle1928,
Bla1954, Gie1982]. We put a particular emphasis on the description of hyperplanes,
hyperspheres, and their mutual relations.

4.1 Cayley-Klein Distance

A quadric within a projective space induces an invariant for pairs of points.

Definition 4.1 Let Q ⊂ RPn be a quadric with corresponding bilinear form 〈·, ·〉.
Then we denote by

KQ (x, y) := 〈x, y〉2
〈x, x〉 〈y, y〉

the Cayley-Klein distance of any two points x, y ∈ RPn \ Q that are not on the
quadric. We further set KQ (x, y) = ∞, if 〈x, x〉 〈y, y〉 = 0 and 〈x, y〉 �= 0. In the
presence of a Cayley-Klein distance the quadric Q is called the absolute quadric.

Remark 4.1 The name Cayley-Klein distance, or Cayley-Klein metric, is usually
assigned to an actual metric derived from the above quantity as, for example, the
hyperbolic metric (cf. Sect. 4.4). Nevertheless, we prefer to assign it to this basic
quantity associated with an arbitrary quadric.

TheCayley-Klein distance is projectivelywell-defined, in the sense that it depends
neither on the choice of the bilinear form corresponding to the quadricQ nor on the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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Fig. 4.1 Concentric Cayley-Klein circles in the hyperbolic/deSitter plane. Left: Concentric circles
with hyperbolic center.Middle: Concentric circleswith deSitter center.Right: Concentric horocycles
with center on the absolute conic

choice of homogeneous coordinate vectors for the points x and y. Furthermore, it is
invariant under the group of projective transformations that preserve the quadric Q,
which we call the corresponding group of isometries.

The Cayley-Klein distance can be positive or negative depending on the relative
location of the two points with respect to the quadric, cf. (3.2).

Proposition 4.1 For two points x, y ∈ RPn \ Q with 〈x, y〉 �= 0:

• KQ (x, y) > 0 if x and y are on the same side of Q,
• KQ (x, y) < 0 if x and y are on opposite sides of Q.

A Cayley-Klein space is usually considered to be one side of the quadric, i.e.Q+
or Q−, together with a (pseudo-)metric derived from the Cayley-Klein distance, or
equivalently, together with the transformation group of isometries.

4.2 Cayley-Klein Spheres

Having a notion of “distance” allows for the definition of corresponding spheres (see
Fig. 4.1).

Definition 4.2 Let Q ⊂ RPn be a quadric, x ∈ RPn \ Q, and μ ∈ R ∪ {∞}. Then
we call the quadric

Sμ(x) := {
y ∈ RPn

∣∣ KQ (x, y) = μ
}

the Cayley-Klein hypersphere with center x and Cayley-Klein radius μ with respect
to the absolute quadric Q.

Remark 4.2

(i) Due to the fact that the Cayley-Klein sphere equation can be written as

〈x, y〉2 − μ 〈x, x〉 〈y, y〉 = 0, (4.1)
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we may include into the set Sμ(x) points y ∈ Q on the absolute quadric.
(ii) Given the center x of a Cayley-Klein sphere one can further rewrite the Cayley-

Klein sphere equation (4.1) as

〈x, y〉2 − μ̃ 〈y, y〉 = 0, (4.2)

where μ̃ := μ 〈x, x〉. While μ̃ is not projectively invariant anymore, the solu-
tion set of this equation still invariantly describes a Cayley-Klein sphere. We
may now allow for centers on the absolute quadric x ∈ Q which gives rise to
Cayley-Klein horospheres, i.e., quadrics given by (4.2) for any fixed μ̃ ∈ R.
(see Fig. 4.1, right).

Proposition 4.2 For a Cayley-Klein sphere with center x ∈ RPn \ Q and Cayley-
Klein radius μ ∈ R ∪ {∞} one has:
• If μ < 0 the center and the points of a Cayley-Klein sphere are on opposite sides
of the quadric.

• If μ > 0 the center and the points of a Cayley-Klein sphere are on the same side
of the quadric.

• Ifμ = 0 theCayley-Klein sphere is given by the (doubly counted)polar hyperplane
x⊥.

• If μ = 1 the Cayley-Klein sphere is the cone of contact CQ(x) touchingQ, which
is also called the null-sphere with center x.

• If μ = ∞ the Cayley-Klein sphere is the absolute quadric Q.

Proof Follows from Proposition 4.1 and Lemma 3.3. �

Fixing the center and varying the radius of a Cayley-Klein sphere results in a
family of concentric spheres (see Fig. 4.1).

Definition 4.3 Given an absolute quadric Q ⊂ RPn and a point x ∈ RPn \ Q we
call the family (

Sμ(x)
)
μ∈R∪{∞}

concentric Cayley-Klein spheres with center x.

Proposition 4.3 LetQ ⊂ RPn be the absolute quadric. Then the family of concentric
Cayley-Klein spheres with center x ∈ RPn \ Q is the pencil of quadricsQ ∧ CQ(x)

spanned by the absolute quadric Q and the cone of contact CQ(x), or equivalently,
by Q and the (doubly counted) polar hyperplane x⊥ (cf. Example 3.2).

Proof Writing the Cayley-Klein sphere equation as (4.1) we find that it is a linear
equation in μ describing a pencil of quadrics. As observed in Proposition 4.2 it
contains, in particular, the quadric Q, the cone CQ(x), and the hyperplane x⊥. �

This leads to a further characterization of Cayley-Klein spheres among all
quadrics.
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Fig. 4.2 Left: Polarity with respect to a Cayley-Klein sphere Sμ(x) and the absolute quadric Q.
Right: A Cayley-Klein sphere Sμ(x) and its (concentric) polar Cayley-Klein sphere Sμ̃(x)

Corollary 4.1 Let Q ⊂ RPn be a non-degenerate absolute quadric. Then a second
quadric is a Cayley-Klein sphere if and only if it is tangent to Q in the (possibly
imaginary) intersection with a hyperplane (not tangent to Q).

Proof Follows from Proposition 4.3 and Example 3.2. Indeed, by Proposition 4.3,
concentric Cayley-Klein spheres are exactly the pencils of the formQ ∧ CQ(x). On
the other hand, Example 3.2 states that a pencil of the form Q ∧ CQ(x) consists
exactly of the quadrics tangent in the intersection with the polar hyperplane of x. �

Remark 4.3 Apencil of concentric Cayley-Klein horosphereswith center x ∈ Q is
spanned by the absolute quadricQ and the (doubly counted) tangent hyperplane x⊥,
which yields third order contact between each horosphere and the absolute quadric.

4.3 Polarity of Cayley-Klein Spheres

To describe spheres in terms of their tangent planes we turn our attention towards
polarity in Cayley-Klein spheres. A quadratic form of a Cayley-Klein sphere Sμ(x)

with center x ∈ RPn \ Q and Cayley-Klein radius μ ∈ R is given by (4.1):

�(y) := 〈x, y〉2 − μ 〈x, x〉 〈y, y〉 .

The corresponding symmetric bilinear form is obtained by the polarization identity:

b(y, ỹ) = 1

2
(�(y + ỹ) − �(y) − �(ỹ)) = 〈x, y〉 〈x, ỹ〉 − μ 〈x, x〉 〈y, ỹ〉 ,
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for y, ỹ ∈ R
n+1.

Lemma 4.1 LetY be the polar hyperplane of a point y ∈ RPn with respect to Sμ(x).
Then the pole z of Y with respect to the absolute quadricQ is given by (see Fig.4.2,
left)

z = 〈x, y〉 x − μ 〈x, x〉 y. (4.3)

Proof The polar hyperplane of y with respect to Sμ(x) is given by

Y = {
ỹ ∈ RPn

∣∣ b(y, ỹ) = 〈z, ỹ〉 = 0
}
.

�

For every point on a Cayley-Klein sphere the tangent hyperplane in that point
is given by polarity in the Cayley-Klein sphere. Now the tangent hyperplanes of
a Cayley-Klein sphere, in turn, may equivalently be described by their poles with
respect to the absolute quadric Q.

Proposition 4.4 Let x ∈ RPn \ Q and μ ∈ R \ {0, 1}. Then the poles (with respect
to the absolute quadric Q) of the tangent hyperplanes of the Cayley-Klein sphere
Sμ(x) are the points of a concentric Cayley-Klein sphere Sμ̃(x) with

μ + μ̃ = 1,

and vice versa.

Proof Let y ∈ Sμ(x) be a point on the Cayley-Klein sphere. Then the tangent plane
to Sμ(x) at the point y is the polar plane of y with respect to Sμ(x). According to
Lemma 4.1 the pole z of that tangent hyperplane with respect toQ is given by (4.3).
Computing the Cayley-Klein distance of this point to the center x we obtain

KQ (x, z) = 〈x, z〉2
〈x, x〉 〈z, z〉 = 〈x, y〉2 (1 − μ)2

〈x, y〉2 (1 − 2μ) + μ2 〈x, x〉 〈y, y〉 = 1 − μ,

where we used 〈x, y〉2 = μ 〈x, x〉 〈y, y〉. �

Definition 4.4 For a Cayley-Klein sphere Sμ(x) we call the Cayley-Klein sphere
S1−μ(x), consisting of all poles (with respect to the absolute quadric Q) of tangent
hyperplanes of Sμ(x), its polar Cayley-Klein sphere (see Fig. 4.2, right).

Remark 4.4 The two degenerate Cayley-Klein spheres x⊥ and CQ(x) correspond-
ing to the values μ = 0 and μ = 1 respectively, may be treated as being mutually
polar. Then polarity defines a projective involution on a pencil of concentric Cayley-
Klein spheres with fixed points at μ = 1

2 and μ = ∞.
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4.4 Hyperbolic Geometry

Let 〈·, ·〉 be the standard non-degenerate bilinear form of signature (n, 1), i.e.

〈x, y〉 := x1y1 + . . . + xn yn − xn+1yn+1

for x, y ∈ R
n+1, and denote by S ⊂ RPn the corresponding quadric. We identify the

“inside” of S, cf. (3.2), with the n-dimensional hyperbolic space

H := S−.

For two points x, y ∈ H one has KS (x, y) ≥ 1, and the quantity d(x, y) given by

KS (x, y) = cosh2 d(x, y)

defines a metric on H of constant negative sectional curvature. The corresponding
group of isometries is given by PO(n, 1) and called the group of hyperbolic motions.
The absolute quadric S consists of the points at (metric) infinity, i.e., at infinite
distance from any given point in S−. We call the union

H := H ∪ S

the compactified hyperbolic space.
In this projective model of hyperbolic geometry geodesics are given by intersec-

tions of projective lines in RPn withH, while, more generally, hyperbolic subspaces
(totally geodesic submanifolds) are given by intersections of projective subspaces in
RPn with H. Thus, by polarity, every point m ∈ dS in the “outside” of hyperbolic
space,

dS := S+,

which is called deSitter space, corresponds to a hyperbolic hyperplane m⊥ ∩ H.
Consider two hyperbolic hyperplanes with poles k,m ∈ dS.

• If KS (k,m) < 1, the two hyperplanes intersect in H, and their hyperbolic inter-
section angle α(k⊥,m⊥), or equivalently its conjugate angle π − α is given by

KS (k,m) = cos2 α(k⊥,m⊥).

• If KS (k,m) > 1, the two hyperplanes do not intersect inH, and their hyperbolic
distance d(k⊥,m⊥) is given by

KS (k,m) = cosh2 d(k⊥,m⊥).

The corresponding projective hyperplanes intersect in (k ∧ m)⊥ ⊂ dS.
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• If KS (k,m) = 1, the two hyperplanes are parallel, i.e., they do not intersect inH
but do intersect inH.

Finally, the hyperbolic distance d(x,m⊥) of a point x ∈ H and a hyperbolic hyper-
plane with pole m ∈ dS is given by

KS (x,m) = − sinh2 d(x,m⊥).

It is occasionally useful to employ a certain normalization of the homogeneous
coordinate vectors:

H
n := {

x = (x1, . . . , xn+1) ∈ R
n,1

∣∣ 〈x, x〉 = −1, xn+1 ≥ 0
}
,

dS
n := {

m = (m1, . . . ,mn+1) ∈ R
n,1

∣∣ 〈m,m〉 = 1
}
.

Then P(Hn) = H is an embedding and P(dS
n) = dS is a double cover. For x, y ∈ H

n

and k,m ∈ dS
n above distance formulas become

〈x, y〉 = − cosh d(x, y),

|〈k,m〉| = cosα(k⊥,m⊥), if |〈k,m〉| ≤ 1,

|〈k,m〉| = cosh d(k⊥,m⊥), if |〈k,m〉| ≥ 1,

|〈x,m〉| = sinh d(x,m⊥).

Remark 4.5 The double cover P(dS
n) = dS of deSitter space can be used to encode

the orientation of the corresponding polar hyperplanes, e.g., by endowing the hyper-
bolic hyperplane corresponding to m ∈ dS

n with a normal vector in the direction of
the hyperbolic halfspace on which the bilinear form with points x ∈ H

n is positive:
〈x,m〉 > 0. Using the double cover to encode orientation one may omit the abso-
lute value in 〈x,m〉 = cos d to obtain an oriented hyperbolic distance d between a
point and an hyperbolic hyperplane. Similarly, one may omit the absolute value in
〈k,m〉 = cosα which allows to distinguish the intersection angle α and its conjugate
angle π − α.

We now turn our attention to the Cayley-Klein spheres of hyperbolic/deSitter
geometry. First, consider a pencil of concentric Cayley-Klein spheres Sμ(x) with
center inside hyperbolic space x ∈ H, x ∈ H

n . Depending on the value of μ ∈ R ∪
{∞} we obtain the following types of hyperbolic/deSitter spheres (see Fig. 4.1, left):
• μ < 0: A deSitter sphere with hyperbolic center.
• 0 < μ < 1: Sμ(x) is empty.
• 1 < μ < ∞: A hyperbolic sphere with center x ∈ H and hyperbolic radius r =
arcosh

√
μ > 0:

Sμ(x) = {
y ∈ H ∣∣ KS (x, y) = cosh2 r

} = P
({
y ∈ H

n
∣∣ 〈x, y〉 = − cosh r

})
.
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Second, consider a pencil of concentric Cayley-Klein spheres Sμ(m) with center
outside hyperbolic space m ∈ dS, m ∈ dS

n (see Fig. 4.1, middle):

• μ < 0: A hypersurface of constant hyperbolic distance r = arsinh
√

μ > 0 to the
hyperbolic plane m⊥ ∩ H:

Sμ(m) = {
y ∈ H ∣∣ KS (m, y) = − sinh2 r

} = P
({
y ∈ H

n
∣∣ |〈m, y〉| = sinh r

})
.

• 0 < μ < 1: A deSitter sphere tangent to S. All its tangent hyperplanes are hyper-
bolic hyperplanes.

• 1 < μ < ∞: A deSitter sphere tangent to S with no hyperbolic tangent hyper-
planes.

Third, a pencil of concentric Cayley-Klein horospheres with center on the absolute
quadric x ∈ S, x ∈ L

n,1 consists of hyperbolic horospheres and deSitter horospheres
(see Fig. 4.1, right).

4.5 Elliptic Geometry

For x, y ∈ R
n+1 we denote by

x · y := x1y1 + . . . xn yn + xn+1yn+1

the standard (positive definite) scalar product on R
n+1, i.e. the standard non-

degenerate bilinear form of signature (n + 1, 0). The corresponding quadric O ⊂
RPn is empty (or “purely imaginary”, cf. Example 3.1 (i)), as well as the setO− = ∅,
while

E := O+ = RPn

is thewhole projective space,whichwe identifywith then-dimensional elliptic space.
For two points x, y ∈ E one always has 0 ≤ KO (x, y) ≤ 1 and the quantity d(x, y)
given by

KO (x, y) = cos2 d(x, y)

defines a metric on E of constant positive sectional curvature. The corresponding
group of isometries is given by PO(n + 1) and called the group of elliptic motions.

In this projective model of elliptic geometry geodesics are given by projective
lines, while, more generally, elliptic subspaces are given by projective subspaces.
By polarity, there is a one-to-one correspondence of points x ∈ E in elliptic space
and elliptic hyperplanes x⊥.

Two hyperplanes in elliptic space always intersect. If x, y ∈ E are the poles of
two elliptic hyperplanes, then their intersection angle α(x⊥, y⊥), or equivalently its
conjugate angle π − α is given by
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Fig. 4.3 Concentric
Cayley-Klein circles in the
elliptic plane

KO (x, y) = cos2 α(x⊥, y⊥).

The distance d(x, y⊥) of a point x ∈ RPn and an elliptic hyperplane with pole
y ∈ RPn is given by

KO (x, y) = sin2 d(x, y⊥).

Onemay normalize the homogeneous coordinate vectors of points in elliptic space
to lie on a sphere:

S
n := {

x ∈ R
n+1

∣∣ x · x = 1
}
.

Then P(Sn) = E is a double cover, where antipodal points of the sphere are identified.
In this normalization elliptic planes correspond to great spheres of S

n , and it turns out
that elliptic geometry is a double cover of spherical geometry. For x, y ∈ S

n above
distance formulas become

|x · y| = cos d(x, y),

|x · y| = cosα(x⊥, y⊥),

|x · y| = sin d(x, y⊥),

Remark 4.6 The pole x ∈ E of an elliptic hyperplane x⊥ has two lifts to the sphere,
x,−x ∈ S

n , which may be used to encode the orientation of the hyperplane (cf.
Remark 4.5). This allows for omitting the absolute values in above distance formulas,
while taking distances to be signed and distinguishing between intersection angles
and their conjugate angles.
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A Cayley-Klein sphere in elliptic space Sμ(x) with center x ∈ E , x ∈ S
n , is not

empty if and only if 0 ≤ μ ≤ 1 (see Fig. 4.3). In this case it corresponds to an elliptic
sphere with center x ∈ E and elliptic radius 0 ≤ r = arccos

√
μ ≤ π

2 :

Sμ(x) = {
y ∈ E ∣∣ KO (x, y) = cos2 r

} = P
({
y ∈ S

n
∣∣ |x · y| = cos r

})
.



Chapter 5
Central Projection of Quadrics
and Möbius Geometry

In this section we study the general construction of central projection of a quadric
from a point onto its polar hyperplane, see, e.g., [Kle1928, Bla1954, Gie1982].
This leads to a double cover of a Cayley-Klein space in the hyperplane such that
the spheres in that Cayley-Klein space correspond to hyperplanar sections of the
quadric. Vice versa, a Cayley-Klein space can be lifted to a quadric in a projective
space of one dimension higher, such that Cayley-Klein spheres lift to hyperplanar
sections of the quadric. In this way, hyperbolic and elliptic geometry can be lifted
to Möbius geometry, and Möbius geometry may be seen as the geometry of points
and spheres of the hyperbolic or elliptic space, respectively. We demonstrate how the
group of Möbius transformations can be decomposed into the respective isometries
and scalings along concentric spheres.

5.1 The Involution and Projection Induced by a Point

Let 〈·, ·〉 be a bilinear form on R
n+2 of signature (r, s, t), and denote byQ ⊂ RPn+1

the corresponding quadric. We introduce the central projection of Q from a point q
not on the quadric onto a hyperplane of RPn+1 which is canonically chosen to be the
polar hyperplane of q (see Fig. 5.1).

Definition 5.1 A point q ∈ RPn+1 \ Q not on the quadric induces two maps

σq, πq : RPn+1 → RPn+1

σq : [x] �→ [
σq (x)

] =
[

x − 2
〈x, q〉
〈q, q〉q

]
, πq : [x] �→ [

πq (x)
] =

[
x − 〈x, q〉

〈q, q〉q

]
,
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Fig. 5.1 The involution and projection of an oval quadricQ ⊂ RP3 induced by a point q not on the
quadric. Left: The point q lies “outside” the quadric. Right: The point q lies “inside” the quadric

which we call the associated involution and projection respectively.

Remark 5.1 The involution σq is also called reflection in the hyperplane q⊥ (cf.
Theorem 3.3).

We summarize the main properties of this involution and projection in the follow-
ing proposition.

Proposition 5.1
(i) The map σq is a projective involution that fixes q, i.e.,

σq ∈ PO(r, s, t)q, σq ◦ σq = id,

It further fixes every point on the polar hyperplane q⊥.
For every line through q that intersects the quadric Q in two points the involu-
tion σq interchanges the two intersection points, while for every line through q
that touches the quadric Q (intersects in exactly one point) it fixes the touching
point (cf. Lemma 3.2).

(ii) The map πq is a projection onto q⊥ 
 RPn. Its restriction onto the quadric

πq
∣
∣
Q : Q → πq(Q)

is a double cover with branch locus Q ∩ q⊥.
(iii) The involution and projection together satisfy

πq ◦ σq = πq .

Vice versa, if two distinct points x, y ∈ Q project to the same point πq(x) =
πq( y), then x = σq( y). This gives rise to a one-to-one correspondence of the
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projection and the quotient

πq(Q) 
 Q�σq .

Remark 5.2 The involution σq and projection πq act in the same way as described
in Proposition 5.1 on every quadric from the pencil Q ∧ CQ(q) spanned by Q and
the cone of contact CQ(q) with vertex q (cf. Example 3.2).

The intersection
Q̃ := Q ∩ q⊥

is a quadric of signature

• (r − 1, s, t) if 〈q, q〉 > 0, or
• (r, s − 1, t) if 〈q, q〉 < 0.

The projection of a quadric Q ⊂ RPn+1 from a point q ∈ RPn+1 \ Q onto its polar
hyperplane q⊥ is a double cover of the “inside” or the “outside”, cf. (3.2), of Q̃ =
q⊥ ∩ Q depending on the signature of q.

Proposition 5.2 Let q ∈ RPn+1 \ Q. Then

• πq(Q) = Q̃− ∪ Q̃, if 〈q, q〉 > 0,
• πq(Q) = Q̃+ ∪ Q̃, if 〈q, q〉 < 0,

Proof Decompose the homogeneous coordinate vector of a point x ∈ Q into its
projection onto q and q⊥

x = αq + πq(x),

with some α ∈ R. Then

0 = 〈x, x〉 = α2 〈q, q〉 + 〈
πq(x), πq(x)

〉

and thus
〈
πq(x), πq(x)

〉 = −α2 〈q, q〉
{

≤ 0, if 〈q, q〉 > 0

≥ 0, if 〈q, q〉 < 0.

�

The following proposition shows how the Cayley-Klein distance induced by Q̃
for points in the projection πq(Q) can be lifted to the points on Q.

Proposition 5.3 Let q ∈ RPn+1 \ Q and x, y ∈ Q. Then the Cayley-Klein distance
with respect to Q̃ of their projections πq(x), πq( y) is given by

KQ̃
(
πq(x), πq( y)

) =
(
1 − 〈x, y〉 〈q, q〉

〈x, q〉 〈y, q〉
)2

. (5.1)
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Proof We decompose the homogeneous coordinate vectors of x, y into their projec-
tions onto q and q⊥

x = αq + πq(x), y = βq + πq(y)

with some α, β ∈ R. Then,

1 − 〈x, y〉 〈q, q〉
〈x, q〉 〈y, q〉 = 1 −

(
αβ 〈q, q〉 + 〈

πq(x), πq(y)
〉) 〈q, q〉

αβ 〈q, q〉2 = −
〈
πq(x), πq(y)

〉

αβ 〈q, q〉 .

Now with
0 = 〈x, x〉 = α2 〈q, q〉 + 〈

πq(x), πq(x)
〉
,

and the analogous equation for y we obtain

〈
πq (x), πq (y)

〉2

α2β2 〈q, q〉2 =
〈
πq (x), πq (y)

〉2
〈
πq (x), πq (x)

〉 〈
πq (y), πq (y)

〉 .

�

Remark 5.3 Omitting the square for the quantity on the right hand side of Eq. (5.1)
leads to a signed version of the lifted Cayley-Klein distance (see Appendix B).

While the Cayley-Klein distance can, in general, be both positive or negative, the
right hand side of Eq. (5.1) is always positive. This corresponds to the fact that the
projection ofQ only always covers one side of Q̃. Though having no real preimages
the points on the other side of Q̃ may be viewed as projections of certain imaginary
points of Q (see Proposition B.4).

The transformation group induced by PO(r, s, t)q , cf. (3.1), onto q⊥ is exactly
the group of projective transformations PO(r̃ , s̃, t̃) that preserve the quadric Q̃. It is
doubly covered by PO(r, s, t)q and can be identified with the quotient

PO(r̃ , s̃, t̃) 
 PO(r, s, t)q�σq .

Note that PO(r, s, t)q is the largest subgroup of PO(r, s, t) admitting this quotient,
i.e. the subgroup of transformations that commute with σq .

5.2 Cayley-Klein Spheres as Planar Sections

Fromnowon, letQ be a non-degenerate quadric of signature (r, s). Then each section
of the quadricQwith a hyperplane can be identified with the pole of that hyperplane.

Definition 5.2 We call a non-empty intersection of the quadricQwith a hyperplane
a Q-sphere, and identify it with the pole of the hyperplane. Thus, we call
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S := {
x ∈ RPn+1

∣∣ x⊥ ∩ Q �= ∅
}

the space of Q-spheres.

Remark 5.4

(i) The intersection ofQ with a tangent hyperplane only consists of one point, or
a cone (see Example 3.1 (iv)). To exclude these degenerate cases one might
want to takeS \ Q instead as the “space ofQ-spheres”. But we do allow such
degenerate Q-spheres.

(ii) Depending on the signature of of the quadricQ only the following three cases
can occur (w.l.o.g., r ≥ s):

• S = ∅ if Q has signature (n + 2, 0),
• S = Q+ ∪ Q if Q has signature (n + 1, 1),
• S = RPn+1 else.

It turns out that everyQ-sphere projects down to a Cayley-Klein sphere in πq(Q),
where the type of sphere can be distinguished by the two sides of the cone of contact
CQ(q). Denote by

�q(x) = 〈x, q〉2 − 〈x, x〉 〈q, q〉 = − 〈q, q〉 〈
πq(x), πq(x)

〉
(5.2)

the quadratic form of the cone of contact CQ(q) (see Definition 3.1).
In the following we denote all Cayley-Klein spheres as well as Cayley-Klein

horospheres by the term Cayley-Klein spheres, i.e., any quadric given by Eq. (4.1)
with fixed x ∈ RPn \ Q and fixed μ ∈ R ∪ {∞} or by Eq. (4.2) with fixed x ∈ Q
and fixed μ̃ ∈ R ∪ {∞}.
Theorem 5.1 Consider the map

πS
q : x �→ πq(x⊥ ∩ Q),

for x ∈ S. Then for every x ∈ S the image πS
q (x) is a Cayley-Klein sphere which

lies in πq(Q) (see Fig.5.2).

• For �q(x) �= 0 the image is a Cayley-Klein sphere with center πq(x) and Cayley-
Klein radius

μ = 〈x, q〉2
�q(x)

,

i.e.
πq(x⊥ ∩ Q) = Sμ

(
πq(x)

)
.

– If �q(x) > 0, then πq(x) ∈ πq(Q) \ Q̃.
– If �q(x) < 0, then πq(x) ∈ q⊥ \ πq(Q).
– If x ∈ (S ∩ q⊥) \ Q̃, then the image is the intersection of πq(Q) and a hyper-
plane in q⊥ with pole x.

– If x ∈ Q \ Q̃, then the image is the cone of contact CQ̃(πq(x)) ⊂ πq(Q).
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Fig. 5.2 The central projection of a hyperplanar section x⊥ ∩ Q of a quadricQ ⊂ RP3 from a point
q. Its image is a Cayley-Klein sphere πS

q (x) ⊂ πq(Q) with respect to the absolute quadric Q̃. Its
center is given by πq(x). The cone of contact can be used to distinguish the type of Cayley-Klein
sphere that is obtained in the projection

• For �q(x) = 0 the image is a Cayley-Klein horosphere with center πq(x) ∈ Q̃.

– For x = q the image is the absolute quadric Q̃.

Proof First note that all images of πS
q lie in πq(Q). Let x ∈ S and let y ∈ x⊥ ∩ Q

be a point on the corresponding Q-sphere. With

x = πq(x) + 〈x, q〉
〈q, q〉q, y = πq(y) + 〈y, q〉

〈q, q〉q,

and 〈x, y〉 = 〈y, y〉 = 0 we find

〈
πq (x), πq (y)

〉 = −〈x, q〉 〈y, q〉
〈q, q〉 ,

〈
πq (x), πq (x)

〉 = −�q (x)

〈q, q〉 ,
〈
πq (y), πq (y)

〉 = −〈y, q〉2
〈q, q〉 ,

• Assume x ∈ S \ CQ(q), i.e., �q(x) �= 0. Then

KQ̃
(
πq(x), πq( y)

) =
〈
πq(x), πq(y)

〉2
〈
πq(x), πq(x)

〉 〈
πq(y), πq(y)

〉 = 〈x, q〉2
�q(x)

= μ.

Therefore, πS
q (x) is a Cayley-Klein sphere with center πq(x) and radius μ.

We know that πq( y) ∈ πq(Q). Hence, according to Proposition 4.2, the sign of μ,
which is equal to the sign of �q(x), determines which side of Q̃ the center πq(x)
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lies on. Further we find that,

μ = 0 ⇔ x ∈ q⊥, and μ = 1 ⇔ x ∈ Q,

which, again according to Proposition 4.2, corresponds to a hyperplane and the
cone of contact respectively.

• Assume x ∈ CQ(q) \ {q}, i.e., �q(x) = 0 and 〈q, q〉 �= 0. Then

〈
πq(x), πq(y)

〉 = μ̃
〈
πq(y), πq(y)

〉
with μ̃ := −〈x, q〉2

〈q, q〉

Therefore, πS
q (x) is a Cayley-Klein horosphere with center πq(x).

• For x = q, we have

πS
q (q) = πq(q⊥ ∩ Q) = q⊥ ∩ Q = Q̃.

�

The map πS
q covers the whole space of Cayley-Klein spheres which lie in πq(Q).

Proposition 5.4 The map πS
q constitutes a double cover of the set of Cayley-Klein

spheres in πq(Q) with respect to Q̃. Its ramification points are given by (q⊥ ∪ {q}) ∩
S, and its covering involution is σq .

Proof We show that every Cayley-Klein sphere which lies in πq(Q) possesses
exactly two preimages, which are interchanged by σq , unless it is a hyperplane.

Consider a Cayley-Klein sphere Sμ(̃x) with center x̃ ∈ q⊥ \ Q̃, Cayley-Klein
radius μ ∈ R which lies in πq(Q). Let us find all preimages of Sμ(̃x). According to
Theorem 5.1, a preimage x ∈ S, πS

q (x) = Sμ(̃x) must satisfy πq(x) = x̃, i.e.

x = x̃ + λq

for some λ ∈ R, and
〈x, q〉2
�q(x)

= μ,

which is equivalent to

λ2 = −μ
〈̃x, x̃〉
〈q, q〉 .

According to Lemma 5.1 below, we have−μ
〈̃x ,̃x〉
〈q,q〉 ≥ 0 because Sμ(̃x) ⊂ πq(Q), and

thus

x± := x̃ ±
√

−μ
〈̃x, x̃〉
〈q, q〉q
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defines the only possible (real) preimages of Sμ(̃x).
The two points are interchanged by the involution, σq(x±) = x∓, and we have

x+ = x− ⇔ μ = 0,

in which case x± = x̃ ∈ q⊥.
Conversely, let us show that the points x± are indeed preimages of Sμ(̃x). We

need to show that x± ∈ S. To see that x⊥± ∩ Q �= ∅, first assume μ �= 0. We show
that any point ỹ ∈ Sμ(̃x) on the Cayley-Klein sphere, has (real) preimages y± ∈ Q,
i.e.πq( y±) = ỹ, that lie in the polar hyperplane of x± respectively. Indeed, the points

y± := ± 〈q, q〉
√

−μ
〈̃x, x̃〉
〈q, q〉 ỹ − 〈̃x, ỹ〉 q

satisfy
〈y±, y±〉 = − 〈q, q〉 (

μ 〈̃x, x̃〉 〈ỹ, ỹ〉 − 〈̃x, ỹ〉2) = 0,

and

〈x±, y±〉 = ± 〈q, q〉 〈̃x, ỹ〉
√

−μ
〈̃x, x̃〉
〈q, q〉 ∓ 〈q, q〉 〈̃x, ỹ〉

√

−μ
〈̃x, x̃〉
〈q, q〉 = 0.

Ifμ = 0, then x̃ = x+ = x−, and thewhole line ỹ ∧ q lies in the polar hyperplane
of x̃. Since ỹ ∈ πq(Q) the line ỹ ∧ q has two (real) intersection points withQ, which
serve as preimages for ỹ.

The cases ofCayley-Klein horospheres (̃x ∈ Q̃) and the absolute quadric (μ = ∞)
are left to be checked by the reader. �

Lemma 5.1 A Cayley-Klein sphere with respect to Q̃ with center x̃ ∈ q⊥ \ Q̃ and
Cayley-Klein radius μ ∈ R \ {0} has points in πq(Q) if and only if

−μ
〈̃x, x̃〉
〈q, q〉 ≥ 0.

Proof Follows from Propositions 4.2 and 5.2. �

Thus, we have found that the lift of the Cayley-Klein space πq(Q) to the quadric
Q leads to a linearization of the corresponding Cayley-Klein spheres, in the sense
that they become planar sections of Q, which we represent by their polar points.

For two intersecting Cayley-Klein spheres the Cayley-Klein distance of the poles
of the two tangent hyperplanes at an intersection point (with respect to the absolute
quadric) is called their Cayley-Klein intersection angle. In the metric derived from
the Cayley-Klein distance it is a certain function of the corresponding “metric angle”
(cf. Remark 4.1). It is independent of the chosen intersection point. The Cayley-Klein
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Fig. 5.3 The Cayley-Klein
distance with respect to Q
corresponds to the
Cayley-Klein intersection
angle in the central
projection to πq(Q) (see
Proposition 5.5)

distance of two points inS describes exactly this Cayley-Klein intersection angle in
the projection to πq(Q) (see Fig. 5.3).

Proposition 5.5 Let x1, x2 ∈ S such that the corresponding Q-spheres intersect.
Let

y ∈ Q ∩ x⊥
1 ∩ x⊥

2

be a point in that intersection, and ỹ := πq( y) its projection. Let S1, S2 be the two
projected Cayley-Klein spheres corresponding to x1, x2 respectively

S1 := πS
q (x1), S2 := πS

q (x2).

Let ỹ1, ỹ2 be the two poles of the tangent hyperplanes of S1, S2 at ỹ respectively.
Then

KQ (x1, x2) = KQ̃
(
ỹ1, ỹ2

)
.

Proof We treat the cases where neither S1 nor S2 is a horosphere nor the absolute
quadric. The remaining cases are left to be checked by the reader.

First, we express the Cayley-Klein distance KQ (x1, x2) in terms of the projected
centers x̃1 := πq(x1), x̃2 := πq(x2) and the projected intersection point ỹ. To this
end, we write

x1 = x̃1 + α1q, x2 = x̃2 + α2q, y = ỹ + λq,

for some α1, α2, λ ∈ R. From 〈y, y〉 = 〈x1, y〉 = 〈x2, y〉 = 0 we obtain

λ2 = −〈ỹ, ỹ〉
〈q, q〉 , α1λ = −〈ỹ, x̃1〉

〈q, q〉 , α2λ = −〈ỹ, x̃2〉
〈q, q〉 ,

and therefore

α1α2 = −〈ỹ, x̃1〉 〈ỹ, x̃2〉
〈ỹ, ỹ〉 〈q, q〉 , (α1)

2 = − 〈ỹ, x̃1〉2
〈ỹ, ỹ〉 〈q, q〉 , (α2)

2 = − 〈ỹ, x̃2〉2
〈ỹ, ỹ〉 〈q, q〉 .
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Using this we find

〈x1, x2〉 = 〈x̃1, x̃2〉 − 〈ỹ, x̃1〉 〈ỹ, x̃2〉
〈ỹ, ỹ〉 , 〈x1, x1〉 = 〈x̃1, x̃1〉 − 〈ỹ, x̃1〉2

〈ỹ, ỹ〉 , 〈x2, x2〉 = 〈x̃2, x̃2〉 − 〈ỹ, x̃2〉2
〈ỹ, ỹ〉 ,

and thus

KQ (x1, x2) = 〈x1, x2〉2
〈x1, x1〉 〈x2, x2〉 = (〈x̃1, x̃2〉 〈ỹ, ỹ〉 − 〈ỹ, x̃1〉 〈ỹ, x̃2〉)2(

〈x̃1, x̃1〉 〈ỹ, ỹ〉 − 〈ỹ, x̃1〉2
) (

〈x̃2, x̃2〉 〈ỹ, ỹ〉 − 〈ỹ, x̃2〉2
) .

(5.3)

Secondly, we express the right hand side KQ̃
(
ỹ1, ỹ2

)
in terms of the same quan-

tities. By Lemma 4.1 Eq. (4.3), we know that the poles ỹ1, ỹ2 of the tangent planes
(with respect to Q̃) are given by

ỹ1 = 〈x̃1, ỹ〉 x̃1 − μ1 〈x̃1, x̃1〉 ỹ, ỹ2 = 〈x̃2, ỹ〉 x̃2 − μ2 〈x̃2, x̃2〉 ỹ,

where

μ1 = 〈x̃1, ỹ〉2
〈x̃1, x̃1〉 〈ỹ, ỹ〉 , μ2 = 〈x̃2, ỹ〉2

〈x̃2, x̃2〉 〈ỹ, ỹ〉
are the Cayley-Klein radii of S1 and S2. From this we obtain

〈ỹ1, ỹ2〉 = 〈x̃1, ỹ〉 〈x̃2, ỹ〉
(

〈x̃1, x̃2〉 − 〈x̃1, ỹ〉 〈x̃2, ỹ〉
〈ỹ, ỹ〉

)
,

〈ỹ1, ỹ1〉 = 〈x̃1, ỹ〉2
(

〈x̃1, x̃1〉 − 〈x̃1, ỹ〉2
〈ỹ, ỹ〉

)

, 〈ỹ2, ỹ2〉 = 〈x̃2, ỹ〉2
(

〈x̃2, x̃2〉 − 〈x̃2, ỹ〉2
〈ỹ, ỹ〉

)

Substituting into

KQ̃
(
ỹ1, ỹ2

) = 〈ỹ1, ỹ2〉2
〈ỹ1, ỹ1〉 〈ỹ2, ỹ2〉

leads to the same as in (5.3). �

Remark 5.5
(i) Starting with two intersecting Cayley-Klein spheres in πq(Q) the lifted Q-

spheres must be chosen such that they intersect as well. Only then will the
Cayley-Klein distance of the poles of the lifted spheres recover the Cayley-
Klein intersection angle.

(ii) Every quadric comes with a naturally induced (pseudo-)conformal structure,
see e.g. [Por1995]. The Cayley-Klein distance between the two points x1, x2 ∈
S also coincides with the angle measured in this conformal structure.

As a corollary of Theorem 3.2 we can now characterize the (local) transforma-
tions of a Cayley-Klein space πq(Q) that map hyperspheres to hyperspheres as the
projective orthogonal transformations in the lift to the quadric Q.
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Theorem 5.2 Let n ≥ 2, Q ⊂ RPn+1 be a non-degenerate quadric, and
q ∈ RPn+1 \ Q. Consider the Cayley-Klein space πq(Q) endowed with the Cayley-
Klein metric induced by Q̃ = Q ∩ q⊥. Let W ⊂ πq(Q) be a non-empty open subset,
and f : W → πq(Q) be an injective map that maps intersections of Cayley-Klein
hyperspheres with W to intersections of Cayley-Klein hyperspheres with f (W ). Then
f is the restriction of a projective transformation RPn+1 → RPn+1 that preserves
the quadric Q.

Proof After lifting the open sets W and f (W ) to Q the statement follows from
Theorem 3.2. �

Remark 5.6
(i) If the transformation f is defined on the whole space πq(Q) its lift must fix

the point q. Thus, in this case f must be an isometry of πq(Q), i.e., a map
preserving the Cayley-Klein distance.

(ii) If n ≥ 3 the condition on f of mapping hyperspheres to hyperspheres may be
weakened to f being a conformal transformation, i.e. preserving Cayley-Klein
angles between arbitrary hypersurfaces (generalized Liouville’s theorem, see
[Por1995, Ben1992]).

(iii) The group of projective transformations PO(r, s) that preserve the quadric Q
mapsQ-spheres toQ-spheres. In the projection to πq(Q) it may be interpreted
as the group of transformations that map “oriented points” of πq(Q) to “ori-
ented points” of πq(Q), while preserving Cayley-Klein spheres. It contains
the subgroup PO(r, s)q of isometries of πq(Q). The involution σq plays the
role of “orientation reversion”. For “hyperbolic Möbius geometry” see, e.g.,
[Som1914], and for “oriented points” of the hyperbolic plane [Yag1968].

5.3 Scaling Along Concentric Spheres

The transformation group PO(r, s) contains the isometries of πq(Q), given by
PO(r, s)q . It turns out that the only transformations additionally needed to gener-
ate the whole group PO(r, s) are “scalings” along concentric spheres.

In the lift to S pencils of concentric Cayley-Klein spheres in πq(Q) correspond
to lines in S through q. This is a straightforward consequence of Theorem 5.1.

Proposition 5.6 The preimage under the map πS
q of a family of concentric Cayley-

Klein spheres in πq(Q) with center x̃ ∈ q⊥ is given by the line � := (̃x ∧ q) ∩ S.
For every x ∈ � the hyperplane x⊥ (that defines a Q-sphere by intersection with

Q) contains the polar subspace (̃x ∧ q)⊥.

Definition 5.3 We call a line inS a pencil of Q-spheres, and a line inS containing
the point q a pencil of concentric Q-spheres (with respect to q).

To every pencil of Q-spheres we can associate certain families of projective
orthogonal transformations in the following way (see Fig. 5.4).
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Fig. 5.4 Scaling along a
pencil of concentric
Cayley-Klein spheres in the
lift and in the projection

Definition 5.4 Let � be a pencil ofQ-spheres. We call a projective orthogonal trans-
formation T ∈ PO(r, s) a scaling along the pencil � if

(i) T preserves the line �,
(ii) T preserves every hyperplane through the line �,
(iii) and either T has no fixed points on � \ Q or T is the identity on �.

Remark 5.7 Note that (ii) actually implies (i).

Let us construct these transformations. We have to distinguish the three possible
signatures that the line � ⊂ RPn+1 can have.

• First, assume that � is not tangent to Q, i.e., the signature of � is non-degenerate
and, w.l.o.g., either σ = (+−) or σ = (++). In either case, let e1, e2 ⊂ R

n+2 be
orthonormal such that

� = e1 ∧ e2.

Then we can extend e1, e2 to an orthonormal basis e1, . . . , en+2 with respect to
〈·, ·〉. Preserving every hyperplane through � is equivalent to preserving the polar
subspace �⊥ pointwise. Therefore, a transformation T ∈ PO(r, s) that preserves
the line � and every hyperplane though � must be of the form

T =
[

A 0
0 In

]

where A ∈ O(σ ) and In ∈ R
n×n is the identity matrix.
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– Now let σ = (+−). The condition A ∈ O(1, 1) is equivalent to

A =
{ ±At

± Ât

, At :=
(
cosh t sinh t
sinh t cosh t

)
, Ât :=

(
cosh t − sinh t
sinh t − cosh t

)
,

with some t ∈ R. The transformations induced by ±At fix the two intersection
points � ∩ Q, while the transformations induced by ± Ât interchange these two
points and thus have fixed points on � \ Q. Therefore, in this case, the scalings
along � are given by

T =
[±At 0

0 In

]

with some t ∈ R. Note that, while At and −At induce the same transformation
on the line �, they lead to different transformations T , which differ by a reflection
in the line �.

– Now let σ = (++). The condition A ∈ O(2) is equivalent to

A =
{

At

Ât

, At :=
(
cos t − sin t
sin t cos t

)
, Ât :=

(
cos t sin t
sin t − cos t

)
,

with some t ∈ R. The transformations induced by At have no fixed points on �,
while the transformations induced by Ât have two. Therefore, in this case, the
scalings along � are given by

T =
[

At 0
0 In

]

with some t ∈ R. Note that, while At and At+π induce the same transformation
on the line �, they lead to different transformations T , which differ by a reflection
in the line �. Yet, At and At+2π still lead to the same transformation T .

• Secondly, assume that � is tangent to Q, i.e., the signature of � is degenerate and,
w.l.o.g., (+0). In this case, � cannot be spanned by an orthonormal basis that can
be extended to the whole space. Instead, let e1, . . . , en+2 ∈ R

n+2 be orthonormal
such that with

v+ := 1
2 (e2 + e3), v− := 1

2 (e2 − e3)

we have
� = e1 ∧ v+,

and therefore
�⊥ = v+ ∧ e4 ∧ · · · ∧ en+2.
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In the basis e1, v+, v−, e4, . . . , en+2 a transformation T ∈ PO(r, s) that preserves
the line � and every hyperplane though � must be of the form

T =
[

A 0
0 In−1

]

with

A =
⎛

⎝
a11 0 a13

a21 1 a23

0 0 a33

⎞

⎠ , Aᵀ J A = J, J :=
⎛

⎝
1 0 0
0 0 1

2
0 1

2 0

⎞

⎠ ,

In the basis e1, v+ on the line � the transformation reduces to

(
a11 0
a21 1

)
.

It fixes the touching point v+. This is the only fixed point on � if and only if
a11 = 1. Now the orthogonality condition Aᵀ J A = J reduces to

a33 = 1, a2
13 + a23 = 0, a13 + 1

2a21 = 0.

Thus,

A = At :=
⎛

⎝
1 0 −t
2t 1 −t2

0 0 1

⎞

⎠

with some t ∈ R. Therefore, in this case, and in the basis e1, e2, e3, . . . , en+2, the
scalings along � are given by

T =
[

Ãt 0
0 In

]
, Ãt :=

⎛

⎝
1 −t t
t 1 − t2

2
t2

2

t − t2

2 1 + t2

2

⎞

⎠

with some t ∈ R.

With the given scaling transformations it is easy to verify the following proposition.

Proposition 5.7 Let x1, x2 ∈ S with KQ (x1, x2) > 0. Then there exists a scaling
along the pencil of Q-spheres x1 ∧ x2 that maps x1 to x2. We denote such a trans-
formation by Tx1,x2 .

In the projection πS
q to πq(Q) a line x1 ∧ x2 through q corresponds to a pencil

of concentric Cayley-Klein spheres, and a scaling transformation Tx1,x2 maps the
spheres of this pencil to spheres of this pencil. Every transformation from PO(r, s)
can be decomposed into a (lift of an) isometry of πq(Q) and a scaling along a pencil
of concentric spheres.
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Proposition 5.8 Let f ∈ PO(r, s). Then f can be written as

f = Tq,x ◦ 	 = 
 ◦ Ty,q

with x := f (q), y := f −1(q) and some 	,
 ∈ PO(r, s)q .

Proof We observe that Tx,q ◦ f, f ◦ Tq, y ∈ PO(r, s)q . �

Remark 5.8 To generate all transformations of PO(r, s) one may further restrict to
(at most) three arbitrarily chosen one-parameter families of scalings (one for each
possible signature of a line through q). Then a transformation f ∈ PO(r, s) can be
written as

f = 	 ◦ T ◦ 


where 	,
 ∈ PO(r, s)q and T is exactly one of the three chosen scalings.

5.4 Möbius Geometry

Let 〈·, ·〉 be the standard non-degenerate bilinear form of signature (n + 1, 1), i.e.

〈x, y〉 := x1y1 + . . . + xn+1yn+1 − xn+2yn+2

for x, y ∈ R
n+2, and denote by S ⊂ RPn+1 the corresponding quadric, which we call

the Möbius quadric.
The Möbius quadric is projectively equivalent to the standard round sphere

S 
 S
n ⊂ R

n+1. In this correspondence intersections of S with hyperplanes of
RPn+1, i.e. theS-spheres, are identifiedwith hyperspheres of S

n (cf. Proposition 7.2).
The corresponding transformation group

Mob := PO(n + 1, 1)

of Möbius transformations leaves the quadric S invariant and maps hyperplanes to
hyperplanes. Thus Möbius geometry may be seen as the geometry of points on S

n

in which hyperspheres are mapped to hyperspheres. Thus, for the remaining part of
this section one may imagine the Möbius quadric to be the unit sphere.

The set of poles of hyperplanes that have non-empty intersectionswith theMöbius
quadric S, i.e., the space of S-spheres, is given by

S = S+ ∪ S.

where S+ is the “outside” of S.
Remark 5.9 The Cayley-Klein metric on S that is induced by the Möbius quadric
S is called the inversive distance, see [Cox1971]. For two intersecting hyperspheres
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of S
n it is equal to the cosine of their intersection angle. For a signed version of

this quantity see Sect. B.2. Comparing with Sect. 4.4 this same Cayley-Klein metric
also induces (n + 1)-dimensional hyperbolic geometry on the “inside” S− of the
Möbius quadric, and (n + 1)-dimensional deSitter geometry on the “outside” S+ of
the Möbius quadric.

Central projection of the (n + 1)-dimensional Möbius quadric from a point leads
to a double cover of n-dimensional hyperbolic/elliptic space.

5.5 Hyperbolic Geometry and Möbius Geometry

Given the Möbius quadric S ⊂ RPn choose a point q ∈ RPn+1, 〈q, q〉 > 0, w.l.o.g.

q := [en+1] = [0, . . . 0, 1, 0].

The corresponding involution and projection take the form

σq : [x1, . . . , xn, xn+1, xn+2] �→ [x1, . . . , xn,−xn+1, xn+2],
πq : [x1, . . . , xn, xn+1, xn+2] �→ [x1, . . . , xn, 0, xn+2].

The quadric in the polar hyperplane of q

S̃ = S ∩ q⊥

has signature (n, 1). Its “inside”H = S̃− can be identifiedwith n-dimensional hyper-
bolic space (cf. Sect. 4.4), and the Möbius quadric projects down to the compactified
hyperbolic space

H = πq(S).

According to Theorem 5.1, an S-sphere, which we identify with a point in
S = S+ ∪ S projects to the different types of generalized hyperbolic spheres in
H (see Fig. 5.5 and Table5.1).

Theorem 5.3 Under the map

πS
q : x �→ πq(x⊥ ∩ S)

a point x ∈ S = S+ ∪ S
• with x ∈ S is mapped to a point πq(x) ∈ H.
• with x ∈ q⊥ \ S̃ , i.e. xn+1 = 0 and 〈x, x〉 �= 0, is mapped to a hyperbolic hyper-
plane in H with pole x.
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Fig. 5.5 Hyperbolic geometry and its lift to Möbius geometry. Left: Concentric hyperbolic circles.
Middle: Constant distance curves to a common line. Right: Concentric horocycles with center on
the absolute conic

Table 5.1 The lifts of generalized hyperbolic spheres to Möbius geometry, where
S = P

({
x = (x1, . . . , xn+2) ∈ R

n+1,1
∣∣ 〈x, x〉 = 0

}) ⊂ RPn+1

is the Möbius quadric, S+ its “outside”, CS(q) the cone of contact to S with vertex
q = [en+1] = [0, . . . , 0, 1, 0],

and CS(q)−, CS(q)+ its “inside” and “outside” respectively. Furthermore,
H

n = {
y = (y1, . . . , yn+1) ∈ R

n,1
∣∣ 〈y, y〉q = −1, yn+1 ≥ 0

}
, H = P(Hn) ⊂ RPn,

dS
n = {

y = (y1, . . . , yn+1) ∈ R
n,1

∣∣ 〈y, y〉q = 1
}
, dS = P(dS

n) ⊂ RPn,

L
n,1 = {

y = (y1, . . . , yn+1) ∈ R
n,1

∣
∣ 〈y, y〉q = 0

}
, S̃ = P(Ln,1) ⊂ RPn,

are the hyperbolic space, deSitter space, and their absolute quadric where 〈·, ·〉q denotes the restric-
tion of 〈·, ·〉 to q⊥ ∼= R

n,1, i.e., the standard non-degenerate bilinear form on R
n,1 of signature

(n, 1)

Hyperbolic geometry Möbius geometry

Point
y ∈ H, y = (ŷ, yn+1) ∈ H

n
[ŷ,±1, yn+1] ∈ S

Hyperplane
with pole y ∈ dS, y = (ŷ, yn+1) ∈ dS

n
[ŷ, 0, yn+1] ∈ S+ ∩ q⊥

Sphere
with center y ∈ H, y = (ŷ, yn+1) ∈ H

n

and radius r > 0

[ŷ,± cosh r, yn+1] ∈ S+ ∩ CS(q)+

Surface of constant distance
r > 0 to a hyperplane
with pole y ∈ dS, y = (ŷ, yn+1) ∈ dS

n

[ŷ,± sinh r, yn+1] ∈ S+ ∩ CS(q)−

Horosphere
with center y ∈ S̃, y = (ŷ, yn+1) ∈ L

n,1
[ŷ,±er , yn+1] ∈ S+ ∩ CS(q)

• with
〈
πq(x), πq(x)

〉
< 0 is mapped to a hyperbolic sphere in H with center πq(x).

In the normalization
〈
πq(x), πq(x)

〉 = −1 its hyperbolic radius is given by r ≥ 0,
where cosh2 r = x2

n+1.
• with

〈
πq(x), πq(x)

〉
> 0 is mapped to a hyperbolic surface of constant dis-

tance in H to a hyperbolic hyperplane with pole πq(x). In the normalization〈
πq(x), πq(x)

〉 = 1 its hyperbolic distance is given by r ≥ 0, where sinh2 r = x2
n+1.

• with
〈
πq(x), πq(x)

〉 = 0 is mapped to a hyperbolic horosphere.
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Proof Compare Sect. 4.4 for the different types of possible Cayley-Klein spheres in
hyperbolic space. Following Theorem 5.1 they can be distinguished by the sign of the
quadratic form �q(x), or, comparing with Eq. (5.2), by the sign of

〈
πq(x), πq(x)

〉
.

Furthermore, the center of the Cayley-Klein sphere corresponding to x is given by
πq(x), while its Cayley-Klein radius is given by

μ = 〈x, q〉2
�q(x)

= − 〈x, q〉2
〈q, q〉 〈

πq(x), πq(x)
〉 = − x2

n+1〈
πq(x), πq(x)

〉 .

�

Remark 5.10

(i) The map πS
q is a double cover of the set of generalized hyperbolic spheres,

branching on the subset of hyperbolic planes and the absolute quadric (see
Proposition 5.4).

(ii) The Cayley-Klein distance induced on S by S measures the Cayley-Klein
angle between the corresponding generalized hyperbolic spheres (see Propo-
sition 5.5) if their lifts intersect (see Remark 5.5 (i)), and more generally their
inversive distance (see Remark 5.9).

(iii) In the projection to H Möbius transformations map generalized hyperbolic
spheres to generalized hyperbolic spheres (see Remark 5.6 (iii)). Vice versa,
every (local) transformation of the hyperbolic space that maps generalized
hyperbolic spheres to generalized hyperbolic spheres is the restriction of a
Möbius transformation (see Theorem 5.2).

(iv) Every Möbius transformation can be decomposed into two hyperbolic isome-
tries and a scaling along either a fixed pencil of concentric hyperbolic spheres,
distance surfaces, or horospheres (see Remark 5.8).

5.6 Elliptic Geometry and Möbius Geometry

Given the Möbius quadric S ⊂ RPn choose a point q ∈ RPn+1, 〈q, q〉 < 0, w.l.o.g.

q := [en+2] = [0, . . . 0, 0, 1].

The corresponding involution and projection take the form

σq : [x1, . . . , xn+1, xn+2] �→ [x1, . . . , xn+1,−xn+2]
πq : [x1, . . . , xn+1, xn+2] �→ [x1, . . . , xn+1, 0]

The quadric in the polar hyperplane of q

S̃ = S ∩ q⊥
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Fig. 5.6 Concentric circles
in elliptic geometry and its
lift to Möbius geometry

is imaginary, and has signature (n + 1, 0). The Möbius quadric projects down to its
“outside”

E = S̃+,

which can be identified with n-dimensional elliptic space (cf. Sect. 4.5).
According to Theorem 5.1 an S-sphere projects to an elliptic sphere in E (see

Fig. 5.6 and Table5.2).

Theorem 5.4 Under the map

πS
q : x �→ πq(x⊥ ∩ S)

a point x ∈ S = S+ ∪ S
• with x ∈ S is mapped to a point πq(x) ∈ E .
• with x ∈ q⊥, i.e. xn+2 = 0, is mapped to an elliptic plane in E with pole x.
• with

〈
πq(x), πq(x)

〉
> 0 is mapped to an elliptic sphere in E with center πq(x). In

the normalization
〈
πq(x), πq(x)

〉 = 1 its elliptic radius is given by r ≥ 0, where
cos2 r = x2

n+2. It also has constant elliptic distance R ≥ 0, where sin2 R = x2
n+1,

to the polar hyperplane of πq(x).

Remark 5.11

(i) The map πS
q is a double cover of the set of elliptic spheres, branching on the

subset of elliptic planes (see Proposition 5.4).
(ii) The Cayley-Klein distance induced on S by S measures the Cayley-Klein

angle between the corresponding elliptic spheres (see Proposition 5.5) if their
lifts intersect (see Remark 5.5 (i)), and more generally their inversive distance
(see Remark 5.9).
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Table 5.2 The lifts of elliptic spheres to Möbius geometry where
S = P

({
x = (x1, . . . , xn+2) ∈ R

n+1,1
∣
∣ 〈x, x〉 = 0

}) ⊂ RPn+1

is the Möbius quadric, S+ its “outside”, and
q = [en+2] = [0, . . . , 0, 0, 1].

Furthermore,
S

n = {
y = (y1, . . . , yn+1) ∈ R

n+1
∣
∣ 〈y, y〉q = 1

}
, E = P(Sn) ⊂ RPn,

is the elliptic space where 〈·, ·〉q denotes the restriction of 〈·, ·〉 to q⊥ ∼= R
n+1, i.e., the standard

(positive definite) scalar product on R
n+1

Elliptic geometry Möbius geometry

Point
y ∈ E , y ∈ S

n
[y,±1] ∈ S

Hyperplane
with pole y ∈ E , y ∈ S

n
[y, 0] ∈ q⊥

Sphere
with center y ∈ E , y ∈ S

n

and radius r > 0

[y,± cos r ] ∈ S+

(iii) In the projection to E , Möbius transformations map elliptic spheres to ellip-
tic spheres (see Remark 5.6 (iii)). Vice versa, every (local) transformation of
elliptic space that maps elliptic spheres to elliptic spheres is the restriction of
a Möbius transformation (see Theorem 5.2).

(iv) Every Möbius transformation can be decomposed into two elliptic isometries
and a scaling along one fixed pencil of concentric elliptic spheres (see Remark
5.8).

Remark 5.12 Upon the identification of theMöbius quadric with the sphereS 
 S
n

the group of Möbius transformations fixing the point q is the group of spherical
transformations, yielding spherical geometry, which is a double cover of elliptic
geometry.



Chapter 6
Non-Euclidean Laguerre Geometry

The primary objects in Möbius geometry are points on S, which yield a double cover
of the points in hyperbolic/elliptic space, and spheres, which yield a double cover of
the spheres in hyperbolic/elliptic space. The primary incidence between these objects
is a point lying on a sphere.

Laguerre geometry is dual to Möbius geometry in the sense that the primary
objects are hyperplanes, and spheres, both being a double cover of the correspond-
ing objects in hyperbolic/elliptic space, while the primary incidence between these
objects is a plane being tangent to a sphere.

In this section we introduce the concept of polar projection of a quadric. Similar
to the central projection of a quadric it yields a double cover of certain hyperplanes
of a Cayley-Klein space. While the double cover of points in a space form in the case
of Möbius geometry may be interpreted as “oriented points” (cf. Remark 5.6 (iii)),
in the case of Laguerre geometry this leads to the perhaps more intuitive notion of
“oriented hyperplanes”.

A decomposition of the corresponding groups of Laguerre transformations into
isometries and scalings can be obtained in an analogous way to the decomposition
of the Möbius group.

Wediscuss the cases of hyperbolic and ellipticLaguerre geometry in detail, includ-
ing coordinate representations for the different geometric objects appearing in each
case. A treatment of the Euclidean case can be found in Appendix A.

6.1 Polar Projection

Let Q ⊂ RPn+1 be a quadric. We have seen that the projection π p of the quadric Q
leads to a double cover of the points of π p(Q) ⊂ p⊥ (cf. Proposition 5.1), i.e. the
points “inside” or “outside” the quadric

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. I. Bobenko et al., Non-Euclidean Laguerre Geometry and Incircular Nets,
SpringerBriefs in Mathematics, https://doi.org/10.1007/978-3-030-81847-0_6
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Fig. 6.1 Left: Polar projection of points on the quadric Q. Right: Polar projection of Q-spheres

˜Q = Q ∩ p⊥.

Correspondingly, the Q-spheres yield a double cover of the Cayley-Klein spheres
in π p(Q) (cf. Proposition 5.4). We now investigate the corresponding properties for
polar hyperplanes and polar Cayley-Klein spheres (see Definition 4.4).

Definition 6.1 Let Q ⊂ RPn+1 be a quadric and p ∈ RPn+1 \ Q. Then we call the
map

π∗
p : x �→ x⊥ ∩ p⊥ = (x ∧ p)⊥,

that maps a point x ∈ RPn+1 to the intersection of its polar hyperplane x⊥ with p⊥,
the polar projection (associated with the point p).

The projection π p and the polar projection π∗
p map the same point to a point in

p⊥ and its polar hyperplane respectively.

Proposition 6.1 For a point x ∈ RPn+1 its projection π p(x) ∈ p⊥ is the pole of
its polar projection π∗

p(x) ⊂ p⊥, where polarity in p⊥ 
 RPn is taken with respect

to ˜Q.

If we restrict the polar projection π∗
p to the quadric Q we obtain a map to the

hyperplanes of p⊥, which are poles of image points of the projectionπ p (see Fig. 6.1).
This map leads to a double cover of the polar hyperplanes (cf. Proposition 5.1).

Proposition 6.2 The restriction of the polar projection onto the quadric π∗
p
∣

∣

Q is a

double cover of the set of all hyperplanes that are polar to the points in π p(Q) with
branch locus Q ∩ p⊥.

Remark 6.1 The double cover can be interpreted as carrying the additional infor-
mation of the orientation of these hyperplanes, where the involution σ p plays the role
of orientation reversion.
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By polarity every point x ∈ S corresponds to a Q-sphere x⊥ ∩ Q (see Defini-
tion 5.2). In the projection to π p(Q) it becomes a Cayley-Klein sphere (see Theo-
rem 5.1), which is obtained from the point x by the map

πS
p : x �→ π p(x⊥ ∩ Q)

The polar projection π∗
p of each point of a Q-sphere yields a tangent plane of the

polar Cayley-Klein sphere of πS
p (x) (see Definition 4.4). The points of the polar

Cayley-Klein sphere are therefore obtained by the map

πS∗
p : x �→ CQ(x) ∩ p⊥,

where CQ(x) is the cone of contact (see Definition 3.1) to Q with vertex x (see
Fig. 6.1).

Proposition 6.3 For x ∈ S the two Cayley-Klein spheres πS
p (x) and πS∗

p (x) are

mutually polar Cayley-Klein spheres in p⊥ with respect to ˜Q.

This leads to a polar version of Proposition 5.4.

Proposition 6.4 The map πS∗
p constitutes a double cover of the set of Cayley-Klein

spheres which are polar to Cayley-Klein spheres in π p(Q) with respect to ˜Q. Its
ramification points are given by ( p⊥ ∪ { p}) ∩ S, and its covering involution is σ p.

Remark 6.2 Following Remark 6.1 we may endow the Cayley-Klein spheres that
are polar to Cayley-Klein spheres in π p(Q) with an orientation by lifting them to
planar sections of Q, i.e. Q-spheres. We call the planar sections, or equivalently
their oriented projections, Laguerre spheres (of π p(Q)). The involution σ p acts on
Laguerre spheres as orientation reversion.

The Cayley-Klein distance of two points inS describes the Cayley-Klein tangent
distance between the two corresponding Cayley-Klein spheres in the projection to
π p(Q). This is the polar version of Proposition 5.5.

Proposition 6.5 Let x1, x2 ∈ S such that the corresponding Q-spheres intersect.
Let

y ∈ Q ∩ x⊥
1 ∩ x⊥

2

be a point in that intersection, and ỹ := π∗
p( y) its polar projection. Let S1, S2 be the

two polar projected Cayley-Klein spheres corresponding to x1, x2 respectively

S1 := πS∗
p (x1), S2 := πS∗

p (x2).

Let ỹ1, ỹ2 be the two tangent points of ỹ to S1, S2 respectively. Then

KQ (x1, x2) = K
˜Q

(

ỹ1, ỹ2
)

.
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Proof Consider Proposition 5.5. By polarity, the intersection point of the spheres
becomes a common tangent hyperplane, and the intersection angle becomes the
distance of the two tangent points. �

Remark 6.3 Following Remarks 6.1 and 6.2, a common point in the lift of two
(oriented) Laguerre spheres corresponds to a common oriented tangent hyperplane.
Thus the Cayley-Klein distance on S is the Cayley-Klein tangent distance between
two (oriented) Laguerre spheres (cf. Remark 5.5 (i)).

6.2 Hyperbolic Laguerre Geometry

When projecting down fromMöbius geometry to hyperbolic geometry (cf. Sect. 5.5)
we obtain a double cover of the points in hyperbolic space. Hyperbolic planes, on
the other hand, are represented by points in deSitter space, or “outside” hyperbolic
space, by polarity. Thus, to obtain hyperbolic Laguerre geometry, instead of the
Möbius quadric, we choose a quadric that projects to deSitter space.

Definition 6.2

(i) We call the quadric
Bhyp ⊂ RPn+1

corresponding to the standard bilinear form of signature (n, 2) in Rn+2, i.e.,

〈x, y〉 := x1y1 + . . . + xn yn − xn+1yn+1 − xn+2yn+2

for x, y ∈ R
n+2, the hyperbolic Laguerre quadric.

(ii) The corresponding transformation group

Laghyp := PO(n, 2)

is called the group of hyperbolic Laguerre transformations.

To recover hyperbolic space in the projection, choose a point p ∈ RPn+1 with
〈p, p〉 < 1, w.l.o.g.,

p := [en+2] = [0, . . . , 0, 1].

The corresponding involution and projection take the form

σ p : [x1, . . . , xn+1, xn+2] �→ [x1, . . . , xn+1,−xn+2],
π p : [x1, . . . , xn+1, xn+2] �→ [x1, . . . , xn+1, 0].

The quadric in the polar hyperplane of p

˜S := Bhyp ∩ p⊥
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has signature (n, 1), and its “inside” H = ˜S− can be identified with n-dimensional
hyperbolic space, while its “outside” dS = ˜S+ can be identified with n-dimensional
deSitter space (cf. Sect. 4.4).

Under the projection π p the hyperbolic Laguerre quadric projects down to the
compactified deSitter space

π p(Bhyp) = dS = dS ∪ ˜S.

Thus the polar projection π∗
p of a point onBhyp yields a hyperbolic hyperplane, where

the double cover can be interpreted as encoding the orientation of that hyperplane
(see Fig. 2.6).

Remark 6.4 The quadricBhyp is the projective version of the hyperboloid dSn intro-
duced in Sect. 4.4 as a double cover of deSitter space.

Wecall the hyperplanar sections ofBhyp, i.e. theBhyp-spheres,hyperbolic Laguerre
spheres. By polarity, we identify the space of hyperbolic Laguerre spheres with the
whole space

S = RPn+1. (6.1)

Remark 6.5 Aswe have done in Chap. 2, onemight want to exclude oriented hyper-
planes from the space of hyperbolic Laguerre spheres and thus take
S = RPn+1 \ Bhyp (cf. Remark 5.4 (i)).

Under the polar projection πS∗
p points in S are mapped to the spheres that are

polar to deSitter spheres (see Table6.1 and Fig. 2.7).

Theorem 6.1 Under the map

πS∗
p : x �→ CBhyp(x) ∩ p⊥

a point x ∈ S = RPn+1

• with x ∈ Bhyp \ p⊥ is mapped to a hyperbolic hyperplane with pole π p(x) ∈ dS.
• with

〈

πp(x), πp(x)
〉

< 0 is mapped to a hyperbolic sphere inH with center π p(x).
In the normalization

〈

πp(x), πp(x)
〉 = −1 its hyperbolic radius is given by r ≥ 0,

where sinh2 r = x2
n+2.

• with
〈

πp(x), πp(x)
〉 = 0 is mapped to a hyperbolic horosphere.

• with
〈

πp(x), πp(x)
〉

> 0 and 〈x, x〉 < 0 is mapped to a hyperbolic surface of
constant distance in H to a hyperbolic hyperplane with pole π p(x). In the nor-
malization

〈

πp(x), πp(x)
〉 = 1 its hyperbolic distance is given by r ≥ 0, where

cosh2 r = x2
n+2.

• with
〈

πp(x), πp(x)
〉

> 0 and 〈x, x〉 > 0 is mapped to a deSitter sphere in dS with
center π p(x). In the normalization

〈

πp(x), πp(x)
〉 = 1 its deSitter radius is given

by r ≥ 0, where cos2 r = x2
n+2.
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Table 6.1 Laguerre spheres in hyperbolic Laguerre geometry where
Bhyp = P

({

x = (x1, . . . , xn+2) ∈ R
n,2

∣

∣ 〈x, x〉 = 0
}) ⊂ RPn+1

is the hyperbolic Laguerre quadric, B−
hyp, B+

hyp its “inside” and“outside”, CBhyp ( p) the cone of con-
tact to Bhyp with vertex

p = [en+2] = [0, . . . , 0, 0, 1],
and CS( p)−, CS( p)+ its “inside” and “outside” respectively. Furthermore,

H
n = {

y = (y1, . . . , yn+1) ∈ R
n,1

∣

∣ 〈y, y〉p = −1, yn+1 ≥ 0
}

, H = P(Hn) ⊂ RPn,

dSn = {

y = (y1, . . . , yn+1) ∈ R
n,1

∣

∣ 〈y, y〉p = 1
}

, dS = P(dSn) ⊂ RPn,

L
n,1 = {

y = (y1, . . . , yn+1) ∈ R
n,1

∣

∣ 〈y, y〉p = 0
}

, ˜S = P(Ln,1) ⊂ RPn,

are the hyperbolic space, deSitter space, and their absolute quadric where 〈·, ·〉p denotes the restric-
tion of 〈·, ·〉 to p⊥ ∼= R

n,1, i.e., the standard non-degenerate bilinear form on R
n,1 of signature

(n, 1)

Hyperbolic geometry Laguerre geometry

Hyperplane
with pole y ∈ dS, y ∈ dSn

[y,±1] ∈ Bhyp

Sphere
with center y ∈ H, y ∈ H

n

and radius r > 0

[y,± sinh r ] ∈ B−
hyp ∩ CBhyp ( p)

−

Horosphere
with center y ∈ ˜S

[y,±er ] ∈ B−
hyp ∩ CBhyp ( p)

Surface of constant distance
r > 0 to a hyperplane
with pole y ∈ dS, y ∈ dSn

[y,± cosh r ] ∈ B−
hyp ∩ CBhyp ( p)

+

deSitter sphere
with center y ∈ dS, y ∈ dSn

and deSitter radius r > 0

[y,± cos r ] ∈ B+
hyp

Fig. 6.2 Concentric circles in the hyperbolic plane. Left: Concentric hyperbolic circles. Middle:
Curves of constant distance to a common line. Right: Concentric horocycles with center on the
absolute conic

Proof By Theorem 5.1, πS
y (x) is a Cayley-Klein hypersphere with center π p(x)

and Cayley-Klein radius

μ = 〈x, p〉2
�p(x)

= − 〈x, p〉2
〈p, p〉 〈

πq(x), πq(x)
〉 = x2

n+2
〈

πp(x), πp(x)
〉 .
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By Proposition 6.3, πS∗
y (x) is a Cayley-Klein hypersphere with center π p(x) and,

by Proposition 4.4, Cayley-Klein radius

μ̃ = 1 − μ = 1 − x2
n+2

〈

πp(x), πp(x)
〉 .

Now compare Sect. 4.4 for the different types of possible Cayley-Klein spheres in
hyperbolic space. �

Remark 6.6

(i) Thepoints x representinghyperbolic spheres/distancehypersurfaces/horospheres
can be distinguished from the points representing deSitter spheres by the first
satisfying 〈x, x〉 < 0, i.e. lying “inside” the hyperbolic Laguerre quadric, and
the latter satisfying 〈x, x〉 > 0, i.e. lying “outside” the hyperbolic Laguerre
quadric.

(ii) The map πS∗
p is a double cover of the spheres described in Theorem 6.1,

branching on the subset of hyperbolic points, and deSitter null-spheres (see
Proposition 6.4). We interpret the lift to carry the orientation of the hyperbolic
Laguerre spheres. Upon the normalization given in Theorem 6.1 the orientation
is encoded in the sign of the xn+2-component. The involution σ p acts on the
set of hyperbolic Laguerre spheres as orientation reversion.

(iii) The Cayley-Klein distance induced on S by the hyperbolic Laguerre quadric
Bhyp measures the Cayley-Klein tangent distance between the corresponding
hyperbolic Laguerre spheres (see Proposition 6.5) if they possess a common
oriented tangent hyperplane (see Remark 6.3).

(iv) Using the projection π p instead of the polar projection π∗
p hyperbolic Laguerre

geometry may be interpreted as the “Möbius geometry” of deSitter space (cf.
Sect. 7.3).

6.2.1 Hyperbolic Laguerre Transformations

Every (local) transformation mapping (non-oriented) hyperbolic hyperplanes to
hyperbolic hyperplanes (not necessarily points to points) while preserving (tangency
to) hyperbolic spheres can be lifted and extended to a hyperbolic Laguerre transfor-
mation (see Theorem 5.2).

The hyperbolic Laguerre group

Laghyp = PO(n, 2)

preserves the hyperbolic Laguerre quadric Bhyp and maps planar sections of Bhyp

to planar sections of Bhyp. Under the polar projection this means it maps oriented
hyperplanes to oriented hyperplanes, or hyperbolic Laguerre spheres to hyperbolic
Laguerre spheres, while preserving the tangent distance and in particular the oriented
contact (see Remark 6.3).
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The hyperbolic Laguerre group contains (doubly covers) the group of hyperbolic
isometries as PO(n, 2) p. To generate the whole Laguerre group we only need to add
three specific one-parameter families of scalings along concentric Laguerre spheres
(see Remark 5.8 and Fig. 6.2).

• Consider the family of transformations

T (s)
t :=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

In

0
...

0

0
...

0
0 · · · 0 cos t sin t
0 · · · 0 − sin t cos t

⎤

⎥

⎥

⎥

⎥

⎥

⎦

for t ∈ [−π/2, π/2].

It maps the absolute p = [0, . . . , 0, 1] to

T (s)
t ( p) = [0, . . . , 0, sin t, cos t],

which is a hyperbolic sphere with center [0, . . . , 1, 0]. It turns from the absolute
for t = 0 into a point for t = ±π/2, while changing orientation when it passes
through the center or through the absolute, i.e. when cos t · sin t changes sign.

• Consider the family of transformations

T (c)
t :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

In−1

0
...

0

0
...

0

0
...

0
0 · · · 0 cosh t 0 sinh t
0 · · · 0 0 1 0
0 · · · 0 sinh t 0 cosh t

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

for t ∈ R

It maps the absolute p = [0, . . . , 0, 1] to

T (c)
t ( p) = [0, . . . , 0, sinh t, 0, cosh t],

which is an oriented hypersurface of constant distance to the hyperbolic hyperplane
[0, . . . , 0, 1, 0, 1]. It turns from the absolute for t = 0 into the hyperplane for
t = ∞, while changing orientation when it passes through the absolute, i.e. when
t changes sign.

• Consider the family of transformations
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T (h)
t :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

In−1

0
...

0

0
...

0

0
...

0

0 · · · 0 1 + t2

2
t2

2 t

0 · · · 0 − t2

2 1 − t2

2 −t

0 · · · 0 t t 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

for t ∈ R.

It maps the absolute p = [0, . . . , 0, 1] to

T (h)
t (s) = [0, . . . , 0, t,−t, 1],

which is a horosphere with center [0, . . . , 0, 1,−1, 0] on the absolute. It turns
from the absolute for t = 0 into the center for t = ∞, while changing orientation
when t changes its sign.

Remark 6.7 While Laguerre transformations preserve oriented contact they do not
preserve the notion of sphere, horosphere and constant distance surface. For example
the transformation T (s)

π/2 transforms the origin into the absolute and thus turns all
spheres which contain the origin into horospheres.

Now the hyperbolic Laguerre group can be generated by hyperbolic motions and the
three introduced one-parameter families of scalings (see Remark 5.8).

Theorem 6.2 Every hyperbolic Laguerre transformation f ∈ PO(n, 2) can be writ-
ten as

f = � ◦ Tt ◦ �,

where �,� ∈ PO(n, 2) p are hyperbolic motions and Tt ∈ {T (s)
t , T (c)

t , T (h)
t } a scaling

for some t ∈ R.

6.3 Elliptic Laguerre Geometry

When projecting down fromMöbius geometry to elliptic geometry (cf. Sect. 5.6) we
obtain a double cover of the points in elliptic space. Since every elliptic hyperplane
has a pole in the elliptic space, this equivalently leads to a double cover of the elliptic
hyperplanes.

Definition 6.3
(i) We call the quadric

Bell ⊂ RPn+1

corresponding to the standard bilinear form of signature (n + 1, 1) in R
n+2,

i.e.,
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〈x, y〉 := x1y1 + . . . + xn+1yn+1 − xn+2yn+2

for x, y ∈ R
n+2 the elliptic Laguerre quadric.

(ii) The corresponding transformation group

Lagell := PO(n + 1, 1) 
 Mob

is called the group of elliptic Laguerre transformations.

Remark 6.8 Thus, n-dimensional elliptic Laguerre geometry is isomorphic to n-
dimensional Möbius geometry.

To recover elliptic space in the projection, choose a point p ∈ RPn+1 with
〈p, p〉 < 1, w.l.o.g.,

p := [en+2] = [0, . . . , 0, 1].

The corresponding involution and projection take the form

σ p : [x1, . . . , xn+1, xn+2] �→ [x1, . . . , , xn+1,−xn+2],
π p : [x1, . . . , xn+1, xn+2] �→ [x1, . . . , , xn1 , 0].

The quadric in the polar hyperplane of p

O = Bell ∩ p⊥

has signature (n + 1, 0), and its non-empty side E = O+ can be identified with n-
dimensional elliptic space (see Sect. 4.5)

Under the projection π p the elliptic Laguerre quadric projects down to the elliptic
space

π p(Bell) = E

Thus, the polar projection π∗
p of every point on Bell yields an elliptic hyperplane,

where the double cover can be interpreted as carrying the orientation of that hyper-
plane.

Remark 6.9 The quadric Bell is the projective version of the sphere Sn introduced
in Sect. 4.5 as a double cover of elliptic space.

We call the hyperplanar sections of Bell, i.e. the Bell-spheres, elliptic Laguerre
spheres. By polarity, we identify the space of elliptic Laguerre spheres with the the
outside of Bell

S = B+
ell ∪ Bell. (6.2)

Remark 6.10 As we have done in Chap. 2, one might want to exclude oriented
hyperplanes from the space of elliptic Laguerre spheres and thus take S = B+

ell (cf.
Remark 5.4 (i)).
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Table 6.2 The lifts of elliptic spheres to Möbius geometry where
Bell = P

({

x = (x1, . . . , xn+2) ∈ R
n+1,1

∣

∣ 〈x, x〉 = 0
}) ⊂ RPn+1

is the elliptic Laguerre quadric, B+
ell its “outside”, and
p = [en+2] = [0, . . . , 0, 0, 1].

Furthermore,
S

n = {

y = (y1, . . . , yn+1) ∈ R
n+1

∣

∣ 〈y, y〉p = 1
}

, E = P(Sn) ⊂ RPn,

is the elliptic space where 〈·, ·〉p denotes the restriction of 〈·, ·〉 to p⊥ ∼= R
n+1, i.e., the standard

(positive definite) scalar product on Rn+1

Elliptic geometry Laguerre geometry

Hyperplane
with pole y ∈ E , y ∈ S

n
[y,±1] ∈ Bell

Sphere
with center y ∈ E , y ∈ S

n

and radius r > 0

[y,± sin r ] ∈ B+
ell

Under the polar projection πS∗
p points inS are mapped to spheres that are polar

to elliptic spheres, i.e. they are mapped to all elliptic spheres (Table6.2 and Fig. 2.5).

Theorem 6.3 Under the map

πS∗
p : x �→ CBell(x) ∩ p⊥

a point x ∈ S = B+
ell ∪ Bell is mapped to an elliptic sphere in E with center π p(x).

In the normalization
〈

πp(x), πp(x)
〉 = 1 its elliptic radius is given by r ≥ 0, where

x2
n+2 = sin2 r . In particular, x ∈ Bell is mapped to an elliptic hyperplane with pole

π p(x) ∈ E .

Proof Analogous to Theorem 6.1. �

Remark 6.11

(i) The map πS∗
p is a double cover of elliptic spheres, branching on the subset of

elliptic points (see Proposition 6.4).We interpret the lift to carry the orientation
of the elliptic Laguerre spheres. Upon the normalization given in Theorem 6.3
the orientation is encoded in the sign of the xn+2-component. The involution
σ p acts on the set of elliptic Laguerre spheres as orientation reversion.

(ii) The Cayley-Klein distance induced on S by the elliptic Laguerre quadric Bell

measures the Cayley-Klein tangent distance between the corresponding elliptic
Laguerre spheres (see Proposition 6.5) if they possess a common oriented
tangent hyperplane (see Remark 6.3).

(iii) Using the projection πq instead of the polar projection π∗
q elliptic Laguerre

geometry coincides with Möbius geometry (cf. Sects. 5.4 and 7.3).
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Fig. 6.3 Concentric circles
in the elliptic plane

6.3.1 Elliptic Laguerre Transformations

Every (local) transformation mapping (non-oriented) elliptic hyperplanes to elliptic
hyperplanes (not necessarily points to points) while preserving (tangency to) ellip-
tic spheres can be lifted and extended to an elliptic Laguerre transformation (see
Theorem 5.2).

The elliptic Laguerre group

Lagell = PO(n + 1, 1)

preserves the elliptic Laguerre quadric Bell and maps planar sections of Bell to planar
sections of Bell. Under the polar projection this means it maps oriented hyperplanes
to oriented hyperplanes, or elliptic Laguerre spheres to elliptic Laguerre spheres,
while preserving the tangent distance and in particular the oriented contact (see
Remark 6.3).

The elliptic Laguerre group contains (doubly covers) the group of elliptic isome-
tries as PO(n + 1, 1) p. To generate the whole Laguerre group we only need to add
one specific one-parameter family of scalings along concentric Laguerre spheres (see
Remark 5.8 and Fig. 6.3).
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• Consider the family of transformations

St :=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

In

0
...

0

0
...

0
0 · · · 0 cosh t sinh t
0 · · · 0 sinh t cosh t

⎤

⎥

⎥

⎥

⎥

⎥

⎦

for t ∈ R.

It maps the absolute p = [0, . . . , 0, 1] to

T (s)
t ( p) = [0, . . . , 0, sinh t, cosh t],

which is an elliptic sphere with center [0, . . . , 1, 0]. It turns from the absolute for
t = 0 into a point for t = ∞, while changing orientation when it passes through
the center or through the absolute, i.e. when t changes sign.

Now the elliptic Laguerre group can be generated by elliptic motions and this one-
parameter family of scalings (see Remark 5.8).

Theorem 6.4 Any elliptic Laguerre transformation f ∈ PO(n + 1, 1) can be writ-
ten as

f = � ◦ St ◦ �,

where �,� ∈ PO(n + 1, 1) p are elliptic motions and t ∈ R.



Chapter 7
Lie Geometry

Möbius geometry (signature (n + 1, 1), see Sect. 5.4), hyperbolic Laguerre geometry
(signature (n, 2), see Sect. 6.2), elliptic Laguerre geometry (signature (n + 1, 1), see
Sect. 6.3), as well as Euclidean Laguerre geometry (signature (n, 1, 1), see Sect.
A.4) can all be lifted to Lie geometry (signature (n + 1, 2)) using the methods from
Chaps. 5 and 6.

In this section we first give an elementary introduction to Lie geometry, which
leads to its projective model, see, e.g., [Bla1929, Cec1992]. We then show how to
unify Möbius and Laguerre geometry of Cayley-Klein spaces in the framework of
Lie geometry by considering certain (compatible) sphere complexes. The groups of
Möbius transformations, Laguerre transformations, and isometries appear as quo-
tients of the group of Lie transformations.

7.1 Oriented Hyperspheres of S
n

We first give an informal description of Lie (sphere) geometry as the geometry of
oriented hyperspheres of the n-dimensional sphere S

n and their oriented contact.
Thus, let

S
n = {

y ∈ R
n+1

∣∣ y · y = 1
} ⊂ R

n+1,

where y · y denotes the standard scalar product on R
n+1. An oriented hypersphere of

S
n can be represented by its center c ∈ S

n and its signed spherical radius r ∈ R (see
Fig. 7.1). Tuples (c, r) ∈ S

n × R represent the same oriented hypersphere if they are
related by a sequence of the transformations

ρ1 : (c, r) �→ (c, r + 2π), ρ2 : (c, r) �→ (−c, r − π). (7.1)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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Fig. 7.1 Left: The Lie quadric L ⊂ RPn+2 (depicted in the case n = 1). The choice of p with
〈p, p〉 < 0 determines the point complex, or Möbius quadric, S ⊂ L. The points s1, s2 ∈ L con-
tained in a common isotropic subspace of L correspond to two oriented hyperspheres in oriented
contact. Right: The Möbius quadric S ⊂ RPn+1 (depicted in the case n = 2). The two points
π p(s1), π p(s2) ∈ S+ correspond to two hyperspheres in S via polarity. In the chosen normaliza-
tion, their orientation is encoded in the last component of s1, s2 respectively

The corresponding hypersphere as a set of points is given by

{
y ∈ S

n
∣∣ c · y = cos r

}
,

while its orientation is obtained in the following way: The hypersphere separates the
sphere S

n into two regions. For r ∈ [0, π) consider the region which contains the
center c to be the “inside” of the hypersphere, and endow the hypersphere with an
orientation by assigning normal vectors pointing towards this region. The orientation
of the hypersphere for other values of r is then obtained by (7.1).

Definition 7.1 We call

�S :=
(
S
n × R

)
�{ρ1, ρ2}.

the space of oriented hyperspheres of S
n .

Remark 7.1 Orientation reversion defines an involution on �S , which is given by

ρ : (c, r) �→ (c,−r).
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Thus, the space of (non-oriented) hyperspheres of S
n may be represented by

S := �S
�ρ =

(
S
n × R

)
�{ρ, ρ1, ρ2}.

Two oriented hyperspheres (c1, r1) and (c2, r2) are in oriented contact if (see
Fig. 7.1)

c1 · c2 = cos(r1 − r2),

which is a well-defined relation on �S . Upon using the cosine addition formula, this
is equivalent to

c1 · c2 − cos r1 cos r2 − sin r1 sin r2 = 0, (7.2)

which is bilinear in (ci , cos ri , sin ri ), i = 1, 2. This gives rise to a projective model
of Lie geometry as described in the following.

Definition 7.2

(i) The quadric
L ⊂ RPn+2

corresponding to the standard bilinear form of signature (n + 1, 2)

〈x, y〉 :=
n+1∑

i=1

xi yi − xn+2yn+2 − xn+3yn+3

for x, y ∈ R
n+3, is called the Lie quadric.

(ii) Two points s1, s2 ∈ L on the Lie quadric are called Lie orthogonal if 〈s1, s2〉 =
0, or equivalently if the line s1 ∧ s2 is isotropic, i.e. is contained in L. An
isotropic line is called a contact element.

(iii) The projective transformations of RPn+2 that preserve the Lie quadric L

Lie := PO(n + 1, 2).

are called Lie transformations.

Proposition 7.1 The set of oriented hyperspheres �S of S
n is in one-to-one corre-

spondence with the Lie quadric L by the map

�S : �S → L, (c, r) �→ (c, cos r, sin r)

such that two oriented hyperspheres are in oriented contact if and only if their
corresponding points on the Lie quadric are Lie orthogonal.

Proof A point s ∈ L can always be represented by s = [c, cos r, sin r ] with c ∈ S
n ,

r ∈ R. The transformations (7.1) act on s = (c, cos r, sin r) as
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Table 7.1 Correspondence of hyperspheres of the n-sphere S
n and points on the Lie quadric

L = P
({
x = (x1, . . . , xn+3) ∈ R

n+1,2
∣∣ 〈x, x〉 = 0

}) ⊂ RPn+2

Spherical geometry Lie geometry

Point x̂ ∈ S
n

[
x̂, 1, 0

] ∈ L
Oriented hypersphere
with center ŝ ∈ R

n and signed radius r ∈ R

[
ŝ, cos r, sin r

] ∈ L

(c, cos r, sin r) �→ (c, cos(r + 2π), sin(r + 2π)) = (c, cos r, sin r),

(c, cos r, sin r) �→ (−c, cos(r − π), sin(r − π)) = −(c, cos r, sin r).

and the oriented contact becomes the bilinear relation (7.2). �

This correspondence leads to an embedding of S
n into the Lie quadric in the

following way (Table7.1). Among all oriented hyperspheres the map �S distinguishes
the set of “points”, or null-spheres, as the set of oriented hyperspheres with radius
r = 0. It turns out that

{�S(c, 0)
∣∣∣ c ∈ S

n
}

= {x ∈ L | xn+3 = 0} = L ∩ p⊥,

where
p := [en+3] = [0, . . . , 0, 1] ∈ RPn+2.

Definition 7.3 The quadric
S := L ∩ p⊥

is called the point complex.

Remark 7.2 Every choice of a timelike point p ∈ RPn+2, i.e. 〈p, p〉 < 0, leads to
the definition of a point complex S = L ∩ p⊥, all of which are equivalent up to a
Lie transformation. The chosen point complex S then leads to a correspondence of
points on the Lie quadric L and oriented hyperspheres on S � S

n .

The point complex is a quadric of signature (n + 1, 1) which we identify with
the Möbius quadric (see Sect. 5.4). The corresponding involution and projection
associated with the point p (see Definition 5.1) take the form

σ p : [x1, . . . , xn+2, xn+3] �→ [x1, . . . , xn+2,−xn+3],
π p : [x1, . . . , xn+2, xn+3] �→ [x1, . . . , xn+2, 0].

The image of the Lie quadric L under the projection π p is given by

π p(L) = S+ ∪ S = {
s ∈ p⊥ ∣∣ 〈s, s〉 ≥ 0

}
.
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Bypolarity, each point ofS+ ∪ S corresponds to a hyperplanar section ofS. Thus, the
Lie quadric can be seen as a double cover of the set of spheres of Möbius geometry,
encoding their orientation, while, vice versa, the orientation of hyperspheres in Lie
geometry vanishes in the projection to Möbius geometry.

Proposition 7.2

(i) The involution σ p : L → L corresponds to the orientation reversion on �S .
(ii) The projection π p : L → S+ ∪ S defines a double cover with branch locus S.
(iii) The setS of non-oriented hyperspheres of Sn (see Remark 7.1) is in one-to-one

correspondence with S+ ∪ S by the map

S = π p ◦ �S : S → S+ ∪ S, (c, r) �→ (c, cos r, 0).

(iv) The set of “points” on S ⊂ L lying on an oriented hypersphere s ∈ L, or
equivalently lying on the non-oriented hypersphere π p(s) ∈ S+ ∪ S is given
by

s⊥ ∩ S = π p(s)⊥ ∩ S.

(v) The non-oriented hyperspheres corresponding to two points s1, s2 ∈ S+ ∪ S
touch if and only if the line s1 ∧ s2 connecting them is tangent to S.
Thus, the points on the cone of contact CS(s) (see Definition 3.1) correspond
to all spheres touching the sphere corresponding to s ∈ S+ ∪ S.

Proof

(i) Note that σ p(�S(c, r)) = �S(c,−r) and compare with Remark 7.1.
(ii) See Proposition 5.1 (ii).
(iii) Follows from (i) and (ii).
(iv) The set s⊥ ∩ S ⊂ L describes all hyperspheres in oriented contact with s that

simultaneously correspond to “points”, i.e. “points” that lie on the hypersphere.
Indeed, with s = [ŝ, cos r, sin r ] ∈ L we find for a “point” x = [x̂, 1, 0] ∈ S
that

〈s, x〉 = 0 ⇔ 〈
ŝ, x̂

〉 = cos r.

(v) This generalizes the statement in (iii) and follows from the fact that the isotropic
subspaces of L (contact elements, cf. Definition 7.2) project to tangent lines of
S. �

The subgroup Lie p of Lie transformations that preserve the point complex S,
i.e. map “points” to “points”, becomes the group of Möbius transformations in the
projection to p⊥

Mob = Lie p�σ p � PO(n + 1, 1).
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7.2 Laguerre Geometry from Lie Geometry

A sphere complex in Lie geometry is given by the intersection of the Lie quadric with
a hyperplane of RPn+2. It may equivalently be described by the polar point of this
hyperplane. Twopoints inRPn+2 can bemapped to each other by aLie transformation
if and only if they have the same signature. Thus, any two sphere complexes of the
same signature are Lie equivalent.

Definition 7.4 For a point q ∈ RPn+2 the set of points

L ∩ q⊥

on the Lie quadric as well as the n-parameter family of oriented hyperspheres cor-
responding to these points is called a sphere complex. A sphere complex is further
called

• elliptic if 〈q, q〉 > 0,
• hyperbolic if 〈q, q〉 < 0,
• parabolic if 〈q, q〉 = 0.

Remark 7.3
(i) We adopted the classical naming convention for sphere complexes here, see

e.g. [Bla1929].
(ii) The point complex (see Definition 7.3) is a hyperbolic sphere complex.
(iii) A non-parabolic sphere complex induces an invariant for pairs of oriented

spheres (see Appendix B). In particular, the invariant induced by the point
complex, i.e., the point p, is the signed inversive distance (see Sect. B.2), which
generalizes the intersection angle of spheres. It further allows for a geometric
description of sphere complexes (see Sect. B.3).

Laguerre geometry is the geometry of oriented hyperplanes and oriented hyper-
spheres in a certain space form, and their oriented contact (cf. Chap. 6). It appears as
a subgeometry of Lie geometry by distinguishing the set of “oriented hyperplanes”
as a sphere complex among the set of oriented hyperspheres.

The point complexS = L ∩ p⊥, where p ∈ RPn+2 is a timelike point, induces the
notionof orientation reversiongivenby the involutionσ p. For another sphere complex
L ∩ q⊥, where q ∈ RPn+2, to play the distinguished role of the set of “oriented
hyperplanes” onS itmust be invariant under orientation reversion, i.e.,σ p(L ∩ q⊥) =
L ∩ q⊥, which is equivalent to 〈p, q〉 = 0.

Definition 7.5 For a point q ∈ RPn+2 with

〈p, q〉 = 0

we call the sphere complex
B := L ∩ q⊥,

a plane complex.
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Up to a Lie transformation that fixes p, i.e. a Möbius transformation (cf. Sect.
5.4), we can set, w.l.o.g.,

q =

⎧
⎪⎨

⎪⎩

[en+1] = [0, . . . , 1, 0, 0] if 〈q, q〉 > 0

[en+2] = [0, . . . , 0, 1, 0] if 〈q, q〉 < 0

[e∞] = [0, . . . , 1
2 ,

1
2 , 0] if 〈q, q〉 = 0.

Consider the restriction of theLie quadric to q⊥ � RPn+1. Then for the non-parabolic
cases we identify each of the plane complexes with one of the Laguerre quadrics
which we have introduced in Chap. 6. The parabolic plane complex corresponds to
the classical case of Euclidean Laguerre geometry. Thus, we recover (see Fig. 7.2)

• hyperbolic Laguerre geometry if 〈q, q〉 > 0 (see Sect. 6.2),
• elliptic (“spherical”) Laguerre geometry if 〈q, q〉 < 0 (see Sect. 6.3),
• Euclidean Laguerre geometry if 〈q, q〉 = 0 (see Sect. A.4).

Remark 7.4 Note that according to the classical naming convention of sphere com-
plexes, which we adopted in Definition 7.4, an elliptic sphere complex is associated
with hyperbolic Laguerre geometry, while a hyperbolic sphere complex is associated
with elliptic Laguerre geometry.

The corresponding groups of Laguerre transformations are induced by the groups of
Lie transformations that preserve the corresponding Laguerre quadric B, or equiva-
lently the point q,

Lieq�σq �

⎧
⎪⎨

⎪⎩

PO(n, 2) if 〈q, q〉 > 0

PO(n + 1, 1) if 〈q, q〉 < 0

PO(n, 1, 1) if 〈q, q〉 = 0,

where σq is the involution associated with the plane complex (cf. Definition 5.1),
and we set σq = id if 〈q, q〉 = 0.

Remark 7.5 In the non-parabolic cases, the condition 〈p, q〉 = 0 is equivalent to
the condition that the two involutions σ p and σq commute, i.e.

σ p ◦ σq = σq ◦ σ p.

We recognized the different Laguerre quadrics by their signature, which depends
on the signature of the point q only, but is entirely independent of the point p with
〈p, q〉 = 0. We yet have to establish the geometric relation to Lie geometry.

Definition 7.6 Given the two points p, q ∈ RPn+2 defining the point complex and
the plane complex respectively, we call the set

B := p⊥ ∩ q⊥ � RPn.

the base plane.



78 7 Lie Geometry

pp

pq 

Fig. 7.2 Laguerre geometry fromLie geometry. The choice of a point q with 〈p, q〉 = 0 determines
a plane complex, or Laguerre quadric B ⊂ L. This induces Laguerre geometry on a Cayley-Klein
space in the base plane B. A point s ∈ B corresponds to an oriented line in that space via polar
projection

In the restriction to the hyperplane of the point complex p⊥, the point π p(q) plays
the role of the point p from the Sects. 6.2 and 6.3. Thus, polar projection with respect
to this point yields hyperbolic/elliptic geometry in the base plane B. In the parabolic
case, projection with respect to q should be replaced by stereographic projection,
which recovers Euclidean (similarity) geometry (cf. Sect. A.3).

On the other hand, in the restriction to the hyperplane of the plane complex q⊥,
the point πq( p) plays the role of the point p from the Sects. 6.2 and 6.3. Thus,
polar projection with respect to this point yields hyperbolic/elliptic geometry in the
base plane B, while in the parabolic case projection with respect to p leads to dual
Euclidean (similarity) geometry (cf. Sect. A.4).

On the level of the transformation group this can be described in the following
way. Consider the Lie transformations Lie p,q that fix all “points” and “planes”,
i.e. the point complex S and the plane complex B, or equivalently, the two points
p, q ∈ RPn+2. These transformations naturally factor to Lie p,q/{σ p, σq }, where again we
set σq = id if 〈q, q〉 = 0. Their action is well-defined on the quotient space S/σq ,
due to Remark 7.5. The quotient space S/σq can be embedded into the base plane
B using the projection πq , which should be replaced by stereographic projection in
the Euclidean case (cf. Sect. A.4). Thus, we may equivalently consider the action of
these Lie transformations on the base planeB, onwhich they act as lower dimensional
projective orthogonal groups again:
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Lie p,q�{σ p, σq} � PO(n + 1, 1)
�σq �

⎧
⎪⎨

⎪⎩

PO(n, 1), if 〈q, q〉 > 0

PO(n + 1), if 〈q, q〉 < 0

PO(n, 0, 1), if 〈q, q〉 = 0.

We recognize PO(n, 1) and PO(n + 1) as the isometry groups of hyperbolic and
elliptic space (cf. Sects. 4.4 and 4.5), while PO(n, 0, 1) corresponds to the group of
dual similarity transformations, i.e. the group of dual transformations PO(n, 0, 1)�

corresponds to isometries and scalings of Euclidean space (cf. Sect. A.2).

Remark 7.6 We end up with two models of the space form associated to each
Laguerre geometry (see Fig. 7.2). One is represented by the point complex S ⊂
p⊥ � RPn+1, with opposite points with respect to σq identified, which we refer
to as the sphere model (see Figs. 8.4, 8.5, and 8.6, top). In this model the oriented
hyperspheres that correspond to sections of S with hyperplanes that contain the point
π p(q) are the distinguished “oriented hyperplanes”

Another model is obtained by its projection πq(S) onto the base plane B � RPn ,
which we refer to as the projective model (see Figs. 8.4, 8.5, and 8.6, left). In this
model the “oriented hyperplanes” become (oriented) projective hyperplanes.

Proposition 7.3
(i) In the non-Euclidean cases of Laguerre geometry, i.e. 〈q, q〉 �= 0, the point

complex S may be identified with hyperbolic/elliptic space respectively, after
taking the quotient with respect to σq , or equivalently, projection onto the base
plane

S�σq � πq(S) ⊂ B � RPn.

The Lie transformations that fix the point complex and the plane complex act
on πq(S) ⊂ B as the corresponding isometry group.

(ii) In the case of Euclidean Laguerre geometry, i.e. 〈q, q〉 = 0, the point complex
S may be identified with Euclidean space upon stereographic projection. The
Lie transformations that fix the point complex and the plane complex act on B
as dual similarity transformations.

Remark 7.7 In Laguerre geometry the hyperplanar sections correspond to oriented
spheres, which, in the non-Euclidean cases, can be identified with their polar points.
In elliptic Laguerre geometry the Lie quadric projects to the “outside” of the elliptic
Laguerre quadric

πq(L) = B+
ell ∪ Bell

which represents all poles of hyperplanar sections (6.2). In hyperbolic Laguerre
geometry, on the other hand, the Lie quadric projects to the “inside” of the hyperbolic
Laguerre quadric

πq(L) = B−
hyp ∪ Bhyp,

while the poles of hyperplanar sections are the whole space (6.1). The Lie quadric
only projects to the points corresponding to hyperbolic spheres/distance hypersur-
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Table 7.2 Isometry group, Möbius group, and Laguerre group for different space forms, and the
signatures of the points p and q defining the corresponding point complex and plane complex in Lie
geometry respectively. In the degenerate cases of Euclidean and Minkowski geometry, the given
“isometry group” is actually the group of similarity transformations represented on the dual space

Space form Isometry grp. Möbius grp. Laguerre grp. Sign. p, q

Elliptic space PO(n + 1) PO(n + 1, 1) PO(n + 1, 1) (−) (−)

Hyperbolic space PO(n, 1) PO(n + 1, 1) PO(n, 2) (−) (+)

deSitter space PO(n, 1) PO(n, 2) PO(n + 1, 1) (+) (−)

(Dual) Euclidean
space

PO(n, 0, 1) PO(n + 1, 1) PO(n, 1, 1) (−) (0)

(Dual)
Minkowski space

PO(n − 1, 1, 1) PO(n, 2) PO(n, 1, 1) (+) (0)

faces/horospheres, and not to points representing deSitter spheres (cf. Remark 6.6
(i)). Vice versa, Laguerre spheres that are deSitter spheres do not possess a (real) lift
to the Lie quadric.

7.3 Subgeometries of Lie Geometry

Choosing different signatures for the points p and q, i.e. different signatures for
the point complex and plane complex, we recover different subgeometries of Lie
geometry (see Table7.2).

Fixing both points in the Lie group induces (a quadruple covering of) the cor-
responding isometry group. We call the group obtained by fixing only p (a double
cover of) the corresponding Möbius group, and the group obtained by fixing only q
(a double cover of) the corresponding Laguerre group. For each isometry group the
corresponding Möbius group describes the transformations that map points in the
space form to points while preserving spheres, while the Laguerre group describes
the transformations that map hyperplanes to hyperplanes while preserving spheres.
For this to hold, the transformations either have to be considered locally, or acting
on the set of oriented points/oriented hyperplanes respectively (see Theorem 5.2,
Remark 5.6 (iii), Remark 5.10 (iii), Remark 5.11 (iii), sections “6.2.1” and “6.3.1”).

Remark 7.8 Note that certain geometries have the same transformation group. In
particular, n-dimensional Lie geometry has the same transformation group as (n +
1)-dimensional hyperbolic Laguerre geometry. Geometrically this is due to the fact
that one can identify the oriented hyperspheres of S with the oriented hyperbolic
hyperplanes of the insideH = S−.

http://dx.doi.org/10.1007/978-3-030-81847-0_6
http://dx.doi.org/10.1007/978-3-030-81847-0_6


Chapter 8
Checkerboard Incircular Nets

In this section, as an application of two-dimensional Lie and Laguerre geometry,
we present new research results. While incircular nets and their Laguerre geomet-
ric generalization to checkerboard incircular nets have been studied in great detail
[Böh1970, AB2018, BST2018], we introduce their generalization to Lie geome-
try, and show that they may be classified in terms of checkerboard incircular nets
in hyperbolic/elliptic/Euclidean Laguerre geometry. We prove incidence theorems
of Miquel type, show that all lines of a checkerboard incircular net are tangent to a
hypercycle, and give explicit formulas in terms of Jacobi elliptic functions. This gen-
eralizes the results from [BST2018] and leads to a unified treatment of checkerboard
incircular nets in all space forms.

8.1 Checkerboard Incircular Nets in Lie Geometry

To investigate configurations of oriented circles and their oriented contact on the
two-sphere, we identify oriented circles with points on the Lie quadric L ⊂ RP4,
which is a quadric of signature (+ + + − −), as described in Chap. 7.

Definition 8.1 (Lie quadrilateral) A Lie quadrilateral is a quadruple of oriented
circles, called edge circles.

Remark 8.1 Two edge circles of a Lie quadrilateral do not necessarily intersect.
Thus, e.g., both quadrilaterals shown in Fig. 8.1 are admissible Lie quadrilaterals.

Definition 8.2 (Lie circumscribed) A Lie quadrilateral is called circumscribed if
the four points on the Lie quadric corresponding to its four oriented edge circles are
coplanar. We call the signature of the plane in which these points lie the signature of
the circumscribed Lie quadrilateral.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
A. I. Bobenko et al., Non-Euclidean Laguerre Geometry and Incircular Nets,
SpringerBriefs in Mathematics, https://doi.org/10.1007/978-3-030-81847-0_8
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Fig. 8.1 Lie-circumscribed quadrilaterals

To justify the term “circumscribed” consider a plane U ⊂ RP4 of signature
(+ + −). Then according to Lemma 3.1 its polar line has signature (+−), and thus,
U⊥ ∩ L = {c1, c2} consists of exactly two points. The one parameter family of cir-
cles corresponding to the points in U ∩ L are the circles in oriented contact with the
two circles corresponding to c1 and c2. Therefore, a circumscribed Lie quadrilateral
of signature (+ + −) is in oriented contact with exactly two circles (see Fig. 8.1).

To characterize all possible cases of circumscribed Lie quadrilaterals we need to
distinguish all possible signatures of the plane U.

Proposition 8.1 For a plane U ⊂ RP4 the family of oriented circles corresponding
toU ∩ L is exactly one of the following depending on the signature ofU with respect
to the Lie quadric L.
• (+ + +) Empty family.
• (+ + −)One parameter family of circles in oriented contact with the two oriented
circles given by U ∩ L.

• (+ − −) Circles from the intersection of two hyperbolic circle complexes (cf.
Definition 7.4 and Sect. B.3).

• (+ − 0) Two contact elements (see Definition 7.2) with a common circle.
• (+ + 0) One circle.
• (+00) One contact element.

Proof The Lie quadric has signature (+ + + − −). Thus, the listed signatures are
all possible cases that can occur. A plane with signature (+ + +) does not intersect
the Lie quadric. The case (+ + −)was already discussed before the proposition. For
the case (+ − −) the polar line has signature (++). Thus, we may view U as the
intersection of two hyperbolic circle complexes. The cases (+ − 0), (+ + 0), and
(+00) each describes a tangent plane that, in turn, intersects the Lie quadric in two
isotropic subspaces, touches the Lie quadric in exactly one point, intersects the Lie
quadric in exactly one isotropic subspace. �
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Fig. 8.2 Lie geometric version ofMiquel’s theorem. Left: Combinatorial picture.Right: Geometric
picture

Remark 8.2 For a generic circumscribed Lie quadrilateral, i.e., no three of the four
points on the Lie quadric are collinear, only the signatures (+ + −), (+ − −), and
(+ − 0) can occur.

The definition of Lie circumscribility via planarity in the Lie quadric immediately
implies a Lie geometric version of the classical Miquel’s theorem. To see this, we
employ the following statement of projective geometry about the eight intersection
points of three quadrics in space, see, e.g., [BS2008, Theorem 3.12].

Lemma 8.1 (Associated points) Given eight distinct points which are the set of
intersections of three quadrics inRP3, all quadrics through any seven of those points
must pass through the eighth point.

Theorem 8.1 (Miquel’s theorem inLie geometry) Let�1, �2, �3, �4,m1,m2,m3,m4

be eight generic oriented circles on the sphere such that the five Lie quadrilaterals
(�1, �2,m1,m2), (�1, �2,m3,m4), (�3, �4,m1,m2), (�3, �4,m3,m4), (�2, �3,m2,m3)

are circumscribed, then so is the Lie quadrilateral (�1, �4,m1,m4) (see Fig.8.2).

Remark 8.3 A sufficient genericity condition for the eight points on the Lie quadric
is that no five points are coplanar.

Proof Consider the eight points on the Lie quadric as the vertices of a combinatorial
cube (see Fig. 8.2). Coplanarity of the bottom and side faces corresponds to the
assumed circumscribility. Thus, we have to show that the top face is planar as well.

As a first step we show that all eight vertices of the cube are contained in a
three-dimensional projective subspace. Indeed, let V be the subspace spanned by
�2, �3,m1,m2. Then the assumed circumscribility implies that for instance �1 lies
in a plane with �2,m1,m2 and therefore �1 ∈ V . Similarly, �4,m3 ∈ V , and finally
m4 ∈ V .

A three-dimensional subspace intersects the Lie quadric in a (at most once degen-
erate) two-dimensional quadric L̃. Consider the two degenerate quadricsQ1,Q2 con-
sisting of two opposite face planes of the cube, respectively. Then, due to the gener-
icity condition, the eight points of the cube are the intersection points of L̃,Q1,Q2.
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Fig. 8.3 On the
combinatorics of adjacent
“cubes” of a checkerboard
incircular net

Now consider the degenerate quadric Q3 consisting of the bottom plane of the cube
and the plane spanned by �1, �4,m1. Then Q3 contains seven of the eight points,
and therefore, according to Lemma 8.1, also the eighth point m4. Since m4 may
not lie in the bottom plane, we conclude that the quadrilateral (�1, �4,m1,m4) is
circumscribed. �

We now introduce nets consisting of two families of oriented circles such that
every second Lie quadrilateral (in a checkerboard-manner) is circumscribed.

Definition 8.3 (Lie checkerboard incircular nets) Two families (�i )i∈Z, (m j ) j∈Z of
oriented circles on the sphere are called a Lie checkerboard incircular net if for every
i, j ∈ Z with even i + j the Lie quadrilateral (�i , �i+1,m j ,m j+1) is circumscribed.

In the followingwewill always assume generic Lie checkerboard incircular nets in
the sense of Remark 8.3. As an immediate consequence of Theorem 8.1 we find that
Lie checkerboard incircular nets have many more circumscribed Lie quadrilaterals
than introduced in its definition.

Corollary 8.1 Let (�i )i∈Z, (m j ) j∈Z be the oriented circles of a Lie checkerboard
incircular net. Then for every i, j, k ∈ Z with even i + j the Lie quadrilateral
(�i ,m j , �i+2k+1,m j+2k+1) is circumscribed.

Similar to the argument in the proof of Theorem 8.1 (or as a consequence thereof),
we find that the points on the Lie quadric corresponding to a Lie checkerboard
incircular net can not span the entire space.

Theorem 8.2 The points on the Lie quadricL ⊂ RP4 corresponding to the oriented
circles of a Lie checkerboard incircular net lie in a common hyperplane of RP4.

Proof Consider “adjacent” cubes (�1, �2, �3, �4,m1,m2,m3,m4) and (�3, �4, �5, �5,

m1,m2,m3,m4) from the Lie checkerboard incircular net with vertices on the Lie
quadric (see Fig. 8.3). Each of these cubes lies in a three-dimensional subspace of
RP4, and they coincide in six of its eight vertices. Thus, both cubes, and by induction
the whole net, lie in the same three-dimensional subspace. �
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As we have seen in Chap. 7, depending on its signature, a three-dimensional
subspace of the Lie quadric induces one of the three types of Laguerre geometry.
Thus, our study of Lie checkerboard incircular nets may be reduced to the study of
its three Laguerre geometric counterparts as we will see in the next section.

8.2 Laguerre Checkerboard Incircular Nets

Twodimensional hyperbolic/elliptic/EuclideanLaguerre geometry is the geometry of
oriented lines in the hyperbolic/elliptic/Euclidean plane and their oriented contact to
oriented circles (Laguerre circles) in the respective space form. We identify oriented
lines with points on, and oriented circles with planar sections of, the corresponding
Laguerre quadric B, which is a quadric of signature (+ + −−), (+ + +−), (+ +
−0) respectively (see Sects. 6.2, 6.3 and A.4).

Similar to the condition for Lie circumscribility, four oriented lines touch a com-
mon oriented circle if and only if the corresponding points on the Laguerre quadric
are coplanar. On the other hand, all three Laguerre geometries are subgeometries of
Lie geometry, by restricting the Lie quadric to a three-dimensional subspace. Thus,
in this restriction, a Lie circumscribed quadrilateral turns into four lines touching a
common oriented circle. Accordingly one obtains the following Laguerre geometric
version of Theorem 8.1.

Theorem 8.3 (Miquel’s theorem in Laguerre geometry) Let �1, �2, �3, �4,m1,

m2,m3,m4 be eight generic oriented lines in the hyperbolic/elliptic/Euclidean plane
such that the five quadrilaterals (�1, �2,m1,m2), (�1, �2,m3,m4), (�3, �4,m1,m2),
(�3, �4,m3,m4), (�2, �3,m2,m3) are circumscribed (each touches a common ori-
ented circle), then so is the quadrilateral (�1, �4,m1,m4) (cf. Fig.8.3).

The Laguerre geometric version of checkerboard incircular nets (see Definition
8.3) is given in the following definition [AB2018]. Examples of checkerboard incir-
cular nets in the elliptic, hyperbolic, and Euclidean plane are shown in Figs. 8.4, 8.5,
8.6, 8.7 and 8.8 (see also [DGDGallery]).

Definition 8.4 (Laguerre checkerboard incircular nets) Two families (�i )i∈Z,
(m j ) j∈Z of oriented lines in the hyperbolic/elliptic/Euclidean plane are called a
(hyperbolic/elliptic/Euclidean) checkerboard incircular net if for every i, j ∈ Zwith
even i + j the four lines �i , �i+1,m j ,m j+1 touch a commonoriented circle (Laguerre
circle).

Remark 8.4 From Corollary 8.1, or Theorem 8.3, we find that, same as in the
Lie geometric case, every quadrilateral (�i ,m j , �i+2k+1,m j+2k+1), i, j, k ∈ Z of a
checkerboard incircular net with even i + j is circumscribed.

Now we can formulate the following classification result for Lie checkerboard
incircular nets.
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Fig. 8.4 Top: Checkerboard incircular net tangent to an ellipse in the sphere model of the elliptic
plane. Bottom-left: Central projection to the projective model of the elliptic plane. Bottom-right:
Stereographic projection to a conformal model of the elliptic plane

Theorem 8.4 (classification of Lie checkerboard incircular nets) Every Lie checker-
board incircular net is given by a Lie transformation of a hyperbolic, elliptic, or
Euclidean checkerboard incircular net.

Proof According toTheorem8.2 everyLie checkerboard incircular net lies in a three-
dimensional subspace of RP4. This subspace can only have one of the signatures
(+ + +−), (+ + −−), (+ + −0) and thus may be identified (after a certain Lie
transformation) with a checkerboard incircular net in the corresponding Laguerre
geometry. �
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Fig. 8.5 Top: Checkerboard incircular net tangent to an ellipse in the spheremodel of the hyperbolic
plane. Two copies of the hyperbolic plane are realized as half-spheres. Middle-left: Orthogonal
projection to the Klein-Beltrami disk model.Middle-right: Stereographic projection to the Poincaré
disk model. Bottom: Stereographic projection to the Poincaré half-plane model
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Fig. 8.6 Top: Checkerboard incircular net tangent to a hyperbola in the sphere model of the hyper-
bolic plane. Two copies of the hyperbolic plane are realized as half-spheres.Middle-left: Orthogonal
projection to the Klein-Beltrami disk model.Middle-right: Stereographic projection to the Poincaré
disk model. Bottom: Stereographic projection to the Poincaré half-plane model
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Fig. 8.7 Left: Checkerboard incircular net tangent to an ellipse in the spheremodel of the Euclidean
plane. Right: Stereographic projection to the Euclidean plane

Fig. 8.8 Left: Checkerboard incircular net tangent to a hyperbola in the sphere model of the
Euclidean plane. Right: Stereographic projection to the Euclidean plane

Fig. 8.9 Inscribed quadrilaterals in the hyperbolic plane. The right most case is degenerate and
consists of four oriented lines “touching” an oriented line at its points at infinity
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In the different space forms different types of generic (see Remark 8.2) circum-
scribed quadrilaterals (see Proposition 8.1) can still occur (cf. Remark 7.7):

• hyperbolic Laguerre geometry (+ + −−) (see Remark 6.6 (i) and Fig. 8.9)

– (+ + −): Four lines touching a common oriented hyperbolic circle/distance
curve/horocircle.

– (+ − −): Four lines touching a common deSitter circle.
– (+ − 0): Four lines touching a common oriented hyperbolic line at infinity.

• elliptic Laguerre geometry (+ + +−):

– (+ + −): Four lines touching a common oriented elliptic circle.

• Euclidean Laguerre geometry (+ + −0):

– (+ + −): Four lines touching a common oriented Euclidean circle.
– (+ − 0): Four lines from two families of parallel oriented lines.

8.3 Hypercycles

In Laguerre geometry the oriented lines, and not the points, of a given space form are
invariant objects. Thus, in Laguerre geometry, it is natural to describe an (oriented)
curve in the (hyperbolic/elliptic/Euclidean) plane by its (oriented) tangent lines.
Conversely, we say that every curve on the Laguerre quadric corresponds to a curve
in the plane. Note that in the case of the hyperbolic plane the envelope of such a
“curve” might lie partially (or even entirely) “outside” the hyperbolic plane. We still
consider this to be an admissible (non-empty) Laguerre curve.

Definition 8.5 Theone-parameter family of oriented lines (in thehyperbolic/elliptic/
Euclidean plane) corresponding to a curve on the Laguerre quadric B is called a
(hyperbolic/elliptic/Euclidean) Laguerre curve.

We have noted that planar sections of the Laguerre quadric correspond to Laguerre
circles, also called (generalized) cycles in the two-dimensional case. Consequently,
the next higher order intersections with the Laguerre quadric are called hypercycles
[Bla1910].

Definition 8.6 A (hyperbolic/elliptic/Euclidean) Laguerre curve corresponding to
the intersection of the Laguerre quadric with another quadric is called a (hyper-
bolic/elliptic/Euclidean) hypercycle. The corresponding curve on the Laguerre
quadric is called hypercycle base curve.

Example 8.1 In every space form a conic endowed with both orientations, joined
together as the two components of a single oriented curve (see Sect. 8.4) is a hyper-
cycle. A more general example is shown in Fig. 8.10.
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Fig. 8.10 Hypercycle in the Euclidean plane

The intersection curve of two quadrics (base curve) is contained in all quadrics of
the pencil spanned by the two quadrics. Thus, a hypercycle, through its hypercycle
base curve, corresponds not just to one quadric but the whole pencil of quadrics
spanned by it and the Laguerre quadric.

We call a hypercycle non-degenerate if its hypercycle base curve contains at least
8 points in general position. In this case the hypercycle can be uniquely identifiedwith
the corresponding pencil of quadrics. In the following we assume all hypercycles to
be non-degenerate.

The following theorem establishes a relation between a checkerboard incircular
net and a hypercycle, as well as two certain hyperboloids in the pencil of quadrics
corresponding to its hypercycle base curve. In the Euclidean case this was shown in
[BST2018, Theorem 3.4] as part of an incidence theorem for checkerboard incircular
nets (see Theorem 8.8).

Theorem 8.5 The lines of a (hyperbolic/elliptic/Euclidean) checkerboard incircular
net are in oriented contact with a common hypercycle (see Fig.8.10).

Moreover, the corresponding pencil of quadrics, which contains the hypercycle
base curve, contains two unique hyperboloids Q, ˜Q distinguished in the following
way (see Fig.8.11). Let (�i )i∈Z, (m j ) j∈Z be the points on the Laguerre quadric
B ⊂ RP3 corresponding to the oriented lines of the checkerboard incircular net.
Consider the lines

Li := �i ∧ �i+1, Mi := mi ∧ mi+1.

Then, all lines L2k , M2l lie on a common hyperboloid Q ⊂ RP3, and similarly, all
lines L2k+1, M2l+1 lie on a common hyperboloid ˜Q ⊂ RP3.

Proof Due to the inscribability property of checkerboard incircular nets every line
L2k intersects every line M2l , and vice versa. Thus, all lines L2k , M2l generically
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Fig. 8.11 Left: Combinatorial picture of the lines of a checkerboard incircular net. Middle/Right:
The two hyperboloids in the pencil of quadrics through the hypercycle base curve associated with
a checkerboard incircular net in the elliptic plane

lie on a common hyperboloid Q. Similarly, all lines L2k+1, M2l+1 lie on a common
hyperboloid ˜Q. We now show that both hyperboloids Q, ˜Q intersect the Laguerre
quadric B in the same curve, that is, they belong to the same pencil of quadrics.
Indeed, according to Lemma 8.2, for each line L2k+1, there exists a unique quadric
in the pencil spanned by B andQ containing L2k+1. Same for each line M2l+1. Since
the lines L2k+1 and M2l+1 pairwise intersect, again according to Lemma 8.2, the
corresponding quadrics coincide with each other and eventually with ˜Q. Thus, all
points �i , m j lie on the intersection B ∩ Q = B ∩ ˜Q. �

Lemma 8.2 Let x1, x2 be two points which belong to all members of a pencil of
quadricsQλ. Then, there exists a unique quadricQλ12 from the pencil which contains
the whole line L12 = x1 ∧ x2.

If the line L34 = x3 ∧ x4 associated with another pair of base points x3, x4 inter-
sects the line L12 then the two quadrics Qλ12 and Qλ34 coincide.

Proof Let q1, q2 be two quadratic forms generating the pencil with the quadratic
form qλ = q1 + λq2. The points x1, x2 belong to all quadrics of the pencil if and
only if

q1(p1) = q1(p2) = q2(p1) = q2(p2) = 0.

The line L12 = x1 ∧ x2 belongs to the quadric determined by qλ12 if and only if
qλ12(p1, p2) = 0 so that

t12 = −q1(p1, p2)

q2(p1, p2)
.

Vanishing of the denominator is the case when the line lies on the quadric determined
by q2.

Moreover, if the line L34 = x3 ∧ x4 passing through another pair of common
points x3, x4 intersects the line L12 then the point of intersection and x3, x4 belong
to the quadric Qλ12 . Accordingly, the line L34 is contained in Qλ12 so that Qλ12 =
Qλ34 . �
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The oriented circles of a checkerboard incircular net correspond to the planes
spanned by pairs of lines L2k, M2l or L2k+1, M2l+1, i.e. they correspond to tangent
planes of the two hyperboloids Q, ˜Q, respectively. We identify each circle with its
polar point with respect to the Laguerre quadric B, or in the Euclidean case with a
point in the cyclographic model (cf. Sect. 2.1 or Sect. A.4).

Corollary 8.2

(i) The polar points corresponding to the oriented circles of a hyperbolic/elliptic
checkerboard incircular net lie on two quadrics, the polar pencil of which
contains the Laguerre quadric (polar with respect to the Laguerre quadric).

(ii) The points in the cyclographic model corresponding to the oriented circles of
a Euclidean checkerboard incircular net lie on two quadrics, the dual pencil
of which contains the absolute quadric (i.e. the two quadrics are Minkowski
confocal quadrics).

Proof

(i) Under polarization in the Laguerre quadric B the tangent planes of Q become
points on the polar quadric Q⊥. Similarly, the tangent planes of ˜Q become
points on the polar quadric ˜Q⊥. SinceQ, ˜Q, and B are contained in a common
pencil of quadrics, their polar images Q⊥, ˜Q⊥, and B⊥ ∼= B are contained in
the polar pencil of quadrics.

(ii) For the Euclidean case a similar argument holds by dualization to the cyclo-
graphic model. �

We conclude this section on hypercycles by stating an incidence result concerning
eight lines touching a hypercycle, which is similar to Theorem 8.3.

Theorem 8.6 Let �1, �2, �3, �4,m1,m2,m3,m4 be eight generic lines touching a
hypercycle. If the three quadrilaterals (�1, �2,m1,m2), (�2, �3,m2,m3), (�3, �4,

m3,m4)are circumscribed, then so is the quadrilateral (�1, �4,m1,m4) (seeFig.8.12).

Fig. 8.12 Incidence theorem for eight lines touching a hypercycle
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Proof We identify the eight oriented lines with its corresponding points on the
Laguerre quadric. The hypercycle base curve is the intersection of two quadrics.
Define the degenerate quadric given by the two planes through �1, �2,m1,m2 and
�3, �4,m3,m4 respectively. Then the given eight points on the Laguerre quadric are
the intersection of those three quadrics. According to Lemma 8.1 every quadric
through seven of those points must pass through the eighth. Consider the degenerate
quadric given by the two planes through �2, �3,m2,m3 and �1, �4,m1 respectively.
Then this quadric must also pass through m4. Since no five points may lie in a
plane we can conclude that �1, �4,m1,m4 lie in a common plane, and thus, that the
corresponding quadrilateral is circumscribed. �

8.4 Conics and Incircular Nets

Towards the parametrization of checkerboard incircular nets it turns out to be useful to
consider certain normal forms of hypercycles, one of which are conics. In [BST2018]
it is demonstrated that in the Euclidean case a generic hypercycle can be mapped
to a conic by a Laguerre transformation if and only if the corresponding pencil of
quadrics is diagonalizable. In the non-Euclidean cases diagonalizable hypercycles
are still a subset of hypercycles that can be mapped to conics.

Definition 8.7 (Conics in spaceforms) In the projective model of the hyperbolic/
elliptic/Euclidean plane embedded into RP2 a (hyperbolic/elliptic/Euclidean) conic
is a projective conic in RP2.

Remark 8.5

(i) From this projective definition of conics one recovers the familiar metric prop-
erties of conics in the different space forms, see, e.g., [Cha1841, Sto1883,
Izm2017].

(ii) In hyperbolic geometry a conic might lie “outside” the hyperbolic plane and
be considered a “deSitter conic”. These cases are still relevant in our Laguerre
geometric considerations as long as they possess hyperbolic tangent lines.

Recall that in Laguerre geometry reflection in the special point p corresponds
to orientation reversion (see Chap. 6). We use this point in the following way to
characterize conics in the set of hypercycles.

Lemma 8.3 A hypercycle in the hyperbolic/elliptic/Euclidean plane is a conic (dou-
bly covered with opposite orientation) if and only if its hypercycle base curve is given
by the intersection of the Laguerre quadric with a cone with vertex p.

Proof In hyperbolic and elliptic Laguerre geometry p is the polar point of the base
plane of the projective model of the corresponding space form. The polar of a cone
with vertex p is therefore a conic contained in this base plane. Thus, the tangent
planes to the hypercycle base curve are the planes tangent to a conic, if and only
if p is the vertex of a cone intersecting the Laguerre quadric in the hypercycle



8.4 Conics and Incircular Nets 95

base curve. In that case corresponding oriented lines envelop the conic (twice with
opposite orientation).

In Euclidean Laguerre geometry a similar argument holds upon dualization and
considering the cyclographic model. �

Remark 8.6 Ageneric hypercycle for which the corresponding pencil of quadrics is
in diagonal form is a conic. Vice versa, in elliptic and Euclidean geometry a generic
conic (excluding the non-generic case of parabolas) can be brought into diagonal
form by an isometry (a Laguerre transformation fixing the point p). In hyperbolic
geometry there also exist non-diagonalizable generic conics (semihyperbolas, cf.
[Izm2017]). Thus, by considering conics up to Laguerre transformations, we are
restricting the class of hypercycles to (a subclass of) diagonalizable hypercycles.

We now give the definition for incircular nets [Böh1970, AB2018]. Examples of
incircular nets in the elliptic and hyperbolic plane are shown in Figs. 8.13, 8.14, 8.15,
8.16, and 8.17 (see also [DGDGallery]).

Definition 8.8 (Incircular nets) Two families (�k)k∈Z, (ml)l∈Z of (non-oriented)
lines in the hyperbolic/elliptic/Euclidean plane are called a (hyperbolic/elliptic/
Euclidean) incircular net (IC-net) if for every k, l ∈ Z the four lines �k, �k+1,ml ,ml+1

touch a common circle (non-oriented Laguerre circle) Skl .

Remark 8.7 While checkerboard incircular nets are instances of the corresponding
(hyperbolic/elliptic/Euclidean) Laguerre geometry, incircular nets are a notion of
the corresponding metric geometry, i.e. only invariant under isometries (Laguerre
transformations that fix p).

In the limit of a checkerboard incircular net (�i )i∈Z, (m j ) j∈Z in which all incir-
cles of the quadrilaterals �2k, �2k+1,m2l ,m2l+1 collapse to a point, the pairs of lines
�2k, �2k+1 as well as the pairs of lines m2l,m2l+1 coincide respectively up to their
orientation. Such a pair of oriented lines may be regarded as a non-oriented line.
The points on the Laguerre quadric corresponding to two lines that agree up to their
orientation are connected by a line that goes through the point p. Considering the
associated hyperboloids of a checkerboard incircular net from Theorem 8.5 we find
that the generator lines L2k , M2l all go through the point p and the hyperboloid Q
becomes a cone with vertex at p. In this limit a checkerboard incircular net becomes
an “ordinary” incircular net.

Remark 8.8 An incircular net obtained from a checkerboard incircular net as the
special case described above possesses the following additional regularity property:
The line through the centers of Skl , Sk+1,l+1 and the line through the centers of Sk+1,l ,
Sk,l+1 are the distinct angle bisectors of the lines �k+1 andml+1. Thus, it is convenient
to append this property to the definition of incircular nets.

By Lemma 8.3 incircular nets are now characterized as special checkerboard
incircular nets in terms of its associated hyperboloids (see Theorem 8.5).

Theorem 8.7 A checkerboard incircular net is an incircular net, if one of its two
associated hyperboloids is a cone with vertex at p.
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Fig. 8.13 Top: Incircular net tangent to an ellipse in the sphere model of the elliptic plane. Bottom-
left: Central projection to the projective model of the elliptic plane. Bottom-right: Stereographic
projection to a conformal model of the elliptic plane

Together with Theorem 8.5 and Lemma 8.3 we obtain that for incircular nets the
tangent hypercycle is a conic [Böh1970, AB2018].

Corollary 8.3 All lines of a (hyperbolic/elliptic/Euclidean) incircular net touch a
common conic.

Remark 8.9 By the classical Graves-Chasles theorem incircular nets are closely
related to configurations of confocal conics (see [Böh1970] for the Euclidean case,
[AB2018] for the Euclidean and hyperbolic case, and [Izm2017] for a treatment
in all space forms). A relation to discrete confocal conics is given in [BSST2016,
BSST2018].
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Fig. 8.14 Top: Incircular net tangent to an ellipse in the sphere model of the hyperbolic plane. Two
copies of the hyperbolic plane are realized as half-spheres. Middle-left: Orthogonal projection to
the Klein-Beltrami disk model.Middle-right: Stereographic projection to the Poincaré disk model.
Bottom: Stereographic projection to the Poincaré half-plane model
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Fig. 8.15 Top: Incircular net tangent to a hyperbola in the spheremodel of the hyperbolic plane. Two
copies of the hyperbolic plane are realized as half-spheres. Middle-left: Orthogonal projection to
the Klein-Beltrami disk model.Middle-right: Stereographic projection to the Poincaré disk model.
Bottom: Stereographic projection to the Poincaré half-plane model



8.5 Construction and Parametrization of Checkerboard Incircular Nets 99

Fig. 8.16 Left: Incircular net tangent to an ellipse in the sphere model of the Euclidean plane.
Right: Stereographic projection to the Euclidean plane

Fig. 8.17 Left: Incircular net tangent to a hyperbola in the sphere model of the Euclidean plane.
Right: Stereographic projection to the Euclidean plane

8.5 Construction and Parametrization of Checkerboard
Incircular Nets

The elementary construction of a checkerboard incircular net from a small patch
(line by line, while ensuring the incircle constraint) is guaranteed to work due to
the following incidence theorem (see Fig. 8.11, left) [AB2018, BST2018]. This con-
struction has 12 real degrees of freedom.
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Theorem 8.8 Let �1, . . . , �6, m1, . . . ,m6 be 12 oriented lines in the hyperbolic/
elliptic/Euclidean plane which are in oriented contact with 12 oriented circles
S1, . . . , S12, in a checkerboard manner, as shown in Fig.8.11, left. In particular, the
lines �1, �2,m1,m2 are in oriented contact with the circle S1, the lines �3, �4,m1,m2

are in oriented contact with the circle S2 etc. Then, the 13th checkerboard quadrilat-
eral also has an inscribed circle, i.e., the lines �5, �6,m5,m6 have a common circle
S13 in oriented contact.

Remark 8.10 This incidence theorem holds in all three Laguerre geometries with
literally the same proof as given in [BST2018] for the Euclidean case.

Though possible in principle, the elementary construction from, e.g., 6 lines as
initial data, which only describes the local behavior, is not stable, and thus impractical
for the construction of large checkerboard incircular nets. Yet, by Theorem 8.5, we
find that a checkerboard incircular net can equivalently be prescribed by

• choosing a hypercycle (8 degrees of freedom),
• choosing two hyperboloids Q, Q̃ in the pencil of quadrics corresponding to the
hypercycle base curve (2 degrees of freedom),

• and choosing two initial lines tangent to the hypercycle, one from each of the m-
and �-family (2 degrees of freedom).

Then further lines of, say, the �-family are obtained by alternately going along a
chosen family of rulings ofQ and Q̃ from one point of the base curve to the next (see
Fig. 8.11,middle/right). Similarly for them-family of lines,while using the respective
other families of rulings of the two hyperboloids. The intersection of two rulings from
the two different families of the same hyperboloid implies the coplanarity of the four
intersection points with the base curve, which, in turn, corresponds to the existence of
an incircle. We demonstrate for certain classes of checkerboard incircular nets how
the parametrization of the hypercycle base curve in terms of Jacobi elliptic functions
leads to explicit formulas for the net, in which the free parameters determine the
global behavior. They can be further constraint to obtain periodic and “embedded”
solutions.

Remark 8.11 Note the resemblance to a “confocal billiards” type construction and
a Poncelet porism type statement in the periodic case.

In the following we derive explicit formulas for checkerboard incircular nets tan-
gent to certain types of diagonalizable conics (see Remark 8.6). We treat the hyper-
bolic/elliptic/Euclidean cases simultaneously by considering the standard bilinear
form of signature (+ + ε−) in R4, i.e.,

〈x, y〉 = x1y1 + x2y2 + εx3y3 − x4y4

for x, y ∈ R
4, which defines the corresponding Laguerre quadric B ∈ RP3. The

hyperbolic case is given by ε = −1, the elliptic case by ε = 1, and the Euclidean
case by ε = 0 (see Sects. 6.3, 6.2 and A.4). By Lemma 8.3, a hypercycle that cor-
responds to a conic is given by the intersection curve of B with a cone with vertex
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Fig. 8.18 Hypercycle base curve B ∩ C for an ellipse in hyperbolic (left), elliptic (middle), and
Euclidean (right) Laguerre geometry

p = [0, 0, 0, 1]. We consider cones in diagonal form and cover checkerboard incir-
cular nets tangent to

• ellipses in all space forms,
• hyperbolas in the Euclidean plane, and convex hyperbolas in the hyperbolic plane,

excluding concave hyperbolas, deSitter hyperbolas and (the non-diagonalizable)
semihyperbolas in the hyperbolic plane (cf. Remark 8.6), as well as all further non-
diagonalizable hypercycles.

8.5.1 Parametrization of Checkerboard Incircular Nets
Tangent to an Ellipse

Consider a cone C given by

α2x21 + β2x22 − x23 = 0. (8.1)

with
α > β > 0, 1 + εα2, 1 + εβ2 > 0. (8.2)

It intersects the Laguerre quadric B given by

x21 + x22 + εx23 − x24 = 0 (8.3)

in the hypercycle base curve B ∩ C (see Fig. 8.18).

Proposition 8.2 The hypercycle base curveB ∩ C corresponds to the (oriented) tan-
gent lines of an ellipse given in homogeneous coordinates of the hyperbolic/elliptic/
Euclidean plane by

x21
α2

+ x22
β2

− x23 = 0. (8.4)
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Proof The hyperbolic and elliptic planes are naturally embedded into p⊥. The pro-
jection of the intersection curve onto p⊥ is a conic with equation (8.1). Its polar
conic is given by (8.4). For the Euclidean case, see [BST2018]. �

Proposition 8.3 The hypercycle base curveB ∩ C consists of two components which
are parametrized in terms of Jacobi elliptic functions by

v±(u) =
[

1√
1 + εα2

cn(u, k),
1

√

1 + εβ2
sn(u, k),

α√
1 + εα2

dn(u, k), ± 1

]

,

(8.5)
for u ∈ R, where the modulus k is given by

k2 = 1 − β2(1 + εα2)

α2(1 + εβ2)
.

Alternatively,

v±(û) =
[

1

α
cn(û, k̂),

1

β
sn(û, k̂), 1, ±

√
1 + εα2

α
dn(û, k̂)

]

, (8.6)

for û ∈ R, where the modulus k̂ is given by

k̂2 = 1 − α2(1 + εβ2)

β2(1 + εα2)
. (8.7)

Proof Using the elementary identities [NIST, WW1927]

cn2 + sn2 = 1, dn2 +k2 sn2 = 1,

one easily checks that, e.g., the parametrization (8.6) with (8.7) satisfies the two
equations (8.1) and (8.3). The two parametrizations are related by the real Jacobi
transformations

cd(u, k) = cn(û, k̂), sd(u, k) = 1√
1 − k2

sn(û, k̂), nd(u, k) = dn(û, k̂).

where

û =
√

1 − k2 u, k̂2 = k2

k2 − 1
, cd = cn

dn
, sd = sn

dn
, nd = 1

dn
.

�

Remark 8.12

(i) From (8.2) we find 0 < k2 < 1, or equivalently k̂2 < 0, and thus v± attains real
values for u, û ∈ R.
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(ii) Over the complex numbers the intersection curve B ∩ C is connected and con-
stitutes an embedding of an elliptic curve, i.e., a torus. The two real components
are related by

v±(u) = v∓(2iK′(k) − u), (8.8)

where K(k) and K′(k) = K(
√
1 − k2) are the quarter periods of the Jacobi

elliptic functions.
(iii) The signs in the parametrizations of the two components are chosen such that

points on the different components with the same argument u represent the
same line with opposite orientation

v±(u) = σ p (v∓(u)) .

(iv) The hypercycle base curves treated in sections “8.5.1” and “8.5.2” are all pro-
jectively equivalent for different values of ε. Thus, their parametrizations may
all be obtained from, e.g., (8.5) with ε = 0 by reinterpreting another quadric
of the pencil as the Laguerre quadric and applying a suitable projective trans-
formation.

This parametrization features the following remarkable property which is related
to the addition on elliptic curves (cf. [Hus1987]).

Proposition 8.4
(i) Let u, ũ, s ∈ R. Then the four points v+(u), v−(u + s), v−(ũ), v+(ũ + s) are

coplanar (see Fig.8.19, left).
(ii) Let s ∈ R. Then the lines v+(u) ∧ v−(u + s) with u ∈ R constitute one family

of rulings of a common hyperboloid in the pencil B ∧ C

Fig. 8.19 Left: Four coplanar points on a hypercycle base curve B ∩ C. The two lines are rulings
from a common hyperboloid in the pencil corresponding to B ∩ C. Right: The parameter λ for
the pencil B ∧ C as given by (8.9). The four values − 1

β2 ,− 1
α2 , ε,∞ correspond to the degenerate

quadrics in the pencil. In between, the signature of the quadrics from the pencil are given. The
function (8.10) takes values in [ε,∞] and corresponds to hyperboloids whose rulings intersect both
components of the base curve
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(1 + λα2)x21 + (1 + λβ2)x22 + (ε − λ)x23 − x24 = 0 (8.9)

given by

λ(s) = 1

β2
cs2( s2 , k) + ε ns2( s2 , k), where cs = cn

sn
, ns = 1

sn
. (8.10)

The second family of rulings is given by the lines v+(u) ∧ v−(u − s) with
u ∈ R.

Proof
(i) By (8.8) we obtain

det (v+(u), v−(u + s), v−(ũ), v+(ũ + s))

= det
(

v+(u), v+(2iK′(k) − u − s), v+(−2iK′(k) − ũ), v+(ũ + s)
)

which is zero due to the following addition theorem for Jacobi elliptic functions
[NIST]:

∣

∣

∣

∣

∣

∣

∣

∣

cn(z1, k) sn(z1, k) dn(z1, k) 1
cn(z2, k) sn(z2, k) dn(z2, k) 1
cn(z3, k) sn(z3, k) dn(z3, k) 1
cn(z4, k) sn(z4, k) dn(z4, k) 1

∣

∣

∣

∣

∣

∣

∣

∣

= 0, z1 + z2 + z3 + z4 = 0. (8.11)

(ii) ByLemma 8.2, there exists a unique hyperboloidQ in the pencilB ∧ C contain-
ing the line v+(u) ∧ v−(u + s). If we denote by 〈·, ·〉C the symmetric bilinear
form corresponding to the quadratic form (8.1) of the cone C, the parameter λ

corresponding to Q is given by

〈v+(u), v−(u + s)〉 + λ 〈v+(u), v−(u + s)〉C = 0,

which is equivalent to (8.12) with

ρcn = 1 + λα2

1 + εα2
, ρsn = 1 + λβ2

1 + εβ2
, ρdn = (ε − λ)α2

1 + εα2
, ρ1 = 1.

Thus, by Lemma 8.4, one obtains

(1 + λα2) cn(s) + (ε − λ)α2 dn(s) + 1 + εα2 = 0,

(1 + λβ2) cn(s) + (ε − λ)β2 + (1 + εβ2) dn(s) = 0.

These two equations for λ are equivalent and give

λ = 1

β2

cn(s) + dn(s)

1 − cn(s)
+ ε

1 + dn(s)

1 − cn(s)
= 1

β2
cs2( s2 ) + ε ns2( s2 ).
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Note that s and −s correspond to the same hyperboloid since λ(s) = λ(−s). Given
the line L = v+(u) ∧ v−(u + s), all lines v+(ũ) ∧ v−(ũ − s) with ũ ∈ R intersect
the line L by (i), and thus belong to the respective other (and therefore the same)
family of rulings of Q. �

Remark 8.13

(i) The alternative expression for λ in terms of ŝ = √
1 − k2s and k̂2 = k2

k2−1 is
given by

λ(ŝ) = 1

α2
cs2( ŝ2 , k̂) + ε ns2( ŝ2 , k̂).

(ii) The four degenerate quadrics from the pencil (8.9) are given by the values λ =
− 1

β2 ,− 1
α2 , ε,∞, where λ = ∞ corresponds to the cone C (see Fig. 8.19, right).

By construction, the hyperboloids obtained by (8.10) have rulings connecting
the two components of the base curve, which corresponds to the fact that

ε ≤ λ(s) ≤ ∞

for s ∈ R with λ(0) = ∞ and λ(2K(k)) = ε.

Lemma 8.4 Let s ∈ R and ρcn, ρsn, ρdn, ρ1 ∈ R such that

ρcn cn(u) cn(u + s) + ρsn sn(u) sn(u + s) + ρdn dn(u) dn(u + s) + ρ1 = 0 (8.12)

for all u ∈ R. Then

ρcn cn(s) + ρdn dn(s) + ρ1 = 0,

ρsn cn(s) + ρdn(1 − k2) + ρ1 dn(s) = 0.
(8.13)

Proof Applying the addition theorems for Jacobi elliptic functions [NIST] to (8.12),
the resulting equation can be written as a sum of three independent functions, say,
sn2(u), sn(u) cn(u) dn(u), and 1. The vanishing of the coefficients of these three
functions leads to three linear equations in ρcn, ρsn, ρdn, ρ1, which constitute a rank
2 linear system equivalent to (8.13). �

This allows to parametrize a checkerboard incircular net tangent to a given ellipse
in the following way (see Figs. 8.20, 8.21, and 8.22).

Theorem 8.9 Let ε ∈ {−1, 0, 1}. Then for α > β > 0 with 1 + εα2, 1 + εβ2 > 0,
s, s̃ ∈ R, and u�

0, u
m
0 ∈ R the two families of lines (�i )i∈Z and

(

m j
)

j∈Z given by

�2k = v+(u�
0 + k(s + s̃))

�2k+1 = v−(u�
0 + k(s + s̃) + s)

m2l = v−(um0 + l(s + s̃))

m2l+1 = v+(um0 + l(s + s̃) + s)
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Fig. 8.20 Periodic checkerboard incircular net in elliptic geometry (ε = 1) tangent to an ellipse
with α = 0.9, β = 0.4, N = 11, and s = 0.23 (top) / s = 0 (bottom). Represented on the Laguerre
quadric (left) and on the sphere model of elliptic geometry (right)

constitute a hyperbolic/elliptic/Euclidean checkerboard incircular net (according to
the value of ε) tangent to the ellipse

x21
α2

+ x22
β2

− x23 = 0.

Proof The existence of incircles follows from Proposition 8.4, while tangency to the
given ellipse follows from Proposition 8.2. �
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Fig. 8.21 Periodic checkerboard incircular net in hyperbolic geometry (ε = −1) tangent to an
ellipse with α = 0.5, β = 0.3, N = 11, and s = 0.23 (top) / s = 0 (bottom). Represented on the
Laguerre quadric (left) and on the Poincaré disk model of hyperbolic geometry (right)

The choice of

• α and β determines the ellipse,
• s and s̃ determines two hyperboloids in the pencil of quadrics, and further allows
to distinguish the two families of rulings on each of them,

• uv0, u
h
0 determines one initial line tangent to the ellipse in each of the two families

of lines.

Note that for s = 0 the corresponding hyperboloid degenerates to the cone C. In
this case,

�2k = �2k+1, m2l = m2l+1,

and thus, (�i )i∈Z and
(

m j
)

j∈Z constitutes an “ordinary” incircular net.
Periodicity can be achieved by setting

s + s̃ = 4K(k)

N
.
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Fig. 8.22 Periodic checkerboard incircular net in Euclidean geometry (ε = 0) tangent to an ellipse
with α = 0.5, β = 0.25, N = 10, and s = 0.23 (top) / N = 12, and s = 0 (bottom). Represented
on the Laguerre quadric (left) and in the Euclidean plane (right)

To achieve “embeddedness” of the checkerboard incircular nets one has to addition-
ally demand that the two different families of lines agree (up to their orientation),
e.g.,

�i = σ p(mi ),

which is obtained by setting
u�
0 = um0 .



8.5 Construction and Parametrization of Checkerboard Incircular Nets 109

Fig. 8.23 Hypercycle base curve B ∩ C for a hyperbola in hyperbolic (left), and Euclidean (right)
Laguerre geometry

8.5.2 Parametrization of Checkerboard Incircular Nets
Tangent to a Hyperbola

Consider a cone C given by

α2x21 − β2x22 − x23 = 0 (8.14)

with
α, β > 0, 1 + εα2, 1 − εβ2 > 0.

It intersects the Laguerre quadric B given by

x21 + x22 + εx23 − x24 = 0

in the hypercycle base curve B ∩ C (see Fig. 8.23).

Remark 8.14 In the elliptic plane all generic conics are ellipses. Correspondingly,
for ε = 1 the case (8.14) is equivalent to (8.1).

Proposition 8.5 The hypercycle base curve B ∩ C corresponds to the (oriented)
tangent lines of a hyperbola given in homogeneous coordinates of the hyper-
bolic/Euclidean plane by

x21
α2

− x22
β2

− x23 = 0.

Proposition 8.6 The intersection curveB ∩ C consists of two components which are
parametrized in terms of Jacobi elliptic functions by

v±(u) =
[

1√
1 + εα2

dn(u, k),
α

√

α2 + β2
sn(u, k),

α√
1 + εα2

cn(u, k), ± 1

]

,
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for u ∈ R, where the modulus is given by

k2 = α2(1 − εβ2)

α2 + β2
.

Alternatively

v±(û) =
[

1

α
nc(û, k̂),

1

β
sc(û, k̂), 1, ±

√
1 + εα2

α
dc(û, k̂)

]

,

for û ∈ R, where the modulus is given by

k̂2 = −α2(1 − εβ2)

β2(1 + εα2)
.

Remark 8.15

(i) The two parametrizations are related by the real Jacobi transformations

dc(u, k) = nc(û, k̂), sc(u, k) = 1√
1 − k2

sc(û, k̂), nc(u, k) = dc(û, k̂).

where

û =
√

1 − k2 u, k̂2 = k2

k2 − 1
, dc = dn

cn
, sc = sn

cn
, nc = 1

cn
.

(ii) All points from Remark 8.12 also apply to this parametrization.

Proposition 8.7

(i) Let u, ũ, s ∈ R. Then the four points v+(u), v−(u + s),
v−(ũ), v+(ũ + s) are coplanar (see Fig.8.24, left).

(ii) Let s ∈ R. Then the lines v+(u) ∧ v−(u + s) with u ∈ R constitute one family
of rulings of a common hyperboloid in the pencil B ∧ C

(1 + λα2)x21 + (1 − λβ2)x22 + (ε − λ)x23 − x24 = 0 (8.15)

given by

λ(s) = − 1

β2
cs2( s2 , k) − 1

α2
ns2( s2 , k), where cs = cn

sn
, ns = 1

sn
. (8.16)

The second family of rulings is given by the lines v+(u) ∧ v−(u − s) with
u ∈ R.
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Fig. 8.24 Left: Four coplanar points on a hypercycle base curve B ∩ C. The two lines are rulings
from a common hyperboloid in the pencil corresponding to B ∩ C. Right: The parameter λ for
the pencil B ∧ C as given by (8.15). The four values − 1

α2 , ε, 1
β2 ,∞ correspond to the degenerate

quadrics in the pencil. In between, the signature of the quadrics from the pencil are given. The
function (8.16) takes values in [−∞,− 1

α2 ] and corresponds to hyperboloids whose rulings intersect
both components of the base curve

Remark 8.16

(i) The alternative expression for λ in terms of ŝ = √
1 − k2s and k̂2 = k2

k2−1 is
given by

λ(ŝ) = −ε cs2( ŝ2 , k̂) − 1

α2
ns2( ŝ2 , k̂).

(ii) The four degenerate quadrics from the pencil (8.15) are given by the values λ =
− 1

α2 , ε,
1
β2 ,∞, where λ = ∞ corresponds to the cone C (see Fig. 8.24, right).

By construction, the hyperboloids obtained by (8.16) have rulings connecting
the two components of the base curve, which corresponds to the fact that

−∞ ≤ λ(s) ≤ − 1

α2

for s ∈ R with λ(0) = ∞ and λ(2K(k)) = − 1
α2 .

This allows to parametrize a checkerboard incircular net tangent to a given hyper-
bola in the following way (see Figs. 8.25 and 8.26).

Theorem 8.10 Let ε ∈ {−1, 0}. Then forα, β > 0with1 + εα2, 1 − εβ2 > 0, s, s̃ ∈
R, and u�

0, u
m
0 ∈ R the two families of lines (�i )i∈Z and

(

m j
)

j∈Z given by
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Fig. 8.25 Periodic checkerboard incircular net in hyperbolic geometry (ε = −1) tangent to a hyper-
bola with α = 0.5, β = 0.25, N = 11, and s = 0.23 (top) / s = 0 (bottom). Represented on the
Laguerre quadric (left) and on the Poincaré disk model of hyperbolic geometry (right)

�2k = v+(u�
0 + k(s + s̃))

�2k+1 = v−(u�
0 + k(s + s̃) + s)

m2l = v−(um0 + l(s + s̃))

m2l+1 = v+(um0 + l(s + s̃) + s)

constitute a hyperbolic/Euclidean checkerboard incircular net (according to the
value of ε) tangent to the hyperbola

x21
α2

− x22
β2

− x23 = 0.

Remark 8.17 Periodicity and “embeddedness” are achieved as described in
section“8.5.1”.
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Fig. 8.26 Periodic checkerboard incircular net in Euclidean geometry (ε = 0) tangent to a hyper-
bola with α = 0.5, β = 0.25, N = 13, and s = 0.18 (top) / N = 12, and s = 0 (bottom). Repre-
sented on the Laguerre quadric (left) and in the Euclidean plane (right)

8.6 Checkerboard Incircular Nets as Octahedral Grids

According to Remark 8.4 a checkerboard incircular net possesses more incircles
than immediate from its definition. The full symmetry of such a net is revealed when
considering all these circles and dividing its two families of lines (�i )i∈Z,

(

m j
)

j∈Z
into four families

ν
(1)
k1

= �2k1 , ν
(2)
k2

= �−2k2+1, ν
(3)
k3

= m2k3 , ν
(4)
k4

= m−2k4+1,

for k1, k2, k3, k4 ∈ Z.



114 8 Checkerboard Incircular Nets

Fig. 8.27 Left: Two adjacent octahedra from an octahedral grid of planes. These correspond to the
geometric configuration shown in Fig. 8.3. Right: Octahedral grid of planes corresponding to an
Euclidean incircular net in the cyclographic model. All planes are tangent to the red conics, which
are the degenerate dual quadrics in a dual pencil

Remark 8.18 The decomposition into four families of lines also seems natural after
considering the formulas for checkerboard incircular nets given in Theorems 8.9 and
8.10, and more fundamentally, the identity (8.11).

Proposition 8.8 For a checkerboard incircular net each quadrilateral (ν
(1)
k1

, ν
(2)
k2

,

ν
(3)
k3

, ν
(4)
k4

) with
k1 + k2 + k3 + k4 = 0, k1, k2, k3, k4 ∈ Z (8.17)

is circumscribed.

Proof This is a reformulation of the statement given in Remark 8.4, which describes
the whole collection of incircles of a checkerboard incircular net. �

From (8.17) we find that the collection of incircles of a checkerboard incircular
net is naturally assigned to the points of an A3 root-system (vertices of a tetrahedral-
octahedral honeycomb lattice, see Fig. 8.27, left), where

A3 = {

(k1, k2, k3, k4) ∈ Z
4
∣

∣ k1 + k2 + k3 + k4 = 0
}

.

This correspondence can also be made geometric. To this end we identifying the
four families of lines (ν

(i)
ki

)ki∈Z, i = 1, 2, 3, 4 with its corresponding points on the

Laguerre quadricB and denote its polar planes by P (i)
ki

= (ν
(i)
ki

)⊥ (or, in the Euclidean

case, its dual planes in the cyclographic model by P (i)
ki

= (ν
(i)
ki

)
).

Proposition 8.9 The four families of planes (P (i)
ki

)ki∈Z, i = 1, 2, 3, 4 corresponding
to a checkerboard incircular net constitute an octahedral grid of planes, i.e., for each
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k1 + k2 + k3 + k4 = 0, k1, k2, k3, k4 ∈ Z

the four planes P (1)
k1

, P (2)
k2

, P (3)
k3

, P (4)
k4

intersect in a point (see Fig.8.27, right, and cf.
[ABST2019]).

Remark 8.19 Generally, octahedral grids of planes have the property that all its
planes are tangent to all quadrics of a dual pencil, or equivalently, to a certain devel-
opable surface (cf. [Bla1928, Sau1925]). In the case of checkerboard incircular nets
this property is polar (or dual) to the property, that all the points ν

(i)
ki

lie on the
hypercycle base curve. For the Euclidean case of incircular nets this fact was already
employed by Böhm in [Böh1970].

Denote the intersection points of the octahedral grid of planes by

ca = P (1)
k1

∩ P (2)
k2

∩ P (3)
k3

∩ P (4)
k4

, a = (k1, k2, k3, k4) ∈ A3.

By polarity (or duality) the points ca correspond to the incircles of the checkerboard
incircular net. We may now extend the statement from Corollary 8.2 to all “diagonal
surfaces” of A3.

Proposition 8.10 For an octahedral grid of planes corresponding to a checkerboard
incircular net, the points of intersection ca1 , ca2 , ca3 , ca4 with

a1 + a2 + a3 + a4 = 0, a1, a2, a3, a4 ∈ A3

lie on a quadric from the dual pencil of quadrics which is polar (or dual in the
Euclidean case) to the pencil of quadrics corresponding to the hypercycle base
curve.

Remark 8.20 In the case of an “ordinary” incircular net this implies that the inter-
section points of its lines lie on conics which are confocal with the touching conic
[Böh1970, AB2018].



Appendix A
Euclidean Laguerre Geometry

The cases of Euclidean geometry and Euclidean Laguerre geometry, which we have
excluded from our general discussion, are induced by degenerate quadrics, see, e.g.,
[Kle1928, Bla1929, Gie1982]. For a degenerate quadric Q ⊂ RPn , polarity (see
Sect. 3.3) does no longer define a bijection between the set of points and the set of
hyperplanes. Instead one can apply the concept of duality.

A.1 Duality

The n-dimensional dual real projective space is given by

(RPn)∗ := P
(
(Rn+1)∗

)
,

where
(
R

n+1
)∗

is the space of linear functionals on R
n+1. We identify

(RPn)∗∗ = RPn in the canonical way, and obtain a bijection between projective sub-
spaces U = P(U ) ⊂ RPn and their dual projective subspaces

U� := {
y ∈ (RPn)∗

∣
∣ y(x) = 0 for all x ∈ U

}
,

satisfying
dimU + dimU� = n − 1.

Every projective transformation f : RPn → RPn ∈ PGL(n + 1) induces a dual pro-
jective transformation f � : (RPn)∗ → (RPn)∗ ∈ PGL(n + 1)� such that

f (U)� = f �(U�)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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for every projective subspace U ⊂ RPn . Introduce a basis on R
n+1, say the conical

basis, and its dual basis on (Rn+1)∗. Then, if F ∈ R
(n+1)×(n+1) is a matrix represent-

ing the transformation f = [F], a matrix F� ∈ R
(n+1)×(n+1) representing the dual

transformation f � = [F�] is given by

F� := F−ᵀ. (A.1)

For a quadric Q ⊂ RPn its dual quadric Q� ⊂ (RPn)∗ may be defined as the set
of points dual to the tangent hyperplanes of Q.

Example A.1

(i) For a non-degenerate quadric Q ⊂ RPn of signature (r, s) its dual quadric
Q� ⊂ (RPn)∗ is non-degenerate with the same signature.

(ii) For a cone Q ⊂ RPn of signature (r, s, 1) with vertex v ∈ Q, its dual quadric
Q� ⊂ (RPn)∗ consists of the set of points of a lower dimensional quadric of
signature (r, s) contained in the hyperplane v� ⊂ (RPn)∗.

A.2 Euclidean Geometry

Let 〈·, ·〉 be the standard degenerate bilinear form of signature (n, 0, 1), i.e.

〈x, y〉 := x1y1 + . . . + xn yn

for x, y ∈ R
n+1. The corresponding quadric C is an imaginary cone (cf Exam-

ple 3.1 (iv)). Its real part consists only of one point, the vertex of the cone:

m∞ ∈ RPn, m∞ := en+1 = (0, . . . , 0, 1).

While the set C− = ∅ is empty, the set

E∗ := C+ = RPn \ {m∞}

consists of the whole projective space except one point, which we identify with the
n-dimensional dual Euclidean space, i.e., the space of Euclidean hyperplanes.

While in the projective models of hyperbolic/elliptic geometry, we were able to
identify certain points with hyperplanes in the same projective space by polarity, this
is not possible in the projective model of Euclidean geometry due to the degeneracy
of the absolute quadric C. Instead, by duality, every point m ∈ E∗ corresponds to a
hyperplane m� ⊂ E in

E := (
RPn

)∗ \ (m∞)� 	 R
n,

which we identify with the n-dimensional Euclidean space. The hyperplane (m∞)�

is called the hyperplane at infinity.
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For two points k,m ∈ E∗ one always has 0 ≤ KC (k,m) ≤ 1, and the Euclidean
angle α(k�,m�), or equivalently its conjugate angle π − α, between the two hyper-
planes k�,m� ⊂ E is given by

KC (k,m) = cos2 α(k�,m�).

The two hyperplanes are parallel if the line k ∧ m contains the point m∞.
The dual quadric C� of the absolute cone can be identified with an imaginary

quadric in the hyperplane at infinity (m∞)� of signature (n, 0) (cf. Example A.1 (ii)).
Since this does not induce a bilinear form on (RPn)∗, the Cayley-Klein distance is
not well-defined onE. Yet the Euclidean distance may still be recovered in this setup,
e.g., as the limit of the Cayley-Klein distance of hyperbolic/elliptic space [Kle1928,
Gun2011]. One may avoid these difficulties by treating Euclidean geometry as a
subgeometry of Möbius geometry (see Sect. A.3).

We employ the following normalization for the dual Euclidean space

(En)∗ :=
{
m ∈ R

n+1
∣∣
∣ 〈m,m〉 = 1

}
=

{
(m̂, h) ∈ R

n+1
∣∣
∣ m̂ ∈ R

n, h ∈ R, m̂ · m̂ = 1
}

,

where m̂ · m̂ denotes the standard scalar product on R
n . Upon the (non-canonical)

identification (Rn+1)∗ 	 R
n+1, by identifying the canonical basis of (Rn+1)∗ with the

dual basis of the canonical basis of R
n+1, we introduce the following normalization

for the Euclidean space.

E
n := {

x ∈ (Rn+1)∗
∣∣ x(m∞) = 1

} 	 {
(x̂, 1) ∈ R

n+1
∣∣ x̂ ∈ R

n
}
.

Then P(En) = E is an embedding and P((En)∗) = E∗ a double cover. The double
cover may be used to encode the orientation of the corresponding Euclidean plane.

In this normalization theEuclidean distanced(x, y) of twopoints x, y ∈ E, x, y ∈
E
n is given by

|x − y| = d(x, y).

The Euclidean hyperplane corresponding to a point m ∈ E∗, m = (m̂, h) ∈ (En)∗ is
given by

{x ∈ E | 〈m, x〉 = 0} = P
({

(x̂, 1) ∈ E
n

∣∣ m̂ · x̂ + h = 0
})

,

while the formula for the angle between two Euclidean hyperplanes m ∈ E∗, m =
(m̂, h) ∈ (En)∗ and n ∈ E∗, n = (n̂, k) ∈ (En)∗ becomes

〈m, n〉 = m̂ · n̂ = cosα(m�, n�),

where the intersection angle and its conjugate angle can be distinguished now. Finally,
the signed distance of a point x ∈ E, x = (x̂, 1) ∈ E

n and a plane m ∈ E∗, (m̂, h) ∈
(En)∗ is given by

〈m, x〉 = m̂ · x̂ + h = d(x,m�)



120 Appendix A: Euclidean Laguerre Geometry

Fig. A.1 Stereographic projection fromB toS through the point q. Every point k ∈ q⊥ corresponds
to a hyperplane in B

The transformation group induced by the absolute quadric C on the dual Euclidean
space E∗ is given by PO(n, 0, 1). Its elements are of the form

[A] =
[
Â 0
âᵀ ε

]
∈ PO(n, 0, 1),

where Â ∈ O(n), â ∈ R
n, ε = 0. Thus, its dual transformations, see (A.1), are given

by

[A−ᵀ] =
[
Â − 1

ε
Ââ

0 1
ε

]
∈ PO(n, 0, 1)�.

They act on E as the group of similarity transformations, i.e., Euclidean motions and
scalings.

A.3 Euclidean Geometry from Möbius Geometry

In Chap. 5 we have excluded the choice of a point q ∈ Q on the quadric, since the
projection πq (see Definition 5.1) to the polar hyperplane q⊥ is not well-defined in
that case. Yet most of the constructions described still apply if we project to any other
hyperplane instead.We show this in the example of recovering Euclidean (similarity)
geometry from Möbius geometry.

Thus, let 〈·, ·〉be the standard non-degenerate bilinear formof signature (n + 1, 1),
i.e.
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〈x, y〉 := x1y1 + . . . + xn+1yn+1 − xn+2yn+2

for x, y ∈ R
n+2, and denote by S ⊂ RPn+1 the corresponding Möbius quadric. Let

q ∈ S be a point on the Möbius quadric, w.l.o.g.,

q := [e∞], e∞ := 1
2 (en+1 + en+2) = (0, . . . , 0, 1

2 ,
1
2 ).

While q⊥ is the tangent plane of S at q, we choose a different plane B for the
projection, w.l.o.g.,

B := b⊥, b := en+1 = (0, . . . , 0, 1, 0),

and consider the central projection from B to S through the point q, which is also
called stereographic projection (see Fig.A.1). To this end, denote by [e0] the inter-
section point of the line q ∧ b with S, where

e0 := 1
2 (en+2 − en+1) = (0, . . . , 0,− 1

2 ,
1
2 ).

Then we have
〈e0, e0〉 = 〈e∞, e∞〉 = 0, 〈e0, e∞〉 = − 1

2 ,

and 〈e0, ei 〉 = 〈e∞, ei 〉 = 0 for i = 1, . . . , n, and the vectors e1, . . . , en, e0, e∞ con-
stitute a basis of R

n+1,1.

Proposition A.1 Let �∞ := B ∩ q⊥. The stereographic projection from B \ �∞ to
S \ q through the point q is given by the map

σq,b : x = [x̃ + e0 − e∞] �→ [x̃ + e0 + |x̃ |2 e∞],

where x̃ ∈ span{e1, . . . , en}.
Proof First note that a point in x ∈ B \ �∞ may be normalized to x = x̃ + e0 − e∞
The (second) intersection point of the line q ∧ x with Q is then given by

−2 〈x, e∞〉 x + 〈x, x〉 e∞ = x + (|x̃ |2 − 1)e∞ = x̃ + e0 + |x̃ |2 e∞.

��
Now the Euclidean metric on B may be recovered from the bilinear form corre-

sponding to S by observing that

〈x, y〉 =
〈
x̃ + e0 + |ỹ|2 e∞, ỹ + e0 + |ỹ|2 e∞

〉
= −1

2
|x̃ − ỹ| .



122 Appendix A: Euclidean Laguerre Geometry

Remark A.1 To obtain the Euclidean metric in a projectively well-defined way one
can start by considering the quantity

〈x, y〉
〈e∞, x〉 〈e∞, y〉 ,

similar to Definition B.1. Though not being invariant under different choices of
homogeneous coordinate vectors for the point q = [e∞], the quotient of two such
expressions is. This fits the fact that it is not actually Euclidean geometry that we are
recovering but similarity geometry.

The restriction of the Möbius quadric S to the tangent hyperplane q⊥ yields a
quadric of signature (n, 0, 1). Thus, we can identify the tangent hyperplane with the
dual Euclidean space (see Sect. A.2). Indeed, by polarity in the Möbius quadric S,
every point k ∈ q⊥ corresponds to a hyperplanar section of S containing the point
q, i.e., an S-sphere through q, which is, in turn, mapped to a hyperplane of B by
stereographic projection. The Cayley-Klein distance of two points in the tangent
hyperplane yields the Euclidean angle between the two corresponding hyperplanes
of B. The group of Möbius transformations fixing the point q induces the group of
dual similarity transformations on B:

Mobq = PO(n + 1, 1)q 	 PO(n, 0, 1).

A.4 Euclidean Laguerre Geometry

In the spirit of Chaps. 5 and 6 the absolute quadric C ⊂ RPn of the dual Euclidean
(similarity) space with signature (n, 0, 1) can be lifted to a quadric Beuc ⊂ RPn+1 of
signature (n, 1, 1), which we call the Euclidean Laguerre quadric, or classically the
Blaschke cylinder. The group of Euclidean Laguerre transformations is given by

Lageuc = PO(n, 1, 1).

For a point p with 〈p, p〉 < 1, w.l.o.g.,

p := [0, · · · , 0, 1, 0]

the involution σ p and projection π p (see Definition 5.1) are still well-defined, and
the quotient

(
Lageuc

)
p�σ p 	 PO(n, 0, 1)

recovers the group of dual Euclidean (similarity) transformations.
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Fig. A.2 Euclidean Laguerre geometry. The corresponding Laguerre quadric Beuc is a cone
(“Blaschke cylinder”) with its vertex corresponding to the point m∞ that represents the line at
infinity in the dual Euclidean plane E∗. Under dualization the Laguerre quadric becomes a conic
B�
euc in the cyclographic model of Laguerre geometry. A point x ∈ Beuc represents an oriented line

� in the Euclidean plane E. By dualization the point becomes a plane x� that touches the conic
B�
euc and intersects E in the line �. A planar section G(c) of Beuc represents an oriented circle c. By

dualization it becomes a cone G(c)� that contains the conic B�
euc and intersects E in the circle c

The projection π p restricted to Beuc realizes a double cover of the dual Euclidean
space C+ = E∗, which may be interpreted as carrying the information of the orien-
tation of the corresponding hyperplanes in E. The involution σ p plays again the role
of orientation reversion (see Fig.A.2, left).

Each hyperplanar section of Beuc ⊂ RPn+1 corresponds to (the tangent hyper-
planes of) a Euclidean sphere in E. Yet due to the degeneracy of Beuc it cannot be
identified with a (polar) point in the same space. Instead it can be identified with a
point in the dual space (RPn+1)∗, which is classically called the cyclographic model
of Laguerre geometry (see Fig.A.2, right). The dual quadric B�

euc is given by a lower
dimensional quadric of signature (n, 1) contained in the hyperplane m�∞. Thus, the
cyclographic model is isomorphic to the (n + 1)-dimensional Minkowski space.

A.5 Lie Geometry in Euclidean Space

A Euclidean model of Lie geometry is obtained by stereographic projection of the
point complex S ⊂ L (cf. Chap. 7).

We write the bilinear form corresponding to the Lie quadric as

〈x, y〉 := x̂ · ŷ − xn+2yn+2 − xn+3yn+3 =
n+1∑

i=1

xi yi − xn+2yn+2 − xn+3yn+3
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for x, y ∈ R
n+3, where

·̂ : R
n+3 → R

n+1, (x1, . . . , xn+3) �→ (x1, . . . , xn+1).

The point complex S is projectively equivalent to S
n . Indeed, p⊥ ={

x ∈ RPn+2
∣∣ xn+3 = 0

} 	 RPn+1, and for a point x = [x̂, 1, 0] ∈ p⊥ we find that
in affine coordinates (xn+2 = 1)

〈x, x〉 = 0 ⇔ x̂ · x̂ = 1.

Thus, we obtain the identification

S = {
x ∈ p⊥ ∣

∣ 〈x, x〉 = 0
} 	 {

x̂ ∈ R
n+1

∣
∣ x̂ · x̂ = 1

} = S
n.

We embed the sphere S
n into the light cone

L
n+1,2 = {

x ∈ R
n+3

∣∣ 〈x, x〉 = 0
}

in the following way

σSN : S
n ↪→ L

n+1,2, x̂ �→ x̂ + en+2 + 0 · en+3.

Then we have S = P(σSN (Sn)), where P acts one-to-one on the image of σSN .
Denote

e∞ := 1
2 (en+2 + en+1) , e0 := 1

2 (en+2 − en+1) ,

which are homogeneous coordinate vectors for the north pole and south pole of
S 	 S

n respectively. They satisfy

〈e0, e0〉 = 〈e∞, e∞〉 = 0, 〈e0, e∞〉 = − 1
2 ,

and 〈e0, ei 〉= 〈e∞, ei 〉 =0 for i = 1, . . . , n, n + 3. The vectors e1, . . . , en, e0, e∞,

en+3 constitute a basis of R
n+1,2. We define an embedding of R

n into the light cone
L
n+1,2 by the map

σRN : R
n ↪→ L

n+1,2, x̃ �→ x̃ + e0 + |x̃ |2 e∞ + 0 · en+3

and recognize that upon renormalizing the (n + 2)-nd coordinate to 1 this is nothing
but stereographic projection from R

n onto the sphere S
n , i.e.

(σSN )−1 ◦ σRN : R
n → S

n, x̃ �→
(

2x̃

|x̃ |2 + 1
,
1 − |x̃ |2
1 + |x̃ |2

)

,
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Table A.1 Correspondence between the geometric objects of Lie geometry in Euclidean space and
points on the Lie quadric

L = P
({
x = (x1, . . . , xn+3) ∈ R

n+1,2
∣
∣ 〈x, x〉 = 0

}) ⊂ RPn+2.

Furthermore, e∞ = 1
2 (en+2 + en+1) , e0 = 1

2 (en+2 − en+1) ,

Euclidean geometry Lie geometry

Point x̃ ∈ R
n

[x̃ + e0 + |x |2 e∞ + 0 · en+3]
=

[
x̃, 1−|x̃ |2

2 ,
1+|x̃ |2

2 , 0
]

∈ L

Oriented hypersphere
with center s̃ ∈ R

n and signed radius r ∈ R

[s̃ + e0 + (|s̃|2 − r2)e∞ + ren+3]
=

[
s̃, 1−|s̃|2+r2

2 ,
1+|s̃|2−r2

2 , r
]

∈ L

Oriented hyperplane 〈ñ, x̃〉 + h = 0,
with normal ñ ∈ S

n−1 and signed distance
d ∈ R

[ñ + 0 · e0 − 2he∞ + en+3]
= [

ñ, h,−h, 1
] ∈ L

and S = P(σSN (Sn)) = P(σRN (Rn)) ∪ {[e∞]}. Every point s ∈ L with s0 = 0 can
be represented by

s = s̃ + e0 + (|s̃|2 − r2)e∞ + ren+3

with s̃ ∈ R
n and r ∈ R. Then for x = x̃ + e0 + |x̃ |2 e∞ we find

〈s, x〉 = 0 ⇔ |s̃ − x̃ |2 = r2.

Thus, we may identify the point s with the oriented Euclidean hypersphere of R
n

with center s̃ and signed radius r ∈ R. Analogously a point n ∈ L with n0 = 0 may
be represented by

n = ñ + 0 · e0 − 2he∞ + en+3

and identified with the oriented hyperplane of R
n with normal ñ ∈ S

n−1 and signed
distance of the origin h ∈ R (see TableA.1).

Proposition A.2 Under the aforementioned identification two oriented
hyperspheres/hyperplanes of Euclidean space are in oriented contact if and only
if the corresponding points on the Lie quadric are Lie orthogonal.

Proof For, e.g., two oriented hyperspheres ofR
n represented by homogeneous coor-

dinate vectors si = s̃i + e0 + (|s̃i |2 − r2i )e∞ + ri en+3, i = 1, 2 we find

〈s1, s2〉 = 0 ⇔ |s̃1 − s̃2|2 = (r1 − r2)
2. ��

The condition n0 = 0, which characterizes the oriented hyperplanes among all
oriented hyperspheres, is equivalent to 〈n, e∞〉 = 0. Thus, we can interpret oriented
hyperplanes as oriented hyperspheres containing the point q := [e∞]. Similar to the
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point complex (see Definition 7.3), we may introduce the Euclidean plane complex
(cf. Definition 7.5)

L ∩ q⊥ 	 Beuc (A.2)

representing all oriented hyperplanes of R
n . The Euclidean plane complex is a

parabolic sphere complex (see Definition 7.4). Its signature is given by (n, 1, 1),
and we recover Euclidean Laguerre geometry (cf. Sect. A.4) by considering the
action on q⊥ of all Lie transformations that fix the point q:

Lieq 	 Lageuc.



Appendix B
Generalized Signed Inversive Distance

While two points x, y ∈ Q on a quadric Q ⊂ RPn+1 with 〈x, y〉 = 0 possess no
projective invariant, the additional choice of a fixed point q ∈ RPn+1 \ Q allows for
the definition of such an invariant. It is closely related to the Cayley-Klein distance
under the projection from the point q.

A special case is given by a signed version of the classical inversive distance
introduced Coxeter [Cox1971], which generalizes the intersection angle of spheres.
It can be used for a geometric description of sphere complexes in Lie geometry.

B.1 Invariant on a Quadric Induced by a Point

Definition B.1 Let q ∈ RPn+1 \ Q. Then we call

IQ,q (x, y) := 1 − 〈x, y〉 〈q, q〉
〈x, q〉 〈y, q〉 .

the q-distance for any two points x, y ∈ Q.

Remark B.1 Although we are interested in the q-distance of points on the quadric
for now, it can be extended to all of RPn+1 \ q⊥. Then the relation between the
q-distance and the Cayley-Klein distance induced by Q is given by

KQ (x, y) = (1 − IQ,q (x, y))2

(1 − IQ,q (x, x))(1 − IQ,q ( y, y))

for x, y ∈ RPn+1 \ (Q ∪ q⊥).
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The q-distance is projectively well-defined, in the sense that it does not depend
on the choice of homogeneous coordinate vectors for the points q, x, and y, and it
is invariant under the action of the group PO(r, s, t)q :

Proposition B.1 Let q ∈ RPn+1 \ Q. Then the q-distance is invariant under all
projective transformations that preserve the quadric Q and fix the point q, i.e.

IQ,q ( f (x), f ( y)) = IQ,q (x, x)

for f ∈ PO(r, s, t)q and x, y ∈ Q.

Applying the involution σq to only one of the arguments of the q-distance results
in a change of sign.

Proposition B.2 Let q ∈ RPn+1 \ Q. Then the q-distance satisfies

IQ,q
(
σq(x), y

) = IQ,q
(
x, σq( y)

) = −IQ,q (x, y) .

for all x, y ∈ Q.

Proof Using Definitions B.1 and 5.1 we obtain

IQ,q
(
σq(x), y

) = 1 −
〈
σq(x), y

〉 〈q, q〉
〈
σq(x), q

〉 〈y, q〉 = 1 − 〈x, y〉 〈q, q〉 − 2 〈x, q〉 〈y, q〉
− 〈x, q〉 〈y, q〉

= 〈x, y〉 〈q, q〉
〈x, q〉 〈y, q〉 − 1 = −IQ,q (x, y) .

��
Thus, we find that the square of the q-distance is well-defined on the quotient Q/σq ,

which, according to Proposition 5.1, can be identifiedwith its projectionπq(Q) to the
plane q⊥. In this projection the square of the q-distance becomes the Cayley-Klein
distance induced by Q̃ = Q ∩ q⊥ (see Proposition 5.3)

IQ,q (x, y)2 = KQ̃
(
πq(x), πq( y)

)
.

Hypersurfaces of Q of constant q-distance to a point on Q are hyperplanar sections
of Q, i.e. the Q-spheres (see Definition 5.2).

Proposition B.3 The hypersurface in Q of constant q-distance ν ∈ R to a point
x̃ ∈ Q is given by the intersection with the polar hyperplane of the point x ∈ RPn+1,

x := 〈q, q〉 x̃ + (ν − 1) 〈x̃, q〉 q,

i.e. {
y ∈ Q ∣

∣ IQ,q
(
x̃, y

) = ν
} = x⊥ ∩ Q.
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Proof The equation

IQ,q
(
x̃, y

) = 1 − 〈x̃, y〉 〈q, q〉
〈x̃, q〉 〈y, q〉 = ν

is equivalent to

〈x, y〉 = 〈q, q〉 〈x̃, y〉 + (ν − 1) 〈x̃, q〉 〈q, y〉 = 0.

��
But are all hyperplanar sections of Q such hypersurfaces (cf. Theorem 5.1)?

Following Proposition B.3 the potential centers of a given planar section x⊥ ∩ Q are
given by the points of intersection of the line q ∧ x with the quadric Q. Yet such
lines do not always intersect the quadric in real points.

Proposition B.4 Denote by


q(x) := 〈x, q〉2 − 〈x, x〉 〈q, q〉 = − 〈q, q〉 〈x, x〉q
the quadratic form of the cone of contact CQ(q). Let x ∈ RPn+1 such that
x⊥ ∩ Q = ∅.

• If 
q(x) > 0, then the line q ∧ x intersects the quadric Q in two (real) points,
and

x⊥ ∩ Q = {
y ∈ Q ∣∣ IQ,q (x±, y) = ν±

}

with

x± = 〈q, q〉 x +
(
−〈x, q〉 ± √



)
q, ν± := ±〈x, q〉√



.

• If
q(x) < 0, then the line q ∧ x intersects the quadricQ in two complex conjugate
points, and

x⊥ ∩ Q = {
y ∈ Q ∣

∣ IQ,q (x±, y) = ν±
}

with

x± = 〈q, q〉 x +
(
−〈x, q〉 ± i

√−

)
q, ν± := ± 〈x, q〉

i
√−


.

Proof The first equality for the quadratic form of the cone of contact follows
from Lemma 3.3, while the second equality immediately follows from substituting
x = αq + πq(x).

In the case 
q(x) = 0 the form of the intersection points x± follows from
Lemma 3.2. Substituting into the q-distance gives, e.g., in the case 
q(x) > 0

IQ,q (x±, y) = 1 − (−〈x, q〉 ± √

) 〈q, q〉

〈x±, q〉 = ±〈x, q〉√



,
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where we used 〈x, q〉 = ±√

 〈q, q〉. ��

Remark B.2 The q-distance of two points x̃, ỹ ∈ RPn+1 with x⊥ ∩ Q = ∅, which
represent two q-spheres with centers x, y ∈ Q and q-radii ν1, ν2 is given by

IQ,q
(
x̃, ỹ

) = IQ,q (x, y)
ν1ν2

.

Note that the change of the representing center and radius, e.g. x → σq(x), ν1 →
−ν1, leaves the resulting quantity invariant.

B.2 Signed Inversive Distance

We first give a Euclidean definition for the signed inversive distance.

Definition B.2 The signed inversive distance of two oriented hyperspheres in R
n

with centers s̃1, s̃2 ∈ R
n and signed radii r1, r2 ∈ R is given by

I := r21 + r22 − |s̃1 − s̃2|2
2r1r2

.

In particular, if the two spheres intersect, it is the cosine of their intersection angle,
by the cosine law for Euclidean triangles.

Remark B.3 This classical invariant is usually given in its unsigned version, which
was introduced by Coxeter [Cox1971] as a Möbius invariant.

Proposition B.5 The signed inversive distance I satisfies

• I ∈ (−1, 1) ⇔ the two oriented hyperspheres intersect. In this case I = cosϕ

where ϕ ∈ [0, π ] is the angle between the two oriented hyperspheres.
• I = 1 ⇔ the two oriented hyperspheres touch with matching orientation (Lie
incidence).

• I = −1 ⇔ the two oriented hyperspheres touch with opposite orientation.
• I ∈ (∞,−1) ∪ (1,∞) ⇔ the two oriented hyperspheres are disjoint.

The signed inversive distance is nothing but the p-distance (see Definition B.1)
associated with the point complexS ⊂ L in Lie geometry (see Definition 7.3), where

p = [0, · · · , 0, 1] ∈ RPn+2.

Proposition B.6 For two oriented hyperspheres represented by

si = [s̃i + e0 + (|s̃i |2 − r2i )e∞ + ri en+3], i = 1, 2
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with Euclidean centers s̃1, s̃2 ∈ R
n and signed radii r1, r2 = 0 the p-distance asso-

ciated with the point complex S is equal to the signed inversive distance, i.e.

IL, p (s1, s2) = r21 + r22 − |s̃1 − s̃2|2
2r1r2

.

Proof With the given representation of the hyperspheres we find

IL, p (s1, s2) = 1 − 〈s1, s2〉 〈p, p〉
〈s1, p〉 〈s2, p〉 = 1 + (r21 + r22 − 2r1r2) − |s̃1 − s̃2|2

2r1r2
= r21 + r22 − |s̃1 − s̃2|2

2r1r2
.

��
Remark B.4 Since we have expressed the signed inversive distance in terms of the
p-distance it follows that it is similarly well-defined for two oriented hyperspheres of
S
n . Furthermore, the signed inversive distance is invariant under all Lie transforma-

tions that preserve the point complex S, i.e. all Möbius transformations. In particular,
the intersection angle of spheres is a Möbius invariant. As follows from Proposition
5.3 the Cayley-Klein distance of Möbius geometry, i.e. the Cayley-Klein distance
induced by S onto p⊥ is the squared inversive distance.

B.3 Geometric Interpretation for Sphere Complexes

We now use the inversive distance to give a geometric interpretation for most sphere
complexes in Lie geometry (see Definition 7.4). Let again

p = [0, . . . , 0, 1] ∈ RPn+2,

which distinguishes the point complex S = L ∩ p⊥.

Proposition B.7 Let q ∈ RPn+2, q = p such that the line p ∧ q through p and q
intersects the Lie quadric in two points, i.e. p ∧ q has signature (+−). Denote by

{q+, q−} := ( p ∧ q) ∩ L

the two intersection points of this line with the Lie quadric (the oriented hyperspheres
corresponding to q+ and q− only differ in their orientation).

Then the sphere complex corresponding to the point q is given by the set of oriented
hyperspheres that have some fixed constant inversive distance IL, p to the oriented
hypersphere corresponding to q+, or equivalently, fixed constant inversive distance
−IL, p to the oriented hypersphere corresponding to q−.

In particular, in this case the sphere complex is

• elliptic if IL, p ∈ (−1, 1),
• hyperbolic if IL, p ∈ (−∞,−1) ∪ (1,∞),
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• parabolic if IL, p ∈ {−1, 1}.
Proof The two points q± may be represented by

q± = q̃ + e0 +
(
|q̃|2 − R2

)
e∞ ± Ren+3,

with some R = 0, where we assumed that the e0-component of q does not vanish.
The case with 〈q, e∞〉 = 0, which corresponds to q± being planes, may be treated
analogously.

Now the point q may be represented by

q = q̃ + e0 +
(
|q̃|2 − R2

)
e∞ + κen+3

with some κ ∈ R. For any point s ∈ L represented by

s = s̃ + e0 +
(
|s̃|2 − r2

)
e∞ + ren+3,

we find that the condition to lie on the sphere complex is given by

〈q, s〉 = 0 ⇔ 〈q, s〉p = rκ.

Thus, the signed inversive distance of q+ and s is given by

I p(q+, s) = 1 − 〈q+, s〉 〈p, p〉
〈q+, p〉 〈s, p〉 = 〈s, q〉p

r R
= κ

R
.

The change q+ → q− is equivalent to R → −R which leads to I → −I .
The distinction of the three types of sphere complexes in terms of the value of the

inversive distance is obtained by observing that

〈q, q〉 > 0, if κ2 < R2,

〈q, q〉 < 0, if κ2 > R2,

〈q, q〉 = 0, if κ2 = R2.

��
Remark B.5 For an elliptic sphere complex the line p ∧ q always has signature
(+−). Furthermore, in this casewehave I p ∈ (−1, 1). Thus, according toProposition
B.5, any elliptic sphere complex is given by all oriented hyperspheres with constant
angle to some fixed oriented hypersphere.

For hyperbolic sphere complexes the line p ∧ q can have signature (+−), (−−),
or (−0). The first case is captured by Proposition B.7. An example with signature
(−−) is given by q = [0, sin R, cos R], which describes all oriented hyperspheres
of S

n with spherical radius R. An example with signature (−0) is given by q =
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[−2Re∞ + en+3], which describes all oriented hyperspheres of R
n with (Euclidean)

radius R. Note that the point complex S itself is also a hyperbolic sphere complex.
Parabolic sphere complexes are captured by Proposition B.7 if and only if q /∈ S.

Note that the (Euclidean) plane complex (A.2) is parabolic.
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